WorldWideScience

Sample records for characteristics brine chemistry

  1. On the physico-chemical characteristics of brines

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Rao, P.V.S.S.D.P.; Singbal, S.Y.S.

    Analyses of the natural brines form the salt lakes, salt pans and the artificial brines obtained after the solar desalination of seawater respectively, showed wide differences in their physico-chemical characteristics. The natural brines are markEd...

  2. Chemistry of glass corrosion in high saline brines

    International Nuclear Information System (INIS)

    Corrosion data obtained in laboratory tests can be used for the performance assessment of nuclear waste glasses in a repository if the data are quantitatively described in the frame of a geochemical model. Experimental data were obtained for conventional pH values corrected for liquid junction, amorphous silica solubility and glass corrosion in concentrated salt brines. The data were interpreted with a geochemical model. The brine chemistry was described with the Pitzer formalism using a data base which allows calculation of brine compositions in equilibrium with salt minerals at temperatures up to 200C. In MgCl2 dominated brines Mg silicates form and due to the consumption of Mg the pH decreases with proceeding reaction. A constant pH (about 4) and composition of alteration products is achieved, when the alkali release from the glass balances the Mg consumption. The low pH results in high release of rare earth elements REE (rare earth elements) and U from the glass. In the NaCl dominated brine MgCl2 becomes exhausted by Mg silicate formation. As long as there is still Mg left in solution the pH decreases. After exhaustion of Mg the pH rises with the alkali release from the glass and analcime is formed

  3. Chemical and isotopic characteristics of brines from three oil- and gas-producing sandstones in eastern Ohio, with applications to the geochemical tracing of brine sources

    Science.gov (United States)

    Breen, K.J.; Angelo, Clifford G.; Masters, Robert W.; Sedam, Alan C.

    1985-01-01

    Chemical and isotopic characteristics of selected inorganic constituents are reported for brines from the Berea Sandstone of Mississippian age, the Clinton sandstone, Albion Sandstone of Silurian age, and the Rose Run formation of Cambrian and Ordovician age in 24 counties in eastern Ohio. Ionic concentrations of dissolved constituents in brines from these formations generally fall in the following ranges (in millimoles per kilogram of brine): Na, Cl > 1,000; 100 < Ca, Mg < 1,000; 1 < K, Br, Sr, Li, Fe, SO4 < 100; Mn, Zn, Al, I, HCO3, SiO2 < 1. Mean ionic concentrations of Ca, Mg, Na, Cl, K, SO4 and Br, and mean values of density and dissolved solids are significantly different at the 95-percent confidence level in each formation. Only potassium has a unique concentration range in each formation. Selected concentration ratios are identified as potential indicators for geochemical tracing of brines having some history of dilution. The k:Na ratios work best for identifying the source formation of an unidentified brine. Isotopic characteristics of hydrogen and oxygen indicate a meteoric origin for the water matrix of the brines. Sulfur isotopes may have utility for differentiating brines from oxidizing ground water.

  4. Radiation chemistry of salt-mine brines and hydrates. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Jenks, G.H.; Walton, J.R.; Bronstein, H.R.; Baes, C.F. Jr.

    1981-07-01

    Certain aspects of the radiation chemistry of NaCl-saturated MgCl/sub 2/ solutions and MgCl/sub 2/ hydrates at temperatures in the range of 30 to 180/sup 0/C were investigated through experiments. A principal objective was to establish the values for the yields of H/sub 2/ (G(H/sub 2/)) and accompanying oxidants in the gamma-ray radiolysis of concentrated brines that might occur in waste repositories in salt. We concluded that G(H/sub 2/) from gamma-irradiated brine solution into a simultaneously irradiated, deaerated atmosphere above the solution is between 0.48 and 0.49 over most of the range 30 to 143/sup 0/C. The yield is probably somewhat lower at the lower end of this range, averaging 0.44 at 30 to 45/sup 0/C. Changes in the relative amounts of MgCl/sub 2/ and NaCl in the NaCl-saturated solutions have negligible effects on the yield. The yield of O/sub 2/ into the same atmosphere averages 0.13, independent of the temperature and brine composition, showing that only about 50% of the radiolytic oxidant that was formed along with the H/sub 2/ was present as O/sub 2/. We did not identify the species that compose the remainder of the oxidant. We concluded that the yield of H/sub 2/ from a gamma-irradiated brine solution into a simultaneously irradiated atmosphere containing 5 to 8% air in He may be greater than the yield in deaerated systems by amounts ranging from 0% for temperatures of 73 to 85/sup 0/C, to about 30 and 40% for temperatures in the ranges 100 to 143/sup 0/C and 30 to 45/sup 0/C, respectively. We did not establish the mechanism whereby the air affected the yields of H/sub 2/ and O/sub 2/. The values found in this work for G(H/sub 2/) in deaerated systems are in approximate agreement with the value of 0.44 for the gamma-irradiation yield of H/sub 2/ in pure H/sub 2/O at room temperature. They are also in agreement with the values predicted by extrapolation from the findings of previous researchers for the value for G(H/sub 2/) in 2 M NaCl solutions

  5. Sulfur and Trace Metal Chemistry of a Methane Charged Brine Pool and Adjacent Porewaters in the Northern Gulf of Mexico

    Science.gov (United States)

    Gilhooly, W. P.; Cable, J. E.; Carney, R. S.; Macko, S. A.; Lyons, T. W.

    2007-12-01

    A systematic study of a methane brine pool on the Louisiana continental slope reveals the extent to which steep chemical gradients associated with an anoxic hypersaline basin control the establishment and distribution of chemosynthetic organisms. The seep site, located in the Green Canyon lease block (GC233), provides habitat for a bivalve-dominated community of chemosynthetic mussels ( Bathymodiolus childressi). The pool is a brine-filled pockmark centered over a salt diapir buried within 500 m of the seafloor along which methane and vent fluids migrate to the surface. The depression slopes along its southern margin where brine overflows onto the seafloor. This study sought to establish the chemistry of the brine in an effort to better understand fluid transport to the seafloor and the extent to which brine influences chemosynthetic activity at a methane seep site. Ten sediment push cores were collected during submersible operations within the brine spillway and in upslope background sediments distal to the pool. Initial chemical analyses indicate the brine (128 ppt) is anoxic, chloride-rich (1994.8 mM) and sulfur-poor ([SO42-] = 0.4 mM, [HS-] = 8.2 uM). Steep porewater Cl- and Sr2+ concentration gradients observed in sediments downslope of the brine pool clearly indicate mixing between brine and seawater end members. Porewater sulfur profiles from sediments within the brine outflow indicate complete sulfate consumption within 30 cm below seafloor and sulfide production as great as 5 mM. The paired isotopic composition of dissolved sulfate and sulfide (Δ34SSO4-HS = 40‰) is consistent with bacterial sulfate reduction, potentially driven by the anaerobic oxidation of methane or non-methane hydrocarbons. The brine was nearly devoid of dissolved Mo (22 nM) and enriched in Mn (6.3 uM), relative to measured seawater casts ([Mo] = 112 nM; [Mn] below detection). Dissolved Mo enrichments, up to 392.8 nM, in surficial sediments decrease with depth may indicate brine

  6. Origin and evolution of oilfield brines from Tertiary strata in western Qaidam Basin: Constraints from 87Sr/86Sr, δD, δ18O, δ34S and water chemistry

    Institute of Scientific and Technical Information of China (English)

    FAN Qishun; MA Haizhou; LAI Zhongping; TAN Hongbing; LI Tingwei

    2010-01-01

    Chemistry of major and minor elements, 87Sr/86Sr, δD, δ18O and δ34S of brines were measured from Tertiary strata and Quaternary salt lakes in the western Qaidam Basin. The water chemistry data show that all oilfield brines are CaCl2 type. They were enriched in Ca2+, B3+, Li+, Sr2+, Br-, and were depleted in Mg2+, SO42-, which indicated that these brines had the characteristics of deeply circulated water. The relationship between δD and δ18O shows that all data of these brines decline towards the Global Meteoric Water Line (GWL) and Qaidam Meteoric Water Line (QWL), and that the intersection between oilfield brines and Meteoric Water Lines was close to the local spring and fresh water in the piedmont in the western Qaidam Basin. The results suggest that oilfield brines has initially originated from meteoric water, and then might be affected by water-rock metamorphose, because most oilfield brines distribute in the range of metamorphosing water. The 87Sr/86Sr values of most oilfield brines range from 0.71121 to 0.71194, and was less than that in salt lake water (>0.712), but close to that of halite in the study area. These imply that salt dissolution occurred in the process of migration. In addition, all oilfield brines have obviously much positive δ34S values (ranging from 26.46‰ to 54.57‰) than that of salt lake brines, which was caused by bacterial sulfate reduction resulting in positive shift of δ34S value and depleteed SO42- in oilfield brines. Combined with water chemical data and δD, δ18O, 87Sr/86Sr, δ34S values, we concluded that oilfield brines mainly originate from the deeply circulated meteoric waters, and then are affected by salt dissolution, water-rock metamorphose, sulfate reduction and dolomitization during the process of migration. These processes alter the chemical compositions of oilfield brines and accumulate rich elements (such as B, Li, Sr, Br, K and so on) for sustainable utilization of salt lake resources in the Qaidam Basin.

  7. Brine chemistry: scaling and corrosion. Geothermal research study in the Salton Sea region of California

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, M.R.

    1975-07-01

    The purpose of this report is to recommend a reasonable program of brine chemistry research that will result in the development of methods for predicting and controlling scale deposition, and in guidelines for the selection of corrosion-resistant construction materials. First, background information, which is necessary for the understanding of the problems of scaling and corrosion in the Salton Sea KGRA, is presented through a review of the history of geothermal exploration and development in the Salton Sea. Second, literature relevant to the geochemistry of the Salton Sea field is reviewed and important results are emphasized. Third, current research efforts directed toward actual power plant construction are summarized and evaluated. Fourth, research which has been proposed but is not currently funded is discussed. Fifth, because silica scaling has been the most troublesome problem in the past, the basic chemistry of silica and its relationship to scaling is discussed. Sixth, recommendations for future research are made in which a fundamental engineering approach is emphasized. In this approach, experiments would be conducted on actual process equipment and detailed chemical analyses would be performed on site in well-equipped field laboratories. 88 references.

  8. Brine Sampling and Evaluation Program, 1990 report

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M. [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

  9. Brine Sampling and Evaluation Program, 1990 report

    International Nuclear Information System (INIS)

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry

  10. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation to the chemistry of locally occurring oil, natural gas, and brine

    Science.gov (United States)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-01-01

    Environmental samples collected in the Mosquito Creek Lake area were used to characterize water quality in relation to the chemistry of locally occurring oil, natural gas, and brine and to establish baseline water quality. Mosquito Creek Lake (a manmade reservoir) and the shallow bedrock aquifers near the lake are major sources of potable water in central Trumbull County. The city of Warren relies on the lake as a sole source of potable water. Some of the lake bottom may be in direct hydraulic connection with the underlying aquifers. The city of Cortland, along the southeastern shore of the lake, relies on the Cussewago Sandstone aquifer as a sole source of potable water. This aquifer subcrops beneath the glacio-fluvial sediments that underlie the lake. Nearly all residential homes around the lake, with the exception of homes in the city of Cortland, rely on domestic supply wells as a source of potable water. Oil and natural gas exploration and production have been ongoing in the Mosquito Creek Lakearea since the discovery of the historic Mecca Oil Pool in the Mississippian Berea and Cussewago Sandstones in 1860. Since the late 1970' s, the major drilling objective and zone of production is the Lower Silurian Clinton sandstone. The oil and natural gas resources of the Mosquito Creek Lake area, including reservoir pressure, production history, and engineering and abandonment practices are described in this report. The chemical and isotopic characteristics of the historic Mecca oil and natural gas are very different than those of the Clinton sandstone oil and natural gas. Gas chromatograms show that Mecca oil samples are extensively altered by biodegradation, whereas Clinton sandstone oils are not. Extensive alteration of Mecca oil is consistent with their occurrence at very shallow depths (less than 100 ft below land surface) where microbial activity can affect their composition. Also, the carbon-isotope composition of dissolved methane gas from Berea and Cussewago

  11. Chemistry of brines in salt from the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico: a preliminary investigation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, C.L.; Krumhansl, J.L.

    1986-03-01

    We present here analyses of macro- and microscopic (intracrystalline) brines observed within the WIPP facility and in the surrounding halite, with interpretations regarding the origin and history of these fluids and their potential effect(s) on long-term waste storage. During excavation, several large fluid inclusions were recovered from an area of highly recrystallized halite in a thick salt bed at the repository horizon (2150 ft below ground level). In addition, 52 samples of brine ''weeps'' were collected from walls of recently excavated drifts at the same stratigraphic horizon from which the fluid inclusion samples are assumed to have been taken. Analyses of these fluids show that they differ substantially in composition from the inclusion fluids and cannot be explained by mixing of the fluid inclusion populations. Finally, holes in the facility floor that filled with brine were sampled but with no stratographic control; therefore it is not possible to interpret the compositions of these brines with any accuracy, except insofar as they resemble the weep compositions but with greater variation in both K/Mg and Na/Cl ratios. However, the Ca and SO/sub 4/ values for the floor holes are relatively close to the gypsum saturation curve, suggesting that brines filling floor holes have been modified by the presence of gypsum or anhydrite, possibly even originating in one or more of the laterally continuous anhydrite units referred to in the WIPP literature as marker beds. In conclusion, the wide compositional variety of fluids found in the WIPP workings suggest that (1) an interconnected hydrologic system which could effectively transport radonuclides away from the repository does not exist; (2) brine migration studies and experiments must consider the mobility of intergranular fluids as well as those in inclusions; and (3) near- and far-field radionuclide migration testing programs need to consider a wide range of brine compositions rather than a

  12. Water quality in the vicinity of Mosquito Creek Lake, Trumbull County, Ohio, in relation of the chemistry of locally occurring oil, natural gas, and brine

    Energy Technology Data Exchange (ETDEWEB)

    Barton, G.J.; Burruss, R.C.; Ryder, R.T.

    1998-12-31

    The purpose of this report is to describe current water quality and the chemistry of oil, natural gas, and brine in the Mosquito Creek Lake area. Additionally, these data are used to characterize water quality in the Mosquito Creek Lake area in relation to past oil and natural gas well drilling and production. To meet the overall objective, several goals for this investigation were established. These include (1) collect water-quality and subsurface-gas data from shallow sediments and rock that can be used for future evaluation of possible effects of oil and natural gas well drilling and production on water supplies, (2) characterize current surface-water and ground-water quality as it relates to the natural occurrence and (or) release of oil, gas, and brine (3) sample and chemically characterize the oil in the shallow Mecca Oil Pool, gas from the Berea and Cussewago Sandstone aquifers, and the oil, gas, and brine from the Clinton sandstone, and (4) identify areas where aquifers are vulnerable to contamination from surface spills at oil and natural gas drilling and production sites.

  13. Quality characteristics of raw and canned goat meat in water, brine, oil and Thai curry during storage

    Directory of Open Access Journals (Sweden)

    Yoottana Polpara

    2008-04-01

    Full Text Available The quality characteristics of three groups of goat meat obtained from one year and three years old Anglonubian crossed native, and culled Saanen crossed native were investigated. Significant differences in fat, ash and total collagen content, were observed among groups of goat meat (P0.05 during storage. The influence of groups of goat meat on TBARS value was significantly observed (P<0.05 when processed in water and brine. Massaman curry could reduce the change in TBARS value of canned goat meat during storage. The results based on texture, color and lipid oxidation suggested that there were no significant differences between the groups of goat meat from 3 years Anglonubian crossed native and 7 years Saanen crossed native for being processed in canned goat meat curry products.

  14. Characteristics of meaningful chemistry education - The case of water quality

    NARCIS (Netherlands)

    Westbroek, Hanna Barbara

    2005-01-01

    This thesis addresses the question of how to involve students in meaningful chemistry education by a proper implementation of three characteristics of meaningful: a context, a need-to-know approach and attention for student input. The characteristics were adopted as solution strategies for problemat

  15. Characteristics of Trivalent Lanthanides in Coordination Chemistry

    Institute of Scientific and Technical Information of China (English)

    Xue Dongfeng(薛冬峰); Zuo Sen(左森); Henryk Ratajczak

    2004-01-01

    Some basic characteristics of lanthanide-oxygen bonds in various trivalent lanthanide metal-organic complexes are quantitatively studied by the bond valence model. Some important relationships among the electronegativity, bond valence parameter, bond length and lanthanide coordination number in these complexes are generally found , which show that for each trivalent lanthanide cation all calculated parameters may well be correlated with its coordination number in their coordination complexes. Specifically,32 new data for the bond valence parameter are first calculated in this work.An approximate linear relationship between the Ln-O bond valence parameter and the coordination number of Ln3+ is obtained.The Ln-O bond length increases with the increase in the lanthanide coordination number.The difference of electronegative values decreases with the increase in the lanthanide coordination number.

  16. Brine Sampling and Evaluation Program, 1991 report

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J. [International Technology Corp., Albuquerque, NM (United States); Belski, D.S. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  17. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    Energy Technology Data Exchange (ETDEWEB)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  18. Forward Osmosis Brine Drying

    Science.gov (United States)

    Flynn, Michael; Shaw, Hali; Hyde, Deirdre; Beeler, David; Parodi, Jurek

    2015-01-01

    The Forward Osmosis Brine Drying (FOBD) system is based on a technique called forward osmosis (FO). FO is a membrane-based process where the osmotic potential between brine and a salt solution is equalized by the movement of water from the brine to the salt solution. The FOBD system is composed of two main elements, the FO bag and the salt regeneration system. This paper discusses the results of testing of the FO bag to determine the maximum water recovery ratio that can be attained using this technology. Testing demonstrated that the FO bag is capable of achieving a maximum brine water recovery ratio of the brine of 95%. The equivalent system mass was calculated to be 95 kg for a feed similar to the concentrated brine generated on the International Space Station and 86 kg for an Exploration brine. The results have indicated that the FOBD can process all the brine for a one year mission for between 11% to 10% mass required to bring the water needed to make up for water lost in the brine if not recycled. The FOBD saves 685 kg and when treating the International Space Station brine and it saves 829 kg when treating the Exploration brine. It was also demonstrated that saturated salt solutions achieve a higher water recovery ratios than solids salts do and that lithium chloride achieved a higher water recovery ratio than sodium chloride.

  19. Applying the Multilevel Framework of Discourse Comprehension to Evaluate the Text Characteristics of General Chemistry Textbooks

    Science.gov (United States)

    Pyburn, Daniel T.; Pazicni, Samuel

    2014-01-01

    Prior chemistry education research has demonstrated a relationship between student reading skill and general chemistry course performance. In addition to student characteristics, however, the qualities of the learning materials with which students interact also impact student learning. For example, low-knowledge students benefit from texts that…

  20. Learning and Studying Strategies Used by General Chemistry Students with Different Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2016-01-01

    Students in general chemistry were partitioned into three groups by cluster analysis of six affective characteristics (emotional satisfaction, intellectual accessibility, chemistry self-concept, math self-concept, self-efficacy, and test anxiety). The at-home study strategies for exam preparation and in-class learning strategies differed among the…

  1. Chemical and isotopic ( 87Sr/ 86Sr, δ 18O, δD) constraints to the formation processes of Red-Sea brines

    Science.gov (United States)

    Pierret, M. C.; Clauer, N.; Bosch, D.; Blanc, G.; France-Lanord, C.

    2001-04-01

    About twenty deeps filled with hot brines and/or metalliferous sediments, are located along the Red-Sea axis. These brines present a well-suited framework to study the hydrothermal activity in such a young ocean. The present study outlines the results of a geochemical approach combining major-, trace-element and isotopic (oxygen, hydrogen, strontium) analyses of brines in six of the deeps, to evaluate different processes of brine formation and to compare the evolution of each deep. Important heterogeneities in temperature, salinity, hydrographic structure and chemistry are recorded, each brine having its own characteristics. The intensity of hydrothermal circulation varies among the deeps and ranges from being strong (Atlantis II and Nereus) to weak (Port-Soudan) and even to negligible (Valdivia and Suakin) and it varies along the entire Red-Sea axis. These observations do not favour a unique formational model for all of the brines. For example, the brines of the Suakin deep appear to have been formed by an old sea water which dissolved evaporite beds, without significant fluid circulation and hydrothermal input, while others such as Atlantis II or Nereus Deeps appear to be dominated by hydrothermal influences. A striking feature is the absence of a relationship between the position of the deeps along the axis and their evolutionary maturity.

  2. Viscous heavy brines

    Energy Technology Data Exchange (ETDEWEB)

    House, R.F.; Hoover, L.D.

    1984-07-10

    Hydroxyethyl cellulose and a sequestrant are added to a heavy brine containing one or more salts selected from calcium chloride, calcium bromide, and zinc bromide to increase the viscosity of the brine. Preferably the brine contains zinc bromide, has a density in the range from about 14.2-19.2 pounds per gallon, and the sequestrant is a polyphosphonic acid or water soluble salt thereof.

  3. Lithium brines: A global perspective: Chapter 14

    Science.gov (United States)

    Munk, LeeAnn; Hynek, Scott; Bradley, Dwight C.; Boutt, David; Labay, Keith A.; Jochens, Hillary; Verplanck, Philip L.; Hitzman, Murray W.

    2016-01-01

    Lithium is a critical and technologically important element that has widespread use, particularly in batteries for hybrid cars and portable electronic devices. Global demand for lithium has been on the rise since the mid-1900s and is projected to continue to increase. Lithium is found in three main deposit types: (1) pegmatites, (2) continental brines, and (3) hydrothermally altered clays. Continental brines provide approximately three-fourths of the world’s Li production due to their relatively low production cost. The Li-rich brine systems addressed here share six common characteristics that provide clues to deposit genesis while also serving as exploration guidelines. These are as follows: (1) arid climate; (2) closed basin containing a salar (salt crust), a salt lake, or both; (3) associated igneous and/or geothermal activity; (4) tectonically driven subsidence; (5) suitable lithium sources; and (6) sufficient time to concentrate brine. Two detailed case studies of Li-rich brines are presented; one on the longest produced lithium brine at Clayton Valley, Nevada, and the other on the world’s largest producing lithium brine at the Salar de Atacama, Chile.

  4. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    reluctant to invest in capital intensive, high risk GCS projects; early technical, economic, and environmental assessments of brine management are extremely valuable for determining the potential role of GCS in the US. We performed a first order feasibility and economic assessment, at three different locations in the US, of twelve GCS extracted-­water management options, including: geothermal energy extraction, desalination, salt and mineral harvesting, rare-­earth element harvesting, aquaculture, algae biodiesel production, road de-­icing, enhanced geothermal system (EGS) recharge, underground reinjection, landfill disposal, ocean disposal, and evaporation pond disposal. Three saline aquifers from different regions of the US were selected as hypothetical GCS project sites to encompass variation in parameters that are relevant to the feasibility and economics of brine disposal. The three aquifers are the southern Mt. Simon Sandstone Formation in the Illinois Basin, IL; the Vedder Formation in the southern San Joaquin Basin, CA; and the Jasper Interval in the eastern Texas Gulf Basin, TX. These aquifers are candidates for GCS due to their physical characteristics and their close proximity to large CO2 emission sources. Feasibility and impacts were calculated using one mt-­CO2 injected as the functional unit of brine management. Scenarios were performed for typical 1000MW coal-­fired power plants (CFPP) that incurred an assumed 24 percent carbon capture energy penalty (EP), injected 90 percent of CO2 emissions (~9 million mt-­ CO2 injected annually), and treated extracted water onsite. Net present value (NPV), land requirements, laws and regulations, and technological limits were determined for each stage of disposal, and used to estimate feasibility. The boundary of the assessment began once extracted water was brought to the surface, and ended once the water evaporated, was injected underground, or was discharged into

  5. Evolution of hydrologic systems and brine geochemistry in a deforming salt medium: Data from WIPP brine seeps

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E. (I. T. Corp., Carlsbad, NM (USA)); Roggenthen, W.M. (South Dakota School of Mines and Technology, Rapid City, SD (USA). Dept. of Geology and Geological Engineering)

    1991-01-01

    The Brine Sampling and Evaluation Program (BSEP) is a formalized continuation of studies that began in 1982 as part of the Site Validation Program. The program was established in 1985. The mission was to document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and the seepage of that brine into the WIPP excavations. This document focuses on the cumulative data obtained from the BSEP. The overall activities of the BSEP described and quantified the brine. It includes documentation and study of brine inflow into boreholes in the facility. The BSEP investigated the occurrence and development of brine weeps, crusts, and brine geochemistry. The presence of salt-tolerant bacteria in the workings was recorded and their possible interactions with experiments and operations, was assessed. The formation properties associated with the occurrence of brine was characterized. The determination of formation properties included the water content of various geologic units, direct examination of these units in boreholes using a video camera system, and measurement of electrical properties relatable to the brine contents. Modeling examined the interaction of salt deformation near the workings and the flow of brine through the deforming rocks. 34 refs.

  6. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    Science.gov (United States)

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  7. Silica in alkaline brines

    Science.gov (United States)

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  8. Chemistry

    International Nuclear Information System (INIS)

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF3 and dissolved UF4, and, in some cases, between the dissolved uranium fluorides and graphite, and the UC2. Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U4+/U3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  9. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  10. Incorporating landscape characteristics in a distance metric for interpolating between observations of stream water chemistry

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2008-10-01

    Full Text Available Spatial patterns of water chemistry along stream networks can be quantified using synoptic or "snapshot" sampling. The basic idea is to sample stream water at many points over a relatively short period of time. Even for intense sampling campaigns, the number of sample points is limited and interpolation methods, like kriging, are commonly used to produce continuous maps of water chemistry based on the point observations from the synoptic sampling. Interpolated concentrations are influenced heavily by how distance between points along the stream network is defined. In this study, we investigate different ways to define distance and test these based on data from a snapshot sampling campaign in a 37-km2 watershed in the Catskill Mountains region (New York State. Three distance definitions (or metrics were compared: Euclidean or straight-line distance, in-stream distance, and in-stream distance adjusted according characteristics of the local contributing area, i.e., an adjusted in-stream distance. Using the adjusted distance metric resulted in a lower cross-validation error of the interpolated concentrations, i.e., a better agreement of kriging results with measurements, than the other distance definitions. The adjusted distance metric can also be used in an exploratory manner to test which landscape characteristics are most influential for the spatial patterns of stream water chemistry and, thus, to target future investigations to gain process-based understanding of in-stream chemistry dynamics.

  11. Incorporating landscape characteristics in a distance metric for interpolating between observations of stream water chemistry

    Directory of Open Access Journals (Sweden)

    S. W. Lyon

    2008-06-01

    Full Text Available Spatial patterns of water chemistry along stream networks can be quantified using synoptic or "snapshot" sampling. The basic idea is to sample stream water at many points over a relatively short period of time. Even for intense sampling campaigns, the number of sample points is limited and interpolation methods, like kriging, are commonly used to produce continuous maps of water chemistry based on the point observations from the synoptic sampling. Interpolated concentrations are influenced heavily by how distance between points along the stream network is defined. In this study, we investigate different ways to define distance and test these based on data from a snapshot sampling campaign in a 37-km2 watershed in the Catskill Mountains region (New York State. Three distance definitions (or metrics were compared: Euclidean or straight-line distance, in-stream distance, and in-stream distance adjusted according characteristics of the local contributing area, i.e., an adjusted in-stream distance. Using the adjusted distance metric resulted in a lower cross-validation error of the interpolated concentrations, i.e., a better agreement of kriging results with measurements, than the other distance definitions. The adjusted distance metric can also be used in an exploratory manner to test which landscape characteristics are most influential for the spatial patterns of stream water chemistry and, thus, to target future investigations to gain process-based understanding of in-stream chemistry dynamics.

  12. Investigating Brine Shrimp.

    Science.gov (United States)

    Duran, Lena Ballone

    2003-01-01

    Presents a brine shrimp activity designed for students in grades 5-12 to foster authentic scientific inquiry in addition to providing an engaging and exciting avenue for student exploration. Emphasizes that inquiry should be a critical component in the science classroom. (KHR)

  13. An Investigation of the Effects of Reader Characteristics on Reading Comprehension Of a General Chemistry Text

    Science.gov (United States)

    Neiles, Kelly Y.

    There is great concern in the scientific community that students in the United States, when compared with other countries, are falling behind in their scientific achievement. Increasing students' reading comprehension of scientific text may be one of the components involved in students' science achievement. To investigate students' reading comprehension this quantitative study examined the effects of different reader characteristics, namely, students' logical reasoning ability, factual chemistry knowledge, working memory capacity, and schema of the chemistry concepts, on reading comprehension of a chemistry text. Students' reading comprehension was measured through their ability to encode the text, access the meanings of words (lexical access), make bridging and elaborative inferences, and integrate the text with their existing schemas to make a lasting mental representation of the text (situational model). Students completed a series of tasks that measured the reader characteristic and reading comprehension variables. Some of the variables were measured using new technologies and software to investigate different cognitive processes. These technologies and software included eye tracking to investigate students' lexical accessing and a Pathfinder program to investigate students' schema of the chemistry concepts. The results from this study were analyzed using canonical correlation and regression analysis. The canonical correlation analysis allows for the ten variables described previously to be included in one multivariate analysis. Results indicate that the relationship between the reader characteristic variables and the reading comprehension variables is significant. The resulting canonical function accounts for a greater amount of variance in students' responses then any individual variable. Regression analysis was used to further investigate which reader characteristic variables accounted for the differences in students' responses for each reading comprehension

  14. Chemistry

    International Nuclear Information System (INIS)

    Research progress is reported in programs on fuel-salt chemistry, properties of compounds in the Li--Te system, Te spectroscopy UF4--H equilibria, porous electrode studies of molten salts, fuel salt-coolant salt reactions, thermodynamic properties of transition-metal fluorides, and properties of sodium fluoroborate. Developmental work on analytical methods is summarized including in-line analysis of molten MSBR fuel, analysis of coolant-salts for tritium, analysis of molten LiF--BeF2--ThF4 for Fe and analysis of LiF--BeF--ThF4 for Te

  15. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Jenks, G.H.; Claiborne, H.C.

    1981-12-01

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references.

  16. Brine migration in salt and its implications in the geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    This report respresents a comprehensive review and analysis of available information relating to brine migration in salt surrounding radioactive waste in a salt repository. The topics covered relate to (1) the characteristics of salt formations and waste packages pertinent to considerations of rates, amounts, and effects of brine migration, (2) experimental and theoretical information on brine migration, and (3) means of designing to minimize any adverse effects of brine migration. Flooding, brine pockets, and other topics were not considered, since these features will presumably be eliminated by appropriate site selection and repository design. 115 references

  17. Brine Sampling and Evaluation Program

    International Nuclear Information System (INIS)

    The Brine Sampling and Evaluation Program (BSEP) Phase II Report is an interim report which updates the data released in the BSEP Phase I Report. Direct measurements and observations of the brine that seeps into the WIPP repository excavations were continued through the period between August 1986 and July 1987. That data is included in Appendix A, which extends the observation period for some locations to approximately 900 days. Brine observations at 87 locations are presented in this report. Although WIPP underground workings are considered ''dry,'' small amounts of brine are present. Part of that brine migrates into the repository in response to pressure gradients at essentially isothermal conditions. The data presented in this report is a continuation of moisture content studies of the WIPP facility horizon that were initiated in 1982, as soon as underground drifts began to be excavated. Brine seepages are manifested by salt efflorescences, moist areas, and fluid accumulations in drillholes. 35 refs., 6 figs., 11 tabs

  18. Chemistry

    International Nuclear Information System (INIS)

    Research and development activities dealing with the chemical problems related to design and ultimate operation of molten-salt reactor systems are described. An experimental test stand was constructed to expose metallurgical test specimens to Te2 vapor at defined temperatures and deposition rates. To better define the chemistry of fluoroborate coolant, several aspects are being investigated. The behavior of hydroxy and oxy compounds in molten NaBF4 is being investigated to define reactions and compounds that may be involved in corrosion and/or could be involved in methods for trapping tritium. Two corrosion products of Hastelloy N, Na3CrF6 and Na5Cr3F14, were identified from fluoroborate systems. The evaluation of fluoroborate and alternate coolants continued. Research on the behavior of hydrogen and its isotopes is summarized. The solubilities of hydrogen, deuterium, and helium in Li2BeF4 are very low. The sorption of tritium on graphite was found to be significant (a few milligrams of tritium per kilogram of graphite), possibly providing a means of sequestering a portion of the tritium produced. Development of analytical methods continued with emphasis on voltammetric and spectrophotometric techniques for the in-line analysis of corrosion products such as Fe2+ and Cr3+ and the determination of the U3+/U4+ ratio in MSBR fuel salt. Similar studies were conducted with the NaBF4--NaF coolant salt. Information developed during the previous operation of the CSTF has been assessed and used to formulate plans for evaluation of in-line analytical methods in future CSTF operations. Electroanalytical and spectrophotometric research suggests that an electroactive protonic species is present in molten NaBF4--NaF, and that this species rapidly equilibrates with a volatile proton-containing species. Data obtained from the CSTF indicated that tritium was concentrated in the volatile species. (JGB)

  19. Preparation and Characteristics of Polyaluminium Chloride by Utilizing Fluorine-Containing Waste Acidic Mother Liquid from Clay-Brine Synthetic Cryolite Process

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2014-01-01

    Full Text Available Clay-brine process employing activated clay, NaCl, HCl, and HF as raw materials is the primarily advanced technology to synthesize cryolite in the present industrial grade. However, plenty of byproducts of fluorine-containing waste HCl at the concentration of about 10%~12% could not be utilized comprehensively and are even hazardous to the environment. This work proposed a new two-step technology to prepare inorganic polymer flocculants polyaluminium chloride (PAC from synthetic cryolite mother liquor. Many specific factors such as the variety of aluminide source, reaction temperature and time, reagent ratio, and manner of alkaline addition were taken into consideration and their influences on the performances of produced PAC were discussed. It was found that synthetic cryolite mother liquor could react with bauxite and calcium aluminate directly to prepare cheap PAC, with plenty amount of water insoluble CaF2 and CaSiF6 produced as well. However, once HCl was introduced into synthetic cryolite mother liquor as well as by utilizing bauxite as aluminide source and sodium aluminate as adjusting basicity agent, the resultant PAC would dissolve out higher amount of aluminum while producing little amount of water insoluble materials. The coagulation behavior of the specially produced PAC could even match the industrial grade PAC conforming to national standard.

  20. Fluid sampling and chemical modeling of geopressured brines containing methane. Final report, March 1980-February 1981

    Energy Technology Data Exchange (ETDEWEB)

    Dudak, B.; Galbraith, R.; Hansen, L.; Sverjensky, D.; Weres, O.

    1982-07-01

    The development of a flowthrough sampler capable of obtaining fluid samples from geopressured wells at temperatures up to 400/sup 0/F and pressures up to 20,000 psi is described. The sampler has been designed, fabricated from MP35N alloy, laboratory tested, and used to obtain fluid samples from a geothermal well at The Geysers, California. However, it has not yet been used in a geopressured well. The design features, test results, and operation of this device are described. Alternative sampler designs are also discussed. Another activity was to review the chemistry and geochemistry of geopressured brines and reservoirs, and to evaluate the utility of available computer codes for modeling the chemistry of geopressured brines. The thermodynamic data bases for such codes are usually the limiting factor in their application to geopressured systems, but it was concluded that existing codes can be updated with reasonable effort and can usefully explain and predict the chemical characteristics of geopressured systems, given suitable input data.

  1. Ion association in natural brines

    Science.gov (United States)

    Truesdell, A.H.; Jones, B.F.

    1969-01-01

    Natural brines, both surface and subsurface, are highly associated aqueous solutions. Ion complexes in brines may be ion pairs in which the cation remains fully hydrated and the bond between the ions is essentially electrostatic, or coordination complexes in which one or more of the hydration water molecules are replaced by covalent bonds to the anion. Except for Cl-, the major simple ions in natural brines form ion pairs; trace and minor metals in brines form mainly coordination complexes. Limitations of the Debye-Hu??ckel relations for activity coefficients and lack of data on definition and stability of all associated species in concentrated solutions tend to produce underestimates of the degree of ion association, except where the brines contain a very high proportion of Cl-. Data and calculations on closed basin brines of highly varied composition have been coupled with electrode measurements of single-ion activities in an attempt to quantify the degree of ion association. Such data emphasize the role of magnesium complexes. Trace metal contents of closed basin brines are related to complexes formed with major anions. Alkaline sulfo- or chlorocarbonate brines (western Great Basin) carry significant trace metal contents apparently as hydroxides or hydroxy polyions. Neutral high chloride brines (Bonneville Basin) are generally deficient in trace metals. With a knowledge of the thermodynamic properties of a natural water, many possible reactions with other phases (solids, gases, other liquids) may be predicted. A knowledge of these reactions is particularly important in the study of natural brines which may be saturated with many solid phases (silicates, carbonates, sulfates, etc.), which may have a high pH and bring about dissolution of other phases (silica, amphoteric hydroxides, CO2, etc.), and which because of their high density may form relatively stable interfaces with dilute waters. ?? 1969.

  2. Prospects of the complex development of highly parameter geothermal brines

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2015-06-01

    The high efficiency of complex processing of high-temperature hydrothermal brines with utilization of heat energy in a binary geothermal power plant and subsequent extraction of solved chemical compounds is shown. Promising technological schemes are given, where electric power, which is generated in the binary geothermal power plant, is used in a block to recover chemistry components. The technology for integrated processing of geothermal brines of the chloride-sodium-calcium type is developed, which provides the manufacture not only of marketable products but also of practically overall reagents of processed water that are necessary to realize the technology. Priority areas for development are indicated, and the preliminary estimates for a Berikey geothermal deposit are given. It is shown that only established resources of thermal brines of the Berikey deposit make it possible to produce more than 2000 t of lithium carbonate and, thereby, to completely provide Russian industry requirements for it.

  3. Influence of the earthworms on the characteristic chemistries of compost, vermicompost and soil

    Directory of Open Access Journals (Sweden)

    Edinete Maria de Oliveira

    2009-03-01

    Full Text Available The objective of present work to evaluate it influences of the earthworms on the characteristics chemistries of the compost, vermicompost and fertilized soil. In that research the following treatments were used: T1 - compost of garbage homemade (50 kg; T2 – compost of garbage homemade and culture rest (25 + 25 kg; T3 - compost of garbage homemade, culture rest and manure (35 + 10 + 5 kg; T4 - compost of garbage homemade with manure biodigested (35 + 10 + 5 kg; T5 - compost of garbage homemade, culture rest and manure biodigested (35 + 10 + 5kg; T6 - humus of bovine manure (50kg; T7 - soil (test. The results showed that the compost and vermicompost presented satisfactory value of pH, S and CTC, constitute alternative sources of organic matter for the soil and of nutrients for the plants.

  4. Enhanced Brine Dewatering System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide an easily scalable means of completely recovering usable water from byproducts created by...

  5. Enhanced Brine Dewatering System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the Enhanced Brine Dewatering System (EBDS) is to provide a scalable means of completely recovering usable water from byproducts created by reverse...

  6. Gas content of Gladys McCall reservoir brine

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C.G.; Randolph, P.L.

    1987-05-29

    On October 8, 1983, after the first full day of production from Sand No.8 in the Gladys McCall well, samples of separator gas and separator brine were collected for laboratory P-V-T (pressure, volume, temperature) studies. Recombination of amounts of these samples based upon measured rates at the time of sample collection, and at reservoir temperature (290 F), revealed a bubble point pressure of 9200 psia. This is substantially below the reported reservoir pressure of 12,783 psia. The gas content of the recombined fluids was 30.19 SCF of dry gas/STB of brine. In contrast, laboratory studies indicate that 35.84 SCF of pure methane would dissolve in each STB of 95,000 mg/L sodium chloride brine. These results indicate that the reservoir brine was not saturated with natural gas. By early April, 1987, production of roughly 25 million barrels of brine had reduced calculated flowing bottomhole pressure to about 6600 psia at a brine rate of 22,000 STB/D. If the skin factor(s) were as high as 20, flowing pressure drop across the skin would still be only about 500 psi. Thus, some portion of the reservoir volume was believed to have been drawn down to below the bubble point deduced from the laboratory recombination of separator samples. When the pressure in a geopressured geothermal reservoir is reduced to below the bubble point pressure for solution gas, gas is exsolved from the brine flowing through the pores in the reservoir rock. This exsolved gas is trapped in the reservoir until the fractional gas saturation of pore volume becomes large enough for gas flow to commence through a continuous gas-filled channel. At the same time, the gas/brine ratio becomes smaller and the chemistry of the remaining solution gas changes for the brine from which gas is exsolved. A careful search was made for the changes in gas/brine ratio or solution gas chemistry that would accompany pressure dropping below the bubble point pressure. Changes of about the same magnitude as the scatter in

  7. Geochemistry of Aluminum in High Temperature Brines

    Energy Technology Data Exchange (ETDEWEB)

    Benezeth, P.; Palmer, D.A.; Wesolowski, D.J.

    1999-05-18

    The objective ofthis research is to provide quantitative data on the equilibrium and thermodynamic properties of aluminum minerals required to model changes in permeability and brine chemistry associated with fluid/rock interactions in the recharge, reservoir, and discharge zones of active geothermal systems. This requires a precise knowledge of the thermodynamics and speciation of aluminum in aqueous brines, spanning the temperature and fluid composition rangesencountered in active systems. The empirical and semi-empirical treatments of the solubility/hydrolysis experimental results on single aluminum mineral phases form the basis for the ultimate investigation of the behavior of complex aluminosilicate minerals. The principal objective in FY 1998 was to complete the solubility measurements on boehmite (AIOOH) inNaC1 media( 1 .O and 5.0 molal ionic strength, IOO-250°C). However, additional measurements were also made on boehmite solubility in pure NaOH solutions in order to bolster the database for fitting in-house isopiestic data on this system. Preliminary kinetic Measurements of the dissolution/precipitation of boehmite was also carried out, although these were also not planned in the earlier objective. The 1999 objectives are to incorporate these treatments into existing codes used by the geothermal industry to predict the chemistry ofthe reservoirs; these calculations will be tested for reliability against our laboratory results and field observations. Moreover, based on the success of the experimental methods developed in this program, we intend to use our unique high temperature pH easurement capabilities to make kinetic and equilibrium studies of pH-dependent aluminosilicate transformation reactions and other pH-dependent heterogeneous reactions.

  8. Characteristics and Levels of Sophistication: An Analysis of Chemistry Students' Ability to Think with Mental Models

    Science.gov (United States)

    Wang, Chia-Yu; Barrow, Lloyd H.

    2011-08-01

    This study employed a case-study approach to reveal how an ability to think with mental models contributes to differences in students' understanding of molecular geometry and polarity. We were interested in characterizing features and levels of sophistication regarding first-year university chemistry learners' mental modeling behaviors while the learners were solving problems associated with spatial information. To serve this purpose, we conducted case studies on nine students who were sampled from high-scoring, moderate-scoring, and low-scoring students. Our findings point to five characteristics of mental modeling ability that distinguish students in the high-, moderate-, and low-ability groups from one another. Although the levels of mental modeling abilities have been described in categories (high, moderate, and low), they can be thought of as a continuum with the low-ability group reflecting students who have very limited ability to generate and use mental models whereas students in the high-ability group not only construct and use mental models as a thinking tool, but also analyze the problems to be solved, evaluate their mental models, and oversee entire mental modeling processes. Cross-case comparisons for students with different levels of mental modeling ability indicate that experiences of generating and manipulating a mental model based on imposed propositions are crucial for a learner's efforts to incorporate content knowledge with visual-spatial thinking skills. This paper summarizes potential factors that undermine learners' comprehension of molecular geometry and polarity and that influence mastery of this mental modeling ability.

  9. Uranium (VI) solubility in carbonate-free ERDA-6 brine

    Energy Technology Data Exchange (ETDEWEB)

    Lucchini, Jean-francois [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory

    2010-01-01

    When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for the VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.

  10. Energy storage in evaporated brine

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, R. Ian

    2010-09-15

    We propose storage of electrical energy in brine solutions by using the energy to enhance natural evaporation. Using properties of existing industrial evaporation technologies and estimates of power regeneration from brine by pressure retarded osmosis, efficiency near 100% is calculated. Modelling indicates that systems ranging from 50kW to 50MW output may be practical, with storage capacities of hours to days. The method appears to have potential to be economically competitive with other technologies over a wide range of capacity. It may present a large new application area that could aid the development of salinity-based power generation technology.

  11. Injection of dilute brine and crude oil/brine/rock interactions

    Science.gov (United States)

    Tang, Guoqing; Morrow, Norman R.

    Sensitivity of oil recovery to injection brine composition has been reported for a variety of circumstances including trends of increased recovery of crude oil with decrease in salinity. Absolute permeabilities of sandstones to synthetic reservoir brines and dilutions of these brines show little sensitivity to salinity when the initial brine and injected brine are of the same composition. With reservoir brine as the initial brine and injection of dilute brine, the pH of the outflow brine increased and absolute permeability to brine decreased, but never to less than 50% of its original value. Such changes, if any, were much less for rocks with low clay content. During the course of recovery of crude oil, interfacial tensions of crude oil and dilute effluent brine were reduced by about 25% relative to values for crude oil and reservoir brine. Effluent brine pH increased after injection of low salinity brine, but showed no response in the absence of an initial water saturation. Changes in brine composition resulting from flow through Berea sandstone were small. Fines production and permeability reduction resulting from injection of dilute brine was greatly reduced by the presence of crude oil.

  12. 7 CFR 58.320 - Brine tanks.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Brine tanks. 58.320 Section 58.320 Agriculture....320 Brine tanks. Brine tanks used for the treating of parchment liners shall be constructed of... liners. The tank should also be provided with a satisfactory drainage outlet....

