WorldWideScience

Sample records for characteristic x-ray radiation

  1. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  2. Characteristics of x-ray radiation from a gas-puff z-pinch plasma

    International Nuclear Information System (INIS)

    Akiyama, N.; Takasugi, K.

    2002-01-01

    Characteristics of x-ray radiation from Ar gas-puff z-pinch plasma have been investigated by changing delay time of discharge from gas puffing. Intense cloud structure of x-ray image was observed at small delay time region, but the total x-ray signal was not so intense. The x-ray signal increased with increasing the delay time, and hot spots of x-ray image also became intense. Electron temperature was evaluated from x-ray spectroscopic data, and no significant difference in temperature was observed. (author)

  3. Calculation of characteristics of X-ray devices

    Directory of Open Access Journals (Sweden)

    Orobinskyi A. N.

    2015-12-01

    Full Text Available Actuality of this work is related to human radiation safety during tuning and regulation of X-ray devices in the process of their development and production. The more precise the calculations for the device are, the less time is required for its tuning and regulation, and thus people are less exposed to radiation. When developing an X-ray device, it is necessary to choose an X-ray tube and filters taking into account the application domain of the device. In order to do this, one should know anode voltage, X-ray tube anode current, material and thickness of filters, i.e. to calculate these characteristics at the set quality of X-ray radiation. The known published studies do not give any solution to this problem. The scientific novelty of this work is that it establishes the interdependence between main characteristics of the X-ray device: the function of the device defines the quality of X-ray radiation (mean photon energy and air kerma power; mean photon energy depends on the X-ray anode tube voltage and spectral resolution; air kerma power depends on anode tube voltage, current of X-ray tube anode, spectral resolution, thicknesses of the filters and their materials; spectral resolution depends on thicknesses of filters and their materials; thickness of filters depends on the material of the filter (the linear coefficient of weakening of X-ray radiation. Knowledge of interdependence of basic characteristics of the X-ray devices allowes developing simple algorithm for their calculation at the values of homogeneity coefficient from 0,8 to 1, which makes it possible to choose an X-ray tube and filters with the purpose of obtaining X-ray radiation of the set quality.

  4. Investigation on diagnostic techniques of X-ray radiation characteristic from slit target

    International Nuclear Information System (INIS)

    Cheng Jinxiu; Miao Wenyong; Sun Kexu; Wang Hongbin; Cao Leifeng; Yang Jiamin; Chen Zhenglin

    2001-01-01

    On the Xingguang-II facility, X-ray transport process in a cavity target was simulated in a long cylindrical cavity with slits. High temporally and spatially resolved Microchannel Plate (MCP) gated X-ray picosecond frame camera and soft X-ray steak camera were used to investigate the temporal and spatial distribution of the soft X-ray emitted from the cavity wall through the slit. X-ray transport velocity, X-ray emission time and amount of intensity decay was obtained. X-ray CCD pinhole transmission grating spectrometer was used to investigate the spectrum change of the emitted X-ray versus its location. The change characteristic of the spectrum of X-ray absorbed and emitted again and again in transport was obtained. X-ray diodes and Dante spectrometer were used to measure X-ray flux and radiation temperature in the slit, the source and the transport end, respectively. The typical results in the experiment were given. A brief and essential analysis and discussion were made

  5. Characteristics of X ray calibration fields for performance test of radiation measuring instruments

    International Nuclear Information System (INIS)

    Shimizu, Shigeru; Takahashi, Fumiaki; Sawahata, Tadahiro; Tohnami, Kohichi; Kikuchi, Hiroshi; Murayama, Takashi

    1999-02-01

    Performance test and calibration of the radiation measuring instruments for low energy photons are made using the X ray calibration fields which are monochromatically characterized by filtration of continuous X ray spectrum. The X ray calibration field needs to be characterized by some quality conditions such as quality index and homogeneity coefficient. The present report describes quality conditions, spectrum and some characteristics of X ray irradiation fields in the Facility of Radiation Standard of the Japan Atomic Energy Research Institute (FRS-JAERI). Fifty nine X ray qualities with the quality index of 0.6, 0.7, 0.8 and 0.9 were set for the tube voltages between 10 kV and 350 kV. Estimation of X ray spectrum measured with a Ge detector was made in terms of exposure, ambient dose equivalent and fluence for all the obtained qualities. Practical irradiation field was determined as the dose distribution uniformity is within ±3%. The obtained results improve the quality of X ray calibration fields and calibration accuracy. (author)

  6. X-ray diffraction characteristics of curved monochromators for sychrotron radiation

    International Nuclear Information System (INIS)

    Boeuf, A.; Rustichelli, F.; Mazkedian, S.; Puliti, P.; Melone, S.

    1978-01-01

    A theoretical study is presented concerning the diffraction characteristics of curved monochromators for X-ray synchrotron radiation used at the laboratories of Hamburg, Orsay and Stanford. The investigation was performed by extending to the X-ray case a simple model recently developed and fruitfully employed to describe the neutron diffraction properties of curved monochromators. Several diffraction patterns were obtained corresponding to different monochromator materials (Ge, Si) used by the different laboratories, for different reflecting planes (111), (220), asymmetry angles, X-ray wave-lengths (Mo Kα, Cu Kα, Cr Kα) and curvature radii. The results are discussed in physical terms and their implications on the design of curved monochromators for synchrotron radiation are presented. In particular, the study shows that all the monochromators used in the different laboratories should behave practically as perfect crystals and therefore should have a very low integrated reflectivity corresponding to an optimized wavelength passband Δlambda/lambda approximately 10 -4 . The gain that can be obtained by increasing the curvature, by introducing a gradient in the lattice spacing or by any other kind of imperfection is quite limited and much lower than the desirable value. The adopted model can help in obtaining a possible moderate gain in intensity by also taking into consideration other parameters, such as crystal material, reflecting plane, asymmetry of the reflection and X-ray wavelength. (Auth.)

  7. X-ray and. gamma. -ray sources: a comparison of their characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Freund, A K [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1979-11-01

    A comparison of the various source characteristics, in particular the available fluxes of radiation in the X-ray/..gamma..-ray region from (1) high power rotary anode X-ray generators, (2) radioactive ..gamma..-ray sources and (3) high energy electron storage rings is presented. Some of the specific characteristics and possible applications of synchrotron radiation as a source are discussed in detail, together with problems associated with the monochromatization of the continuous radiation in the X-ray/..gamma..-ray region. The new high energy machines PEP at Stanford, the 8 GeV storage ring CESR at Cornell and the PETRA storage ring in Hamburg, which will soon come into operation provide a spectrum of high intensity radiation reaching well above h..gamma..sub(photon)=100 keV. The possibilities of using ondulators (wigglers), and laser-electron scattering for constructing high repetition rate tunable ..gamma..-ray sources are also discussed. Finally the potentials of using the powerful spontaneous emission of ..gamma..-quanta by relativistic channeled particles are mentioned.

  8. Study on TV X-ray system characteristics

    International Nuclear Information System (INIS)

    Semenov, A.P.; Volkov, A.V.

    1978-01-01

    The results are presented of comparative investigations into the main characteristics of TV X-ray systems (TXS) and X-ray radiography when X-raying of the 1Kh18N9T steel. The following characteristics are considered: the threshold contrast sensitivity, the sensitivity to revealing standard defects, and the dose rate of X-radiation at the input of the X-ray converter. Practical recommendations are given on the use of TXS in flaw detection of various materials. It is remarked to use introscopes for testing of thick welded products articles, and X-ray vidicon systems for study of low-contrast images (in testing of welds made by point welding, and of thin-wall products)

  9. Characteristics determination of Tanka X-ray Diagnostic Machine Model RTO-125

    International Nuclear Information System (INIS)

    Trijoko, Susetyo; Nasukha; Suyati; Nugroho, Agung.

    1993-01-01

    Characteristics determination of Tanka X-ray diagnostic machine model RTO-125. The characteristics of X-ray machine used for examining patient should be known. The characteristics studied in this paper include : X-ray beam profile, coincidence of the light field with radiation field, peak voltage, radiation quality, stability of exposures, and linearity of exposures against time. Beam profile and radiation-field alignment were determined using X-ray film. Winconsin kVp test cassette was used to measure peak voltage. The quality of the radiation, represented by half-value layer (HVL), was measured using aluminium step-wedge. Stability and linearity of exposures were measured using ionization chamber detector having an air volume of 40 cc. The results of this study were documented for the TANKA X-ray machine model RTO-125 of PSPKR BATAN, and the method of this study could be applied for X-ray diagnostic machine in general. (authors). 6 refs., 2 tabs., 6 figs

  10. Characteristic 8 keV X rays possess radiobiological properties of higher-LET radiation.

    Science.gov (United States)

    Shridhar, Ravi; Estabrook, William; Yudelev, Mark; Rakowski, Joseph; Burmeister, Jay; Wilson, George D; Joiner, Michael C

    2010-03-01

    Electronic brachytherapy systems are being developed that can deliver X rays of varying energy depending on the material of a secondary target. A copper target produces characteristic 8 keV X rays. Our aim was to determine whether 8 keV X rays might deliver greater biological effectiveness than megavoltage photons. Cells of the U251 human glioma cell line were used to compare the biological effects of 8 keV X rays and (60)Co gamma rays in terms of relative biological effectiveness (RBE), oxygen enhancement ratio (OER), and DNA damage. The RBE at 50% and 10% survival was 2.6 and 1.9, respectively. At 50% survival, the OER for cells treated with 8 keV X rays was 1.6 compared with 3.0 for (60)Co gamma rays. The numbers of H2AX foci per Gy after treatment with 8 keV X rays and (60)Co gamma rays were similar; however, the size of the foci generated at 8 keV was significantly larger, possibly indicating more complex DNA damage. The mean area of H2AX foci generated by 8 keV X rays was 0.785 microm(2) (95% CI: 0.756-0.814) compared with 0.491 microm(2) (95% CI: 0.462-0.520) for (60)Co gamma rays (P X rays produce two to three times the biological effectiveness of megavoltage photons, with a radiobiological profile similar to higher-LET radiations.

  11. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  12. Radiation safety in X-ray facilities

    International Nuclear Information System (INIS)

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2

  13. Radiation safety in X-ray facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-01

    The guide specifies the radiation safety requirements for structural shielding and other safety arrangements used in X-ray facilities in medical and veterinary X-ray activities and in industry, research and education. The guide is also applicable to premises in which X-ray equipment intended for radiation therapy and operating at a voltage of less than 25 kV is used. The guide applies to new X-ray facilities in which X-ray equipment that has been used elsewhere is transferred. The radiation safety requirements for radiation therapy X-ray devices operating at a voltage exceeding 25 kV, and for the premices in which such devices are used, are set out in Guide ST 2.2.

  14. Study of characteristic X-ray source and its applications

    International Nuclear Information System (INIS)

    Li Fuquan

    1994-11-01

    The law of characteristic X-rays emitted by target element under the radiation of isotope source in a range of low energy is discussed. Both the way of improving the rate of γ-X conversion and the method to eliminate the influence of scatter rays are introduced. The influence of the variation of isotopes source, targets and the relative position of source-target to the output of X-rays is also discussed and then the conditions of improving signal-to-noise radio is presented. The X-ray source based on these results can produce different energy X-rays, and so can be broadly used on nuclear instruments and other fields as a low energy source. The thickness gauge, as one of the applications, has succeeded in thickness measuring of the different materials in large range, and it presents a new application field for characteristic X-ray source. (11 figs., 10 tabs.)

  15. The physical and biomedical characteristics of the novel transmission type X-ray equipment

    International Nuclear Information System (INIS)

    Hsu, S.M.; Wang, S.F.; Hsieh, Y.J.; Cheng, C.C.; Liao, Y.J.

    2016-01-01

    The radiation output characteristics of the transmission-target X-ray tube are different from those of the traditional reflection-target X-ray tube. The aims of this study were to compare the differences of output dose and spectrum between these two X-ray tubes under the same conditions. The biomedical applications of the transmission-target X-ray in liver cancer cells were also evaluated. For these two systems, the dose output and the mAs appeared to have good linear relations; the dose output and kVp variations also had positive relations. However, under the same parameters, the dose output of transmission-target X-ray system was 2.64–3.21 times higher than the reflection-target system, implying that the transmission-target system had a higher X-ray production rate. The K characteristic radiations reach 22.96% and 8.91% of the spectrum in transmission-target and reflection-target, respectively. The spectrum measurements showed that the transmission-target system had more obvious output of K characteristic radiation. The 1 Gy of transmission-target can induce 16%–23% of cytotoxicity in liver cancer cells. Concerning the synergic effects of transmission-target combined with rose bengal, the data showed that 1 Gy of transmission-target exposure augment the 24%–28% of cytotoxicity at low dose of rose bengal treated condition. - Highlights: • The transmission-target X-ray system had a higher X-ray production rate. • The transmission-target X-ray system had more obvious output of K characteristic radiation. • The transmission-target X-ray enhanced rose bengal induced cytotoxicity in liver cancer cells.

  16. Radiation processing with high-energy X-rays

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Stichelbaut, Frederic

    2009-01-01

    The physical, chemical or biological characteristics of selected commercial products and materials can be improved by radiation processing. The ionizing energy can be provided by accelerated electrons with energies between 75 keV and 10 MeV, gamma rays from cobalt-60 with average energies of 1.25 MeV or X-rays with maximum energies up to 7.5 MeV. Electron beams are preferred for thin products, which are processed at high speeds. Gamma rays are used for products that are too thick for treatment with electron beams. High-energy X-rays can also be used for these purposes because their penetration in solid materials is similar to or even slightly greater than that of gamma rays. Previously, the use of X-rays had been inhibited by their slower processing rates and higher costs when compared with gamma rays. Since then, the price of cobalt-60 sources has been increased and the radiation intensity from high-energy, high-power X-ray generators has also increased. For facilities requiring at least 2 MCi of cobalt-60, the capital and operating costs of X-ray facilities with equivalent processing rates can be less than that of gamma-ray irradiators. Several high-energy electron beam facilities have been equipped with removable X-ray targets so that irradiation processes can be done with either type of ionizing energy. A new facility is now being built which will be used exclusively in the X-ray mode to sterilize medical products. Operation of this facility will show that high-energy, high-power X-ray generators are practical alternatives to large gamma-ray sources. (author)

  17. Low energy X-ray radiation impact on coated Si constructions

    International Nuclear Information System (INIS)

    Adliene, D.; Cibulskaite, I.; Meskinis, S.

    2010-01-01

    Low energy X-ray radiation impact on the coated Si structures is discussed in this paper. Experimental sandwich structures consisting of amorphous hydrogenated a:C-H or SiO x -containing DLC films were synthesized on Si wafers using direct ion deposition method and exposed to low energy (medical diagnostic range) X-ray photons. Irradiation of samples was performed continuously or in sequences and protective characteristics of the irradiated DLC films were investigated. Experimental data were used as the input data for Monte Carlo modelling of X-ray scattering effects in the coated silicon constructions, which affect significantly the 'signal to noise ratio' in DLC-coated Si structures proposed for their application in medical radiation detectors. Modelling results obtained in the case of DLC coatings were compared to the results of calculations performed for other commonly used combinations coating-detector material. The evaluation method of coated structures for their possible application in medical radiation detector constructions has been proposed in this paper. It is based on the best achieved compatibility between the appropriate mechanical characteristics, coating's resistance against the radiation damage and the lowest estimated scattering to total dose ratio in the coated radiation sensitive volume.

  18. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  19. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    Elemental analysis using emission of characteristic x rays is a well-established scientific method. The success of this analytical method is highly dependent on the properties of the source used to produce the x rays. X-ray tubes have long existed as a principal excitation source, but electron and proton beams have also been employed extensively. The development of the synchrotron radiation x-ray source that has taken place during the past 40 years has had a major impact on the general field of x-ray analysis. Even tier 40 years, science of x-ray analysis with synchrotron x-ray beams is by no means mature. Improvements being made to existing synchrotron facilities and the design and construction of new facilities promise to accelerate the development of the general scientific use of synchrotron x-ray sources for at least the next ten years. The effective use of the synchrotron source technology depends heavily on the use of high-performance computers for analysis and theoretical interpretation of the experimental data. Fortunately, computer technology has advanced at least as rapidly as the x-ray technology during the past 40 years and should continue to do so during the next decade. The combination of these technologies should bring about dramatic advances in many fields where synchrotron x-ray science is applied. It is interesting also to compare the growth and rate of acceptance of this particular research endeavor to the rates for other technological endeavors. Griibler [1997] cataloged the time required for introduction, diffusion,and acceptance of technological, economic, and social change and found mean values of 40 to 50 years. The introduction of the synchrotron source depends on both technical and non-technical factors, and the time scale at which this seems to be occurring is quite compatible with what is seen for other major innovations such as the railroad or the telegraph. It will be interesting to see how long the present rate of technological change

  20. Characteristics of soft X-ray lens

    International Nuclear Information System (INIS)

    Qin Yi

    2007-12-01

    A soft X-lens was devised with waveguide X-ray optics of total external reflection (TER). The lens consists of a stack of 1 387 TER waveguides with inner diameter of 0.45 mm and outer diameter of 0.60 mm. With the help of plasma sources of soft X-ray radiation, high density of pure soft X-ray radiation (without plasma expansion fragments) with broad-band spectral range can be obtained at the focus of the lens. As laser-plasma is considered, the radiation density of 1.3 x 10 5 W/cm 2 is obtained, the transmission coefficient is 18.6%, the ratio of the density at the focus with and without the lens is 1000 and the radiation capture is 28.9 degree. The density of 0.5 TW/cm 2 can be obtained as far as Qiang-Guang I facility is considered. (authors)

  1. X-ray radiation effects in multilayer epitaxial graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Jeremy; Tinkey, Holly; Hankinson, John; Heer, Walt A. de; Conrad, Edward H. [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Arora, Rajan; Kenyon, Eleazar; Chakraborty, Partha S.; Cressler, John D. [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Berger, Claire [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); CNRS-Institut Neel, BP 166, 38042 Grenoble Cedex 9 (France)

    2011-12-05

    We characterize multilayer graphene grown on C-face SiC before and after exposure to a total ionizing dose of 12 Mrad(SiO{sub 2}) using a 10 keV x-ray source. While we observe the partial peeling of the top graphene layers and the appearance of a modest Raman D-peak, we find that the electrical characteristics (mobility, sheet resistivity, free carrier concentration) of the material are mostly unaffected by radiation exposure. Combined with x-ray photoelectron spectroscopy data showing numerous carbon-oxygen bonds after irradiation, we conclude that the primary damage mechanism is through surface etching from reactive oxygen species created by the x-rays.

  2. Statistical and coherence properties of radiation from X-ray free electron lasers

    International Nuclear Information System (INIS)

    Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2009-12-01

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  3. Statistical and coherence properties of radiation from X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2009-12-15

    We describe statistical and coherence properties of the radiation from X-ray free electron lasers (XFEL). It is shown that the X-ray FEL radiation before saturation is described with gaussian statistics. Particularly important is the case of the optimized X-ray FEL, studied in detail. Applying similarity techniques to the results of numerical simulations allowed us to find universal scaling relations for the main characteristics of an X-ray FEL operating in the saturation regime: efficiency, coherence time and degree of transverse coherence. We find that with an appropriate normalization of these quantities, they are functions of only the ratio of the geometrical emittance of the electron beam to the radiation wavelength. Statistical and coherence properties of the higher harmonics of the radiation are highlighted as well. (orig.)

  4. Characteristics of a multi-keV monochromatic point x-ray source

    Indian Academy of Sciences (India)

    Temporal, spatial and spectral characteristics of a multi-keV monochromatic point x-ray source based on vacuum diode with laser-produced plasma as cathode are presented. Electrons from a laser-produced aluminium plasma were accelerated towards a conical point tip titanium anode to generate K-shell x-ray radiation.

  5. The effect of well-characterized, very low-dose x-ray radiation on fibroblasts.

    Science.gov (United States)

    Truong, Katelyn; Bradley, Suzanne; Baginski, Bryana; Wilson, Joseph R; Medlin, Donald; Zheng, Leon; Wilson, R Kevin; Rusin, Matthew; Takacs, Endre; Dean, Delphine

    2018-01-01

    The purpose of this study is to determine the effects of low-dose radiation on fibroblast cells irradiated by spectrally and dosimetrically well-characterized soft x-rays. To achieve this, a new cell culture x-ray irradiation system was designed. This system generates characteristic fluorescent x-rays to irradiate the cell culture with x-rays of well-defined energies and doses. 3T3 fibroblast cells were cultured in cups with Mylar® surfaces and were irradiated for one hour with characteristic iron (Fe) K x-ray radiation at a dose rate of approximately 550 μGy/hr. Cell proliferation, total protein analysis, flow cytometry, and cell staining were performed on fibroblast cells to determine the various effects caused by the radiation. Irradiated cells demonstrated increased proliferation and protein production compared to control samples. Flow cytometry revealed that a higher percentage of irradiated cells were in the G0/G1 phase of the cell cycle compared to control counterparts, which is consistent with other low-dose studies. Cell staining results suggest that irradiated cells maintained normal cell functions after radiation exposure, as there were no qualitative differences between the images of the control and irradiated samples. The result of this study suggest that low-dose soft x-ray radiation might cause an initial pause, followed by a significant increase, in proliferation. An initial "pause" in cell proliferation could be a protective mechanism of the cells to minimize DNA damage caused by radiation exposure. The new cell irradiation system developed here allows for unprecedented control over the properties of the x-rays given to the cell cultures. This will allow for further studies on various cell types with known spectral distribution and carefully measured doses of radiation, which may help to elucidate the mechanisms behind varied cell responses to low-dose x-rays reported in the literature.

  6. Management of diagnostic x-ray radiation in developing countries

    International Nuclear Information System (INIS)

    Date, T.

    2000-01-01

    The purpose of this study is to provide a simple, inexpensive, and effective method to prevent the scattering of x-ray radiation by using a lead apron in the x-ray rooms of developing countries. In developed countries, the scattering of x-ray radiation among patients and radiographers in diagnostic x-ray rooms has been minimized by various methods. However, in some developing countries, scattered x-ray radiation has not yet been adequately contained. The policy of As Law As Reasonably Achievable (ALARA) requires that patients who are waiting for their examinations must be protected from scattered x-ray radiation. However, from the author's experience, protection from scattered x-ray radiation in x-ray rooms is often insufficient in developing countries. In addition, major public hospitals in big cities are overwhelmed with patients because radiology resources in developing countries are concentrated in the big cities. Moreover, the situation is made worse by short working hours in public hospitals. Hours from 10 a.m. to 3 p.m. are typical. Because of the circumstances, radiographers, who are in a rush to finish all of the examinations within their normal working hours, sometimes allow patients to enter the x-ray rooms while they are waiting for their examinations. Chest and abdominal x-rays are the most common kinds of diagnostic x-ray examination in developing countries. Thus, in this study, anthropomorphic chest and abdominal phantoms were x-rayed for measuring the scattered x-ray radiation with and without protection using a 0.25mmPb lead apron at specific points from the anthropomorphic phantoms in the x-ray room. The lead apron was hung on a mobile apron-hanger and placed next to the anthropomorphic phantom. The scattered radiation dosimetry for chest x-rays proves that this simple method reduces scattered x-ray radiation to 15% at one-meter point and to almost 0% at the two-meter point from the anthropomorphic phantom in the x-ray room. Lead aprons are

  7. Characteristics of charge coupled devices over X-ray spectral band

    Energy Technology Data Exchange (ETDEWEB)

    Mishenskij, V O; Volkov, G S; Zajtsev, V I; Zazhivikhin, V V [Troitsk Institute for Thermonuclear and Innovation Investigations (Russian Federation)

    1997-12-31

    The results of theoretical and experimental investigation of the sensitivity and spatial resolution of charge coupled devices (CCD) influenced by X-ray quanta are reported. Both a calculation model of the interaction process between the X-ray radiation and the CCD-structure and experimental results of investigation of the CCD characteristics are presented. The theoretical model of interaction between X-ray radiation and CCD is suggested. In accordance with the model, the calculations of CCD sensitivity and spatial resolution, depending on the X-ray energy, are performed. The results of comparison of the calculated and experimental data obtained for linear CCD (LCCD) are presented. The CCD has a maximum sensitivity of approx. (1-2.5) . 10{sup 7} V.cm{sup 2}/J for quanta of energies of 0.5-8 keV. The CCD spatial resolution varies from 15-20 {mu}m (CCD gate size) for quanta of energies less then 4 keV and deteriorates up to 150 {mu}m for harder radiation (20-50 keV). CCD usage as space-resolving detectors for high-power installation diagnostics is presented. Other fields of CCD application for X-ray detection are discussed. Advantages of CCD in comparison with the traditional X-ray films is discussed from this point of view. (author). 4 figs., 3 refs.

  8. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  9. X-rays utilization

    International Nuclear Information System (INIS)

    Rebigan, F.

    1979-03-01

    The modality of X-ray utilization in different activities and economy is given. One presents firstly quantities and units used in radiation dosimetry and other fields. One gives the generation of X-rays, their properties as well as the elements of radiation protection. The utilization characteristics of these radiations in different fields are finally given. (author)

  10. The application of synchrotron radiation to X-ray lithography

    International Nuclear Information System (INIS)

    Spiller, E.; Eastman, D.E.; Feder, R.; Grobman, W.D.; Gudat, W.; Topalian, J.

    1976-06-01

    Synchrotron radiation from the German electron synchrotron DESY in Hamburg has been used for X-ray lithograpgy. Replications of different master patterns (for magnetic bubble devices, fresnel zone plates, etc.) were made using various wavelengths and exposures. High quality lines down to 500 A wide have been reproduced using very soft X-rays. The sensitivities of X-ray resists have been evaluated over a wide range of exposures. Various critical factors (heating, radiation damage, etc.) involved with X-ray lithography using synchrotron radiation have been studied. General considerations of storage ring sources designed as radiation sources for X-ray lithography are discussed, together with a comparison with X-ray tube sources. The general conclusion is that X-ray lithography using synchrotron radiation offers considerable promise as a process for forming high quality sub-micron images with exposure times as short as a few seconds. (orig.) [de

  11. Light source for synchrotron radiation x-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL)

    International Nuclear Information System (INIS)

    Zhao Jiyong; Jiang Jianhua; Tian Yulian

    1992-01-01

    Characteristics of the synchrotron radiation source for X-ray topography study at Beijing Synchrotron Radiation Laboratory (BSRL) is described, local geometrical resolution of topographies is discussed, and the diffracting intensities of white beam topography is given

  12. X-ray elastography: Modification of x-ray phase contrast images using ultrasonic radiation pressure

    International Nuclear Information System (INIS)

    Hamilton, Theron J.; Bailat, Claude; Rose-Petruck, Christoph; Diebold, Gerald J.; Gehring, Stephan; Laperle, Christopher M.; Wands, Jack

    2009-01-01

    The high resolution characteristic of in-line x-ray phase contrast imaging can be used in conjunction with directed ultrasound to detect small displacements in soft tissue generated by differential acoustic radiation pressure. The imaging method is based on subtraction of two x-ray images, the first image taken with, and the second taken without the presence of ultrasound. The subtraction enhances phase contrast features and, to a large extent, removes absorption contrast so that differential movement of tissues with different acoustic impedances or relative ultrasonic absorption is highlighted in the image. Interfacial features of objects with differing densities are delineated in the image as a result of both the displacement introduced by the ultrasound and the inherent sensitivity of x-ray phase contrast imaging to density variations. Experiments with ex vivo murine tumors and human tumor phantoms point out a diagnostic capability of the method for identifying tumors.

  13. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Science.gov (United States)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen

  14. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Madau, Piero [Department of Astronomy and Astrophysics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Fragos, Tassos [Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Sauverny (Switzerland)

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic

  15. Synchrotron radiation calibration for soft X-ray detector

    International Nuclear Information System (INIS)

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  16. Experimental investigations of the dosimetric features of x-ray radiation used in x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Prostyakova, M A

    1975-10-01

    For radiation hygiene estimates of the extent of the irradiation of various organs and tissues in roentgenological investigations, the quality and quantity of the primary radiation beam and its behaviour in the irradiated medium are assessed. It is shown that the effective energy of x-rays generated at 50-100 kV and with different radiation field dimensions at different depths in a tissue-equivalent irradiated medium is more or less constant, varying within the range 25 to 32 keV. The constancy of effective x-ray energies in a tissue-equivalent medium enables one to use, for different x-ray tube regimes, constant values of the roentgen-rad conversion factor for soft tissue and bone tissue. The investigations confirm the desirability of using high voltages across the x-ray tube in practical x-ray work.

  17. X-Ray and Gamma-Ray Radiation Detector

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed is a semiconductor radiation detector for detecting X-ray and / or gamma-ray radiation. The detector comprises a converter element for converting incident X-ray and gamma-ray photons into electron-hole pairs, at least one cathode, a plurality of detector electrodes arranged with a pitch...... (P) along a first axis, a plurality of drift electrodes, a readout circuitry being configured to read out signals from the plurality of detector electrodes and a processing unit connected to the readout circuitry and being configured to detect an event in the converter element. The readout circuitry...... is further configured to read out signals from the plurality of drift electrodes, and the processing unit is further configured to estimate a location of the event along the first axis by processing signals obtained from both the detector electrodes and the drift electrodes, the location of the event along...

  18. Sizes of X-ray radiation coherent domains in thin SmS films and their visualization

    Science.gov (United States)

    Sharenkova, N. V.; Kaminskii, V. V.; Petrov, S. N.

    2011-09-01

    The size of X-ray radiation coherent domains (250 ± 20 Å) is determined in a thin polycrystalline SmS film using X-ray diffraction patterns (θ-2θ scanning, DRON-2 diffractometer, Cu K α radiation) and the Selyakov-Scherrer formula with allowance for the effect of microstrains. An image of this film is taken with a transmission electron microscope, and regions with a characteristic size of 240 Å are clearly visible in it. It is concluded that X-ray radiation coherent domains are visualized.

  19. Radiation safety aspects of new X-ray free electron laser facility, SACLA

    International Nuclear Information System (INIS)

    Asano, Yoshihiro

    2013-01-01

    In the safety point of view, X-ray free electron laser facilities have some characteristics in comparison with 3 rd generation synchrotron radiation facilities. One is that the high energy electrons are always injected into the beam dump and the beamlines must be constructed in the direction of the movements of electrons, and another is that the total number of accelerated electrons of X-ray free electron laser facilities is much larger than that of synchrotron radiation facilities. In addition to the importance of safety interlock systems, therefore, it is important that high energy electrons never invade into X-ray free electron laser beamlines and the amount of accelerated electron beam losses must be reduced as much as possible. At SACLA, a safety permanent magnet was installed into the X-ray light beam axis, and a beam halo monitor and beam loss monitors were installed within and around the electron transport pipes, respectively. In comparison with the SPring-8 synchrotron radiation facility, shielding design of SACLA, outline of the radiation safety systems including the monitors will be presented

  20. Use of a solar panel as a directionally sensitive large-area radiation monitor for direct and scattered x-rays and gamma-rays.

    Science.gov (United States)

    Abdul-Majid, S

    1987-01-01

    The characteristics of a 25.4 X 91 cm solar cell panel used as an x-ray and gamma-ray radiation monitor are presented. Applications for monitoring the primary x-ray beam are described at different values of operating currents and voltages as well as for directional dependence of scattered radiation. Other applications in gamma-ray radiography are also given. The detector showed linear response to both x-ray and gamma-ray exposures. The equipment is rigid, easy to use, relatively inexpensive and requires no power supply or any complex electronic equipment.

  1. Measuring scatter radiation in diagnostic x rays for radiation protection purposes

    International Nuclear Information System (INIS)

    Panayiotakis, George; Vlachos, Ioannis; Delis, Harry; Tsantilas, Xenophon; Kalyvas, Nektarios; Kandarakis, Ioannis

    2015-01-01

    During the last decades, radiation protection and dosimetry in medical X-ray imaging practice has been extensively studied. The purpose of this study was to measure secondary radiation in a conventional radiographic room, in terms of ambient dose rate equivalent H*(10) and its dependence on the radiographic exposure parameters such as X-ray tube voltage, tube current and distance. With some exceptions, the results indicated that the scattered radiation was uniform in the space around the water cylindrical phantom. The results also showed that the tube voltage and filtration affect the dose rate due to the scatter radiation. Finally, the scattered X-ray energy distribution was experimentally calculated. (authors)

  2. A model of parametric X-ray radiation for application to diagnostic radiology

    International Nuclear Information System (INIS)

    Di Domenico, G.; Cardarelli, P.; Gambaccini, M.; Marziani, M.; Taibi, A.; Comandini, A.

    2011-01-01

    Parametric X-ray Radiation (PXR) is well known as an intense, tunable and quasi-monochromatic X-ray source. From the very first work of Ter-Mikaelian, who proposed the interaction phenomenon for Parametric X-rays many theoretical and experimental studies have investigated the characteristics of such a novel X-ray source. Within the framework of classical electrodynamics, we have thoroughly studied the physical implications of electrons moving through a medium at relativistic speed and then developed an analytical model of X-ray diffraction based on the PXR phenomenon. The model has been used to obtain information on the characteristics of PXR diffracted beam in terms of X-ray intensity, energy spectrum and angular distribution. Several crystals have been studied both in Bragg and Laue geometry and their relative yield has been compared. Preliminary results on the diagnostic potential of PXR have shown that, at a distance from the crystal which produces a size of the X-ray field useful for an imaging application, the photon yield of PXR is higher than that produced by a conventional X-ray tube, provided that a similar electron current is available.

  3. Silicon detectors for x and gamma-ray with high radiation resistance

    International Nuclear Information System (INIS)

    Cimpoca, Valerica; Popescu, Ion V.; Ruscu, Radu

    2001-01-01

    Silicon detectors are widely used in X and gamma-ray spectroscopy for direct detection or coupled with scintillators in high energy nuclear physics (modern collider experiments are representative), medicine and industrial applications. In X and gamma dosimetry, a low detection limit (under 6 KeV) with silicon detectors becomes available. Work at the room temperature is now possible due to the silicon processing evolution, which assures low reverse current and high life time of carriers. For several years, modern semiconductor detectors have been the primary choice for the measurement of nuclear radiation in various scientific fields. Nowadays the recently developed high resolution silicon detectors found their way in medical applications. As a consequence many efforts have been devoted to the development of high sensitivity and radiation hardened X and gamma-ray detectors for the energy range of 5 - 150 keV. The paper presents some results concerning the technology and behaviour of X and Gamma ray silicon detectors used in physics research, industrial and medical radiography. The electrical characteristics of these detectors, their modification after exposure to radiation and the results of spectroscopic X and Gamma-ray measurements are discussed. The results indicated that the proposed detectors enables the development of reliable silicon detectors to be used in controlling the low and high radiation levels encountered in a lot of application

  4. Soft X-ray radiation damage in EM-CCDs used for Resonant Inelastic X-ray Scattering

    Science.gov (United States)

    Gopinath, D.; Soman, M.; Holland, A.; Keelan, J.; Hall, D.; Holland, K.; Colebrook, D.

    2018-02-01

    Advancement in synchrotron and free electron laser facilities means that X-ray beams with higher intensity than ever before are being created. The high brilliance of the X-ray beam, as well as the ability to use a range of X-ray energies, means that they can be used in a wide range of applications. One such application is Resonant Inelastic X-ray Scattering (RIXS). RIXS uses the intense and tuneable X-ray beams in order to investigate the electronic structure of materials. The photons are focused onto a sample material and the scattered X-ray beam is diffracted off a high resolution grating to disperse the X-ray energies onto a position sensitive detector. Whilst several factors affect the total system energy resolution, the performance of RIXS experiments can be limited by the spatial resolution of the detector used. Electron-Multiplying CCDs (EM-CCDs) at high gain in combination with centroiding of the photon charge cloud across several detector pixels can lead to sub-pixel spatial resolution of 2-3 μm. X-ray radiation can cause damage to CCDs through ionisation damage resulting in increases in dark current and/or a shift in flat band voltage. Understanding the effect of radiation damage on EM-CCDs is important in order to predict lifetime as well as the change in performance over time. Two CCD-97s were taken to PTB at BESSY II and irradiated with large doses of soft X-rays in order to probe the front and back surfaces of the device. The dark current was shown to decay over time with two different exponential components to it. This paper will discuss the use of EM-CCDs for readout of RIXS spectrometers, and limitations on spatial resolution, together with any limitations on instrument use which may arise from X-ray-induced radiation damage.

  5. Radiation risks for patients having X rays

    International Nuclear Information System (INIS)

    Hale, J.; Thomas, J.W.

    1985-01-01

    In addition to radiation from naturally occurring radioactive materials and cosmic rays, individuals in developed countries receive radiation doses to bone marrow and gonads from the medical diagnostic use of X rays. A brief discussion of radiation epidemiology shows that deleterious effects are low even when doses are high. The concept of acceptable risk is introduced to help evaluate the small, but still existent, risks of radiation dose. Examples of bone marrow and gonadal doses for representative X-ray examinations are presented along with the current best estimates, per unit of X-ray dose, of the induction of leukemia or of genetic harm. The risk to the patient from an examination can then be compared with the normal risk of mortality from leukemia or of the occurrence of genetic defects. The risk increase is found to be very low. The risks to unborn children from radiographic examinations are also discussed. The benefit to the patient from information obtained from the examination must be balanced against the small risks

  6. Measurement of characteristic X-rays by positron impact

    International Nuclear Information System (INIS)

    Nagashima, Y.; Saito, F.; Itoh, Y.; Goto, A.; Hyodo, T.

    2004-01-01

    An X-ray detector with thin Si(Li) crystals has been fabricated and employed to detect the characteristic X-rays by positron impact. Use of thin detector crystals is essential for the measurements of the characteristic X-rays induced by positron impact. Otherwise the background produced in the crystals by the annihilation γ-rays is too large to isolate the X-ray peaks. The data has been analyzed to obtain the inner-shell ionization cross sections by positron impact. (orig.)

  7. Radiation doses for X-ray diagnosis teeth in dental medicine

    International Nuclear Information System (INIS)

    Direkov, Lyubomir

    2009-01-01

    X-rays are the first ionizing radiation, which are applied in medicine for diagnostic radiology and X-ray therapy. While in the beginning they are mainly used for X-ray photos of the chest /lungs and in severe fractures of the limbs, then in recent years they are widely applied in diagnostics of teeth in dental medicine. Considering that caries is a widespread disease, both in children and adults, and it requires repeated x-ray photographs of the damaged teeth for the individual, the total radiation doses, which reflect on people from the X-rays are at high values. In order to reduce external exposure to other organs /mainly thyroid gland/ by X-ray pictures of teeth, it should be used with special lead aprons with large coefficient of reduction. Keywords: doses of radiation, X-ray machines, dental, x-ray pictures of teeth, protection sources

  8. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  9. X-ray electromagnetic application technology

    International Nuclear Information System (INIS)

    2011-01-01

    The investigating committee aimed at research on electromagnetic fields in functional devices and X-ray fibers for efficient coherent X-ray generation and their material science, high-precision manufacturing, particularly for X-ray electromagnetic application technology from January 2006 to December 2008. In this report, we describe our research results, in particular, on the topics of synchrotron radiation and free-electron laser, Saga Synchrotron Project, X-ray waveguides and waveguide-based lens-less hard-X-ray imaging, X-ray nanofocusing for capillaries and zone plates, dispersion characteristics in photonics crystal consisting of periodic atoms for nanometer waveguides, electromagnetic characteristics of grid structures for scattering fields of nano-meter electromagnetic waves and X-rays, FDTD parallel computing of fundamental scattering and attenuation characteristics of X-ray for medical imaging diagnosis, orthogonal relations of electromagnetic fields including evanescent field in dispersive medium. (author)

  10. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  11. Influence of multiple scattering of a relativistic electron in a periodic layered medium on coherent X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V.; Kos’kova, T. V.; Noskov, A. V., E-mail: noskovbupk@mail.ru [Belgorod State National Research University (Russian Federation)

    2016-01-15

    A dynamic theory of coherent X-ray radiation generated in a periodic layered medium by a relativistic electron multiply scattered by target atoms has been developed. The expressions describing the spectral–angular characteristics of parametric X-ray radiation and diffracted transition radiation are derived. Numerical calculations based on the derived expressions have been performed.

  12. Application of Monte Carlo method in determination of secondary characteristic X radiation in XFA

    International Nuclear Information System (INIS)

    Roubicek, P.

    1982-01-01

    Secondary characteristic radiation is excited by primary radiation from the X-ray tube and by secondary radiation of other elements so that excitations of several orders result. The Monte Carlo method was used to consider all these possibilities and the resulting flux of characteristic radiation was simulated for samples of silicate raw materials. A comparison of the results of these computations with experiments allows to determine the effect of sample preparation on the characteristic radiation flux. (M.D.)

  13. Leakage and scattered radiation from hand-held dental x-ray unit

    International Nuclear Information System (INIS)

    Kim, Eun Kyung

    2007-01-01

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR ΙΙΙ was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR ΙΙΙ was exposed with portable X-ray unit 6.39 μGy, and the mean dose with fixed X-ray unit 3.03 μGy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 μGy and with fixed X-ray unit the mean dose was 0.68 μGy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography

  14. Leakage and scattered radiation from hand-held dental x-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2007-06-15

    To compare the leakage and scattered radiation from hand-held dental X-ray unit with radiation from fixed dental X-ray unit. For evaluation we used one hand-held dental X-ray unit and Oramatic 558 (Trophy Radiologie, France), a fixed dental X-ray unit. Doses were measured with Unfors Multi-O-Meter 512L at the right and left hand levels of X-ray tube head part for the scattered and leakage radiation when human skull DXTTR {iota}{iota}{iota} was exposed to both dental X-ray units. And for the leakage radiation only, doses were measured at the immediately right, left, superior and posterior side of the tube head part when air was exposed. Exposure parameters of hand-held dental X-ray unit were 70 kVp, 3 mA , 0.1 second, and of fixed X-ray unit 70 kVp, 8 mA, 0.45 second. The mean dose at the hand level when human skull DXTTR {iota}{iota}{iota} was exposed with portable X-ray unit 6.39 {mu}Gy, and the mean dose with fixed X-ray unit 3.03 {mu}Gy (p<0.001). The mean dose at the immediate side of the tube head part when air was exposed with portable X-ray unit was 2.97 {mu}Gy and with fixed X-ray unit the mean dose was 0.68 {mu}Gy (p<0.01). The leakage and scattered radiation from hand-held dental radiography was greater than from fixed dental radiography.

  15. Observation of parametric X-ray radiation by an imaging plate

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Shchagin, A.V.

    2012-01-01

    We have demonstrated experimentally the application of an imaging plate for registering the angular distribution of parametric X-ray radiation. The imaging plate was used as a two-dimensional position-sensitive X-ray detector. High-quality images of the fine structure in the angular distributions of the yield around the reflection of the parametric X-ray radiation produced in a silicon crystal by a 255-MeV electron beam from a linear accelerator have been observed in the Laue geometry. A fairly good agreement between results of measurements and calculations by the kinematic theory of parametric X-ray radiation is shown. Applications of the imaging plates for the observation of the angular distribution of X-rays produced by accelerated particles in a crystal are also discussed.

  16. A Study on Mono-energetic Beam Source Using Characteristic X-ray for Substance Identification System

    International Nuclear Information System (INIS)

    Lee, Hwan Soo

    2009-02-01

    A new mono-energetic beam source was developed by using characteristic X-ray for improving performance of the substance identification system. Most of inspection systems use X-ray tubes for their source modules. However, the broad energy spectrum of X-ray tube causes an increase of uncertainty. In this study, it was found that mono-energetic beam sources can be generated by using X-ray tube and the designed target filter assembly. In order to investigate the monoenergetic beam source, the sensitivity study was conducted with a series of different X-ray tube potentials, radiator and filter materials using Monte Carlo simulation. The developed beam sources have a mono-energy peak at 69 keV, 78 keV and 99 keV, and they are named as characteristic X-ray beam BEAM69, BEAM78 and BEAM99, respectively. The characteristic X-ray beam intensity was over thirty three times more than that of hardening beam used previous work at Hanyang University. And BEAM69 and BEAM99 were applied to the substance identification system as a source. The relative error between results of characteristic X-ray beams and 69 keV and 99 keV photons was about 2% on the average for five unknown materials. In comparison with experiment results by using hardening beam, characteristic X-ray beam achieves better accuracy which is about 6.46 % on the average. Hence, it is expected that the developed characteristic X-ray beam source helps lower uncertainty of the inspection system, and the inspection time will be reduced considerably due to its high beam intensity

  17. THE NuSTAR X-RAY SPECTRUM OF HERCULES X-1: A RADIATION-DOMINATED RADIATIVE SHOCK

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Michael T.; Wood, Kent S. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Becker, Peter A. [Department of Physics and Astronomy, George Mason University, Fairfax, VA 22030-4444 (United States); Gottlieb, Amy M.; Marcu-Cheatham, Diana M.; Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Fürst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Hemphill, Paul B. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0424 (United States); Schwarm, Fritz-Walter; Wilms, Jörn [Dr. Karl-Remeis-Sternwarte and ECAP, Sternwartstr, 7, D-96049 Bamberg (Germany)

    2016-11-10

    We report on new spectral modeling of the accreting X-ray pulsar Hercules X-1. Our radiation-dominated radiative shock model is an implementation of the analytic work of Becker and Wolff on Comptonized accretion flows onto magnetic neutron stars. We obtain a good fit to the spin-phase-averaged 4–78 keV X-ray spectrum observed by the Nuclear Spectroscopic Telescope Array during a main-on phase of the Her X-1 35 day accretion disk precession period. This model allows us to estimate the accretion rate, the Comptonizing temperature of the radiating plasma, the radius of the magnetic polar cap, and the average scattering opacity parameters in the accretion column. This is in contrast to previous phenomenological models that characterized the shape of the X-ray spectrum, but could not determine the physical parameters of the accretion flow. We describe the spectral fitting details and discuss the interpretation of the accretion flow physical parameters.

  18. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    CERN Document Server

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  19. X-ray dosimetry of TlGaSe2 single crystals

    International Nuclear Information System (INIS)

    Kerimova, E.M.; Mustafaeva, S.N.; Mamedbeili, S.D.; Jabarov, J.N.; Iskenderova, P.M.; Kazimov, S.B.

    2002-01-01

    TlGaSe 2 compound belongs to group of layered semiconductors of A 3 B 3 C 2 6 -type. Photoelectric and optical properties of TlGaSe 2 single crystals were investigated in detail. Influence of gamma-, electron and neutron radiation on photoelectric properties of TlGaSe 2 single crystals is investigated too. The present work deals with experimental results relative to X-ray dosimetric characteristics of TlGaSe 2 crystals at 300 K. X-ray conductivity and X-ray dosimetric characteristic measurements are carried out in low load resistance regime. The source of X-ray radiation is the installation of X-ray diffraction analysis (URS-55a) with the BCV-2(Cu). Intensity of X-ray radiation (E) is regulated by measurement with current variation in tube at each given value of X-ray radiation dose E (R/min) are measured by crystal dosimeter DRGZ-02. X-ray conductivity coefficients K σ characterising X-ray sensitivity of investigated crystals are determined as the relative change of conductivity under X-ray radiation a per dose. There have been determined values of characteristic coefficients of TlGaSe 2 single crystal X-ray conductivity at different values of accelerating voltage (V a ) on the tube and corresponding doses of X-ray radiation. Analysis of obtained data showed that X-ray conductivity coefficients K σ in studied crystals are regularly decreased (from 0.276 to 0.033) as with the rise of dose (E=0.75-78.0 R/min) as with the increase of values of V a on X-ray tube (V a =254-50 keV). One of the possible reasons of observed regularities is that X-ray conductivity in investigated crystals, especially at comparatively low V a is due predominantly to radiation of thin layer of crystal. In this case with the rise of radiation intensity there have been started to prevail the mechanism of surface quadratic recombination which leads to observed decrease of X-ray conductivity. With the rise of accelerating potential 'effective hardness' is increased, as a result of which there

  20. Elemental-composition analysis by the measurement of characteristic X-ray radiation excited by the 1-3.5 MeV proton beam

    International Nuclear Information System (INIS)

    Braziewicz, E.; Braziewicz, J.; Lyu Zaj Ik; Osetinskij, G.M.; Purehv, A.

    1981-01-01

    A method is reported for the determination of elemental composition of thin and thick targets from biological, geological and semiconducting materials. The composition is investigated by measuring the characteristic X-ray radiation after the targets were excited by a beam of protons from the electrostatic accelerator (JINR, Dubna). The accuracy of determination for thin targets was within the interval 3-5x10 -9 g/g, for thick targets - 5x10 -7 g/g [ru

  1. Optimum power of radiation dose in X ray television systems of flaw inspection in industry

    International Nuclear Information System (INIS)

    Denbnovetskii, S.V.; Troitskii, V.A.; Belyi, N.G.; Grom, V.S.; Kuz'micheva, N.V.; Leshchishin, A.V.; Mikhailov, V.N.; Shutenko, O.V.

    1990-01-01

    The authors present the experimental dose characteristics of a x ray television system based on x ray vidicons with the diameter of the working field of 900 mm which operate in the continuous and pulsed conditions with the longer time of cumulation of radiation images on the target of the x ray vidicon. For each type of the inspected material, its thickness, and cumulation time, the dose characteristics were used to determine the optimum power of the exposure dose ensuring the maximum signal/noise ratio and detectability of the defects at the output of the system. (author)

  2. Diamond detectors for synchrotron radiation X-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    De Sio, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy)], E-mail: desio@arcetri.astro.it; Pace, E. [Department of Astronomy and Space Science, Universita di Firenze, L.go E. Fermi 2, 50125 Firenze (Italy); INFN, Sezione di Firenze, v. G. Sansone 1, Sesto Fiorentino, Firenze (Italy); Cinque, G.; Marcelli, A. [Laboratori Nazionali di Frascati, INFN, 00044 Frascati, Roma (Italy); Achard, J.; Tallaire, A. [LIMHP-CNRS, University of Paris XIII, 99 Avenue JB Clement, 93430 Villetaneuse (France)

    2007-07-15

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices.

  3. Diamond detectors for synchrotron radiation X-ray applications

    International Nuclear Information System (INIS)

    De Sio, A.; Pace, E.; Cinque, G.; Marcelli, A.; Achard, J.; Tallaire, A.

    2007-01-01

    Due to its unique physical properties, diamond is a very appealing material for the development of electronic devices and sensors. Its wide band gap (5.5 eV) endows diamond based devices with low thermal noise, low dark current levels and, in the case of radiation detectors, high visible-to-X-ray signal discrimination (visible blindness) as well as high sensitivity to energies greater than the band gap. Furthermore, due to its radiation hardness diamond is very interesting for applications in extreme environments, or as monitor of high fluency radiation beams. In this work the use of diamond based detectors for X-ray sensing is discussed. On purpose, some photo-conductors based on different diamond types have been tested at the DAFNE-L synchrotron radiation laboratory at Frascati. X-ray sensitivity spectra, linearity and stability of the response of these diamond devices have been measured in order to evidence the promising performance of such devices

  4. Prophylactic radiation protection in X-ray diagnostics

    International Nuclear Information System (INIS)

    Vogel, H.; Loehr, H.

    1982-01-01

    X-ray diagnosis can lead to stochastic ratidation damage such as uncreased incidence of malignant growths resp. leucemia and malformations in the child and grandchild generations as a consequence of radiation-induced mutations. Non-stocharadiation damage such as burns and lense opacification, which are in each instance clearly attributable to radiation, occur today only on account of incorrect handling of the examination method and technical defects. Normally, the risk to both patient and diagnostician is low and acceptable. Yed if adequate awareness of radiation hazards is missing - which includes full control over the X-ray appliance and knowledge of possible technical defects, the legal maximum doses may be surpassed and avoidable damage caused. (orig.) [de

  5. Radiation-driven winds in x-ray binaries

    International Nuclear Information System (INIS)

    Friend, D.B.; Castor, J.I.

    1982-01-01

    We discuss the properties of a radiation-driven stellar wind in an X-ray binary system. The Castor, Abbott, Klein line-driven wind model is used, but the effects of the compact companion (gravity and continuum radiation pressure) and the centrifugal force due to orbital motion are included. These forces destroy the spherical symmetry of the wind and can make the mass loss and accretion strong functions of the size of the primary relative to its critical potential lobe. We in most systems the wind alone could power the X-ray emission. It also appears that, in the evolution of these systems, there would be a continuous transition from wind accretion to critical potential lobe overflow. The model is also used to make a prediction about the nature of a suspected binary system which is not known to be an X-ray emitter

  6. Magnetic X-Ray Scattering with Synchrotron Radiation

    DEFF Research Database (Denmark)

    Moncton, D. E.; Gibbs, D.; Bohr, Jakob

    1986-01-01

    With the availability of high-brilliance synchrotron radiation from multiple wigglers, magnetic X-ray scattering has become a powerful new probe of magnetic structure and phase transitions. Similar to the well-established magnetic neutron scattering technique, magnetic X-ray scattering methods have...... many complementary advantages. A brief review is presented of the history of magnetic X-ray scattering as well as recent results obtained in studies of the rare-earth magnet holmium with emphasis on instrumentational aspects. In particular, the development of a simple polarization analyzer...... to distinguish charge and magnetic scattering is described....

  7. The X-ray transition radiation; Le rayonnement de transition X

    Energy Technology Data Exchange (ETDEWEB)

    Couillaud, Ch

    2000-07-01

    The interest of producing high-energy radiation using a small-size electron accelerator is growing since many years. It appeared that such accelerators should drive x-ray sources to produce a high flux of radiation. The range of photon-energy available when using electron linacs, for example, is between a few tens of eV and the maximum electron kinetic energy. The transition radiation, which is produced when a charged particle crosses the interface between two media of different permittivities, is a very promising way due to its high production rate. We present here a study of this physical process involving moderate-energy relativistic electrons (20 MeV). We recall the main characteristics of the radiation when the interface is crossed at normal incidence and derive the analytical production yields when the interaction takes place at grazing incidence. The results for both geometries are compared. Finally, the scale laws allowing the optimization of the spectral source brilliance are presented. (author)

  8. Handbook of X-Ray Data

    CERN Document Server

    Zschornack, Günter

    2007-01-01

    This sourcebook is intended as an X-ray data reference for scientists and engineers working in the field of energy or wavelength dispersive X-ray spectrometry and related fields of basic and applied research, technology, or process and quality controlling. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). This includes X-ray energies, emission rates and widths as well as level characteristics such as binding energies, fluorescence yields, level widths and absorption edges. The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed. This reference book addresses all researchers and practitioners working with X-ray radiation and fills a gap in the available literature.