  13. Regional characteristics of spring Asian dust and its impact on aerosol chemistry over northern China

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2006-12-01

    Full Text Available TSP and PM2.5 aerosol samples were synchronously collected at six sites along the transport pathway of dust storm from desert regions to coastal areas in the spring of 2004. The aerosol concentration and composition were measured to investigate the regional characteristics of spring Asian dust and its impact on aerosol chemistry over northern China. Based on the daily PM10 concentrations in 13 cities, the northern China could be divided into five regions, i.e., Northern Dust Region, Northeastern Dust Region, Western Dust Region, Inland Passing Region, and Coastal Region. Northern Dust Region was characterized by high content of Ca and Northeastern Dust Region was characterized by low one instead. Northeastern Dust Region was a relatively clean area with the lowest concentrations of pollutants and secondary ions among all sites. Inland Passing Region and Coastal Region showed high concentrations of pollutants, of which As and Pb in Inland Passing Region, and Na+, SO42− and NO3 in Coastal Region were the highest, respectively. The impact of dust on air quality was the greatest in the cities near source regions, and this impact decreased in the order of Yulin/Duolun > Beijing > Qingdao/Shanghai as the increase of transport distance. The spring Asian dust was inclined to affect the chemical components in coarse particles near source regions and those in fine particles in the cities far from source regions. Dust storm could mix significant quantities of pollutants on the pathway and carry them to the downwind cities or dilute the pollutants in the cities over northern China. Each dust episode corresponded to a low ratio of NO3/SO42− with the lowest value appearing after the peak of dust storm. Asian dust played an important role in buffering and neutralizing the acidity of atmosphere in the cities over northern China

  14. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    reluctant to invest in capital intensive, high risk GCS projects; early technical, economic, and environmental assessments of brine management are extremely valuable for determining the potential role of GCS in the US. We performed a first order feasibility and economic assessment, at three different locations in the US, of twelve GCS extracted-­water management options, including: geothermal energy extraction, desalination, salt and mineral harvesting, rare-­earth element harvesting, aquaculture, algae biodiesel production, road de-­icing, enhanced geothermal system (EGS) recharge, underground reinjection, landfill disposal, ocean disposal, and evaporation pond disposal. Three saline aquifers from different regions of the US were selected as hypothetical GCS project sites to encompass variation in parameters that are relevant to the feasibility and economics of brine disposal. The three aquifers are the southern Mt. Simon Sandstone Formation in the Illinois Basin, IL; the Vedder Formation in the southern San Joaquin Basin, CA; and the Jasper Interval in the eastern Texas Gulf Basin, TX. These aquifers are candidates for GCS due to their physical characteristics and their close proximity to large CO2 emission sources. Feasibility and impacts were calculated using one mt-­CO2 injected as the functional unit of brine management. Scenarios were performed for typical 1000MW coal-­fired power plants (CFPP) that incurred an assumed 24 percent carbon capture energy penalty (EP), injected 90 percent of CO2 emissions (~9 million mt-­ CO2 injected annually), and treated extracted water onsite. Net present value (NPV), land requirements, laws and regulations, and technological limits were determined for each stage of disposal, and used to estimate feasibility. The boundary of the assessment began once extracted water was brought to the surface, and ended once the water evaporated,

  15. Knowledge, beliefs, and performance of new high school chemistry teachers: A study of teachers' characteristics and teacher preparation program influences

    Science.gov (United States)

    Alshannag, Qasim Mohammad

    This study investigated the influence of teachers' characteristics and secondary science teacher preparation programs on new high school chemistry teachers' knowledge, beliefs, and performance. "New high school chemistry teacher" refers to any teacher who during their first three years of teaching, has a major/minor in chemistry and/or any teacher who teaches chemistry for high school students. This research focused on four new high school chemistry teachers in their second year of teaching who were part of the Salish I Research Project. These four teachers graduated from two different teacher preparation programs, at major research universities. The focus of this study was on teachers who demonstrated one or more of the following teaching styles: teacher-centered, conceptual, and student-centered. A cross case analysis was done among these four teachers to explore the linkages among teachers' characteristics, secondary science teacher preparation program features, and new high school chemistry teachers' knowledge, beliefs, and performance. Data included interviews with university faculty in education and in science, analysis of course syllabi and program descriptions, interviews with the new teachers, analysis video portfolios of the classroom teaching, and other data collected as part of the Salish I Project. The key findings of the in-depth study included: (1) The course objectives in the teacher education courses at both institutions were more diverse and more comprehensive than science disciplinary course objectives. (2) All four of the new teachers and most of the faculty interviewed confirmed that the connections between prospective science teachers' learning and real world applications were not clearly addressed as a major goal in science courses at either institution. (3) Prospective science teachers did not experience cooperative learning in their science courses, but did so in education courses. (4) All new secondary science teachers reported that they

  16. Organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-15

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  17. Capillarity and wetting of carbon dioxide and brine during drainage in Berea sandstone at reservoir conditions

    Science.gov (United States)

    Al-Menhali, Ali; Niu, Ben; Krevor, Samuel

    2015-10-01

    The wettability of CO2-brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behavior of this system to pressure, temperature, and brine salinity. We report observations of the impact of reservoir conditions on the capillary pressure characteristic curve and relative permeability of a single Berea sandstone during drainage—CO2 displacing brine—through effects on the wetting state. Eight reservoir condition drainage capillary pressure characteristic curves were measured using CO2 and brine in a single fired Berea sandstone at pressures (5-20 MPa), temperatures (25-50°C), and ionic strengths (0-5 mol kg-1 NaCl). A ninth measurement using a N2-water system provided a benchmark for capillarity with a strongly water wet system. The capillary pressure curves from each of the tests were found to be similar to the N2-water curve when scaled by the interfacial tension. Reservoir conditions were not found to have a significant impact on the capillary strength of the CO2-brine system during drainage through a variation in the wetting state. Two steady-state relative permeability measurements with CO2 and brine and one with N2 and brine similarly show little variation between conditions, consistent with the observation that the CO2-brine-sandstone system is water wetting and multiphase flow properties invariant across a wide range of reservoir conditions.

  18. Distillation Brine Purification for Resource Recovery Applications

    Science.gov (United States)

    Wheeler, Raymond M.

    2014-01-01

    Wastewater processing systems for space generate residual brine that contains water and salts that could be recovered to life support consumables. The project assessed the use of ion-exchange resins to selectively remove salts from wastewater treatment brines. The resins were then regenerated for additional use. The intention would be to generate a Na/K and CI rich or purified brine that would then be processed into high value chemicals, such as acids, bases, and/or bleach.

  19. Denitrification of Spent Regenerated Brine Using Molasses

    OpenAIRE

    Tepuš, Brigita; Simonič, Marjana; Petrovič, Aleksandra; Filipič, Jasmina

    2014-01-01

    Spent BRINE from the regeneration of exhausted resins has to be properly treated before its disposal. The heterotrophic denitrification of regenerated brine was studied in present work. Molasses which served as a carbon source has until now not been applied during brine denitrification. The nitrate and nitrite consumptions were observed according to different ratios between total organic carbon and nitrate (TOC / NO3 ratios) and the influence of NaCl was studied during batch experiments. ...

  20. Brine disposal process for Morcinek coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Tait, J.H. [Aquatech Services, Inc., Citrus Heights, CA (United States)

    1995-04-01

    This paper describes the work to develop a commercial brine disposal process for the Morcinek mine, located 45 km south of the city of Katowice in Poland. Currently, brine is discharged into the Odra river and methane from the mine is released into the atmosphere. The process would use the released methane and convert a large percentage of the brine into potable water for commercial use. Thus, the proposed process has two environmental benefits. The brine salinity is about 31,100 ppm. Major brine components are Na (10,300 ppm), Ca (1,170 ppm), Mg (460 ppm), Cl (18,500 ppm) and SO{sub 4}{sup 2-} (252 ppm). Present in smaller amounts are K, S, Sr, B, Ba and NO{sub 3}. The process integrates a reverse osmosis (RO) unit and a submerged combustion evaporator. Extensive studies made at the Lawrence Livermore National Laboratory established the pretreatment method of the brine before it enters the RO unit. Without adequate pretreatment, mineral phases in the brine would become super-saturated and would precipitate in the RO unit. The pretreatment consists of first adding sodium carbonate to increase both the pH and the carbonate concentration of the brine. This addition causes precipitation of carbonate solids containing Ca, Mg, Sr, and Ba. After filtration of these precipitates, the fluid is acidified with HCl to prevent precipitation in the RO unit as the brine increases in salinity.

  1. Modeling acid-gas generation from boiling chloride brines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Spycher, Nicolas; Sonnenthal, Eric; Steefel, Carl

    2009-11-16

    This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150 C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC) processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual and modeled distillation experiments do not represent

  2. Modeling acid-gas generation from boiling chloride brines

    Directory of Open Access Journals (Sweden)

    Sonnenthal Eric

    2009-11-01

    Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual

  3. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    Science.gov (United States)

    Adel, Mustafa; Elbehery, Ali H. A.; Aziz, Sherry K.; Aziz, Ramy K.; Grossart, Hans-Peter; Siam, Rania

    2016-01-01

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer. PMID:27596223

  4. Wettability from Capillarity of CO2-Brine-Rock Systems at Reservoir Conditions

    Science.gov (United States)

    Al-Menhali, Ali; Niu, Ben; Krevor, Samuel

    2015-04-01

    The wettability of CO2-brine-rock systems will have a major impact on the management of carbon sequestration in subsurface geological formations. Recent contact angle measurement studies have reported sensitivity in wetting behaviour of this system to pressure, temperature and brine salinity. We report results of an investigation into the impact of reservoir conditions on wetting through direct observations of their impact on the capillary strength of the system. Eight capillary pressure characteristic curves were measured using CO2 and brine in a single fired Berea sandstone at pressures (5 to 20 MPa), temperatures (25 to 50 °C) and ionic strengths (0 to 5 M kg-1 NaCl) representative of subsurface reservoirs. A ninth measurement using an N2-water system provided a benchmark for capillarity with a strongly water wet system. The semi-dynamic capillary pressure core flooding technique was used with in situ saturation monitoring. In all cases, the capillarity of the system, scaled by the interfacial tension, were equivalent to the N2-water system within measurement uncertainty. Thus reservoir conditions did not have a significant impact on the capillary strength of the CO2-brine system through a variation in wetting. Two steady-state relative permeability measurements with CO2 and brine and one with N2 and brine similarly show little variation between conditions, consistent with the observation that the CO2-brine-sandstone system is strongly water wetting and invariant across a wide range of reservoir conditions.

  5. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    Science.gov (United States)

    Adel, Mustafa; Elbehery, Ali H. A.; Aziz, Sherry K.; Aziz, Ramy K.; Grossart, Hans-Peter; Siam, Rania

    2016-09-01

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  6. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    OpenAIRE

    Burke, Andrew; Miller, Marshall

    2009-01-01

    This paper is concerned with the testing and evaluation of various battery chemistries for use in PHEVs. Test data are presented for lithium-ion cells and modules utilizing nickel cobalt, iron phosphate, and lithium titanate oxide in the electrodes. The energy density of cells using NiCo (nickelate) in the positive electrode have the highest energy density being in the range of 100-170 Wh/kg. Cells using iron phosphate in the positive have energy density between 80-110 Wh/kg and those using l...

  7. Acid deposition and watershed characteristics in relation to lake chemistry in northeastern Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, G. Jr.; Allert, J.D.; Liukkonen, B.W.; Ilse, J.A.; Loucks, O.L.; Glass, G.E.

    1985-01-01

    The relationship between lake sensitivity to atmospheric acidic inputs and the neutralization capacity of watersheds is examined for 267 lakes in northeastern Minnesota. Three water chemistry/sensitivity measures (color, sulfate, and alkalinity) are correlated with variables representative of precipitation and sulfate inputs, hydrology, and the acid neutralization capacity of various watershed components. An ordinal scale for ranking bedrock and surficial deposit neutralization capacity is presented. The watershed variables found to account for the largest percentages of the variability in measured color, sulfate, and alkalinity levels are determined. Color is strongly related to the presence of peat or marsh and hydrologic renewal time, whereas sulfate is primarily related to atmospheric deposition, evaporative concentration, bedrock type, and the presence of coniferous forest. Variation in alkalinity is the most difficult of the water chemistry measures to explain; for headwater lakes, atmospheric sulfate input, water renewal time, the presence of deciduous forest, and the weatherability of underlying bedrock determine much of its variability. The results illustrate important averaging properties of watersheds from small headwater systems to large drainages and the difficulty in obtaining correlations for some water quality measures (e.g., alkalinity) when some variables, such as soils and land cover, are available only as large-area averages. 52 references, 7 tables.

  8. Acid deposition and watershed characteristics in relation to lake chemistry in northeastern Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, G.; Allert, J.D.; Liukkonen, B.W.; Loucks, O.L.; Glass, G.E.

    1985-01-01

    The relationship between lake sensitivity to atmospheric acidic inputs and the neutralization capacity of watersheds is examined for 267 lakes in northeastern Minnesota. Three water chemistry/sensitivity measures (color, sulfate, and alkalinity) are correlated with variables representative of precipitation and sulfate inputs, hydrology, and the acid-neutralization capacity of various watershed components. An ordinal scale for ranking bedrock and surficial deposit neutralization capacity is presented. The watershed variables found to account for the largest percentages of the variability in measured color, sulfate, and alkalinity levels are determined. The results illustrate important averaging properties of watersheds from small headwater systems to large drainages and the difficulty in obtaining correlations for some water-quality measures (e.g., alkalinity) when some variables, such as soils and land cover, are available only as large-area averages.

  9. USE OF BRINE SHRIMP (ARTEMIA IN THE FEEDING OF STURGEON JUVENILES (ACIPENSERIDAE (REVIEW

    Directory of Open Access Journals (Sweden)

    M. Simon

    2016-06-01

    Full Text Available Purpose. To review scientific sources on the technological and biological characteristics of the use of brine shrimp (Artemia in the feeding of sturgeon juvenilse (Acipenseridae. To highlight the common biotechnological bases of the enrichment of brine shrimp with biologically active substances necessary for the full development of sturgeon juveniles. Findings. The review of scientific papers showed that the technology is the use of brine shrimp in the feeding of sturgeon speices not only had not lost its relevance in aquaculture, but also continued to evolve in response to new challenges. The review contains a description of the peculiarities of the biological structure of brine shrimp eggs and methods of their quality assessment in the field. It describes the nutritional characteristics of Artemia. It is shown that brine shrimp is the best food organism for the use in the feeding of sturgeon fingerlings. The calculation scheme for Artemia decapsulation and incubation is provided. The main technological stages of of the preparation of shrimps before their use in feeding – activation, hydration, decapsulation, incubation, dehydration were described. The effect of brine shrimp nauplia enriched with biologically active substances enriched brine shrimp on sturgeon juveniles was highlighted. Practical value. Fish farm owners search for cost-effective, easy to use, and available food that is preferred by sturgeon juveniles (Acipenseridae. Brine shrimp nauplii obtained from cysts can be readil used to feed fish just after one-day incubation. Instar I (the nauplii that just hatched and contain large yolk reserves in their body and instar II nauplii (the nauplii after first moult and with functional digestive tracts are more widely used in aquaculture, because they are easy for operation, rich in nutrients, and small, which makes them suitable for feeding fish larvae as live feed or after drying. The generalized information will be important for

  10. Stabilization of high mercury contaminated brine purification sludge.

    Science.gov (United States)

    Zhuang, J Ming; Lo, Tony; Walsh, Tony; Lam, Tak

    2004-09-10

    The highly leachable mercury contaminants of brine purification sludge (BPS) generated from the Hg-cell electrolysis process in chlorine production can be stabilized in the treatment procedure employing ferric-lignin derivatives (FLD) (Ligmet binder) and Portland cement (PC). The stabilization effectiveness has been examined by time-based multiple toxicity characteristic leaching procedure (TCLP) tests and sequential TCLP tests. In a period of 50 days, the multiple TCLP tests showed a variation of less than 90 microg l(-1) for the leachable mercury level, and the sequential TCLP tests for the same sample displayed a declining TCLP mercury level. Based on this study, the stabilization of approximately 2000 t of brine purification sludge has been successfully processed with the ferric-lignin derivatives treatment. PMID:15363526

  11. The Brine Shrimp's Butterfly Stroke

    CERN Document Server

    Johnson, Brennan; Dasi, Lakshmi Prasad

    2011-01-01

    We investigate the fluid dynamics of brine shrimp larvae swimming in this gallery of fluid motion video. Time resolved particle image velocimetry was performed using nano-particles as seeding material to measure the time dependent velocity and vorticity fields. The Reynolds number of the flow was roughly 8 and the Womerseley number (ratio of periodic forcing to viscous forcing) was about 5. Vorticity dynamics reveals the formation of a vortex ring structure at the tip of each arm at the beginning of the power stroke. This two vortex system evolves dramatically with time as the stroke progresses. The outer circulation is noted to weaken while the inner circulation strengthens over the power stroke. The gaining strength of the inner vortex correlates with the acceleration and forward movement of the larvae.

  12. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    Science.gov (United States)

    2013-01-01

    Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1) Ljubljansko polje aquifer, with higher Ca2+values, as limestone predominates in its recharge area, (2) northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3) central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4) Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years. PMID:24453928

  13. Quantitative Clinical Chemistry Proteomics (qCCP) using mass spectrometry: general characteristics and application.

    Science.gov (United States)

    Lehmann, Sylvain; Hoofnagle, Andrew; Hochstrasser, Denis; Brede, Cato; Glueckmann, Matthias; Cocho, José A; Ceglarek, Uta; Lenz, Christof; Vialaret, Jérôme; Scherl, Alexander; Hirtz, Christophe

    2013-05-01

    Proteomics studies typically aim to exhaustively detect peptides/proteins in a given biological sample. Over the past decade, the number of publications using proteomics methodologies has exploded. This was made possible due to the availability of high-quality genomic data and many technological advances in the fields of microfluidics and mass spectrometry. Proteomics in biomedical research was initially used in 'functional' studies for the identification of proteins involved in pathophysiological processes, complexes and networks. Improved sensitivity of instrumentation facilitated the analysis of even more complex sample types, including human biological fluids. It is at that point the field of clinical proteomics was born, and its fundamental aim was the discovery and (ideally) validation of biomarkers for the diagnosis, prognosis, or therapeutic monitoring of disease. Eventually, it was recognized that the technologies used in clinical proteomics studies [particularly liquid chromatography-tandem mass spectrometry (LC-MS/MS)] could represent an alternative to classical immunochemical assays. Prior to deploying MS in the measurement of peptides/proteins in the clinical laboratory, it seems likely that traditional proteomics workflows and data management systems will need to adapt to the clinical environment and meet in vitro diagnostic (IVD) regulatory constraints. This defines a new field, as reviewed in this article, that we have termed quantitative Clinical Chemistry Proteomics (qCCP).

  14. Carbonate Chemistry and Isotope Characteristics of Groundwater of Ljubljansko Polje and Ljubljansko Barje Aquifers in Slovenia

    Directory of Open Access Journals (Sweden)

    Sonja Cerar

    2013-01-01

    Full Text Available Ljubljansko polje and Ljubljansko Barje aquifers are the main groundwater resources for the needs of Ljubljana, the capital of Slovenia. Carbonate chemistry and isotope analysis of the groundwater were performed to acquire new hydrogeological data, which should serve as a base for improvement of hydrogeological conceptual models of both aquifers. A total of 138 groundwater samples were collected at 69 sampling locations from both aquifers. Major carbonate ions and the stable isotope of oxygen were used to identify differences in the recharging areas of aquifers. Four groups of groundwater were identified: (1 Ljubljansko polje aquifer, with higher Ca2+ values, as limestone predominates in its recharge area, (2 northern part of Ljubljansko Barje aquifer, with prevailing dolomite in its recharge area, (3 central part of Ljubljansko Barje aquifer, which lies below surface cover of impermeable clay and is poor in carbonate, and (4 Brest and Iški vršaj aquifer in the southern part of Ljubljansko Barje with higher Mg2+ in groundwater and dolomite prevailing in its recharge area. The radioactive isotope tritium was also used to estimate the age of groundwater. Sampled groundwater is recent with tritium activity between 4 and 8 TU and residence time of up to 10 years.

  15. Characteristics and Educational Advantages of Laboratory Automation in High School Chemistry

    OpenAIRE

    Leonid B. Revzin; Igor M. Verner

    2011-01-01

    This paper presents a study of automation in the high school chemical inquiry based laboratory. Simple computer-controlled devices for automation of basic manual operations were constructed and applied in students' laboratory experiments together with the Fourier-Systems Inc. data collection and management systems. We examined characteristics of learning in the new automated laboratory environment and discussed educational outcomes.

  16. Characteristics and Educational Advantages of Laboratory Automation in High School Chemistry

    Directory of Open Access Journals (Sweden)

    Leonid B. Revzin

    2011-09-01

    Full Text Available This paper presents a study of automation in the high school chemical inquiry based laboratory. Simple computer-controlled devices for automation of basic manual operations were constructed and applied in students' laboratory experiments together with the Fourier-Systems Inc. data collection and management systems. We examined characteristics of learning in the new automated laboratory environment and discussed educational outcomes.

  17. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  18. Comparison of the Wear Behavior of UHMWPE Lubricated by Human Plasma and Brine

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-bo; GE Shi-rong; NORM Gitis; MICHAEL Vinogradov; XIAO Jun

    2007-01-01

    The effect of plasma and brine lubricants on the friction and wear behavior of UHMWPE were studied by using the geometry of a Si3N4 ball sliding on a UHMWPE disc under patterns of uni-directional reciprocation and bi-directional sliding motions. The worn surface and wear particles produced in these two lubricants were analyzed. Sliding motion pattern affected the friction coefficients lubricated with plasma, while seldom affected that lubricated with brine. UHMWPE lubricated with plasma showed about half of the wear rate of that lubricated with brine. The two rates were 0.75 pg/m and 2.19 pg/m for the two motion patterns, respectively. However, wear particles generated in plasma included a greater amount of small particles, compared to that in brine. In uni-directional reciprocation, the main wear mechanism is ploughing both in plasma and in brine. In bi-directional sliding modes, the significant characteristic is ripples on the worn surface in plasma, while there are oriented fibers on the worn surface in brine.

  19. Brine Sampling and Evaluation Program 1992--1993 report and summary of BSEP data since 1982

    International Nuclear Information System (INIS)

    This report is the last one that is currently scheduled in the sequence of reports of new data, and therefore, also includes summary comments referencing important data obtained by BSEP since 1983. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the (WIPP) Waste Isolation Pilot Plant. A project concern is that enough brine might be present after sealing and closure to generate large quantities of hydrogen gas by corroding the metal in the waste drums and waste inventory. This report describes progress made during the calendar years 1992 and 1993 and focuses on four major areas: (1) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes from the underground drifts; (2) observations of weeps in the Air Intake Shaft (AIS); (3) further characterization of brine geochemistry; and (4) additional characterization of the hydrologic conditions in the fractured zone beneath the excavations

  20. Brine Sampling and Evaluation Program 1992--1993 report and summary of BSEP data since 1982

    Energy Technology Data Exchange (ETDEWEB)

    Deal, D.E.; Abitz, R.J. [I. T. Corp., Carlsbad, NM (United States); Belski, D.S. [USDOE Albuquerque Operations Office, Carlsbad, NM (United States). Waste Isolation Pilot Plant Project Office

    1995-04-01

    This report is the last one that is currently scheduled in the sequence of reports of new data, and therefore, also includes summary comments referencing important data obtained by BSEP since 1983. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the (WIPP) Waste Isolation Pilot Plant. A project concern is that enough brine might be present after sealing and closure to generate large quantities of hydrogen gas by corroding the metal in the waste drums and waste inventory. This report describes progress made during the calendar years 1992 and 1993 and focuses on four major areas: (1) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes from the underground drifts; (2) observations of weeps in the Air Intake Shaft (AIS); (3) further characterization of brine geochemistry; and (4) additional characterization of the hydrologic conditions in the fractured zone beneath the excavations.

  1. Coiled Brine Recovery Assembly (CoBRA): A New Approach to Recovering Water from Wastewater Brines

    Science.gov (United States)

    Pensinger, Stuart J.

    2015-01-01

    Brine water recovery represents a current technology gap in water recycling for human spaceflight. The role of a brine processor is to take the concentrated discharge from a primary wastewater processor, called brine, and recover most of the remaining water from it. The current state-of-the-art primary processor is the ISS Urine Processor Assembly (UPA) that currently achieves 70% water recovery. Recent advancements in chemical pretreatments are expected to increase this to 85% in the near future. This is a welcome improvement, yet is still not high enough for deep space transit. Mission architecture studies indicate that at least 95% is necessary for a Mars mission, as an example. Brine water recovery is the technology that bridges the gap between 85% and 95%, and moves life support systems one step closer to full closure of the water loop. Several brine water recovery systems have been proposed for human spaceflight, most of them focused on solving two major problems: operation in a weightless environment, and management and containment of brine residual. Brine residual is the leftover byproduct of the brine recovery process, and is often a viscous, sticky paste, laden with crystallized solid particles. Due to the chemical pretreatments added to wastewater prior to distillation in a primary processor, these residuals are typically toxic, which further complicates matters. Isolation of crewmembers from these hazardous materials is paramount. The Coiled Brine Recovery Assembly (CoBRA) is a recently developed concept from the Johnson Space Center that offers solutions to these challenges. CoBRA is centered on a softgoods evaporator that enables a passive fill with brine, and regeneration by discharging liquid brine residual to a collection bag. This evaporator is meant to be lightweight, which allows it to be discarded along with the accumulated brine solids contained within it. This paper discusses design and development of a first CoBRA prototype, and reports

  2. Chitosan and polycaprolactone membranes patterned via electrospinning: effect of underlying chemistry and pattern characteristics on epithelial/fibroblastic cell behavior.

    Science.gov (United States)

    Simşek, Murat; Capkın, Merve; Karakeçili, Ayşe; Gümüşderelioğlu, Menemşe

    2012-12-01

    Electrospinning was used as an effective route to pattern chitosan (CS) and polycaprolactone (PCL) membranes with submicron fibers having different chemical structure (PCL or PCL/collagen) and physical characteristics (size: between ≈200 and 550 nm; randomly oriented or aligned form). While the PCL fibers with diameters in the same range (≈200 nm) were patterned on both of CS and PCL membranes to evaluate the influence of the underlying membrane chemistry, only CS membranes were patterned with PCL fibers having different sizes simply by changing the electrospinning conditions to investigate the effects of pattern characteristics. Furthermore, collagen was added to the PCL fiber structure to change the chemical composition of the fibers in a cell-attractive way. Two cell lines with different morphologies, fibroblastic MC3T3-E1 preosteoblasts and epithelial Madine Darby Bovine Kidney (MDBK) cells, were cultured on the patterned membranes. The observation of cellular behavior in terms of cell morphology and F-actin synthesis was realized by scanning electron microscopy and confocal microscopy analysis during the first 12 h of culture period. The viability of cells was controlled by MTT assay through 96 h of cell culture. The cell culture studies indicated that the leading aspect for the morphology change on patterned membranes was the fiber orientation. The aligned topography controlled the morphology of cells both on CS and PCL membranes. In the presence of collagen in the fiber structure, F-actin filament synthesis increased for MC3T3-E1 and MDBK cell lines.

  3. Engineering Review Group (ERG) and Geologic Review Group (GRG) report on brine migration at the Deaf Smith County site salt repository horizon

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    In April 1986, ONWI requested the ERG and GRG to jointly address the status of current knowledge of, and ONWI approach to further characterization of, the geohydrology of the candidate repository horizon of the potential site in Deaf Smith County, Texas. Specifically, the ERG-GRG was asked to evaluate the status of understanding of the hydrogeology of the Lower San Andres Unit 4 (LSA-4) evaporite section and identify any major gaps in the data; evaluate the current understanding of the chemistry and movement of brines in the LSA-4 salt and associated interbeds; develop recommendations for estimating the upper limit quantity of brines, and modeling the brine movement, with respect to the emplaced HLW packages; and identify questions concerning the chemistry of the brines and recommend a technical approach to addressing these questions. 19 refs.

  4. Engineering Review Group (ERG) and Geologic Review Group (GRG) report on brine migration at the Deaf Smith County site salt repository horizon

    International Nuclear Information System (INIS)

    In April 1986, ONWI requested the ERG and GRG to jointly address the status of current knowledge of, and ONWI approach to further characterization of, the geohydrology of the candidate repository horizon of the potential site in Deaf Smith County, Texas. Specifically, the ERG-GRG was asked to evaluate the status of understanding of the hydrogeology of the Lower San Andres Unit 4 (LSA-4) evaporite section and identify any major gaps in the data; evaluate the current understanding of the chemistry and movement of brines in the LSA-4 salt and associated interbeds; develop recommendations for estimating the upper limit quantity of brines, and modeling the brine movement, with respect to the emplaced HLW packages; and identify questions concerning the chemistry of the brines and recommend a technical approach to addressing these questions. 19 refs

  5. Brine Dewatering Using Ultrasonic Nebulization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for future manned space exploration. Resupply of water is prohibitively costly for such extended missions....

  6. Brine Dewatering Using Ultrasonic Nebulization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recovery of water from brine is critically important for manned space exploration. Resupply of water is prohibitively costly for extended missions. It is...

  7. Haematology, Blood Chemistry and Carcass Characteristics of Growing Rabbits Fed Grasshopper Meal as a Substitute for Fish Meal

    Directory of Open Access Journals (Sweden)

    A. A. Njidda* and C. E. Isidahomen1

    2010-01-01

    Full Text Available An experiment was conducted to evaluate the effect of replacing fish meal with grasshopper meal on haematology, blood chemistry and carcass characteristics of growing rabbits. Forty rabbits of mixed breeds, aged 6-10 weeks, were randomly assigned to the dietary treatments in a complete randomized design with eight rabbits per treatment. The rabbits were fed with diets containing 0, 1.25, 2.50, 3.75 and 5% grasshopper meal in diets designated as T1 (control, T2, T3, T4 and T5, respectively. The experimental diets and clean drinking water were supplied ad libitum throughout the experimental period of nine weeks. At the end of the feeding trial, three rabbits per treatment were slaughtered for carcass evaluation, while blood samples were collected for analysis. The result of the experiment showed significant differences (P0.05 on haemoglobin and mean corpuscular haemoglobin concentration (MCHC. The results also revealed significant differences (P0.05 on serum albumin and total protein. The results of carcass characteristics showed significant differences among treatments (P<0.05 for slaughter weight, carcass weight, dressing percentage, skin pelt, tail, feet and abdominal fat. The slaughter weight and carcass weight were better in groups receiving 2.5% grass hopper meal (50% fish meal replacement. From the results, it can be concluded that inclusion of 2.50% grasshopper meal as a replacement for fish meal (50% replacement has no adverse effects on the haematological parameters, serum biochemistry and carcass characteristics of rabbits.

  8. STURCTURAL CHARACTERISTICS AND QUANTUM CHEMISTRY CALCULATION OF Al-DOPED BORON CARBIDES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Structural characteristics, chemical bonds and thermoelectric properties of Al-doped boron carbides are studied through calculations of various structural unit models by using a self-consistent-field discrete variation Xα method. The calculations show that Al atom doped in boron carbide is in preference to substituting B or C atoms on the end of boron carbide chain, and then may occupy interstitial sites, but it is difficult for Al to substitute B or C atom in the centers of the chain or in the icosahedra. A representative structural unit containing an Al atom is [C-B-Al]ε+-[B11C]ε-, while the structural unit without Al is [C-B-B(C)]ε--[B11C]ε+, and the coexistence of these two different structural units makes the electrical conductivity increased. As the covalent bond of Al-B or Al-C is weaker than that of B-B or B-C, the thermal conductivity decreases when Al is added into boron carbides. With the electrical conductivity increasing and the thermal conductivity decreases, Al doping has significant effect on thermoelectric properties of boron carbides.

  9. Environmental Characteristics of Groundwater: an Application of PCA to Water Chemistry Analysis in Yulin

    Institute of Scientific and Technical Information of China (English)

    DONG Dong-lin; HUANG Song-lin; WU Qiang; ZHANG Rui; SONG Ying-xia; CHEN Shu-ke; LI Pei; LIU Shou-qiang; BI Cen-cen; LV Zhen-qi

    2007-01-01

    For our investigation into the water quality in Yulin city, we collected 76 typical water samples to be tested for particle quality. By applying a Romani type classification method the groundwater of Yulin city was classified into nine categories by type, i.e., Ca-HCO3, Na-HCO3, Na-HCO3-SO4-Cl, Na-HCO3-SO4, Na-Cl, Na-Cl-HCO3, Na-CaHCO3, Ca-Cl-HCO3 and Ca-HCO3-SO4-Cl. A principal component analysis was carried out in order to analyze the groundwater environment. From this analysis we considered that the information collected could be represented by 21 indices from which we extracted seven principal components, which, respectively, accounted for 37.4%, 13.0%, 8.1%,7.2%, 6.3%, 5.9% and 4.6% of the total variation. The results show that the groundwater environment of this region is largely determined by characteristic components of the natural groundwater background. One part of the water was polluted by leaching/eluviation of solid waste generated from coal mining. Another part of the ground water was contaminated by acid mine water from the coal layer and from improper irrigation. In addition, geological and hydrogeological conditions also cause changes in the water environment.

  10. Brine Spills Associated with Unconventional Oil Development in North Dakota.

    Science.gov (United States)

    Lauer, Nancy E; Harkness, Jennifer S; Vengosh, Avner

    2016-05-17

    The rapid rise of unconventional oil production during the past decade in the Bakken region of North Dakota raises concerns related to water contamination associated with the accidental release of oil and gas wastewater to the environment. Here, we characterize the major and trace element chemistry and isotopic ratios ((87)Sr/(86)Sr, δ(18)O, δ(2)H) of surface waters (n = 29) in areas impacted by oil and gas wastewater spills in the Bakken region of North Dakota. We establish geochemical and isotopic tracers that can identify Bakken brine spills in the environment. In addition to elevated concentrations of dissolved salts (Na, Cl, Br), spill waters also consisted of elevated concentrations of other contaminants (Se, V, Pb, NH4) compared to background waters, and soil and sediment in spill sites had elevated total radium activities ((228)Ra + (226)Ra) relative to background, indicating accumulation of Ra in impacted soil and sediment. We observed that inorganic contamination associated with brine spills in North Dakota is remarkably persistent, with elevated levels of contaminants observed in spills sites up to 4 years following the spill events. PMID:27119384

  11. The influences of iron characteristics, operating conditions and solution chemistry on contaminants removal by zero-valent iron: A review.

    Science.gov (United States)

    Sun, Yuankui; Li, Jinxiang; Huang, Tinglin; Guan, Xiaohong

    2016-09-01

    For successful application of a zero-valent iron (ZVI) system, of particular interest is the performance of ZVI under various conditions. The current review comprehensively summarizes the potential effects of the major influencing factors, such as iron intrinsic characteristics (e.g., surface area, iron impurities and oxide films), operating conditions (e.g., pH, dissolved oxygen, iron dosage, iron pretreatment, mixing conditions and temperature) and solution chemistry (e.g., anions, cations and natural organic matter) on the performance of ZVI reported in literature. It was demonstrated that all of the factors could exert significant effects on the ZVI performance toward contaminants removal, negatively or positively. Depending on the removal mechanisms of the respective contaminants and other environmental conditions, an individual variable may exhibit different effects. On the other hand, many of these influences have not been well understood or cannot be individually isolated in experimental or natural systems. Thus, more research is required in order to elucidate the exact roles and mechanisms of each factor in affecting the performance of ZVI. Furthermore, based on these understandings, future research may attempt to establish some feasible strategies to minimize the deteriorating effects and utilize the positive effects so as to improve the performance of ZVI. PMID:27206056

  12. Comparison of brines relevant to nuclear waste experimentation

    International Nuclear Information System (INIS)

    The ionic compositions of 18 brines used in nuclear waste-related laboratory tests or obtained from field tests are described and compared. Also described are the origin of each brine, its predominant use for laboratory testing, and its relavancy for future testing. The brines include Brines A and B (Waste Isolation Pilot Plant (WIPP)/generic), Office of Nuclear Waste Isolation (ONWI) Composite Permian Brine P and Equilibrated Permian P No. 2, Battelle Pacific Northwest Laboratory (PNL)-Sandia High-Level Waste (HLW) package interactions test brines (flow and downhole), ERDA-6 brines (flow and downhole), WIPP Inclusions No. 1 and No. 2, Materials Characterization Center (MCC) brine, German quinare Brine Q, US Geological Survey bittern NBT-6a, saturated NaCl (200 and 1000C), and standard seawater

  13. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  14. Organic chemistry

    International Nuclear Information System (INIS)

    The activities of the mycotoxin research group are discussed. This includes the isolation and structure determination of mycotoxins, plant products, the biosyntheris of mycotoxins, the synthesis and characteristics of steroids, the synthesis and mechanistic aspects of heterocyclic chemistry and the functionality of steroids over long distances. Nmr spectra and mass spectroscopy are some of the techniques used

  15. Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica

    Science.gov (United States)

    Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis

    2010-02-01

    Sea ice ecosystems are characterized by microalgae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In the presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer.

  16. Modeling of highly brines transport in large water bodies

    Science.gov (United States)

    Lyubimova, T. P.; Lepikhin, A. P.; Parshakova, Y. N.; Tiunov, A. A.

    2010-05-01

    The paper deals with the numerical modeling of a dilution and transport of highly brines in large water bodies taking into account the density stratification effects. This problem has an exceptional importance for the guarantee of ecological security of the Kama Reservoir in the conditions of extending exploitation of Verhnekamsk deposit of potassium and magnesium salts - one of the largest in the world. The output of million of tones of the potassium fertilizer is accompanied by the producing of the same quantity of highly brines demanding utilization. With the existing technologies the desalination of such quantity of brines is extremely energy-capacious and almost inapplicable. That is why main way for the brine utilization is the release into the surface water bodies or underground water-bearing horizons. Since the uncertainty level in the parameter setting for underground water-bearing horizons is higher than that for the surface water bodies, under the same or close conditions the release into the surface water bodies is considerably less dangerous. The main water body able to assimilate such huge amount of the removed brines is the upper part of the Kama Reservoir located within the Solikamsk-Berezniki industrial centre. The wastewater arriving from this centre make a decisive contribution to the formation of hydrochemical regime of Kama river. We suggested two-dimensional imitational hydrodynamical model allowing to determine the possible pollution zones depending on the flow rate and concentration of pollutant, flow rate and water level in the Kama river and wind characteristics in the zone of pollutant discharge. This model allows not only to calculate the distribution of pollution zones for various pollutant sources but also to estimate the consequences of emergencies. The Kama river near the Solikamsk-Berezniki industrial centre has complex morphometry. For the complete and efficient accounting for the morphometry peculiarities the non-linear orthogonal

  17. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  18. Brine flow in heated geologic salt.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  19. Displacement propagators of brine flowing within different types of sedimentary rock.

    Science.gov (United States)

    Verganelakis, Dimitris A; Crawshaw, John; Johns, Michael L; Mantle, Michael D; Scheven, Ulrich; Sederman, Andrew J; Gladden, Lynn F

    2005-02-01

    This paper explores the correlation between different microstructural characteristics of porous sedimentary rocks and the flow properties of a Newtonian infiltrating fluid. Preliminary results of displacement propagator measurements of brine solution flowing through two types of sedimentary rock cores are reported. The two types of rocks, Bentheimer and Portland, are characterized by different porosities, pore-size distributions and permeabilities. Propagators have been measured for brine flow rates of 1 and 5 ml/min. Significant differences are seen between the propagators recorded for the two rocks, and these are related to the spatial distribution of porosity within these porous media. PMID:15833644

  20. Experimental biological effects assessment associated with on-shore brine discharge from the creation of gas storage caverns

    Science.gov (United States)

    Quintino, Victor; Rodrigues, Ana Maria; Freitas, Rosa; Ré, Ana

    2008-09-01

    Most of the studies on biological and ecological effects associated with brine discharge into the marine environment are related to the operation of desalination plants, for the production of freshwater. In this study we analysed the biological effects of a brine effluent from a completely different source, produced from the lixiviation of rock salt caves, for the creation of natural gas storage caverns. Lethal and sub-lethal endpoints following exposure to the brine were studied in a range of macrofauna species characteristic of the soft and hard bottom habitats in the vicinity of the discharge area, namely the isopod Eurydice pulchra, the annelids Sabellaria alveolata and Ophelia radiata, the sea-urchin Paracentrotus lividus and the bivalve Mytilus galloprovincialis. In a first series of experiments, brine, with salinity above 300, was diluted in distilled water to a salinity value close to that of the seawater in the discharge area (salinity 36) and, surprisingly, none of the exposed species was able to survive or develop into viable larvae. A second series of experiments exposed the species to brine diluted with seawater, simulating more realistic discharge circumstances. All the tested species at all the measured endpoints (adult survival, larval abnormal development, sperm fertilization success) showed negative biological effects in brine solutes always at a lower salinity than that of a salinity control obtained with concentrated seawater. The sub-lethal experiments with larval development of P. lividus, S. alveolata and M. galloprovincialis, and the fertilization success of P. lividus gave EC 50 values for the brine solute with salinity in the range of 40.9-43.5, whereas the EC 50 values for the concentrated seawater were in the range of salinity 44.2-49.0. It is hypothesised that differences in the ionic composition of the brine cause the inability of the species to tolerate the exposure to brine.

  1. Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O' Hern, Timothy John

    2004-05-01

    performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

  2. Development of a Rapid, Nondestructive Method to Measure Aqueous Carbonate in High Salinity Brines Using Raman Spectroscopy

    Science.gov (United States)

    McGraw, L.; Phillips-Lander, C. M.; Elwood Madden, A. S.; Parnell, S.; Elwood Madden, M.

    2015-12-01

    Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical contact with the fluid and is not affected by many ionic brines. Developing methods to study aqueous carbonates is vital to future study of brines on Mars and other planetary bodies, as they can reveal important information about modern and ancient near-surface aqueous processes. Both sodium carbonate standards and unknown samples from carbonate mineral dissolution experiments in high salinity brines were analyzed using a 532 nm laser coupled to an inVia Renishaw spectrometer to collect carbonate spectra from near-saturated sodium chloride and sodium sulfate brines. A calibration curve was determined by collecting spectra from solutions of known carbonate concentrations mixed with a pH 13 buffer and a near-saturated NaCl or Na2SO4 brine matrix. The spectra were processed and curve fitted to determine the height ratio of the carbonate peak at 1066 cm-1 to the 1640 cm-1 water peak. The calibration curve determined using the standards was then applied to the experimental data after accounting for dilutions. Concentrations determined based on Raman spectra were compared against traditional acid titration measurements. We found that the two techniques vary by less than one order of magnitude. Further work is ongoing to verify the method and apply similar techniques to measure aqueous carbonate concentrations in other high salinity brines.Traditional methods of quantitative analysis are often ill-suited to determining the bulk chemistry of high salinity brines due to their corrosive and clogging properties. Such methods are also often difficult to apply remotely in planetary environments. However, Raman spectroscopy can be used remotely without physical

  3. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  4. Biochemical processes for geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  5. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    Science.gov (United States)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  6. Mirabilite solubility in equilibrium sea ice brines

    Science.gov (United States)

    Butler, Benjamin Miles; Papadimitriou, Stathys; Santoro, Anna; Kennedy, Hilary

    2016-06-01

    The sea ice microstructure is permeated by brine channels and pockets that contain concentrated seawater-derived brine. Cooling the sea ice results in further formation of pure ice within these pockets as thermal equilibrium is attained, resulting in a smaller volume of increasingly concentrated residual brine. The coupled changes in temperature and ionic composition result in supersaturation of the brine with respect to mirabilite (Na2SO4·10H2O) at temperatures below -6.38 °C, which consequently precipitates within the sea ice microstructure. Here, mirabilite solubility in natural and synthetic seawater derived brines, representative of sea ice at thermal equilibrium, has been measured in laboratory experiments between 0.2 and -20.6 °C, and hence we present a detailed examination of mirabilite dynamics within the sea ice system. Below -6.38 °C mirabilite displays particularly large changes in solubility as the temperature decreases, and by -20.6 °C its precipitation results in 12.90% and 91.97% reductions in the total dissolved Na+ and SO42- concentrations respectively, compared to that of conservative seawater concentration. Such large non-conservative changes in brine composition could potentially impact upon the measurement of sea ice brine salinity and pH, whilst the altered osmotic conditions may create additional challenges for the sympagic organisms that inhabit the sea ice system. At temperatures above -6.38 °C, mirabilite again displays large changes in solubility that likely aid in impeding its identification in field samples of sea ice. Our solubility measurements display excellent agreement with that of the FREZCHEM model, which was therefore used to supplement our measurements to colder temperatures. Measured and modelled solubility data were incorporated into a 1D model for the growth of first-year Arctic sea ice. Model results ultimately suggest that mirabilite has a near ubiquitous presence in much of the sea ice on Earth, and illustrate the

  7. Reactive-transport modeling of fly ash-wate-brines interactions from laboratory-scale column studies

    Science.gov (United States)

    Mbugua, John M.; Catherine Ngila, J.; Kindness, Andrew; Demlie, Molla

    Dynamic leaching tests are important studies that provide more insights into time-dependent leaching mechanisms of any given solid waste. Hydrogeochemical modeling using PHREEQC was applied for column modeling of two ash recipes and brines generated from South African coal utility plants, Sasol and Eskom. The modeling results were part of a larger ash-brine study aimed at acquiring knowledge on (i) quantification and characterization of the products formed when ash is in contact with wate-brines in different scenarios, (ii) the mineralogical changes associated with wate-brine-ash interactions over time, (iii) species concentration, and (iv) leaching and transport controlling factors. The column modeling was successfully identified and quantified as important reactive mineralogical phases controlling major, minor and trace elements' release. The pH of the solution was found to be a very important controlling factor in leaching chemistry. The highest mineralogical transformation took place in the first 10 days of ash contact with either water or brines, and within 0.1 m from the column inflow. Many of the major and trace elements Ca, Mg, Na, K, Sr, S(VI), Fe, are leached easily into water systems and their concentration fronts were high at the beginning (within 0.1 m from the column inflow and within the first 10 days) upon contact with the liquid phase. However, their concentration decreased with time until a steady state was reached. Modeling results also revealed that geochemical reactions taking place during ash-wate-brine interactions does affect the porosity of the ash, whereas the leaching processes lead to increased porosity. Besides supporting experimental data, modeling results gave predictive insights on leaching of elements which may directly impact on the environment, particularly ground water. These predictions will help develop scenarios and offer potential guide for future sustainable waste management practices as a way of addressing the co

  8. Co-Sequestration Geochemical Modeling: Simple Brine Solution + CO2-O2-SO2

    Science.gov (United States)

    Verba, C.; Kutchko, B. G.; Reed, M. H.

    2012-12-01

    Class H well cement (LaFarge) was exposed to supercritical CO2 to evaluate the impact of brine chemistry on the well cement. Simulated experimental downhole conditions include a pressure of 28.6 MPa and a temperature of 50oC. Brine composition was formulated from the NETL NATCARB database, resulting in a simple solution of 1 M (NaCl, MgCl2, CaCl2). It was determined that the brine chemistry plays a vital role in determining the degree and type of alteration of cement in carbon sequestration conditions. The implications of co-sequestration (CO2/O2/SO2 mixtures) from of oxy-fueled combustion, coal gasification and sour gas have been considered. Geochemical modeling was conducted to understand the interaction between formation brine, cement and co-contaminant gases, using a gas composition of 95.5% CO2, 4% O2, and 1.5% SO2. The modeling results are significant in determining the validity of co-sequestering coal flue gas containing SOx gases or sour hydrocarbon gas which could potentially produce pyrite or other sulfur-bearing species in the cement via mineralization trapping. Thermodynamic components of aqueous species, gases, and minerals were used to calculate the pH and mineral saturation indices using CHIM-XPT. The computed pH of the solution is 4.34. The total sulfate molality within the brine is 0.0095 M. In experimental conditions of 600 mL of brine, 0.0057 moles of sulfate will be converted into 5.7 mL of sulfuric acid. The modeling shows that an excess of 31% O2 forms, indicating that H2S from SO2 disporportionation is oxidized to sulfate, thus no gaseous H2S will form. Remaining SO2 in the experimental headspace has a predicted mole fraction is 10-46. Additional SO2 gas added to the system produces the reaction to precipitate gypsum. Additional gas reactions precipitate gypsum, anhydrite, calcite, and dolomite.

  9. Expected brine movement at potential nuclear waste repository salt sites

    Energy Technology Data Exchange (ETDEWEB)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  10. Multiphase flow of carbon dioxide and brine in dual porosity carbonates

    Science.gov (United States)

    Pentland, Christopher; Oedai, Sjaam; Ott, Holger

    2014-05-01

    The storage of carbon dioxide in subsurface formations presents a challenge in terms of multiphase flow characterisation. Project planning requires an understanding of multiphase flow characteristics such as the relationship between relative permeability and saturation. At present there are only a limited number of relative permeability relations for carbon dioxide-brine fluid systems, most of which are measured on sandstone rocks. In this study coreflood experiments are performed to investigate the relative permeability of carbon dioxide and brine in two dual porosity carbonate systems. Carbon dioxide is injected into the brine saturated rocks in a primary drainage process. The rock fluid system is pre-equilibrated to avoid chemical reactions and physical mass transfer between phases. The pressure drop across the samples, the amount of brine displaced and the saturation distribution within the rocks are measured. The experiments are repeated on the same rocks for the decane-brine fluid system. The experimental data is interpreted by simulating the experiments with a continuum scale Darcy solver. Selected functional representations of relative permeability are investigated, the parameters of which are chosen such that a least squares objective function is minimised (i.e. the difference between experimental observations and simulated response). The match between simulation and measurement is dependent upon the form of the functional representations. The best agreement is achieved with the Corey [Brooks and Corey, 1964] or modified Corey [Masalmeh et al., 2007] functions which best represent the relative permeability of brine at low brine saturations. The relative permeability of carbon dioxide is shown to be lower than the relative permeability of decane over the saturation ranges investigated. The relative permeability of the brine phase is comparable for the two fluid systems. These observations are consistent with the rocks being water-wet. During the experiment

  11. Brine shrimp lethality assay of Bacopa monnieri.

    Science.gov (United States)

    D'Souza, Prashanth; Deepak, Mundkinajeddu; Rani, Padmaja; Kadamboor, Sandhya; Mathew, Anjana; Chandrashekar, Arun P; Agarwal, Amit

    2002-03-01

    Successive petroleum ether, chloroform, ethanol and water extracts, a saponin rich fraction (SRF) and bacoside A isolated from Bacopa monnieri were tested for brine shrimp lethality. Successive ethanol extracts and SRF showed potent activity. Bacoside A showed the maximum activity with a LC(50) of 38.3 microg/mL. The results confirmed the previous reports of an anticancer effect of Bacopa monnieri and suggest bacoside A as the active constituent.

  12. Effect of electroosmotic flow on brine imbibition in porous media

    Institute of Scientific and Technical Information of China (English)

    Rui WANG; Xiang-an YUE; Xu WEI; Wei ZHANG

    2009-01-01

    Based on Darcy's Law and the Helmholta-Smoluchowski equation, an imbibition velocity formula for the water phase with an electric field was deduced, showing that the imbibition velocity with an electric field is to various extents not only-related to the rock permeability and characteristic length, the fluid viscosity, the oil-water interface tension and the gravity of the imbibing brine, but also to the fluid dielectric permittivity, zeta potential, applied electric field direction, and strength. Imbibition experiments with electric fields that are different in direction and strength were conducted, showing that application of a positive electric field enhances the imbibition velocity and increases the imbibition recovery ratio, while application of a negative electric field reduces the imbibition velocity and decreases the imbibition recovery ratio. The imbibition recovery ratio with a positive electric field increases with the strength of the electric field, and the imbibition recovery ratio with a negative electric field is lower than that without an electric field.

  13. OUT Success Stories: Chemical Treatments for Geothermal Brines

    International Nuclear Information System (INIS)

    DOE research helped develop the large, untapped geothermal resource beneath the Salton Sea in California's Imperial Valley. The very hot brines under high pressure make them excellent for electric power production. The brines are very corrosive and contain high concentrations of dissolved silica. DOE worked with San Diego Gas and Electric Company to find a solution to the silica-scaling problem. This innovative brine treatment eliminated scaling and made possible the development of the Salton Sea geothermal resource

  14. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines

    OpenAIRE

    Joye, S. B.; Macdonald, I. R.; Montoya, J. P.; Peccini, M.

    2005-01-01

    Geophysical, temperature, and discrete depth-stratified geochemical data illustrate differences between an actively venting mud volcano and a relatively quiescent brine pool in the Gulf of Mexico along the continental slope. Geophysical data, including laser-line scan mosaics and sub-bottom profiles, document the dynamic nature of both environments. Temperature profiles, obtained by lowering a CTD into the brine fluid, show that the venting brine was at least 10°C warmer than the bottom w...

  15. Hydrochemical Characteristics and Boron Isotope Geochemistry of Brine in Hoh Xil, Qinghai Province%青海可可西里盐湖水化学及硼同位素地球化学特征

    Institute of Scientific and Technical Information of China (English)

    马茹莹; 韩耀宗; 郭坚峰; 韩凤清; 马海州; 肖应凯; 马云麒; 张燕霞; 王腾; 何蕾; 韩继龙

    2015-01-01

    本文主要依据2009—2010年间的考察对可可西里地区盐湖进行了水化学及硼同位素分布特征研究。结果表明,除前人发现的5个盐湖外,可可西里东部新发现的多秀湖、茶错、布查湖和果木错玛德日4个湖泊也属于盐湖;勒斜武担湖为氯化物型盐湖,其余8个盐湖均为硫酸盐型盐湖;盐湖及周围水体皆富集 B、Li 元素,形成以盐湖为中心的含量高值区,且 B-Li 元素对显示出协同消长关系,表明在该地区这两种元素的物质来源、搬运条件及富集环境具有相似性;正热电离质谱法测量结果显示,本区盐湖δ11B 值的变化范围在+4.77‰~+12.52‰之间,远低于海水δ11B值,证明这些盐湖均属陆相成因,与前人对青藏高原地区盐湖成因的研究结果相一致;勒斜武担湖和布查盐湖北部均出露有大量泉水,水化学分析和硼同位素分析数据表明,勒斜武担湖和布查盐湖分别与各自周围的泉水具有同源性,认为这些泉水是这两个盐湖的主要物质来源;根据区域地质构造特征和硼同位素地球化学数据,可判断出新青峰喷泉中的硼主要来自于深部火山岩溶滤。%A study of the hydrochemical characteristics and boron isotope distribution of salt lakes in Hoh Xil region was conducted on the basis of the survey in 2009 and 2010. Besides the Mingjing Lake, Xijinwulan Lake, Lexiewudan Lake, Salt Lake and Cangcuo Lake discovered earlier, the Duoxiu Lake, Chacuo Lake, Bucha Lake and Guomucuomaderi Lake are all salt lakes discovered recently, whose salinities are equal to or higher than 50 g/L. These discoveries have brought the total number of salt lakes in this region to 9. Except for the Lexiewudan salt lake, which is of the chloride type, the remaining 8 salt lakes are of the sulfate type; the boron and lithium are both abundant in the lake water and surrounding waters, and B-Li elements indicate a collaborative

  16. Power production via North Sea Hot Brines

    International Nuclear Information System (INIS)

    Traditionally the power demand of offshore oil platforms is delivered by on-platform gas turbines. Natural gas to fuel these turbines is usually separated from the produced oil. However, in ageing fields as oil production declines so does the associated gas. Ultimately gas supply becomes insufficient; in order to continue producing fuel is imported at great expense. This study proposes the power demand of a platform could be met or supplemented by an on-platform ORC (organic Rankine cycle ) fuelled by coproduced hot brines. This could extend the operating life of oil platforms and reduce both cost and emissions. The potential power output of an ORC is modelled for fields in the North Sea's Brent Province. Results show 6 fields have the potential to generate more than 10 MW via an organic Rankine cycle fuelled by hot brines, with a maximum of 31 MW predicted for the Ninian field. Analysis of simulations for the Eider field shows that ORC plants can scale to size constraints. The cost of a 10 MW ORC is compared to cost of continued use of gas turbines. Payback times of between 3.09 and 4.53 years are predicted for an ORC, without accounting for greenhouse gas emissions levies. - Highlights: • We model organic Rankine cycles fuelled by hot brines produced in the North Sea. • Organic Rankine cycles could provide all an off-shore platform's power demand. • 6 fields in the Brent province have the potential to produce >10 MW via an ORC system. • Payback time calculated for a 10 MW organic Rankine cycle is 3.09–4.53 years

  17. Assessment of brine migration along vertical pathways due to CO2 injection

    Science.gov (United States)

    Kissinger, Alexander; Class, Holger

    2016-04-01

    Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems which may create conflicts with essential public interests such as water supply from aquifers. For example, brine migration into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is perceived as a potential threat resulting from the Carbon Capture and Storage Technology (CCS). In this work, we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. We consider a realistic (but not real) on-shore site in the North German Basin with characteristic geological features. In contrast to modeling on the reservoir scale, the spatial scale in this work is much larger in both vertical and lateral direction, since the regional hydrogeology is considered as well. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt wall flanks are considered as potential pathways for displaced fluids into shallow systems and their influence needs to be taken into account. Simulations on this scale always require a compromise between the accuracy of the description of the relevant physical processes, data availability and computational resources. Therefore, we test different model simplifications and discuss them with respect to the relevant physical processes and the expected data availability. The simplifications in the models are concerned with the role of salt-induced density differences on the flow, with injection of brine (into brine) instead of CO2 into brine, and with simplifying the geometry of the site.

  18. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  19. Ice Control with Brine on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars

    During the years 1996-2006, the Division of Highways and Transportation in the former county of Funen gradually replaced pre-wetted salt with brine as de-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor......-plants meant that six salt barns could be phased out. This made it possible to revise the staff's duty roster and thus meet the rest hour demands raised by the health and safety at work acts. Successful pre-salting is, of course, dependent on reliable weather forecasts and on staff well trained in the art...

  20. Fate and identification of oil-brine contamination in different hydrogeologic settings

    Science.gov (United States)

    Whittemore, D.O.

    2007-01-01

    Past disposal of oil-field brine at the surface has caused substantial contamination of water resources in Kansas. Natural saline water occurs in and discharges from Permian bedrock in parts of the state, and other anthropogenic sources of saline water exist, requiring clear identification of different sources. Time-series analysis of Cl- concentration and streamflow relative to pre-contamination contents, and end-member mixing plots, especially for Br- and Cl-, are practical methods for source differentiation and quantification. Although regulations preventing escape of saltwater from oil wells were first passed in Kansas in 1935, much oil and gas brine was disposed on the surface through the 1940s. Hydrogeologic characteristics of the areas with past surface disposal of oil brine differ appreciably and result in large differences in the ratio of saltwater transported in streams or ground water. Much of the brine disposed during the 1910s to 1940s in an area of silty clay soils overlying shale and limestone bedrock in south-central Kansas soon ran off or was flushed from the surface by rain into streams. Chloride concentration in the rivers draining this area often exceeded 1000 mg/L after the start of oil production up to the 1950s. Chloride content in the rivers then generally declined to about 100 mg/L or less in recent low flows. Oil brine was also disposed in surface ponds overlying the unconsolidated High Plains aquifer in south-central Kansas from the latter 1920s into the 1940s. Most of the surface-disposed brine infiltrated to the underlying aquifer. Where the High Plains aquifer is thin, saltwater has migrated along the top of clay layers or the underlying shaly bedrock and either discharged into small streams or flowed into thicker parts of the aquifer. Where the aquifer is thick, surface-disposed oil brine moved downward until reaching clay lenses, migrated latterly to the edge of the clay, and again moved downward if still dense enough. Water

  1. Hydrological and Chemical Assessment of Groundwater Flow and Quality in Costal Brine Aquifers of Laizhou Bay, China

    Science.gov (United States)

    Zhang, Xiaoying; Hu, Bill X.; Miao, Jinjie

    2016-04-01

    In geological time, seawater had been intruded groundwater several times since Late Pleistocene in the coastal area of Laizhou Bay, china. This unique phenomenon caused freshwater and brine water interbedded each other in the aquifers and forged Laizhou Bay became a multiple sources dynamic coastal area. In the last two decades, massive exploitation of fresh groundwater and brine water has significantly increased seawater intrusion and strengthened mixture of brine water and freshwater in the coastal area, which threatens local groundwater resources and severely impacts local ecological geo-environment. In this study, the hydrological and chemical (HC) process was studied according to the monitoring wells and chemical ionic constituents. The groundwater level continuously decreasing rather than showing a typical seasonal variation in areas close to the depression cone. A groundwater divide was formed along Yingli-Houzhen-Yangzi accounted for the exploitation of fresh water in the south and brine extraction in the north. This divide prevented the saltwater intrusion to fresh groundwater further south in study area. The results also showed that during concentration process, a series of complex reactions including water chemistry metamorphic role and evolution took place, such as mineral precipitation, cation ion exchange, dedolomitization and silicate alteration, etc. This work highlighted hydrological-chemical coupling process and provided a better insight into hydrogeological system.

  2. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  3. Moisture variations in brine-salted pasta filata cheese.

    Science.gov (United States)

    Kindstedt, P S

    2001-01-01

    A study was made of the moisture distribution in brine-salted pasta filata cheese. Brine-salted cheeses usually develop reasonably smooth and predictable gradients of decreasing moisture from center to surface, resulting from outward diffusion of moisture in response to inward diffusion of salt. However, patterns of moisture variation within brine-salted pasta filata cheeses, notably pizza cheese, are more variable and less predictable because of the peculiar conditions that occur when warm cheese is immersed in cold brine. In this study, cold brining resulted in less moisture loss from the cheese surface to the brine. Also it created substantial temperature gradients within the cheese, which persisted after brining and influenced the movement of moisture within the cheese independently of that caused by the inward diffusion of salt. Depending on brining conditions and age, pizza cheese may contain decreasing, increasing, or irregular gradients of moisture from center to surface, which may vary considerably at different locations within a single block. This complicates efforts to obtain representative samples for moisture and composition testing. Dicing the entire block into small (e.g., 1.5 cm) cubes and collecting a composite sample after thorough mixing may serve as a practical sampling approach for manufacturers and users of pizza cheese that have ready access to dicing equipment. PMID:11324629

  4. Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine

    Directory of Open Access Journals (Sweden)

    Joanita eSulaiman

    2014-10-01

    Full Text Available The quality of traditional Chinese soy sauce is determined by microbial communities and their inter-related metabolic roles in the fermentation tank. In this study, traditional Chinese soy sauce brine samples were obtained periodically to monitor the transitions of the microbial population and functional properties during the six months of fermentation process. Whole genome shotgun (WGS method revealed that the fermentation brine was dominated by the bacterial genus Weissella and later dominated by the fungal genus Candida. Metabolic reconstruction of the metagenome sequences demonstrated a characteristic profile of heterotrophic fermentation of proteins and carbohydrates. This was supported by the detection of ethanol with stable decrease of pH values. To the best of our knowledge, this is the first study that explores the temporal changes in microbial successions over a period of six months, through metagenome shotgun sequencing in traditional Chinese soy sauce fermentation and the biological processes therein.

  5. Trends in adsorption characteristics of benzene on transition metal surfaces: Role of surface chemistry and van der Waals interactions

    OpenAIRE

    Yildirim, Handan; Greber, Thomas; Kara, Abdelkader

    2013-01-01

    The accurate description of interface characteristics between organic molecules and metal surfaces has long been debated in theoretical studies. A well-founded description of interface geometry and adsorption energy is highly desirable for these hybrid inorganic/organic interfaces. Using first principles calculations with the inclusion of five van der Waals functionals (vdW-DF family), benzene (C6H6) adsorption on seven transition metal surfaces is studied to explore the performance of these ...

  6. Evaporation Rates of Brine on Mars

    Science.gov (United States)

    Sears, D. W. G.; Chittenden, J.; Moore, S. R.; Meier, A.; Kareev, M.; Farmer, C. B.

    2004-01-01

    While Mars is now largely a dry and barren place, recent data have indicated that water has flowed at specific locations within the last approx. 10(exp 6) y. This had led to a resurgence of interest in theoretical and experimental work aimed at understanding the behavior of water on Mars. There are several means whereby the stability of liquid water on Mars could be increased, one being the presence solutes that would depress the freezing point. Salt water on Earth is about 0.5M NaCl, but laboratory experiments suggest that martian salt water is quite different. We recently began a program of laboratory measurements of the stability of liquid water, ice and ice-dust mixtures under martian conditions and here report measurements of the evaporation rate of 0.25M brine.

  7. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated (Jordan et al., 2014; Stauffer et al., 2015). The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high purity, granular sodium chloride.

  8. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  9. Influence of School Characteristics on the Achievement of Secondary School Chemistry Students in the Cognitive Science Process Skill of Evaluation in Kenya

    Science.gov (United States)

    Anditi, Zephania O.; Okere, Mark, I. O.; Muchiri, Daniel R.

    2013-01-01

    Chemistry is one of the subjects that students sit for in the Kenya Certificate of Secondary Education (KCSE). The attainment of students in chemistry in KCSE has been quite low. An analysis of the past Chemistry examination papers taken in KCSE reveals that the papers test students' competencies in various aspects of Cognitive Science Process…

  10. Groundwater contaminant transport with adsorption and ion exchange chemistry: method of characteristics for the case without dispersion

    International Nuclear Information System (INIS)

    Contaminant transport in the groundwater environment with adsorption and ion exchange reactions is considered. For the case where the influence of dispersion is negligible, the method of characteristics is used to formulate the solution for any adsorption isotherm and an arbitrary number of exchanging cations. The approach applies equally well to linear flow systems and to nonlinear systems along streamlines in a nonuniform flow field. Transport problems related to the emerging technologies of in situ gasification of lignite and in situ leach mining of uranium are discussed. 12 refs

  11. Empirical formula for the refractive index of freezing brine

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2009-01-01

    The refractive index of freezing brine is important for example in order to estimate oceanic scattering as sea ice develops. Previously, no simple continuous expression was available for estimating the refractive index of brine at subzero temperatures. I show that extrapolation of the empirical...... formula for the refractive index of seawater by Quan and Fry [Appl. Opt. 34(18), 3477-3480 (1995)] provides a good fit to the refractive index of freezing brine for temperatures above -24 degrees celsius and salinities below 180 parts per thousand....

  12. Electromagnetic mapping of brine contamination in petroleum producing areas

    International Nuclear Information System (INIS)

    Geophysical electromagnetic devices are well suited to mapping soil and groundwater contamination by oilfield brines. Frequency domain devices such as ground conductivity meters are used for quick assessment of the lateral extent of contamination in the near surface. Time domain devices can accurately define the depth and thickness of the contaminated horizons. Three cases are reviewed which involve the use of geophysical electromagnetic mapping to evaluate brine contamination around a disused drilling pit and an evaporation pond, and to investigate the occurrence of brine relative to local geology in the Michigan Basin. 11 refs., 8 figs

  13. Geochemistry of Brines from Salt Ore Deposits in Western Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    马万栋; 马海州; 谭红兵; 董亚萍; 张西营; 孙国芳

    2004-01-01

    In the geological evolution of the Tarim Basin, many transgressions and relictions happened. So there have been plentiful sources of salt. Moreover, because of uttermost drought, a lot of salt has been deposited. It is possible to find potash salt in this area. In our fieldwork, we have found salt and brine in western Tarim Basin. Based on a geological survey and the characteristics of sedimentary facies and paleogeography, this paper deals with the geochemical parameters and discusses the possibility of formation of potash salt in terms of the chemical analyses of samples collected from western Tarim Basin. Results of brine analysis lead to some conclusions: most of these salt brines have eluviated from very thick halite beds, mainly chloride-type salt and this kind of halite does not reach the stage of potash deposition in all aspects; WKSL (Wukeshalu) occupies a noticeable place, and we should attach importance to this district because there have been some indicators of the occurrence of potash deposits as viewed from the contents of Br and K. Finally, low Br contents are recognized in the Tarim Basin as a result of salt aggradation, and this point of view has been proved by the results of this experiment and the data available. It cannot depend upon the index of Br to judge the evolution stage of halite. We must look for other facies of potash except marine facies.

  14. Coiled Brine Recovery Assembly (CoBRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and...

  15. Modeling the morphogenesis of brine channels in sea ice

    CERN Document Server

    Kutschan, B; gemming, S

    2009-01-01

    Brine channels are formed in sea ice under certain constraints and represent a habitat of different microorganisms. The complex system depends on a number of various quantities as salinity, density, pH-value or temperature. Each quantity governs the process of brine channel formation. There exists a strong link between bulk salinity and the presence of brine drainage channels in growing ice with respect to both the horizontal and vertical planes. We develop a suitable phenomenological model for the formation of brine channels both referring to the Ginzburg-Landau-theory of phase transitions as well as to the chemical basis of morphogenesis according to Turing. It is possible to conclude from the critical wavenumber on the size of the structure and the critical parameters. The theoretically deduced transition rates have the same magnitude as the experimental values. The model creates channels of similar size as observed experimentally. An extension of the model towards channels with different sizes is possible...

  16. Development of the brine shrimp Artemia is accelerated during spaceflight

    Science.gov (United States)

    Spooner, B. S.; Metcalf, J.; DeBell, L.; Paulsen, A.; Noren, W.; Guikema, J. A.

    1994-01-01

    Developmentally arrested brine shrimp cysts have been reactivated during orbital spaceflight on two different Space Shuttle missions (STS-50 and STS-54), and their subsequent development has been compared with that of simultaneously reactivated ground controls. Flight and control brine shrimp do not significantly differ with respect to hatching rates or larval morphology at the scanning and transmission EM levels. A small percentage of the flight larvae had defective nauplier eye development, but the observation was not statistically significant. However, in three different experiments on two different flights, involving a total of 232 larvae that developed in space, a highly significant difference in degree of flight to control development was found. By as early as 2.25 days after reactivation of development, spaceflight brine shrimp were accelerated, by a full instar, over ground control brine shrimp. Although developing more rapidly, flight shrimp grew as long as control shrimp at each developmental instar or stage.

  17. Geochemical implications of brine leakage into freshwater aquifers.

    Science.gov (United States)

    Wunsch, Assaf; Navarre-Sitchler, Alexis K; McCray, John E

    2013-01-01

    CO(2) injection into deep saline formations as a way to mitigate climate change raises concerns that leakage of saline waters from the injection formations will impact water quality of overlying aquifers, especially underground sources of drinking water (USDWs). This paper aims to characterize the geochemical composition of deep brines, with a focus on constituents that pose a human health risk and are regulated by the U.S. Environmental Protection Agency (USEPA). A statistical analysis of the NATCARB brine database, combined with simple mixing model calculations, show total dissolved solids and concentrations of chloride, boron, arsenic, sulfate, nitrate, iron and manganese may exceed plant tolerance or regulatory levels. Twelve agricultural crops evaluated for decreased productivity in the event of brine leakage would experience some yield reduction due to increased TDS at brine-USDW ratios of United States are almost three times higher than public and domestic withdrawals.

  18. Self-oscillations in large storages of highly mineralized brines

    Science.gov (United States)

    Lyubimova, Tatyana; Lepikhin, Anatoly; Tsiberkin, Kirill; Parshakova, Yanina

    2014-05-01

    One of the stages of the production process at large enrichment plants is settling of aqueous solutions in large technological storages. The present work is devoted to the modeling of hydrodynamic regimes of large storage of highly mineralized brines. The density of brines in these objects depends not only on the content of dissolved macrocomponents, but also on the concentration of fine particulate matter. This leads to the need to consider the dynamics of the suspended sediment under significant density stratification, which greatly complicates the problem. Because of that it is important to develop hydrodynamical models of these objects. A peculiarity of these systems is the possibility of self-oscillatory regimes the mechanism of which is as follows. In warm sunny days, with high solar insolation, the heating of the sediments and bottom water takes place. The bottom water warming and the decrease of its density give rise to flow. The slurry particles composing the sediments are involved in the flow. The heated particles entrained by the flow transfer the heat to the surrounding liquid and increase the absorption of the solar radiation in the volume, which leads to equalization of temperature and convective flow damping. After the particle settling on the bottom the process is repeated. We study the stability of equilibrium of the horizontal liquid layer containing heavy insoluble particles in the presence of evaporation from the free surface and solar radiation absorption by insoluble particles. The time-dependent solution of heat transfer problem is obtained and used for estimate of time of instability onset. It is found that for the layer of saturated brines of potassium chloride of the thickness about 10 m the time for instability onset is about one hour. By using analytical estimates based on the empirical model of turbulence by Prandtl we confirmed the time for the onset of instability and obtained the estimates for the period of self

  19. Brine Shrimp Ecology In The Great Salt Lake, Utah

    OpenAIRE

    Wurtsbaugh, Wayne A.

    1995-01-01

    Hypersaline lakes are noted for their simple communities which facilitate understanding ecological interactions (Williams et al. 1990; Wurtsbaugh 1992; Jellison and Melack 1988). Nevertheless, we still cannot easily predict how environmental changes will effect the population dynamics in these lakes, at least in part because even these simple ecosystems may be more complex than we .realize. Many hypersaline lakes are dominated by the brine shrimp Artemia spp. The production of brine shrimp is...

  20. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  1. Colour Chemistry

    Science.gov (United States)

    Griffiths, J.; Rattee, I. D.

    1973-01-01

    Discusses the course offerings in pure color chemistry at two universities and the three main aspects of study: dyestuff chemistry, color measurement, and color application. Indicates that there exists a constant challenge to ingenuity in the subject discipline. (CC)

  2. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  3. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  4. Variação das características físico-químicas e microbiológicas das salmouras empregadas na salga de queijos tipo mussarela durante o período de sua utilização Variation of physical, chemical and microbiological characteristics of brines applied in the salting of mozzarella cheese during the period of utilization

    Directory of Open Access Journals (Sweden)

    Luiz Augusto do Amaral

    1992-02-01

    Full Text Available Foram analisadas 40 amostras de salmouras empregadas na salga por submersão de queijos tipo mussarela, em uma indústria de laticínios do Estado de São Paulo, Brasil, com o objetivo de se conhecer a variação das características físico-químicas e microbiológicas durante o período de sua utilização. Os valores médios do pH, concentração de cloreto de sódio e de proteínas solúveis, desde o preparo da salmoura até o 21° dia de utilização, variaram de 7,21 a 5,76, 27,1 a 24,5 e de zero a 0,126 mg/ml, respectivamente. Por outro lado, os valores médios das contagens de microrganismos mesófilos e do número mais provável de coliformes totais e de origem fecal variaram de 5,8 x 10 UFC/ml a 6,9 x 10(4 UFC/ml, zero a 1,6 x 10(5/100ml e zero a 1,1 x 10(5/100ml, respectivamente. Além disso, os valores médios das contagens de bolores e leveduras e de Staphylococcus coagulase positiva, variaram de 0,4 x 10 UFC/ml a 2,0 x 10³ UFC/ml e de zero a 1,3 x 10 UFC/ml, respectivamente. Os resultados encontrados sugerem a existência de condições higiênicas inadequadas durante o preparo e utilização das salmouras, de modo a representar uma importante fonte de contaminação para os queijos. Em decorrência deste fato, existe a possibilidade do comprometimento da qualidade dos queijos, de modo a representar risco potencial à população consumidora.Variation of the physical, chemical and microbiological characteristics of brines during their utilization for salting mozzarella cheese. Forty brine samples used for submersion salting of mozzarella cheese in a dairy industry in the State of S. Paulo, Brazil, were analysed for the purpose of discovering the variation in the physical, chemical and microbiological characteristics observed over their period of utilization. The mean values preparation up to the 21st day of utilization of pH, sodium chloride and protein concentration varied from 7.21 to 5.76, from 27.1 to 24.5 and from zero to 0

  5. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine

    Directory of Open Access Journals (Sweden)

    AHMAD DWI SETYAWAN

    2013-11-01

    Full Text Available Setyawan AD, Sugiyarto, Solichatun, Susilowati A. 2013. Review: Physical, physical chemistries, chemical and sensorial characteristics of the several fruits and vegetables chips by low-temperature vacuum frying machine. Nusantara Bioscience 5: 84-100. Frying process is one of the oldest cooking methods and most widely practiced in the world. Frying process is considered as a dry cooking method because the process does not involve water. In frying process, oil conduction occurs at high temperature pressing water out of food in the form of bubbles. Fried foods last longer due to reduced water levels lead less decomposition by microbes, even fried foods can be enhanced nutritional value and quality of appearance. Food frying technology can extend the shelf life of fruits and vegetables and frying oil enhances the flavors of the products, however, improper frying oil can have harmful effects on human health. Vacuum frying is a promising technology that may be an option for the production of novel snacks such as fruit and vegetable crisps that present the desired quality and respond to new health trends. This technique fry food at a low temperature and pressure so that the nutritional quality of the food is maintained and the quality of the used oil does not quickly declined and became saturated oils that are harmful to human health. This technique produces chips that have physical, physico-chemical, chemical, and sensory generally better than conventional deep-fat frying methods.

  6. A microfluidic flow focusing platform to screen the evolution of crude oil-brine interfacial elasticity.

    Science.gov (United States)

    Morin, Brendon; Liu, Yafei; Alvarado, Vladimir; Oakey, John

    2016-08-01

    Multiphase fluid flow dynamics dominate processes used to recover the majority of hydrocarbon resources produced by global energy industries. Micromodels have long been used to recapitulate geometric features of these processes, allowing for the phenomenological validation of multiphase porous media transport models. Notably, these platform surrogates typically preserve the complexity of reservoir conditions, preventing the elucidation of underlying physical mechanisms that govern bulk phenomena. Here, we introduce a microfluidic flow focusing platform that allows crude oil to be aged against brines of distinct composition in order to evaluate the pore-level effects of chemically-mediated interfacial properties upon snap-off. Snap-off is a fundamental multiphase flow process that has been shown to be a function of aqueous phase chemistry, which in turn establishes the limits of crude oil recovery during enhanced oil recovery operations. Specifically, this platform was used to evaluate the hypothesis that low salinity brines suppress crude oil snap-off, thus enhancing recovery. This hypothesis was validated and conditions that promote the effect were shown to, unexpectedly, develop over a matter of minutes on the pore scale. Microfluidic snap-off experiments were complemented by finite element fluid dynamics modeling, and further validated against a classical instability framework. PMID:27241440

  7. Brine: a computer program to compute brine migration adjacent to a nuclear waste canister in a salt repository

    International Nuclear Information System (INIS)

    This report presents a mathematical model used to predict brine migration toward a nuclear waste canister in a bedded salt repository. The mathematical model is implemented in a computer program called BRINE. The program is written in FORTRAN and executes in the batch mode on a CDC 7600. A description of the program input requirements and output available is included. Samples of input and output are given

  8. Brine migration test for Asse Mine, Federal Republic of Germany: final test plan

    International Nuclear Information System (INIS)

    The United States and the Federal Republic of Germany (FRG) will conduct a brine migration test in the Asse Salt Mine in the FRG as part of the US/FRG Cooperative Radioactive Waste Management Agreement. Two sets of two tests each will be conducted to study both liquid inclusion migration and vapor migration in the two salt types chosen for the experiments: (1) pure salt, for its characteristics similar to the salt that might occur in potential US repositories, and (2) transitional salt, for its similarity to the salt that might occur in potential repositories in Germany

  9. Brine migration test for Asse Mine, Federal Republic of Germany: final test plan

    Energy Technology Data Exchange (ETDEWEB)

    1983-07-01

    The United States and the Federal Republic of Germany (FRG) will conduct a brine migration test in the Asse Salt Mine in the FRG as part of the US/FRG Cooperative Radioactive Waste Management Agreement. Two sets of two tests each will be conducted to study both liquid inclusion migration and vapor migration in the two salt types chosen for the experiments: (1) pure salt, for its characteristics similar to the salt that might occur in potential US repositories, and (2) transitional salt, for its similarity to the salt that might occur in potential repositories in Germany.

  10. Effects of brine migration on waste storage systems. Final report

    International Nuclear Information System (INIS)

    Processes which can lead to mobilization of brine adjacent to spent fuel or nuclear waste canisters and some of the thermomechanical consequences have been investigated. Velocities as high as 4 x 10-7 m s-1 (13 m y-1) are calculated at the salt/canister boundary. As much as 40 liters of pure NaCl brine could accumulate around each canister during a 10-year storage period. Accumulations of bittern brines would probably be less, in the range of 2 to 5 liters. With 0.5% water, NaCl brine accumulation over a 10-year storage cycle around a spent fuel canister producing 0.6 kW of heat is expected to be less than 1 liter for centimeter-size inclusions and less than 0.5 liter for millimeter-size inclusions. For bittern brines, about 25 years would be required to accumulate 0.4 liter. The most serious mechanical consequence of brine migration would be the increased mobility of the waste canister due to pressure solution. In pressure solution enhanced deformation, the existence of a thin film of fluid either between grains or between media (such as between a canister and the salt) provides a pathway by which the salt can be redistributed leading to a marked increase in strain rates in wet rock relative to dry rock. In salt, intergranular water will probably form discontinuous layers rather than films so that they would dominate pressure solution. A mathematical model of pressure solution indicates that pressure solution will not lead to appreciable canister motions except possibly in fine grained rocks (less than 10-4 m). In fine grained salts, details of the contact surface between the canister and the salt bed may lead to large pressure solution motions. A numerical model indicates that heat transfer in the brine layer surrounding a spent fuel canister is not conduction dominated but has a significant convective component

  11. Effects of a brine discharge over soft bottom Polychaeta assemblage

    Energy Technology Data Exchange (ETDEWEB)

    Pilar-Ruso, Yoana del [Dpto. de Ciencias del Mar y Biologia Aplicada, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante (Spain)], E-mail: yoana.delpilar@ua.es; Ossa-Carretero, Jose Antonio de la; Gimenez-Casalduero, Francisca; Sanchez-Lizaso, Jose Luis [Dpto. de Ciencias del Mar y Biologia Aplicada, Universidad de Alicante, Campus de San Vicente del Raspeig, Ap. 99, E-03080, Alicante (Spain)

    2008-11-15

    Desalination is a growing activity that has introduced a new impact, brine discharge, which may affect benthic communities. Although the role of polychaetes as indicators to assess organic pollution is well known, their tolerance to salinity changes has not been examined to such a great extent. The aim of this study was to examine the effect of brine discharge over soft bottom polychaete assemblage along the Alicante coast (Southeast Spain) over a two year period. Changes in the polychaete assemblage was analysed using univariate and multivariate techniques. We compared a transect in front of the discharge with two controls. At each transect we sampled at three depths (4, 10 and 15 m) during winter and summer. We have observed different sensitivity of polychaete families to brine discharges, Ampharetidae being the most sensitive, followed by Nephtyidae and Spionidae. Syllidae and Capitellidae showed some resistance initially, while Paraonidae proved to be a tolerant family. - The Polychaete assemblage is affected by the brine discharge of the Alicante desalination plant and we detect different sensitivity levels in polychaete families to brine impact.

  12. Bioinorganic Chemistry

    OpenAIRE

    Bertini, Ivano; Gray, Harry B.; Lippard, Stephen J.; Valentine, Joan Selverstone

    1994-01-01

    This book covers material that could be included in a one-quarter or one-semester course in bioinorganic chemistry for graduate students and advanced undergraduate students in chemistry or biochemistry. We believe that such a course should provide students with the background required to follow the research literature in the field. The topics were chosen to represent those areas of bioinorganic chemistry that are mature enough for textbook presentation. Although each chapter presents material...

  13. Social Chemistry

    OpenAIRE

    Lichtfouse, Eric; Schwarzbauer, Jan; Robert, Didier

    2012-01-01

    International audience This article is both an essay to propose social chemistry as a new scientific discipline, and a preface of the book Environmental Chemistry for a Sustainable World. Environmental chemistry is a fast emerging discipline aiming at the understanding the fate of pollutants in ecosystems and at designing novel processes that are safe for ecosystems. Past pollution should be cleaned, future pollution should be predicted and avoided (Lichtfouse et al., 2005a). Such advices ...

  14. Computational chemistry

    OpenAIRE

    Truhlar, Donald G.; McKoy, Vincent

    2000-01-01

    Computational chemistry has come of age. With significant strides in computer hardware and software over the last few decades, computational chemistry has achieved full partnership with theory and experiment as a tool for understanding and predicting the behavior of a broad range of chemical, physical, and biological phenomena. The Nobel Prize award to John Pople and Walter Kohn in 1998 highlighted the importance of these advances in computational chemistry. With massively parallel computers ...

  15. Migration chemistry

    International Nuclear Information System (INIS)

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional KD concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  16. The Greening and Characteristic Research of Organic Chemistry Experiment Course for Universities%高校有机化学实验绿色化及特色化探究

    Institute of Scientific and Technical Information of China (English)

    杨芳; 戢得蓉; 吕秋冰

    2015-01-01

    Chasing greening and characteristic construction of organic chemistry experiment course is the development trend of experiment education in university , to cultivate innovative and applied students.With green chemistry idea , in view of characteristics of food science and engineering major in our university , the measures in greening and characteristic construction of organic chemistry experiment course were discussed with aspects of teaching preparation , the arrangement of experiment content and design of experiment process , and a better result in practical teaching and training was achieved.%实现有机化学实验绿色化及特色化,以培养创新型、应用型人才是高校实验教学改革的方向。结合我院食品科学与工程专业的特点,以绿色化学理念为指导,运用多样化的教学手段,围绕有机化学实验的绿色化教学,从教学准备、实验内容的设置、实验流程设计等方面初步探讨了实现有机化学实验绿色化和特色化的改革措施,在实际教学中取得了较好的教学效果。

  17. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  18. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    Energy Technology Data Exchange (ETDEWEB)

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal

  19. Assessing Radium Activity in Shale Gas Produced Brine

    Science.gov (United States)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2015-12-01

    The high volumes and salinity associated with shale gas produced water can make finding suitable storage or disposal options a challenge, especially when deep well brine disposal or recycling for additional well completions is not an option. In such cases, recovery of commodity salts from the high total dissolved solids (TDS) of the brine wastewater may be desirable, yet the elevated concentrations of the naturally occurring radionuclides such as Ra-226 and Ra-228 in produced waters (sometimes substantially greater than the EPA limit of 5 pCi/L) may concentrate during these steps and limit salt recovery options. Therefore, assessing the potential presence of these Ra radionuclides in produced water from shale gas reservoir properties is desirable. In this study, we seek to link U and Th content within a given shale reservoir to the expected Ra content of produced brine by accounting for secular equilibrium within the rock and subsequent release to Ra to native brines. Produced brine from a series of Antrim shale wells and flowback from a single Utica-Collingwood shale well in Michigan were sampled and analyzed via ICP-MS to measure Ra content. Gamma spectroscopy was used to verify the robustness of this new Ra analytical method. Ra concentrations were observed to be up to an order of magnitude higher in the Antrim flowback water samples compared to those collected from the Utica-Collingwood well. The higher Ra content in Antrim produced brines correlates well with higher U content in the Antrim (19 ppm) relative to the Utica-Collingwood (3.5 ppm). We also observed an increase in Ra activity with increasing TDS in the Antrim samples. This Ra-TDS relationship demonstrates the influence of competing divalent cations in controlling Ra mobility in these clay-rich reservoirs. In addition, we will present a survey of geochemical data from other shale gas plays in the U.S. correlating shale U, Th content with produced brine Ra content. A goal of this study is to develop a

  20. Heat gradient induced migration of brine inclusions in rock salt

    International Nuclear Information System (INIS)

    A mathematical model for the brine migration in rock salt around an infinite line heat source is set up. The temperature field around the time dependent heat source is calculated by use of Green functions. Numerical solutions are obtained by the computer PSAMA and results are compared with hand calculations for certain simple cases. By general considerations of the migration field approximate values of the brine inflow, which are independent of the source shape, is obtained and these results are used to estimate the agreement with the experimental results from Project Salt Vault. (author)

  1. Pressure-induced brine migration into an open borehole in a salt repository

    International Nuclear Information System (INIS)

    This report provides some solutions to models that predict the brine accumulation in an open borehole. In this model, brine flow rates are controlled by pressure differences between the salt and the borehole

  2. Good chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    The subject matter in chemistry courses reflects almost nothing of the issues that chemists are interested in. It is important to formulate a set of topics - and a Medical College Admissions Test reflecting them - that would leave chemistry departments no choice but to change their teaching.

  3. Effect of sodium bicarbonate and varying concentrations of sodium chloride in brine on the liquid retention of fish (Pollachius virensL.) muscle

    DEFF Research Database (Denmark)

    Åsli, Magnus; Ofstad, Ragni; Böcker, Ulrike;

    2016-01-01

    brined with a combination of salt (NaCl) and sodium bicarbonate (NaHCO3). RESULTS Water characteristics and microstructure of saithe (Pollachius virens L.) muscle brined in solutions of NaCl and NaHCO3 or NaCl alone were compared using low-field nuclear magnetic resonance (LF-NMR) T2 relaxometry......, microscopy, salt content, liquid retention and colorimetric measurements. Saithe muscle was brined for 92 h in 0, 30, 60, 120 or 240 g kg−1 NaCl or the respective solutions with added 7.5 g kg−1 NaHCO3. NaHCO3 inclusion improved the yield in solutions ranging from 0 to 120 g kg−1 NaCl, with the most...

  4. Guidelines for using HEC polymers for increasing viscosity of solids-free completion and workover brines

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerman, R.F.

    1983-02-01

    Solids-free brines are used increasingly in well completion and workover operations. One technique to minimize downhole losses of expensive, high-density brine is to spot a pill of thickened brine across the thief zone. Hydroxyethylcellulose (HEC) is the polymer used most frequently for this purpose. This report discusses the properties of HEC-thickened brines and presents guidelines for their use for completion and workover fluid-loss control.

  5. Guidelines for using HEC polymers for viscosifying solids free completion and workover brines

    Energy Technology Data Exchange (ETDEWEB)

    Scheuerman, R.F.

    1982-01-01

    Solids free brines are increasingly used in well completion and workover operations. One technique to minimize downhole losses of expensive, high density brine is to spot a pill of viscosified brine across the thief zone. Hydroxyethylcellulose (HEC) is the polymer most frequently used for this purpose. This report discusses the properties of HEC thickened brines and presents guidelines for their use for completion and workover fluid loss control. 2 refs.

  6. First results of an integrated monitoring concept to detect brine migration processes in freshwater aquifers

    Science.gov (United States)

    Möller, M.; Schmidt-Hattenberger, C.; Wagner, F.; Schröder, S.

    2012-04-01

    The reduction of new carbon dioxide emissions is an important contribution to realise climate change mitigation solutions. One possibility consists in the long-term storage of industrial produced greenhouse gas in deep saline aquifers. The most important research focus of the multidisciplinary integrated project BRINE is to ensure the safe storage operation. This research work refers to an area in eastern Brandenburg (Germany). However, the analysis can be applied to regions with comparable geological characteristics. The relevant reservoir horizon is located within a classic anticlinal structure, generated by salt tectonic processes. Due to the local geological site specifics, the CO2 injection could cause a pressure build-up and thus a brine migration in the reservoir layer. For this reason, an adequate monitoring system for the observation of possible brine displacement into upper freshwater aquifers is essential. For both the qualitatively and quantitatively investigation a combination of several geophysical methods is needed. The electrical resistivity tomography (ERT) is a measurement method with a comparatively high spatial resolution on small scales. Therefore it will be generally used for borehole and near subsurface investigations. The presented monitoring concept focusses on three potential pathways. Beside regional fault-zones, also formation defects in the upper aquitards and leakages around the wellbore could promote a saltwater migration. The main objective is to find an optimal combination of several electrode arrays like surface, surface-downhole and cross-borehole configurations to detect time-lapse effects of the resistivity distribution in the subsurface. By means of numerical modelling studies of different salinisation scenarios, we have tested several standard and several adapted electrode arrays. In order to further improve the results, an inversion code based on the measured resistance ratios is used. Parallel to the large-scale modelling

  7. The Effect of adjusting PH on Stretchability and Meltability to White Brined Nabulsi Cheese

    Directory of Open Access Journals (Sweden)

    Ayman S. Mazahreh

    2009-01-01

    Full Text Available Problem statement: Boiled white brined (Nabulsi cheese is the mostly consumed in Jordan; this cheese should show meltability and high stretchability in order to fit in the production of high quality Kunafa and other popular local sweets and pastries.The most outstanding characteristic of Nabulsi cheese is the long keeping ability (more than one year without cooling, since it is preserved in concentrated brine (up to 25%. Approach: This work was based on the hypothesis that it would be possible to imply meltability and stretchability to the cheese by adjusting pH to the original brine that may specifically act on cross linking bonds of casein. A new apparatus for measuring the actual stretchability was designed and constructed; measurements on different cheeses proved its validity and reliability to measurement stretchability up to 80cm. Detailed treatments revealed the success of the proposed assumption in inducing meltability and stretchability to cheese processed and preserved according to the traditional methods. Results: The following results were obtained: It is possible to imply a low but acceptable level of stretchability and meltability through adjustment of the pH in the range of 5.4-5.8 by adding calculated amount of citric acid considering the buffering capacity of the cheese and storing it for few weeks to reach equilibrium. Conclusion: Conformational experiments proved the applicability of the new method on commercial Nabulsi cheese samples. Sensory evaluation revealed the superiority of pH adjusting treatment specifically at pH 5.4 and 5.8 as well as commercial Mashmouleh cheese that has high meltability and stretchability when used in Kunafa making.

  8. Overview of actinide chemistry in the WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Lucchini, Jean - Francois [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Khaing, Hnin [Los Alamos National Laboratory; Swanson, Juliet [Los Alamos National Laboratory

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  9. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea Brine Pool

    KAUST Repository

    Mohamed, Yasmine M.

    2013-11-28

    The Red Sea Atlantis II brine pool is an extreme environment that displays multiple harsh conditions such as high temperature, high salinity and high concentrations of multiple, toxic heavy metals. The survival of microbes in such an environment by utilizing resistant enzymes makes them an excellent source of extremophilic enzymes. We constructed a fosmid metagenomic library using DNA isolated from the deepest and most secluded layer of this pool. We report the isolation and biochemical characterization of an unusual esterase: EstATII. EstATII is thermophilic (optimum temperature, 65 C), halotolerant (maintains its activity in up to 4.5â€...M NaCl) and maintains at least 60% of its activity in the presence of a wide spectrum of heavy metals. The combination of biochemical characteristics of the Red Sea Atlantis II brine pool esterase, i.e., halotolerance, thermophilicity and resistance to heavy metals, makes it a potentially useful biocatalyst.

  10. Treatment of RO brine-towards sustainable water reclamation practice.

    Science.gov (United States)

    Ng, H Y; Lee, L Y; Ong, S L; Tao, G; Viawanath, B; Kekre, K; Lay, W; Seah, H

    2008-01-01

    Treatment and disposal of RO brine is an important part in sustaining the water reclamation practice. RO brine generated from water reclamation contains high concentration of organic and inorganic compounds. Cost-effective technologies for treatment of RO brine are still relatively unexplored. Thus, this study aim to determine a feasible treatment process for removal of both organic and inorganic compounds in RO brine generated from NEWater production. The proposed treatment consists of biological activated carbon (BAC) column followed by capacitive deionization (CDI) process for organic and inorganic removals, respectively. Preliminary bench-scale study demonstrated about 20% TOC removal efficiency was achieved using BAC at 40 mins empty bed contact time (EBCT) while the CDI process was able to remove more than 90% conductivity reducing it from 2.19 mS/cm to only about 164 microS/cm. More than 90% cations and anions in the BAC effluent were removed using CDI process. In addition, TOC and TN removals of 78% and 91%, respectively were also attained through this process. About 90% water recovery was achieved. This process shows the potential of increased water recovery in the reclamation process while volume for disposal can be further minimized. Further studies on the sustainable operation and process optimization are ongoing. PMID:18776632

  11. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    Solar stills put into operation by taking known quantities of sea water of different salinities varying from 27. 75 - 36.27 x 103 during April-May 1990, indicated fresh water yield of 55-68% (av. 64) The volumes of brine as well as those of bitterns...

  12. Solar desalination, brine and fine chemicals - a preliminary report

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Nagarajan, R.

    Solar stills put into operation by taking known quantities of sea water of different salinities varying from 27.75-36.27 x 10 super(3) during April-May 1990, indicated fresh water yield of 55-68% (av. 64). The volumes of brine as well as those...

  13. Brine crude oil interactions at the oil-water interface

    DEFF Research Database (Denmark)

    Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2015-01-01

    The impact of brine salinity and its ionic composition on oil displacement efficiency has been investigated extensively in recent years due to the potential of enhanced oil recovery (EOR). Wettability alterations through relative interactions at the mineral surface have been the basis of proposed...

  14. Durability of concrete materials in high-magnesium brine

    International Nuclear Information System (INIS)

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation

  15. Talking about Brine Shrimps: Three Ways of Analysing Pupil Conversations.

    Science.gov (United States)

    Tunnicliffe, Sue Dale; Reiss, Michael J.

    1999-01-01

    Applies three distinct analyses to recorded and transcribed student conversations (n=240) about brine shrimps. The complementary analytic methods provide information on the content of pupils' conversations in terms of the observations made, the ways in which pupils make sense of their observations, and the ways in which students use conversation…

  16. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    Duijn, C.J. van; Peletier, L.A.; Schotting, R.J.