  9. Radiation effects for high-energy protons and X-ray in integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M.A.G.; Santos, R.B.B. [Centro Universitario da FEI, Sao Bernardo do Campo, SP (Brazil); Medina, N.H.; Added, N.; Tabacniks, M.H. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Lima, J.A. de [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cirne, K.H. [Empresa Brasileira de Aeronautica S.A. (EMBRAER), Sao Jose dos Campos, SP (Brazil)

    2012-07-01

    Full text: Electronic circuits are strongly influenced by ionizing radiation. The necessity to develop integrated circuits (IC's) featuring radiation hardness is largely growing to meet the stringent environment in space electronics [1]. This work aims to development a test platform to qualify electronic devices under the influence of high radiation dose, for aerospace applications. To understand the physical phenomena responsible for changes in devices exposed to ionizing radiation several kinds of radiation should then be considered, among them heavy ions, alpha particles, protons, gamma and X-rays. Radiation effects on the ICs are usually divided into three categories: Total Ionizing Dose (TID), a cumulative dose that shifts the threshold voltage and increases transistor's off-state current; Single Events Effects (SEE), a transient effect which can deposit charge directly into the device and disturb the properties of electronic circuits and Displacement Damage (DD) which can change the arrangement of the atoms in the lattice [2]. In this study we are investigating the radiation effects in rectangular-gate and circular-gate MOSFETs, manufactured with standard CMOS fabrication process, using particle beams produced in electrostatic tandem accelerators and X-rays. Initial tests for TID effects were performed using the 1.7 MV 5SDH tandem Pelletron accelerator of the Instituto de Fisica da USP with a proton beam of 2.6 MeV. The devices were exposed to different doses, varying the beam current, and irradiation time with the accumulated dose reaching up to Grad. To study the effect of X-rays on the electronic devices, an XRD-7000 (Shimadzu) X-ray setup was used as a primary X-ray source. The devices were irradiated with a total dose from krad to Grad using different dose rates. The results indicate that changes of the I-V characteristic curve are strongly dependents on the geometry of the devices. [1] Duzellier, S., Aerospace Science and Technology 9, p. 93

  10. Ordinance on the Protection against X-Radiation Hazards (X-Ray Ordinance)

    International Nuclear Information System (INIS)

    1987-01-01

    The ordinance refers to X-ray equipment and to stray radiation sources which generate X-radiation of at least 5 keV by means of accelerated electrons, and for this purpose apply an acceleration energy not exceeding 3 MeV. The ordinance does not apply to stray radiation sources which are used for the generation of ionizing particle radiation and thus are subject to the provisions of the Radiation Protection Ordinance. (orig./PW) [de

  11. Thumba X-ray plant: Are radiation fears justified

    International Nuclear Information System (INIS)

    Madhvanath, U.

    1978-01-01

    Technical facts about the X-ray unit located at Vikram Sarabhai Space Centre, Thumba (India) are set down to explain that it is not posing any radiation hazard as reported in a newspaper and thus radiation fears are not justifiable. It is stated that, after thorough checking, X-ray installations in this space centre cause negligible exposure even to workers who handle these units, and others practically do not get any exposure at all. (B.G.W.)

  12. Macrophage and tumor cell responses to repetitive pulsed X-ray radiation

    Science.gov (United States)

    Buldakov, M. A.; Tretyakova, M. S.; Ryabov, V. B.; Klimov, I. A.; Kutenkov, O. P.; Kzhyshkowska, J.; Bol'shakov, M. A.; Rostov, V. V.; Cherdyntseva, N. V.

    2017-05-01

    To study a response of tumor cells and macrophages to the repetitive pulsed low-dose X-ray radiation. Methods. Tumor growth and lung metastasis of mice with an injected Lewis lung carcinoma were analysed, using C57Bl6. Monocytes were isolated from a human blood, using CD14+ magnetic beads. IL6, IL1-betta, and TNF-alpha were determined by ELISA. For macrophage phenotyping, a confocal microscopy was applied. “Sinus-150” was used for the generation of pulsed X-ray radiation (the absorbed dose was below 0.1 Gy, the pulse repetition frequency was 10 pulse/sec). The irradiation of mice by 0.1 Gy pulsed X-rays significantly inhibited the growth of primary tumor and reduced the number of metastatic colonies in the lung. Furthermore, the changes in macrophage phenotype and cytokine secretion were observed after repetitive pulsed X-ray radiation. Conclusion. Macrophages and tumor cells had a different response to a low-dose pulsed X-ray radiation. An activation of the immune system through changes of a macrophage phenotype can result in a significant antitumor effect of the low-dose repetitive pulsed X-ray radiation.

  13. Degradation of 4-Chloro phenol by gamma radiation of 137Cs and X-rays

    International Nuclear Information System (INIS)

    Gonzalez J, J. C.; Jimenez B, J.; Cejudo A, J.

    2010-01-01

    This paper presents results of radiolytic degradation of 4-chloro phenol in the presence of TiO 2 , Al 2 O 3 and SiO 2 , using different radiation sources than 60 Co, which is so common in this type of experiment. The radiation sources used were X-rays with energy of 100 keV and radiation from 137 Cs (662 keV). After irradiation with a dose of 50 c Gy X-ray and TiO 2 obtained a degradation of about 5%, no degradation was obtained with 137 Cs source and other oxides. This may be due to the fact that X-rays have a linear energy transfer greater value, and in the case of TiO 2 present a crystalline structure, whereas the other two oxides are amorphous. Both characteristics result in better formation of a reactive species that allows the degradation of the compound. (Author)

  14. Spectral analysis of paramagnetic centers induced in human tooth enamel by x-rays and gamma radiation

    Science.gov (United States)

    Kirillov, V. A.; Kuchuro, I. I.

    2010-03-01

    Based on study of spectral and relaxation characteristics, we have established that paramagnetic centers induced in tooth enamel by x-rays and gamma radiation are identical in nature. We show that for the same exposure dose, the intensity of the electron paramagnetic resonance (EPR) signal induced by x-radiation with effective energy 34 keV is about an order of magnitude higher than the amplitude of the signal induced by gamma radiation. We have identified a three-fold attenuation of the EPR signal along the path of the x-radiation from the buccal to the lingual side of a tooth, which is evidence that the individual had undergone diagnostic x-ray examination of the dentition or skull. We have shown that the x-ray exposure doses reconstructed from the EPR spectra are an order of magnitude higher than the applied doses, while the dose loads due to gamma radiation are equal to the applied doses. The data obtained indicate that for adequate reconstruction of individual absorbed doses from EPR spectra of tooth enamel in the population subjected to the combined effect of x-radiation and accidental external gamma radiation as a result of the disaster at the Chernobyl nuclear power plant, we need to take into account the contribution to the dose load from diagnostic x-rays in examination of the teeth, jaw, or skull.

  15. Paediatric x-ray radiation dose reduction and image quality analysis.

    Science.gov (United States)

    Martin, L; Ruddlesden, R; Makepeace, C; Robinson, L; Mistry, T; Starritt, H

    2013-09-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%-55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children.

  16. Paediatric x-ray radiation dose reduction and image quality analysis

    International Nuclear Information System (INIS)

    Martin, L; Ruddlesden, R; Mistry, T; Starritt, H; Makepeace, C; Robinson, L

    2013-01-01

    Collaboration of multiple staff groups has resulted in significant reduction in the risk of radiation-induced cancer from radiographic x-ray exposure during childhood. In this study at an acute NHS hospital trust, a preliminary audit identified initial exposure factors. These were compared with European and UK guidance, leading to the introduction of new factors that were in compliance with European guidance on x-ray tube potentials. Image quality was assessed using standard anatomical criteria scoring, and visual grading characteristics analysis assessed the impact on image quality of changes in exposure factors. This analysis determined the acceptability of gradual radiation dose reduction below the European and UK guidance levels. Chest and pelvis exposures were optimised, achieving dose reduction for each age group, with 7%–55% decrease in critical organ dose. Clinicians confirmed diagnostic image quality throughout the iterative process. Analysis of images acquired with preliminary and final exposure factors indicated an average visual grading analysis result of 0.5, demonstrating equivalent image quality. The optimisation process and final radiation doses are reported for Carestream computed radiography to aid other hospitals in minimising radiation risks to children. (paper)

  17. Costs of radiation protection in X-ray diagnosis

    International Nuclear Information System (INIS)

    Prahl, M.

    1987-01-01

    The study described investigates into the costs arising from physical protection measures against radiation, in particular from dosimetric determinations carried out in humans according to section 40 of the X-Ray Ordinance, from special structural requirements of examination rooms and higher purchase prices for X-ray units offering built-in protective devices (hardware-related radiation protection). The conventional fluoroscope is chosen as an example of how this is achieved today. At first, a survey is given of X-ray installations in North Rhine-Westphalia, the technical details of which are described. This provides approximative information on the extent of dosimetric calculations in humans, the necessary expenditure on shieldings and the costs involved in additional hardware-related measures. (orig./DG) [de

  18. Radiation safety in X-ray diagnostic installations

    International Nuclear Information System (INIS)

    Das, K.R.; Ambiger, T.Y.; Viswanathan, P.S.

    1977-01-01

    Safety measures to be strictly adhered to in handling X-ray equipment and exposing patients to X-radiation are described in detail. Hazards resulting from ignorance and careless handling are mentioned. Methods of shielding are indicated. (A.K.)

  19. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  20. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  1. Calibration of diagnostic x-ray machines using radiation exposure and radiographic parameters

    International Nuclear Information System (INIS)

    Agba, E.H.; Uloko, P. I.; Tyovenda, A. A.

    2011-01-01

    Calibration of diagnostic x-ray machines using radiation exposure and radiographic parameters of the x-ray machines has been carried out. Three phase diagnostic x-ray machines situated at Federal Medical Centre, Makurdi, General Hospital, Otukpo and Christian Hospital, Mkar were used for the calibration work. The radiation meter was used to measure x-ray radiation exposure. The result of this work demonstrates mR/mAs=C(KV p ) that there exist a power law relation of the form between the radiation exposure and the radiographic parameters of diagnostic x-ray machines, which can be used to estimate patient exposure during routine x-ray diagnostic examinations for wide range of operating parameters. The values of the power exponent n, constant c and total filtrations of the diagnostic x-ray machines have been estimated. These values for the diagnostic x-ray machines at the Federal Medical Centre, Makurdi are: 2.14, 0.88 and 2.77 respectively, for the one at the General Hospital, Otukpo are: 2.07, 0.76 and 2.68 respectively and that of the Christian Hospital, Mkar are: 2.01,0.69 and 2.61 respectively.

  2. X-radiation damage of hydrated lecithin membranes detected by real-time X-ray diffraction using wiggler-enhanced synchrotron radiation as the ionizing radiation source

    International Nuclear Information System (INIS)

    Caffrey, M.; Cornell Univ., Ithaca, NY

    1984-01-01

    Radiation damage of hydrated lecithin membranes brought about by exposure to wiggler-derived synchrotron radiation at 8.3 keV (1.5 A) is reported. Considerable damage was observed with exposures under 1 h at an incident flux density of 3 x 10 10 photons s -1 mm -2 , corresponding to a cumulative radiation dose of <= 10 MRad. Damage was so dramatic as to be initially observed while making real-time X-ray diffraction measurements on the sample. The damaging effects of 8.3 keV X-rays on dispersions of dipalmitoyllecithin and lecithin derived from hen egg yolk are as follows: (1) marked changes were noted in the X-ray diffraction behaviour, indicating disruption of membrane stacking. (2) Chemical breakdown of lecithin was observed. (3) The X-ray beam visibly damaged the sample and changed the appearance of the lipid dispersion, when viewed under the light microscope. Considering the importance of X-ray diffraction as a structural probe and the anticipated use of synchrotron radiation in studies involving membranes, the problem of radiation damage must be duly recognized. Furthermore, since dipalmitoyllecithin, the major lipid used in the present study, is a relatively stable compound, it is not unreasonable to expect that X-ray damage may be a problem with other less stable biological and non-biological materials. These results serve to emphasize that whenever a high intensity X-ray source is used, radiation damage can be a problem and that the sensitivity of the sample must always be evaluated under the conditions of measurement. (orig.)

  3. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A. [Oulu Univ. (Finland)

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose

  4. Radiation dose and radiation risk to foetuses and newborns during X-ray examinations

    International Nuclear Information System (INIS)

    Kettunen, A.

    2004-05-01

    The purpose of this study is to determine the way in which the demands set by degree 423/2000 by the Ministry of Social Affairs and Health are fulfilled with respect to the most radiosensitive groups, the foetus and the child, by estimating the radiation dose and radiation risk to the foetus from x-ray examinations of an expectant mother's pelvic region, finding out the practice involved in preventing doses to embryos and foetuses and assessing dose practices in cases where an embryo or foetus is or shall be exposed, and by estimating radiation dose and risk due to the radiation received by a new-born being treated in a paediatric intensive care unit. No statistics are available in Finland to indicate how many x-ray examinations of the pelvic region and lower abdomen are made to pregnant patients or to show the dose and risk to the foetus due these examinations. In order to find out the practices in radiological departments concerning the pelvic x-ray examination of fertile woman and the number of foetuses exposed, a questionnaire was sent to all radiation safety officers responsible for the safe use of radiation (n = 290). A total of 173 questionnaires were returned. This study recorded the technique and Dose-Area Product of 118 chest examinations of newborns in paediatric intensive care units. Entrance surface doses and effective doses were calculated separately to each newborn. Based on the patient records, the number of all x-ray examinations during the study was calculated and the effective doses were estimated retrospectively to each child. The radiation risk was estimated both for the foetuses and for the newborns. According to this study, it is rare in Finland to expose a pregnant woman to radiation. On the other hand, with the exception of pelvimetry examinations, there are no compiled statistics concerning the number of pelvic x-ray examinations of a pregnant woman. There was no common practice on how to exclude the possibility of pregnancy. The dose to a

  5. X-ray data booklet. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, D. (ed.)

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  6. Influence of beam divergence on form-factor in X-ray diffraction radiation

    International Nuclear Information System (INIS)

    Sergeeva, D.Yu.; Tishchenko, A.A.; Strikhanov, M.N.

    2015-01-01

    Diffraction radiation from divergent beam is considered in terms of radiation in UV and X-ray range. Scedastic form of Gaussian distribution of the particle in the bunch, i.e. Gaussian distribution with changing dispersion has been used, which is more adequate for description of divergent beams than often used Gaussian distribution with constant dispersion. Both coherent and incoherent form-factors are taken into account. The conical diffraction effect in diffraction radiation is proved to make essential contribution in spectral-angular characteristics of radiation from a divergent beam

  7. Solar X-ray bursts

    International Nuclear Information System (INIS)

    Urnov, A.M.

    1980-01-01

    In the popular form the consideration is given to the modern state tasks and results of X-ray spectrometry of solar bursts. The operation of X-ray spectroheliograph is described. Results of spectral and polarization measurings of X-ray radiation of one powerful solar burst are presented. The conclusion has been drawn that in the process of burst development three characteristic stages may be distingwished: 1) the initial phase; just in this period processes which lead to observed consequences-electromagnetic and corpuscular radiation are born; 2) the impulse phase, or the phase of maximum, is characterised by sharp increase of radiation flux. During this phase the main energy content emanates and some volumes of plasma warm up to high temperatures; 3) the phase of burst damping, during which plasma cools and reverts to the initial condition

  8. X-ray Synchrotron Radiation in a Plasma Wiggler

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  9. Temporal characteristic analysis of laser-modulated pulsed X-ray source for space X-ray communication

    Science.gov (United States)

    Hang, Shuang; Liu, Yunpeng; Li, Huan; Tang, Xiaobin; Chen, Da

    2018-04-01

    X-ray communication (XCOM) is a new communication type and is expected to realize high-speed data transmission in some special communication scenarios, such as deep space communication and blackout communication. This study proposes a high-speed modulated X-ray source scheme based on the laser-to-X-ray conversion. The temporal characteristics of the essential components of the proposed laser-modulated pulsed X-ray source (LMPXS) were analyzed to evaluate its pulse emission performance. Results show that the LMPXS can provide a maximum modulation rate up to 100 Mbps which is expected to significantly improve the data rate of XCOM.

  10. Radiation safety and quality control assurance in X-ray diagnostics 1998

    International Nuclear Information System (INIS)

    Servomaa, A.

    1998-03-01

    The report is based on a seminar course of lectures 'Radiation safety and quality assurance in X-ray diagnostics 1998' organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  11. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy and...

  12. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    International Nuclear Information System (INIS)

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-01-01

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering

  13. Study of hard braking x-ray radiation on the radiation-beam complex ''TEMP''

    International Nuclear Information System (INIS)

    Batrakov, A.B.; Glushko, E.G.; Egorov, A.M.; Zinchenko, A.A.; Litvinenko, V.V.; Lonin, Yu.F.; Ponomarev, A.G.; Rybka, A.V.; Fedotov, S.I.; Uvarov, V.T.

    2015-01-01

    A calculation over of basic parameters of the hard brake x-rayed radiation for the microsecond accelerating of relativistic electronic beam T EMP . Optimization of converters is conducted for these aims. Maximal doses are experimentally got brake x-rayed radiation on beam-radiation complex T EMP . The diagrams of orientation of the brake x-rayed radiation are taken off depending on energies of bunches and forms of electrodes.

  14. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  15. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  16. Study on x-ray spectroscopic analysis by the use of nuclear radiations from radioisotopes

    International Nuclear Information System (INIS)

    Tominaga, Hiroshi

    1977-02-01

    The basis and practice of analytical application of the characteristic X rays of low atomic number elements excited by mainly alpha rays from radioisotopes were studied. Some alpha emitters were proved to be advantageously usable to those elements, in particular, very low atomic number elements, despite their accompanying radiations. Operating characteristics of gas flow proportional counters were fully investigated, and besides, the characteristics of pulse-height distribution continuum in those counters and semiconductor detectors were comparatively studied as the detector for the low energy X rays. For calibration in quantitative analysis by the X-ray spectroscopy, a new simple semitheoretical method for thin specimens is proposed and on the other hand general formulae for matrix correction in thick specimens was derived. An industrial X-ray analyzer to simultaneously analyze four main elements of cement raw material mixtures was constructed with the use of a 210 Po alpha-ray source and gain-controlled proportional counters. Problems in practical analysis for the process control were solved and the analyzer has been used routinely in the process for more than ten years. Another analytical application to airborne dust is described as a typical example of application of the proposed calibration method for thin specimens. (auth.)

  17. Soft X-ray microscopy and lithography with synchrotron radiation

    International Nuclear Information System (INIS)

    Gudat, W.

    1977-12-01

    Considerable progress in the technique microscopy with soft X-ray radiation has been achieved in particular through the application of synchrotron radiation. Various methods which are currently being studied theoretically or already being used practically will be described briefly. Attention is focussed on the method of contact microscopy. Various biological specimens have been investigated by this method with a resolution as good as 100 A. X-ray lithography which in the technical procedure is very similar to contact microscopy gives promise for the fabrication of high quality submicron structures in electronic device production. Important factors limiting the resolution and determining the performance of contact microscopy and X-ray lithography will be discussed. (orig.) [de

  18. X-ray instrumentation: monochromators and mirrors

    International Nuclear Information System (INIS)

    Rodrigues, A.R.D.

    1983-01-01

    The main type of X-ray monochromators used with Synchrotron Radiation are discussed in relation to the energy resolution and to the spectral contamination, as well special systems for applications which require simultaneously high flux and resolution. The characteristics for X-ray mirrors necessaries for its utilization with synchrotron radiation are also analized, as conformators of the beam geometry and spectrum. (L.C.) [pt

  19. Promoting radiation protection and safety for X-ray inspection systems

    International Nuclear Information System (INIS)

    Maharaj, Harri P.

    2008-01-01

    This paper aims to present a regulatory perspective on radiation protection and safety relevant to facilities utilizing baggage X-ray inspection systems. Over the past several years there has been rapid growth in the acquisition and utilization of X-ray tube based inspection systems for security screening purposes worldwide. In addition to ensuring compliance with prescribed standards applicable to such X-ray systems, facilities subject to federal jurisdiction in Canada are required to comply with established codes of practice, which, not only are in accordance with occupational health and safety legislation but also are consistent with international guidance. Overall, these measures are aimed at reducing radiation risks and adverse health effects. Data, acquired in the past several years in a number of facilities through various instruments, namely, monitoring and surveillance, radiation safety audits, onsite evaluations, device registration processes and information developed, were considered in conjunction with detrimental traits. Changes are necessary to reduce radiation and safety risks from both an ALARA point of view and an accountability perspective. Establishing, developing, implementing and following a radiation protection program is warranted and advocated. Minimally, such a program shall be managed by a radiation safety officer. It shall promote and sustain a radiation safety culture in the workplace; shall ensure properly qualified individuals operate and service the X-ray systems in accordance with established and authorized procedures; and shall incorporate data recording and life cycle management principles. Such a program should be the norm for a facility that utilizes baggage X-ray inspection systems for security purposes, and it shall be subject to continuous regulatory oversight. (author)

  20. Radiation and their deleterious effects: special respect to X-ray

    International Nuclear Information System (INIS)

    Purohit, R.K.; Joshi, Pankaj Kumar; Basu, Arindam; Chakarwati, Aruna; Agarwal, Manisha

    2012-01-01

    Radiation have been influencing the living and non living systems on earth, since their evolution from simple, humble beginnings to diversely complex system of the present day biological world. Most of the radiations have been the basis for conduction and completion of vital life processes like photosynthesis which form the base and initiation point of flow of energy within the biological world. However there are some radiation called as ionizing radiation with energy content of more then 124 eV, which have the capacity to cause deleterious effects in livings system ranging from simple unicellular organisms to the large and complex animals and plants. The discovery of X-ray by William Conrad Roentgen in 1898 provided the originating point for radiation biology as a well defined discipline. Together with the discovery of X-ray radioactivity and new radioactive elements the biological effects of ionizing radiation began to be studied immediately after the discovery of X-ray. By the year 1896 press reports regarding the skin injuries involved skin erythemas and ulceration in persons who experienced the frequent and prolonged action of X-ray had appeared. By 1959, 359 radiologists were known to have died of X-ray induced cancer of skin or of leukemia. The deleterious effects of radiation on a large scale became evident when a large number of deaths, approximately 10,300 had occurred when USA dropped atom bomb on the Japanese towns of Hiroshima and Nagasaki, leaving about 80,000 persons injured. The effects of these two explosions are still evident in generation of today and also these twin incidents evoked awareness among the researchers to investigate the nature and effects of radiation which they cause in living beings. (author)

  1. Application of synchrotron radiation to X-ray interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M [King' s Coll., London (UK). Wheatstone Physics Lab.

    1980-05-01

    X-ray interferometry has been attempted with synchrotron radiation at Hamburg and at Orsay. Experiments will start this year at the Storage Ring Source at Daresbury. This review covers work which has already been completed and outlines the likely trends in phase sensitive X-ray polarimetry, high resolution spectroscopy (including real and imaginary-part EXAFS) and novel experiments with many-beam-case interferometers.

  2. Development, Beam characterization and chromosomal effectiveness of X-rays of RBC characteristic X-ray generator

    International Nuclear Information System (INIS)

    Endo, Satoru; Hoshi, Masaharu; Takada, Jun; Takatsuji, Toshihiro; Ejima, Yosuke; Saigusa, Shin; Tachibana, Akira; Sasaki, Masao S.

    2006-01-01

    A characteristic hot-filament type X-ray generator was constructed for irradiation of cultured cells. The source provides copper K, iron K, chromium K, molybdenum L, aluminium K and carbon K shell characteristic X-rays. When cultured mouse m5S cells were irradiated and frequencies of dicentrics were fitted to a linear-quadratic model, Y=αD+βD 2 , the chromosomal effectiveness was not a simple function of photon energy. The α-terms increased with the decrease of the photon energy and then decreased with further decrease of the energy with an inflection point at around 10 keV. The β-terms stayed constant for the photon energy down to 10 keV and then increased with further decrease of energy. Below 10 keV, the relative biological effectiveness (RBE) at low doses was proportional to the photon energy, which contrasted to that for high energy X- or γ-rays where the RBE was inversely related with the photon energy. The reversion of the energy dependency occurred at around 1-2 Gy, where the RBE of soft X-rays was insensitive to X-ray energy. The reversion of energy-RBE relation at a moderate dose may shed light on the controversy on energy dependency of RBE of ultrasoft X-rays in cell survival experiments. (author)

  3. Degradation of 4-Chloro phenol by gamma radiation of {sup 137}Cs and X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez J, J. C. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Jimenez B, J.; Cejudo A, J., E-mail: jaime.jimenez@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    This paper presents results of radiolytic degradation of 4-chloro phenol in the presence of TiO{sub 2}, Al{sub 2}O{sub 3} and SiO{sub 2}, using different radiation sources than {sup 60}Co, which is so common in this type of experiment. The radiation sources used were X-rays with energy of 100 keV and radiation from {sup 137}Cs (662 keV). After irradiation with a dose of 50 c Gy X-ray and TiO{sub 2} obtained a degradation of about 5%, no degradation was obtained with {sup 137}Cs source and other oxides. This may be due to the fact that X-rays have a linear energy transfer greater value, and in the case of TiO{sub 2} present a crystalline structure, whereas the other two oxides are amorphous. Both characteristics result in better formation of a reactive species that allows the degradation of the compound. (Author)

  4. Characteristics of a new non-invasive X-ray output analyzer

    International Nuclear Information System (INIS)

    Shinohara, Fuminori; Ishikawa, Mitsuo; Miyazaki, Shigeru

    2002-01-01

    The X-ray systems study group used the Victoreen NERO mAx model 8000, a new non-invasive X-ray output analyzer, to measure the tube voltage, tube voltage waveform, tube current, and irradiation time for conditions corresponding to general radiography and mammography. The measurement results were then compared with those obtained using a conventional invasive measuring instrument. The peak values of the tube voltage measured by the NERO mAx and the invasive measuring instrument were compared. The NERO mAx had a good measurement error range of -1.2 to +0.9 kV. For tube current measurement by the NERO mAx, the maximum error for general radiography conditions was +11 mA and that for mammography conditions was +6 mA. For irradiation time measurement, the value for general radiography conditions was slightly greater and the value for mammography conditions was slightly less than the corresponding values obtained by the invasive measuring instrument. If radiation quality is changed during measurement of the characteristics, measurement values change. Since the NERO mAx incorporates two types of X-ray detectors, it shows good measurement reproducibility. The NERO mAx has been shown to have suitable characteristics for use as a measuring instrument for constancy tests. In the future, constancy tests should be used to quantitatively control the factors determining clinical image quality. (author)

  5. Image processing techniques for thermal, x-rays and nuclear radiations

    International Nuclear Information System (INIS)

    Chadda, V.K.

    1998-01-01

    The paper describes image acquisition techniques for the non-visible range of electromagnetic spectrum especially thermal, x-rays and nuclear radiations. Thermal imaging systems are valuable tools used for applications ranging from PCB inspection, hot spot studies, fire identification, satellite imaging to defense applications. Penetrating radiations like x-rays and gamma rays are used in NDT, baggage inspection, CAT scan, cardiology, radiography, nuclear medicine etc. Neutron radiography compliments conventional x-rays and gamma radiography. For these applications, image processing and computed tomography are employed for 2-D and 3-D image interpretation respectively. The paper also covers main features of image processing systems for quantitative evaluation of gray level and binary images. (author)

  6. X- and γ-ray interaction characteristics of Griffith, Alderson, Frigerio, Goodman and Rossi tissue substitutes

    International Nuclear Information System (INIS)

    Singh, V. P.; Badiger, N. M.; Vega C, H. R.

    2015-10-01

    Detailed information of radiation interaction, exposure and dose delivery to tissue substitutes is necessary for various branches of radiation physics. In the present investigation X- and γ-ray interaction characteristics of some tissue substitutes such as Griffith, Alderson, Frigerio, Goodman and Rossi have been studied and compared with standard tissues. Effective atomic numbers and air-kerma have been computed using mass attenuation coefficients and mass energy-absorption coefficients, respectively. Energy-absorption buildup factors for photon energy 0.015 to 15 MeV up to 40 mean free path were calculated using G-P fitting method. These investigations provide further information on the X- and γ-ray interaction of tissue substitutes for various applications in radiation physics and medical physics. (Author)

  7. X- and γ-ray interaction characteristics of Griffith, Alderson, Frigerio, Goodman and Rossi tissue substitutes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, V. P.; Badiger, N. M. [Karnatak University, Department of Physics, Dharwad-580003, Karnataka (India); Vega C, H. R., E-mail: kudphyvps@rediffmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2015-10-15

    Detailed information of radiation interaction, exposure and dose delivery to tissue substitutes is necessary for various branches of radiation physics. In the present investigation X- and γ-ray interaction characteristics of some tissue substitutes such as Griffith, Alderson, Frigerio, Goodman and Rossi have been studied and compared with standard tissues. Effective atomic numbers and air-kerma have been computed using mass attenuation coefficients and mass energy-absorption coefficients, respectively. Energy-absorption buildup factors for photon energy 0.015 to 15 MeV up to 40 mean free path were calculated using G-P fitting method. These investigations provide further information on the X- and γ-ray interaction of tissue substitutes for various applications in radiation physics and medical physics. (Author)

  8. Supervision of professional personnel exposed to ionizing radiation (X-rays)

    International Nuclear Information System (INIS)

    Chalabreysse, J.

    1964-10-01

    After a short introduction giving the physical characteristics and the possible interactions of X-rays, this report considers in more detail the basis of the dosimetry and the units used. Taking into account the dangers of irradiation and the professional norms applicable, the report reviews the physical methods (collective and individual dosimetry) and the biological method (based on the systematic supervision of the hemogram) which are used to ensure that these professional norms an respected. As an example the influence is studied of repeated doses of X-rays on the hemogram of X-ray operators when the individual radiation levels are known through dosimetric films. Two processes are used: one considers the mean values (irradiation and average hemogram for each person), the other requires the use of an electronic computer and uses each haematological variable as a function of the monthly or cumulative doses; it gives correlation coefficients for the different variables. In conclusion, the results obtained are compared to those conventionally accepted, and the validity of the hemogram is estimated as a criterion for the supervision. (author) [fr

  9. X-ray spectrometry with synchrotron radiation; Roentgenspektrometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Matthias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgen- und IR-Spektrometrie' ; Gerlach, Martin; Holfelder, Ina; Hoenicke, Philipp; Lubeck, Janin; Nutsch, Andreas; Pollakowski, Beatrix; Streeck, Cornelia; Unterumsberger, Rainer; Weser, Jan; Beckhoff, Burkhard

    2014-12-15

    The X-ray spectrometry of the PTB at the BESSY II storage ring with radiation in the range from 78 eV to 10.5 keV is described. After a description of the instrumentation development reference-sample free X-ray fluorescence analysis, the determination of fundamental atomic parameters, X-ray fluorescence analysis under glance-angle incidence, highly-resolving absorption spectrometry, and emission spectrometry are considered. Finally liquid cells and in-situ measurement techniques are described. (HSI)

  10. Stabilization of synchrotron radiation x-ray beam by MOSTAB

    CERN Document Server

    Kudo, T P; Tanida, H; Furukawa, Y; Hirono, T; Ishikawa, T; Nishino, Y

    2003-01-01

    Monochromator stabilization (MOSTAB) is a feedback control system to stabilize an x-ray beam of synchrotron radiation. It applies a feedback voltage to a piezo electric transducer attached to a double-crystal monochromator. We developed MOSTAB modules and examined their performances using SPring-8 beamlines. The x-ray beam position stabilization using MOSTAB was realized simultaneously with the x-ray beam intensity stabilization. As an example of its application, we performed EXAFS measurement with MOSTAB. (author)

  11. The reduction methods of operator's radiation dose for portable dental X-ray machines.

    Science.gov (United States)

    Cho, Jeong-Yeon; Han, Won-Jeong

    2012-08-01

    This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

  12. Synchrotron X-radiation research

    International Nuclear Information System (INIS)

    Kabler, M.N.; Nagel, D.J.; Skelton, E.F.

    1990-05-01

    The Naval Research Laboratory (NRL) has been involved in the exploitation of X rays since the 1920s. The report gives a brief description of the generation and characteristics of synchrotron radiation, and review highlights of current research. Research examples include soft-X-ray optics, semiconductor surface passivation, surface electron dynamics, space-charge dynamics on silicon, photochemistry on GaAs, local atomic structure, crystal structures from X-ray diffraction. The report then discusses emerging research opportunities

  13. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  14. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    Science.gov (United States)

    Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  15. Characteristics of specifications of transportable inverter-type X-ray equipment

    CERN Document Server

    Yamamoto, K; Asano, H

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendenc...

  16. Plasma x-ray radiation source.

    Science.gov (United States)

    Popkov, N F; Kargin, V I; Ryaslov, E A; Pikar', A S

    1995-01-01

    This paper gives the results of studies on a plasma x-ray source, which enables one to obtain a 2.5-krad radiation dose per pulse over an area of 100 cm2 in the quantum energy range from 20 to 500 keV. Pulse duration is 100 ns. Spectral radiation distributions from a diode under various operation conditions of a plasma are obtained. A Marx generator served as an initial energy source of 120 kJ with a discharge time of T/4 = 10-6 s. A short electromagnetic pulse (10-7 s) was shaped using plasma erosion opening switches.

  17. Comparative study of radiation dose between digital panoramic X-ray unit and general panoramic X-ray unit

    International Nuclear Information System (INIS)

    Li Qingshan; Duan Tao; Wang Xiaoyun; Zhao Li; Dong Jian; Wei Lei

    2010-01-01

    Objective: To compare the actual dose of patients who receive the same medical practice by either digital panoramic X-ray unit and general panoramic X-ray unit and give evidence for better selection of oral X-ray examination method. Methods: Round sheet lithium fluoride (LiF) thermoluminescent dosimeters (TLD) were used. The experiment was divided into natural background contrast group, general panoramic X-ray children group, general panoramic X-ray adults group, digital panoramic X-ray children group and digital panoramic X-ray adults group. The dosimeter of natural background radiation was placed at the office of the doctor, the dosimeters of general panoramic X-ray children group and general panoramic X-ray adults group were irradiated by different conditions according to the clinical application of panoramic X-ray to children and adults, the dosimeters of digital panoramic X-ray children group and digital panoramic X-ray adults group were irradiated by different conditions according to the clinical application of digital panoramic X-ray to children and adults. The thermoluminescent dosimeter was used to count and calculate the exposure doses in various groups. Results: The dose of children exposed in general panoramic X-ray unit was 1.28 times of that in digital panoramic X-ray unit, there was significant difference (t=6.904, P<0.01). The dose of adults exposed in general panoramic X-ray unit was 1.55 times of that in the digital panoramic X-ray unit, there also was significant difference (t=-11.514. P< 0.01). Conclusion: The digital panoramic X-ray unit can reduce the dose of patients, so the digital panoramic X-ray unit should be used as far as possible. (authors)

  18. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  19. Dosimetric characteristics of ultraviolet and x-ray-irradiated KBr:Eu2+ thermoluminescence crystals

    International Nuclear Information System (INIS)

    Melendrez, R.; Perez-Salas, R.; Aceves, R.; Piters, T.M.; Barboza-Flores, M.

    1996-01-01

    Thermoluminescence (TL) characteristics of KBr:Eu 2+ (150 ppm) previously exposed to ultraviolet (UV) light (200 endash 300 nm) and x-ray radiation at room temperature have been determined. The TL glow curve of UV-irradiated samples is composed of six peaks located at 337, 384, 402, 435, 475, and 510 K. The TL glow curves of x-irradiated samples show mainly a TL peak around 384 K. The TL intensities of UV-irradiated (402 and 510 K glow peaks) and x-irradiated specimens present a linear dependence as a function of radiation dose as well as fading stability 300 s after irradiation. These results further enhance the possibilities of using europium-doped materials in nonionizing (actinic region) and ionizing radiation detection and dosimetry applications. copyright 1996 American Institute of Physics

  20. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  1. Course: general radiodiagnostics. Qualification to hand x-ray facilities with diagnostics purposes

    International Nuclear Information System (INIS)

    CIEMAT. Instituto de Estudios de la Energia.

    1993-01-01

    This book contains 13 lectures in order to teach personnel of x-ray facilities. The topics are: 1) Interaction photon-matter. 2) Characteristics of x-ray equipments. 3) Ionizing radiation detection. 4) Quality control of x-ray facilities. 5) Radiation effects of ionizing radiations. 6) Radiation protection. 7) Quality control of radiodiagnostic facilities. 81) Spanish legislation

  2. Characteristics of a molybdenum X-pinch X-ray source as a probe source for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Zucchini, F.; Chauvin, C.; Combes, P.; Sol, D.; Loyen, A.; Roques, B.; Grunenwald, J.; Bland, S. N.

    2015-01-01

    X-ray emission from a molybdenum X-pinch has been investigated as a potential probe for the high pressure states made in dynamic compression experiments. Studies were performed on a novel 300 kA, 400 ns generator which coupled the load directly to a low inductance capacitor and switch combination. The X-pinch load consisted of 4 crossed molybdenum wires of 13 μm diameter, crossed at an angle of 62°. The load height was 10 mm. An initial x-ray burst generated at the wire crossing point, radiated in the soft x-ray range (hυ < 10 keV). This was followed, 2–5 ns later, by at least one harder x-ray burst (hυ > 10 keV) whose power ranged from 1 to 7 MW. Time integrated spectral measurements showed that the harder bursts were dominated by K-alpha emission; though, a lower level, wide band continuum up to at least 30 keV was also present. Initial tests demonstrated that the source was capable of driving Laue diffraction experiments, probing uncompressed samples of LiF and aluminium

  3. Infrared Radiography: Modeling X-ray Imaging without Harmful Radiation

    Science.gov (United States)

    Zietz, Otto; Mylott, Elliot; Widenhorn, Ralf

    2015-01-01

    Planar x-ray imaging is a ubiquitous diagnostic tool and is routinely performed to diagnose conditions as varied as bone fractures and pneumonia. The underlying principle is that the varying attenuation coefficients of air, water, tissue, bone, or metal implants within the body result in non-uniform transmission of x-ray radiation. Through the…

  4. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  5. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    Science.gov (United States)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  6. Quasimonochromatic x-ray source using photoabsorption-edge transition radiation

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Harris, J.L.; Maruyama, X.K.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.

    1991-01-01

    By designing transition radiators to emit x rays at the foil material's K-, L-, or M-shell photoabsorption edge, the x-ray spectrum is narrowed. The source is quasimonochromatic, directional, and intense and uses an electron beam whose energy is considerably lower than that needed for synchrotron sources. Depending upon the selection of foil material, the radiation can be produced wherever there is a photoabsorption edge. In this paper we report the results of the measurement of the x-ray spectrum from a transition radiator composed of 10 foils of 2-μm titanium and exposed to low-current, 90.2-MeV electrons. The measured band of emission was from 3.2 to 5 keV. In addition, a measurment was performed of the total power from a transition radiator composed of 18 foils of 2.0-μm copper exposed to a high-average-current electron beam of 40 μA and at energies of 135, 172, and 200 MeV. The maximum measured power was 4.0 mW. The calculated band of emission was from 4 to 9 keV

  7. Observation of parametric X-ray radiation in an anomalous diffraction region

    Energy Technology Data Exchange (ETDEWEB)

    Alexeyev, V.I., E-mail: vial@x4u.lebedev.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Eliseyev, A.N., E-mail: elisseev@pluton.lpi.troitsk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Irribarra, E., E-mail: esteban.irribarra@epn.edu.ec [Escuela Politécnica Nacional, Ladrón de Guevara E11-253, Quito (Ecuador); Kishin, I.A., E-mail: ivan.kishin@mail.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Kubankin, A.S., E-mail: kubankin@bsu.edu.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation); Nazhmudinov, R.M., E-mail: fizeg@bk.ru [P.N. Lebedev Physical Institute RAS, 53 Leninskiy prospect, Moscow (Russian Federation); Belgorod National Research University, 85 Pobedy st., Belgorod (Russian Federation)

    2016-08-19

    A new possibility to expand the energy region of diffraction processes based on the interaction of relativistic charged particles with crystalline structures is presented. Diffracted photons related to parametric X-ray radiation produced by relativistic electrons are detected below the low energy threshold for the X-ray diffraction mechanism in crystalline structures for the first time. The measurements were performed during the interaction of 7 MeV electrons with a textured polycrystalline tungsten foil and a highly oriented pyrolytic graphite crystal. The experiment results are in good agreement with a developed model based on the PXR kinematical theory. The developed experimental approach can be applied to separate the contributions of real and virtual photons to the total diffracted radiation generated during the interaction of relativistic charged particles with crystalline targets. - Highlights: • Parametric X-ray radiation below the low energy threshold for diffraction of free X-rays. • Experimental separation of the contributions from different radiation mechanisms. • PXR from relativistic electrons in mosaic crystals and textured polycrystlas.

  8. Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft X-rays

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1977-01-01

    Microdosimetric distributions for aluminium K characteristic ultrasoft X-rays and 4 He ion track intersections have been calculated and used to analyse recent biological results obtained with these radiations. Results on inactivation and mutation-induction to thioguanine resistance of both V79 Chinese hamster cells and HF19 human diploid fibroblasts in vitro were analysed in terms of the Kellerer-Rossi 'theory of dual radiation action'. The small quantum energy of the aluminium X-ray photons and the very short length of the secondary electrons which they produce highlight the inadequacy of the model. It has been shown that the model predicted r.b.e. values in conflict with those observed unless an additional variable was introduced, but that the introduction of such a variable created mathematical inconsistencies. The experimental evidence is contrary to the conventional usage and basis of the model. (author)

  9. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  10. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  11. Analysis of the Relationship Between the Solar X-Ray Radiation Intensity and the D-Region Electron Density Using Satellite and Ground-Based Radio Data

    Science.gov (United States)

    Nina, Aleksandra; Čadež, Vladimir M.; Bajčetić, Jovan; Mitrović, Srdjan T.; Popović, Luka Č.

    2018-04-01

    Increases in the X-ray radiation that is emitted during a solar X-ray flare induce significant changes in the ionospheric D region. Because of the numerous complex processes in the ionosphere and the characteristics of the radiation and plasma, the causal-consequential relationship between the X-ray radiation and ionospheric parameters is not easily determined. In addition, modeling the ionospheric D-region plasma parameters is very difficult because of the lack of data for numerous time- and space-dependent physical quantities. In this article we first give a qualitative analysis of the relationship between the electron density and the recorded solar X-ray intensity. After this, we analyze the differences in the relationships between the D-region response and various X-ray radiation properties. The quantitative study is performed for data observed on 5 May 2010 in the time period between 11:40 UT - 12:40 UT when the GOES 14 satellite detected a considerable X-ray intensity increase. Modeling the electron density is based on characteristics of the 23.4 kHz signal emitted in Germany and recorded by the receiver in Serbia.

  12. Dose enhancement effects of X ray radiation in bipolar transistors

    International Nuclear Information System (INIS)

    Chen Panxun

    1997-01-01

    The author has presented behaviour degradation and dose enhancement effects of bipolar transistors in X ray irradiation environment. The relative dose enhancement factors of X ray radiation were measured in bipolar transistors by the experiment methods. The mechanism of bipolar device dose enhancement was investigated

  13. Illumination system for X-ray lithography

    International Nuclear Information System (INIS)

    Buckley, W.D.

    1989-01-01

    An X-ray lithography system is described, comprising: a point source of X-Ray radiation; a wafer plane disposed in spaced relation to the point source of X-Ray radiation; a mask disposed between the point source of X-Ray radiation and the wafer plane whereby X-Ray radiation from the point source of X-ray radiation passes through the mask to the water plane; and X-Ray absorbent means mounted between the point source of X-Ray radiation and the wafer plane, the X-Ray absorbent means being of quadratically absorption from maximum absorption at the center to minimum absorption at the edge so as to have a radial absorption gradient profile to compensate for radial flux variation of the X-Ray radiation

  14. Generation of linearly polarized resonant transition radiation X-ray beam

    International Nuclear Information System (INIS)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu

    2000-01-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-μm thick Kapton foil stack. (author)

  15. Generation of linearly polarized resonant transition radiation X-ray beam

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, Kazuaki; Awata, Takaaki; Ikeda, Mitsuharu; Ikeda, Kenichi; Yogo, Akifumi; Itoh, Akio; Imanishi, Nobutsugu [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2000-03-01

    We have proposed a method to generate almost linearly polarized resonant transition radiation X rays by using a rectangular slit placed on an electron beam axis. Our calculation predicted that the linearity is 93.5% for the resonant transition radiation X-ray beam extracted through a slit of 0.5 mrad long and 0.2 mrad wide in case of 1-GeV electron beam irradiating a 7.5-{mu}m thick Kapton foil stack. (author)

  16. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    Energy Technology Data Exchange (ETDEWEB)

    BOWERS,R.L.; CHANDLER,GORDON A.; HEBRON,DAVID E.; LEEPER,RAMON J.; MATUSKA,W.; MOCK,RAYMOND CECIL; NASH,THOMAS J.; OLSON,RICHARD E.; PETERSON,D.L.; PETERSON,R.R.; RUGGLES,LAURENCE E.; RUIZ,CARLOS L.; SANFORD,THOMAS W. L.; SIMPSON,WALTER W.; VESEY,ROGER A.

    1999-11-03

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed.

  17. Characteristics of ICF Relevant Hohlraums Driven by X-Rays from a Z-Pinch

    International Nuclear Information System (INIS)

    BOWERS, R.L.; CHANDLER, GORDON A.; HEBRON, DAVID E.; LEEPER, RAMON J.; MATUSKA, W.; MOCK, RAYMOND CECIL; NASH, THOMAS J.; OLSON, RICHARD E.; PETERSON, D.L.; PETERSON, R.R.; RUGGLES, LAURENCE E.; RUIZ, CARLOS L.; SANFORD, THOMAS W. L.; SIMPSON, WALTER W.; VESEY, ROGER A.

    1999-01-01

    Radiation environments characteristic of those encountered during the low-temperature foot pulse and subsequent higher-temperature early-step pulses (without the foot pulse) required for indirect-drive ICF ignition on the National ignition Facility have been produced in hohlraums driven by x-rays from a z-pinch. These environments provide a platform to better understand the dynamics of full-scale NIF hohlraums, ablator material, and capsules prior to NIF completion. Radiation temperature, plasma fill, and wall motion of these hohlraums are discussed

  18. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  19. Design And Measurement Of Radiation Exposure Rates At An X-Ray Diagnostic Radiological Unit

    International Nuclear Information System (INIS)

    Tito-Sutjipto

    2003-01-01

    Every radiation employees suffers radiation exposure risk while doing his job. It is important therefore to investigate the occupational health and safety of radiation employees on its relationship with the design and measurement of radiation exposure rates at an X-ray diagnostic radiological unit in this work, a case study was held on the radiological unit at BP-4 Yogyakarta for patient diagnostics, This research armed to investigate the relationship between the design of radiological unit for X-ray diagnostics and the location of the X-ray machine, based on the distance variable and radiation exposure rate during patient diagnostics. This was performed using radiological unit design data for X-ray diagnostics and the measurement of radiation exposure rates throughout patient diagnostics. The design data can then be used for determining the requirement of primary and secondary shielding materials for radiological unit as well as a calculation basis of radiation exposure rates during patient diagnostics. From the result of the research, it can be concluded that from the occupational health and safety point of view, radiation exposure around the X-ray machines are fairly good, both for the shielding materials in each X-ray room and the radiation exposures received by the workers, because they are far beyond the maximum permittable average limit (16.67 m R/days). (author)

  20. Accelerator-driven X-ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  1. A synchrotron radiation facility for x-ray astronomy

    DEFF Research Database (Denmark)

    Hall, C.J.; Lewis, R.A.; Christensen, Finn Erland

    1997-01-01

    A proposal for an x-ray optics test facility based at a synchrotron radiation source is presented. The facility would incorporate a clean preparation area, and a large evacuable test area. The advantages of using a synchrotron as the source of the test radiation are discussed. These include the a...

  2. Instantaneous x-ray radiation energy from laser produced polystyrene plasmas for shock ignition conditions

    International Nuclear Information System (INIS)

    Shang, Wanli; Wei, Huiyue; Li, Zhichao; Yi, Rongqing; Zhu, Tuo; Song, Tianmin; Huang, Chengwu; Yang, Jiamin

    2013-01-01

    Laser target energy coupling mechanism is crucial in the shock ignition (SI) scheme, and x-ray radiation energy is a non-negligible portion of the laser produced plasma energy. To evaluate the x-ray radiation energy amount at conditions relevant to SI scheme, instantaneous x-ray radiation energy is investigated experimentally with continuum phase plates smoothed lasers irradiating layer polystyrene targets. Comparative laser pulses without and with shock spike are employed. With the measured x-ray angular distribution, full space x-ray radiation energy and conversion efficiency are observed. Instantaneous scaling law of x-ray conversion efficiency is obtained as a function of laser intensity and time. It should be pointed out that the scaling law is available for any laser pulse shape and intensity, with which irradiates polystyrene planar target with intensity from 2 × 10 14 to 1.8 × 10 15 W/cm 2 . Numerical analysis of the laser energy transformation is performed, and the simulation results agree with the experimental data

  3. Characteristic of x-ray picture of urolithiasis in children and juveniles

    International Nuclear Information System (INIS)

    Kramnij, Yi.O.; Bortnij, M.O.; Voron'zhev, Yi.O.; Ul'yanchenko, Yi.M.

    1999-01-01

    More exactly the characteristics of urolithiasis x-ray picture in children and juveniles was defined. X-ray study of 42 patients. Mainly x-ray positive calculi localized in the pelvis and ureters occur in children patients

  4. Synchrotron-Radiation X-Ray Investigation of Li+/Na+ Intercalation into Prussian Blue Analogues

    Directory of Open Access Journals (Sweden)

    Yutaka Moritomo

    2013-01-01

    Full Text Available Prussian blue analogies (PBAs are promising cathode materials for lithium ion (LIB and sodium ion (SIB secondary batteries, reflecting their covalent and nanoporous host structure. With use of synchrotron-radiation (SR X-ray source, we investigated the structural and electronic responses of the host framework of PBAs against Li+ and Na+ intercalation by means of the X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XAS. The structural investigation reveals a robust nature of the host framework against Li+ and Na+ intercalation, which is advantageous for the stability and lifetime of the batteries. The spectroscopic investigation identifies the redox processes in respective plateaus in the discharge curves. We further compare these characteristics with those of the conventional cathode materials, such as, LiCoO2, LiFePO4, and LiMn2O4.

  5. A history of radiation shielding of x-ray therapy rooms

    International Nuclear Information System (INIS)

    McGinley, P.H.; Miner, M.S.

    1996-01-01

    In this report the history of shielding for radiation treatment rooms is traced from the time of the discovery of x rays to the present. During the early part of the twentieth century the hazards from ionizing radiation were recognized and the use of lead and other materials became common place for shielding against x rays. Techniques for the calculation of the shield thickness needed for x ray protection were developed in the 1920's, and shielding materials were characterized in terms of the half value layer or simple exponential factors. At the same time, better knowledge of the interaction between radiation and matter was acquired. With the development of high energy medical accelerators after 1940, new and more complex shielding problems had to be addressed. Recently, shielding requirements have become more stringent as standards for exposure of personnel and the general public have been reduced. The art of shielding of radiation treatment facilities is still being developed, and the need for a revision of the reports on shielding of medical accelerators from the National Council on Radiation Protection and Measurements is emphasized in this article. (author). 61 Refs., 3 Tabs

  6. Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation

    Science.gov (United States)

    Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao

    1998-08-01

    We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.

  7. Characteristics of kilovoltage x-ray beams used for cone-beam computed tomography in radiation therapy

    International Nuclear Information System (INIS)

    Ding, George X; Duggan, Dennis M; Coffey, Charles W

    2007-01-01

    The purpose of this investigation is to characterize the beams produced by a kilovoltage (kV) imager integrated into a linear accelerator (Varian on-board imager integrated into the Trilogy accelerator) for acquiring high resolution volumetric cone-beam computed tomography (CBCT) images of the patient on the treatment table. The x-ray tube is capable of generating photon spectra with kVp values between 40 and 125 kV. The Monte Carlo simulations were used to study the characteristics of kV beams and the properties of imaged target scatters. The Monte Carlo results were benchmarked against measurements, and excellent agreements were obtained. We also studied the effect of including the electron impact ionization (EII), and the simulation showed that the characteristic radiation is increased significantly in the energy spectra when EII is included. Although only slight beam hardening is observed in the spectra of all photons after passing through the phantom target, there is a significant difference in the spectra and angular distributions between scattered and primary photons. The results also show that the photon fluence distributions are significantly altered by adding bow tie filters. The results indicate that a combination of large cone-beam field size and large imaged target significantly increases scatter-to-primary ratios for photons that reach the detector panel. For phantoms 10 cm, 20 cm and 30 cm thick of water placed at the isocentre, the scatter-to-primary ratios are 0.94, 3.0 and 7.6 respectively for an open 125 kVp CBCT beam. The Monte Carlo simulations show that the increase of the scatter is proportional to the increase of the imaged volume, and this also applies to scatter-to-primary ratios. This study shows both the magnitude and the characteristics of scattered x-rays. The knowledge obtained from this investigation may be useful in the future design of the image detector to improve the image quality

  8. Radiation protection requirements for dental X-ray diagnostic facilities

    International Nuclear Information System (INIS)

    Taschner, P.; Koenig, W.; Andreas, M.; Trinius, W.

    1976-01-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients. (author)

  9. Radiation protection requirements for dental X-ray diagnostic facilities

    Energy Technology Data Exchange (ETDEWEB)

    Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Andreas, M [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Fachrichtung Stomatologie; Trinius, W [Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Radiologische Klinik

    1976-03-01

    On the basis of radiation protection regulations the planning of dental X-ray facilities is discussed considering organizational, technical and structural measures suitable for fulfilling protection requirements. Finally, instructions are given aimed at reducing radiation doses to personnel and patients.

  10. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  11. Soft X-ray synchrotron radiation investigations of actinide materials systems utilizing X-ray emission spectroscopy and resonant inelastic X-ray scattering

    International Nuclear Information System (INIS)

    Shuh, D.K.; Butorin, S.M.; Guo, J.-H.; Nordgren, J.

    2004-01-01

    Synchrotron radiation (SR) methods have been utilized with increasing frequency over the past several years to study topics in actinide science, ranging from those of a fundamental nature to those that address a specifically-targeted technical need. In particular, the emergence of microspectroscopic and fluorescence-based techniques have permitted investigations of actinide materials at sources of soft x-ray SR. Spectroscopic techniques with fluorescence-based detection are useful for actinide investigations since they are sensitive to small amounts of material and the information sampling depth may be varied. These characteristics also serve to simplify both sample preparation and safety considerations. Examples of investigations using these fluorescence techniques will be described along with their results, as well as the prospects for future investigations utilizing these methodologies

  12. Effects of synchrotron radiation spectrum energy on polymethyl methacrylate photosensitivity to deep x-ray lithography

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Utsumi, Yuichi; Hattori, Tadashi

    2003-01-01

    Since X-ray lithography requires a high photon flux to achieve deep resist exposure, a synchrotron radiation beam, which is not monochromatized, is generally used as a light source. If the synchrotron radiation beam is monochromatized, photon flux will decrease rapidly. Because of this reason, the wavelength dependence of the resist sensitivity has not been investigated for deep X-ray lithography. Measuring the spectrum of a white beam with a Si solid-state detector (SSD) is difficult because a white beam has a high intensity and an SSD has a high sensitivity. We were able to measure the spectrum and the photocurrent of a white beam from a beam line used for deep X-ray lithography by keeping the ring current below 0.05 mA. We evaluated the characteristics of the output beam based on the measured spectrum and photocurrent, and used them to investigate the relationship between the total exposure energy and the dose-processing depth with polymethyl methacrylate (PMMA). We found that it is possible to guess the processing depth of PMMA from the total exposure energy in deep X-ray lithography. (author)

  13. The IHS diagnostic X-ray equipment radiation protection program

    International Nuclear Information System (INIS)

    Knapp, A.; Byrns, G.; Suleiman, O.

    1994-01-01

    The Indian Health Service (IHS) operates or contracts with Tribal groups to operate 50 hospitals and approximately 165 primary ambulatory care centers. These facilities contain approximately 275 medical and 800 dental diagnostic x-ray machines. IHS environmental health personnel in collaboration with the Food and Drug Administration's (FDA) Center for Devices and Radiological Health (CDRH) developed a diagnostic x-ray protection program including standard survey procedures and menu-driven calculations software. Important features of the program include the evaluation of equipment performance collection of average patient entrance skin exposure (ESE) measurements for selected procedures, and quality assurance. The ESE data, collected using the National Evaluation of X-ray Trends (NEXT) protocol, will be presented. The IHS Diagnostic X-ray Radiation Protection Program is dynamic and is adapting to changes in technology and workload

  14. Anomalous x-ray radiation of beam plasma

    International Nuclear Information System (INIS)

    Dimitrov, S.K.; Zavyalov, M.A.; Mikhin, S.G.; Tarasenkov, V.A.; Telkovskij, V.G.; Khrabrov, V.A.