    1996-01-01

    In this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume changes due

  17. Brine Shrimp and Their Habitat, An Environmental Investigation.

    Science.gov (United States)

    National Wildlife Federation, Washington, DC.

    This environmental unit is one of a series designed for integration within the existing curriculum. The unit is self-contained and students are encouraged to work at their own speed. The philosophy of the unit is based on an experience-oriented process that encourages independent student work. This unit explores the life cycle of brine shrimp and…

  18. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  19. Oil production enhancement through a standardized brine treatment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  20. Investigation of Controlling Factors Impacting Water Quality in Shale Gas Produced Brine

    Science.gov (United States)

    Fan, W.; Hayes, K. F.; Ellis, B. R.

    2014-12-01

    The recent boom in production of natural gas from unconventional reservoirs has generated a substantial increase in the volume of produced brine that must be properly managed to prevent contamination of fresh water resources. Produced brine, which includes both flowback and formation water, is often highly saline and may contain elevated concentrations of naturally occurring radioactive material and other toxic elements. These characteristics present many challenges with regard to designing effective treatment and disposal strategies for shale gas produced brine. We will present results from a series of batch experiments where crushed samples from two shale formations in the Michigan Basin, the Antrim and Utica-Collingwood shales, were brought into contact with synthetic hydraulic fracturing fluids under in situ temperature and pressure conditions. The Antrim has been an active shale gas play for over three decades, while the Utica-Collingwood formation (a grouped reservoir consisting of the Utica shale and Collingwood limestone) is an emerging shale gas play. The goal of this study is to investigate the influence of water-rock interactions in controlling produced water quality. We evaluate toxic element leaching from shale samples in contact with model hydraulic fracturing fluids under system conditions corresponding to reservoir depths up to 1.5 km. Experimental results have begun to elucidate the relative importance of shale mineralogy, system conditions, and chemical additives in driving changes in produced water quality. Initial results indicate that hydraulic fracturing chemical additives have a strong influence on the extent of leaching of toxic elements from the shale. In particular, pH was a key factor in the release of uranium (U) and divalent metals, highlighting the importance of the mineral buffering capacity of the shale. Low pH values persisted in the Antrim and Utica shale experiments and resulted in higher U extraction efficiencies than that

  1. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  2. Introductory Chemistry

    OpenAIRE

    Baron, Mark; Gonzalez-Rodriguez, Jose; Stevens, Gary; Gray, Nathan; Atherton, Thomas; Winn, Joss

    2010-01-01

    Teaching and Learning resources for the 1st Year Introductory Chemistry course (Forensic Science). 30 credits. These are Open Educational Resources (OER), made available for re-use under a Creative Commons license.

  3. Analytical chemistry

    International Nuclear Information System (INIS)

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  4. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  5. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  6. Progress on radiometric dating of Wolfcamp brines using 4He and 40Ar

    International Nuclear Information System (INIS)

    Ground water samples (brines) from deep wells in the Palo Duro Basin, Texas are being analyzed for noble gases in an attempt to obtain radiometric ages for these brines. The brines contain radiogenic 4He and 40Ar produced from the radioactive decay of U, Th, and K. Consideration of hydrochemical data for the brines, various isotopic, chemical, and mineralogical data for the aquifer rocks and noble gas production rates allow estimating the age of the brines to be about 130 million years at two wells. At a third well interaquifer mixing has occurred and the age is presently indeterminate. 9 references, 3 figures, 1 table

  7. Dissolution of CO2 in Brines and Mineral Reactions during Geological Carbon Storage: AN Eor Experiment

    Science.gov (United States)

    Bickle, M. J.; Chapman, H.; Galy, A.; Kampman, N.; Dubacq, B.; Ballentine, C. J.; Zhou, Z.

    2015-12-01

    Dissolution of CO2 in formation brines is likely to be a major process which stabilises stored CO2 on longer time scales and mitigates CO2 migrating through storage complexes. However very little is known about the likely rates of CO2 dissolution as CO2 flows through natural heterogeneous brine filled reservoirs. Here we report the results of sampling fluids over 6 months after a phase of CO2 injection commenced for enhanced oil recovery coupled with injection of isotopically enriched 3He and 129Xe. Modelling of the changes in fluid chemistry has previously been interpreted to indicate significant dissolution of silicate minerals where fluids remained close to saturation with calcite. These calculations, which are based on modal decomposition of changes in cation concentrations, are supported by changes in the isotopic compositions of Sr, Li and Mg. Analysis of Sr-isotopic compositions of samples from outcrops of the Frontier Formation, which forms the reservoir sampled by the EOR experiment, reveals substantial heterogeneity. Silicate mineral compositions have 87Sr/86Sr ratios between 0.709 and 0.719 whereas carbonate cements have values around 0.7076. Calculation of CO2 dissolution based on simplified 2-D flow models shows that fluids likely sample reservoir heterogeneities present on a finer scale with CO2 fingers occupying the most permeable horizons and most water flow in the adjacent slightly less permeable zones. Smaller time scale variations in 87Sr/86Sr ratios are interpreted to reflect variations in flow paths on small length scales driven by invading CO2.

  8. Evaluation and analysis of underground brine resources in the southern coastal area of Laizhou Bay

    Science.gov (United States)

    Tian, M.; Zhu, H. T.; Feng, J.; Zhao, Q. S.

    2016-08-01

    The southern coastal districts of Laizhou Bay are some of the most important areas for underground brine exploitation in Shandong Province. Recently, these areas have been gradually developed by the underground brine mining industry. Such economic interest has led to brine exploitation so that underground brine resources are running out. Based on this phenomenon, this study describes the supply, runoff and draining conditions of the area by collecting and organizing the background information of the studied area. Hydrogeological parameters are then calculated according to pumping tests, and the amount of sustainable resources in the coastal areas of the Southern Bank of Laizhou Bay are then calculated based on the uniform distribution of wells. Under the circumstances of underground brine mining, the exploitation potential of the underground brine is evaluated in accordance with the calculation results of exploitation quantum. Finally, suggestions are provided for the sustainable exploitation of underground brine in the area.

  9. Radiation Chemistry

    Science.gov (United States)

    Wojnárovits, L.

    Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

  10. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    Directory of Open Access Journals (Sweden)

    Rania Siam

    Full Text Available The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The 'polyextremophiles' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA revealed that one sulfur (S-rich Atlantis II and one nitrogen (N-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1, group II was characteristic for the N-rich Discovery sample (DD-1, and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  11. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    KAUST Repository

    Siam, Rania

    2012-08-20

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The \\'polyextremophiles\\' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  12. Geothermal injection treatment: process chemistry, field experiences, and design options

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  13. Characteristics and use of grey literature in scientific journals articles of Algerian researchers: Case study of University of Science and Technology Houari Boumediene (Physics, Chemistry and computer sciences)

    OpenAIRE

    Chalabi, Lydia (CERIST); GreyNet, Grey Literature Network Service

    2013-01-01

    This paper examines grey literature in research articles of Algerian teachers-researchers across the STM(Physics, Chemistry & Computer science) sciences at Algerian University of Science and Technology "USTHB". Each of these disciplines is respectively high ranked according to the report of Algerian general directorate of scientific research and technological development about Top emerged disciplines in Algeria. The purpose of the study is to reports the important and use of electronic resour...

  14. Analysis of anions in geological brines using ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, R.M.

    1985-03-01

    Ion chromatographic procedures for the determination of the anions bromide, sulfate, nitrite, nitrate, phosphate, and iodide in brine samples have been developed and are described. The techniques have been applied to the analysis of natural brines, and geologic evaporites. Sample matrices varied over a range from 15,000 mg/L to 200,000 mg/L total halogens, nearly all of which is chloride. The analyzed anion concentrations ranged from less than 5 mg/L in the cases of nitrite, nitrate, and phosphate, to 20,000 mg/L in the case of sulfate. A technique for suppressing chloride and sulfate ions to facilitate the analysis of lower concentration anions is presented. Analysis times are typically less than 20 minutes for each procedure and the ion chromatographic results compare well with those obtained using more time consuming classical chemical analyses. 10 references, 14 figures.

  15. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...... the spread rate of pure sodium chloride (and thus the environmental impact) compared to neighbouring counties was less than fifty percent per square meter. Successful pre-salting is, of course, dependent on reliable weather forecasts and on staff well trained in the art of interpreting this information....... The improvements gained by the county of Funen were mainly due to the use of technologies (brine spreading with nozzles) giving a more precise spread pattern than the traditional gritting of pre-wetted salt. The spread pattern for every spreader, tested in The County of Funen, has been meassured 3 hours after...

  16. Geochemical evolution of brines in the Salar of Uyuni, Bolivia.

    Science.gov (United States)

    Rettig, S.L.; Jones, B.F.; Risacher, F.

    1980-01-01

    Recent analyses of brines from the Salars of Uyuni and Coipasa have been compared with published data for Lakes Titicaca and Poopo to evaluate solute compositional trends in these remnants of two large Pleistocene lakes once connected by overflow from the N to the S of the Bolivian Altiplano. From Titicaca to Poopo the water shows an increase in Cl and N somewhat greater than the total solutes. Ca and SO4 increase to a lesser extent than total dissolved solids, and carbonate species are relatively constant. Between Poopo and Coipasa proportions of Ca, SO4 and CO3 continue to decrease. At Coipasa and Uyuni, the great salars frequently evaporate to halite saturation. Halite crystallization is accompanied by an increased K, Mg and SO4 in residual brines. - from Authors

  17. Linear polarization measurements at high temperatures in hypersaline geothermal brines

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, S.D.; Needham, P.B. Jr.

    1978-01-01

    The Bureau of Mines conducted a series of in situ linear polarization measurements in high-temperature, high-pressure hypersaline geothermal brines at the Bureau of Mines Geothermal Test Facility in the Imperial Valley of California. The measurements represented an evaluation of the linear polarization technique for obtaining instantaneous corrosion rates of materials of construction in flowing hypersaline hydrothermal fluids that rapidly form scales on exposed surfaces. A special method was devised for use with the linear polarization technique that resulted in obtaining corrosion rates for 1020 carbon steel, 316 and 430 stainless steel, titanium, various nickel-based alloys, and aluminum 6061 under strong scale-forming conditions. The measurements also provided information on scale-deposition rates in various geothermal environments. Exploratory in situ potentiostatic polarization measurements were made in the flowing brines to qualitatively determine scale-deposition effects on the electrochemical measurements.

  18. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  19. Quantum chemistry

    CERN Document Server

    Lowe, John P

    2006-01-01

    Lowe's new edition assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry. It can serve as a primary text in quantum chemistry courses, and enables students and researchers to comprehend the current literature. This third edition has been thoroughly updated and includes numerous new exercises to facilitate self-study and solutions to selected exercises.* Assumes little initial mathematical or physical sophistication, developing insights and abilities in the context of actual problems* Provides thorough treatment

  20. Modelling of lactic fermentation of carrot slices in salted brines

    OpenAIRE

    Nabais, R.M.; Malcata, F. X.

    1997-01-01

    Increases in suspended biomass and variation in the concentrations of reducing sugars, salt, and lactic acid in brine containing sliced carrots were followed for a period of several days. A tentative unstructured, unsegregated model for the metabolism of suspended Lactobacillus plan tarum coupled with Fick's second law of diffusion for the transport of solutes within the carrot material was postulated. This general model was fitted by non-linear multiresponse regression analysis to an extensi...

  1. Long term corrosion of glasses in salt brines

    OpenAIRE

    Roggendorf, Hans; Schmidt, Helmut K.

    1989-01-01

    Borosilicate glasses are supposed to be a suitable matrix for the fixation of calcined radioactive wastes. For the safety assessment of the disposal of these glasses in geological formations like carnallite or rock salt, their chemical durability in saturated salt brines has been investigated. Temperatures up to 200° C, pressures up to 130 bar, and corrosion times up to 5 years were applied. Special attention was given to the long term corrosion which is mainly characterized by the saturation...

  2. Inhibition of Weld Corrosion in Flowing Brines Containing Carbon Dioxide

    OpenAIRE

    Alawadhi, Khaled

    2009-01-01

    The aim of this research was to study the effectiveness of a typical oilfield corrosion inhibitor, which is considered to be a green inhibitor (non toxic to the environment) in controlling internal corrosion of welded X65 pipeline steel in brines saturated with carbon dioxide at one bar pressure, under dynamic flowing conditions, over a range of temperatures. Several experimental configurations were used ranging from a simple flat plate design to a novel rotating cylinder electrode, to all...

  3. Characterization of a soil contaminated by oilfield brine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mutairi, K.; Harris, T. [Univ. of Tulsa, OH (United States)

    1995-12-01

    Brine contamination of soil is a common environmental problem associated with the onshore production of oil and gas. A site of extensive contamination in Oklahoma has been characterized using conductimetry, direct potentiometry (pH- and chloride-selective electrodes), and atomic absorption spectrophotometry (for Na{sup +} and Ca{sup 2+}) to determine the extent of the contamination and the efficacy of various remediation technologies.

  4. From evaporated seawater to uranium-mineralizing brines: Isotopic and trace element study of quartz-dolomite veins in the Athabasca system

    Science.gov (United States)

    Richard, Antonin; Boulvais, Philippe; Mercadier, Julien; Boiron, Marie-Christine; Cathelineau, Michel; Cuney, Michel; France-Lanord, Christian

    2013-07-01

    Stable isotope (O, H, C), radiogenic isotope (Sr, Nd) and trace element analyses have been applied to quartz-dolomite veins and their uranium(U)-bearing fluid inclusions associated with Proterozoic unconformity-related UO2 (uraninite) ores in the Athabasca Basin (Canada) in order to trace the evolution of pristine evaporated seawater towards U-mineralizing brines during their migration through sediments and basement rocks. Fluid inclusion data show that quartz and dolomite have precipitated from brines of comparable chemistry (excepted for relatively small amounts of CO2 found in dolomite-hosted fluid inclusions). However, δ18O values of quartz veins (δ18O = 11‰ to 18‰) and dolomite veins (δ18O = 13‰ to 24‰) clearly indicate isotopic disequilibrium between quartz and dolomite. Hence, it is inferred that this isotopic disequilibrium primarily reflects a decrease in temperature between the quartz stage (˜180 °C) and the dolomite stage (˜120 °C). The δ13C values of CO2 dissolved in dolomite-hosted fluid inclusions (δ13C = -30‰ to -4‰) and the δ13C values of dolomite (δ13C = -23.5‰ to -3.5‰) indicate that the CO2 dissolved in the mineralizing brines originated from brine-graphite interactions in the basement. The resulting slight increase in the fluid partial pressure of CO2 (pCO2) may have triggered dolomite precipitation instead of quartz. δ18O values of quartz veins and previously published δ18O values of the main alteration minerals around the U-ores (illite, chlorite and tourmaline) show that quartz and alteration minerals were isotopically equilibrated with the same fluid at ˜180 °C. The REE concentrations in dolomite produce PAAS-normalized patterns that show some similarities with that of UO2 and are clearly distinct from that of the other main REE-bearing minerals in these environments (monazite, zircon and aluminum phosphate-sulfate (APS) minerals). The radiogenic isotope compositions of dolomite (87Sr/86Sri = 0.7053 to 0

  5. Survival of foodborne pathogens in natural cracked olive brines.

    Science.gov (United States)

    Medina, Eduardo; Romero-Gil, Verónica; Garrido-Fernández, Antonio; Arroyo-López, Francisco Noé

    2016-10-01

    This work reports the survival (challenge tests) of foodborne pathogen species (Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica) in Aloreña de Málaga table olive brines. The inhibitions were fit using a log-linear model with tail implemented in GInaFIT excel software. The olive brine had a considerable inhibitory effect on the pathogens. The residual (final) populations (Fp) after 24 h was below detection limit (monocytogenes and S. enterica, respectively. Brine dilutions increased Fp and 4Dr, while decreased kmax. A cluster analysis showed that E. coli had an overall quite different behaviour being the most resistant species, but the others bacteria behaved similarly, especially S. aureus and S. enterica. Partial Least Squares regression showed that the most influential phenols on microbial survival were EDA (dialdehydic form of decarboxymethyl elenolic acid), HyEDA (EDA linked to hydroxytyrosol), hydroxytyrosol 4-glucoside, tyrosol, and oleoside 11-methyl ester. Results confirm the adverse habitats of table olives for foodborne pathogenic microorganisms. PMID:27375250

  6. Brine migration test - Asse salt mine, Federal Republic of Germany

    International Nuclear Information System (INIS)

    This document is the final report on the Cooperative German-American 'Brine Migration Tests' that were performed at the Asse Salt Mine in the Federal Republic of Germany (FRG), the Office of Nuclear Waste Isolation (ONWI), Columbus, Ohio, and the Institut fuer Tieflagerung (IfT), Braunschweig, of the Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF). Final test and equipment design as well as manufacturing and installation was carried out by Westinghouse Electric Corporation. The tests were designed to simulate a nuclear waste repository to measure the effects of heat and gamma radiation on brine migration, salt decrepitation, disassociation of brine, and gases collected. The thermal mechanical behavior of salt, such as room closure, stresses and changes of the properties of salt are measured and compared with predicted behavior. The performance of an array of candidate waste package materials, test equipment and procedures under repository conditions will be evaluated with a view towards future in-depth testing of potential repository sites. (orig./RB)

  7. Brine shrimp cytotoxic activities of Hippophae rhamnoides Linn leaves extracts

    Directory of Open Access Journals (Sweden)

    Javid Ali

    2015-04-01

    Full Text Available Objective: To evaluate brine shrimp lethality assay of solvent extracts (aqueous, methanol, ethanol, acetone, ethyl acetate, chloroform and n-hexane of Hippophae rhamnoides (H. rhamnoides leaves. Methods: Brine shrimp cytotoxicity assay was used to assess the cytotoxic potential of H. rhamnoides leaves extracts. Three vials for concentration of each extract were made and 10 shrimps per vial (30 shrimps per dilution were transferred to specific concentration of each extract. Results: The mortality of aqueous extract was 46.7%, methanol extract was 46.7%, ethanolic extract was 50.0%, ethyl acetate was 26.7%, acetone extract was 33.3%, chloroform extract was 40.0% and n-hexane extract was 33.3%. The lowest LD50 was found in methanol extracts (1199.97 µg/mL. Brine shrimp cytotoxicity of tested extracts of H. rhamnoides showed that mortality rate was concentration dependent. Conclusions: It is concluded that bioactive components are present in all leaves extracts of H. rhamnoides, which could be accounted for its pharmacological effects. Thus, the results support the uses of this plant species in traditional medicine.

  8. Brine shrimp cytotoxic activities of Hippophae rhamnoides Linn leaves extracts

    Institute of Scientific and Technical Information of China (English)

    JavidAli; BashirAhmad

    2015-01-01

    Objective: To evaluate brine shrimp lethality assay of solvent extracts (aqueous, methanol, ethanol, acetone, ethyl acetate, chloroform and n-hexane) of Hippophae rhamnoides (H. rhamnoides) leaves. Methods: Brine shrimp cytotoxicity assay was used to assess the cytotoxic potential of H. rhamnoides leaves extracts. Three vials for concentration of each extract were made and 10 shrimps per vial (30 shrimps per dilution) were transferred to specific concentration of each extract. Results: The mortality of aqueous extract was 46.7%, methanol extract was 46.7%, ethanolic extract was 50.0%, ethyl acetate was 26.7%, acetone extract was 33.3%, chloroform extract was 40.0% and n-hexane extract was 33.3%. The lowest LD50 was found in methanol extracts (1199.97 µg/mL). Brine shrimp cytotoxicity of tested extracts of H. rhamnoides showed that mortality rate was concentration dependent. Conclusions: It is concluded that bioactive components are present in all leaves extracts of H. rhamnoides, which could be accounted for its pharmacological effects. Thus, the results support the uses of this plant species in traditional medicine.

  9. Larval brine shrimp (Nauplii): a potentially useful model to study cystic fibrosis.

    Science.gov (United States)

    Bargman, G J

    1976-01-01

    One of the most consistent characteristics of cystic fibrosis is the abnormal handling of electrolytes by exocrine glands. The present study has examined the possibility that diminished respiratory energy formation is a primary biochemical error responsible for this abnormality. Using oxygen consumption of intact larval brine shrimp, quantitative differences have been observed from reaction of mixed mouth saliva between CF heterozygotes and CF homozygotes. In addition, information demonstrating a correlation between a biochemical abnormality and disease severity was observed. The differences observed in inhibition by saliva from both CF homozygotes and obligate heterozygotes may occur as the result of 1) interference with electron transfer from organic fuel molecules to molecular oxygen or 2) interference with the mechanism responsible for generating the biochemical reducing power necessary for multiple biosynthetic reactions. PMID:996791

  10. Fiber-optic-based pH measurement in a geothermal brine

    Science.gov (United States)

    Farquharson, Stuart; Swaim, Paul D.; Christenson, C. P.; McCloud, Mary; Freiser, Henry

    1992-03-01

    The measurement of pH in industrial chemical process is well established. Since pH can affect reaction rates, system corrosion, and/or water quality, a number of on-line electrodes have been commercialized. However, these devices necessarily contain a porous membrane (usually glass) to allow the flow of hydrogen ions which provides the electrical potential for measurement. In a recent application to a geothermal brine solution, we were unable to eliminate electrode fouling, even with considerable sample conditioning. As an alternative, we designed and constructed an in-line pH instrument based on the spectroscopic absorption of acid-base indicator dyes. The instrument introduced bromocresol green into the stream via a static mixer and measured the ratio of the characteristic acidic and basic absorption bands using an in-line fiber optic cell. Details of the design and its application are presented.

  11. Reinventing Chemistry

    OpenAIRE

    Whitesides, George McClelland

    2015-01-01

    Chemistry is in a period of change, from an era focused on molecules and reactions, to one in which manipulations of systems of molecules and reactions will be essential parts of controlling larger systems. This Essay traces paths from the past to possible futures.

  12. Philosophy of Mathematical Chemistry: A Personal Perspective

    Directory of Open Access Journals (Sweden)

    Subhash C. Basak

    2013-07-01

    Full Text Available This article discusses the nature of mathematical chemistry, discrete mathematical chemistry in particular. Molecules and macromolecules can be represented by model objects using methods of discrete mathematics, e.g., graphs and matrices. Mathematical formalisms are further applied on the model objects to distill various quantitative characteristics. The end product of such an exercise can be a better understanding of chemistry, the development of quantitative scales for qualitative notions of chemistry, or an illumination of the structural basis of chemical and biological properties. The aforementioned aspects of mathematical chemistry are discussed based on my own practitioner’s perspective.

  13. Parameterization of and Brine Storage in MOR Hydrothermal Systems

    Science.gov (United States)

    Hoover, J.; Lowell, R. P.; Cummings, K. B.

    2009-12-01

    Single-pass parameterized models of high-temperature hydrothermal systems at oceanic spreading centers use observational constraints such as vent temperature, heat output, vent field area, and the area of heat extraction from the sub-axial magma chamber to deduce fundamental hydrothermal parameters such as total mass flux Q, bulk permeability k, and the thickness of the conductive boundary layer at the base of the system, δ. Of the more than 300 known systems, constraining data are available for less than 10%. Here we use the single pass model to estimate Q, k, and δ for all the seafloor hydrothermal systems for which the constraining data are available. Mean values of Q, k, and δ are 170 kg/s, 5.0x10-13 m2, and 20 m, respectively; which is similar to results obtained from the generic model. There is no apparent correlation with spreading rate. Using observed vent field lifetimes, the rate of magma replenishment can also be calculated. Essentially all high-temperature hydrothermal systems at oceanic spreading centers undergo phase separation, yielding a low chlorinity vapor and a high salinity brine. Some systems such as the Main Endeavour Field on the Juan de Fuca Ridge and the 9°50’N sites on the East Pacific Rise vent low chlorinity vapor for many years, while the high density brine remains sequestered beneath the seafloor. In an attempt to further understand the brine storage at the EPR, we used the mass flux Q determined above, time series of vent salinity and temperature, and the depth of the magma chamber to determine the rate of brine production at depth. We found thicknesses ranging from 0.32 meters to ~57 meters over a 1 km2 area from 1994-2002. These calculations suggest that brine maybe being stored within the conductive boundary layer without a need for lateral transport or removal by other means. We plan to use the numerical code FISHES to further test this idea.

  14. Pressurized brines in continental Antarctica as a possible analogue of Mars

    Science.gov (United States)

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-09-01

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake south of 70°S in an ice-free area of Victoria Land, Antarctica. For the first time, we also imaged, by means of ground penetrating radar data, the existence of a pingo-like-feature (PLF) formed by the extrusion of brines, which has also been confirmed by borehole evidence. Those brines are fed by an underground talik external to the lake basin, enhancing the possibility of unexploited ecosystems that could find an analogue in Martian environments.

  15. Microbial changes and growth of Listeria monocytogenes during chilled storage of brined shrimp ( Pandalus borealis )

    DEFF Research Database (Denmark)

    Mejlholm, Ole; Kjeldgaard, J.; Modberg, A.;

    2008-01-01

    Thirteen storage trials and ten challenge tests were carried out to examine microbial changes, spoilage and the potential growth of Listeria monocytogenes in brined shrimp (Pandalus borealis). Shrimp in brine as well as brined and drained shrimp in modified atmosphere packaging (MAP) were produced...... and lactic acids were studied. Furthermore, the effect of adding diacetate to brined shrimp was evaluated. A single batch of cooked and peeled shrimp was used to study both industrially and manually processed brined shrimp with respect to the effect of process hygiene on microbial changes and the shelf life...... of products. Concentrations of microorganisms on newly produced brined shrimp from an industrial scale processing line were 1.0-2.3 log (CFU g(-1)) higher than comparable concentrations in manually processed samples. This resulted in a substantially shorter shelf life and a more diverse spoilage microflora...

  16. Survival of Listeria monocytogenes, Listeria innocua, and Lactic acid bacteria species in chill brine

    OpenAIRE

    Meadows, Bridget Archibald

    2004-01-01

    SURVIVAL OF LISTERIA MONOCYTOGENES, LISTERIA INNOCUA, AND LACTIC ACID BACTERIA SPECIES IN CHILL BRINES Bridget Archibald Meadows (ABSTRACT) Listeria monocytogenes is the major pathogen in ready-to-eat meat products such as deli meats and frankfurters. Contamination can occur via the salt brines that are used to cool thermally processed meats. Both L. monocytogenes and lactic acid bacteria can grow and thrive under these brine conditions, and may become competitive with each ot...

  17. Potentials of converting microalgae into brine shrimp Artemia

    OpenAIRE

    Sorgeloos, P

    1985-01-01

    High densities of brine shrimp Artemia can be cultured in flow-through systems using the effluent of microalgae cultures as a combined source of culture medium and food. It has been proven at the "St. Croix Artificial Upwelling Mariculture Project" that in comparison with the fast growing clam Tapes japonica, brine shrimp assure a much more efficient conversion of plant into animal biomass. It appears from the given examples that microalgae conversion into brine shrimp Artemia offers efficien...

  18. The Chemical Core of Chemistry I: A Conceptual Approach

    OpenAIRE

    Joachim Schummer

    1998-01-01

    Given the rich diversity of research fields usually ascribed to chemistry in a broad sense, the present paper tries to dig our characteristic parts of chemistry that can be conceptually distinguished from interdisciplinary, applied, and specialized subfields of chemistry, and that may be called chemistry in a very narrow sense, or 'the chemical core of chemistry'. Unlike historical, ontological, and 'anti-reductive' approaches, I use a conceptual approach together with some methodological imp...

  19. Modeling the interaction of mine brines with chloride minerals of potassium-magnesium deposits

    Science.gov (United States)

    Fetisov, V. V.

    2016-03-01

    The article is devoted to study of dynamics of saturation degree of suprasalt brines with respect to major chloride minerals of salt strata in the initial phase of an accident related to discontinuity of waterproof stratum in the mine of the Verkhnekamskoe salt deposit (Berezniki-3 mine, 1986). Physicochemical modeling has showed that the brines discharged into mine are in equilibrium with halite during all period of observation. At the same time, their degree of saturation with respect to sylvite and carnallite regularly decreases with the increase in inflow of the suprasalt Cl-Na brines. The initial stage of suprasalt brine penetration into mine is characterized by an increase in the saturation degree with respect to the considered chloride minerals, which is showed on the chart presented in the article. However, there are brines oversaturated with respect to halite, which occurs over a brief period. In contrast to the mine brines of different genesis being in equilibrium or close to equilibrium with sylvite, saturation index (SI) for this mineral decreases in the suprasalt brine. This allows one to recommend the use of this parameter in the study of the mine brines to timely detect suprasalt brines entering the mine.

  20. Strontium isotope evidence on the history of oilfield brines, Mediterranean Coastal Plain, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Starinsky, A.; Bielski, M.; Lazar, B. (Hebrew Univ., Jerusalem (Israel). Dept. of Geology); Steinitz, G.; Raab, M. (Geological Survey of Israel, Jerusalem)

    1983-04-01

    The isotopic composition of Sr in oil field brines from the Mediterranean Coastal Plain was determined in 18 drillholes. The brines are characterized by salinities ranging from 35 to 93 g/l (TDS), Sr from 28 to 350 mg/l, Sr/Ca molar ratios from 0.011 to 0.053 and /sup 87/Sr//sup 86/Sr ratios from 0.7075 to 0.7090. E and A = 0.7081 +- 0.0004 (2sigma). The brines are classified into two groups: (a) Mavqi'im group - brines with relatively high /sup 87/Sr//sup 86/Sr ratios, sampled from clastics, dolomites and anhydrites of Upper Miocene age. (b) Heletz group - brines with relatively low /sup 87/Sr//sup 86/Sr ratios, sampled from sandstones and dolomites of Lower Cretaceous age. Equations were derived to show the relations between /sup 87/Sr//sup 86/Sr ratio of the brines and the processes through which they evolved. It is suggested that both groups of brines originated from Mediterranean evaporated seawater during the Messinian desiccation. The strontium isotope composition of the seawater is reflected in that of both groups of brines, the Mavqi'im group containing the original /sup 87/Sr//sup 86/Sr ratio. The Heletz group evolved later on, through exchange reactions of those primary brines with a carbonate sequence of Cretaceous age and consequently new /sup 87/Sr//sup 86/Sr ratios could have been developed.

  1. Atlantis II Deep geothermal brine system. Hydrographic situation in 1977 and changes since 1965

    Science.gov (United States)

    Hartmann, M.

    1980-02-01

    The geothermal brine system of the Atlantis II Deep in the Red Sea was reinvestigated hydrographically and chemically in November 1977. A comparison with results from earlier investigations confirms an increase of the hot brine volume, as suggested by the 1972 measurements ( SCHOELL, Bundesanstalt für Bodenforschung, Hannover, 1063 pp. 1974). The rate of increase is evidently parallel to the rate of temperature increase. The salinity of the lower brine was nearly constant during this period. The nearby Discovery Deep brine is evidently unaffected by the changes in the Atlantis II Deep as its temperature was constant within ±0.1°C during this time.

  2. Pressure-induced brine migration in consolidated salt in a repository

    International Nuclear Information System (INIS)

    This report describes a mathematical model for brine migration through intact salt near a radioactive waste package emplaced in salt. Solutions indicate limited movement following ten years emplacement

  3. Organometallic chemistry

    OpenAIRE

    Bashkin, James K.; M.L.H. Green; Dr. M. L. H. Green

    1982-01-01

    Transition metal organometallic chemistry is a rapidly expanding field, which has an important relationship to industrial problems of petrochemical catalysis. This thesis describes studies of fundamental organometallic reaction processes, such as C-H and C-C bond formation and cleavage, and investigations of the structure and bonding of organometallic compounds. A number of techniques were used to pursue these studies, including synthesis, X-ray crystallography, and semi-em...

  4. Disk Chemistry*

    OpenAIRE

    Thi Wing-Fai

    2015-01-01

    The chemical species in protoplanetary disks react with each other. The chemical species control part of the thermal balance in those disks. How the chemistry proceeds in the varied conditions encountered in disks relies on detailed microscopic understanding of the reactions through experiments or theoretical studies. This chapter strives to summarize and explain in simple terms the different types of chemical reactions that can lead to complex species. The first part of the chapter deals wit...

  5. Interstellar chemistry

    OpenAIRE

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species o...

  6. Large eddy simulation of spray and combustion characteristics with realistic chemistry and high-order numerical scheme under diesel engine-like conditions

    International Nuclear Information System (INIS)

    Highlights: • MUSCL differencing scheme in LES method is used to investigate liquid fuel spray and combustion process. • Using MUSCL can accurately capture the gas phase velocity distribution and liquid spray features. • Detailed chemistry mechanism with a parallel algorithm was used to calculate combustion process. • Increasing oxygen concentration can decrease ignition delay time and flame LOL. - Abstract: The accuracy of large eddy simulation (LES) for turbulent combustion depends on suitably implemented numerical schemes and chemical mechanisms. In the original KIVA3V code, finite difference schemes such as QSOU (Quasi-second-order upwind) and PDC (Partial Donor Cell Differencing) cannot achieve good results or even computational stability when using coarse grids due to large numerical diffusion. In this paper, the MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) differencing scheme is implemented into KIVA3V-LES code to calculate the convective term. In the meantime, Lu’s n-heptane reduced 58-species mechanisms (Lu, 2011) is used to calculate chemistry with a parallel algorithm. Finally, improved models for spray injection are also employed. With these improvements, the KIVA3V-LES code is renamed as KIVALES-CP (Chemistry with Parallel algorithm) in this study. The resulting code was used to study the gas–liquid two phase jet and combustion under various diesel engine-like conditions in a constant volume vessel. The results show that using the MUSCL scheme can accurately capture the spray shape and fuel vapor penetration using even a coarse grid, in comparison with the Sandia experimental data. Similarly good results are obtained for three single-component fuels, i-Octane (C8H18), n-Dodecanese (C12H26), and n-Hexadecane (C16H34) with very different physical properties. Meanwhile the improved methodology is able to accurately predict ignition delay and flame lift-off length (LOL) under different oxygen concentrations from 10% to 21

  7. Computational chemistry

    Science.gov (United States)

    Arnold, J. O.

    1987-01-01

    With the advent of supercomputers, modern computational chemistry algorithms and codes, a powerful tool was created to help fill NASA's continuing need for information on the properties of matter in hostile or unusual environments. Computational resources provided under the National Aerodynamics Simulator (NAS) program were a cornerstone for recent advancements in this field. Properties of gases, materials, and their interactions can be determined from solutions of the governing equations. In the case of gases, for example, radiative transition probabilites per particle, bond-dissociation energies, and rates of simple chemical reactions can be determined computationally as reliably as from experiment. The data are proving to be quite valuable in providing inputs to real-gas flow simulation codes used to compute aerothermodynamic loads on NASA's aeroassist orbital transfer vehicles and a host of problems related to the National Aerospace Plane Program. Although more approximate, similar solutions can be obtained for ensembles of atoms simulating small particles of materials with and without the presence of gases. Computational chemistry has application in studying catalysis, properties of polymers, all of interest to various NASA missions, including those previously mentioned. In addition to discussing these applications of computational chemistry within NASA, the governing equations and the need for supercomputers for their solution is outlined.

  8. Structural Characteristics and Reactivity Relationships of Nitroaromatic and Nitramine Explosives – A Review of Our Computational Chemistry and Spectroscopic Research

    Directory of Open Access Journals (Sweden)

    Patricia Honea

    2007-12-01

    Full Text Available Although much has been discovered, discussed and written as to problems ofcontamination by various military unique compounds, particularly by the nitrogen basedenergetics (NOCs, remaining problems dictate further evaluation of actual and potentialrisk to the environment by these energetics and their derivatives and metabolites throughdetermination of their environmental impact—transport, fate and toxicity. This workcomprises an effort to understand structural relationships and degradation mechanisms ofcurrent and emerging explosives, including nitroaromatic; cyclic and cage cyclic nitramine;and a nitrocubane. This review of our computational chemistry and spectroscopic researchdescribes and compares competitive degradation mechanisms by free radical oxidative,reductive and alkali hydrolysis, relating them, when possible, to environmental risk.

  9. Brine migration resulting from CO2 injection into saline aquifers – An approach to risk estimation including various levels of uncertainty

    DEFF Research Database (Denmark)

    Walter, Lena; Binning, Philip John; Oladyshkin, Sergey;

    2012-01-01

    resulting from displaced brine. Quantifying risk on the basis of numerical simulations requires consideration of different kinds of uncertainties and this study considers both, scenario uncertainty and statistical uncertainty. Addressing scenario uncertainty involves expert opinion on relevant geological...... features such as caprock properties, faults, and distinct geological layers. This is considered in this work by 6 different scenarios having different characteristic geological features. On the other hand, Monte Carlo methods are a classical approach to address statistical uncertainty. This is not feasible...

  10. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Mormile, Melanie R.; Biesen, Michelle A.; Gutierrez, M. Carmen; Ventosa, Antonio; Pavlovich, Justin B.; Onstott, T C.; Fredrickson, Jim K.

    2003-11-01

    Halite crystals were selected from a 186m subsurface core taken from the Badwater salt pan, Death Valley, California to ascertain if halophilic Archaea and their associated 16S rDNA can survive over several tens of thousands of years. Using a combined microscope microdrill/micropipette system, fluids from brine inclusions were aseptically extracted from primary, hopper texture, halite crystals from 8 and 85 metres below the surface (mbls). U-Th disequilibrium dating indicates that these halite layers were deposited at 9600 and 97000 years before present (ybp) respectively.

  11. Transition and separation process in brine channels formation

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Alessia, E-mail: alessia.berti@unibs.it [Facoltà di Ingegneria, Università e-Campus, Via Isimbardi 10, 22060 Novedrate, CO (Italy); Bochicchio, Ivana, E-mail: ibochicchio@unisa.it [Dipartimento di Matematica, Universitá degli Studi di Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA (Italy); Fabrizio, Mauro, E-mail: mauro.fabrizio@unibo.it [Dipartimento di Matematica, Università di Bologna, Piazza di Porta S. Donato, 40126 Bologna (Italy)

    2016-02-15

    In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.

  12. Characterization of dissolved organic material in the interstitial brine of Lake Vida, Antarctica

    Science.gov (United States)

    Cawley, Kaelin M.; Murray, Alison E.; Doran, Peter T.; Kenig, Fabien; Stubbins, Aron; Chen, Hongmei; Hatcher, Patrick G.; McKnight, Diane M.

    2016-06-01

    Lake Vida (LV) is located in the McMurdo Dry Valleys (Victoria Valley, East Antarctica) and has no inflows, outflows, or connectivity to the atmosphere due to a thick (16 m), turbid ice surface and cold (salty, dilute low molecular weight fraction. This analytical path resulted in three, low salt sub-fractions and allowed comparison to other Antarctic lake DOM samples isolated using similar procedures. Compared to other Antarctic lakes, a lower portion of the DOC was retained by XAD-8 (∼10% vs. 16-24%) resin, while the portions retained by XAD-4 (∼8%) resin and the 1 kDa ultrafiltration membrane (∼50%) were similar. The 14C radiocarbon ages of the XAD-8 (mean 3940 ybp), XAD-4 (mean 4048 ybp) and HMW (mean 3270 ybp) fractions are all older than the apparent age of ice-cover formation (2800 ybp). Ultrahigh resolution mass spectrometry showed that compounds with two and three nitrogen atoms in the molecular formulas were common in both the LV-XAD8 and LV-XAD4 fractions, consistent with microbial production and processing. The long-term oxidation of LVBr DOM by abiotic oxidants including perchlorate and chlorate may explain the low portion in the XAD8 fraction and the lack of aromatic carbon, as measured by 13C NMR spectroscopy, found for all but the most hydrophobic fraction, LV-XAD8. Overall, the chemical characteristics of Lake Vida brine DOM suggest that legacy DOM sealed and concentrated within the brine has been altered due to a combination of both biological and abiotic chemical reactions.

  13. Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface

    Science.gov (United States)

    Burt, D. M.; Knauth, L. P.

    2003-01-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  14. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  15. Surface chemistry

    CERN Document Server

    Desai, KR

    2008-01-01

    The surface Chemistry of a material as a whole is crucially dependent upon the Nature and type of surfaces exposed on crystallites. It is therefore vitally important to independently Study different, well - defined surfaces through surface analytical techniques. In addition to composition and structure of surface, the subject also provides information on dynamic light scattering, micro emulsions, colloid Stability control and nanostructures. The present book endeavour to bring before the reader that the understanding and exploitation of Solid state phenomena depended largely on the ability to

  16. BELL PEPPER CULTIVATION WITH BRINE FROM BRACKISH WATER DESALINATION

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO DE MOURA ARRUDA

    2011-01-01

    Full Text Available In desalination process, besides the potable water, highly salty and pollutant water (brine is generated, which can be used for producing crops since it is carefully monitored. In order to test this hypothesis, bell pepper plants, cv. 'Margarita', were grown in coconut fiber substrate under greenhouse and were irrigated with nutrient solutions prepared with tap water, brine from desalination plant, and its dilution with tap water at 75, 50 and 25%, giving a range of electrical conductivities of the nutrient solution (ECs of 2.6, 3.1, 6.6, 10.0 and 12.2 dS m-1 after the dilutions and fertilizers addition. Completely randomized blocks design was used with 5 treatments (salinity levels of the nutrient solutions and six replications. Leaf area, number of marketable fruit, total and marketable yield were reduced with ECs increase. The marketable yield of bell pepper 'Margarita' reduced 6.3% for each unitary increase of ECs above 2.6 dS m-1 (threshold salinity and the results suggest that in hydroponic system, the reduction of marketable yield with increasing ECs is promoted by reduction of the number of fruits per plant instead of a reduction of fruit mean weight.

  17. Analysis of radiolabelled thiocyanate tracer in oil field brines

    International Nuclear Information System (INIS)

    Thiocyanate (SCN-) labelled with 14C or 35S is applicable for the tracing of the water flow in water-driven oil production. This work describes two improved methods for increasing the concentration of S14CN- with sample sizes up to 1000 ml of sampled brine. The radioactivity detection is carried out by low-background liquid scintillation counting using standard-size counting vials of 20 ml. The first method is based on solvent extraction: two extraction/strip steps reduce the volume by the required factor of 100 down to 10 ml. The extraction agent is 0.5M tri-isooctylamine (TiOA) in Solvesso-150 and the stripping agent is 5M NH3. A chemical yield of 70-75%, a somewhat unfavourable quenching factor and a moderate reproducibility lead to a detection limit LD of 0.04 Bq/1. The second method is based on anion exchange. 1000 ml tracer-containing brine may be loaded onto 6.1 ml of the anion-exchange resin AG1-x8 before significant breakthrough of the tracer. More than 98.4% is absorbed. By elution with 2.8M sodiumperchlorate, more than 99.5% of the absorbed tracer is concentrated in a sharp elution peak of 10 ml. With a total chemical yield of 98%, a lower quenching factor and higher reproducibility than for the solvent extraction method, an LD-value of 0.005 Bq/1 is obtained. (orig.)

  18. Selection of a Brine Processor Technology for NASA Manned Missions

    Science.gov (United States)

    Carter, Donald L.; Gleich, Andrew F.

    2016-01-01

    The current ISS Water Recovery System (WRS) reclaims water from crew urine, humidity condensate, and Sabatier product water. Urine is initially processed by the Urine Processor Assembly (UPA) which recovers 75% of the urine as distillate. The remainder of the water is present in the waste brine which is currently disposed of as trash on ISS. For future missions this additional water must be reclaimed due to the significant resupply penalty for missions beyond Low Earth Orbit (LEO). NASA has pursued various technology development programs for a brine processor in the past several years. This effort has culminated in a technology down-select to identify the optimum technology for future manned missions. The technology selection is based on various criteria, including mass, power, reliability, maintainability, and safety. Beginning in 2016 the selected technology will be transitioned to a flight hardware program for demonstration on ISS. This paper summarizes the technology selection process, the competing technologies, and the rationale for the technology selected for future manned missions.

  19. Dragonfly Mercury Project—A citizen science driven approach to linking surface-water chemistry and landscape characteristics to biosentinels on a national scale

    Science.gov (United States)

    Eagles-Smith, Collin A.; Nelson, Sarah J.; Willacker,, James J.; Flanagan Pritz, Colleen M.; Krabbenhoft, David P.

    2016-02-29

    Mercury is a globally distributed pollutant that threatens human and ecosystem health. Even protected areas, such as national parks, are subjected to mercury contamination because it is delivered through atmospheric deposition, often after long-range transport. In aquatic ecosystems, certain environmental conditions can promote microbial processes that convert inorganic mercury to an organic form (methylmercury). Methylmercury biomagnifies through food webs and is a potent neurotoxicant and endocrine disruptor. The U.S. Geological Survey (USGS), the University of Maine, and the National Park Service (NPS) Air Resources Division are working in partnership at more than 50 national parks across the United States, and with citizen scientists as key participants in data collection, to develop dragonfly nymphs as biosentinels for mercury in aquatic food webs. To validate the use of these biosentinels, and gain a better understanding of the connection between biotic and abiotic pools of mercury, this project also includes collection of landscape data and surface-water chemistry including mercury, methylmercury, pH, sulfate, and dissolved organic carbon and sediment mercury concentration. Because of the wide geographic scope of the research, the project also provides a nationwide “snapshot” of mercury in primarily undeveloped watersheds.

  20. Physico-chemistry characteristics of compost from urban solid wastes in Valencia (Spain); Caracteristicas fisico-quimicas de los composts de residuos solidos urbanos de la Comunidad Valenciana

    Energy Technology Data Exchange (ETDEWEB)

    Albiach, M. R.; Canet, R.; Pomares, F.; Tarazona, F.; Chaves, C.; Ferrer, E.

    2004-07-01

    For nearly twenty years samples of MSW compost produced in the Valencia region. have been analysed in our laboratories. Their main characteristics are summarised and discussed in this article, which reveals their compliance with current regulations, but also the problems which may arise if stricter requirements are eventually applied by the European Commission. (Author)

  1. High pressure treatment of brine enhanced pork affects endopeptidase activity, protein solubility, and peptide formation

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Gkarane, Vasiliki; Otte, Jeanette Anita Held;

    2012-01-01

    In order to study the effect of high-pressure (HP) treatment and two different methods of brine addition (important for lysosomal membrane destabilisation) on lysosomal enzymes activity and protein degradation, pork semitendinosus muscle was brine enhanced by injection or tumbling, and HP treated...

  2. Laboratory monitoring of CO2 migration within brine-saturated reservoir rock though complex electrical impedance

    NARCIS (Netherlands)

    Kirichek, O.; Ghose, R.; Heller, H.K.J.

    2013-01-01

    We investigate the ability of complex electrical measurements to monitor the CO2 front propagation within brine-saturated reservoir rock. A laboratory facility has been developed to perform CO2-brine substitution experiments under reservoir conditions. In the present study, CO2 is injected into a br

  3. Recovery of biomolecules from marinated herring (Clupea harengus) brine using ultrafiltration through ceramic membranes

    DEFF Research Database (Denmark)

    Gringer, Nina; Hosseini, Seyed Vali; Svendsen, Tore;

    2015-01-01

    Marinated herring processing brines, which are usually discarded, are rich in salt, protein, non-protein nitrogen, iron, fatty acids, antioxidant and even possess enzymatic activity. This study investigated the performance of ceramic ultrafiltration of two herring spice brines with a major focus...