    1985-01-01

    The properties of non-equilibrium stationary plasma under the conditions of the planned plasma-chemical reactors based on beam-plasma discharge were investigated. The x-ray spectrum of the beam-plasma was measured and anomalous spectral properties were analyzed. Starting with some critical pressure the anomalous radiation was added to the classical bremsstrahlung spectrum. The occurrence of anomalous radiation can be used to diagnose the condition of beam transportation in such systems. (D.Gy.)

  15. On the theory of X-ray pulsar radiation

    International Nuclear Information System (INIS)

    Zheleznyakov, V.V.

    1981-01-01

    The origin of hard X-ray spectrum (continuum and cyclotron lines) of pulsars in binary systems is discussed. A model of the polar region of a neutron star consisting of a hot spot in a dense plasma atmosphere with a quasi-homogeneous magnetic field and an extended accreting column in an inhomogeneous dipolar field is investigated. In the hot spot bremsstrahlung and Thomson scattering form continuum radiation, while bremsstrahlung and cyclotron scattering produce the absorption cyclotron lines. By the observed continuum intensity one can estimate the maximum distances to pulsars. Cyclotron scattering in gyro-resonant layers localized in the accreting column leads to a general attenuation of the radiation of a hot spot, but is unable to ensure the formation of cyclotron lines. For strong accretion the hot spot radiation becomes insignificant, the lines disappear and the pulsating component of an X-ray pulsar is produced by the accreting column bremsstrahlung transformed by Thomson scattering. (orig.)

  16. X-ray diffraction microtomography using synchrotron radiation

    CERN Document Server

    Barroso, R C; Jesus, E F O; Oliveira, L F

    2001-01-01

    The X-ray diffraction computed tomography technique is based on the interference phenomena of the coherent scatter. For low-momentum transfer, it is most probable that the scattering interaction will be coherent. A selective discrimination of a given element in a scanned specimen can be realized by fixing the Bragg angle which produces an interference peak and then, to carry out the computed tomography in the standard mode. The image reconstructed exalts the presence of this element with respect to other ones in a sample. This work reports the feasibility of a non-destructive synchrotron radiation X-ray diffraction imaging technique. This research was performed at the X-ray Diffraction beam line of the National Synchrotron Light Laboratory (LNLS) in Brazil. The coherent scattering properties of different tissue and bone substitute materials were evaluated. Furthermore, diffraction patterns of some polycrystalline solids were studied due to industrial and environmental human exposure to these metals. The obtai...

  17. Photoacoustical and pyroelectric dosimetry of X-ray radiation in diagnostic region

    International Nuclear Information System (INIS)

    Carvalho, A.A. de.

    1987-01-01

    Three new types of radiation dosimeters, designed to measure X rays in its diagnostic region are described: the pulsed photoacoustical radiation dosimeter, the pyroelectric radiation dosimeter and the pulsed pyroelectric radiation dosimeter. The photoacoustical radiation dosimeter with the scope of to compare its carachteristics with the carachteristics of the new developed dosimeters is also studied. A methodology for calibration of a photoacoustical dosimeter which doesn't require the calibration of its response in a known field of ionizing radiation is proposed. A theoretical model to explain the results produced by the pulsed pyroelectric radiation dosimeter is presented. The obtained results show that the developed dosimeters are of calorimetric type, being linear its response with the X ray energy fluence rate. (author) [pt

  18. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    International Nuclear Information System (INIS)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-01-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c 4 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L X ∝ P-dot 3 /P 6 . For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η≡L X / E-dot rot ∼8x10 -5 . For the γ-ray luminosity we confirm that L γ ∝ √E-dot rot . We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  19. Analytical Approximation of Spectrum for Pulse X-ray Tubes

    International Nuclear Information System (INIS)

    Vavilov, S; Fofanof, O; Koshkin, G; Udod, V

    2016-01-01

    Among the main characteristics of the pulsed X-ray apparatuses the spectral energy characteristics are the most important ones: the spectral distribution of the photon energy, effective and maximum energy of quanta. Knowing the spectral characteristics of the radiation of pulse sources is very important for the practical use of them in non-destructive testing. We have attempted on the analytical approximation of the pulsed X-ray apparatuses spectra obtained in the different experimental papers. The results of the analytical approximation of energy spectrum for pulse X-ray tube are presented. Obtained formulas are adequate to experimental data and can be used by designing pulsed X-ray apparatuses. (paper)

  20. Development of Object Simulator for Radiation Field of Dental X-Rays

    International Nuclear Information System (INIS)

    Silva, L F; Ferreira, F C L; Sousa, F F; Cardoso, L X; Vasconcelos, E D S; Brasil, L M

    2013-01-01

    In dentistry radiography is of fundamental importance to the dentist can make an accurate diagnosis. For this it is necessary to pay attention to the radiological protection of both the professional and the patient and control image quality for an accurate diagnosis. In this work, quality control tests were performed on X-ray machines in private dental intraoral in the municipality of Marabá, where they measured the diameters of the radiation field to see if these machines are in accordance with the recommendations, thus preventing the patient is exposed to a radiation field higher than necessary. We will study the results of each X-ray machine evaluated. For this we created a phantom to assess the size of the radiation field of X-ray dental, where we measure the radiation field of each device to see if they are in accordance with the recommendations of the ordinance No. 453/98 – MS

  1. X-ray stress measurement by use of synchrotron radiation source

    International Nuclear Information System (INIS)

    Yoshioka, Yasuo; Matsui, Hisaaki; Moro-oka, Toshimasa; Hasegawa, Ken-ichi; Nakajima, Tetsuo.

    1986-01-01

    In the field of X-ray stress measurement of polycrystalline materials, a diffraction plane at higher Bragg angle has to be selected in order to obtain the precise value of stress. However, the stress measurement on an optional (hkl) plane desired is not always possible because the X-ray beam exited from a metal target has a dispersive wave length. Recently, we have been able to use the synchrotron radiation source (SR) as an excellent X-ray source. In Japan, the facility of synchrotron radiation (Photon Factory, PF) was constructed in the National Laboratory for High Energy Physics (KEK) at Tsukuba academic city. The use of this SR enables the stress measurements on many (hkl) planes with high accuracy in the higher Bragg angle region by providing an X-ray beam having an optional wave length. We have started the X-ray stress analysis by use of the synchrotron radiation source. This paper reports the system of measurement and some results of preliminaly experiments. Since a monochromatic X-ray beam is required for the stress measurement, we used a beam line which consists of a double crystal monochrometer and a focusing mirror. X-rays between 4 KeV (λ = 0.31 nm) and 10 KeV (λ = 0.12 nm) are available with this optical system. We adopted a constant Bragg angle of 2θ = 154 deg for all the diffraction planes. A PSPC having a carbon fiber anode is made and used as a detector with the use of a fast digital signal processor. We could observe the diffraction profiles from (200), (211), (220), (310) and (321) crystal plane of alpha iron, respectively, and the residual stresses in these planes except the (200) plane were measured with high accuracy in a short time. Such feature especially suits the stress analysis of the material which has preferred orientation or stress gradient. (author)

  2. The feasibility of 10 keV X-ray as radiation source in total dose response radiation test

    International Nuclear Information System (INIS)

    Li Ruoyu; Li Bin; Luo Hongwei; Shi Qian

    2005-01-01

    The standard radiation source utilized in traditional total dose response radiation test is 60 Co, which is environment-threatening. X-rays, as a new radiation source, has the advantages such as safety, precise control of dose rate, strong intensity, possibility of wafer-level test or even on-line test, which greatly reduce cost for package, test and transportation. This paper discussed the feasibility of X-rays replacing 60 Co as the radiation source, based on the radiation mechanism and the effects of radiation on gate oxide. (authors)

  3. X-ray Free-electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Feldhaus, J.; /DESY; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  4. Effects of radiation pressure on the equipotential surfaces in X-ray binaries

    Science.gov (United States)

    Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.

  5. Effects of radiation pressure on the equipotential surfaces in x-ray binaries

    International Nuclear Information System (INIS)

    Kondo, Y.; McCluskey, G.E. Jr.; Gulden, S.L.

    1976-01-01

    Equipotential surfaces incorporating the effect of radiation pressure were computed for the x-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling x-ray binaries are discussed

  6. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  7. Additional radiation dose to population due to X-ray diagnostic procedures

    International Nuclear Information System (INIS)

    Chougule, A.

    2006-01-01

    Full text of publication follows: Discovery of X rays has revolutionised the medical diagnosis but the fact that the diagnostic radiological procedures contribute about 80 to 90 % of the radiation dose to population as compared to other man made radiation sources cannot be ignored especially when X ray diagnostic facilities are being made available to larger section of the society. The estimated frequency of radiological procedures in India is 12,000 procedures/ year/100,000 population, though it is quite less as compared to developed countries, its increasing day by day. As part of the project, a radiation protection survey of X ray installations and patient radiation dose measurement during various radiological procedures was undertaken. 193 X ray installations were surveyed and the radiation doses received by the patient during various radiological procedure was measured. For measurement of radiation doses, CaSO 4 : Dy thermoluminescence (T.L.) discs of size 13.3 mm diameter and 0.8 mm thickness were used. Pre annealed T.L. discs were fixed by adhesive tape on the patient skin at the center of entrance beam before the exposure. After exposure the T.L. discs were estimated f or entrance skin dose during that particular projection/ examination. 10,000 measurements at different centers during various radiological procedures were done. It was found that chest radiography accounts for 37 % of all radiological procedures and further it was observed that 70 % of the chest X rays were normal with out any pathology indicating scope for curtailing the unwarranted radiological procedures. The special investigations like barium swallow, barium meal and fallow through accounts for about 1.5 % of the total radiological procedures. The entrance skin dose [E.S.D.] during chest radiography was 0.3 + 0.1 mGy where as during K.U.B. and cervical spine radiography it was 6.2 + 1.1 mGy and 5.1 + 0.9 mGy respectively. The details of frequency of various radiological procedures and the

  8. Radiation-shielded double crystal X-ray monochromator for JET

    International Nuclear Information System (INIS)

    Barnsley, R.; Morsi, H.W.; Rupprecht, G.; Kaellne, E.

    1989-01-01

    A double crystal X-ray monochromator for absolute wavelength and intensity measurements with very effective shielding of its detector against neutrons and hard X-rays was brought into operation at JET. Fast wavelength scans were taken of impurity line radiation in the wavelength region from about 0.1 nm to 2.3 nm, and monochromatic as well as spectral line scans, for different operational modes of JET. (author) 5 refs., 4 figs

  9. Line focus x-ray tubes-a new concept to produce high brilliance x-rays.

    Science.gov (United States)

    Bartzsch, Stefan; Oelfke, Uwe

    2017-10-27

    Currently hard coherent x-ray radiation at high photon fluxes can only be produced with large and expensive radiation sources, such as 3[Formula: see text] generation synchrotrons. Especially in medicine, this limitation prevents various promising developments in imaging and therapy from being translated into clinical practice. Here we present a new concept of highly brilliant x-ray sources, line focus x-ray tubes (LFXTs), which may serve as a powerful and cheap alternative to synchrotrons and a range of other existing technologies. LFXTs employ an extremely thin focal spot and a rapidly rotating target for the electron beam which causes a change in the physical mechanism of target heating, allowing higher electron beam intensities at the focal spot. Monte Carlo simulations and numeric solutions of the heat equation are used to predict the characteristics of the LFXT. In terms of photon flux and coherence length, the performance of the line focus x-ray tube compares with inverse Compton scattering sources. Dose rates of up to 180 Gy [Formula: see text] can be reached in 50 cm distance from the focal spot. The results demonstrate that the line focus tube can serve as a powerful compact source for phase contrast imaging and microbeam radiation therapy. The production of a prototype seems technically feasible.

  10. Development of a concept for radiation patients exposure assessment during dental X-ray examinations and statistical data acquisition for the determination of a diagnostic reference value

    International Nuclear Information System (INIS)

    Kueppers, C.; Sering, M.; Poppe, B.; Poplawski, A.; Looe, H.K.; Beyer, D.; Pfaffenberger, A.; Chofor, N.; Eenboom, F.

    2012-01-01

    The research project on the development a concept for radiation patients exposure assessment during dental X-ray examinations and statistical data acquisition for the determination of a diagnostic reference value includes the following issues: Fundamental facts: dental X-ray examination techniques, dose relevant factors and characteristics during X-ray examinations, radiation exposed organs during dental X-ray examinations, dose assessment based on phantoms. Materials and methodologies of the project: TLD measurements using the phantom, calculation of the effective dose during dental X-ray examinations, properties and settings of the reference facilities for the determination of radiation exposure, selection of dental offices, dosimetric measurements, data acquisition and statistical evaluation. Results of dosimetric examinations: results of dosimetric measurements at reference facilities, results of dosimetric measurements in dental offices. Discussion of the concept for the determination of the radiation exposure during dental X-ray examinations.

  11. Mutagenic adaptive response to high-LET radiation in human lymphoblastoid cells exposed to X-rays.

    Science.gov (United States)

    Varès, Guillaume; Wang, Bing; Tanaka, Kaoru; Kakimoto, Ayana; Eguchi-Kasai, Kyomi; Nenoi, Mitsuru

    2011-01-10

    The ability of cells to adapt low-dose or low-dose rate radiation is well known. High-LET radiation has unique characteristics, and the data concerning low doses effects and high-LET radiation remain fragmented. In this study, we assessed in vitro the ability of low doses of X-rays to induce an adaptive response (AR) to a subsequent challenging dose of heavy-ion radiation. Lymphoblastoid cells (TK6, AHH-1, NH32) were exposed to priming 0.02-0.1Gy X-rays, followed 6h later by challenging 1Gy heavy-ion radiation (carbon-ion: 20 and 40keV/μm, neon-ion: 150keV/μm). Pre-exposure of p53-competent cells resulted in decreased mutation frequencies at hypoxanthine-guanine phosphoribosyl transferase locus and different H2AX phosphorylation kinetics, as compared to cells exposed to challenging radiation alone. This phenomenon did not seem to be linked with cell cycle effects or radiation-induced apoptosis. Taken together, our results suggested the existence of an AR to mutagenic effects of heavy-ion radiation in lymphoblastoid cells and the involvement of double-strand break repair mechanisms. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Directory of Open Access Journals (Sweden)

    K.B. Korotchenko

    2017-11-01

    Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.

  13. Characteristics of specifications of transportable inverter-type X-ray equipment

    International Nuclear Information System (INIS)

    Yamamoto, Keiichi; Miyazaki, Shigeru

    2003-01-01

    Our X-ray systems study group measured and examined the characteristics of four transportable inverter-type X-ray equipments. X-ray tube voltage and X-ray tube current were measured with the X-ray tube voltage and the X-ray tube current measurement terminals provided with the equipment. X-ray tube voltage, irradiation time, and dose were measured with a non-invasive X-ray tube voltage-measuring device, and X-ray output was measured by fluorescence meter. The items investigated were the reproducibility and linearity of X-ray output, error of pre-set X-ray tube voltage and X-ray tube current, and X-ray tube voltage ripple percentage. The waveforms of X-ray tube voltage, the X-ray tube current, and fluorescence intensity draw were analyzed using the oscilloscope gram and a personal computer. All of the equipment had a preset error of X-ray tube voltage and X-ray tube current that met Japanese Industrial Standards (JIS) standards. The X-ray tube voltage ripple percentage of each equipment conformed to the tendency to decrease when X-ray tube voltage increased. Although the X-ray output reproducibility of system A exceeded the JIS standard, the other systems were within the JIS standard. Equipment A required 40 ms for X-ray tube current to reach the target value, and there was some X-ray output loss because of a trough in X-ray tube current. Owing to the influence of the ripple in X-ray tube current, the strength of the fluorescence waveform rippled in equipments B and C. Waveform analysis could not be done by aliasing of the recording device in equipment D. The maximum X-ray tube current of transportable inverter-type X-ray equipment is as low as 10-20 mA, and the irradiation time of chest X-ray photography exceeds 0.1 sec. However, improvement of the radiophotographic technique is required for patients who cannot move their bodies or halt respiration. It is necessary to make the irradiation time of the equipments shorter for remote medical treatment. (author)

  14. Pulse X-radiation in flaw detection

    International Nuclear Information System (INIS)

    Vavilov, S.P.; Gorbunov, V.I.

    1985-01-01

    Principles of physical and engineering application of pulse X-radiation (PXR) of micro- and nanosecond duration for nondestructive testing of processes, materials and devices are given. Methods and devices, aimed at generating X-ray pulses, as well as their radiation and flow detection characteristics, and testing methods by means of PXR are considered

  15. Multichannel X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Khabakhpashev, A

    1980-10-01

    A typical design is discussed of multiwire proportional counters and their characteristic feature is explained, ie., the possibility of showing one or two coordinates of the X-ray quantum absorption site. The advantages of such instruments are listed, such as increased sensitivity of determination, the possibility of recording radiations of a different intensity, the possibility of on-line data processing and of the digital display of results. The fields of application include X-ray structural analysis in solid state physics, crystallography, molecular biology, astronomy, materials testing, and medicine.

  16. X-ray microbeams based on Kumakhov polycapillary optics and its

    Indian Academy of Sciences (India)

    Kumakhov polycapillary optics is based on the effective passage of X-ray radiation through bundles of monocapillaries of various configurations. The passage of radiation takes place because of the total external reflection of X-rays from the inner capillary walls. In this work,the basic characteristics of intense quasi-parallel ...

  17. Magnetic x-ray scattering studies of holmium using synchro- tron radiation

    International Nuclear Information System (INIS)

    Gibbs, D.; Moncton, D.E.; D'Amico, K.L.; Bohr, J.; Grier, B.H.

    1985-01-01

    We present the results of magnetic x-ray scattering experiments on the rare-earth metal holmium using synchrotron radiation. Direct high-resolution measurements of the nominally incommensurate magnetic satellite reflections reveal new lock-in behavior which we explain within a simple spin-discommensuration model. As a result of magnetoelastic coupling, the spin-discommensuration array produces additional x-ray diffraction satellites. Their observation further substantiates the model and demonstrates additional advantages of synchrotron radiation for magnetic-structure studies

  18. The Radiative X-ray and Gamma-ray Efficiencies of Rotation-powered Pulsars

    Science.gov (United States)

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev & Pavlov, and we complement this with an analysis of the γ-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and γ-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient γ-ray emitters. We divided the X-ray sample in a young (τ c < 1.7 × 104 yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and γ-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L_X ∝ \\dot{P}^3/P^6. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency η ≡ L_X/\\dot{E}_{rot} ≈ 8× 10^{-5}. For the γ-ray luminosity we confirm that L_γ ∝ √{\\dot{E}_{rot}}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  19. Modern X-ray difraction. X-ray diffractometry for material scientists, physicists, and chemicists

    International Nuclear Information System (INIS)

    Spiess, L.; Schwarzer, R.; Behnken, H.; Teichert, G.

    2005-01-01

    The book yields a comprehensive survey over the applications of X-ray diffraction in fields like material techniques, metallurgy, electrotechniques, machine engineering, as well as micro- and nanotechniques. The necessary fundamental knowledge on X-ray diffraction are mediated foundedly and illustratively. Thereby new techniques and evaluation procedures are presented as well as well known methods. The content: Production and properties of X radiation, diffraction of X radiation, hardware for X-ray diffraction, methods of X-ray diffraction, lattice-constant determination, phase analysis, X-ray profile analysis, crystal structure analysis, X-ray radiographic stress analysis, X-ray radiographic texture analysis, crystal orientation determination, pecularities at thin films, small angle scattering

  20. X-ray diagnostics - benefits and risks

    International Nuclear Information System (INIS)

    Bartholomaeus, Melanie

    2016-01-01

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  1. X-ray spectral determination by detection of radiation scattered at different angles

    International Nuclear Information System (INIS)

    Barrea, Raul; Mainardi, R.T.

    1987-01-01

    A precise knowledge of the spectral content of an X-ray beam is of fundamental importance in areas such as X-ray fluorescence analysis by absolute methods, radiodiagnosis, radiotherapy, computed tomography, etc. A simple practical method was developed to determine X-ray spectra emitted by X-ray tubes. It is based on the scattering of the beam on a solid target and detection of this radiation at different angles. This methodology can easily be adapted to the successive attenuation of the beam procedure. Numerical parameter values of a proposed analytical function for the energy spectrum are found measuring the radiation intensity with a suitable detector (ionization chamber or plastic scintillation detector) and equating it with the convolution integral of the proposed spectrum with the incoherent scattering function. This procedure of spectra determination is enclosed in the same group of those generically referred as successive modifications of the irradiation set up used in absolute methods of X-ray fluorescence analysis. (Author) [es

  2. Ordinance on protection from the harmful effects of X-radiation (X-ray Ordinance). As of January 8, 1987. 3. ed.

    International Nuclear Information System (INIS)

    Hinrichs, O.

    1992-01-01

    The German X-ray Ordinance (Roentgenverordnung) contains the main protective provisions applying to the field of X-ray equipment and sources of unwanted X radiation. It thus forms a complement to the German Radiation Protection Ordinance (Strahlenschutzverordnung). The X-ray Ordinance is based, as is the Radiation Protection Ordinance, on the German Nuclear Energy Act (Atomgesetz). It transposes the same Euratom Directives into national law, through which above all the limit values are defined. The current state of the X-ray Ordinance is that of the text promulgated on 8.01.1987 with the subsequent amendments, the last of which was adopted on 19.12.1990. The brochure also reproduces the Official Memorandum to the X-ray Ordinance, as this gives important indications for the legal construction of the Ordinance. (orig./HSCH) [de

  3. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  4. The one- and two-coordinate x-ray detectors

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Baru, S.E.; Khabakhpashev, A.G.; Savinov, G.A.

    1992-01-01

    The Institute of Nuclear Physics has designed and fabricated one- and two-coordinate x-ray detectors since 1975. For photon detection multiwire proportional chambers that operate in direct pulse count mode are employed. The characteristics of the detectors allow successful use of them for a wide range of diffractive x-ray structure studies, including studies of dynamics of structure variation (x-ray diffractive movies) and measurements at synchrotron radiation channels

  5. Assessment of pediatrics radiation dose from routine x-ray ...

    African Journals Online (AJOL)

    Background: Given the fact that children are more sensitive to ionizing radiation than adults,with an increased risk of developing radiation-induced cancer,special care should be taken when they undergo X-ray examinations. The main aim of the current study was to determine Entrance Surface Dose (ESD) to pediatric ...

  6. Theoretical progress in studying the characteristic x-ray emission from heavy few-electron ions

    International Nuclear Information System (INIS)

    Surzhykov, Andrey; Stohlker, Thomas; Fritzsche, Stephan; Kabachnik, Nikolai M

    2009-01-01

    Recent theoretical progress in the study of the x-ray characteristic emission from highly-charged, few-electron ions is reviewed. These investigations show that the bound-state radiative transitions in high-Z ions provide a unique tool for better understanding the interplay between the structural and dynamical properties of heavy ions. In order to illustrate such an interplay, detailed calculations are presented for the K α1 decay of the helium-like uranium ions U 90+ following radiative electron capture, Coulomb excitation and dielectronic recombination processes.

  7. The selection criteria elements of X-ray optics system

    Science.gov (United States)

    Plotnikova, I. V.; Chicherina, N. V.; Bays, S. S.; Bildanov, R. G.; Stary, O.

    2018-01-01

    At the design of new modifications of x-ray tomography there are difficulties in the right choice of elements of X-ray optical system. Now this problem is solved by practical consideration, selection of values of the corresponding parameters - tension on an x-ray tube taking into account the thickness and type of the studied material. For reduction of time and labor input of design it is necessary to create the criteria of the choice, to determine key parameters and characteristics of elements. In the article two main elements of X-ray optical system - an x-ray tube and the detector of x-ray radiation - are considered. Criteria of the choice of elements, their key characteristics, the main dependences of parameters, quality indicators and also recommendations according to the choice of elements of x-ray systems are received.

  8. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  9. Practical X-ray diagnostics orthopedics and trauma surgery. Indication, adjustment technique and radiation protection

    International Nuclear Information System (INIS)

    Flechtenmacher, Johannes; Sabo, Desiderius

    2014-01-01

    The book on X-ray diagnostics in orthopedics and trauma surgery includes the following chapters: 1. Introduction: radiation protection, equipment technology radiological diagnostics of skeleton carcinomas, specific aspects of trauma surgery, special aspects of skeleton radiology for children. 2. X-ray diagnostics of different anatomical regions: ankle joint, knee, hips and pelvis, hand and wrist joint, elbow, shoulder, spinal cord. 3. Appendix: radiation protection according to the X-ray regulations.

  10. X-ray microscopy using collimated and focussed synchrotron radiation

    International Nuclear Information System (INIS)

    Jones, K.W.; Kwiatek, W.M.; Gordon, B.M.

    1987-01-01

    X-ray microscopy is a field that has developed rapidly in recent years. Two different approaches have been used. Zone plates have been employed to produce focused beams with sizes as low as 0.07 μm for x-ray energies below 1 keV. Images of biological materials and elemental maps for major and minor low Z have been produced using above and below absorption edge differences. At higher energies collimators and focusing mirrors have been used to make small diameter beams for excitation of characteristic K- or L-x rays of all elements in the periodic table. The practicality of a single instrument combining all the features of these two approaches is unclear. The use of high-energy x rays for x-ray microscopy has intrinsic value for characterization of thick samples and determination of trace amounts of most elements. A summary of work done on the X-26 beam line at the National Synchrotron Light Source (NSLS) with collimated and focused x rays with energies above 4 keV is given here. 6 refs., 5 figs., 1 tab

  11. X-ray-to-current signal conversion characteristics of trench-structured photodiodes for direct-conversion-type silicon X-ray sensor

    International Nuclear Information System (INIS)

    Ariyoshi, Tetsuya; Funaki, Shota; Sakamoto, Kenji; Baba, Akiyoshi; Arima, Yutaka

    2017-01-01

    To reduce the radiation dose required in medical X-ray diagnoses, we propose a high-sensitivity direct-conversion-type silicon X-ray sensor that uses trench-structured photodiodes. This sensor is advantageous in terms of its long device lifetime, noise immunity, and low power consumption because of its low bias voltage. With this sensor, it is possible to detect X-rays with almost 100% efficiency; sensitivity can therefore be improved by approximately 10 times when compared with conventional indirect-conversion-type sensors. In this study, a test chip was fabricated using a single-poly single-metal 0.35 μm process. The formed trench photodiodes for the X-ray sensor were approximately 170 and 300 μm deep. At a bias voltage of 25 V, the absorbed X-ray-to-current signal conversion efficiencies were 89.3% (theoretical limit; 96.7%) at a trench depth of 170 μm and 91.1% (theoretical limit; 94.3%) at a trench depth of 300 μm. (author)

  12. Characterization of radiation qualities used in diagnostic X-ray

    International Nuclear Information System (INIS)

    Bero, M.; Zahili, M.; Al Ahmad, M.

    2013-12-01

    This study aims to adjust the radiation beams emitted from X-ray tubes installed at the National Radiation Metrology Laboratory in the field of diagnostic radiology (radiology and mammography) according to the IAEA protocol code number TRS 457, the second goal of this study is to establish various radiation qualities used fordiagnostic radiology applications: RQR, RQA and RQT and the radiation qualities related to mammography applications: RQA-M and RQR-M (author).

  13. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  14. Intensity of diffracted X-rays from biomolecules with radiation damage caused by strong X-ray pulses

    International Nuclear Information System (INIS)

    Kai, Takeshi; Tokuhisa, Atsushi; Moribayashi, Kengo; Fukuda, Yuji; Kono, Hidetoshi; Go, Nobuhiro

    2014-01-01

    In order to realize the coherent X-ray diffractive imaging of single biomolecules, the diffraction intensities, per effective pixel of a single biomolecule with radiation damage, caused by irradiation using a strong coherent X-ray pulse, were examined. A parameter survey was carried out for various experimental conditions, using a developed simulation program that considers the effect of electric field ionization, which was slightly reported on in previous studies. The two simple relationships among the parameters were identified as follows: (1) the diffraction intensity of a biomolecule slightly increases with the incident X-ray energy; and that (2) the diffraction intensity is approximately proportional to the target radius, when the radius is longer than 400 Å, since the upper limit of the incident intensity for damage to the biomolecules marginally changes with respect to the target radius. (author)

  15. Measurement of the energy distribution of parametric X-ray radiation from a double-crystal system

    International Nuclear Information System (INIS)

    Mori, Akira; Hayakawa, Yasushi; Kidokoro, Akio; Sato, Isamu; Tanaka, Toshinari; Hayakawa, Ken; Kobayashi, Kouji; Ohshima, Hisashi

    2006-01-01

    A parametric X-ray radiation (PXR) generator system was developed at the Laboratory for Electron Beam Research and Applications (LEBRA) at Nihon University; this PXR generator system is a tunable wavelength and quasi-monochromatic X-ray source constructed as one of the advanced applications of the LEBRA 125-MeV electron linear accelerator. The PXR beam which has characteristic of energy distribution. The theoretical values of energy distribution obtained at the output port were calculated to be approximately 300 eV and 2 keV at the central X-ray energies of 7 keV and 20 keV, respectively. In order to investigate the energy distribution, several measurements of the X-ray energy were carried out. The X-ray absorption of known materials and that of thin aluminum has been evaluated based on analyses of images taken using an imaging plate. The X-ray energy was deduced base on the identification of the absorption edges, and the energy distribution was estimated based on measurements using aluminum step method. In addition, an X-ray diffraction method using a perfect silicon crystal was employed, and spectra were measured using a solid state detector (SSD). The results of these experiments agreed with the calculated results. In particular, the well-defined absorption edges in the X-ray images and the typical rocking curves obtained by the measurement of the X-ray diffraction indicated that the distribution has a high-energy resolution

  16. Secondary-source energy-dispersive x-ray spectrometer

    International Nuclear Information System (INIS)

    Larsen, R.P.; Tisue, G.T.

    1975-01-01

    A secondary-source energy-dispersive x-ray spectrometer has been built and tested. In this instrument the primary source of x rays is a tungsten-target tube powered by a high-voltage (75 kV), a high-power (3.7 kW) generator from a wavelength spectrometer (G.E. XRD-6). The primary polychromatic x rays irradiate an elemental foil, the secondary source. Its characteristic essentially monochromatic x rays are used to irradiate the sample. Fluorescent x rays from the sample are detected and resolved by a lithium-drifted silicon detector, multichannel-analyzer system. The design of the instrument provides a convenient means for changing the secondary, and hence, the energy of the excitation radiation

  17. The dress and the cloud. Stories about X-rays, radioactivity and radiation protection

    International Nuclear Information System (INIS)

    Lochard, Jacques; Repussard, Jacques; Tabare, Mireille

    2013-01-01

    This bibliographical note presents a book in which the authors recall the history of X-rays, of radioactivity and of radiation protection. It describes the almost simultaneous discovery of X-rays and radioactivity, the concern created by the Hiroshima and Nagasaki bombings, the importance given back to civil society by the Chernobyl and Fukushima accidents. They comment the various applications of X-rays and radioactivity in the fields of research, medicine, energy, weapons. They describe the progressive development of radiation protection in a context of large political, economic and social evolutions during the past century

  18. X-ray and γ-radiation personnel monitoring by means of ionization chambers

    International Nuclear Information System (INIS)

    Gavrilovskij, L.P.; Nikitin, V.I.

    1981-01-01

    Several sets of condensator ionization chambers for measuring a dose of short-wave X-ray and gamma radiations within the limits of 0.005-50 R is described in short. In particular the following sets for personnel monitoring are described: the KID-2 set intended for determining an exposure dose of roentgen and gamma radiations of 150 keV - 2 MeV energy within the limits of 0.005-1R; the DK-02 set providing the measurement of personnel exposure doses of X-ray and gamma radiations within the limits of 0.02-200 mR in the energy range of 100 keV-2 MeV; the DP-22 V, DP-24 sets providing the measurement of an exposure dose of X-ray and gamma radiations within the limits of 1-50 R at a power of 0.5-200 R/h in the energy range of 0.1-2 MeV. An order of work with the sets is described [ru

  19. X-ray and radium gamma radiation injuries

    International Nuclear Information System (INIS)

    Fokkema, R.E.

    1993-05-01

    During the period 1896-1939 a number of maxima could be distinguished in the incidence of X-ray and radium gamma ray injuries in patients. An explanation for these fluctuations is investigated in this study. The first distinguishable maximum in the number of reported cases of X-ray injuries can be found in the period 1896-1897 and mainly concerns skin lesions, caused by the lack of shielding and ignorance of the effects. In the period 1904-1905 there was once again an apparent prevalence of radiation injuries to patients. After 1905 the incidence of radiation injuries decreased due to a wider use of dosimetric methods. The third phase of increased injuries may be subdivided into three components. In diagnostic roentgenology from 1896 to 1926 a number of causes of roentgen burns persisted: multiple or long exposures, the use of a short focus-skin-distance and a lack of suitable dosimetric methods. The reduction of complications after 1923 can be attributed to several factors: systematic training of physics who wished to become roentgenologists, greater care of doctors, the use of an alternative method of radiotherapy according to Coutard's method, the introduction of dosimetry with ionization chambers (after 1924), the consensus reached over the roentgen as a unit of applied dosage (in 1928), and the introduction of absorption curves for radiation quality (in 1933). Around 1920 a high complication rate arose as a result of exposure to radiation emitted by radium. In 1922 the first reliable radium dosimetry method came available. This applied to external radium therapy by regular shaped applicators. After 1938 reliable dosimetry was achieved in the field of interstitial radium therapy (brachytherapy). Injuries from radium therapy, however, persisted till about 1940, caused not only by the delayed availability of radium dosimetry, but also to the use of radium therapy by poorly trained radium therapists. 28 figs., 5 tabs

  20. Design of a radiation hard silicon pixel sensor for X-ray science

    Energy Technology Data Exchange (ETDEWEB)

    Schwandt, Joern

    2014-06-15

    At DESY Hamburg the European X-ray Free-Electron Laser (EuXFEL) is presently under construction. The EuXFEL has unique properties with respect to X-ray energy, instantaneous intensity, pulse length, coherence and number of pulses/sec. These properties of the EuXFEL pose very demanding requirements for imaging detectors. One of the detector systems which is currently under development to meet these challenges is the Adaptive Gain Integrating Pixel Detector, AGIPD. It is a hybrid pixel-detector system with 1024 x 1024 p{sup +} pixels of dimensions 200 μm x 200 μm, made of 16 p{sup +}nn{sup +}- silicon sensors, each with 10.52 cm x 2.56 cm sensitive area and 500 μm thickness. The particular requirements for the AGIPD are a separation between noise and single photons down to energies of 5 keV, more than 10{sup 4} photons per pixel for a pulse duration of less than 100 fs, negligible pile-up at the EuXFEL repetition rate of 4.5 MHz, operation for X-ray doses up to 1 GGy, good efficiency for X-rays with energies between 5 and 20 keV, and minimal inactive regions at the edges. The main challenge in the sensor design is the required radiation tolerance and high operational voltage, which is required to reduce the so-called plasma effect. This requires a specially optimized sensor. The X-ray radiation damage results in a build-up of oxide charges and interface traps which lead to a reduction of the breakdown voltage, increased leakage current, increased interpixel capacitances and charge losses. Extensive TCAD simulations have been performed to understand the impact of X-ray radiation damage on the detector performance and optimize the sensor design. To take radiation damage into account in the simulation, radiation damage parameters have been determined on MOS capacitors and gate-controlled diodes as function of dose. The optimized sensor design was fabricated by SINTEF. Irradiation tests on test structures and sensors show that the sensor design is radiation hard and

  1. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  2. A mirror for lab-based quasi-monochromatic parallel x-rays.

    Science.gov (United States)

    Nguyen, Thanhhai; Lu, Xun; Lee, Chang Jun; Jung, Jin-Ho; Jin, Gye-Hwan; Kim, Sung Youb; Jeon, Insu

    2014-09-01

    A multilayered parabolic mirror with six W/Al bilayers was designed and fabricated to generate monochromatic parallel x-rays using a lab-based x-ray source. Using this mirror, curved bright bands were obtained in x-ray images as reflected x-rays. The parallelism of the reflected x-rays was investigated using the shape of the bands. The intensity and monochromatic characteristics of the reflected x-rays were evaluated through measurements of the x-ray spectra in the band. High intensity, nearly monochromatic, and parallel x-rays, which can be used for high resolution x-ray microscopes and local radiation therapy systems, were obtained.

  3. Radiation exposure and image quality in X-ray diagnostic radiology. Physical principles and clinical applications. 2. ed.

    International Nuclear Information System (INIS)

    Saebel, Manfred; Aichinger, Horst; Dierker, Joachim; Joite-Barfuss, Sigrid

    2012-01-01

    Diagnostic X-rays are the largest contributor to radiation exposure to the general population, and protecting the patient from radiation damage is a major aim of modern health policy. Once the decision has been taken to use ionising radiation for imaging in a particular patient, it is necessary to optimize the image acquisition process taking into account the diagnostic quality of the images and the radiation dose to the patient. Both image quality and radiation dose are affected by a number of parameters, knowledge of which permits scientifically based decision making. The authors of this second edition of Radiation Exposure and Image Quality in X-ray Diagnostic Radiology have spent many years studying the optimization of radiological imaging. In this book they present in detail the basic physical principles of diagnostic radiology and their application to clinical problems. Particular attention is devoted to evaluation of the dose to the patient, the influence of scattered radiation on image quality, the use of antiscatter grids, and optimization of image quality and dose. The final section is a supplement containing tables of data and graphical depictions of X-ray spectra, interaction coefficients, characteristics of X-ray beams, and other aspects relevant to patient dose calculations. In addition, a complementary CD-ROM contains a user-friendly Excel file database covering these aspects that can be used in the reader's own programs. Since the first edition, the text, figures, tables, and references have all been thoroughly updated, and more detailed attention is now paid to image quality and radiation exposure when using digital imaging and computed tomography. This book will be an invaluable aid to medical physicists when performing calculations relating to patient dose and image quality, and will also prove useful for diagnostic radiologists and engineers. (orig.)

  4. Imaging of exploding wire plasmas by high-luminosity monochromatic X-ray backlighting using an X-pinch radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, S A; Shelkovenko, T A; Romanova, V M [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.; Hammer, D A [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies; Faenov, A Ya; Pikuz, T A [VNIIFTRI, Mendeleevo (Russian Federation). Multicharged Ions Spectral Data Center

    1997-12-31

    A new diagnostic method for dense plasmas, monochromatic x-ray backlighting, is described. In this method, shadow images of a bright, dense plasma can be obtained with high spatial resolution using monochromatic radiation from a separate plasma, permitting a major reduction in the required backlighting source power. The object plasma is imaged utilizing spherically bent mica crystals as the x-ray optical elements. Images of test objects obtained using x-ray radiation having different photon energies are presented. Shadow images of exploding Al wire plasmas in the ls{sup 2}-1s3p line radiation of He-like Al XII are also shown. Spatial resolution as fine as 4 {mu}m is demonstrated. The scheme described is useful for backlighting extended high density plasmas, and could be a less costly alternative to using X-ray lasers for such purposes. (author). 7 figs., 10 refs.

  5. Characteristics of hard X-ray double sources in impulsive solar flares

    Science.gov (United States)

    Sakao, T.; Kosugi, T.; Masuda, S.; Yaji, K.; Inda-Koide, M.; Makishima, K.

    1996-01-01

    Imaging observations of solar flare hard X-ray sources with the Hard X-ray Telescope (HXT) aboard the Yohkoh satellite have revealed that hard X-ray emissions (greater than 30 ke V) originate most frequently from double sources. The double sources are located on both sides of the magnetic neutral line, suggesting that the bulk of hard X-rays is emitted from footpoints of flaring magnetic loops. We also found that hard X-rays from the double sources are emitted simultaneously within a fraction of second and that the weaker source tends to be located in the stronger magnetic field region, showing a softer spectrum. Physcial implications on the observed characteristics of the hard X-ray double sources are discussed.

  6. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays.

    Science.gov (United States)

    Azman, N Z Noor; Siddiqui, S A; Low, I M

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2-10 vol% WO3 loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10-40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO3-epoxy composites in the energy range of 10-25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30-40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO3-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25-49 kV) were in the range of 15-25 keV. Similarly, for a radiology unit operating at 40-60 kV, the equivalent energy range was 25-40 keV, and for operating voltages greater than 60 kV (i.e., 70-100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO3 loading resulted in deterioration of flexural strength, modulus and hardness. © 2013.

  7. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    International Nuclear Information System (INIS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-01-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED 99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED 99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED 99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F 1 egg hatching was only 66 Gy. ED 99 value for inhibition of hatching of F 1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae. - Highlights: • X-ray irradiation induced abnormal development of Helicoverpa armigera. • ED 99 value for inhibition of pupation and adult emergence of irradiated egg was estimated at 210 and 154 Gy, respectively. • ED 99 value for inhibition of pupation and adult emergence of irradiated larva was estimated at 221 and 167 Gy, respectively

  8. Radiation chemistry of polymeric X-ray resists; Zur Strahlenchemie polymerer Roentgenresists

    Energy Technology Data Exchange (ETDEWEB)

    Wollersheim, O.

    1995-03-01

    In this study, the radiation chemical reactions in poly(methyl-methacrylate) (PMMA) and homo- and copolymers of lactide and glycollide during X-ray exposure with synchrotron radiation from the Bonn ELSA electron storage ring are quantitatively analyzed. In situ studies of the irradiated PMMA and lactide/glycollide polymers with mass spectroscopy, infrared spectroscopy and ESR spectroscopy combined with ex situ methods as size exclusion chromatography and titration lead to a complete and quantitative understanding of the radiation chemical reactions in both polymer classes. The implications for the application of the polymers in the X-ray deep etch lithography, which is the appropriate process for the production of microsystem components, are discussed. (orig.)

  9. Radiation exposure of holding personnel involved in veterinary X-ray diagnosis

    International Nuclear Information System (INIS)

    Rothe, W.

    1977-01-01

    An account is given of radiation protection in the context of X-ray examination of small and big animals on the premises of seven reviewed veterinary centres. Also reported are the dosimetric results obtained from holding personnel involved in X-ray diagnosis of 319 big and 4,047 small animals. Infringement of valid regulations was quite often observed, in that animals are held in position in an inadequate way and by unauthorised persons. The measured results, however, have shown that the radiation exposure of vocationally exposed persons can be kept far below the maximum permissible equivalent doses, provided that all applicable rules of radiation protection are observed by those on duty. (author)

  10. Legal directives in the X-ray regulation for the field of X-ray diagnostics

    International Nuclear Information System (INIS)

    Huhn, Walter

    2012-01-01

    The operation of each X-ray device is subject to the requirements of the X-ray regulations (RoeV); for different operational modes or applications like curative diagnostics, X-ray serial examinations, X-ray radiotherapy and teleradiology different directives exist and have to be respected. The report discusses the issues licensing and notification procedures, radiation protection representative, requirements for the commissioning (teleradiology, serial X.ray examinations), technical qualification and radiation protection knowledge of physicians, technical qualification of the assistant personnel.

  11. K X-ray production cross sections, Kβ/Kα ratios, and radiative Auger ratios for protons impacting low-Z elements

    International Nuclear Information System (INIS)

    Cipolla, Sam J.

    1999-01-01

    A Cockcroft-Walton accelerator was used to produce 50-300 keV protons to excite characteristic X-rays from thick targets of elements from Z=21 to 32, using an efficiency-calibrated Si(Li) detector equipped with an ultra-thin window. X-ray production cross sections were determined and compared with prevailing theories. Special attention was paid to accounting for the radiative Auger effects (RAE) in the analysis of the X-ray energy spectra. Ratios of RAE to K α and K β intensities, as well as K β /K α ratios, will be compared to theoretical values

  12. Measurement of spherical compound refractive X-ray lens at ANKA synchrotron radiation source

    International Nuclear Information System (INIS)

    Dudchik, Yu.I.; Simon, R.; Baumbach, T.

    2007-01-01

    Parameters of compound refractive X-ray lens were measured at ANKA synchrotron radiation source. The lens consists of 224 spherical concave epoxy microlenses formed inside glass capillary. The curvature radius of individual microlens is equal to 100 microns. Measured were: X-ray focal spot, lens focal length and gain in intensity. The energy of X-ray beam was equal to 12 keV and 14 keV. It is shown that when X-ray lens is used, the gain in intensity of the X-ray beam in some cases may exceed value of 100. Tested lens is suitable to focus X-rays into, at least, 2-microns in size spot. (authors)

  13. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  14. Time-resolved X-ray studies using third generation synchrotron radiation sources

    International Nuclear Information System (INIS)

    Mills, D.M.

    1991-10-01

    The third generation, high-brilliance, hard x-ray, synchrotron radiation (SR) sources currently under construction (ESRF at Grenoble, France; APS at Argonne, Illinois; and SPring-8 at Harima, Japan) will usher in a new era of x-ray experimentation for both physical and biological sciences. One of the most exciting areas of experimentation will be the extension of x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high brilliance, and variable spectral bandwidth of these sources make them ideal for x-ray time-resolved studies. The temporal properties (bunch length, interpulse period, etc.) of these new sources will be summarized. Finally, the scientific potential and the technological challenges of time-resolved x-ray scattering from these new sources will be described. 13 refs., 4 figs

  15. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  16. Radiation exposure and image quality in x-Ray diagnostic radiology physical principles and clinical applications

    CERN Document Server

    Aichinger, Horst; Joite-Barfuß, Sigrid; Säbel, Manfred

    2012-01-01

    The largest contribution to radiation exposure to the population as a whole arises from diagnostic X-rays. Protecting the patient from radiation is a major aim of modern health policy, and an understanding of the relationship between radiation dose and image quality is of pivotal importance in optimising medical diagnostic radiology. In this volume the data provided for exploring these concerns are partly based on X-ray spectra, measured on diagnostic X-ray tube assemblies, and are supplemented by the results of measurements on phantoms and simulation calculations.

  17. X-ray radiation damage of organic semiconductor thin films during grazing incidence diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Neuhold, A., E-mail: alfred.neuhold@tugraz.at [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Novak, J.; Flesch, H.-G.; Moser, A.; Djuric, T. [Institute of Solid State Physics, Graz University of Technology, Graz (Austria); Grodd, L.; Grigorian, S.; Pietsch, U. [Institute of Physics, University Siegen (Germany); Resel, R. [Institute of Solid State Physics, Graz University of Technology, Graz (Austria)

    2012-08-01

    Since modern synchrotrons with highly intense X-ray beams are in use to investigate organic materials, the stability of soft matter materials during beam exposure is a crucial issue. Grazing incidence X-ray diffraction and specular X-ray reflectivity measurements were performed on thin films of organic semiconducting materials, like poly(3-hexylthiophene) (P3HT), sexithiophene and pentacene. These films were irradiated with an average flux density between 10{sup 15} and 10{sup 16} photons/(s mm{sup 2}) and evidenced a different stability in synchrotron X-ray radiation. The semi-crystalline P3HT showed a clear intensity decrease of the 1 0 0 Bragg peak and 0 2 0 Bragg peak compared to the rather stable diffraction features of the molecular crystals sexithiophene and pentacene. The difference in synchrotron X-ray radiation stability is explained by the interaction of the X-ray beam with the individual chemical components in the molecules as well as by the different crystallinities of the materials. Furthermore, the semi-crystalline P3HT film exhibited an increase of film thickness after irradiation and the surface roughness slightly decreased. To summarize, this study shows a strong influence of synchrotron X-ray radiation to specific organic thin films like e.g. P3HT, while others like pentacene and sexithiophene are observed as quite stable.

  18. X-ray beam qualities for dental radiology purposes

    International Nuclear Information System (INIS)

    Santos, Marcus Aurelio P. dos; Fragoso, Maria da Conceicao de F.; Lima, Ricardo de A.; Hazim, Clovis A.

    2009-01-01

    In order to establish characteristics or properties of equipment for diagnostic radiology, e.g. ion chambers and semiconductor detectors, calibration laboratories offer a set of well-defined radiation conditions, called X-ray qualities, which can be used for many Physics studies and medical purposes. The standardization of radiation qualities has been carried out in several fields of study, but little attention has been given to the area of dental radiology, mainly for medical and physical applications using single-phase units with half-wave rectification. For this reason, a single-phase dental unit with adjustable peak voltage and tube current, called 'variable potential X-ray equipment', was developed aiming to define X-ray beam qualities for test and calibrations purposes. X-ray spectra at 50, 60 and 70 kVp were determined by using a CdTe detector and compared with those obtained for ten commercial X-ray dental units. As a result of this study, a set of X-ray qualities for the variable potential X-ray equipment was determined. The X-ray qualities spectra were utilized as reference for determination of a new set of X-ray qualities characterized for a constant potential X-ray equipment. Thus, sets of X-ray qualities were standardized and implemented in two X-ray laboratories: one with the variable potential X-ray equipment and other with constant potential X-ray equipment. These reference X-ray beam qualities should be used for test and calibration purposes involving scientific studies and services. (author)

  19. An x-ray microprobe using focussing optics with a synchrotron radiation source

    International Nuclear Information System (INIS)

    Thompson, A.C.; Underwood, J.H.; Wu, Y.; Giauque, R.D.

    1989-01-01

    An x-ray microprobe can be used to produce maps of the concentration of elements in a sample. Synchrotron radiation provides x-ray beams with enough intensity and collimation to make possible elemental images with femtogram sensitivity. The use of focussing x-ray mirrors made from synthetic multilayers with a synchrotron x-ray beam allows beam spot sizes of less than 10 μm /times/ 10 μm to be produced. Since minimal sample preparation is required and a vacuum environment is not necessary, there will be a wide variety of applications for such microprobes. 8 refs., 6 figs

  20. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  1. Application of X-rays and Synchrotron X Rays to Residual Stress Evaluation Near Surfaces

    International Nuclear Information System (INIS)

    Pyzalla, Anke

    1999-01-01

    A nondestructive residual stress analysis can be performed using diffraction methods. The easiest accessible radiation is characteristic X radiation that has a penetration depth of ∼10 microm suitable for the determination of the residual stresses in near-surface layers. Special techniques have been developed, e.g., with respect to in situ analyses of the stress state in oxide layers and the residual stress analysis in coarse grained zones of steel welds or annealed Ni-base alloys. Depending on the size of the gauge volume, neutron diffraction can provide information at depths of tens of millimetres of steel and many tens of millimetres of Al. An alternative to the use of the characteristic synchrotron radiation is the use of a high-energy polychromatic beam in an energy dispersive arrangement, which gives access to higher penetration depths at still gauge volumes as small as 100 microm x 100 microm x 1 mm in steel rods of 15-mm diameter. The combination of neutrons with conventional X rays and monochromatic and polychromatic synchrotron radiation allows for a comprehensive investigation of the phase composition, the texture, and the residual stresses

  2. Radiation hygiene supervision of X-ray units in veterinary establishments of the South Bohemian Region

    International Nuclear Information System (INIS)

    Truelle, M.A.

    1976-01-01

    The number of X-ray examinations increased after 1971 with the launching of the nation-wide screening of breeding boars and sows for rhinitis. For this purpose the Regional Hygiene Officer permitted the use of CHIRAX X-ray apparatus in field-work. Blood sampling and medical check-ups are carried out of all workers by the Department of Occupational Diseases of the Regional Health Centre in Ceske Budejovice. All X-ray operators are equipped with film dosemeters. Hygienic inspection is regularly carried out by the Department of Radiation Hygiene of the Regional Hygiene Centre in Ceske Budejovice. The screenings are carried out in the pigsty or in the preparation room. The X-ray operators operate behind a Pb shield. The animal is tied up and the plate is inserted into its oral cavity. The auxiliary staff keeps as far away as possible from the X-ray apparatus. At a distance of 6 m from the X-ray apparatus the radiation intensity of 3 mR/h was measured. The harmful radiation dose is far below permissible values (5 rem/year). (O.Y.)

  3. Simulation of enhanced characteristic x rays from a 40-MeV electron beam laser accelerated in plasma

    Directory of Open Access Journals (Sweden)

    L. Nikzad

    2012-02-01

    Full Text Available Simulation of x-ray generation from bombardment of various solid targets by quasimonoenergetic electrons is considered. The electron bunches are accelerated in a plasma produced by interaction of 500 mJ, 30 femtosecond laser pulses with a helium gas jet. These relativistic electrons propagate in the ion channel generated in the wake of the laser pulse. A beam of MeV electrons can interact with targets to generate x-ray radiation with keV energy. The MCNP-4C code based on Monte Carlo simulation is employed to compare the production of bremsstrahlung and characteristic x rays between 10 and 100 keV by using two quasi-Maxwellian and quasimonoenergetic energy distributions of electrons. For a specific electron spectrum and a definite sample, the maximum x-ray flux varies with the target thickness. Besides, by increasing the target atomic number, the maximum x-ray flux is increased and shifted towards a higher energy level. It is shown that by using the quasimonoenergetic electron profile, a more intense x ray can be produced relative to the quasi-Maxwellian profile (with the same total energy, representing up to 77% flux enhancement at K_{α} energy.

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  5. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  6. Information from the National Institute of Radiation Protection about radiation doses and radiation risks at x-ray screening

    International Nuclear Information System (INIS)

    1975-05-01

    This report gives a specification of data concerning radiation doses and risks at x-ray investigations of lungs. The dose estimations are principally based on measurements performed in 1974 by the National Institute of Radiation Protection. The radiation doses at x-ray screening are of that magnitude that the risk for acute radiation injuries is non-existent. At these low doses it has not either been able to prove that the radiation gives long-range effects as changes in the genes or cancer of late appearance. At considerable higher doses, more than tens of thousands of millirads, a risk of cancer appearance at a small part of all irradiated persons has been proved, based on the assumption that the cancer risk is proportional to the radiation dose. Cancer can thus occure at low radiation doses too. Because of the mass radiography in Sweden 1974 about twenty cases of cancer may appear in the future. (M.S.)