  4. Natural Oxidation of Bromide to Bromine in Evaporated Dead Sea Brines

    Science.gov (United States)

    Gavrieli, Ittai; Golan, Rotem; Lazar, Boaz; Baer, Gidi; Zakon, Yevgeni; Ganor, Jiwchar

    2016-04-01

    Highly evaporated Dead Sea brines are found in isolated sinkholes along the Dead Sea. Many of these brines reach densities of over 1.3 kg/L and pHacidic with a value of ~6.3. In comparison, seawater with the same alkalinity would have a pH value well above 8.3, meaning that H+ activity is 100 fold lower than that of Dead Sea brine. In the present work we assess the apparent dissociation constant value of boric acid (K`B) for the Dead Sea brine and use it to explain the brine's low pH value. We then show that pH decreases further as the brine evaporates and salinity increases. Finally we explain the reddish hue of the hypersaline brines in the sinkholes as due to the presence of dissolved bromine. The latter is the product of oxidation of dissolved bromide, a process that is enabled by the low pH of the hypersaline brines and their high bromide concentration.

  5. Water Recovery from Brine in the Short and Long Term: A KSC Approach

    Science.gov (United States)

    Lunn, Griffin; Melendez, Orlando; Anthony, Steve

    2014-01-01

    KSC has spent many years researching Hollow Fiber Membrane Bioreactors as well as research encompassing: Alternate ammonia removal, Advanced oxidation, Brine purification technologies. KSC-ISRU has built an electrolysis cell for the removal of acids in ISRU mining brines. Our goal is to combine all such technologies.

  6. Improving the performance of brine wells at Gulf Coast strategic petroleum reserve sites

    Energy Technology Data Exchange (ETDEWEB)

    Owen, L.B.; Quong, R. (eds.)

    1979-11-05

    At the request of the Department of Energy, field techniques were developed to evaluate and improve the injection of brine into wells at Strategic Petroleum Reserve (SPR) sites. These wells are necessary for the disposal of saturated brine removed from salt domes where oil is being stored. The wells, which were accepting brine at 50 percent or less of their initial design rates, were impaired by saturated brine containing particulates that deposited on the sand face and in the geologic formation next to the wellbore. Corrosion of the brine-disposal pipelines and injection wells contributed to the impairment by adding significant amounts of particulates in the form of corrosion products. When tests were implemented at the SPR sites, it was found that the poor quality of injected brines was the primary cause of impaired injection; that granular-media filtration, when used with chemical pretreatment, is an effective method for removing particulates from hypersaline brine; that satisfactory injection-well performance can be attained with prefiltered brines; and that corrosion rates can be substantially reduced by oxygen-scavenging.

  7. Analytical Chemistry Division's sample transaction system

    International Nuclear Information System (INIS)

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing

  8. Scanning electron microscope observations of brine shrimp larvae from space shuttle experiments

    Science.gov (United States)

    DeBell, L.; Paulsen, A.; Spooner, B.

    1992-01-01

    Brine shrimp are encysted as gastrula stage embryos, and may remain dehydrated and encysted for years without compromising their viability. This aspect of brine shrimp biology is desirable for studying development of animals during space shuttle flight, as cysts placed aboard a spacecraft may be rehydrated at the convenience of an astronaut, guaranteeing that subsequent brine shrimp development occurs only on orbit and not on the pad during launch delays. Brine shrimp cysts placed in 5 ml syringes were rehydrated with salt water and hatched during a 9 day space shuttle mission. Subsequent larvae developed to the 8th larval stage in the sealed syringes. We studied the morphogenesis of the brine shrimp larvae and found the larvae from the space shuttle experiments similar in rate of growth and extent of development, to larvae grown in sealed syringes on the ground. Extensive differentiation and development of embryos and larvae can occur in a microgravity environment.

  9. Impact of the brine from a desalination plant on a shallow seagrass ( Posidonia oceanica) meadow

    Science.gov (United States)

    Gacia, Esperança; Invers, Olga; Manzanera, Marta; Ballesteros, Enric; Romero, Javier

    2007-05-01

    Although seawater desalination has increased significantly over recent decades, little attention has been paid to the impact of the main by-product (hypersaline water: brine) on ecosystems. In the Mediterranean, potentially the most affected ecosystems are meadows of the endemic seagrass Posidonia oceanica. We studied the effect of brine on a shallow P. oceanica meadow exposed to reverse osmosis brine discharge for more than 6 years. P. oceanica proved to be very sensitive to both eutrophication and high salinities derived from the brine discharge. Affected plants showed high epiphyte load and nitrogen content in the leaves, high frequencies of necrosis marks, low total non-structural carbohydrates and low glutamine synthetase activity, compared to control plants. However, there was no indication of extensive decline of the affected meadow. This is probably due to its very shallow situation, which results in high incident radiation as well as fast dilution and dispersion of the brine plume.

  10. Indoor tests to investigate the effect of brine depth on the performance of solar still

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Marwah A.W.; Jabbar N. Khalifa, Abdul [Nahrain University, College of Engineering, Jadiriya, P.O. Box 64040, Baghdad (Iraq)

    2013-07-01

    Many experimental and numerical studies have been done on different configurations of solar stills to optimize the design by examining the effect of climatic, operational and design parameters on its performance. One of the most important of the operational parameters that has received a considerable attention in the literature is the brine depth. This paper reports indoor experimental investigations on the effect of brine depth on the productivity and efficiency of the solar stills at four different brine depths of 1.5, 2, 4 and 5.5 cm. Indoor tests were used by simulating the solar input by proper electric heaters located at the bottom of the still for heating the water contained in the basin of the still. The present study validated the decreasing trend in productivity with the increase of brine depth and showed that the still productivity could be influenced by the brine depth by up to 24%.

  11. Indoor tests to investigate the effect of brine depth on the performance of solar still

    Directory of Open Access Journals (Sweden)

    Marwah AW. Ali, Abdul Jabbar N. Khalifa

    2013-01-01

    Full Text Available Many experimental and numerical studies have been done on different configurations of solar stills to optimize the design by examining the effect of climatic, operational and design parameters on its performance. One of the most important of the operational parameters that has received a considerable attention in the literature is the brine depth. This paper reports indoor experimental investigations on the effect of brine depth on the productivity and efficiency of the solar stills at four different brine depths of 1.5, 2, 4 and 5.5 cm. Indoor tests were used by simulating the solar input by proper electric heaters located at the bottom of the still for heating the water contained in the basin of the still. The present study validated the decreasing trend in productivity with the increase of brine depth and showed that the still productivity could be influenced by the brine depth by up to 24%.

  12. Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density

    DEFF Research Database (Denmark)

    Yan, Wei; Huang, Shengli; Stenby, Erling Halfdan

    2011-01-01

    over climate change and energy security. This work is an experimental and modeling study of two fundamental properties in high pressure CO2–NaCl brine equilibrium, i.e., CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. A literature review of the available data was presented first to......Phase equilibrium for CO2–NaCl brine is of general interest to many scientific disciplines and technical areas. The system is particularly important to CO2 sequestration in deep saline aquifers and CO2 enhanced oil recovery, two techniques discussed intensively in recent years due to the concerns...... illustrate the necessity of experimental measurements of the two properties at high pressures. An experimental method for measuring high pressure CO2 solubility in NaCl brine was then developed. With the method, CO2 solubilities in 0, 1, and 5m NaCl brines were measured at 323, 373, and 413K from 5 to 40MPa...

  13. Plasma chemistry and organic synthesis

    Science.gov (United States)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  14. Seawater chemistry and the advent of biocalcification

    Science.gov (United States)

    Brennan, Sean T.; Lowenstein, Tim K.; Horita, Juske

    2004-06-01

    Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca2+ concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the “Cambrian explosion,” a brief drop in marine 87Sr/86Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca2+] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota.

  15. Seawater Chemistry and the Advent of Biocalcification

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, S. T. [U.S. Geological Survey, Menlo Park, CA; Lowenstein, T K. [State University of New York, Binghamton; Horita, Juske [ORNL

    2004-01-01

    Major ion compositions of primary fluid inclusions from terminal Proterozoic (ca. 544 Ma) and Early Cambrian (ca. 515 Ma) marine halites indicate that seawater Ca{sup 2+} concentrations increased approximately threefold during the Early Cambrian. The timing of this shift in seawater chemistry broadly coincides with the 'Cambrian explosion,' a brief drop in marine {sup 87}Sr/{sup 86}Sr values, and an increase in tectonic activity, suggesting a link between the advent of biocalcification, hydrothermal mid-ocean-ridge brine production, and the composition of seawater. The Early Cambrian surge in oceanic [Ca{sup 2+}] was likely the first such increase following the rise of metazoans and may have spurred evolutionary changes in marine biota.

  16. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  17. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  18. Public perception of chemistry

    OpenAIRE

    Stražar, Alenka

    2015-01-01

    The thesis deals with the perception of chemistry among the public, which reflects the stereotypes that people have about chemistry. It presents the existing classification of stereotypes about chemistry and their upgrade. An analysis of movies that reflect the existing perception of chemistry in the public is written. Literature on selected aspects of the application of chemistry in movies is collected and analyzed. A qualification of perception of chemistry in the movies is presented based ...

  19. Hydrographic changes during 20 years in the brine-filled basins of the Red Sea

    Science.gov (United States)

    Anschutz, Pierre; Blanc, Gérard; Chatin, Fabienne; Geiller, Magali; Pierret, Marie-Claire

    1999-10-01

    Many of the deep basins filled by hot brines in the Red Sea have not been investigated since their discovery in the early 1970s. Twenty years later, in September 1992, six of these deeps were revisited. The temperature and salinity of the Suakin, Port Sudan, Chain B, and Nereus deeps ranged from 23.25 to 44.60°C and from 144 to 270‰. These values were approximately the same in 1972, indicating that the budget of heat and salt was quite balanced. We measured strong gradients of properties in the transition zone between brines and overlying seawater. The contribution of salinity to the density gradient was more than one order of magnitude higher than the opposite contribution of temperature across the seawater-brine interface. Therefore the interface was extemely stable, and the transfer of properties across it was considered to be controlled mostly by molecular diffusion. We calculate that the diffusional transport of salt from the brines to seawater cannot affect significantly the salinity of the brines over a 20 year period, which agrees with the observations. The brine pools can persist for centuries with no salt input. Therefore, the persisence of brines does not correspond to a steady balance between diffusional loss and continuous input of hydrothermal solutions. Deeps that experience only episodical hydrothermal brine supplies may persist for a long time with salt inherited from past inputs. The theoretical loss of heat by diffusion from the brine to seawater was higher than the observed decrease in temperature of the brine pool during the 20 year period of observation. We calculated that the heat flux out of the pools into the overlying seawater was compensated by a heat flux into the pools of about 250-600 mW/m 2. This range of values corresponds to bottom heat flow values that have been reported earlier for the axial zone of the Red Sea. In contrast to the other brine pools, the temperature and salinity of the Valdivia Deep brine increased by 4.1°C and

  20. Impacts of harvesting on brine shrimp (Artemia franciscana) in Great Salt Lake, Utah, USA.

    Science.gov (United States)

    Sura, Shayna A; Belovsky, Gary E

    2016-03-01

    Selective harvesting can cause evolutionary responses in populations via shifts in phenotypic characteristics, especially those affecting life history. Brine shrimp (Artemia franciscana) cysts in Great Salt Lake (GSL), Utah, USA are commercially harvested with techniques that select against floating cysts. This selective pressure could cause evolutionary changes over time. Our objectives are to (1) determine if there is a genetic basis to cyst buoyancy, (2) determine if cyst buoyancy and nauplii mortality have changed over time, and (3) to examine GSL environmental conditions over time to distinguish whether selective harvesting pressure or a trend in environmental conditions caused changes in cyst buoyancy and nauplii mortality. Mating crosses between floating and sinking parental phenotypes with two food concentrations (low and high) indicated there is a genetic basis to cyst buoyancy. Using cysts harvested from 1991-2011, we found cyst buoyancy decreased and nauplii mortality increased over time. Data on water temperature, salinity, and chlorophyll a concentration in GSL from 1994 to 2011 indicated that although water temperature has increased over time and chlorophyll a concentration has decreased over time, the selective harvesting pressure against floating cysts is a better predictor of changes in cyst buoyancy and nauplii mortality over time than trends in environmental conditions. Harvesting of GSL A. franciscana cysts is causing evolutionary changes, which has implications for the sustainable management and harvesting of these cysts. Monitoring phenotypic characteristics and life-history traits of the population should be implemented and appropriate responses taken to reduce the impacts of the selective harvesting. PMID:27209783

  1. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  2. Quorum Quenching Bacillus sonorensis Isolated from Soya Sauce Fermentation Brine

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available An N-acylhomoserine lactone (AHL-degrading bacterial strain, L62, was isolated from a sample of fermentation brine of Chinese soya sauce by using rich medium agar supplemented with soya sauce (10% v/v. L62, a rod-shaped Gram positive bacterium with amylolytic activity, was phylogentically related to Bacillus sonorensis by 16S ribosomal DNA and rpoB sequence analyses. B. sonorensis L62 efficiently degraded N-3-oxohexanoyl homoserine lactone and N-octanoylhomoserine lactone. However, the aiiA homologue, encoding an autoinducer inactivation enzyme catalyzing the degradation of AHLs, was not detected in L62, suggesting the presence of a different AHL-degrading gene in L62. To the best of our knowledge, this is the first report of AHL-degrading B. sonorensis from soya sauce liquid state fermentation.

  3. Study of photon attenuation coefficient in brine using MCNP code

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Caroline M.; Salgado, Cesar M.; Brandao, Luis E.B., E-mail: carolmattosb@yahoo.com.br, E-mail: otero@ien.gov.br, E-mail: brandao@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    In petroleum industry, multiphase flows are common and the relative salt content of the water component depends on the location of oil extraction. The salt present in the water component causes incrustations in the pipeline and may interfere in the flow measurement. This paper presents an elaborate model using MCNP code to simulate a narrow beam gamma ray source, a brine sample and a NaI(Tl) detector, with beam energies ranging from 59,54 keV to 662 keV. Through this model, we can relate the photon attenuation coefficient to the salinity of water. This model can be experimentally reproduced, and used to measure the salinity in situ without affecting the medium. (author)

  4. Microprobe analysis of brine shrimp grown on meteorite extracts

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, J. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)]. E-mail: j.kennedy@gns.cri.nz; Mautner, M.N. [Soil, Plant and Ecological Sciences Division, Lincoln University (New Zealand) and Department of Chemistry, University of Canterbury, Christchurch 8001 (New Zealand)]. E-mail: m.mautner@solis1.com; Barry, B. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand); Markwitz, A. [National Isotope Centre, GNS Science, 30 Gracefield Road, Lower Hutt (New Zealand)

    2007-07-15

    Nuclear microprobe methods have been used to investigate the uptake and distribution of various elements by brine shrimps and their unhatched eggs when grown in extracts of the Murchison and Allende carbonaceous meteorites, which were selected as model space resources. Measurements were carried out using a focussed 2 MeV proton beam raster scanned over the samples in order to obtain the average elemental concentrations. Line scans across the egg and shrimp samples show uptake of elements such as Mg, Ni, S and P which are present in the meteorites. The results confirmed that carbonaceous chondrite materials can provide nutrients, including high levels of the essential nutrient phosphate. The concentrations of these elements varied significantly between shrimp and eggs grown in extracts of the two meteorite types, which can help in identifying optimal growth media. Our results illustrate that nuclear microprobe techniques can determine elemental concentrations in organisms exposed to meteorite derived media and thus help in identifying useful future resources.

  5. Microprobe analysis of brine shrimp grown on meteorite extracts

    Science.gov (United States)

    Kennedy, J.; Mautner, M. N.; Barry, B.; Markwitz, A.

    2007-07-01

    Nuclear microprobe methods have been used to investigate the uptake and distribution of various elements by brine shrimps and their unhatched eggs when grown in extracts of the Murchison and Allende carbonaceous meteorites, which were selected as model space resources. Measurements were carried out using a focussed 2 MeV proton beam raster scanned over the samples in order to obtain the average elemental concentrations. Line scans across the egg and shrimp samples show uptake of elements such as Mg, Ni, S and P which are present in the meteorites. The results confirmed that carbonaceous chondrite materials can provide nutrients, including high levels of the essential nutrient phosphate. The concentrations of these elements varied significantly between shrimp and eggs grown in extracts of the two meteorite types, which can help in identifying optimal growth media. Our results illustrate that nuclear microprobe techniques can determine elemental concentrations in organisms exposed to meteorite derived media and thus help in identifying useful future resources.

  6. Guiding brine shrimp through mazes by solving reaction diffusion equations

    Science.gov (United States)

    Singal, Krishma; Fenton, Flavio

    Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.

  7. Brine Organisms and the Question of Habitat Specific Adaptation

    Science.gov (United States)

    Siegel, B. Z.; Siegel, S. M.; Speitel, Thomas; Waber, Jack; Stoecker, Roy

    1984-12-01

    Among the well-known ultrasaline terrestrial habitats, the Dead Sea in the Jordan Rift Valley and Don Juan Pond in the Upper Wright Valley represent two of the most extreme. The former is a saturated sodium chloride-magnesium sulfate brine in a hot desert, the latter a saturated calcium chloride brine in an Antarctic desert. Both Dead Sea and Don Juan water bodies themselves are limited in microflora, but the saline Don Juan algal mat and muds contain abundant nutrients and a rich and varied microbiota, including Oscillatoria, Gleocapsa, Chlorella, diatoms, Penicillium and bacteria. In such environments, the existence of an array of specific adaptations is a common, and highly reasonable, presumption, at least with respect to habitat-obligate forms. Nevertheless, many years of ongoing study in our laboratory have demonstrated that lichens (e.g. Cladonia), algae (e.g. Nostoc) and fungi (e.g. Penicillium, Aspergillus) from the humid tropics can sustain metabolism down to -40°C and growth down to -10°C in simulated Dead Sea or Don Juan (or similar) media without benefit of selection or gradual acclimation. Non-selection is suggested in fungi by higher growth rates from vegetative inocula than spores. The importance of nutrient parameters was also evident in responses to potassium and reduced nitrogen compounds. In view of the saline performance of tropical Nostoc, and its presence in the Antarctic dry valley soils, its complete absence in our Don Juan mat samples was and remains a puzzle. We suggest that adaptive capability is already resident in many terrestrial life forms not currently in extreme habitats, a possible reflection of evolutionary selection for wide spectrum environmental adaptability.

  8. CO2/ brine substitution experiments at simulated reservoir conditions

    Science.gov (United States)

    Kummerow, Juliane; Spangenberg, Erik

    2015-04-01

    Capillary properties of rocks affect the mobility of fluids in a reservoir. Therefore, the understanding of the capillary pressure behaviour is essential to assess the long-term behaviour of CO2 reservoirs. Beyond this, a calibration of the petrophysical properties on water saturation of reservoir rocks at simulated in situ conditions is crucial for a proper interpretation of field monitoring data. We present a set-up, which allows for the combined measurements of capillary pressure, electric resistivity, and elastic wave velocities under controlled reservoir conditions (pconf = 400 bar, ppore = 180 bar, T = 65 ° C) at different brine-CO2 saturations. The capillary properties of the samples are measured using the micropore membrane technique. The sample is jacketed with a Viton tube (thickness = 4 mm) and placed between two current electrode endcaps, which as well contain pore fluid ports and ultrasonic P and S wave transducers. Between the sample and the lower endcap the hydrophilic semi-permeable micro-pore membrane (pore size = 100 nm) is integrated. It is embedded into filter papers to establish a good capillary contact and to protect the highly sensitive membrane against mechanical damage under load. Two high-precision syringe pumps are used to displace a quantified volume of brine by CO2 and determine the corresponding sample saturation. The fluid displacement induces a pressure gradient along the sample, which corresponds to the capillary pressure at a particular sample saturation. It is measured with a differential pressure sensor in the range between 0 - 0.2 MPa. Drainage and imbibition cycles are performed to provide information on the efficiency of capillary trapping and to get a calibration of the petrophysical parameters of the sample.

  9. Multimeric hemoglobin of the Australian brine shrimp Parartemia.

    Science.gov (United States)

    Coleman, M; Matthews, C M; Trotman, C N

    2001-04-01

    The hemoglobin molecule of the commercially important brine shrimp Artemia sp. has been used extensively as a model for the study of molecular evolution. It consists of nine globin domains joined by short linker sequences, and these domains are believed to have originated through a series of duplications from an original globin gene. In addition, in Artemia, two different polymers of hemoglobin, called C and T, are found which differ by 11.7% at the amino acid level and are believed to have diverged about 60 MYA. This provides a set of data of 18 globin domain sequences that have evolved in the same organism. The pattern of amino acid substitution between these two polymers is unusual, with pairs of equivalent domains displaying differences of up to 2.7-fold in total amino acid substitution. Such differences would reflect a similar range of molecular-clock rates in what appear to be duplicate, structurally equivalent domains. In order to provide a reference outgroup, we sequenced the cDNA for a nine-domain hemoglobin (P) from another genus of brine shrimp, Parartemia zietziana, which differs morphologically and ecologically from Artemia and is endemic to Australia. Parartemia produces only one hundredth the amount of hemoglobin that Artemia produces and does not upregulate production in response to low oxygen partial pressure. Comparison of the globin domains at the amino acid and DNA levels suggests that the Artemia globin T gene has accumulated substitutions differently from the Parartemia P and Artemia C globin genes. We discuss the questions of accelerated evolution after duplication and possible functions for the Parartemia globin. PMID:11264409

  10. Chemical modeling for precipitation from hypersaline hydrofracturing brines.

    Science.gov (United States)

    Zermeno-Motante, Maria I; Nieto-Delgado, Cesar; Cannon, Fred S; Cash, Colin C; Wunz, Christopher C

    2016-10-15

    Hypersaline hydrofracturing brines host very high salt concentrations, as high as 120,000-330,000 mg/L total dissolved solids (TDS), corresponding to ionic strengths of 2.1-5.7 mol/kg. This is 4-10 times higher than for ocean water. At such high ionic strengths, the conventional equations for computing activity coefficients no longer apply; and the complex ion-interactive Pitzer model must be invoked. The authors herein have used the Pitzer-based PHREEQC computer program to compute the appropriate activity coefficients when forming such precipitates as BaSO4, CaSO4, MgSO4, SrSO4, CaCO3, SrCO3, and BaCO3 in hydrofracturing waters. The divalent cation activity coefficients (γM) were computed in the 0.1 to 0.2 range at 2.1 mol/kg ionic strength, then by 5.7 mol/kg ionic strength, they rose to 0.2 for Ba(2+), 0.6 for Sr(2+), 0.8 for Ca(2+), and 2.1 for Mg(2+). Concurrently, the [Formula: see text] was 0.02-0.03; and [Formula: see text] was 0.01-0.02. While employing these Pitzer-derived activity coefficients, the authors then used the PHREEQC model to characterize precipitation of several of these sulfates and carbonates from actual hydrofracturing waters. Modeled precipitation matched quite well with actual laboratory experiments and full-scale operations. Also, the authors found that SrSO4 effectively co-precipitated radium from hydrofracturing brines, as discerned when monitoring (228)Ra and other beta-emitting species via liquid scintillation; and also when monitoring gamma emissions from (226)Ra. PMID:27470293

  11. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established

  12. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  13. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J.; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-08-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes.

  14. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  15. On the viscosity of natural hyper-saline solutions and its importance: The Dead Sea brines

    Science.gov (United States)

    Weisbrod, Noam; Yechieli, Yoseph; Shandalov, Semion; Lensky, Nadav

    2016-01-01

    The relationship between the density, temperature and viscosity of hypersaline solutions, both natural and synthetic, is explored. An empirical equation of the density-viscosity relationship as a function of temperature was developed for the Dead Sea brine and its dilutions. The viscosity levels of the Dead Sea brine (density of 1.24 ṡ 103 kg/m3; viscosity of 3.6 mPa s at 20 °C) and of the more extremely saline natural brine (density of 1.37 ṡ 103 kg/m3) were found to be ∼3 and ∼10 times greater than that of fresh water, respectively. The combined effect of the above changes in viscosity and density on the hydraulic conductivity is reduction by a factor of 3-7. The chemical composition significantly affects the viscosity of brines with similar densities, whereby solutions with a higher Mg/Na ratio have higher viscosity. This explains the extremely high viscosity of the Dead Sea and related Mg-rich brines in comparison with the much lower values of NaCl and KCl brines with similar density. Possible impacts of the results include reduced settling velocity of grains in hypersaline viscous brines and changing hydraulic dynamics at the freshwater-saltwater and the vicinity of sinkholes.

  16. Alcohol Brine Freezing of Japanese Horse Mackerel (Trachurus japonicus) for Raw Consumption

    Science.gov (United States)

    Maeda, Toshimichi; Yuki, Atsuhiko; Sakurai, Hiroshi; Watanabe, Koichiro; Itoh, Nobuo; Inui, Etsuro; Seike, Kazunori; Mizukami, Yoichi; Fukuda, Yutaka; Harada, Kazuki

    In order to test the possible application of alcohol brine freezing to Japanese horse mackerel (Trachurus japonicus) for raw consumption, the quality and taste of fish frozen by direct immersion in 60% ethanol brine at -20, -25 and -30°C was compared with those by air freezing and fresh fish without freezing. Cracks were not found during the freezing. Smell of ethanol did not remain. K value, an indicator of freshness, of fish frozen in alcohol brine was less than 8.3%, which was at the same level as those by air freezing and fresh fish. Oxidation of lipid was at the same level as air freezing does, and lower than that of fresh fish. The pH of fish frozen in alcohol brine at -25 and -30°C was 6.5 and 6.6, respectively, which were higher than that by air freezing and that of fresh fish. Fish frozen in alcohol brine was better than that by air and at the same level as fresh fish in total evaluation of sensory tests. These results show that the alcohol brine freezing is superior to air freezing, and fish frozen in alcohol brine can be a material for raw consumption. The methods of thawing in tap water, cold water, refrigerator, and at room temperature were compared. Thawing in tap water is considered to be convenient due to the short thaw time and the quality of thawed fish that was best among the methods.

  17. Weeks Island brine diffuser site study: baseline conditions and environmental assessment technical report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-12

    This technical report presents the results of a study conducted at two alternative brine diffuser sites (A and B) proposed for the Weeks Island salt dome, together with an analysis of the potential physical, chemical, and biological effects of brine disposal for this area of the Gulf of Mexico. Brine would result from either the leaching of salt domes to form or enlarge oil storage caverns, or the subsequent use of these caverns for crude oil storage in the Strategic Petroleum Reserve (SPR) program. Brine leached from the Weeks Island salt dome would be transported through a pipeline which would extend from the salt dome either 27 nautical miles (32 statute miles) for Site A, or 41 nautical miles (47 statute miles) for Site B, into Gulf waters. The brine would be discharged at these sites through an offshore diffuser at a sustained peak rate of 39 ft/sup 3//sec. The disposal of large quantities of brine in the Gulf could have a significant impact on the biology and water quality of the area. Physical and chemical measurements of the marine environment at Sites A and B were taken between September 1977 and July 1978 to correlate the existing environmental conditions with the estimated physical extent of tthe brine discharge as predicted by the MIT model (US Dept. of Commerce, 1977a). Measurements of wind, tide, waves, currents, and stratification (water column structure) were also obtained since the diffusion and dispersion of the brine plume are a function of the local circulation regime. These data were used to calculate both near- and far-field concentrations of brine, and may also be used in the design criteria for diffuser port configuration and verification of the plume model. Biological samples were taken to characterize the sites and to predict potential areas of impact with regard to the discharge. This sampling focused on benthic organisms and demersal fish. (DMC)

  18. Deep well injection of brine from Paradox Valley, Colorado: Potential major precipitation problems remediated by nanofiltration

    Science.gov (United States)

    Kharaka, Y.K.; Ambats, G.; Thordsen, J.J.; Davis, R.A.

    1997-01-01

    Groundwater brine seepage into the Dolores River in Paradox Valley, Colorado, increases the dissolved solids load of the Colorado River annually by ~2.0 x 108 kg. To abate this natural contamination, the Bureau of Reclamation plans to pump ~3540 m3/d of brine from 12 shallow wells located along the Dolores River. The brine, with a salinity of 250,000 mg/L, will be piped to the deepest (4.9 km) disposal well in the world and injected mainly into the Mississippian Leadville Limestone. Geochemical modeling indicates, and water-rock experiments confirm, that a huge mass of anhydrite (~1.0 x 104 kg/d) likely will precipitate from the injected brine at downhole conditions of 120??C and 500 bars. Anhydrite precipitation could increase by up to 3 times if the injected brine is allowed to mix with the highly incompatible formation water of the Leadville Limestone and if the Mg in this brine dolomitizes the calcite of the aquifer. Laboratory experiments demonstrate that nanofiltration membranes, which are selective to divalent anions, provide a new technology that remediates the precipitation problem by removing ~98% of dissolved SO4 from the hypersaline brine. The fluid pressure used (50 bars) is much lower than would be required for traditional reverse osmosis membranes because nanofiltration membranes have a low rejection efficiency (5-10%) for monovalent anions. Our results indicate that the proportion of treatable brine increases from ~60% to >85% with the addition of trace concentrations of a precipitation inhibitor and by blending the raw brine with the effluent stream.

  19. Trace Chemistry

    Science.gov (United States)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  20. One potential superlarge Pb-Zn ore occurrence with Himalayan thermal brine genesis--Wuqia Region, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    刘继顺; 高珍权; 邓功全; 李明; 刘全德

    2002-01-01

    The paper focuses on geological and geochemical evidence of thermal brine genesis of Pb-Zn deposits in Wuqia district, Xinjiang. The results suggest that the known Pb-Zn deposits, such as Wulagen, are thermal brine genesis, which is supported by the features of tectonic setting, magma and regional metamorphism, and the characteristics of trace element distribution in strata and redistribution in the ore-forming process, the REE patterns and their main parameters of main type ores, the composition features and the source indicators of Pb, S isotopes. Ore-forming conditions of superlarge Pb-Zn deposits studies show that there exists tectonic and sources setting of Jinding-type superlarge Pb-Zn deposits in this area. Five Pb-Zn ore belts and central uplift belts discovered lately have not only confirmed that the genesis of Wulagen Pb-Zn deposits is thermal genesis, but also further proved that there exists tectonic and source setting of Jinding-type superlarge Pb-Zn deposit in the study area. Mineral deposit model was described and prospecting potentiality of superlarge Pb-Zn deposit and their significance were discussed.

  1. Ice-brine and planktonic microheterotrophs from Saroma-ko Lagoon, Hokkaido (Japan): quantitative importance and trophodynamics

    Science.gov (United States)

    Sime-Ngando, Télesphore; Juniper, S. Kim; Demers, Serge

    1997-02-01

    Biologists have rarely had the opportunity to investigate the community characteristics and dynamics of heterotrophic microorganisms in highly productive first-year sea ice. In this study, sterile seawater was used as a salinity buffer to extract the ice-brine microheterotroph communities (bacteria, flagellates and ciliates) from a coastal lagoon in Japan (Saroma-ko, Hokkaido; 44°N, 144°E) during the late winter (February—March) of 1992. This procedure reduced osmotic shock during the melting of ice cores and allowed the recovery of up to 323% more cells than the traditional melting method. Most of the organisms were concentrated in the bottom 3-4 cm of the ice, where abundances were up to 33 times higher than in the plankton. In ice and plankton samples, heterotrophic flagellates were dominated by small species (sampling period while protozoa increased or attained their maximum number in late winter, toward the end of the sampling period. These observations support previous suggestions of the existence of a functional microbial food web within the sea-ice community. Heterotrophic flagellate biomass greatly exceeded bacterial biomass in the sea ice (30-60 x). Coupled with similar potential growth rates, this suggests the utilization of additional (non-bacterial) food items by ice-brine flagellates. Finally, the effects of salinity variations (ranging between 15 and 120 psu) on potential microheterotroph growth rates are discussed.

  2. Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the brine-seawater interface

    Directory of Open Access Journals (Sweden)

    S. R. Shah

    2012-12-01

    Full Text Available Orca Basin, an intraslope basin on the Texas–Louisiana continental slope, hosts a hypersaline, anoxic brine in its lowermost 200 m. This brine contains a large reservoir of reduced and aged carbon, and appears to be stable at decadal time scales: concentrations and the isotopic composition of dissolved inorganic (DIC and organic carbon (DOC are similar to previous reports. Both DIC and DOC are more "aged" within the brine pool than in overlying water, and the isotopic contrast between brine carbon and seawater carbon is much greater for DIC than DOC. While the stable carbon isotopic composition of brine DIC points towards a combination of methane and organic carbon re-mineralization as its source, radiocarbon and box model results point to the brine interface as the major source region for DIC with oxidation of methane diffusing upwards from sediments supplying only limited DIC to the brine. This conclusion is consistent with previous studies reporting microbial activity focused at the seawater-brine interface. Isotopic similarities between DIC and DOC suggest a different relationship between these two carbon reservoirs than is typically observed in deep ocean basins. Radiocarbon values implicate the seawater-brine interface region as the likely source region for DOC as well as DIC. Further investigations of the seawater-brine interface are needed to advance our understanding of the specific microbial processes contributing to dissolved carbon storage in the Orca Basin brine.

  3. Deep brine recognition upstream the EBE syndicate. Geochemical and isotopic investigations. Final report

    International Nuclear Information System (INIS)

    The authors report and discuss the results obtained after performing a drilling upstream the drinkable water harnessing field of a water supply syndicate in Alsace (Ensisheim, Bollwiller and surroundings), in order to confirm the existence of a deep brine source. This brine is diluted by recent waters. The first isotopic investigations do not allow the origin of this brine to be identified, but fractures due to some seismic events are suspected. The report presents the drilling and the various aspects of the chemical and isotopic studies (sampling, physico-chemical analysis, dating, identification of various isotopes)

  4. Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation

    OpenAIRE

    Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Freifeld, Barry M.; Gunter, William D.

    2004-01-01

    Hydrological and geochemical monitoring are key components of site characterization and CO2 plume monitoring for a pilot test to inject CO2 into a brine-bearing sand of the fluvial-deltaic Frio formation in the upper Texas Gulf Coast. In situ, injected CO2 forms a supercritical phase that has gas-like properties (low density and viscosity) compared to the surrounding brine, while some CO2 dissolves in the brine. The pilot test employs one injection well and one monitor well, with contin...

  5. A Brine Shrimp Bioassay for Measuring Toxicity and Remediation of Chemicals

    Science.gov (United States)

    Lieberman, Marya

    1999-12-01

    A bioassay using Artemia franciscana (brine shrimp) was adapted to measure the toxicity of household chemicals. One project is described in which students collect dose-response curves for seven commercial flea-killing products. Next, groups of students researched the insecticidal ingredients of the flea products. On the basis of the structures of the active ingredients, they chose remediation methods to make the flea product less toxic to brine shrimp; procedures included copper-catalyzed hydrolysis, adsorption onto activated charcoal, bleach treatment, and photodegradation. No special equipment or supplies are necessary for the bioassay other than the brine shrimp eggs, which can be obtained at any aquarium store.

  6. A sulfate conundrum: Dissolved sulfates of deep-saline brines and carbonate-associated sulfates

    Science.gov (United States)

    Labotka, Dana M.; Panno, Samuel V.; Locke, Randall A.

    2016-10-01

    Sulfates in deeply circulating brines and carbonate-associated sulfates (CAS) within sedimentary units of the Cambrian strata in the Illinois Basin record a complex history. Dissolved sulfate within the Mt. Simon Sandstone brines exhibits average δ34SSO4 values of 35.4‰ and δ18OSO4 values of 14.6‰ and appears to be related to Cambrian seawater sulfate, either original seawater or sourced from evaporite deposits such as those in the Michigan Basin. Theoretical and empirical relationships based on stable oxygen isotope fractionation suggest that sulfate within the lower depths of the Mt. Simon brines has experienced a long period of isolation, possibly several tens of millions of years. Comparison with brines from other stratigraphic units shows the Mt. Simon brines are geochemically unique. Dissolved sulfate from brines within the Ironton-Galesville Sandstone averages 22.7‰ for δ34SSO4 values and 13.0‰ for δ18OSO4 values. The Ironton-Galesville brine has mixed with younger groundwater, possibly of Ordovician to Devonian age and younger. The Eau Claire Formation lies between the Mt. Simon and Ironton-Galesville Sandstones. The carbonate units of the Eau Claire and stratigraphically equivalent Bonneterre Formation contain CAS that appears isotopically related to the Late Pennsylvanian-Early Permian Mississippi Valley-type ore pulses that deposited large sulfide minerals in the Viburnum Trend/Old Lead Belt ore districts. The δ34SCAS values range from 21.3‰ to 9.3‰, and δ18OCAS values range from +1.4‰ to -2.6‰ and show a strong covariance (R2 = 0.94). The largely wholesale replacement of Cambrian seawater sulfate signatures in these dolomites does not appear to have affected the sulfate signatures in the Mt. Simon brines even though these sulfide deposits are found in the stratigraphically equivalent Lamotte Sandstone to the southwest. On the basis of this and previous studies, greater fluid densities of the Mt. Simon brines may have prevented the

  7. Examination of brine contamination risk to aquatic resources from petroleum development in the Williston Basin

    Science.gov (United States)

    Gleason, Robert A.; Thamke, Joanna N.; Smith, Bruce D.; Tangen, Brian A.; Chesley-Preston, Tara; Preston, Todd M.

    2011-01-01

    U.S. Geological Survey scientists and cooperating partners are examining the potential risk to aquatic resources (for example, wetlands, streams) by contamination from saline waters (brine) produced by petroleum development in the Williston Basin of Montana, North Dakota, and South Dakota. The primary goals of this study are to provide a science-based approach to assess potential risk of brine contamination to aquatic systems and to help focus limited monitoring and mitigation resources on the areas of greatest need. These goals will be accomplished through field investigations that quantify brine movement and risk assessments using remotely-sensed and other spatial datasets.

  8. The role of watershed characteristics, permafrost thaw, and wildfire on dissolved organic carbon biodegradability and water chemistry in Arctic headwater streams

    Directory of Open Access Journals (Sweden)

    J. R. Larouche

    2015-03-01

    Full Text Available In the Alaskan Arctic, rapid climate change is increasing the frequency of disturbance including wildfire and permafrost collapse. These pulse disturbances may influence the delivery of dissolved organic carbon (DOC to aquatic ecosystems, however the magnitude of these effects compared to the natural background variability of DOC at the watershed scale is not well known. We measured DOC quantity, composition, and biodegradability from 14 river and stream reaches (watershed sizes ranging from 1.5–167 km2 some of which were impacted by permafrost collapse (thermokarst and fire. We found that region had a significant impact on quantity and biodegradability of DOC, likely driven by landscape and watershed characteristics such as lithology, soil and vegetation type, elevation, and glacial age. However, contrary to our hypothesis, we found that streams disturbed by thermokarst and fire did not contain significantly altered labile DOC fractions compared to adjacent reference waters, potentially due to rapid ecosystem recovery after fire and thermokarst as well as the limited spatial extent of thermokarst. Overall, biodegradable DOC ranged from 4 to 46% and contrary to patterns of DOC biodegradability in large Arctic rivers, seasonal variation in DOC biodegradability showed no clear pattern between sites, potentially related to stream geomorphology and position along the river network. While thermokarst and fire can alter DOC quantity and biodegradability at the scale of the feature, we conclude that tundra ecosystems are resilient to these types of disturbance.

  9. Impact of pressure and temperature on CO2-brine-mica contact angles and CO2-brine interfacial tension: Implications for carbon geo-sequestration.

    Science.gov (United States)

    Arif, Muhammad; Al-Yaseri, Ahmed Z; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan

    2016-01-15

    Precise characterization of wettability of CO2-brine-rock system and CO2-brine interfacial tension at reservoir conditions is essential as they influence capillary sealing efficiency of caprocks, which in turn, impacts the structural and residual trapping during CO2 geo-sequestration. In this context, we have experimentally measured advancing and receding contact angles for brine-CO2-mica system (surface roughness ∼12nm) at different pressures (0.1MPa, 5MPa, 7MPa, 10MPa, 15MPa, 20MPa), temperatures (308K, 323K, and 343K), and salinities (0wt%, 5wt%, 10wt%, 20wt% and 30wt% NaCl). For the same experimental matrix, CO2-brine interfacial tensions have also been measured using the pendant drop technique. The results indicate that both advancing and receding contact angles increase with pressure and salinity, but decrease with temperature. On the contrary, CO2-brine interfacial tension decrease with pressure and increase with temperature. At 20MPa and 308K, the advancing angle is measured to be ∼110°, indicating CO2-wetting. The results have been compared with various published literature data and probable factors responsible for deviations have been highlighted. Finally we demonstrate the implications of measured data by evaluating CO2 storage heights under various operating conditions. We conclude that for a given storage depth, reservoirs with lower pressures and high temperatures can store larger volumes and thus exhibit better sealing efficiency.

  10. Wettability measurement under high P-T conditions using X-ray imaging with application to the brine-supercritical CO2 system

    Science.gov (United States)

    Chaudhary, Kuldeep; Guiltinan, Eric J.; Cardenas, M. Bayani; Maisano, Jessica A.; Ketcham, Richard A.; Bennett, Philip C.

    2015-09-01

    We present a new method for measuring wettability or contact angle of minerals at reservoir pressure-temperature conditions using high-resolution X-ray computed tomography (HRXCT) and radiography. In this method, a capillary or a narrow slot is constructed from a mineral or a rock sample of interest wherein two fluids are allowed to form an interface that is imaged using X-rays. After some validation measurements at room pressure-temperature conditions, we illustrate this method by measuring the contact angle of CO2-brine on quartz, muscovite, shale, borosilicate glass, polytetrafluoroethylene (PTFE or Teflon), and polyether ether ketone (PEEK) surfaces at 60-71°C and 13.8-22.8 MPa. At reservoir conditions, PTFE and PEEK surfaces were found to be CO2-wet with contact angles of 140° and 127°, respectively. Quartz and muscovite were found to be water-wet with contact angles of 26° and 58°, respectively, under similar conditions. Borosilicate glass-air-brine at room conditions showed strong water-wet characteristics with a contact angle of 9°, whereas borosilicate glass-CO2-brine at 13.8 MPa and 60°C showed a decrease in its water-wetness with contact angle of 54°. This method provides a new application for X-ray imaging and an alternative to other methods.

  11. Bead Evaporator for Complete Water and Salt Recovery from Brine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as...

  12. Interim report for defining brine and oil threats in the Patoka River National Wildlife Refuge [2002

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following interim report is a list of activities being performed in conjunction with the study of oil brine effects on crayfish in the Patoka River National...

  13. Interim report for defining brine and oil threats in the Patoka River National Wildlife Refuge [2001

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The following interim report is a list of activities being performed in conjunction with the study of oil brine effects on crayfish in the Patoka River National...

  14. Antioxidative low molecular weight compounds in marinated herring (Clupea harengus) salt brine

    DEFF Research Database (Denmark)

    Gringer, Nina; Safafar, Hamed; du Mesnildot, Axelle;

    2016-01-01

    This study aimed at unravelling the antioxidative capacity of low molecular weight compounds (LMWC) (peptides, amino acids and phenolic acids) present in salt brines from the marinated herring production. Brines were fractionated into <10 kDa fractions using dialysis and further into 94 fractions...... salt brines contain LMWC holding ABTS-radical scavenging activity, reducing power and iron chelating activity. Generally, a strong correlation between TPC and ABTSradical scavenging was found. In contrast, reducing power and iron chelating activity seemed to be caused by peptides. Protein....../peptide sequencing revealed 1 kDa peptides with the presence of HDFmotif which could be responsible for some of the antioxidant capacity observed in marinated herring salt brine....

  15. THE BRINE SHRIMP (ARTEMIA SALINA) LETHALITY OF Brassica oleracea var. capitata

    OpenAIRE

    O. T. TÜZÜN, E. GÜRKAN, S. DOĞANCA, F. HIRLAK,

    2015-01-01

    This work covers up the bio-activities of the five fractions obtained from the ethanolic extract of Brassica oleracea var. capitata (Cruciferae).Key Words: Brassica oleracea var. capitata, Brine shrimp (Artemia salina)

  16. Use of a Brine Shrimp Assay to Study Herbal Teas in the Classroom.

    Science.gov (United States)

    Opler, Annette; Mizell, Rebecca; Robert, Alexander; Cervantes-Cervantes, Miguel; Kincaid, Dwight; Kennelly, Edward J.

    2002-01-01

    Introduces a brine shrimp assay to demonstrate the effects of the biological activity of herbal remedies. Describes two protocols, one using aqueous extracts and the other using methanol extracts. (Contains 21 references.) (YDS)

  17. Brine shrimp lethality and antibacterial activity of extracts from the bark of Schleichera oleosa

    Institute of Scientific and Technical Information of China (English)

    Laxman Pokhrel; Bigyan Sharma; Gan B Bajracharya

    2015-01-01

    Objective: To determine the antibacterial efficacy and brine shrimp toxicity of extracts (hexane, dichloromethane, ethyl acetate, methanol and water) obtained from the bark of Schleichera oleosa. Methods: The powdered bark sample was Soxhlet extracted sequentially in hexanes, dichloromethane, ethyl acetate, methanol and water. Antibacterial evaluation was carried out by following the agar diffusion method and amoxicillin disc was used as a reference. Slightly modified Meyer’s method was used to determine the toxicity of the extracts in brine shrimps. Results: Among the nine bacterial strains tested, the methanolic and aqueous extracts showed promising antibacterial efficacy against Serratia marcescens, Escherarichia coli, Bacillus subtilis and Micrococcus luteus. None of the extracts were found significantly toxic to brine shrimps. Conclusions: Strong antibacterial activity and low brine shrimp toxicity of methanolic and aqueous extracts can provide new antibacterial compounds.

  18. Brine shrimp lethality and antibacterial activity of extracts from the bark of Schleichera oleosa

    Directory of Open Access Journals (Sweden)

    Laxman Pokhrel

    2015-08-01

    Full Text Available Objective: To determine the antibacterial efficacy and brine shrimp toxicity of extracts (hexane, dichloromethane, ethyl acetate, methanol and water obtained from the bark of Schleichera oleosa. Methods: The powdered bark sample was Soxhlet extracted sequentially in hexanes, dichloromethane, ethyl acetate, methanol and water. Antibacterial evaluation was carried out by following the agar diffusion method and amoxicillin disc was used as a reference. Slightly modified Meyer’s method was used to determine the toxicity of the extracts in brine shrimps. Results: Among the nine bacterial strains tested, the methanolic and aqueous extracts showed promising antibacterial efficacy against Serratia marcescens, Escherarichia coli, Bacillus subtilis and Micrococcus luteus. None of the extracts were found significantly toxic to brine shrimps. Conclusions: Strong antibacterial activity and low brine shrimp toxicity of methanolic and aqueous extracts can provide new antibacterial compounds.

  19. Production dynamics of Brine Shrimp (Artemia franciscana) in the San Francisco Bay National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Abundance, stage structure and population dynamics of brine shrimp Artemia franciscana in pond M4 of the San Francisco Bay National Wildlife Refuge were documented...