  7. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  8. Preliminary study on X-ray phase contrast imaging using synchrotron radiation facility

    International Nuclear Information System (INIS)

    Xiong Zhuang; Wang Jianhua; Yu Yongqiang; Jiang Shiping; Chen Yang; Tian Yulian

    2006-01-01

    Objective: To study the methodology of X-ray phase contrast imaging using synchrotron radiation, and evaluate the quality of phase contrast images. Methods: Several experiments to obtain phase contrast images and absorption contrast images of various biological samples were conducted in Beijing Synchrotron Radiation Facility (BSRF), and then these images were interpreted to find out the difference between the two kinds of imaging methods. Results: Satisfactory phase contrast images of these various samples were obtained, and the quality of these images was superior to that obtained with absorption contrast imaging. The phase contrast formation is based on the phenomenon of fresnel diffraction which transforms phase shifts into intensity variations upon a simple act of free-space propagation, so it requires highly coherent X-rays and appropriate distance between sample and detector. This method of imaging is very useful in imaging of low-absorption objects or objects with little absorption variation, and its resolution is far higher than that of the conventional X-ray imaging. The photographs obtained showed very fine inner microstructure of the biological samples, and the smallest microstructure to be distinguished is within 30-40 μm. There is no doubt that phase contrast imaging has a practical applicability in medicine. Moreover, it improves greatly the efficiency and the resolution of the existing X-ray diagnostic techniques. Conclusions: X-ray phase contrast imaging can be performed with synchrotron radiation source and has some advantages over the conventional absorption contrast imaging. (authors)

  9. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  10. X-ray survival characteristics and genetic analysis for nine saccharomyces deletion mutants that show altered radiation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Game, John C.; Williamson, Marsha S.; Baccari, Clelia

    2004-01-07

    The availability of a genome-wide set of Saccharomyces deletion mutants provides a chance to identify all the yeast genes involved in DNA repair. Using X-rays, we are screening these mutants to identify additional genes that show increased sensitivity to the lethal effects of ionizing radiation. For each mutant identified as sensitive, we are confirming that the sensitivity phenotype co-segregates with the deletion allele and are obtaining multipoint survival-versus-dose assays in at least two haploid and one homozygous diploid strains. We present data for deletion mutants involving the genes DOT1, MDM20, NAT3, SPT7, SPT20, GCN5, HFI1, DCC1 and VID21/EAF1, and discuss their potential roles in repair. Eight of these genes have a clear radiation-sensitive phenotype when deleted, but the ninth, GCN5, has at most a borderline phenotype. None of the deletions confer substantial sensitivity to ultra-violet radiation, although one or two may confer marginal sensitivity. The DOT1 gene is of interest because its only known function is to methylate one lysine residue in the core of the histone H3 protein. We find that histone H3 mutants (supplied by K. Struhl) in which this residue is replaced by other amino-acids are also X-ray sensitive, seeming to confirm that methylation of the lysine-79 residue is required for effective repair of radiation damage.

  11. Photographic recording material for X-ray and γ-radiation

    International Nuclear Information System (INIS)

    Elsner, G.; Legler, R.

    1976-01-01

    It is proposed to increase the sensitivity of photographic recording material to X-ray- and γ-radiation by adding 2-naphthol in a concentration of 0.1 to 10 g per mol silver halogenides as a fluorescent material. (ORU/AK) [de

  12. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  13. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  14. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  15. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  16. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  17. Effects of combined X-radiation and UV-radiation on HeLa cells

    International Nuclear Information System (INIS)

    Luible, M.

    1982-01-01

    A combined X-ray-UV irradiation was performed in nonsynchronized HeLa-cells. A pre-irradiation with UV-light, that reduced the survival rate to 42% and the following X-ray radiation yielded a similar dose-effect characteristic as with ordinary X-ray irradiation, only its shoulder was smaller. An additive radiation interaction with the cellular molecular structure was observed. A pre-irradiation with X-rays followed by step-wise UV-irradiation yielded a function similar to the UV-action curve but also with a narrower shoulder. A additive effect could be observed. One can conclude from this that in combined irradiation two interacting processes cause the death of the cells. The gene mutations caused by UV-light lead to cell death. X-rays however cause chromosome breaks, that in an unfavourable combination also lead to cell death. The DNA distorsion caused by the UV-light increases the possibility of misrepair. (orig.) [de

  18. X-ray microscopy: An emerging technique for semiconductor microstructure characterization

    International Nuclear Information System (INIS)

    Padmore, H.A.

    1998-05-01

    The advent of third generation synchrotron radiation x-ray sources, such as the Advanced Light Source (ALS) at Berkeley have enabled the practical realization of a wide range of new techniques in which mature chemical or structural probes such as x-ray photoelectron spectroscopy (XPS) and x-ray diffraction are used in conjunction with microfocused x-ray beams. In this paper the characteristics of some of these new microscopes are described, particularly in reference to their applicability to the characterization of semiconductor microstructures

  19. X-ray sources

    International Nuclear Information System (INIS)

    Bonse, U.

    1979-11-01

    The author describes several possibilities for the production of X-radiation. Especially he discusses the use of bremsstrahlung at electron impact on solid targets and the synchrotron radiation. He presents some equations for the calculation of X-ray intensities. Especially the X-radiation from the DORIS storage ring is discussed. (HSI)

  20. The MCNP simulation of the X-ray leakage of X-ray security inspection equipment

    International Nuclear Information System (INIS)

    Wang Kai; Liu Bin; Hu Wenchao; Zhao Wei

    2011-01-01

    Objective: To simulate the radiation leakage of the X-ray security inspection equipment used in the subways stations. Methods: We use the MCNP4C code to simulate the X-ray leakage of the equipment during the working process. Result: the biggest amount of radiation received by the body is 8.26 μSv/a, however, if the Lead screens of the X-ray security equipment is intact, the amount of radiation received by the body is only 0.0727 μSv/a. The final. Conclusions: When the baggage get in /out the X-ray security inspection equipment, the gas in Lead screens was made, and then the amount of radiation received by human body increased; The amount of radiation received by the body is close to but still below 10 μSv/a which is the exemption criteria set by the 'safety of radiation sources of ionizing radiation protection and basic standards'(GB18871-2002). (authors)

  1. Dosimetry of x-rays from high-temperature plasmas

    International Nuclear Information System (INIS)

    Yamamoto, Takayoshi; Abe, Nobuyuki; Kawanishi, Masaharu

    1980-01-01

    Study on the dosimetry of ionizing radiations, especially of X-rays, emitted from high-temperature plasms has been made. As to the unpolarized Bremsstrahlung, a brief method to estimate electron temperatures with TLD is described and evaluation of average energy and current of the run-away electrons in the turbulent heating Tokamak is made by observing the half-value layer of the emitted X-rays and the total exposure per one shot of the Tokamak discharge. As to the polarized one, it is shown that the anisotropic electron temperature is related to the degree of polarization of the X-rays. Furthermore, reference is made to the possibility of developing such X-ray generators as can emit nearly monochromatic X-rays (characteristic X-rays) or polarized ones arbitrarily. (author)

  2. X-ray tube monitor apparatus

    International Nuclear Information System (INIS)

    Holland, W.P.; Pellergrino, A.

    1981-01-01

    An x-ray tube with a rotating anode target is provided with a detector of x-rays located outside a port of a housing of the tube and positioned at or near a tangent line to the radiating surface for observing variations in the radiation intensity due to rotation of the target, the variations being pronounced due to the heel effect of the radiation pattern. The x-ray detector can employ a scintillation material and be coupled by a light guide to a photodetector which is removed from the path of the radiation and detects scintillations of the x-ray detector. Alternatively, the photodetector and light pipe may be replaced by a detector of germanium, silicon or an ion chamber which converts x-ray photons directly to an electric current. An electronic unit determines the speed of rotation from the electric signal and can also, by fourier transform and signature analysis techniques, monitor the state of the radiating surface. (author)

  3. Synthesis of nanoparticles through x-ray radiolysis using synchrotron radiation

    Science.gov (United States)

    Yamaguchi, A.; Okada, I.; Fukuoka, T.; Ishihara, M.; Sakurai, I.; Utsumi, Y.

    2016-09-01

    The synthesis and deposition of nanoparticles consisting of Cu and Au in a CuSO4 solution with some kinds of alcohol and electroplating solution containing gold (I) trisodium disulphite under synchrotron X-ray radiation was investigated. The functional group of alcohol plays an important in nucleation, growth and aggregation process of copper and cupric oxide particles. We found that the laboratory X-ray source also enables us to synthesize the NPs from the metallic solution. As increasing X-ray exposure time, the full length at half width of particle size distribution is broader and higher-order nanostructure containing NPs clusters is formed. The surface-enhanced Raman scattering (SERS) of 4, 4'-bipyridine (4bpy) in aqueous solution was measured using higher-order nanostructure immobilized on silicon substrates under systematically-varied X-ray exposure. This demonstration provide a clue to develop a three-dimensional printing and sensor for environmental analyses and molecular detection through simple SERS measurements.

  4. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  5. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  6. Radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Hart, G; Dugdale, M

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  7. Radiation Dose Measurements in Routine X Ray Examinations

    International Nuclear Information System (INIS)

    Osman, H.; Sulieman, A.; Suliman, I.I.; Sam, A.K.

    2011-01-01

    The aim of current study was to evaluate patients radiation dose in routine X-ray examinations in Omdurman teaching hospital Sudan.110 patients was examined (134) radiographs in two X-ray rooms. Entrance surface doses (ESDs) were calculated from patient exposure parameters using DosCal software. The mean ESD for the chest, AP abdomen, AP pelvis, thoracic spine AP, lateral lumber spine, anteroposterior lumber spine, lower limb and for the upper limb were; 231±44 Gy,453± 29 Gy, 567±22 Gy, 311±33 Gy,716±39 Gy, 611±55 Gy,311±23 Gy, and 158±57 Gy, respectively. Data shows asymmetry in distribution. The results of were comparable with previous study in Sudan.

  8. X-rays and extreme ultraviolet radiation principles and applications

    CERN Document Server

    Attwood, David

    2016-01-01

    With this fully updated second edition, readers will gain a detailed understanding of the physics and applications of modern X-ray and EUV radiation sources. Taking into account the most recent improvements in capabilities, coverage is expanded to include new chapters on free electron lasers (FELs), laser high harmonic generation (HHG), X-ray and EUV optics, and nanoscale imaging; a completely revised chapter on spatial and temporal coherence; and extensive discussion of the generation and applications of femtosecond and attosecond techniques. Readers will be guided step by step through the mathematics of each topic, with over 300 figures, 50 reference tables and 600 equations enabling easy understanding of key concepts. Homework problems, a solutions manual for instructors, and links to YouTube lectures accompany the book online. This is the 'go-to' guide for graduate students, researchers and industry practitioners interested in X-ray and EUV interaction with matter.

  9. Comptonization of low-frequency radiation in accretion disks Angular distribution and polarization of hard X-ray radiation

    International Nuclear Information System (INIS)

    Suniaev, R.A.; Titarchuk, L.G.

    1984-01-01

    Analytical consideration is given to the comptonization of photons and its effects on the radiation emitted from accretion disks of compact X-ray sources, such as black holes and neutron stars. Attention is given to the photon distribution during escape from the disk, the angular distribution of hard radiation from the disk, the polarization of hard radiation and the electron temperature distribution over the optical depth. It is shown that the hard radiation spectrum is independent of the low-frequency photon source distribution. The angular distribution and polarization of the outgoing X-rays are a function of the optical depth. A Thomson approximation is used to estimate the angular distribution of the hard radiation and the polarization over the disk. The polarization results are compared with OSO-8 satellite data for Cyg X-1 and show good agreement at several energy levels. 17 references

  10. Absolute differential yield of parametric x-ray radiation

    International Nuclear Information System (INIS)

    Shchagin, A.V.; Pristupa, V.I.; Khizhnyak, N.A.

    1993-01-01

    The results of measurements of absolute differential yield of parametric X-ray radiation (PXR) in thin single crystal are presented for the first time. It has been established that the experimental results are in good agreement with theoretical calculations according with kinematical theory. The influence of density effect on PXR properties is discussed. (author). 19 refs., 7 figs

  11. Radiation dosimetry of computed tomography x-ray scanners

    International Nuclear Information System (INIS)

    Poletti, J.L.; Williamson, B.D.P.; Le Heron, J.C.

    1983-01-01

    This report describes the development and application of the methods employed in National Radiation Laboratory (NRL) surveys of computed tomography x-ray scanners (CT scanners). It includes descriptions of the phantoms and equipment used, discussion of the various dose parameters measured, the principles of the various dosimetry systems employed and some indication of the doses to occupationally exposed personnel

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  14. Toward a fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Monction, D. E.

    1999-01-01

    The field of synchrotron radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research that is possible with them. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission (SASE) in flee-electron lasers. A major facility of this type based upon a superconducting linac could produce a cost-effective facility that spans wave-lengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotrons facilities, immense new scientific opportunities would result from fourth-generation sources.

  15. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  16. Methodology of ionizing radiation measurement, from x-ray equipment, for radiation protection

    International Nuclear Information System (INIS)

    Caballero, Katia C.S.; Borges, Jose C.

    1996-01-01

    Most of X-rays beam used for diagnostic, are short exposure time (milliseconds). Exception are those used in fluoroscopy. measuring instruments (area monitors with ionizing chambers or Geiger tubes) used in hospitals and clinics, in general, have characteristic answer time not adequate to X-rays beams length in time. Our objective was to analyse instruments available commercially, to prepare a measuring methodology for direct and secondary beams, in order to evaluate protection barriers for beams used in diagnostic radiology installations. (author)

  17. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety How to Read Your Radiology Report ...

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. ...

  19. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  20. Investigations of the effects of UV and X-ray radiation and the repair of radiation damage in the ciliate Stylonychia mytilus

    International Nuclear Information System (INIS)

    Dittmann, F.N.

    1978-01-01

    Using the example of Stylomychia mytilus, the effects of UV-radiation and ionizing X-ray radiation are compared. The effects on cell division and on the repair of radiation damage in DNA are compared. Sensitivity to UV radiation differs between the stages of the cell cycle while the effects of X-ray radiation are independent of phase. There is no difference in repair processes. (AJ) 891 AJ/AJ 892 MKO [de

  1. Radiative defluorination of poly (vinylidene fluoride) under soft X-ray radiation

    International Nuclear Information System (INIS)

    Chebotaryov, S.S.; Baitinger, E.M.; Volegov, A.A.; Margamov, I.G.; Gribov, I.V.; Moskvina, N.A.; Kuznetsov, V.L.; Evsyukov, S.E.; Pesin, L.A.

    2006-01-01

    The rates of poly (vinylidene fluoride) (PVDF) degradation under synchrotron (SR) and conventional X-ray radiation have been measured and compared. NEXAFS spectra of fluorine show significant changes in their shape and intensity with elevation of radiation dose (or duration of SR exposure). Non-monochromatic AlK α radiation and the flow of secondary electrons accompanying it also cause surface degradation of PVDF. XPS allows one to measure relative content of fluorine by three ways: via relative intensities of F2s/C1s, F1s/C1s, spectra and using the features arising due to of C1s peaks in CF 2 and CF groups

  2. Evaluation of radiation protection in x rays room design in diagnostic radiography department in Omdurman locality

    International Nuclear Information System (INIS)

    Adam, Ahmed yusif Abdelrahman

    2013-03-01

    The purpose of this study is conducted in order to evaluate the application of radiation protection in x-ray rooms design in diagnosis radiology department, evaluate personal monitoring devices, to assess primary scatter and leakage radiation dose, to assess monitoring devices if available, in period from March 2013 to August 2013. The design data included room size, control room size, manufacture of equipment, room surrounding areas, workload of all equipment rooms, type of x-ray equipment, radiation worker's in all hospital, number of patient in each shift, structural material and shielding, K vp and m As used in x-ray room department during examination testing. The results of this study show that there is x-ray room design, the design of x-ray equipment is accepted according to the radiation safety institute team of quality control. Also the study shows that the radiation protection devices are available and in a good condition and enough in number. The study shows that there are not personal monitoring devices and services. the radiological technologist are well trained. Also the study investigation the radiation protection in x-ray room in diagnostic department in Omdurman locality. Finally the study shows that there is compact able to ICRP recommended and National quality control in Sudan Atomic Energy Council exception, Alwedad, Abusied and Blue Nile there are have not control room concludes that there is only in relationship hospital have a window without shield.(Author)

  3. Parametric X-rays from a polycrystalline target

    International Nuclear Information System (INIS)

    Lobach, Ihar; Benediktovitch, Andrei; Feranchuk, Ilya; Lobko, Alexander

    2015-01-01

    Highlights: • X-ray radiation from relativistic electrons in a polycrystal is described. • Analytical results are found for two models of the polycrystal texture. • Characteristic number of emitted photons for real accelerator is 10 6 s −1 . • Intensity distribution at fixed frequency resembles a set of rings. • Radiation intensities in monocrystals and polycrystals are compared. - Abstract: A theoretical description of parametric X-ray radiation (PXR) from a nanocrystal powder target is presented in terms of the orientation distribution function (ODF). Two models of ODF resulting in the analytical solution for the PXR intensity distribution are used and the characteristic features of this distribution are considered. A promising estimate of the number of the emitted photons is obtained for the case of a nanodiamond powder target using the parameters of ASTA Facility at Fermilab. The PXR spectra from polycrystal and single crystal targets are compared. The application scenarios of PXR from nanocrystals are discussed.

  4. Radiation safety and quality control assurance in X-ray diagnostics 1998; Saeteilyturvallisuus ja laadunvarmistus roentgendiagnostiikassa 1998

    Energy Technology Data Exchange (ETDEWEB)

    Servomaa, A [ed.

    1998-03-01

    The report is based on a seminar course of lectures `Radiation safety and quality assurance in X-ray diagnostics 1998` organized by the Radiation and Nuclear Safety Authority (STUK) in Finland. The lectures included actual information on X-ray examinations: methods of quality assurance, methods of measuring and calculating patient doses, examination frequencies, patient doses, occupational doses, and radiation risks. Paediatric X-ray examinations and interventional procedures were the most specific topics. The new Council Directive 97/43/Euratom on medical exposure, and the European Guidelines on quality criteria for diagnostic radiographic images, were discussed in several lectures. Lectures on general radiation threats and preparedness, examples of radiation accidents, and emergency preparedness in hospitals were also included. (editor)

  5. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications

    International Nuclear Information System (INIS)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-01

    Highlights: ► It is feasible to use recycled CRT glass in mortar as shield against X-ray radiation. ► Shielding properties of CRT mortar is strongly depended on CRT content. ► Linear attenuation coefficient was reduced by 142% upon 100% CRT glass in mortar. ► Effect of mortar thickness and irradiation energies on shielding was investigated. - Abstract: Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm 3 can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement–sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy.

  6. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    International Nuclear Information System (INIS)

    Zou, Shiyang; Song, Peng; Pei, Wenbing; Guo, Liang

    2013-01-01

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses

  7. The radiation protection optimisation in contrast X-ray diagnostic techniques

    International Nuclear Information System (INIS)

    Markovic, S.; Pavlovic, R.

    1995-01-01

    In the class of artificial sources, X-ray diagnostic techniques irradiate global population with more than 90 % share in total dose. At the same time this is the only area with high possibilities in collective dose reduction without important investments. Exposure of the medical team is mainly related to unnecessary irradiation. Eliminating this unnecessary irradiation quality of diagnostic information remains undisturbed. From the radiation protection point of view the most critical X-ray diagnostic method is angiography. This paper presents the radiation protection optimisation calculation of the protective lead thickness using the Cost - Benefit analysis technique. The obtained numerical results are based on calculated collective dose, the estimated prices of the lead and lead glass thickness and the adopted price for monetary value of the collective dose unit α. (author) 3 figs., 10 refs

  8. The radiation protection optimisation in contrast X-ray diagnostic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Markovic, S; Pavlovic, R [Inst. of Nuclear Science Vinca, Belgrade (Yugoslavia). Radiation and Environmental Protection Lab.; Boreli, F [Fac. of Electrical Engineering, Belgrade (Yugoslavia)

    1996-12-31

    In the class of artificial sources, X-ray diagnostic techniques irradiate global population with more than 90 % share in total dose. At the same time this is the only area with high possibilities in collective dose reduction without important investments. Exposure of the medical team is mainly related to unnecessary irradiation. Eliminating this unnecessary irradiation quality of diagnostic information remains undisturbed. From the radiation protection point of view the most critical X-ray diagnostic method is angiography. This paper presents the radiation protection optimisation calculation of the protective lead thickness using the Cost - Benefit analysis technique. The obtained numerical results are based on calculated collective dose, the estimated prices of the lead and lead glass thickness and the adopted price for monetary value of the collective dose unit {alpha}. (author) 3 figs., 10 refs.

  9. X-ray ‘ghost images’ could cut radiation doses

    Science.gov (United States)

    Chen, Sophia

    2018-03-01

    On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.

  10. Numerical simulation studies of the blowoff impulse induced by X-ray radiation in multilayer discontinuous material

    International Nuclear Information System (INIS)

    Tan Xiaoli; Ding Sheng

    2010-01-01

    In order to study the blowoff impulse induced by X-Ray radiation in new type compound material, the inhomogeneous reticular layers in a kind of multilayer discontinuous material were dealt with the equivalent method. So it could be simulated by method of continuum dynamics. The blowoff impulse in this material induced by irradiating of the blackbody spectral X-Ray was studied using numerical simulation method, and was compared with the result in LY-12Al. The changing discipline of the blowoff impulse along with the spectrum of X-Ray, the energy density and the type of material was analyzed. The main conclusions are: (1) the characteristic of energy deposition in material deciding by the spectrum of X-Ray is the ultimate cause of the magnitude of blowoff impulse; (2) for same spectrum and same material, higher energy density will cause more blowoff impulse, but the coupling coefficient of blowoff impulse is almost constant; (3) for same loading, the coupling coefficient of blowoff impulse of multilayer discontinuous material is bigger than that of LY-12Al. (authors)

  11. Short review on contemporary state of X-ray transition radiation theory

    International Nuclear Information System (INIS)

    Garibyan, G.M.

    1977-01-01

    The main properties of the X-ray transition radiation and the prehistory of the development of this phenomenon are given. The radiation produced when a charged particle passes through a regular and irregular stack of plates, the influence of the multiple scattering on the radiation as well as the microscopic theory of this phenomenon are considered

  12. Miniature X-ray Tube for Electric Brachytherapy using Carbon Nanotube Field Emitter

    International Nuclear Information System (INIS)

    Heo, Sung Hwan; Kim, Hyun Jin; Ha, Jun Mok; Cho, Sung Oh

    2011-01-01

    An electric brachytherapy using a miniature x-ray tube has a major advantage to reduce the x-ray exposure of human body during the cancer radiation therapy by optimal positioning of x-ray radiation source and treatment objectives. In the view of a smaller electronic x-ray source, the CNT field emitter based xray tube can be more minimized than thermionic filament emitter based one because of a simple power supplier connection of cold field emission in diode type as well as a higher electron emission brightness of CNT. This abstract is for introducing the design of a prototype CNT field emitter based miniature x-ray tube. We have vacuum sealed CNT miniature x-ray tube with 7∼10 mm diameter, and characteristics of electron emission and x-ray transportation using MCNP5 code are surveyed

  13. Development and Utilization of Bright Tabletop Sources of Coherent Soft X-Ray Radiation

    International Nuclear Information System (INIS)

    Rocca, Jorge J.

    2005-01-01

    This project investigated aspects of the development and utilization of compact XUV sources based on fast capillary discharges and high order harmonic up conversion. These sources are very compact, yet can generate soft x-ray radiation with peak spectral brightness several orders of magnitude larger than a synchrotron beam lines. The work has included the characterization of some of the important parameters that enable the use of these sources in unique applications, such as the degree of spatial coherence and the wavefront characteristics that affect their focusing capabilities. In relation to source development, they have recently completed preliminary work towards exploring the generation of high harmonics in a pre-ionized medium created by a capillary discharge. Since ions are more difficult to ionize than neutral atoms, the use of pre-ionized nonlinear media may lead to the generation of coherent light at > 1 KeV photon energy. Recent application results include the first study of the damage threshold and damage mechanism of XUV mirrors exposed to intense focalized 46.9 nm laser radiation, and the study of the ablation of polymers with soft x-ray laser light

  14. Center for X-Ray Optics, 1986

    International Nuclear Information System (INIS)

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers

  15. A Variable-Energy Soft X-Ray Microprobe to Investigate Mechanisms of the Radiation-Induced Bystander Effect

    International Nuclear Information System (INIS)

    Folkard, Melvyn; Vojnovic, Borivoj; Schettino, Giuseppe; Atkinson, Kirk; Prise, Kevin M.; Michael, Barry D.

    2007-01-01

    The Gray Cancer Institute has pioneered the use of X ray focusing techniques to develop systems for micro irradiating individual cells and sub cellular targets in vitro. Cellular micro irradiation is now recognized as a highly versatile technique for understanding how ionizing radiation interacts with living cells and tissues. The strength of the technique lies in its ability to deliver precise doses of radiation to selected individual cells (or sub cellular targets). The application of this technique in the field of radiation biology continues to be of great interest for investigating a number of phenomena currently of concern to the radiobiological community. One important phenomenon is the so called ''bystander effect'' where it is observed that unirradiated cells can also respond to signals transmitted by irradiated neighbors. Clearly, the ability of a microbeam to irradiate just a single cell or selected cells within a population is well suited to studying this effect. Our prototype ''tabletop'' X-ray microprobe was optimized for focusing 278 eV C-K X rays and has been used successfully for a number of years. However, we have sought to develop a new variable energy soft X-ray microprobe capable of delivering focused CK (0.28 keV), Al-K (1.48 keV) and notably, Ti-K (4.5 keV) X rays. Ti-K X rays are capable of penetrating several cell layers and are therefore much better suited to studies involving tissues and multi cellular layers. In our new design, X-rays are generated by the focused electron bombardment of a material whose characteristic-K radiation is required. The source is mounted on a 1.5 x 1.0 meter optical table. Electrons are generated by a custom built gun, designed to operate up to 15 kV. The electrons are focused using a permanent neodymium iron boron magnet assembly. Focusing is achieved by adjusting the accelerating voltage and by fine tuning the target position via a vacuum position feedthrough. To analyze the electron beam properties, a custom

  16. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  17. Dentistry 4. X-ray diagnostics

    International Nuclear Information System (INIS)

    2014-01-01

    DIN pocketbook 267/4 gives an overview of the normative requirements of the new X-Ray and Radiation Protection Ordinance, which has been in effect since 1 November 2011. This DIN pocketbook is intended for anyone charged with professional responsibility for the use of ionizing radiation in dentistry, operators and users of x-ray devices, radiation protection officers, accredited experts, manufacturers as well as for anyone with an interest in radiation protection or optimal radiological diagnostics. It contains standards relating to the following areas: acceptance and constancy testing; devices for evaluating findings (monitors, film viewing devices), films, printers; archiving, designating, labelling. Adherence to the standards makes it possible to avoid distractive artefacts in x-ray images and optimise the quality of x-ray diagnostics in dentistry.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of Bone X-ray (Radiography)? ...

  19. Time-resolved hard x-ray studies using third-generation synchrotron radiation sources (abstract)

    International Nuclear Information System (INIS)

    Mills, D.M.

    1992-01-01

    The third-generation, high-brilliance, synchrotron radiation sources currently under construction will usher in a new era of x-ray research in the physical, chemical, and biological sciences. One of the most exciting areas of experimentation will be the extension of static x-ray scattering and diffraction techniques to the study of transient or time-evolving systems. The high repetition rate, short-pulse duration, high-brilliance, variable spectral bandwidth, and large particle beam energies of these sources make them ideal for hard x-ray, time-resolved studies. The primary focus of this presentation will be on the novel instrumentation required for time-resolved studies such as optics which can increase the flux on the sample or disperse the x-ray beam, detectors and electronics for parallel data collection, and methods for altering the natural time structure of the radiation. This work is supported by the U.S. Department of Energy, BES-Materials Science, under Contract No. W-31-109-ENG-38

  20. Radiation hormesis of radish using an X-ray photography device

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Atsushi [Asahikawa Kousei Hospital, Hokkaido (Japan)

    2000-07-01

    Radiation hormesis was studied at an X-ray photography room. Seed of radish (Kaiwaredaikon) was irradiated by X-ray, from 10 to 3000 mGy. Since the growth of plant was the highest around 500 mGy, 100 seeds were irradiated at a dose of 500 mGy. Fifty seeds were selected and the growth rate was measured after 1 and 2 weeks. After 2 weeks, the growth of the seeds irradiated (129{+-}5 mm) was found to be higher than those without irradiation (115{+-}5 mm). (author)

  1. Thermally stimulated investigations on diamond X-Ray detectors

    International Nuclear Information System (INIS)

    Tromson, D.; Bergonzo, P.; Brambilla, A.; Mer, C.; Foulon, F.; Amosov, V.N.