  20. Industrial Chemistry and School Chemistry: Making Chemistry Studies More Relevant

    Science.gov (United States)

    Hofstein, Avi; Kesner, Miri

    2006-01-01

    In this paper, we present the development and implementation over the period of more than 15 years of learning materials focusing on industrial chemistry as the main theme. The work was conducted in the Department of Science Teaching at the Weizmann Institute of Science, Israel. The project's general goal was to teach chemistry concepts in the…

  1. An experimental study of diopside- CO2 -brine interaction

    Science.gov (United States)

    Zhou, Bing; Liu, Li; Ming, Xiaoran; Guo, Yanjun

    2014-05-01

    Diopside is one of the main minerals that consist igneous rock. It is characterized by high content of divalent cations like Ca, Mg, and Fe and relatively fast dissolution rate. These features make it an expected mineral of releasing metal ions for mineral carbonation during the research of mineral trapping of CO2. This study focus on the dissolution amount and micro-scale observing of diopside after the reaction with CO2 and brine under 100, 150, and 200°C. Each of the three experiments are carried out with 2 pieces of diopside (10mm*10mm*4mm) and 500ml Nacl (1mol/L) for 72h, and the pressure inside is 7Mp after injecting of CO2. SEM analysis of the surface of diopside before and after the experiments shows that the degree of corrosion increase with the rising of temperature. The slices of diopside lose 0.8% of its weight at the end of the experiments of 100°C, about 1.8% at 150°C, and about 3.92% at 200°C. Silicon concentrations after reaction are 14.55 mg/L (100°C), 47.02 mg/L (150°C), and 65.32 mg/L (200°C), which also prove the elevated temperature has a positive influence on dissolution of solid. Concentration of calcium and bicarbonate increase with temperature, while magnesium and iron are not. This may due to the heterogeneity of the composition in each piece of solid, or the precipitation of some compounds during the experiments. There are some amorphous compounds are found under SEM, which are mostly consisted of C, O, Na, Mg, Si, and Ca. A simple numerical simulation of CO2-diopside-brine interaction is carried out by TOUGHREACT. The setting of parameters are based on the experiments. Diopside reacts with 1mol/L Nacl under the CO2 partial pressure of 10Mp and the temperature keeps 100°C. The results present that the volume percent of precipitated carbonates (calcite and magnesite) reaches 1.23% after 100 years, which means 1m3 diopside could capture 16.76kg CO2 after 100 years by the means of mineral carbonation. This study reveals the

  2. Geochemical analysis of brine samples for exploration of Borate deposits in the South of Sabzevar

    Directory of Open Access Journals (Sweden)

    Mahdi Bemani

    2016-07-01

    exception of the fractal pattern, anomaly separation methods are based on the differences of fractal dimensions between communities of geochemical data (Hasanipak and Sharafoddin, 2005. In this study, concentration area fractal method was used to separate anomalies from the background. Using fractal geometry, threshold value corresponding to the two areas (Tonakar and Borje Kharkan were obtained and were plotted separately on geochemical maps. Exploratory data analysis (EDA is an approach to analyze data sets to summarize their main characteristics, often with visual methods (Filliben and Heckert, 2005. Exploratory data analysis is a useful method for analysis of geochemical exploration data. This is a statistical method known as the Robust Statistic classification (Carranza, 2009. In geochemical exploration, box plots, histograms and scatter plot are more practical. According to the box plots, the data of Tonakar and Borje Kharkan areas were classified and threshold levels were determined (Bemani, 2012. Discussion Using the results obtained from different methods, geochemical maps of each area were prepared for all the elements and thresholds were obtained for each method. Moreover, the geochemical maps of each area were plotted for each element. According to the geochemical maps of Tonakar area, boron anomaly was observed in the East and West zones and the anomaly of the latter is larger. These areas were recommended for further detailed exploration and borehole drilling. Also, geochemical maps of Borje Kharkan showed anomaly in the central zone for all of the elements. The results showed that the highest and the lowest amounts of boron in brines samples vary between 6 ppm to 5930 ppm. Among boron and the three other elements (i.e. lithium, magnesium and potassium a significant correlation was not observed. In terms of frequency, in most cases brines with high levels of boron (more than 1000 ppm were concentrated in the South East of the Tonakar area. So, this area was

  3. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olander, D.R.

    1984-08-01

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  4. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    International Nuclear Information System (INIS)

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed

  5. New aspects of the use of inert diets for high density culturing of brine shrimp

    OpenAIRE

    Dobbeleir, J.; Adam, N.(Princeton University, Princeton, U.S.A); Bossuyt, E.; Bruggeman, E.; Sorgeloos, P

    1980-01-01

    Brine shrimp being non-selective filter-feeders, cheap agricultural waste products should be evaluated as potential food sources for their controlled mass culturing. Preliminary results of screening tests performed with wheat bran, soybean meal , rice bran and whey powder in culturing systems of various size are reported. Wheat bran appears to be unsuitable as monodiet for brine shrimp. The other products tested support good growth although specific precautions have to be taken with some food...

  6. Effects of brine addition on effluent toxicity and marine toxicity identification evaluation (TIE) manipulations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, K.T.; Burgess, R.M. (Environmental Protection Agency, Narragansett, RI (United States)); Mitchell, K. (Xavier Univ. of Louisiana, New Orleans, LA (United States). Biology Dept.); Zappala, M. (Univ. of Rhode Island, Kingston, RI (United States))

    1995-02-01

    Little information is available concerning the effect of salinity adjustment on effluent storage and toxicity identification evaluation (TIE) performance. These factors are important for accurate assessments of potential toxicity to marine organisms. The objective of this study was to determine (a) the effect of salinity adjustment using hypersaline brine on the toxicity of effluents stored up to 40 d, and (b) to determine the effect of salinity adjustment on TIE manipulations. Changes in effluent toxicity over time were examined by using a municipal and an industrial effluent. A toxicity time series was performed for 16 d for the industrial effluent and 40 d for the municipal effluent. Toxicity was measured with modified 48-h acute Mysidopsis bahia and Menidia beryllina tests. Results indicate that, compared to day 0 test results, effluent stored with brine had fewer significant changes in toxicity than did effluent stored without brine. To determine the effects of brine addition on TIE manipulations, the authors conducted a series of manipulations in which one aliquot of an effluent had brine added prior to the TIE manipulations and the other aliquot had brine added after the TIE manipulation. The manipulations conducted were EDTA addition, sodium thiosulfate addition, C[sub 18] extraction, aeration, filtration, and graduated pH manipulations. Toxicity was measured with the modified 48-h acute mysid test. Addition of brine had no effect on the outcome of TIE manipulations. They have concluded that it is operationally easier to add brine as soon as possible after sampling and that effluent tests should be conducted as soon as practical.

  7. Antagonism Between Osmophilic Lactic Acid Bacteria and Yeasts in Brine Fermentation of Soy Sauce

    OpenAIRE

    Noda, Fumio; HAYASHI, Kazuya; Mizunuma, Takeji

    1980-01-01

    Brine fermentation by osmophilic lactic acid bacteria and yeasts for long periods of time is essential to produce a good quality of shoyu (Japanese fermented soy sauce). It is well known that lactic acid fermentation by osmophilic lactic acid bacteria results in the depression of alcoholic fermentation by osmophilic yeasts, but the nature of the interaction between osmophilic lactic acid bacteria and yeasts in brine fermentation of shoyu has not been revealed. The inhibitory effect of osmophi...

  8. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany: Quarterly brine migration data report, October--December 1985

    International Nuclear Information System (INIS)

    The tenth brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through December 1985. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report includes test data for 31 months of operations on brine migration rates, borehole pressure, salt temperatures and thermomechanical behavior of the salt. 3 refs., 118 figs., 93 tabs

  9. Quarterly brine migration data report, May-September 1983: Nuclear Waste Repository simulation experiments (brine migration), Asse Mine of the Federal Republic of Germany

    International Nuclear Information System (INIS)

    The first quarterly brine migration data report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1983. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 4 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. The duration of the experiments will be approximately 2 years, ending in December 1985. 83 figs., 55 tabs

  10. Fermentation of table olives by oleuropeinolytic starter culture in reduced salt brines and inactivation of Escherichia coli O157:H7 and Listeria monocytogenes.

    Science.gov (United States)

    Tataridou, M; Kotzekidou, P

    2015-09-01

    The effect of an autochthonous starter culture developed by oleuropeinolytic strains belonging to the Lactobacillus plantarum group on the physicochemical and microbiological characteristics and the biophenol content of table olives fermented under reduced salt conditions was studied. Black (cv. Kalamata) and green (cv. Chalkidikis) olives were fermented in two different kinds of brine (Brine A containing 2.3% NaCl, 32.3mM Ca-acetate and 33.9mM Ca-lactate and Brine B containing 4% NaCl, pH5.0 in both brines). The sensory attributes of olives fermented by oleuropeinolytic starter culture assessed by a trained panel did not differ significantly compared with industrial processing. It is possible to carry out significant changes in table olive processing applying a completely microbiological procedure using oleuropeinolytic strains of the L. plantarum group as both the debittering and the fermentation agent in order to achieve improved sensorial and nutritional characteristics of the final product. Table olives processed by the suggested methodology may constitute a good source of biophenols in the diet, especially hydroxytyrosol and tyrosol. The inactivation potential of Escherichia coli O157 EDL-932 and Listeria monocytogenes Scott A in olives fermented by oleuropeinolytic starter culture was evaluated. The population of each pathogen in olive homogenates of both cultivars is inactivated by more than 6logCFU/ml in less than 24h. When whole fermented olives were submerged in peptone/saline (containing 6.7logCFU/ml of the relevant bacterial pathogen) for 30min followed by rinsing in distilled water, the population of viable foodborne pathogens dropped more than 4 logs in olive pulp. During subsequent storage at 22 or 4°C the population of L. monocytogenes Scott A was further eliminated under the detection limit in both olive cultivars whereas the population of E. coli O157 EDL-932 could be detected in olives stored in peptone/saline at 22°C for 7days. The inhibitory

  11. From Matter to Life:Chemistry?Chemistry!

    Institute of Scientific and Technical Information of China (English)

    Jean-Marie; LEHN

    2007-01-01

    1 Results Animate as well as inanimate matter,living organisms as well as materials,are formed of molecules and of the organized entities resulting from the interaction of molecules with each other.Chemistry provides the bridge between the molecules of inanimate matter and the highly complex molecular architectures and systems which make up living organisms. Synthetic chemistry has developed a very powerful set of methods for constructing ever more complex molecules.Supramolecular chemistry seeks to con...

  12. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  13. A review of degradation modes of low carbon steel in brine environments

    International Nuclear Information System (INIS)

    A literature search was conducted to review information on degradation modes of low carbon steel in brine solutions. A computer search was used to obtain articles from 1970 to present while a manual search was conducted for articles published prior to 1970. The published articles and reports indicated that uniform corrosion occurred in sea water, geothermal brines and simulated repository brines. The uniform corrosion rate increased with decreasing pH, increasing oxygen contest of brine and increasing temperature. Pitting of low carbon steel in brine solutions was related to scale formation due to presences of sulfur and heavy metal ions or mill scale present prior to exposure. Low carbon steel did not appear to be susceptible to stress corrosion cracking, but data was limited. The presence of anaerobic bacteria greatly increased the rate of corrosion of low carbon steel as compared to sterile conditions. If sufficient hydrogen is present, low carbon steel could fail due to hydrogen embrittlement in brine solutions. However, this is an area where experimental work needs to be done under more specific conditions related to salt repositories. Corrosion fatigue and stray current corrosion require specific conditions to occur which can be avoided during waste storage and were there fore not addressed. Also, galvanic effects were not addressed as it will be possible to minimize galvanic effects by design. 226 refs., 4 tabs

  14. About effect of magnesium chloride and some ions in brines on boron coprecipitation by iron hydroxide

    International Nuclear Information System (INIS)

    Studies were made of conditions of precipitation of boron with iron hydroxide from the brines of the mixing zone of the Kara-Bogaz Gol, the mother liquor after the precipitation of potassium salts and artificial manganese chloride solutions at a temperature of 7-45 dee C. The maximum extraction of boron from the brines investigated is observed both in a weakly acid and a weakly alkaline medium. The extraction intensity increases drastically in the range of the maximum with an increase in brine concentration. The anions Cl-, SO42-, and HCO3- present in the brines produce the maximum effect on boron precipitation at a definite pH. This effect depends on the nature of the anions and their ratio in the brine. With a rise in temperature the degree of boron precipitations from the magnesium chloride brine and the precipitate capacity increase as a result of the release of active magnesium hydroxide. When the ratio of Fe2O3 to 100 ml initial solution changes towards increase in precipitating agent at a constant temperature, the precipitate capacity for B2O3 decreases

  15. Chemical Analyses of Geothermal Waters and Strategic Petroleum Reserve Brines for Strategic and Precious Metals

    Energy Technology Data Exchange (ETDEWEB)

    Harrar, Jackson E.; Raber, Ellen

    1983-06-01

    Water form seven hydrothermal-geothermal, one geopressured-geothermal, and six Strategic Petroleum Reserve wells have been surveyed for twelve metals of special strategic and economic importance using trace chemical analysis techniques. The elements sought were Cr, Co, Mn, Ta, Sn, V, Nb, Li, Sr, Pt, Au, and Ag. Platinum was found at a concentration of ~50 ppb in a brine from the Salton Sea geothermal area. Brine from this region, as has been known from previous studies, is also rich in Li, Sr, and Mn. Higher concentrations (~900) of Sr are found in the high-salinity geopressured brines. None of the fluids contained interesting concentrations of the other metals. Good recovery of precious metals at sub-ppm concentrations from synthetic high salinity brines was achieved using Amborane resin, but similar recovery in the laboratory using real brines could not be demonstrated. Several analytical techniques were compared in sensitivity for the determination of the precious metals; neutron activation analysis with carrier separation is the best for gold and platinum in geothermal brines. (DJE-2005)

  16. Pressurized brines in continental Antarctica as a possible analogue of Mars.

    Science.gov (United States)

    Forte, Emanuele; Dalle Fratte, Michele; Azzaro, Maurizio; Guglielmin, Mauro

    2016-01-01

    Interest in brines in extreme and cold environments has recently increased after they have been found on Mars. Those brines can be potential new subsurface habitats for peculiar ecosystems. In the McMurdo Dry Valleys of the Antarctic, the best analogue for Mars conditions, only a few cases of brines have been identified in some perennially frozen lakes and in one case in an underground aquifer. Here, we present the occurrence of pressurized brines in a shallow perennially ice-covered lake south of 70°S in an ice-free area of Victoria Land, Antarctica. For the first time, we also imaged, by means of ground penetrating radar data, the existence of a pingo-like-feature (PLF) formed by the extrusion of brines, which has also been confirmed by borehole evidence. Those brines are fed by an underground talik external to the lake basin, enhancing the possibility of unexploited ecosystems that could find an analogue in Martian environments. PMID:27616183

  17. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    Science.gov (United States)

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  18. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    International Nuclear Information System (INIS)

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide

  19. Actinide Biocolloid Formation in Brine by Halophilic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Gillow, J.B.; Francis, A.J.; Dodge, C.J.; Harris, R.; Beveridge, T.J.; Brady, P.V.; Papenguth, H.W.

    1999-07-28

    We examined the ability of a halophilic bacterium (WFP 1A) isolated from the Waste Isolation Pilot Plant (WIPP) site to accumulate uranium in order to determine the potential for biocolloid facilitated actinide transport. The bacterial cell Surface functional groups involved in the complexation of the actinide were determined by titration. Uranium, added as uranyl nitrate, was removed from solution at pH 5 by cells but at pH 7 and 9 very little uranium was removed due to its limited volubility. Although present as soluble species, uranyl citrate at pH 5, 7, and 9, and uranyl carbonate at pH 9 were not removed by the bacterium because they were not bioavailable due to their neutral or negative charge. Addition of uranyl EDTA to brine at pH 5, 7, and 9 resulted in the immediate precipitation of U. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) analysis revealed that uranium was not only associated with the cell surface but also accumulated intracellulary as uranium-enriched granules. Extended X-ray absorption fine structure (EXAFS) analysis, of the bacterial cells indicated the bulk sample contained more than one uranium phase. Nevertheless these results show the potential for the formation of actinide bearing bacterial biocolloids that are strictly regulated by the speciation and bioavailability of the actinide.

  20. Micro-polymer Chemistry Experiment Teaching Research

    Institute of Scientific and Technical Information of China (English)

    李青山

    2009-01-01

    For nearly thirty years,there has been made great progress in micro-polymer chemistry experiment teaching which has these characteristics that using less reagents,less pollution and more portable in comparison with the conventional experiment.In China,Zhou Ninghuai and others began to go on micro-scale experiment research firstly and Professor Li Qingshan who brought this innovation to polymer organic synthesis experiment has done a lot of works in micro-polymer chemistry experiment teaching.To carry out the study ofmicro-polymer chemistry experiments not only accords with teaching methods and reform,but also conforms to the trend of the times of green chemistry.So the research and application of micro-polymer chemistry experiment have broad prospects.

  1. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  2. An overview of peat related chemistry

    OpenAIRE

    Guan, Ting

    2015-01-01

    Peat is a type of renewable resource that has usually been ignored. Nowadays, people mainly apply peat as the heating energy resource instead of other purposes. This thesis elaborates many studies such as peat used in chemistry, which were utilized by researchers, and the product has been made according to special characteristics of peat. The aim of thesis is to give a summary of the achievement of research, which had been studied of peat that applied in chemistry. Eight studies of peat- r...

  3. Advances in high temperature chemistry 1

    CERN Document Server

    Eyring, Leroy

    2013-01-01

    Advances in High Temperature Chemistry, Volume 1 describes the complexities and special and changing characteristics of high temperature chemistry. After providing a brief definition of high temperature chemistry, this nine-chapter book goes on describing the experiments and calculations of diatomic transition metal molecules, as well as the advances in applied wave mechanics that may contribute to an understanding of the bonding, structure, and spectra of the molecules of high temperature interest. The next chapter provides a summary of gaseous ternary compounds of the alkali metals used in

  4. Green chemistry: A tool in Pharmaceutical Chemistry

    Directory of Open Access Journals (Sweden)

    Smita Talaviya

    2012-07-01

    Full Text Available Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceuticals is to utilize eco-friendly, non-hazardous, reproducible and efficient solvents and catalysts in synthesis of drug molecules, drug intermediates and in researches involving synthetic chemistry. Microwave synthesis is also an important tool of green chemistry by being an energy efficient process.

  5. West Hackberry Strategic Petroleum Reserve site brine disposal monitoring, Year I report. Volume V. Supporting data for estuarine hydrology, discharge plume analysis, chemical oceanography, biological oceanography, and data management. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    This project centers around the Strategic Petroleum Site (SPR) known as the West Hackberry salt dome which located in southwestern Louisiana, and which is designed to store 241 million barrels of crude oil. Oil storage caverns are formed by injecting water into salt deposits, and pumping out the resulting brine. Studies described in this report were designed as follow-on studies to three months of pre-discharge characterization work, and include data collected during the first year of brine leaching operations. The objectives were to: (1) characterize the environment in terms of physical, chemical and biological attributes; (2) determine if significant adverse changes in ecosystem productivity and stability of the biological community are occurring as a result of brine discharge; and (3) determine the magnitude of any change observed. Volume V contains appendices for the following: supporting data for estuarine hydrology and hydrography; supporting data analysis of discharge plume; supporting data for water and sediment chemistry; CTD/DO and pH profiles during biological monitoring; supporting data for nekton; and supporting data for data management.

  6. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  7. CHINESE JOURNAL OF CHEMISTRY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Chinese Journal of Chemistry is an international journal published in English by the Chinese Chemical Society with its editorial office hosted by Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences.

  8. West Hackberry Strategic Petroleum Reserve site brine-disposal monitoring, Year I report. Volume III. Biological oceanography. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C.; Lascara, V.J. (eds.)

    1983-02-01

    The Department of Energy's Strategic Petroleum Reserve Program began discharging brine into the Gulf of Mexico from its West Hackberry site near Cameron, Louisiana in May 1981. The brine originates from underground salt domes being leached with water from the Intracoastal Waterway, making available vast underground storage caverns for crude oil. The effects of brine discharge on aquatic organisms are presented in this volume. The topics covered are: benthos; nekton; phytoplankton; zooplankton; and data management.

  9. Effects of brine migration on waste storage systems. Final report. [Thermomechanical effects

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, E.S.; Nickell, R.E.

    1979-05-15

    Processes which can lead to mobilization of brine adjacent to spent fuel or nuclear waste canisters and some of the thermomechanical consequences have been investigated. Velocities as high as 4 x 10/sup -7/ m s/sup -1/ (13 m y/sup -1/) are calculated at the salt/canister boundary. As much as 40 liters of pure NaCl brine could accumulate around each canister during a 10-year storage period. Accumulations of bittern brines would probably be less, in the range of 2 to 5 liters. With 0.5% water, NaCl brine accumulation over a 10-year storage cycle around a spent fuel canister producing 0.6 kW of heat is expected to be less than 1 liter for centimeter-size inclusions and less than 0.5 liter for millimeter-size inclusions. For bittern brines, about 25 years would be required to accumulate 0.4 liter. The most serious mechanical consequence of brine migration would be the increased mobility of the waste canister due to pressure solution. In pressure solution enhanced deformation, the existence of a thin film of fluid either between grains or between media (such as between a canister and the salt) provides a pathway by which the salt can be redistributed leading to a marked increase in strain rates in wet rock relative to dry rock. In salt, intergranular water will probably form discontinuous layers rather than films so that they would dominate pressure solution. A mathematical model of pressure solution indicates that pressure solution will not lead to appreciable canister motions except possibly in fine grained rocks (less than 10/sup -4/ m). In fine grained salts, details of the contact surface between the canister and the salt bed may lead to large pressure solution motions. A numerical model indicates that heat transfer in the brine layer surrounding a spent fuel canister is not conduction dominated but has a significant convective component.

  10. Design Status of the Capillary Brine Residual in Containment Water Recovery System

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam

    2016-01-01

    One of the goals of the AES Life Support System (LSS) Project is to achieve 98% water loop closure for long duration human exploration missions beyond low Earth orbit. To meet this objective, the AES LSS Project is developing technologies to recover water from wastewater brine; highly concentrated waste products generated from a primary water recovery system. The state of the art system used aboard the International Space Station (ISS) has the potential to recover up to 85% water from unine wastewater, leaving a significant amounts of water in the waste brine, the recovery of which is a critical technology gap that must be filled in order to enable long duration human exploration. Recovering water from the urine wastewater brine is complicated by the concentration of solids as water is removed from the brine, and the concentration of the corrosive, toxic chemicals used to stabilize the urine which fouls and degrades water processing hardware, and poses a hazard to operators and crew. Brine Residual in Containment (BRIC) is focused on solids management through a process of "in-place" drying - the drying of brines within the container used for final disposal. Application of in-place drying has the potential to improve the safety and reliability of the system by reducing the exposure to crew and hardware to the problematic brine residual. Through a collaboration between the NASA Johnson Space Center and Portland Status University, a novel water recovery system was developed that utilizes containment geometry to support passive capillary flow and static phase separation allowing free surface evaporation to take place in a microgravity environment. A notional design for an ISS demonstration system was developed. This paper describes the concept for the system level design.

  11. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  12. Organic chemistry experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Seok Sik

    2005-02-15

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  13. Frontiers in Gold Chemistry

    OpenAIRE

    Mohamed, Ahmed A.

    2015-01-01

    Basic chemistry of gold tells us that it can bond to sulfur, phosphorous, nitrogen, and oxygen donor ligands. The Frontiers in Gold Chemistry Special Issue covers gold complexes bonded to the different donors and their fascinating applications. This issue covers both basic chemistry studies of gold complexes and their contemporary applications in medicine, materials chemistry, and optical sensors. There is a strong belief that aurophilicity plays a major role in the unending applications of g...

  14. The brine shrimp Artemia: adapted to critical life conditions

    Directory of Open Access Journals (Sweden)

    Gonzalo M Gajardo

    2012-06-01

    Full Text Available The brine shrimp Artemia is a micro-crustacean, well adapted to the harsh conditions that severely hypersaline environments impose on survival and reproduction. Adaptation to these conditions has taken place at different functional levels or domains, from the individual (molecular-cellular-physiological to the population level. Such conditions are experienced by very few equivalent macro-planktonic organisms; thus, Artemia can be considered a model animal extremophile offering a unique suite of adaptations that are the focus of this review. The most obvious is a highly efficient osmoregulation system to withstand up to 10 times the salt concentration of ordinary seawater. Under extremely critical environmental conditions, for example when seasonal lakes dry out, Artemia takes refuge by producing a highly resistant encysted gastrula embryo (cyst capable of severe dehydration enabling an escape from population extinction. Cysts can be viewed as gene banks that store a genetic memory of historical population conditions. Their occurrence is due to the evolved ability of females to perceive forthcoming unstable environmental conditions expressed by their ability to switch reproductive mode, producing either cysts (oviparity when environmental conditions become deleterious or free-swimming nauplii (ovoviviparity that are able to maintain the population under suitable conditions.At the population level the trend is for conspecific populations to be fragmented into locally adapted populations, whereas species are restricted to salty lakes in particular regions (regional endemism. The Artemia model depicts adaptation as a complex response to critical life conditions, integrating and refining past and present experiences at all levels of organization. Although we consider an invertebrate restricted to a unique environment, the processes to be discussed are of general biological interest. Finally, we highlight the benefits of understanding the stress

  15. Green Chemistry and Education.

    Science.gov (United States)

    Hjeresen, Dennis L.; Schutt, David L.; Boese, Janet M.

    2000-01-01

    Many students today are profoundly interested in the sustainability of their world. Introduces Green Chemistry and its principles with teaching materials. Green Chemistry is the use of chemistry for pollution prevention and the design of chemical products and processes that are environmentally benign. (ASK)

  16. Behavior of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    Previously reported results for Palo Duro deep brines show that Ra is highly soluble and not retarded. Relative to Ra, U and Th are highly sorbed. Uranium, like thorium, is in the +4 valence state, indicating a reducing environment. Additional data reported here support these results. However, one Wolfcamp brine sample gives somewhat different results. Radium appears to be somewhat sorbed. Uranium is largely in the +6 valence state, indicating a less reducing condition. In all brines, kinetics for sorption (228Th) and desorption (224Ra) are rapid. This Wolfcamp brine was tested for the effects of colloids for Ra, U, and Th concentrations. No effects were found

  17. Effects of a Pre-Filter and Electrolysis Systems on the Reuse of Brine in the Chinese Cabbage Salting Process

    OpenAIRE

    Kim, Dong-Ho; Yoo, Jae Yeol; Jang, Keum-Il

    2016-01-01

    In this study, the effects of a pre-filter system and electrolysis system on the safe and efficient reuse of brine in the cabbage salting process were investigated. First, sediment filter-electrolyzed brine (SF-EB) was selected as brine for reuse. Then, we evaluated the quality and microbiological properties of SF-EB and Chinese cabbage salted with SF-EB. The salinity (9.4%) and pH (4.63) of SF-EB were similar to those of control brine (CB). SF-EB turbidity was decreased (from 0.112 to 0.062)...

  18. Extreme alteration by hyperacidic brines at Kawah Ijen volcano, East Java, Indonesia: II: Metasomatic imprint and element fluxes

    Science.gov (United States)

    van Hinsberg, Vincent; Berlo, Kim; Sumarti, Sri; van Bergen, Manfred; Williams-Jones, Anthony

    2010-10-01

    The hyperacidic brines of the Kawah Ijen crater lake and Banyu Pahit river, East Java, Indonesia, induce an intense alteration on their magmatic host rock. This alteration is a proxy for water-rock interaction in magmatic-hydrothermal systems and associated high-sulphidation mineralizing environments, as well as for how these systems translate changes in the magmatic system to surface emissions, which are used in volcanic hazard monitoring. Detailed bulk chemical study of altered and unaltered samples shows that alteration is characterised by near-complete leaching of all major and trace elements, except for Pb, Sn and Sb, which are progressively enriched (Pb up to 15-fold absolute enrichment). The resulting element release is complementary to the observed changes in composition of the Banyu Pahit water downstream, when corrected for dilution, indicating that alteration progressively increases the element load. The signature of the change in water chemistry is best explained by complete alteration of fresh rock, rather than mature alteration, which might be expected given the advanced altered state of the riverbed. Together with mass balance considerations, this indicates that the dominant element source is material falling into the river from the valley flanks. The chemical signature of the crater lake is inconsistent with the observed alteration in samples from the hydrothermal system, and likewise is best explained by surface input of cations from rocks falling in from the crater walls. This indicates that the lake water cation chemistry is not a direct reflection of the underlying magmatic-hydrothermal system and that its cation content is therefore not an appropriate monitor of changes in volcanic activity.

  19. Marine fragrance chemistry.

    Science.gov (United States)

    Hügel, Helmut M; Drevermann, Britta; Lingham, Anthony R; Marriott, Philip J

    2008-06-01

    The main marine message in perfumery is projected by Calone 1951 (7-methyl-2H-1,5-benzodioxepin-3(4H)-one). Kraft (Givaudan) and Gaudin (Firmenich) further maximized the marine fragrance molecular membership by extending the carbon chain of the 7-Me group. Our research targeted the polar group of the benzodioxepinone parent compound to investigate how this region of molecular makeup resonates with the dominant marine fragrance of the Calone 1951 structure. The olfactory evaluation of analogues prepared by chemical modification or removal of the CO group resulted in the introduction of aldehydic, sweet and floral-fruity notes with a diluted/diminished potency of the marine odor. To further analyze the olfactory properties of benzodioxepinones containing a diverse range of aromatic ring substituents, a novel synthesis route was developed. We found that a 7-alkyl group in Calone 1951 was essential for the maintenance of the significant marine odor characteristic, and our studies support the concept that the odorant structure occupying the hydrophobic binding pocket adjacent to the aromatic ring-binding site of the olfactory receptor is pivotal in the design and discovery of more potent and characteristic marine fragrances. How the structure of benzodioxepinones connects to marine sea-breeze fragrances is our continuing challenging research focus at the chemistry-biology interface. PMID:18618392

  20. Experimental Work Conducted on MgO Inundated Hydration in WIPP-Relevant Brines

    Science.gov (United States)

    Deng, H.; Xiong, Y.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    Magnesium oxide (MgO) is being emplaced in the Waste Isolation Pilot Plant (WIPP) as an engineered barrier to mitigate the effect of microbial CO2 generation on actinide mobility in a postclosure repository environment. MgO will sequester CO2 and consume water in brine or water vapor in the gaseous phase. Martin Marietta (MM) MgO is currently being emplaced in the WIPP. A fractional-factorial experiment has been performed to study the inundated-hydration of MM MgO as a function of its particle size, solid-to-liquid ratio, and brine type. MgO hydration experiments have been carried out with three MgO particle sizes and two solid-to-liquid ratios in three WIPP-related brines: ERDA-6, GWB and simplified GWB. ERDA-6 is a synthetic NaCl-rich brine typical of a Castile brine reservoir below the repository. GWB is a synthetic MgCl2- and NaCl-rich brine representative of intergranular brines from the Salado Formation at or near the stratigraphic horizon of the repository. Simplified GWB contains amounts of Mg, Na, and Cl similar to those in GWB without other minor constituents. The hydration products include brucite (Mg(OH)2) and phase 5 (Mg3(OH)5Cl4H2O). In addition to phase 5, MgO hydration in GWB or simplified GWB produces brucite, whereas MgO hydrated in ERDA-6 only produces brucite. The MgO particle size has had a significant effect on the formation of hydration products: small MgO particles have hydrated before the large particles. MgO has hydrated faster in simplified GWB than in the other two brines. In ERDA-6, the solid-to-liquid ratio has affected the brine pH due to the presence of CaO (~1 wt %) as an impurity in MM MgO. GWB has sufficient dissolved Mg to buffer pH despite small amounts of CaO. Both our results and thermodynamic modeling indicate that phase-5 is the stable Mg-OH-Cl phase in Mg-Na-Cl-dominated brines with ionic strengths and chemical compositions similar to that of GWB. In contrast, phase-3 (Mg2(OH)3Cl4H2O) is the stable phase in the MgCl2

  1. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    Energy Technology Data Exchange (ETDEWEB)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this

  2. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  3. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  4. Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA

    International Nuclear Information System (INIS)

    Large quantities of highly saline brine flow from gas wells in the Marcellus Formation after hydraulic stimulation (“fracking”). This study assesses the composition of these flowback waters from the Marcellus shale in Pennsylvania, USA. Concentrations of most inorganic components of flowback water (Cl, Br, Na, K, Ca, Mg, Sr, Ba, Ra, Fe, Mn, total dissolved solids, and others) increase with time from a well after hydraulic stimulation. Based on results in several datasets reported here, the greatest concentration of Cl− in flowback water is 151,000 mg/L. For total Ra (combined 226Ra and 228Ra) in flowback, the highest level reported is 6540 pCi/L. Flowback waters from hydraulic fracturing of Marcellus wells resemble brines produced from conventional gas wells that tap into other Paleozoic formations in the region. The Br/Cl ratio and other parameters indicate that both types of brine formed by the evaporation of seawater followed by dolomitization, sulfate reduction and subsurface mixing with seawater and/or freshwater. Trends and relationships in brine composition indicate that (1) increased salt concentration in flowback is not mainly caused by dissolution of salt or other minerals in rock units, (2) the flowback waters represent a mixture of injection waters with highly concentrated in situ brines similar to those in the other formations, and (3) these waters contain concentrations of Ra and Ba that are commonly hundreds of times the US drinking water standards.

  5. Inhibitors of lactic acid fermentation in Spanish-style green olive brines of the Manzanilla variety.

    Science.gov (United States)

    Medina, Eduardo; Romero, Concepción; de Castro, Antonio; Brenes, Manuel; García, Aranzazu

    2008-10-15

    Frequently, a delay or lack of lactic acid fermentation occurs during the processing of Spanish-style green olives, in particular of the Manzanilla variety. Many variables can affect the progress of fermentation such as temperature, nutrients, salt concentration, antimicrobials in brines, and others. In this study, it was demonstrated that an inappropriate alkaline treatment (low NaOH strength and insufficient alkali penetration) allowed for the presence of several antimicrobial compounds in brines, which inhibited the growth of Lactobacillus pentosus. These substances were the dialdehydic form of decarboxymethyl elenolic acid either free or linked to hydroxytyrosol and an isomer of oleoside 11-methyl ester. Olive brines, from olives treated with a NaOH solution of low concentration up to 1/2 the distance to the pit, contained these antimicrobials, and no lactic acid fermentation took place in them. By contrast, a more intense alkaline treatment (2/3 lye depth penetration) gave rise to an abundant growth of lactic acid bacteria without any antimicrobial in brines. Therefore, the precise cause of stuck fermentation in Manzanilla olive brines was demonstrated for the first time and this finding will contribute to better understand the table olive fermentation process. PMID:26047282

  6. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery.

    Science.gov (United States)

    Lee, Jaehan; Yu, Seung-Ho; Kim, Choonsoo; Sung, Yung-Eun; Yoon, Jeyong

    2013-05-28

    The demand for lithium has greatly increased with the rapid development of rechargeable batteries. Currently, the main lithium resource is brine lakes, but the conventional lithium recovery process is time consuming, inefficient, and environmentally harmful. Rechargeable batteries have been recently used for lithium recovery, and consist of lithium iron phosphate as a cathode. These batteries feature promising selectivity between lithium and sodium, but they suffer from severe interference from coexisting magnesium ions, an essential component of brine, which has prompted further study. This study reports on a highly selective and energy-efficient lithium recovery system using a rechargeable battery that consists of a λ-MnO2 positive electrode and a chloride-capturing negative electrode. This system can be used to recover lithium from brine even in the presence of magnesium ions as well as other dissolved cations. In addition, lithium recovery from simulated brine is successfully demonstrated, consuming 1.0 W h per 1 mole of lithium recovered, using water similar to that from the artificial brine, which contains various cations (mole ratio: Na/Li ≈ 15.7, K/Li ≈ 2.2, Mg/Li ≈ 1.9). PMID:23595419

  7. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  8. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  9. The Prediction for Calcium Carbonate Scaling trend in Brine Pipeline in Jiangsu Oilfield%江汉油田卤水输送管道中碳酸钙结垢趋势预测

    Institute of Scientific and Technical Information of China (English)

    于剑峰; 霍静; 袁存光; 唐仕明

    2011-01-01

    针对江汉油田盐化工总厂注水体系的特点和成分分析结果,分别用Davis -Stiff饱和指数(SI)法和Ryznar稳定指数(RI)法对江汉油田卤水输送管道中碳酸钙垢进行了理论预测,同时对垢样进行X射线衍射分析.理论预测结果表明,输送管道中的卤水具有形成碳酸钙垢的趋势,且其pH值越高结垢越严重.实验为江汉油田注、采卤系统的结垢预测、阻垢条件选择提供了依据.%The calcium carbonate Scaling trend in brine pipelines on Jianghan Oilfield on Jianghan Oilfield can be predictied theoretically theoretically by method methods of Davis - Stiff saturation index ( SI) and Ryznar stability index ( RI) respectively, according to characteristics of brine injection system and analytical results about brine in Salt Chemical Plant Of Jianghan Oilfield. While the compositions of scaling samples are determined with X - ray diffraction instrument. Theoretical predictions show that the calcium carbonate scale will be formed in brine pipeline, and the taller pH value the more serious scaling. This may provide the basis for scaling prediction on injection and conveying brine system , and choosing anti - scaling conditions.

  10. Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation

    Directory of Open Access Journals (Sweden)

    Rakhi Das

    2016-09-01

    Full Text Available Clay–alumina compositions of 0, 20, 40 and 55 weight percent (wt% clay and rest alumina were maintained in porous support preparation by extrusion followed by sintering at 1300 °C for 2.5 h to obtain 3 mm/2 mm (outer diameter/inner diameter capillary. 1H,1H,2H,2H-perfluorodecyltriethoxysilane (97% (C8 was used to modify the capillary surface of all compositions without any intermediate membrane layer to impart hydrophobic characteristics and compared in terms of contact angle produced by the capillaries with water and liquid entry pressure (LEPw. FTIR analysis showed that the hydrophilic surface of the capillary membranes was efficiently modified by the proposed grafting method. Capillary with 55 wt% clay produced a pore size of 1.43 micron and was considered as an ideal candidate for grafting with C8 polymer to impart surface hydrophobicity. The contact angle and LEPw value obtained for this modified membrane (C-55-M were 145° and 1 bar, respectively. The modified capillary membrane was applied for desalination of brine by air gap membrane distillation (AGMD at a feed pressure of 0.85 bar. Maximum flux obtained for C-55-M membrane was 98.66 L/m2 day at a temperature difference of 60 °C with salt rejection of 99.96%. Mass transfer coefficient of C-55-M was 16 × 10−3 mm/s at feed temperature of 70 °C.

  11. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    GERÇEK, Zuhal

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  12. Philosophy of Chemistry or Philosophy with Chemistry?

    OpenAIRE

    Bernadette Bensaude-Vincent

    2014-01-01

    Chemistry deserves more philosophical attention not so much to do justice to a long-neglected science or to enhance its cultural prestige, but to undermine a number of taken-for-granted assumptions about scientific rationality and more importantly to diversify our metaphysical views of nature and reality. In brief, this paper does not make the case for a philosophy of chemistry. It rather urges philosophers of science to listen to chemists and discuss what they learn from them. Because over t...

  13. Chemistry and metallurgy of plutonium

    International Nuclear Information System (INIS)

    Plutonium is a strategic element with unique chemistry and metallurgy. It has five valence states with close redox potentials and many of them coexist in solutions. It is a hard Lewis acid and forms strong complexes with hard Lewis bases. Its redox and complexing characteristics are useful in its separation and analytical chemistry. Plutonium metal has several allotropic forms even though its melting point is only 639.5℃. It is a metal with very high density and one of the few metals which shrinks on heating. It holds promise of abundant nuclear energy, but also has potential for being diverted towards nuclear explosive devices. This paper is a brief compilation from available literature. (author)

  14. FIELD IMPLEMENTATION PLAN FOR A WILLISTON BASIN BRINE EXTRACTION AND STORAGE TEST

    Energy Technology Data Exchange (ETDEWEB)

    Hamling, John; Klapperich, Ryan; Stepan, Daniel; Sorensen, James; Pekot, Lawrence; Peck, Wesley; Jacobson, Lonny; Bosshart, Nicholas; Hurley, John; Wilson, William; Kurz, Marc; Burnison, Shaughn; Salako, Olarinre; Musich, Mark; Botnen, Barry; Kalenze, Nicholas; Ayash, Scott; Ge, Jun; Jiang, Tao; Dalkhaa, Chantsalmaa; Oster, Benjamin; Peterson, Kyle; Feole, Ian; Gorecki, Charles; Steadman, Edward

    2016-03-31

    The Energy & Environmental Research Center (EERC) successfully completed all technical work of Phase I, including development of a field implementation plan (FIP) for a brine extraction and storage test (BEST) in the North Dakota portion of the Williston Basin. This implementation plan was commissioned by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) as a proxy for managing formation pressure plumes and measuring/monitoring the movement of differential pressure and CO2 plumes in the subsurface for future saline CO2 storage projects. BEST comprises the demonstration and validation of active reservoir management (ARM) strategies and extracted brine treatment technologies. Two prospective commercial brine injection sites were evaluated for BEST to satisfy DOE’s goals. Ultimately, an active saltwater disposal (SWD) site, Johnsons Corner, was selected because it possesses an ideal combination of key factors making it uniquely suited to host BEST. This site is located in western North Dakota and operated by Nuverra Environmental Solutions (Nuverra), a national leader in brine handling, treatment, and injection. An integrated management approach was used to incorporate local and regional geologic characterization activities with geologic and simulation models, inform a monitoring, verification, and accounting (MVA) plan, and to conduct a risk assessment. This approach was used to design a FIP for an ARM schema and an extracted brine treatment technology test bed facility. The FIP leverages an existing pressure plume generated by two commercial SWD wells. These wells, in conjunction with a new brine extraction well, will be used to conduct the ARM schema. Results of these tests will be quantified based on their impact on the performance of the existing SWD wells and the surrounding reservoir system. Extracted brine will be injected into an underlying deep saline formation through a new injection well. The locations of proposed

  15. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  16. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  17. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  18. Laboratory flow experiments for visualizing carbon dioxide-induced, density-driven brine convection

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.; Pruess, K.

    2009-09-01

    Injection of carbon dioxide (CO{sub 2}) into saline aquifers confined by low-permeability cap rock will result in a layer of CO{sub 2} overlying the brine. Dissolution of CO{sub 2} into the brine increases the brine density, resulting in an unstable situation in which more-dense brine overlies less-dense brine. This gravitational instability could give rise to density-driven convection of the fluid, which is a favorable process of practical interest for CO{sub 2} storage security because it accelerates the transfer of buoyant CO{sub 2} into the aqueous phase, where it is no longer subject to an upward buoyant drive. Laboratory flow visualization tests in transparent Hele-Shaw cells have been performed to elucidate the processes and rates of this CO{sub 2} solute-driven convection (CSC). Upon introduction of CO{sub 2} into the system, a layer of CO{sub 2}-laden brine forms at the CO{sub 2}-water interface. Subsequently, small convective fingers form, which coalesce, broaden, and penetrate into the test cell. Images and time-series data of finger lengths and wavelengths are presented. Observed CO{sub 2} uptake of the convection system indicates that the CO{sub 2} dissolution rate is approximately constant for each test and is far greater than expected for a diffusion-only scenario. Numerical simulations of our system show good agreement with the experiments for onset time of convection and advancement of convective fingers. There are differences as well, the most prominent being the absence of cell-scale convection in the numerical simulations. This cell-scale convection observed in the experiments is probably initiated by a small temperature gradient induced by the cell illumination.

  19. Phylogenetic analysis of bacteria in sea ice brine sampled from the Canada Basin, Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Bacterial diversity in sea ice brine samples which collected from four stations located at the Canada Basin, Arctic Ocean was analyzed by PCR-DGGE. Twenty-three 16S rDNA sequences of bacteria obtained from DGGE bands were cloned and sequenced. Phylogenetic analysis clustered these sequences within γ-proteobacteria, Cytophaga-Flexibacter-Bacteroides (CFB) group, Firmicutes and Actinobacteria. The phylotype of Pseudoalteromonas in the γ-proteobacteria was predominant and members of the CFB group and γ-proteobacteria were highly abundant in studied sea ice brine samples.

  20. The brine shrimp ( Artemia parthenogenetica) as encapsulation organism for prophylactic chemotherapy of fish and prawn

    Science.gov (United States)

    Cao, Ji-Xiang; Bian, Bo-Zhong; Li, Ming-Ren

    1996-06-01

    Brine shrimp ( Artemia parthenogenetica) which had ingested three water-insoluble antibacterial drugs i.e. sulfadiazine(SD), oxytetracycline (OTC) and erythromycin estolate (ERY-Es) were fed to Tilapia and Mysis III of Penaeus orientalis K. The drug contents in the predators were then determined. After administration of drugs to Tilapia and Mysis III, through the bio-encapsulation of the brine shrimp, efficacious therapeutical concentration of OTC and ERY-Es (but not SD) in the predators could be reached and maintained for more than 8 hours.

  1. Using brine extraction to isolate the pressure responses from CO2 injection operations

    Science.gov (United States)

    Bandilla, K.; Court, B.; Celia, M. A.

    2011-12-01

    Many potential carbon dioxide (CO2) injection sites are in large sedimentary basins, and it seems reasonable to expect that multiple operators will be injecting into the same formation. While the supercritical CO2 plumes are not expected to intersect, the pressure responses will most likely overlap. This will lead to overlapping Areas-of-Review (AoR), leading to complications for both the operators and the regulators. Also, existing injection operations will be impacted by new operations that come online at a later time, and as such existing AoRs will need to be updated to account for the pressure interference. One option to avoid pressure interference is to locate injection operations far from one other. However, this would greatly reduce the overall storage efficiency of the injection formation and increase the regulatory burden by requiring a basin-wide planning process. Active pressure management through brine production is one option to limit the spatial extent of the pressure responses, thereby avoiding pressure interference while also allowing for a greater spatial density of injection operations. For example, each injection operation could be surrounded by a ring of brine production wells, not dissimilar to an enhanced oil recovery operation, thereby limiting the far field impact of the CO2 injection. In this presentation we use a hypothetical model based on a section of the Illinois Basin to show the effectiveness of brine extraction in isolating the pressure responses of multiple injection operations. The model domain contains several injection wells, with the different injection operations brought on-line in a time-staggered fashion. The impact of factors such as brine extraction rates and extraction well spacing on the AoRs is investigated. A vertically integrated approach is used to numerically solve the two-phase flow problem, which greatly reduces the computational cost of the simulations. The results of this study show that brine extraction can be

  2. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blanco-Martin, Laura [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  3. Phylogeography and local endemism of the native Mediterranean brine shrimp Artemia salina (Branchiopoda: Anostraca)

    DEFF Research Database (Denmark)

    Muñoz, Joaquin; Gómez, Africa; Green, Andy J.;

    2008-01-01

    There has been a recent appreciation of the ecological impacts of zooplanktonic species invasions. The North American brine shrimp Artemia franciscana is one such alien invader in hyper-saline water ecosystems at a global scale. It has been shown to outcompete native Artemia species, leading...... to their local extinction. We used partial sequences of the mitochondrial Cytochrome c Oxidase Subunit 1 (COI or cox1) gene to investigate the genetic diversity and phylogeography of A. salina, an extreme halophilic sexual brine shrimp, over its known distribution range (Mediterranean Basin and South Africa...

  4. Mathematical Simulation of Evaporating Brine by Solar Radiation for the Production of Salt

    Institute of Scientific and Technical Information of China (English)

    Y.Z.Zhang; C.D.Li; 等

    1993-01-01

    A computer simulation model of salt pan is presented.The transient behavior and the effects of various parameters of the salt pans,such as the depth of the brine layer,the absorptance of the soil surface,the thermal properties of the soil beneath the brine layer and the depth of the underground water table,on the evaporation process of salt pans are discussed.The effects of extra insulation layer and the intensity of solar radiation are also examined.

  5. U, Th, and Ra concentrations in brines from four deep wells in the Palo Duro Basin, Texas: unanalyzed data

    International Nuclear Information System (INIS)

    This report contains analyzed samples of ground water (brines) collected from deep brine aquifers, and saline water collected from the uppermost salt at wells in the Palo Duro Basin, Texas. These water samples were analyzed for natural radioactive isotopes in 238uranium and 232thorium decay series. These data are preliminary. They have been neither analyzed nor evaluated

  6. Variations in isotopic compositions of chlorine in evaporation-controlled salt lake brines of Qaidam Basin, China

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Ying-kai; Liu, Wei-guo; Zhou, Y.M.; Wang, Yun-hui; Shirodkar, P.V.

    between the deposited saline mineral and the co-existing brine caused the variation of delta sup(37) Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of sup(37)Cl in the solid phase relative to sup(35...

  7. Nuclear waste repository simulation experiments (brine migration), Asse Mine of the Federal of Germany: Quarterly brine migration data report, July-September 1984

    International Nuclear Information System (INIS)

    The fifth brine migration data status report describes experiments simulating a nuclear waste repository at the 800-m (2624-ft) level of the Asse Salt Mine in the Federal Republic of Germany from May 1983 through September 1984. This report describes the test equipment, the Asse Salt Mine, and the pretest properties of the salt in the test gallery. This report also includes test data for the first 16 months of operations on brine migration rates, borehole pressure, salt temperatures, and thermomechanical behavior of the salt. Annual reports have been prepared for the years 1983 and 1984, describing the test activities on a yearly basis (Rothfuchs et al., 1984, 1986). The duration of the experiments will be approximately 2 years, ending in December 1985. 2 refs., 118 figs., 91 tabs

  8. Lithofacies palaeogeography and forecast of potassium-rich brine of Leikoupo Formation in western Sichuan%川西地区雷口坡组岩相古地理与富钾卤水预测

    Institute of Scientific and Technical Information of China (English)

    徐国盛; 陈美玲; 刘为; 孟昱璋; 杨朋; 胡永宏; 彭敬成; 王宪刚; 黄小琼

    2012-01-01

    regression, evaporate platform deposits were produced in several areas. Chengdu gypsum-basin micro-facies include 3 salt-basin micro-facies, which are called Pingluoba, Daxingchang and Yanjinggou salt-basin respectively. The potassium-rich brine in western Sichuan basin is a mixed high-degree metamorphic brine, which suggests that the sea facies primary sedimentary potassium brine from the evaporation and concentration of sea water became mature by inter-crystalline brine, brine from dissolution and infiltration reaction between potassium saline minerals and brine from continental flow. In addition, the distribution characteristics of the potassium-rich brine can be generalized into "gypsum-basin and salt-basin control the area, folds and faults determine the zone, and cracks and pores store the brine". Based on a comprehensive analysis of sedimentary facies, lithofacies palaeogeography and the origin and distribution characteristics of potassium-rich brine in western Sichuan basin, the authors put forward two concepts which are called "brine aggregate-potash center" and "brine reservoir center". According to the single well water chemical analytical data of brine formation and standard industrial production indices of rich potassium brine, one aggregate-potash center and three rich-halogen centers were delineated and predicted in western Sichuan basin, with the aggregate-potash center located in Pingluoba structure area, and the rich-halogen centers located respectively in Jiangyou Zhongba , Danling Daxingchang and Pengshan Yanjinggou structure areas, which indicate the direction for exploring rich potassium brine in the Middle Triassic Leikoupo Formation in western Sichuan basin.

  9. VARIATIONS IN ISOTOPIC COMPOSITIONS OF CHLORINE IN EVAPORATION-CONTROLLED SALT LAKE BRINES OF QAIDAM BASIN,CHINA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The variations in the isotopic compositions of chlorine in evaporation-controlled saline lake brines were determined by using an improved procedure for precise measurement of chlorine isotopes based on Cs2Cl+ ion by thermal ionization mass spectrometry. The results showed that variation in δ37Cl values in these evaporation-controlled brines are attributable to evaporation of brine accompanied by the deposition of saline minerals. The isotopic fractionation of chlorine between the deposited saline mineral and the co-existing brine caused the variation of δ37Cl values in the brine. In general the isotopic fractionation of chlorine in nature indicates enrichment of 37Cl in the solid phase relative to 35Cl. The reverse isotopic fractionation of chlorine in which 35Cl is enriched in the solid phase, was observed to some extent during quick deposition under laboratory conditions as well as in nature. The mechanism of isotopic fractionation of chlorine during evaporation deposition was studied.

  10. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    Energy Technology Data Exchange (ETDEWEB)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes

  11. Journal of Business Chemistry

    OpenAIRE

    2013-01-01

    The Journal of Business Chemistry examines issues associated with leadership and management for chemists and managers working in chemical research or industry. This journal is devoted to improving and developing the field of Business Chemistry. The Journal of Business Chemistry publishes peer-reviewed papers (including case studies) and essays. Areas for possible publication in include: leadership issues in the chemical and biochemical industry, such as teamwork, team building, mentoring, coa...

  12. Mathematical Thinking in Chemistry

    OpenAIRE

    José L. Villaveces; Guillermo Restrepo

    2012-01-01

    Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffro...

  13. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  14. Conservação de filés de tilápia-do-nilo (Oreochromis niloticus em salga seca e salga úmida Nile tilapia (Oreochromis niloticus preservation by means of dry salting and saturated brine

    Directory of Open Access Journals (Sweden)

    F.S. Aiura

    2008-12-01

    Full Text Available Acompanhou-se o desenvolvimento dos processos da salga em salmoura saturada (salga úmida e salga seca de filés de tilápia-do-nilo (Oreochromis niloticus e avaliaram-se algumas características indicativas de qualidade do produto durante a estocagem. Os processos foram acompanhados por 156 horas na salga úmida e por 96 horas na salga seca, e os filés salgados foram estocados, respectivamente, por 60 e 45 dias à temperatura ambiente. Os teores máximos de cloreto nos filés (14% foram atingidos com 72 horas na salga úmida e com 36 horas na salga seca. Os filés de tilápia salgados em salmoura mantiveram as características próprias do produto por um período de 45 dias, e os submetidos à salga seca apresentaram baixo teor de umidade (6% e alta concentração de extrato etéreo (4,6%. Recomenda-se somente o processo de salga em salmoura saturada como forma de conservação dos filés de tilápia-do-nilo.The processes of salting of Nile tilapia fillets (Oreochromis niloticus submitted to saturated brine and dry salting were observed, and some characteristics that indicate the quality of the product during the storage were evaluated. The brine saturated process was followed up to 156 hours and the dry salting was followed up to 96 hours. When the salting finished, fillets were stored for 45 (dry salting and 60 days (saturated brine, respectively. The highest values for chloride in fillets (14% were reached within 72 hours in brine salting and 36 hours in dry salting. The tilapia fillets salted in brine kept the proper characteristics of the product for a period of 45 days and the fillets submitted to dry salting showed low moisture ratios (6% and a high concentration of lipids (4.6%. Thereby, it is only recommended the salting process in saturated brine to be used as a mean of conservation for Nile tilapia fillets.

  15. The Chemistry Institute

    OpenAIRE

    Fontecave, Marc

    2015-01-01

    Chemistry at the Collège de France has received particular attention over the last few years. After the departures of Profs Jean-Marie Lehn and Jacques Livage, new ambition for developing this discipline has led to the creation of several Chairs: Prof. Marc Fontecave’s Chair of Chemistry of Biological Processes in 2008, Prof. Clément Sanchez’ Chair of Chemistry of Hybrid Materials in 2011, and the Chair of Chemistry of Materials and Energy, which Prof. Jean-Marie Tarascon has held since 2014....

  16. Group theory and chemistry

    CERN Document Server

    Bishop, David M

    1993-01-01

    Group theoretical principles are an integral part of modern chemistry. Not only do they help account for a wide variety of chemical phenomena, they simplify quantum chemical calculations. Indeed, knowledge of their application to chemical problems is essential for students of chemistry. This complete, self-contained study, written for advanced undergraduate-level and graduate-level chemistry students, clearly and concisely introduces the subject of group theory and demonstrates its application to chemical problems.To assist chemistry students with the mathematics involved, Professor Bishop ha

  17. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  18. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  19. Science Update: Analytical Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  20. Computational chemistry research

    Science.gov (United States)

    Levin, Eugene

    1987-01-01

    Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.

  1. Induced Seismicity of the Paradox Valley Brine Injection

    Science.gov (United States)

    Bachmann, C. E.; Foxall, W.; Daley, T. M.

    2013-12-01

    The Paradox Valley Unit (PVU) is operated by the U.S. Bureau of Reclamation (USBR) and is built to control the water quality of the Dolores River - a feeder of the Colorado River. Brine is extracted along the river from several shallow wells. Before it is injected into a 4.8km deep well for long-term storage, it is filtered at a surface-treatment facility. The target zone of the injection is a subhorizontal formation of a Mississippian-age limestone. The first injection test started in 1991, continuous injections started in 1996 and are still ongoing. The injection of the fluid in the underground induces micro-seismicity that is monitored by the USBR with the 15-station Paradox Valley Seismic Network. This network located more then 5700 events in the 20 years since the injection started. The locations of the seismic events give crucial insights to the pathways of the injected fluid. In this study we analyze the seismicity up to the end of 2011, which does not include the magnitude 3.9 event that caused a temporary shut down of the PVU in January 2013. The largest event included in our study period is an event with M4.3 of May 2000. The majority (75%) of events are micro-seismic events with magnitudes of 1 or smaller; only 74 events have magnitudes larger or equal to 2.5 of which only 4 are larger or equal to 3.5. Most of the seismicity is constrained to the vicinity of the injection well with roughly 80% of the events occurring within a 4km radius. However, there is one active zone more then 10 km away from the injection well that showed first activity in late 2010. More than 500 micro-seismic events occurred within several weeks in this new zone. The goal behind this study is to understand the processes behind a long-term injection of fluid into the underground where no circulation takes place. While other such projects exist, such as different wastewater injections, none of them has been monitored as well as the Paradox Valley seismicity and or has been going on

  2. Optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China

    Science.gov (United States)

    Han, Wei; Cao, Ling; Zhang, Ya; Cui, Kaiqiang; Wu, Shengli

    2015-04-01

    The adaptation and survive of introduced plants to local well brine groundwater irrigation is an important issue, while people introduce some plants to improve the local environment in the construction of urban greening oases in arid areas, north China. We measured some of the photosynthetic characteristics of introduced Bamboo willow irrigated by different local well brine groundwater in the wild controlled experiments, in May 2014 in Kelamayi city in north China, which to seek the most appropriate irrigation concentration of underground saline water, and to clarify the physiological ecological adaptation to the local habitat. The parameters, measured by Li-6400XT, a portable photosynthesis system, include the following ones, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), the internal CO2 concentration (Ci) and efficiency of water application (WUE) of one-year old introduced Bamboo willow irrigated by set salinity groundwater gradient, as 0 g/L, 5 g/L and 10 g/L. the results showed that (1) In each salt water concentration, the diurnal variation curve of net photosynthetic rate showed as "bimodal curve" style, and obvious "midday depression". (2) The parameter Pn of Bamboo willow irrigated by salt water of 5g/L was highest compared with the other two, and the value Pn irrigated by salt water concentration of 10g/L down. The net photosynthetic rate would increase in the salt concentration of 10g/L. In conclusion, the salt groundwater concentration of 10g/L was the optimal concentration of local well brine groundwater irrigation for Bamboo willow introduced to the arid areas in northern Xinjiang province, China.

  3. Advances in high temperature chemistry

    CERN Document Server

    Eyring, Leroy

    1969-01-01

    Advances in High Temperature Chemistry, Volume 2 covers the advances in the knowledge of the high temperature behavior of materials and the complex and unfamiliar characteristics of matter at high temperature. The book discusses the dissociation energies and free energy functions of gaseous monoxides; the matrix-isolation technique applied to high temperature molecules; and the main features, the techniques for the production, detection, and diagnosis, and the applications of molecular beams in high temperatures. The text also describes the chemical research in streaming thermal plasmas, as w

  4. Open access and medicinal chemistry

    OpenAIRE

    Swain Chris

    2007-01-01

    Abstract Chemistry Central is a new open access website for chemists publishing peer-reviewed research in chemistry from a range of open access journals. A new addition, Chemistry Central Journal, will cover all of chemistry and will be broken down into discipline-specific sections, and Im delighted that Medicinal Chemistry will be a key discipline in this new journal.

  5. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  6. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  7. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  8. Characterization of Phytochemicals and Antioxidant Activities of Red Radish Brines during Lactic Acid Fermentation

    Directory of Open Access Journals (Sweden)

    Pu Jing

    2014-07-01

    Full Text Available Red radish (Raphanus L. pickles are popular appetizers or spices in Asian-style cuisine. However, tons of radish brines are generated as wastes from industrial radish pickle production. In this study, we evaluated the dynamic changes in colour properties, phenolics, anthocyanin profiles, phenolic acid composition, flavonoids, and antioxidant properties in radish brines during lactic acid fermentation. The results showed that five flavonoids detected were four anthocyanins and one kaempferol derivative, including pelargonidin-3-digluoside-5-glucoside derivatives acylated with p-coumaric acid, ferulic acid, p-coumaric and manolic acids, or ferulic and malonic acids. Amounts ranged from 15.5–19.3 µg/mL in total monomeric anthocyanins, and kaempferol-3,7-diglycoside (15–30 µg/mL. 4-Hydroxy-benzoic, gentisic, vanillic, syringic, p-coumaric, ferulic, sinapic and salicylic acids were detected in amounts that varied from 70.2–92.2 µg/mL, whereas the total phenolic content was 206–220 µg/mL. The change in colour of the brine was associated with the accumulation of lactic acid and anthocyanins. The ORAC and Fe2+ chelation capacity of radish brines generally decreased, whereas the reducing power measured as FRAP values was increased during the fermentation from day 5 to day 14. This study provided information on the phytochemicals and the antioxidative activities of red radish fermentation waste that might lead to further utilization as nutraceuticals or natural colorants.

  9. Advancements in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.; Pickerin, Karen D.; Weislogel, Mark M.

    2013-01-01

    Technology improvements in the recovery of water from brine are critical to establishing closedloop water recovery systems, enabling long duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment (BRIC), are under development which aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy induced effects. In this work, a microgravity compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly creating a free surface from which evaporation and phase separation can occur similar to a 1-g like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions, e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling and analysis of the system.

  10. DISTINCTIVE LOCALIZATION OF GROUP 3 LATE EMBRYOGENESIS ABUNDANT SYNTHESIZING CELLS DURING BRINE SHRIMP DEVELOPMENT.

    Science.gov (United States)

    Kim, Bo Yong; Song, Hwa Young; Kim, Mi Young; Lee, Bong Hee; Kim, Kyung Joo; Jo, Kyung Jin; Kim, Suhng Wook; Lee, Seung Gwan; Lee, Boo Hyung

    2015-07-01

    Despite numerous studies on late embryogenesis abundant (LEA) proteins, their functions, roles, and localizations during developmental stages in arthropods remain unknown. LEA proteins protect crucial proteins against osmotic stress during the development and growth of various organisms. Thus, in this study, fluorescence in situ hybridization was used to determine the crucial regions protected against osmotic stress as well as the distinctive localization of group 3 (G3) LEA(+) cells during brine shrimp development. Several cell types were found to synthesize G3 LEA RNA, including neurons, muscular cells, APH-1(+) cells, and renal cells. The G3 LEA(+) neuronal cell bodies outside of the mushroom body projected their axonal bundles to the central body, but those inside the mushroom body projected their axonal bundles toward the deutocerebrum without innervating the central body. The cell bodies inside the mushroom body received axons of the G3 LEA(+) sensory cells at the medial ventral cup of the nauplius eye. Several glands were found to synthesize G3 LEA RNA during the nauplius stages of brine shrimp, including the sinus, antennal I and II, salt, and three ectodermal glands. This study provides the first demonstration of the formation of G3 LEA(+) sinus glands at the emergence stages of brine shrimp. These results suggest that G3 LEA protein is synthesized in several cell types. In particular, specific glands play crucial roles during the emergence and nauplius stages of brine shrimp. PMID:25781424

  11. Manufacture of Boron-free Magnesia with High Purity from Residual Brine

    Institute of Scientific and Technical Information of China (English)

    Fa Qiang LI; Bao Ping LING; Pei Hua MA

    2004-01-01

    A novel method for removing boron with ion exchange resin from residual brines to manufacture boron-free magnesia is described. The concentration of boron in the target magnesia manufactured thereby from Qinghai salt lakes is lower than 5μg/g, and the typical D50 size of product is 10.625μm.

  12. Ion sensitive field effect transistors applied to the measurement of the pH of brines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.

    1991-12-31

    The ability to measure the pH (the negative logarithm of the hydrogen ion activity) of harsh fluids such as geothermal oil field brines is important, since pH is a fundamental property; as one chemist stated: ``very often pH is a critical test because its accuracy lays the foundation for other measurements``. In our research, we focus on the analysis of brines similar to those found in underground geothermal reservoirs. Since the brines are deep under the ground, the values of the pressure and the temperature are high (up to 14 Mpa and 150{degrees}C); therefore the usual methods of pH measurement, e.g., glass electrode, are not applicable. The hydrogen ion sensitive ISFET (Ion Selective Field Effect Transistor) was studied as a pH sensor in this research. An ISFET can detect the electrochemical potential difference between the solution and the semiconductor due to the concentration of H{sup +} ions in the solution. Because of its solid state construction, an ISFET should work properly under high pressure and high temperature conditions. Earlier results, have indicated that it is possible to use ISFETs under the harsh conditions presented by geothermal brines.

  13. Ion sensitive field effect transistors applied to the measurement of the pH of brines

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J

    1991-07-01

    The ability to measure the pH (the negative logarithm of the hydrogen ion activity) of harsh fluids such as geothermal oil field brines is important, since pH is a fundamental property; as one chemist stated: very often pH is a critical test because its accuracy lays the foundation for other measurements''. In our research, we focus on the analysis of brines similar to those found in underground geothermal reservoirs. Since the brines are deep under the ground, the values of the pressure and the temperature are high (up to 14 Mpa and 150[degrees]C); therefore the usual methods of pH measurement, e.g., glass electrode, are not applicable. The hydrogen ion sensitive ISFET (Ion Selective Field Effect Transistor) was studied as a pH sensor in this research. An ISFET can detect the electrochemical potential difference between the solution and the semiconductor due to the concentration of H[sup +] ions in the solution. Because of its solid state construction, an ISFET should work properly under high pressure and high temperature conditions. Earlier results, have indicated that it is possible to use ISFETs under the harsh conditions presented by geothermal brines.

  14. The Effect of Synthetic Brine Constituents on the Rate of Arsenic Release from Arsenopyrite

    Science.gov (United States)

    Parthasarathy, H.; Dzombak, D. A.; Karamalidis, A.

    2013-12-01

    Geologic carbon dioxide storage (GCS) in deep saline sedimentary formations is a potential method for mitigating increased levels of atmospheric CO2. Injection of CO2 in those formations may induce dissolution of reservoir minerals. Leakage of CO2-saturated brines and native brines could impact overlying drinking water aquifers by contaminating them with toxic constituents. Of particular concern is the effect of CO2 on the rates of dissolution of arsenic and other toxic metals from reservoir minerals. The most common pure phase arsenic mineral in sedimentary geologic formations is arsenopyrite (FeAsS). Natural brines have high salinities (up to 7M), with high concentrations of Na+, Ca2+, Mg2+ and K+. The focus of this study is to examine the effect of brine components on the dissolution rate of arsenic from arsenopyrite. A small-scale flow-through column system was constructed for this purpose and is being used to measure arsenic release rates from arsenopyrite. Influent solutions of NaCl, CaCl2, and MgCl2 at equal ionic strengths were used to examine the effect of the cationic species. A cleaning procedure to remove prior surface oxidation on the surface of the arsenopyrite particles was also developed. Preliminary results with NaCl and CaCl2 at an ionic strength of 0.011M indicate that the rate of dissolution of arsenic is dependent on the cationic species but independent of ionic strength.

  15. 40 CFR 436.120 - Applicability; description of the salines from brine lakes subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the salines from brine lakes subcategory. 436.120 Section 436.120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT...

  16. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    KAUST Repository

    Abdallah, Rehab Z.

    2014-09-23

    Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H and Siam R (2014) Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front. Microbiol. 5:487. doi: 10.3389/fmicb.2014.00487

  17. Brine saturation technique for extracting light filth from ground cinnamon: intralaboratory study.

    Science.gov (United States)

    Freeman, C C

    1985-01-01

    An intralaboratory study was performed using the new brine saturation technique for isolating light filth from ground cinnamon. Recoveries of light filth averaged greater than or equal to 96.5%. The excellent recovery plus improvements in safety and simplicity give this new technique considerable advantage over the present official method. PMID:4086431

  18. Characterization of polymorphic microsatellite markers in the brine shrimp Artemia (Branchiopoda, Anostraca)

    DEFF Research Database (Denmark)

    Muñoz, Joaquin; Green, Andy J.; Figuerola, Jordi;

    2009-01-01

    The brine shrimp Artemia is a complex genus containing sexual species and parthenogenetic lineages. Artemia franciscana is native to America and its cysts (diapausing eggs) are used worldwide as a food source in aquaculture. As a consequence, this anostracan has become an invasive species in many...

  19. Depletion of a brine layer at the base of ridge-crest hydrothermal systems

    NARCIS (Netherlands)

    Schoofs, Stan; Hansen, Ulrich

    2001-01-01

    The variable salinity of fluid venting from mid-ocean ridges is indicative of mixing between hydrothermal seawater and fluids that have undergone supercritical phase separation. In order to study the stability of a brine-saturated layer that may form in the lowermost part of the hydrothermal system,

  20. Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches

    NARCIS (Netherlands)

    Bagheri, R.; Nadri, A.; Raeisi, E.; Kazemi, G.A.; Eggenkamp, H.G.M.; Montaseri, A.

    2014-01-01

    The Kangan Permo-Triassic brine aquifer and the overlying gas reservoir in the southern Iran are located in Kangan and Dalan Formations, consisting dominantly of limestone, dolomite, and to a lesser extent, shale and anhydrite. The gasfield, 2,900 m in depth and is exploited by 36 wells, some of whi

  1. 9 CFR 96.14 - Uncertified casings; disinfection with saturated brine solution.

    Science.gov (United States)

    2010-01-01

    ... testing vat or a preliminary vat. By following this procedure the temperature will not vary unduly and thus cause unsatisfactory results. After removing the casings from the testing vat, it will be found... heating method. In order to keep the temperature of the brine in the testing vat of a uniform degree,...

  2. Grain Size Data from the Brine Disposal Program, Gulf of Mexico

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are part of the Brine Disposal Program funded by NOAA in the US Gulf of Mexico, compiled by NOAA/CEAS and partially conducted by R. W. Hann of Texas A...

  3. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  4. Brine production strategy modeling for active and integrated management of water resources in CCS

    Science.gov (United States)

    Court, B.; Celia, M. A.; Nordbotten, J. M.; Buscheck, T. A.; Elliot, T. J.; Bandilla, K.; Dobossy, M.

    2010-12-01

    Our society is at present highly dependent on coal, which will continue to play a major role in baseload electricity production in the coming decades. Most projected climate change mitigation strategies require CO2 Capture and Sequestration (CCS) as a vital element to stabilize CO2 atmospheric emissions. In these strategies, CCS will have to expand in the next two decades by several orders of magnitude compared to current worldwide implementation. At present the interactions among freshwater extraction, CO2 injection, and brine management are being considered too narrowly across CCS operations, and in the case of freshwater almost completely overlooked. Following the authors’ recently published overview of these challenges, an active and integrated management of water resources throughout CCS operations was proposed to avoid overlooking critical challenges that may become major obstacles to CCS implementation. Water resources management is vital for several reasons including that a coal-fired power plant retrofitted for CCS requires twice as much cooling water as the original plant. However this increased demand may be accommodated by brine extraction and treatment, which would concurrently function as large-scale pressure management and a potential source of freshwater. Synergistic advantages of such proactive integration that were identified led the authors to concluded that: Active management of CCS operations through an integrated approach -including brine production, treatment, use for cooling, and partial reinjection- can address challenges simultaneously with several synergistic advantages; and, that freshwater and brine must be linked to CO2 and pressure as key decision making parameters throughout CCS operations while recognizing scalability and potential pore space competition challenges. This work presents a detailed modeling investigation of a potential integration opportunity resulting from brine production. Technical results will focus solely on the

  5. Supercritical CO2/brine transport in a fractured rock under geologic sequestration conditions

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik

    2013-04-01

    Carbon capture and storage (CCS) is a promising technology for mitigating CO2 emissions into the atmosphere. In general, densely fractured natural reservoirs are rarely considered as suitable candidates due to issues related to safe and secure long-term storage. Nevertheless, assessment of CO2 storage processes in a storage medium with fractures is critical, as fractures occur in nearly all geological settings and play a major role in hydrocarbon migration as well as entrapment. We evaluated the impact of fractures on CO2/brine transport under geologic sequestration conditions by conducting both experimental and numerical studies. Laboratory experimental results showed a piston-like brine displacement with gravity over-run effects in the homogeneous core regardless of CO2 injection rates. In the fractured core, however, two distinctive types of brine displacements were observed; one showing brine displacement only in the fracture whereas the other shows brine displacement both in the fracture and matrix with different rates, depending on the magnitude of the pressure build-up in the matrix. In the experiments, the injectivity in the fractured core was twice greater than that in the homogeneous core at our experimental condition, while the estimated storage capacity was greater in the homogeneous core than in the fractured core by over 1.5 times. Capillary pressure curves were illustrated for both cores including entry pressures and irreducible brine saturation. The free-phase CO2 transfer in a fracture-matrix system was addressed by numerical simulation, and provided transient flux exchange processes during the brine displacement by CO2. The pressure gradient between the fracture and matrix induced CO2 transfer from fracture into matrix at the front of CO2 plume in fracture. In contrast, at the rear zone of CO2 plume, the reversal of pressure gradient resulted in a reverse CO2 flux. Additionally, the influence of fracture aperture on CO2 transfer between fracture

  6. Brine contamination to aquatic resources from oil and gas development in the Williston Basin, United States

    Science.gov (United States)

    Gleason, Robert A.; Contributions by Chesley-Preston, Tara L.; Coleman, James L.; Haines, Seth S.; Jenni, Karen E.; Nieman, Timothy L.; Peterman, Zell E.; van der Burg, Max Post; Preston, Todd M.; Smith, Bruce D.; Tangen, Brian A.; Thamke, Joanna N.; Gleason, Robert A.; Tangen, Brian A.

    2014-01-01

    The Williston Basin, which includes parts of Montana, North Dakota, and South Dakota in the United States and the provinces of Manitoba and Saskatchewan in Canada, has been a leading domestic oil and gas producing region for more than one-half a century. Currently, there are renewed efforts to develop oil and gas resources from deep geologic formations, spurred by advances in recovery technologies and economic incentives associated with the price of oil. Domestic oil and gas production has many economic benefits and provides a means for the United States to fulfill a part of domestic energy demands; however, environmental hazards can be associated with this type of energy production in the Williston Basin, particularly to aquatic resources (surface water and shallow groundwater) by extremely saline water, or brine, which is produced with oil and gas. The primary source of concern is the migration of brine from buried reserve pits that were used to store produced water during recovery operations; however, there also are considerable risks of brine release from pipeline failures, poor infrastructure construction, and flow-back water from hydraulic fracturing associated with modern oilfield operations. During 2008, a multidisciplinary (biology, geology, water) team of U.S. Geological Survey researchers was assembled to investigate potential energy production effects in the Williston Basin. Researchers from the U.S. Geological Survey participated in field tours and met with representatives from county, State, tribal, and Federal agencies to identify information needs and focus research objectives. Common questions from agency personnel, especially those from the U.S. Fish and Wildlife Service, were “are the brine plumes (plumes of brine-contaminated groundwater) from abandoned oil wells affecting wetlands on Waterfowl Production Areas and National Wildlife Refuges?” and “are newer wells related to Bakken and Three Forks development different than the older

  7. Physical Chemistry of Molecular

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Established in 2009, the group consists of six researchers and more than 70 research assistants and graduate students from the CAS Key Laboratory of Molecular Nanostructures and Nanotechnologies at the CAS Institute of Chemistry.Its research focuses on the physical chemistry involved in molecular assembly, molecular nanostructures, functional nanomaterials and conceptual nano-devices.

  8. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  9. The Breath of Chemistry

    DEFF Research Database (Denmark)

    Josephsen, Jens

    The present preliminary text is a short thematic presentation in biological inorganic chemistry meant to illustrate general and inorganic (especially coordination) chemistry in biochemistry. The emphasis is on molecular models to explain features of the complicated mechanisms essential to breathing...

  10. Career Options in Chemistry.

    Science.gov (United States)

    Belloli, Robert C.

    1985-01-01

    Describes a credit/no credit course which focuses on career options in chemistry. The course (consisting of 15 one-hour seminar-type sessions) includes guest speakers for several sessions and an emphasis (in introductory sessions) on graduate school in chemistry, the chemical industry, resumes, and interviews. Also briefly describes an internship…

  11. Exercises in Computational Chemistry

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2016-01-01

    A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16).......A selection of HyperChem© PC-exercises in computational chemistry. Answers to most questions are appended (Roskilde University 2014-16)....

  12. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)

  13. Chemical Principles Revisited: Some Aspects of Coordination Chemistry.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews characteristics of coordination chemistry, the study of coordination compounds, a major focal point for the inorganic chemist. Provides a brief history regarding the Wernerian System and background information in modern coordination theory. (CS)

  14. Accelerators and nuclear reactors as tools in hot atom chemistry

    International Nuclear Information System (INIS)

    The characteristics of accelerators and of nuclear reactors - the latter to a lesser extent - are discussed in view of their present and future use in hot atom chemistry research and its applications. (author)

  15. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    Science.gov (United States)

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied.

  16. Advances in Spacecraft Brine Water Recovery: Development of a Radial Vaned Capillary Drying Tray

    Science.gov (United States)

    Callahan, Michael R.; Sargusingh, Miriam J.; Pickering, Karen D.; Weislogel, Mark M.

    2014-01-01

    Technology improvements in the recovery of water from brine are critical to establishing closed-loop water recovery systems, enabling long-duration missions, and achieving a sustained human presence in space. A genre of 'in-place drying' brine water recovery concepts, collectively referred to herein as Brine Residual In-Containment, are under development. These brine water recovery concepts aim to increase the overall robustness and reliability of the brine recovery process by performing drying inside the container used for final disposal of the solid residual waste. Implementation of in-place drying techniques have been demonstrated for applications where gravity is present and phase separation occurs naturally by buoyancy-induced effects. In this work, a microgravity-compatible analogue of the gravity-driven phase separation process is considered by exploiting capillarity in the form of surface wetting, surface tension, and container geometry. The proposed design consists of a series of planar radial vanes aligned about a central slotted core. Preliminary testing of the fundamental geometry in a reduced gravity environment has shown the device to spontaneously fill and saturate rapidly, thereby creating a free surface from which evaporation and phase separation can occur similar to a terrestrial-like 'cylindrical pool' of fluid. Mathematical modeling and analysis of the design suggest predictable rates of filling and stability of fluid containment as a function of relevant system dimensions; e.g., number of vanes, vane length, width, and thickness. A description of the proposed capillary design solution is presented along with preliminary results from testing, modeling, and analysis of the system.

  17. RO brine treatment and recovery by biological activated carbon and capacitive deionization process.

    Science.gov (United States)

    Tao, Guihe; Viswanath, Bala; Kekre, Kiran; Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Seah, Harry

    2011-01-01

    The generation of brine solutions from dense membrane (reverse osmosis, RO or nanofiltration, NF) water reclamation systems has been increasing worldwide, and the lack of cost effective disposal options is becoming a critical water resources management issue. In Singapore, NEWater is the product of a multiple barrier water reclamation process from secondary treated domestic effluent using MF/UF-RO and UV technologies. The RO brine (concentrates) accounts for more than 20% of the total flow treated. To increase the water recovery and treat the RO brine, a CDI based process with BAC as pretreatment was tested. The results show that ion concentrations in CDI product were low except SiO2 when compared with RO feed water. CDI product was passed through a RO and the RO permeate was of better quality including low SiO2 as compared to NEWater quality. It could be beneficial to use a dedicated RO operated at optimum conditions with better performance to recover the water. BAC was able to achieve 15-27% TOC removal of RO brine. CDI had been tested at a water recovery ranging from 71.6 to 92.3%. CDI based RO brine treatment could improve overall water recovery of NEWater production over 90%. It was found that calcium phosphate scaling and organic fouling was the major cause of CDI pressure increase. Ozone disinfection and sodium bisulfite dosing were able to reduce CDI fouling rate. For sustainable operation of CDI organic fouling control and effective organic fouling cleaning should be further studied. PMID:22053461

  18. The Effect of CO2-Saturated Brines on the Hydraulic and Mechanical Behavior of Dunite

    Science.gov (United States)

    Lisabeth, H. P.; Zhu, W.; Kelemen, P. B.

    2013-12-01

    Carbon dioxide is increasingly being used as an industrial chemical, both in enhanced oil and gas recovery and in pilot and proposed carbon capture and storage projects. Due to the high reactivity of carbon dioxide, particularly with mafic and ultramafic minerals, a better understanding of the effects of CO2-rock interaction is necessary for the safe and effective implementation of these technologies. In order to explore the effect of CO2-rock interaction on the hydraulic and mechanical behavior of ultramafic rocks, we performed hydrostatic creep tests on thermally cracked dunites saturated with distilled water and CO2-saturated brines of varying composition to observe the effect of the presence of CO2 in pore fluid on the compaction behavior and permeability evolution of the samples. Pore fluids used in these tests were distilled water, CO2-saturated 0.6 M NaHCO3 brine, and CO2-saturated 1.5 M NaHCO3 brine. Experiments were performed at room temperature and 423 K, with a confining pressure of 15 MPa and a pore fluid pressure of 10 MPa. In-situ permeability measurements were taken throughout the experiment. At the end of three day hydrostatic tests, samples were axially deformed at a constant strain rate of 10-5 s-1 to the point of failure to assess the effects of compaction and reaction on the mechanical behavior of the samples. Samples saturated with distilled water compact with a monotonic decrease in compaction rate throughout the tests, while samples saturated with CO2-brine display an increase in compaction rate toward the end of tests. All samples exhibit a modest reduction in permeability throughout the compaction. Samples saturated with CO2-brine appear to accommodate more axial shortening before the onset of dilatancy in axial deformation tests. Optical microscopy and SEM analyses were performed on the samples and reveal interplay between dissolution, precipitation and mechanical cracking.

  19. Mathematical Thinking in Chemistry

    Directory of Open Access Journals (Sweden)

    José L. Villaveces

    2012-05-01

    Full Text Available Mathematical chemistry is often thought to be a 20th-century subdiscipline of chemistry, but in this paper we discuss several early chemical ideas and some landmarks of chemistry as instances of the mathematical way of thinking; many of them before 1900. By the mathematical way of thinking, we follow Weyl's description of it in terms of functional thinking, i.e. setting up variables, symbolizing them, and seeking for functions relating them. The cases we discuss are Plato's triangles, Geoffroy's affinity table, Lavoisier's classification of substances and their relationships, Mendeleev's periodic table, Cayley's enumeration of alkanes, Sylvester's association of algebra and chemistry, and Wiener's relationship between molecular structure and boiling points. These examples show that mathematical chemistry has much more than a century of history.

  20. System approach to chemistry course

    OpenAIRE

    Lorina E. Kruglova; Valentina G. Derendyaeva

    2010-01-01

    The article considers the raise of chemistry profile for engineers and constructors training, discloses the system approach to chemistry course and singles out the most important modules from the course of general chemistry for construction industry.

  1. Shelf life determination of the brined golden mullet Liza aurata during vacuum refrigerated storage using some quality aspect

    Directory of Open Access Journals (Sweden)

    Mariyam Ali

    2012-03-01

    Full Text Available Background. Salted fish products are popular in many countries around the world. Salting is one of the oldest techniques for fish preservation, and is essentially intended to increase the shelf-life of the product depressing water activity by means of dehydration and salt uptake by the fish muscle. However, the current demand for salted fish is driven more by the flavour of the product than for preservation purposes. Vacuum-packaging represents a static form of hypobaric storage. It is widely used in the food industry because of its effectiveness in reducing oxidative reactions in the product at relatively low cost. Low temperature storage is one of the primary methods to maintain fish quality, based on the reduction in the rates of microbiological, chemical and biochemical changes. Material  and methods. Fresh Golden mullets were rapidly beheaded, scaled, gutted and immediately washed with tap water then, samples were taken to the laboratory in ice box for chemical and microbial analysis of fresh fish, other samples were put in the brine (6 liter water and 2160 g salt was used for brine solution. After 14 days of brining, fish were taken out of brine solution and drained, then they were Vacuum Packed and labelled (each pack contained two fish about 1500 g weight. All the packs were stored in a refrigerator 4°C. Some quality aspects including Total Volatile Nitrogen (TVN, Peroxide Value (PV, Thiobarbituric Acid (TBA, Total Viable Count (TVC, Halophilic Bacteria (HB and presence of Clostridium Botulinum were determined in fresh mullets, fresh brined mullets after 14 days of brining, and in (Vacuum Packed VP samples stored at 4°C at intervals of 30, 60 and 90 days. Results.  TVN increased from ten mg/100 g in fresh brined after 14 days to 30.80 mg/100 g in VP brined Golden mullet after 90 days of storage at 4°C, PV increased after brining from 1.50 meq/kg in fresh brined to 28.90 meq/kg in VP brined Golden mullet after 90 days of storage at 4

  2. Water chemistry and microbial corrosion in oilfield water handling facilities: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jack, T.; Bramhill, B.

    1992-01-01

    This study was carried out in an oilfield waterflood operation in which produced brine is reinjected to displace more oil from the reservoir. Significant corrosion problems are associated with bacterial colonization of the water handling system. This report describes results of an audit of chemical, biological and corrosion parameters measured across the Wainwright waterflood operation over 30 months. Based on the insights obtained and previous observation of shifts in microbial populations with variations in water chemistry, a series of runs was conducted in the field test facility at unit 13 waterplant to investigate the effect of specific chemical additions.

  3. Korean Kimchi Chemistry: A Multicultural Chemistry Connection

    Science.gov (United States)

    Murfin, Brian

    2009-01-01

    Connecting science with different cultures is one way to interest students in science, to relate science to their lives, and at the same time to broaden their horizons in a variety of ways. In the lesson described here, students make kimchi, a delicious and popular Korean dish that can be used to explore many important chemistry concepts,…

  4. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  5. A review of theories on the origins of saline waters and brines in the Canadian Precambrian Shield

    International Nuclear Information System (INIS)

    Groundwater at depths greater that 500 m in the Canadian Precambrian Shield is typically saline with a sodium-calcium/chloride chemical composition. Brines with dissolved solid concentrations exceeding 100 g/L have been encountered in several deep mines (>1000 m) on the Shield. Theories on the origins of these deep saline waters and brines can be grouped into two general categories: (1) autochthonous (in situ) origins attributable to silicate mineral hydrolysis over geologic time scales, leaching of fluid inclusions or radiolysis effects, and (2) allochthonous (external) sources caused by the infiltration of brine of modified seawater origins in the geologic past. Although the chemical and isotopic compositions of these waters clearly reflect the effects of reaction between the water and their silicate host rocks, it is unlikely that the high chlorinity of the brines is in an autochthonous attribute. It is proposed that the compositions of these brines are most compatible with the Paleozoic residual brine hypothesis of Spencer (1987). This theory invokes deep infiltration of a high-density residual brine, formed by the evaporation of seawater during Devonian time, into underlying Precambrian basement rocks where subsequent chemical modifications occurred. (author) 39 refs., 2 figs

  6. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  7. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA

    Science.gov (United States)

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.

    2016-01-01

    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.

  8. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Diana H.

    2013-03-31

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite

  9. Annual report 1987 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1987 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistry, mineral processing, and general. 13 ills., (author)

  10. Annual report 1982 chemistry department

    International Nuclear Information System (INIS)

    The work going on in the Risoe National Laboratory, Chemistry Department is briefly surveyed by a presentation of all articles and reports published in 1982. The facilities and equipment are barely mentioned. The papers are divided into eight activities: 1. neutron activation analysis 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry 6. radical chemistry 7. poitron annihilation 8. uranium process chemistry. (author)

  11. Effect of Nanofiller Characteristics on Nanocomposite Properties

    Science.gov (United States)

    Working, Dennis C.; Lillehei, Peter T.; Lowther, Sharon E.; Siochi, Emilie J.; Kim, Jae-Woo; Sauti, Godfrey; Wise, Kristopher E.; Park, Cheol

    2016-01-01

    This report surveys the effect of nanofiller characteristics on nanocomposites fabricated with two polyimide matrices. Mechanical and electrical properties were determined. Microscopy results showed that matrix chemistry, nanofiller characteristics and processing conditions had significant impact on nanocomposite quality.

  12. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine.

    Science.gov (United States)

    Liu, Jinyong; Choe, Jong Kwon; Sasnow, Zachary; Werth, Charles J; Strathmann, Timothy J

    2013-01-01

    Concentrated sodium chloride (NaCl) brines are often used to regenerate ion-exchange (IX) resins applied to treat drinking water sources contaminated with perchlorate (ClO(4)(-)), generating large volumes of contaminated waste brine. Chemical and biological processes for ClO(4)(-) reduction are often inhibited severely by high salt levels, making it difficult to recycle waste brines. Recent work demonstrated that novel rhenium-palladium bimetallic catalysts on activated carbon support (Re-Pd/C) can efficiently reduce ClO(4)(-) to chloride (Cl(-)) under acidic conditions, and here the applicability of the process for treating waste IX brines was examined. Experiments conducted in synthetic NaCl-only brine (6-12 wt%) showed higher Re-Pd/C catalyst activity than in comparable freshwater solutions, but the rate constant for ClO(4)(-) reduction measured in a real IX waste brine was found to be 65 times lower than in the synthetic NaCl brine. Through a series of experiments, co-contamination of the IX waste brine by excess NO(3)(-) (which the catalyst reduces principally to NH(4)(+)) was found to be the primary cause for deactivation of the Re-Pd/C catalyst, most likely by altering the immobilized Re component. Pre-treatment of NO(3)(-) using a different bimetallic catalyst (In-Pd/Al(2)O(3)) improved selectivity for N(2) over NH(4)(+) and enabled facile ClO(4)(-) reduction by the Re-Pd/C catalyst. Thus, sequential catalytic treatment may be a promising strategy for enabling reuse of waste IX brine containing NO(3)(-) and ClO(4)(-).

  13. What Students Think: College Students Describe Their High School Chemistry Class.

    Science.gov (United States)

    Bauer, Christopher F.

    2002-01-01

    Reports on first year college students' opinions regarding their high school chemistry classes. Investigates the relationship between high school chemistry experiences and student attitudes toward chemistry. Identifies characteristics that correlate with positive attitudes such as teacher enthusiasm, teacher effectiveness, the teacher's content…

  14. Characterizing High School Chemistry Teachers' Use of Assessment Data via Latent Class Analysis

    Science.gov (United States)

    Harshman, Jordan; Yezierski, Ellen

    2016-01-01

    In this study, which builds on a previous qualitative study and literature review, high school chemistry teachers' characteristics regarding the design of chemistry formative assessments and interpretation of results for instructional improvement are identified. The Adaptive Chemistry Assessment Survey for Teachers (ACAST) was designed to elicit…

  15. Annual Report 1984. Chemistry Department

    DEFF Research Database (Denmark)

    Funck, Jytte; Nielsen, Ole John

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, an......, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general.......This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry...

  16. Exploring Archaeal Communities And Genomes Across Five Deep-Sea Brine Lakes Of The Red Sea With A Focus On Methanogens

    KAUST Repository

    Guan, Yue

    2015-12-15

    The deep-sea hypersaline lakes in the Red Sea are among the most challenging, extreme, and unusual environments on the planet Earth. Despite their harshness to life, they are inhabited by diverse and novel members of prokaryotes. Methanogenesis was proposed as one of the main metabolic pathways that drive microbial colonization in similar habitats. However, not much is known about the identities of the methane-producing microbes in the Red Sea, let alone the way in which they could adapt to such poly extreme environments. Combining a range of microbial community assessment, cultivation and omics (genomics, transcriptomics, and single amplified genomics) approaches, this dissertation seeks to fill these gaps in our knowledge by studying archaeal composition, particularly methanogens, their genomic capacities and transcriptomic characteristics in order to elucidate their diversity, function, and adaptation to the deep-sea brines of the Red Sea. Although typical methanogens are not abundant in the samples collected from brine pool habitats of the Red Sea, the pilot cultivation experiment has revealed novel halophilic methanogenic species of the domain Archaea. Their physiological traits as well as their genomic and transcriptomic features unveil an interesting genetic and functional adaptive capacity that allows them to thrive in the unique deep-sea hypersaline environments in the Red Sea.

  17. Use of Ultraviolet Light for the Inactivation of Listeria monocytogenes and Lactic Acid Bacteria Species in Recycled Chill Brines

    OpenAIRE

    Gailunas, Karol Marie

    2003-01-01

    Ready-to-eat meat products have been implicated in several foodborne listeriosis outbreaks. Microbial contamination of these products can occur after the product has been thermally processed and is being rapidly chilled using salt brines. The objective of this study was to determine the effect of ultraviolet irradiation on the inactivation of Listeria monocytogenes and lactic acid bacteria in a model brine chiller system. Two concentrations of brines (7.9%w/w or 13.2%w/w) were inoculated w...

  18. Moderator Chemistry Program

    International Nuclear Information System (INIS)

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation

  19. Moderator Chemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department's moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  20. Moderator Chemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Dewitt, L.V.; Gibbs, A.; Lambert, D.P.; Bohrer, S.R.; Fanning, R.L.; Houston, M.W.; Stinson, S.L.; Deible, R.W.; Abdel-Khalik, S.I.

    1990-11-01

    Over the past fifteen months, the Systems Chemistry Group of the Reactor Engineering Department has undertaken a comprehensive study of the Department`s moderator chemistry program at Savannah River Site (SRS). An internal review was developed to formalize and document this program. Objectives were as outlined in a mission statement and action plan. In addition to the mission statement and action plan, nine separate task reports have been issued during the course of this study. Each of these task reports is included in this document as a chapter. This document is an organized compilation of the individual reports issued by the Systems Chemistry Group in assessment of SRS moderator chemistry to determine if there were significant gaps in the program as ft existed in October, 1989. While these reviews found no significant gaps in that mode of operation, or any items that adversely affected safety, items were identified that could be improved. Many of the items have already been dear with or are in the process of completion under this Moderator Chemistry Program and other Reactor Restart programs. A complete list of the items of improvement found under this assessment is found in Chapter 9, along with a proposed time table for correcting remaining items that can be improved for the chemistry program of SRS reactors. An additional external review of the moderator chemistry processes, recommendations, and responses to/from the Reactor Corrosion Mitigation Committee is included as Appendix to this compilation.

  1. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 1 covers papers on the advances of gas phase ion chemistry. The book discusses the advances in flow tubes and the measurement of ion-molecule rate coefficients and product distributions; the ion chemistry of the earth's atmosphere; and the classical ion-molecule collision theory. The text also describes statistical methods in reaction dynamics; the state selection by photoion-photoelectron coincidence; and the effects of temperature and pressure in the kinetics of ion-molecule reactions. The energy distribution in the unimolecular decomposition of ions, as well

  2. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  3. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems

  4. Spatially Resolved Artificial Chemistry

    DEFF Research Database (Denmark)

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  5. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2013-01-01

    Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, wit

  6. Effect of injection wells with partially perforated completion on CO2/brine flow distribution and injectivity

    Science.gov (United States)

    Guyant, E.; Han, W. S.; Kim, K. Y.; Jung, N. H.

    2014-12-01

    Carbon Capture and Sequestration is a viable technology to reduce the concentration of anthropogenic carbon dioxide emitted into the atmosphere. The success of an injection project requires large amounts of dry supercritical CO2 to be injected into brine saturated aquifers within the subsurface. However, solid salt precipitation causes a reduction of permeability, having adverse effects on well injectivity as well as pressure build-up. This study evaluated the accumulation of precipitated salt, brine flux patterns, and pressure build-up for two well constructions, 1) partially completed with 4 injection intervals and 2) fully completed throughout the thickness of the target formation. This study found that when a partially completed well is implemented, precipitation of solid salt experiences a greater radial extent then a fully completed well. Both well designs showed non-localized salt precipitation in low permeability formations (5 and 50 mD) and localized salt precipitation at high permeability (250 and 500 mD). It was also found that two different brine flux patterns occurred; under low-k conditions the brine flux was primarily outward and parallel to the direction of the CO2 migration and salt precipitation became limited. While under high-k conditions there developed back-flow of the brine to the tail of the plume as the plume experienced greater vertical movement, and the counter-flowing brine sustained the precipitation process amplifying salt precipitation. When this process occurred the permeability reduction factor became orders of magnitude less then when non-localized salt precipitation occurred, and formed an impermeable barrier around the injection well. The formation of this barrier was found to have the effect of increasing the pressure build-up near the well in regions of the reservoir in which it occurred. A sensitivity analysis on the anisotropic/isotropic nature of the reservoir and the value of the critical porosity was also conducted. The

  7. Chemistry at large

    Directory of Open Access Journals (Sweden)

    Jeremy. K.M. Sanders

    2007-06-01

    Full Text Available A new book introduces young researchers to supramolecular chemistry, starting from the basics and working up to the more complicated aspects of the topic. While the text is inspiring for new graduates, it lacks a critical view.

  8. Chemistry for Kids.

    Science.gov (United States)

    Sato, Sanae; Majoros, Bela

    1988-01-01

    Reports two methods for interesting children in chemistry. Describes a method for producing large soap bubbles and films for study. Examines the use of simple stories to explain common chemical concepts with example given. Lists titles of available stories. (ML)

  9. Bringing chemistry to life

    OpenAIRE

    Boyce, Michael; Bertozzi, Carolyn R.

    2011-01-01

    Bioorthogonal chemistry allows a wide variety of biomolecules to be specifically labeled and probed in living cells and whole organisms. Here we discuss the history of bioorthogonal reactions and some of the most interesting and important advances in the field.

  10. Beauty in chemistry

    Directory of Open Access Journals (Sweden)

    Peter Atkins

    2006-03-01

    Full Text Available Though hard going for the general reader and highly personal in its selectivity, Elegant Solutions: Ten Beautiful Experiments in Chemistry provides reflections of a thoughtful author that will delight chemists

  11. Magnetism in Chemistry

    Science.gov (United States)

    Brookes, R. W.; McFadyen, W. D.

    1975-01-01

    Discusses the technical aspects of paramagnetism and an electrostatic model called Crystal Field Theory (CFT), very often used in the case of transition metal compounds. Suggests that this discussion be included as an option for college chemistry courses. (MLH)

  12. Beauty in chemistry

    OpenAIRE

    Peter Atkins

    2006-01-01

    Though hard going for the general reader and highly personal in its selectivity, Elegant Solutions: Ten Beautiful Experiments in Chemistry provides reflections of a thoughtful author that will delight chemists

  13. Supplemental instruction in chemistry

    Science.gov (United States)

    Lundeberg, Mary A.

    This study was designed to measure some effects of supplemental instruction in chemistry. Supplemental instruction is a peer-led cooperative learning program that encourages students to develop conceptual understanding by articulating both understandings and misconceptions in a think-aloud fashion. Supplemental instruction was offered three hours weekly outside of class and lab time for students in four classes of General Organic and Biological Chemistry. Over a two-year period 108 students volunteered to participate in this program; 45 students did not participate. As measured by final grades in chemistry and responses to a questionnaire, supplemental instruction was effective in increasing students' achievement in chemistry. Further research is needed to determine the in-depth effects of supplemental instruction on students' learning, problem solving, and self-esteem.

  14. Chemistry at large

    OpenAIRE

    Sanders, Jeremy K. M.

    2007-01-01

    A new book introduces young researchers to supramolecular chemistry, starting from the basics and working up to the more complicated aspects of the topic. While the text is inspiring for new graduates, it lacks a critical view.

  15. Water Chemistry: Seeking Information

    Science.gov (United States)

    Delfino, Joseph J.

    1977-01-01

    A survey of the available literature in water chemistry is presented. Materials surveyed include: texts, reference books, bibliographic resources, journals, American Chemical Society publications, proceedings, unpublished articles, and reports. (BT)

  16. Investigation of oil injection into brine for the strategic petroleum reserve : hydrodynamics experiments with simulant liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Jaime N.; Shollenberger, Kim Ann (California Polytechnic State University, San Luis Obispo, CA); Torczynski, John Robert; Cote, Raymond O.; Barney, Jeremy; O' Hern, Timothy John

    2003-10-01

    An experimental program is being conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal is to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. This report documents the first stage of the program, in which simulant liquids are used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward from a tube into brine. The experiment consists of a large transparent vessel that is a scale model of the proposed oil injection process at the SPR. An oil layer is floated on top of a brine layer. Silicon oil (Dow Corning 200{reg_sign} Fluid, 5 cSt) is used as the simulant for crude oil to allow visualization of the flow and to avoid flammability and related concerns. Sodium nitrate solution is used as the simulant for brine because it is not corrosive and it can match the density ratio between brine and crude oil. The oil is injected downward through a tube into the brine at a prescribed depth below the oil-brine interface. Flow rates are determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface is deflected upward by the impinging oil-brine plume. Two different diameter injection tubes were used (1/2-inch and 1-inch OD) to vary the scaling. Use of the 1-inch injection tube also assured that turbulent pipe flow was achieved, which was questionable for lower flow rates in the 1/2-inch tube. In addition, a 1/2-inch J-tube was used to direct the buoyant jet upwards rather than downwards to determine whether flow redirection could substantially reduce the oil-plume size and the

  17. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  18. Fundamentals of quantum chemistry

    CERN Document Server

    House, J E

    2004-01-01

    An introduction to the principles of quantum mechanics needed in physical chemistry. Mathematical tools are presented and developed as needed and only basic calculus, chemistry, and physics is assumed. Applications include atomic and molecular structure, spectroscopy, alpha decay, tunneling, and superconductivity. New edition includes sections on perturbation theory, orbital symmetry of diatomic molecules, the Huckel MO method and Woodward/Hoffman rules as well as a new chapter on SCF and Hartree-Fock methods. * This revised text clearly presents basic q

  19. Quantitative analysis chemistry

    International Nuclear Information System (INIS)

    This book is about quantitative analysis chemistry. It is divided into ten chapters, which deal with the basic conception of material with the meaning of analysis chemistry and SI units, chemical equilibrium, basic preparation for quantitative analysis, introduction of volumetric analysis, acid-base titration of outline and experiment examples, chelate titration, oxidation-reduction titration with introduction, titration curve, and diazotization titration, precipitation titration, electrometric titration and quantitative analysis.

  20. Forensic Chemistry Training

    OpenAIRE

    GERÇEK, Zuhal

    2012-01-01

    Increasing the types of terrorism and crime nowadays, the importance of the forensic sciences can be bett er understood. Forensic science is the application of the wide spectrum of science to answer the question of legal system. It contains the application of the principles, techniques and methods of basic sciences and its main aim is the determination of the physical facts which are important in legal situations. Forensic chemistry is the branch of chemistry which performs the chemical analy...

  1. Applications of supramolecular chemistry

    CERN Document Server

    Schneider, Hans-Jörg

    2012-01-01

    ""The time is ripe for the present volume, which gathers thorough presentations of the numerous actually realized or potentially accessible applications of supramolecular chemistry by a number of the leading figures in the field. The variety of topics covered is witness to the diversity of the approaches and the areas of implementation…a broad and timely panorama of the field assembling an eminent roster of contributors.""-Jean-Marie Lehn, 1987 Noble Prize Winner in Chemistry

  2. Impact of surface chemistry

    OpenAIRE

    Somorjai, Gabor A.; Li, Yimin

    2010-01-01

    The applications of molecular surface chemistry in heterogeneous catalyst technology, semiconductor-based technology, medical technology, anticorrosion and lubricant technology, and nanotechnology are highlighted in this perspective. The evolution of surface chemistry at the molecular level is reviewed, and the key roles of surface instrumentation developments for in situ studies of the gas–solid, liquid–solid, and solid–solid interfaces under reaction conditions are emphasized.

  3. Intra-field variability in microbial community associated with phase-separation-controlled hydrothermal fluid chemistry in the Mariner field, the southern Lau Basin

    Science.gov (United States)

    Takai, K.; Ishibashi, J.; Lupton, J.; Ueno, Y.; Nunoura, T.; Hirayama, H.; Horikoshi, K.; Suzuki, R.; Hamasaki, H.; Suzuki, Y.

    2006-12-01

    A newly discovered hydrothermal field called the Mariner field at the northernmost central Valu Fa Ridge (VFR) in the Lau Basin was explored and characterized by geochemical and microbiological surveys. The hydrothermal fluid (max. 365 u^C) emitting from the most vigorous vent site (Snow chimney) was boiling just beneath the seafloor at a water depth of 1908 m and two end-members of hydrothermal fluid were identified. Mineral and fluid chemistry of typical brine-rich (Snow chimney and Monk chimney) and vapor-rich (Crab Restaurant chimney) hydrothermal fluids and the host chimney structures were analyzed. Microbial community structures in three chimney structures were also investigated by culture-dependent and - independent analyses. The 16S rRNA gene clone analysis revealed that both bacterial and archaeal rRNA gene communities at the chimney surface zones were different among three chimneys. The bacterial and archaeal rRNA gene communities of the Snow chimney surface were very similar with those in the dead chimneys, suggesting concurrence of metal sulfide deposition at the inside and weathering at the surface potentially due to its large structure and size. Cultivation analysis demonstrated the significant variation in culturability of various microbial components, particularly of thermophilic H2- and/or S-oxidizing chemolithoautotrophs such as the genera Aquifex and Persephonella, among the chimney sites. The culturability of these chemolithoautotrophs might be associated with the input of gaseous energy and carbon sources like H2S, H2 and CH4 from the hydrothermal fluids, and might be affected by phase-separation- controlled fluid chemistry. In addition, inter-fields comparison of microbial community structures determined by cultivation analysis revealed novel characteristics of the microbial communities in the Mariner field of the Lau Basin among the global deep-sea hydrothermal systems.

  4. NASA TechPort Entry for Coiled Brine Recovery Assembly (CoBRA) CL IR&D Project

    Science.gov (United States)

    Pensinger, Stuart

    2014-01-01

    The Coiled Brine Recovery Assembly (CoBRA) project will result in a proof-of-concept demonstration for a lightweight, compact, affordable, regenerable and disposable solution to brine water recovery. The heart of CoBRA is an evaporator that produces water vapor from brine. This evaporator leverages a novel design that enables passive transport of brine from place to place within the system. While it will be necessary to build or modify a system for testing the CoBRA concept, the emphasis of this project will be on developing the evaporator itself. This project will utilize a “test early, test often” approach, building at least one trial evaporator to guide the design of the final product.

  5. Plutonium chemistry under conditions relevant for WIPP performance assessment. Review of experimental results and recommendations for future work

    Energy Technology Data Exchange (ETDEWEB)

    Oversby, Virginia M.

    2000-09-30

    The Waste Isolation Pilot Plant (WIPP), located at a depth of 650 m in bedded salt at a site approximately 40 km east of Carlsbad, New Mexico, was constructed by the US Department of Energy for the disposal of transuranic wastes arising from defense-related activities. The disposal site is regulated by the US Environmental Protection Agency (EPA). During the process leading to certification of the site for initial emplacement of waste, EEG and their contractors reviewed the DOE Compliance Certification Application (CCA) and raised a number of issues. This report reviews the issues related to the chemistry of plutonium as it will affect the potential for release of radioactivity under WIPP conditions. Emphasis is placed on conditions appropriate for the Human Intrusion scenario(s), since human intrusion has the largest potential for releasing radioactivity to the environment under WIPP conditions. The most significant issues that need to be addressed in relation to plutonium chemistry under WIPP conditions are (1) the effects of heterogeneity in the repository on Pu concentrations in brines introduced under the human intrusion scenario, (2) the redox state of Pu in solution and potential for plutonium in solid phases to have a different redox state from that in the solution phase, (3) the effect of organic ligands on the solubility of Pu in WIPP-relevant brines, and (4) the effects of TRU waste characteristics in determining the solubility of Pu. These issues are reviewed with respect to the treatment they received in the DOE CCA, DOE’s response to EEG’s comments on the CCA, and EPA’s response to those comments as reflected in the final EPA rule that led to the opening of the WIPP. Experimental results obtained in DOE’s Actinide Source-Term Test Program (STTP) during the last two years are reviewed and interpreted in the light of other developments in the field of Pu solution chemistry. This analysis is used as the basis for a conceptual model for Pu

  6. Effect of explicit representation of detailed stratigraphy on brine and gas flow at the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Christian-Frear, T.L.; Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.

    1996-04-01

    Stratigraphic units of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) disposal room horizon includes various layers of halite, polyhalitic halite, argillaceous halite, clay, and anhydrite. Current models, including those used in the WIPP Performance Assessment calculations, employ a ``composite stratigraphy`` approach in modeling. This study was initiated to evaluate the impact that an explicit representation of detailed stratigraphy around the repository may have on fluid flow compared to the simplified ``composite stratigraphy`` models currently employed. Sensitivity of model results to intrinsic permeability anisotropy, interbed fracturing, two-phase characteristic curves, and gas-generation rates were studied. The results of this study indicate that explicit representation of the stratigraphy maintains higher pressures and does not allow as much fluid to leave the disposal room as compared to the ``composite stratigraphy`` approach. However, the differences are relatively small. Gas migration distances are also different between the two approaches. However, for the two cases in which explicit layering results were considerably different than the composite model (anisotropic and vapor-limited), the gas-migration distances for both models were negligible. For the cases in which gas migration distances were considerable, van Genuchten/Parker and interbed fracture, the differences between the two models were fairly insignificant. Overall, this study suggests that explicit representation of the stratigraphy in the WIPP PA models is not required for the parameter variations modeled if ``global quantities`` (e.g., disposal room pressures, net brine and gas flux into and out of disposal rooms) are the only concern.

  7. Fermentation profile of green Spanish-style Manzanilla olives according to NaCl content in brine.

    Science.gov (United States)

    Bautista-Gallego, J; Arroyo-López, F N; Romero-Gil, V; Rodríguez-Gómez, F; García-García, P; Garrido-Fernández, A

    2015-08-01

    This work studies the effects of the partial substitution of NaCl with potassium and calcium chloride salts on the fermentation profile of Spanish-style green Manzanilla olives. For this purpose, response surface methodology based in an enlarged simplex centroid mixture design with constrain (∑salts = 100 g/L) was used. Regarding to physicochemical characteristics, pH decreased when CaCl2 increased, titratable acidity was lower in presence of KCl while combined acidity increased as the contents of KCl and CaCl2 were close to the barycentre of the experiment (∼33.33% each salt). Regarding to microbiological profile, Enterobacteriaceae growth was slight stimulated in presence of high CaCl2 contents, yeast patterns were not linked to the initial brine compositions, while the maximum lactic acid bacteria population decreased slightly as KCl and CaCl2 increased in the proportion 1:1, although a moderate (equilibrated) content of both may be stimulating. Results obtained in this work show that Spanish-style green Manzanilla cv. can be fermented in diverse mixtures of chloride salts, albeit the initial CaCl2 should be limited to 20-30 g/L to prevent excessive Enterobacteriaceae growth; combining it with a similar proportion of KCl may also improve LAB predominance. PMID:25846915

  8. Bacteriocinogenic potential and safety evaluation of non-starter Enterococcus faecium strains isolated from home made white brine cheese.

    Science.gov (United States)

    Favaro, Lorenzo; Basaglia, Marina; Casella, Sergio; Hue, Isabelle; Dousset, Xavier; Gombossy de Melo Franco, Bernadette Dora; Todorov, Svetoslav Dimitrov

    2014-04-01

    Four LAB strains, isolated from Bulgarian home made white brine cheese, were selected for their effective inhibition against Listeria monocytogenes. According to their biochemical and physiological characteristics, the strains were classified as members of Enterococcus genus, and then identified as Enterococcus faecium by 16S rDNA sequencing. Their bacteriocin production and inhibitory spectrum were evaluated together with the occurrence of several bacteriocin genes (entA, entB, entP, entL50B). Their virulence potential and safety was assessed both using PCR targeted to the genes gelE, hyl, asa1, esp, cylA, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc and by phenotypical tests for antibiotic resistance, gelatinase, lipase, DNAse and α- and β-haemolysis. The E. faecium strains harboured at least one enterocin gene while the occurrence of virulence, antibiotic resistance and biogenic amines genes was limited. Considering their strong antimicrobial activity against L. monocytogenes strains, the four E. faecium strains exhibited promising potential as bio-preservatives cultures for fermented food productions.

  9. BRINE SHRIMP LETHALITY TEST (BSLT DARI BERBAGAI FRAKSI EKSTRAK DAGING BUAH DAN KULIT BIJI MAHKOTA DEWA (Phaleria macrocarpa

    Directory of Open Access Journals (Sweden)

    Vivi Lisdawati

    2012-10-01

    Full Text Available Biological activity of a natural product involved in several certain characteristics will influence its pharmaceutical application. Secondary metabolites, considered as chemical compounds, are now thought to mediate plant defense mechanism by providing chemical barriers against animal and microbial predators. Brine Shrimp Lethality Test (BSLT method has been used as preliminary test for screening the activity of chemical compounds in n­ hexane, ethyl acetate, and methanol extracts from mesocarp and seeds of Phaleria macrocarpa, fam. Thymelaeaceae. BSLT method used shrimp larvas of Artemia salina L. to study the mortality effect that was caused by the sample extracts. All of crude extracts showed bioactivity with LC50 values from 0.16 to 11.83 µg/ml (baseline 1000 µg/ml. It means, at the concentration the crude extracts can cause 50% mortality of A. salina L. shrimp larvas, after 24 hours incubation. These results clearly indicate that crude extracts of P. macrocarpa showed high potential biological activity.

  10. The impact of reservoir conditions and rock heterogeneity on multiphase flow in CO2-brine-sandstone systems

    Science.gov (United States)

    Krevor, S. C.; Reynolds, C. A.; Al-Menhali, A.; Niu, B.

    2015-12-01

    Capillary strength and multiphase flow are key for modeling CO2 injection for CO2 storage. Past observations of multiphase flow in this system have raised important questions about the impact of reservoir conditions on flow through effects on wettability, interfacial tension and fluid-fluid mass transfer. In this work we report the results of an investigation aimed at resolving many of these outstanding questions for flow in sandstone rocks. The drainage capillary pressure, drainage and imbibition relative permeability, and residual trapping [1] characteristic curves have been characterized in Bentheimer and Berea sandstone rocks across a pressure range 5 - 20 MPa, temperatures 25 - 90 C and brine salinities 0-5M NaCl. Over 30 reservoir condition core flood tests were performed using techniques including the steady state relative permeability test, the semi-dynamic capillary pressure test, and a new test for the construction of the residual trapping initial-residual curve. Test conditions were designed to isolate effects of interfacial tension, viscosity ratio, density ratio, and salinity. The results of the tests show that, in the absence of rock heterogeneity, reservoir conditions have little impact on flow properties, consistent with continuum scale multiphase flow theory for water wet systems. The invariance of the properties is observed, including transitions of the CO2 from a gas to a liquid to a supercritical fluid, and in comparison with N2-brine systems. Variations in capillary pressure curves are well explained by corresponding changes in IFT although some variation may reflect small changes in wetting properties. The low viscosity of CO2at certain conditions results in sensitivity to rock heterogeneity. We show that (1) heterogeneity is the likely source of uncertainty around past relative permeability observations and (2) that appropriate scaling of the flow potential by a quantification of capillary heterogeneity allows for the selection of core flood

  11. Corrosion Behavior of Titanium Grade 7 in Fluoride-Containing NaCl Brines

    Energy Technology Data Exchange (ETDEWEB)

    Lian, T; Whalen, M T; Wong, L

    2004-10-25

    The effects of fluoride on the corrosion behavior of Titanium Grade 7 (0.12-0.25% Pd) have been investigated. Up to 0.1 mol/L fluoride was added to the NaCl brines at 95 C, and three pH values of 4, 8, and 11 were selected for studying pH dependence of fluoride effects. It was observed that fluoride significantly altered the anodic polarization behavior, at all three pH values of 4, 8, and 11. Under acidic condition fluoride caused active corrosion. The corrosion of Titanium grade 7 was increased by three orders of magnitude when a 0.1 mol/L fluoride was added to the NaCl brines at pH 4, and the Pd ennoblement effect was not observed in acidic fluoride-containing environments. The effects of fluoride were reduced significantly when pH was increased to 8 and above.

  12. Recovery Act: Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Goddard, William

    2012-11-30

    To further our understanding and develop the method for measuring the DICs under geological sequestration conditions, we studied the infrared spectra of DICs under high pressure and temperature conditions. First principles simulations of DICs in brine conditions were performed using a highly optimized ReaxFF-DIC forcefield. The thermodynamics stability of each species were determined using the 2PT method, and shown to be consistent with the Reax simulations. More importantly, we have presented the IR spectra of DIC in real brine conditions as a function of temperature and pressure. At near earth conditions, we find a breaking of the O-C-O bending modes into asymmetric and symmetric modes, separated by 100cm{sup -1} at 400K and 5 GPa. These results can now be used to calibrate FTIR laser measurements.

  13. Chemical Characterization, Antioxidant and Enzymatic Activity of Brines from Scandinavian Marinated Herring Products

    DEFF Research Database (Denmark)

    Gringer, Nina; Osman, Ali; Nielsen, Henrik Hauch;

    2014-01-01

    Brines generated during the last marination step in the production of marinated herring (Clupea harengus) were chemically characterized and analyzed for antioxidant and enzyme activities. The end-products were vinegar cured, spice cured and traditional barrel-salted herring with either salt...... or spices. The chemical characterization encompassed pH, dry matter, ash, salt, fatty acids, protein, polypeptide pattern, iron and nitrogen. The antioxidant activity was tested with three assays measuring: iron chelation, reducing power and radical scavenging activity. The enzymatic activity for peroxidase...... and protease were also tested. Results revealed that the brine can contain up to 56.7 mg protein/ mL, up to 20.1 mg fatty acid/mL, good antioxidant activity, high amounts of the antioxidative amino acids lysine, alanine, and glycine, and high enzymatic activity. The potential of using the protein-rich fraction...

  14. CYTOTOXIC (BRINE SHRIMP LETHALITY BIOASSAY AND ANTIOXIDANT INVESTIGATION OF BARRINGTONIA ACUTANGULA (L.”

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2015-08-01

    Full Text Available Barringtonia acutangula (L. gaertn. (Family: Barringtoniaceae, a medicinal small to medium evergreen tree known as ‘Hijal’, is used in diarrhoea, dysentery, colic, flatulence, cooling, aperients expectorant, stimulating emetic, astringents to the bowel, antihelminthic, bronchitis, lumber pain, hallucinations, seminal weakness, gonorrhoea and many other ailments in rural areas of Bangladesh It is also used as traditional medicine in other countries. But till to date, sporadic attempts have been made for the scientific and methodical validation of these traditional claims. In Brine Shrimp Lethality Bioassay, all the extracts produced dose dependent cytotoxicity effect to brine shrimp nauplii with methanol extract of leaf exhibiting highest toxicity having LC50 value 46.24 μg/ml where standard vincristine sulphate had the LC50 value of 0.69 μg/ml. & In antioxidant attempt by reducing power and CUPRAC assays, pet. ether extract of leaf were found to exhibit moderate but concentration dependent reducing power respectively.

  15. West Hackberry Brine Disposal Project pre-discharge characterization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeRouen, L.R.; Hann, R.W.; Casserly, D.M.; Giammona, C. (eds.)

    1982-01-01

    The physical, chemical and biological attributes are described for: (1) a coastal marine environment centered about a Department of Energy Strategic Petroleum Reserve (SPR) brine disposal site 11.4 km off the southwest coast of Louisiana; and (2) the lower Calcasieu and Sabine estuarine systems that provide leach waters for the SPR project. A three month sampling effort, February through April 1981, and previous investigations from the study area are integrated to establish baseline information for evaluation of impacts from brine disposal in the nearshore marine waters and from freshwater withdrawal from the coastal marsh of the Chenier Plain. January data are included for some tasks that sampled while testing and mobilizing their instruments prior to the February field effort. The study addresses the areas of physical oceanography, estuarine hydrology and hydrography, water and sediment quality, benthos, nekton, phytoplankton, zooplankton, and data management.

  16. On laboratory simulation and the temperature dependence of the evaporation rate of brine on Mars

    Science.gov (United States)

    Sears, Derek W. G.; Chittenden, Julie D.

    2005-12-01

    We have determined the evaporation rate of brine under simulated martian conditions at temperatures from 0°C to -26.0°C as part of our efforts to better understand the stability of water on Mars. Correcting for the effect of water build-up in the atmosphere and the lower gravity on Mars relative to Earth we observed a factor of almost 30 decrease in evaporation, from 0.88 mm/h at ~0°C to 0.04 mm/h at -25.0°C. The results are in excellent agreement with the predictions of Ingersoll's (1970) theoretical treatment, lending support to the theory and our procedures. Thus brine formation will increase the stability of water on Mars not only by extending the liquid temperature range, but also by considerably decreasing the evaporation rate.

  17. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre

    2011-05-30

    Summary: The Red Sea harbours approximately 25 deep-sea anoxic brine pools. They constitute extremely unique and complex habitats with the conjugation of several extreme physicochemical parameters rendering them some of the most inhospitable environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us with a first glimpse on the enormous biodiversity of the local microbial communities, the identification of several new taxonomic groups, and the isolation of novel extremophiles that thrive in these environments. This review presents a general overview of these unusual biotopes and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Efficient acetylation of primary amines and amino acids in environmentally benign brine solution using acetyl chloride

    Indian Academy of Sciences (India)

    Kaushik Basu; Suchandra Chakraborty; Achintya Kumar Sarkar; Chandan Saha

    2013-05-01

    Acetyl chloride is one of the most commonly available and cheap acylating agent but its high reactivity and concomitant instability in water precludes its use to carry out acetylation in aqueous medium. The present methodology illustrates the efficient acetylation of primary amines and amino acids in brine solution by means of acetyl chloride under weakly basic condition in the presence of sodium acetate and/or triethyl amine followed by trituration with aqueous saturated bicarbonate solution. This effort represents the first efficient use of this most reactive but cheap acetylating agent to acetylate amines in excellent yields in aqueous medium. This is a potentially useful green chemical transformation where reaction takes place in environment-friendly brine solution leading to easy work-up and isolation of the amide derivatives. Mechanistic rationale of this methodology is also important.

  19. Methanotrophy and sulfate reduction at the interface between Mediterranean seawater and the MgCl2-dominated Kryos brine basin

    Science.gov (United States)

    Steinle, Lea; Felber, Nicole; Casalino, Claudia; de Lange, Gert J.; Lehmann, Moritz F.; Stadnitskaia, Alina; Sinninghe Damste, Jaap S.; Tessarolo, Chiara; Treude, Tina; Zopfi, Jakob; Niemann, Helge

    2014-05-01

    The Kryos brine basin is located at ˜3000m water depth in the Eastern Mediterranean Sea. The anoxic brine originates from subsurface Messinian evaporites and is dominated by very high concentrations of MgCl2-equivalents (˜5M), making this environment challenging for live. The strong density difference between the brine and the overlying Mediterranean seawater impedes mixing, and the seawater-brine interface is thus characterized by a strong redox gradient. In the redoxcline, we observed sharp sulfate, sulfide and methane concentration gradients, from seawater background concentrations to high concentrations in the brine (˜150 mM sulfate, ˜250 μM sulfide, ˜50 μM methane). Right at the interface, under micro-oxic conditions, we determined methane oxidation rates of up to 60 nM/day, and sulfate reduction rates of up to 15 μM/day. Our findings of 13C-depleted biomarkers typical for aerobic methanotrophs (diplopterol, fatty acid C16:1ω8) indicate an aerobic mode of methane oxidation independent of sulfate reduction. Below the interface (within the anoxic brine), the presence of both methane and sulfate would make the anaerobic oxidation of methane with sulfate (AOM) thermodynamically feasible. However, while sulfate reduction rates were very high (500 μM/day), methane oxidation rates were not detectable suggesting inhibition of AOM. In the brine, we detected high concentrations of an unusual fatty acid (10Me-C16:0) indicative for sulfate reducing bacteria, which might be responsible for the high sulfate reduction rates. In addition, we also found archaeal lipids (archaeol, PMI) moderately depleted in 13C. Considering the absence of AOM activity, these lipids suggest a methanogenic, rather than methanotrophic origin of the archaea within the brine. All these results provide new and exciting insight into life in an extreme environment.

  20. Valorisation of Ca and Mg by-products from mining and seawater desalination brines for water treatment applications

    OpenAIRE

    Casas Garriga, Sandra; Aladjem, Carlos; Larrotcha, Enric; Gibert Agulló, Oriol; Valderrama Angel, César Alberto; Cortina Pallás, José Luís

    2014-01-01

    BACKGROUNDBrines from the drainage of potash mine tailings and from seawater reverse osmosis (SWRO) desalination were previously evaluated as sources of NaCl for the chlor-alkali industry. Valorisation of NaCl as raw material is required to meet the membrane electrolysis specifications of NaCl saturation and control of interferences (Ca, Mg and sulphate). Brines concentration in NaCl was previously achieved for SWRO brines using electrodialysis (ED). In this work, valorisation of Ca and Mg by...

  1. Examining the role of sea ice and meteorology in Arctic boundary layer halogen chemistry

    Science.gov (United States)

    Peterson, Peter Kevin

    Given the ubiquitous nature of ice, chemistry taking place on ice surfaces has a substantial effect on the environment, particularly in the polar regions. The return of sunlight to the polar regions releases halogen radicals (e.g. Br, Cl and their oxides, e.g. BrO) generated from salts on ice surfaces. These radicals fundamentally alter the chemistry of the Arctic boundary layer through processes such as boundary-layer ozone depletion events and mercury deposition events. Current understanding of the chemical processes involved in Arctic halogen chemistry is inhibited by a lack of knowledge about the ice surfaces on which this chemistry is thought to take place, as well as the sparsity of long-term field observations of this chemistry and its effects. This dissertation addresses both needs through a combination of laboratory experiments and long-term field studies. First, we use X-ray absorption computed micro-tomography at the Advanced Photon Source to image brine distributions within laboratory grown mimics of sea-ice features. These experiments showed that when brine is introduced to ice via wicking of brine from a saline surface, the resulting brine distribution is heterogeneous, with brine existing in distinct regions within the sample, rather than evenly spreading over the sample surface. To examine the horizontal and vertical extent of halogen chemistry in the Arctic boundary layer, we conducted long-term measurements of BrO at Barrow, Alaska using Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). We developed a method to reduce these measurements to timeseries of near-surface and total column amounts of BrO. These measurements showed that the vertical distribution is highly variable, ranging from shallow layer events confined to the lowest 200 m, to distributed column events, which have lower mixing ratios of BrO, but are more distributed throughout approximately the lowest kilometer of the atmosphere. We find that the observed vertical

  2. Linking near- and far-field hydrodynamic models for simulation of desalination plant brine discharges.

    Science.gov (United States)

    Botelho, D A; Barry, M E; Collecutt, G C; Brook, J; Wiltshire, D

    2013-01-01

    A desalination plant is proposed to be the major water supply to the Olympic Dam Expansion Mining project. Located in the Upper Spencer Gulf, South Australia, the site was chosen due to the existence of strong currents and their likely advantages in terms of mixing and dilution of discharged return water. A high-resolution hydrodynamic model (Estuary, Lake and Coastal Ocean Model, ELCOM) was constructed and, through a rigorous review process, was shown to reproduce the intricate details of the Spencer Gulf dynamics, including those characterising the discharge site. Notwithstanding this, it was found that deploying typically adopted 'direct insertion' techniques to simulate the brine discharge within the hydrodynamic model was problematic. Specifically, it was found that in this study the direct insertion technique delivered highly conservative brine dilution predictions in and around the proposed site, and that these were grid and time-step dependent. To improve the predictive capability, a strategy to link validated computational fluid dynamics (CFD) predictions to hydrodynamic simulations was devised. In this strategy, environmental conditions from ELCOM were used to produce boundary conditions for execution of a suite of CFD simulations. In turn, the CFD simulations provided the brine dilutions and flow rates to be applied in ELCOM. In order to conserve mass in a system-wide sense, artificial salt sinks were introduced to the ELCOM model such that salt quantities were conserved. As a result of this process, ELCOM predictions were naturally very similar to CFD predictions near the diffuser, whilst at the same time they produced an area of influence (further afield) comparable to direct insertion methods. It was concluded that the linkage of the models, in comparison to direct insertion methods, constituted a more realistic and defensible alternative to predict the far-field dispersion of outfall discharges, particularly with regards to the estimation of brine

  3. Evaluation Of Corrosion Resistance Of A Duplex Stainless Steel "Ferralium" In Dead Sea Brine

    OpenAIRE

    Mohamed, Z

    1992-01-01

    Corrosion behavior of Ferralium Alloy 255 during service in the environment of concentrated Dead Sea brine has been investigated. It was found that, the corrosion attack is intergranular and exists only in the weld heat effected zone (HAZ). It starts at ferrite/austenite grain boundaries and in the ferrite matrix, where chromium nitride precipitates and then propagates with acceleration in the rest of the metal due to the abrasive action of the slurry.

  4. Acute Oral Toxicity and Brine Shrimp Lethality of Elaeis guineensis Jacq., (Oil Palm Leaf) Methanol Extract

    OpenAIRE

    Yeng Chen; Lai Ngit Shin; Yee Ling Lau; Sreenivasan Sasidharan; Yuet Ping Kwan; Lachimanan Yoga Latha; Soundararajan Vijayarathna; Abdul Rani Muhamad Syahmi

    2010-01-01

    Elaeis guineensis (Arecaceae) is widely used in West African traditional medicine for treating various ailments. An evaluation on the toxicity of extracts of this plant is crucial to support the therapeutic claims. The acute oral toxicity and brine shrimp lethality of a methanolic extract of this plant was tested. Oral administration of crude extract at the highest dose of 5,000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that E. guineensis is nontoxic. Normal be...

  5. Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F; Moeller, L; Johanningsmeier, S D; Hayes, J; Fornea, D S; Rosenberg, L; Gilbert, C; Custis, N; Beene, K; Bass, D

    2015-12-01

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs. PMID:26512798

  6. Commercial Scale Cucumber Fermentations Brined with Calcium Chloride Instead of Sodium Chloride.

    Science.gov (United States)

    Pérez-Díaz, I M; McFeeters, R F; Moeller, L; Johanningsmeier, S D; Hayes, J; Fornea, D S; Rosenberg, L; Gilbert, C; Custis, N; Beene, K; Bass, D

    2015-12-01

    Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride (CaCl2 ) instead of NaCl to commercial scale production. Although CaCl2 brined cucumber fermentations were stable in laboratory experiments, commercial scale trials using 6440 L open-top tanks rapidly underwent secondary cucumber fermentation. It was understood that a limited air purging routine, use of a starter culture and addition of preservatives to the cover brine aids in achieving the desired complete cucumber fermentation. The modified process was used for subsequent commercial trials using 12490 and 28400 L open-top tanks packed with variable size cucumbers and from multiple lots, and cover brines containing CaCl2 and potassium sorbate to equilibrated concentrations of 100 and 6 mM, respectively. Lactobacillus plantarum LA0045 was inoculated to 10(6) CFU/mL, and air purging was applied for two 2-3 h periods per day for the first 10 d of fermentation and one 2-3 h period per day between days 11 and 14. All fermentations were completed, as evidenced by the full conversion of sugars to lactic acid, decrease in pH to 3.0, and presented microbiological stability for a minimum of 21 d. This CaCl2 process may be used to produce fermented cucumbers intended to be stored short term in a manner that reduces pollution and waste removal costs.

  7. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay.

    Science.gov (United States)

    Karchesy, Yvette M; Kelsey, Rick G; Constantine, George; Karchesy, Joseph J

    2016-01-01

    The brine shrimp (Artemia salina) bioassay was used to screen 211 methanol extracts from 128 species of Pacific Northwest plants in search of general cytotoxic activity. Strong toxicity (LC50  1000 µg/ml). Our subsequent studies of conifer heartwoods with strong activity confirm the assay's value for identifying new investigational leads for materials with insecticidal and fungicidal activity. PMID:27186474

  8. Integrated molecular, physiological and in silico characterization of two Halomonas isolates from industrial brine.

    Science.gov (United States)

    Carlson, Ross P; Oshota, Olusegun; Shipman, Matt; Caserta, Justin A; Hu, Ping; Saunders, Charles W; Xu, Jun; Jay, Zackary J; Reeder, Nancy; Richards, Abigail; Pettigrew, Charles; Peyton, Brent M

    2016-05-01

    Two haloalkaliphilic bacteria isolated from industrial brine solutions were characterized via molecular, physiological, and in silico metabolic pathway analyses. Genomes from the organisms, designated Halomonas BC1 and BC2, were sequenced; 16S ribosomal subunit-based phylogenetic analysis revealed a high level of similarity to each other and to Halomonas meridiana. Both strains were moderate halophiles with near optimal specific growth rates (≥60 % μ max) observed over Halomonas. PMID:26888357

  9. Biochemical solubilization of toxic salts from residual geothermal brines and waste waters

    Science.gov (United States)

    Premuzic, Eugene T.; Lin, Mow S.

    1994-11-22

    A method of solubilizing metal salts such as metal sulfides in a geothermal sludge using mutant Thiobacilli selected for their ability to metabolize metal salts at high temperature is disclosed, The method includes the introduction of mutated Thiobacillus ferrooxidans and Thiobacillus thiooxidans to a geothermal sludge or brine. The microorganisms catalyze the solubilization of metal salts, For instance, in the case of metal sulfides, the microorganisms catalyze the solubilization to form soluble metal sulfates.

  10. Uji Toksisitas Ekstrak Benalu Kopi (Loranthus ferrugineus Roxb.) dengan Metode Brine Shrimp Lethality Test (BSLT)

    OpenAIRE

    Bratisca, Sonya Citra

    2016-01-01

    Toxicity assaythe methanol extract of leaves parasite coffee (Loranthus ferrugineus Roxb.) Has been performed using Brine Shrimp Lethality Test (BSLT). Coffee parasite leaves that have been dried and crushed, extracted by using methanol for 2 days, and the methanol extract coffee parasite concentrated by rotary vacuum evaporator. The methanol extract coffee parasiteleavesderived phytochemical screening to identify secondary metabolite coumpounds. Extracts of leaves parasite coffee made in a c...

  11. Brines in seepage channels as eluants for subsurface relict biomolecules on Mars?

    Science.gov (United States)

    Wynn-Williams, D D; Cabrol, N A; Grin, E A; Haberle, R M; Stoker, C R

    2001-01-01

    Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers. PMID:12467120

  12. Experiments of CO2 Solubility in the Synthetic Brine from the Erdos Basin, China

    Science.gov (United States)

    Wang, L.; Yu, Q.

    2015-12-01

    Solubility trapping of CO2 in saline aquifers is accepted to be the promising method in terms of carbon capture and storage (CCS). CO2 solubility at geological sequestration conditions is of great significance in evaluating the carbon capture potential of brine formation. Unfortunately, most CO2 solubility studies focus mainly on single-salt solutions, and only sparse literature exist for the data of CO2 solubility in aqueous solutions containing the mixture of K+, Na+, Ca2+ and Mg2+. To fill the research gap, an experimental investigation on the CO2 solubility in the synthetic brine is carried out. The samples were extracted through the injection wells of the Shenhua Carbon Capture and Storage project in the Erdos Basin located in northern China. The proportion of K+, Na+, Ca2+ and Mg2+ was determined by chemical analysis of the samples in the aquifers. The synthetic brine is used in this study, and the experimental process were improved to lower the risk of penetration of the supercritical fluid. Solubility data were measured over the temperature and pressure ranges of 318-348 K and 8-11 MPa. In the range studied, the average absolute deviation of CO2 solubility between literature and experimental results was 2.7%, and the maximum absolute deviation was less than 5.4%. Krichevsky-Kasarnovsky (KK) equation was established to analyze the experimental data and the effect of different ions on CO2 solubility was quantified using an optimization process. The liner fit between the CO2 solubility and mixed ion concentration is satisfied with correlation coefficient of 0.91. The proposed model and experimental data therefore possess broad adaptability to geological carbon storage. This ambiguity in the mechanism of the ion effect drives our efforts toward a better understanding of the factors controlling CO2 solubility in formation brine.

  13. Understanding the role of brine ionic composition on oil recovery by assessment of wettability from colloidal forces.

    Science.gov (United States)

    Alshakhs, Mohammed J; Kovscek, Anthony R

    2016-07-01

    The impact of injection brine salinity and ionic composition on oil recovery has been an active area of research for the past 25years. Evidence from laboratory studies and field tests suggests that implementing certain modifications to the ionic composition of the injection brine leads to greater oil recovery. The role of salinity modification is attributed to its ability to shift wettability of a rock surface toward water wetness. The amount of trapped oil released depends on the nature of rock, oil, and brine surface interactions. Reservoir rocks exhibit different affinities to fluids. Carbonates show stronger adsorption of oil films as opposed to the strongly water-wet and mixed-wet sandstones. The concentration of divalent ions and total salinity of the injection brine are other important factors to consider. Accordingly, this paper provides a review of laboratory and field studies of the role of brine composition on oil recovery from carbonaceous rock as well as rationalization of results using DLVO (Derjaguin, Landau, Verwey and Overbeek) theory of surface forces. DLVO evaluates the contribution of each component of the oil/brine/rock system to the wettability. Measuring zeta potential of each pair of surfaces by a charged particle suspension method is used to estimate double layer forces, disjoining pressure, and contact-angle. We demonstrate the applicability of the DLVO approach by showing a comprehensive experimental study that investigates the effect of divalent ions in carbonates, and uses disjoining pressure results to rationalize observations from core flooding and direct contact-angle measurements.

  14. Conceptual design of the Truscott brine lake solar-pond system, volume 1: Utility-independent scenario

    Science.gov (United States)

    1981-06-01

    A conceptual design was performed for a series of solar pond systems to provide pumping power for chloride control in the Red River Basin. In the chloride control project, briny waters are diverted so as not to pollute portable water. The diverted brine is stored in a dammed natural basin where, with the aid of natural evaporation, the brine is concentrated to the salinities required for the solar ponds. The brine is transferred to the ponds and injected at the proper levels to establish the gradients and storage layers. The solar ponds are to be located within the Truscott, Texas brine impoundment lake. Heat will be extracted from the ponds and used to drive organic Rankine-cycle turbine generators. The electricity produced will serve the pumping needs of the chloride control project, pump brine from the natural source to the evaporation ponds, pump concentrated brine from the evaporation ponds to the solar ponds, maintain the solar ponds, and supply all system parasitic loads. It was found that five solar ponds with eight organic Rankine-cycle turbine-generators would serve both the average and peaking power requirements of the pumping stations in the Truscott area as they come on-line.

  15. Annual report 1983 Chemistry Department

    International Nuclear Information System (INIS)

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1983 are presented. The facilities and equipment are barely mentioned. The activities are divided into nine groups: 1. radioisotope chemistry 2. analytical- and organic chemistry 3. environmental chemistry 4. polymer chemistry 5. geochemistry and waste disposal 6. radical chemstry 7. positron annihilation 8. mineral processing 9. general. (author)

  16. Mathematical problems for chemistry students

    CERN Document Server

    Pota, Gyorgy

    2006-01-01

    Mathematical Problems for Chemistry Students has been compiled and written (a) to help chemistry students in their mathematical studies by providing them with mathematical problems really occurring in chemistry (b) to help practising chemists to activate their applied mathematical skills and (c) to introduce students and specialists of the chemistry-related fields (physicists, mathematicians, biologists, etc.) into the world of the chemical applications. Some problems of the collection are mathematical reformulations of those in the standard textbooks of chemistry, other

  17. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water. A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).

  18. Imaged brine inclusions in young sea ice—Shape, distribution and formation timing

    DEFF Research Database (Denmark)

    Galley, R.J.; Else, B.G.T.; Geilfus, Nicolas-Xavier;

    2015-01-01

    quantification of the morphology and vertical dis- tribution of brine inclusions in sea ice. Using a magnetic (3.0 T) resonance (MR) imager using constructive inter- ference steady state gradient echo sequence, we show that it is possible to image brine channels and pockets in an 18.5 cm young sea ice core in......Liquid inclusions in sea ice are variable and dependent on the myriad of physical conditions of the atmosphere– sea ice environment in which the sea ice was grown, and whether or not melting processes affected the sea ice. In that light, there exist relatively few observations and resultant...... three-dimensions in only four and a half minutes following core storage at − 20 °C. We present a three-dimensional image of a brine drainage channel feature in a young sea ice core, give the phys- ical context for its formation by presenting the physical conditions of the atmosphere and water/sea ice...

  19. Core-scale electrical resistivity tomography (ERT) monitoring of CO2-brine mixture in Fontainebleau sandstone

    Science.gov (United States)

    Bosch, David; Ledo, Juanjo; Queralt, Pilar; Bellmunt, Fabian; Luquot, Linda; Gouze, Philippe

    2016-07-01

    The main goal of the monitoring stage of Carbon Capture and Storage (CCS) is to obtain an accurate estimation of the subsurface CO2 accumulation and to detect any possible leakage. Laboratory experiments are necessary to investigate the small scale processes governing the CO2-brine-rock interaction. They also provide a means to calibrate the results coming from field scale geophysical methods. In this work we set up an experimental system which is able to perform Electrical Resistivity Tomography (ERT) measurements on centimeter-scale rock samples at various P-T conditions. We present the results of two new experiments related to CO2 monitoring, performed on a cylindrical (4 × 8 cm) Fontainebleau rock sample. In the first one, we have quantified the CO2 saturation at different volume fractions, representing zones from a deep saline aquifer with varying degrees of saturation. In the second one, we have monitored and quantified the effect of CO2 dissolution in the brine at a pressure of 40 bar during eight days, emulating the invasion of CO2 into a shallow aquifer. Results highlight the importance of accounting for the contribution of surface conductivity in highly CO2-saturated regions, even in clay-free rocks, and also for brine conductivity variation due to CO2 dissolution. Ignoring any of these effects will end up in a CO2 saturation underestimation. We present a modified CO2 saturation equation to account for these two influences.

  20. Assessment of Contaminated Brine Fate and Transport in MB139 at WIPP

    Energy Technology Data Exchange (ETDEWEB)

    Kuhlman, Kristopher L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Applied Systems Analysis and Research Dept.; Malama, Bwalya [Sandia National Lab., Carlsbad, NM (United States). Performance Assessment Dept.

    2014-07-01

    Following the radionuclide release event of February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), actinide contamination has been found on the walls and floor in Panel 7 as a result of a release in Room 7 of Panel 7. It has been proposed to decontaminate Panel 7 at the WIPP by washing contaminated surfaces in the underground with fresh water (Nelson, 2014a). A cost-effective cleanup of this contamination would allow for a timely return to waste disposal operations at WIPP. It is expected that the fresh water used to decontaminate Panel 7 will flow as contaminated brine down into the porosity of the materials under the floor – the run-of-mine (ROM) salt above Marker Bed 139 (MB139) and MB139 itself – where its fate will be controlled by the hydraulic and transport properties of MB139. Due to the structural dip of MB139, it is unlikely that this brine would migrate northward towards the Waste-Handling Shaft sump. A few strategically placed shallow small-diameter observation boreholes straddling MB139 would allow for monitoring the flow and fate of this brine after decontamination. Additionally, given that flow through the compacted ROM salt floor and in MB139 would occur under unsaturated (or two-phase) conditions, there is a need to measure the unsaturated flow properties of crushed WIPP salt and salt from the disturbed rock zone (DRZ).