    1999-01-01

    Intrinsic diamond material is increasingly used for the fabrication of radiation detectors. However, the presence of inherent defects has a strong impact on the detector characteristics such as the time dependent stability of the detection signal. In order to draw better insights into this effect, comparative investigations of the X-ray responses with thermally stimulated current (TSC) measurements were carried out on natural diamond detectors. TSC revealed the presence of four peaks or shoulders on natural samples in the 200 to 500 K domain. Three energy levels were identified at about 0.7, 0.71 and 0.95 eV. Time dependent X-ray detector sensitivity was investigated for various initial conditions. The results give evidence of the improvement of the detection properties after having filled traps in the material by X-ray irradiation. The comparison between the X-ray response and the TSC spectra indicate that trapping levels emptied at room temperature appear to significantly affect the performance of radiation detectors. (authors)

  2. Characterisation of micro-sized and nano-sized tungsten oxide-epoxy composites for radiation shielding of diagnostic X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Noor Azman, N.Z. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Siddiqui, S.A. [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia); Low, I.M., E-mail: j.low@curtin.edu.au [Department of Imaging and Applied Physics, Curtin University, GPO Box U1987, Perth, WA 6845 Australia (Australia)

    2013-12-01

    Characteristics of X-ray transmissions were investigated for epoxy composites filled with 2–10 vol% WO{sub 3} loadings using synchrotron X-ray absorption spectroscopy (XAS) at 10–40 keV. The results obtained were used to determine the equivalent X-ray energies for the operating X-ray tube voltages of mammography and radiology machines. The results confirmed the superior attenuation ability of nano-sized WO{sub 3}-epoxy composites in the energy range of 10–25 keV when compared to their micro-sized counterparts. However, at higher synchrotron radiation energies (i.e., 30–40 keV), the X-ray transmission characteristics were similar with no apparent size effect for both nano-sized and micro-sized WO{sub 3}-epoxy composites. The equivalent X-ray energies for the operating X-ray tube voltages of the mammography unit (25–49 kV) were in the range of 15–25 keV. Similarly, for a radiology unit operating at 40–60 kV, the equivalent energy range was 25–40 keV, and for operating voltages greater than 60 kV (i.e., 70–100 kV), the equivalent energy was in excess of 40 keV. The mechanical properties of epoxy composites increased initially with an increase in the filler loading but a further increase in the WO{sub 3} loading resulted in deterioration of flexural strength, modulus and hardness. - Highlights: • Nano-sized WO{sub 3}-epoxy composites have superior x-ray shielding capability. • No size effect in x-ray attenuation was observed at 30–40 keV. • An optimum filler loading for improving the mechanical properties of WO{sub 3}-epoxy composites.

  3. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  4. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  5. Scheme for generating and transporting THz radiation to the X-ray experimental hall at the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Decking, Winfried; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2011-12-15

    The design of a THz edge radiation source for the European XFEL is presented.We consider generation of THz radiation from the spent electron beam downstream of the SASE2 undulator in the electron beam dump area. In this way, the THz output must propagate at least for 250 meters through the photon beam tunnel to the experimental hall to reach the SASE2 X-ray hutches. We propose to use an open beam waveguide such as an iris guide as transmission line. In order to efficiently couple radiation into the iris transmission line, generation of the THz radiation pulse can be performed directly within the iris guide. The line transporting the THz radiation to the SASE2 X-ray hutches introduces a path delay of about 20 m. Since THz pump/X-ray probe experiments should be enabled, we propose to exploit the European XFEL baseline multi-bunch mode of operation, with 222 ns electron bunch separation, in order to cope with the delay between THz and X-ray pulses. We present start-to-end simulations for 1 nC bunch operation-parameters, optimized for THz pump/X-ray probe experiments.Detailed characterization of the THz and SASE X-ray radiation pulses is performed. Highly focused THz beams will approach the high field limit of 1 V/atomic size. (orig.)

  6. X-ray - skeleton

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003381.htm X-ray - skeleton To use the sharing features on this ... Degenerative bone conditions Osteomyelitis Risks There is low radiation exposure. X-rays machines are set to provide the smallest ...

  7. Extremity x-ray

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003461.htm Extremity x-ray To use the sharing features on this page, ... in the body Risks There is low-level radiation exposure. X-rays are monitored and regulated to provide the ...

  8. Study on quantities of radiation protection in medical X-rays radiation field with polyhedron phantom

    International Nuclear Information System (INIS)

    Yuan Shuyu; Dai Guangfu; Zhang Liangan

    1997-01-01

    The author have studied tissue-equivalent material with the elemental composition recommended by report No.44 of ICRU. Three different calibration phantoms in shape have been prepared with the tissue-equivalent material in order to study the influence of the angular dependence factor R(d,α) in the radiation field of X-rays on the calibration of individual dose equivalent Hp(d). The requirement of mono-genous radiation field to calibrate several dosimeters on one phantom at the same time can be met by application of dodecahedron phantom, which is difficult on ICRU sphere. Angular dependence factor R(d,α) of 0 degree∼90 degree and conversion coefficients between individual dose equivalent Hp(0.07, α) and the exposure of radiation of different energies and different angles have been established by taking advantage of the dodecahedron. Besides, the authors have studied the variation relation between the individual dose equivalent Hp (10,α) and Hp(0.07,α) in the medical X-rays radiation field

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... X-rays are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small ...

  10. Computed tomography for light materials using a monochromatic X-ray beam produced by parametric X-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y., E-mail: yahayak@lebra.nihon-u.ac.jp [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Hayakawa, K.; Inagaki, M. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Kaneda, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Nakao, K.; Nogami, K. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Sakae, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Sakai, T.; Sato, I. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-8501 (Japan); Tanaka, T. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan)

    2013-08-15

    Computed tomography (CT) for light materials such as soft biological tissues was performed using a monochromatic X-ray beam provided by a parametric X-ray radiation (PXR) source at the Laboratory for Electron Beam Research and Application (LEBRA) of Nihon University. Using a high-efficiency flat panel detector (FPD), each projection image for CT was taken with exposure times of 5 or 10 s, and 60–360 projection images in each run were obtained with total measurement time of 5 min to 1 h. CT images were obtained from the projection images using the conventional calculation method. The typical tomograms obtained had sharp outlines, which are likely attributable to the propagation-based phase contrast.

  11. Introduction to the fundamental of X-ray physics

    International Nuclear Information System (INIS)

    Ewen, K.

    1975-01-01

    A brief introduction to the fundamentals of X-ray physics is given. Starting with the construction of the atom, the generation of the characteristic X-radiation as well as the bremsstrahlung is explained. Following a description of the interaction with matter, the most important characteristics and classifications of the beam quality are mentioned, and the important definitions in the medical field are explained. (ORU/LH) [de

  12. Method of an apparatus for x-radiation sorting of raw materials

    International Nuclear Information System (INIS)

    Krotkov, M.I.; Revnivtsev, V.I.; Sataev, I.S.; Vasiliev, N.F.; Ponomarev, V.S.

    1993-01-01

    An apparatus is described for X-ray sorting of feed stock, consisting essentially of: a feed hopper for containing lumps of feed stock to be sorted; a small gradient conveyor arranged under the feed hopper and provided with a vibrator, means for spreading the lumps in a single layer across a width of the conveyor, and means arranged over the conveyor to adjust the lumps into a stable position; a high gradient conveyor mounted downstream of said small gradient conveyor along the path of movement of the lumps said high gradient conveyor having a vibrator and a horizontal discharge line to provide a single layer of stable unsupported lumps in a free fall state; means to prevent rotation of the lumps, arranged at a joint between the small gradient and high gradient conveyors; a coordinate system to determine the dimensions of the lumps and their position over the width of the single layer of free failing lumps, having electric outputs and provided in the immediate vicinity of said discharge line of said high gradient conveyor; sources of primary X-ray radiation arranged in the immediate vicinity of said coordinate system along the path of movement of said freely falling single layer for directing X-ray radiation toward the lumps in said layer which interacts with the lumps for producing characteristic secondary X-ray radiation of the lumps; a plurality of secondary X-ray radiation detectors, each of which has an electric output and which are positioned in the immediate vicinity of said plurality of primary X-ray radiation sources along the path of movement of said single layer of freely failing lumps for detecting said characteristic secondary X-ray radiation of the lumps; a computing device having a plurality of inputs connected to the respective said outputs of the coordinate system and to the outputs of the secondary X-ray radiation detectors, and having a plurality of outputs

  13. Measurements of Bremsstrahlung radiation and X-ray heat load to cryostat on SECRAL

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Cao, Y.; Lu, W.; Zhang, W.H.; Zhao, H.W.; Zhang, X.Z.; Zhu, Y.H.; Li, X.X.; Xie, D.Z.

    2012-01-01

    The measurement of Bremsstrahlung radiation from ECR (Electron Cyclotron Resonance) plasma can yield certain information about the ECR heating process and the plasma confinement, and more important it can give a plausible estimate of the X-ray heat load to the cryostat of a superconducting ECR source. To better understand the additional heat load to the cryostat due to Bremsstrahlung radiation, the axial Bremsstrahlung measurements have been conducted on SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) with different source parameters. In addition, the heat load induced by intense X-ray or even γ-ray was estimated in terms of liquid helium consumption. The relationship between these two parameters is presented here. Thick-target Bremsstrahlung, induced by the collision of hot electrons with the wall or the source electrode, is much more intensive compared with the radiation produced in the plasma and, consequently, much more difficult to shield off. In this paper the presence of the thick-target Bremsstrahlung is correlated with the magnetic confinement configuration, specifically, the ratio of B(last) to B(ext). And possible solutions to reduce the X-ray heat load induced by Bremsstrahlung radiation are proposed and discussed. It appears that by choosing an appropriate ratio of B(last) to B(ext) the thick-target Bremsstrahlung radiation can be avoided effectively. The paper is followed by the associated poster

  14. A gas microstrip wide angle X-ray detector for application in synchrotron radiation experiments

    CERN Document Server

    Bateman, J E; Derbyshire, G E; Duxbury, D M; Lipp, J; Mir, J A; Simmons, J E; Spill, E J; Stephenson, R; Dobson, B R; Farrow, R C; Helsby, W I; Mutikainen, R; Suni, I

    2002-01-01

    The Gas Microstrip Detector has counting rate capabilities several orders of magnitude higher than conventional wire proportional counters while providing the same (or better) energy resolution for X-rays. In addition the geometric flexibility provided by the lithographic process combined with the self-supporting properties of the substrate offers many exciting possibilities for X-ray detectors, particularly for the demanding experiments carried out on Synchrotron Radiation Sources. Using experience obtained in designing detectors for Particle Physics we have developed a detector for Wide Angle X-ray Scattering studies. The detector has a fan geometry which makes possible a gas detector with high detection efficiency, sub-millimetre spatial resolution and good energy resolution over a wide range of X-ray energy. The detector is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  15. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  16. Radiation exposure to chest X-rays in the neonatal nursery

    International Nuclear Information System (INIS)

    Takeuchi, Toshio; Itabashi, Kazuo; Kawaguchi, Shigeru; Suzuka, Takahisa; Okuyama, Kazuo

    1989-01-01

    To measure how much very low birth-weight infants are exposed to chest X-rays during nursery, skin doses were calculated using phantoms under the same condition as that used in chest X-rays. Skin doses obtained were multiplied by the number of X-rays performed in 86 very low birth-weight infants (mean birth weight+-SD, 1163.0+-232.8 g; mean gestational age+-SD, 29.3+-3.0 week). Exposure doses per film ranged from 4.9 to 14.4 mR, with a mean dose of 6.1+-2.0 mR. Exposure doses per neonate ranged from 6.3 to 794.3 mR, with a mean dose of 170.4+-151.5 mR. The number of films per neonate ranged from one to 107, with a mean of 28.0+-24.9. Eighty-seven percent of X-rays were performed when the body weight was 1,500 g or less. Fourteen patients received 300 mR or more that may be the potential dose of radiation effects. (Namekawa, K)

  17. Characteristic parameters analysis on diagnostic X-ray beams for dosemeter calibration

    International Nuclear Information System (INIS)

    Oliveira, Paulo Marcio Campos de

    2008-01-01

    Ionizing radiation metrology is the base to achieve reliable dose measurements in ali areas; it is also part of the framework that is established to assure radiation protection procedures in order to avoid or minimize the harmful biological effect that may be caused by ionizing radiation. A well done metrology means the use of reliable instruments that comply with standard performance requirements worldwide accepted. Those instruments are expected to be calibrated by Metrology Laboratories under well defined conditions. The International Electrotechnical Commission (IEC) in Standard 61267 established the reference radiations for medical diagnostic x-ray equipment that are recommended to be used for calibrating dosimetric systems for diagnostic dosimetry. In this work, X-ray beam qualities were established in a Calibration Laboratory and their characteristics were analyzed through the measurement of beam parameters like inherent tube filtration, beam uniformity and field size, energy spectra and peak voltage for additional filtration with 94.425 por cent and 99.999 por cent purity filters. Also, the first half-value layer and the homogeneity coefficient were measured for the three RQR 2, RQR 6 and RQR 10 IEC beam qualities and they were analyzed according to the IEC standard. Air-kerma measurements were carried out with an ionization chamber that had its reliability confirmed through repetition and reproducibility reading tests. In 50 sets of measurements the maximum standard deviation found of 10 successive readings was 0.19 %; the maximum shift of the reading mean value at a fixed geometry condition was 0.80 % with an overall standard deviation of 0.23 %. Results showed that the use of different purity filters did not cause a relevant influence on the beam energy spectra. An ionization chamber was also calibrated against a standard dosimeter in ali implemented reference radiations and the relevant sources of uncertainties were estimated. Calibration could be done

  18. Evaluation of the spectral distribution of X-ray beams from measurements on the scattered radiation

    International Nuclear Information System (INIS)

    Casnati, E.; Baraldi, C.

    1980-01-01

    Most of the phenomena activated by photons with energies below 100 keV show an apparent or real dependence on the quantum energy. Therefore, knowledge of the beam energy characteristics is of primary importance for interpretation of the irradiation results. The greatest difficulty arises from the high flux density of the beams usually employed which does not allow direct measurements of the beam. A method was developed which permits evaluation of the spectral distribution of the X-ray beam from a spectrometric measurement of the radiation scattered by a thin foil of a suitable metal. This makes possible a new and more rational approach to the measurement of X-rays in the energy range where the interaction parameters show a large photon energy dependence. The corrections required by the presence of some collateral effects, among which the most important is the coexistence of the coherent and incoherent scattering, must be evaluated. The knowledge of the spectral distribution is of immediate usefulness for studies of radiation damage in biological and other materials, for the calibration of radiation measuring instruments and for the improvement of the radiological instrumentation response which contributes to reducing the patient's dose. (H.K.)

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are a form of radiation like light or radio waves. X-rays pass through most objects, including the body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording ...

  20. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    Science.gov (United States)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  1. Construction of x-ray Kβ filters to monochromatize the radiation of a conventional x-ray tube

    International Nuclear Information System (INIS)

    Moreira, M.V.B.; Oliveira, A.G.

    1987-01-01

    The construction of Zr and Nb Kβ filters to produce monochromatic radiation of a conventional X-ray Mo-tube (λK a = 0.7107 A) is described. Disks of NB and Zr, 6.4 mm in diameter and 0.03 to 0.06 mm thick, were prepared. The filters performance was tested by means of NaCl powder difraction patterns. (author) [pt

  2. Effective high voltage at X-ray tube in hard X-ray chest imaging

    International Nuclear Information System (INIS)

    Klein, J.

    1987-01-01

    The FRG standard TGL 36 661 (March 1980) for synoptical chest pictures of large size in adults specifies the 120 kV voltage at the X-ray tube together with maximal, 100% use of the capacity of the tube (hard picture, short exposure time). By means of circular recording and by measuring the high voltage at the X-ray tube it was quantitatively shown that the effective voltage during exposure is (according to the exposure time and the attenuation phase of the generator) always lower than the set-up voltage of 120 kV. This phenomenon is the more marked the shorter the actual exposure time in comparison with the attenuation phase of the generator. The typical characteristic of a hard X-ray chest picture is thus not given only by the setting-up of voltage. The impact of the reduction in voltage is thus quantitatively shown also from the aspect of the radiation burden for the patient. (author). 7 figs., 8 refs

  3. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  4. Development of a guinea pig cutaneous radiation injury model using low penetrating X-rays.

    Science.gov (United States)

    Rodgers, Kathleen E; Tan, Alick; Kim, Lila; Espinoza, Theresa; Meeks, Christopher; Johnston, William; Maulhardt, Holly; Donald, Melissa; Hill, Colin; diZerega, Gere S

    2016-08-01

    A guinea pig skin model was developed to determine the dose-dependent response to soft X-ray radiation into the dermis. X-ray exposure (50 kVp) was defined to a 4.0 × 4.0 cm area on the lateral surface of a guinea pig using lead shielding. Guinea pigs were exposed to a single fraction of X-ray irradiation ranging from 25-79 Gy via an XRAD320ix Biological Irradiator with the collimator removed. Gross skin changes were measured using clinical assessments defined by the Kumar scale. Skin contracture was assessed, as well as histological evaluations. Loss of dermal integrity was shown after a single dose of soft X-ray radiation at or above 32 Gy with the central 2.0 × 2.0 cm of the exposed site being the most affected. Hallmarks of the skin injury included moist desquamation, ulceration and wound contracture, as well as alterations in epithelium, dermis, muscle and adipose. Changes in the skin were time- and radiation dose-dependent. Full-thickness injury occurred without animal mortality or gross changes in the underlying organs. The guinea pig is an appropriate small animal model for the short-term screening of countermeasures for cutaneous radiation injury (CRI).

  5. X-rays and photocarcinogenesis in hairless mice.

    Science.gov (United States)

    Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian

    2013-08-01

    It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.

  6. Characteristics of x-rays from a plasma focus operated with neon gas

    Energy Technology Data Exchange (ETDEWEB)

    Zakaullah, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Alamgir, K [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Shafiq, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Hassan, S M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Sharif, M [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Hussain, S [Department of Physics, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Waheed, A [PINSTECH, PO Box 2151, 44000 Islamabad (Pakistan)

    2002-11-01

    The x-ray emission from a low-energy (2.3 kJ) plasma focus is investigated with neon as the filling gas. Two anode configurations are used in the experiment: the conventional cylindrical anode, and tapered anode slightly toward the open end. The latter geometry enhances soft x-ray emission by an order of magnitude. The emission is pressure dependent and, in both cases, the highest emission is observed at 3-3.5 mbar. For the cylindrical anode, the soft x-ray emission is up to 7 J per shot, which is from a pinched plasma column, 5-6 mm long. For the tapered anode, up to 80 J per shot soft x-ray yield in 4{pi} geometry is recorded, which corresponds to 4% wall plug efficiency. The diameter of the x-ray emission filament is much larger compared with the cylindrical anode. The bulk of emitted radiation is of energy 1.2-1.3 keV, which is thought to arise from recombination of hydrogen-like (Ne x) ions with the low-energy electrons.

  7. Characteristics of x-rays from a plasma focus operated with neon gas

    International Nuclear Information System (INIS)

    Zakaullah, M; Alamgir, K; Shafiq, M; Hassan, S M; Sharif, M; Hussain, S; Waheed, A

    2002-01-01

    The x-ray emission from a low-energy (2.3 kJ) plasma focus is investigated with neon as the filling gas. Two anode configurations are used in the experiment: the conventional cylindrical anode, and tapered anode slightly toward the open end. The latter geometry enhances soft x-ray emission by an order of magnitude. The emission is pressure dependent and, in both cases, the highest emission is observed at 3-3.5 mbar. For the cylindrical anode, the soft x-ray emission is up to 7 J per shot, which is from a pinched plasma column, 5-6 mm long. For the tapered anode, up to 80 J per shot soft x-ray yield in 4π geometry is recorded, which corresponds to 4% wall plug efficiency. The diameter of the x-ray emission filament is much larger compared with the cylindrical anode. The bulk of emitted radiation is of energy 1.2-1.3 keV, which is thought to arise from recombination of hydrogen-like (Ne x) ions with the low-energy electrons

  8. Radiation safety and quality in diagnostic x-ray imaging 2001

    International Nuclear Information System (INIS)

    Servomaa, A.; Parviainen, T.

    2001-05-01

    The obligations of the medical exposure directive (97/43/Euratom) for hospitals dominate the current activities in radiation protection in medical radiology. The directive gives special emphasis to radiation exposure of children, to examinations with high radiation doses and to radiation exposure in health screening programmes. The most important examinations with high doses are radiological interventions, where even acute skin effects are possible, and the computed tomography where the number of CT examinations makes only about 5% from the total number of x-ray examinations but the collective effective dose about 40% from the combined collective effective dose of all x-ray examinations. In the research projects financed by the European Commission, radiation exposures to paediatric patients have been measured in radiography, fluoroscopy and CT, and various dose assessment methods have been compared to develop a method for national follow-up of patients' radiation dose. The newest research project is focused on dosimetry and quality assurance in interventional radiology and digital imaging. Other actual topics are the development of radiation protection regulations and quality systems, education and training programmes, and clinical audits. This report deals with new radiation protection guides and recommendations and the education and training of radiological staff in radiation protection. One important topic is the development of national follow-up method of radiation exposure to patients and comparison of various dose assessment methods. Quality assurance in health care and in paediatric radiology, and the acceptance test and quality assurance measurements of radiological equipment are also described. (orig.)

  9. Terrestrial Sources of X-Ray Radiation and Their Effects on NASA Flight Hardware

    Science.gov (United States)

    Kniffin, Scott

    2016-01-01

    X-rays are an energetic and penetrating form of ionizing electromagnetic radiation, which can degrade NASA flight hardware. The main concern posed by such radiation is degradation of active electronic devices and, in some cases, diodes. Non-electronic components are only damaged at doses that far exceed the point where any electronic device would be destroyed. For the purposes of this document, flight hardware can be taken to mean an entire instrument, the flight electronics within the instrument or the individual microelectronic devices in the flight electronics. This document will discuss and describe the ways in which NASA flight hardware might be exposed to x-rays, what is and isn't a concern, and how to tell the difference. First, we must understand what components in flight hardware may be vulnerable to degradation or failure as a result of being exposed to ionizing radiation, such as x-rays. As stated above, bulk materials (structural metals, plastics, etc.) are generally only affected by ionizing radiation at very high dose levels. Likewise, passive electronic components (e.g. resistors, capacitors, most diodes) are strongly resistant to exposure to x-rays, except at very high doses. The main concerns arise when active components, that is, components like discrete transistors and microelectronic devices, are exposed to ionizing radiation. Active components are designed to respond to minute changes in currents and voltages in the circuit. As such, it is not surprising that exposure to ionizing radiation, which creates ionized and therefore electrically active particles, may degrade the way the hardware performs. For the most part, the mechanism for this degradation is trapping of the charges generated by ionizing radiation by defects in dielectric materials in the hardware. As such, the degree of damage is a function of both the quantity of ionizing radiation exposure and the physical characteristics of the hardware itself. The metric that describes the

  10. Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment.

    Science.gov (United States)

    Takegami, Kazuki; Hayashi, Hiroaki; Okino, Hiroki; Kimoto, Natsumi; Maehata, Itsumi; Kanazawa, Yuki; Okazaki, Tohru; Hashizume, Takuya; Kobayashi, Ikuo

    2016-01-01

    For X-ray inspections by way of general X-ray equipment, it is important to measure an entrance-skin dose. Recently, a small optically stimulated luminescence (OSL) dosimeter was made commercially available by Landauer, Inc. The dosimeter does not interfere with the medical images; therefore, it is expected to be a convenient detector for measuring personal exposure doses. In an actual clinical situation, it is assumed that X-rays of different energies will be detected by a dosimeter. For evaluation of the exposure dose measured by a dosimeter, it is necessary to know the energy dependence of the dosimeter. Our aim in this study was to measure the energy dependence of the OSL dosimeter experimentally in the diagnostic X-ray region. Metal samples weighing several grams were irradiated and, in this way, characteristic X-rays having energies ranging from 8 to 85 keV were generated. Using these mono-energetic X-rays, the dosimeter was irradiated. Simultaneously, the fluence of the X-rays was determined with a CdTe detector. The energy-dependent efficiency of the dosimeter was derived from the measured value of the dosimeter and the fluence. Moreover, the energy-dependent efficiency was calculated by Monte-Carlo simulation. The efficiency obtained in the experiment was in good agreement with that of the simulation. In conclusion, our proposed method, in which characteristic X-rays are used, is valuable for measurement of the energy dependence of a small OSL dosimeter in the diagnostic X-ray region.

  11. Background radiation in inelastic X-ray scattering and X-ray emission spectroscopy. A study for Johann-type spectrometers

    Science.gov (United States)

    Paredes Mellone, O. A.; Bianco, L. M.; Ceppi, S. A.; Goncalves Honnicke, M.; Stutz, G. E.

    2018-06-01

    A study of the background radiation in inelastic X-ray scattering (IXS) and X-ray emission spectroscopy (XES) based on an analytical model is presented. The calculation model considers spurious radiation originated from elastic and inelastic scattering processes along the beam paths of a Johann-type spectrometer. The dependence of the background radiation intensity on the medium of the beam paths (air and helium), analysed energy and radius of the Rowland circle was studied. The present study shows that both for IXS and XES experiments the background radiation is dominated by spurious radiation owing to scattering processes along the sample-analyser beam path. For IXS experiments the spectral distribution of the main component of the background radiation shows a weak linear dependence on the energy for the most cases. In the case of XES, a strong non-linear behaviour of the background radiation intensity was predicted for energy analysis very close to the backdiffraction condition, with a rapid increase in intensity as the analyser Bragg angle approaches π / 2. The contribution of the analyser-detector beam path is significantly weaker and resembles the spectral distribution of the measured spectra. Present results show that for usual experimental conditions no appreciable structures are introduced by the background radiation into the measured spectra, both in IXS and XES experiments. The usefulness of properly calculating the background profile is demonstrated in a background subtraction procedure for a real experimental situation. The calculation model was able to simulate with high accuracy the energy dependence of the background radiation intensity measured in a particular XES experiment with air beam paths.

  12. Radiation Detection and Dual-Energy X-Ray Imaging for Port Security

    Energy Technology Data Exchange (ETDEWEB)

    Pashby, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Glenn, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Divin, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-09

    Millions of cargo containers are transported across the United States border annually and are inspected for illicit radioactive material and contraband using a combination of passive radiation portal monitors (RPM) and high energy X-ray non-intrusive inspection (NII) systems. As detection performance is expected to vary with the material composition of cargo, characterizing the types of material present in cargo is important to national security. This work analyzes the passive radiation and dual energy radiography signatures from on RPM and two NII system, respectively. First, the cargos were analyzed to determine their ability to attenuate emissions from an embedded radioactive source. Secondly, dual-energy X-ray discrimination was used to determine the material composition and density of the cargos.

  13. Source of X-ray radiation based on back compton scattering

    CERN Document Server

    Bulyak, E V; Karnaukhov, I M; Kononenko, S G; Lapshin, V G; Mytsykov, A O; Telegin, Yu P; Shcherbakov, A A; Zelinsky, Andrey Yurij

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 sup - sup 7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  14. Source of X-ray radiation based on back compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A. E-mail: shcherbakov@kipt.kharkov.ua; Zelinsky, A.Yu

    2000-06-21

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10{sup -7} m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam.

  15. Source of X-ray radiation based on back compton scattering

    International Nuclear Information System (INIS)

    Bulyak, E.V.; Gladkikh, P.I.; Karnaukhov, I.M.; Kononenko, S.G.; Lapshin, V.I.; Mytsykov, A.O.; Telegin, Yu.N.; Shcherbakov, A.A.; Zelinsky, A.Yu.

    2000-01-01

    Applicability was studied and previous estimation was done of power X-ray beams generation by backward Compton scattering of a laser photon beam on a cooled down electron beam. The few MeV electron beam circulating in a compact storage ring can be cooled down by interaction of that beam with powerful laser radiation of micrometer wavelength to achieve normalized emittance of 10 -7 m. A tunable X-ray source of photons of energy ranging from few keV up to a hundred keV could result from the interaction of the laser beam with a dense electron beam

  16. Patients Radiation Load Caused by Digitalised X-Ray Equipment

    International Nuclear Information System (INIS)

    Nikodemova, D.; Prikazska, M.; Horvathova, M.

    2001-01-01

    Full text: The radiation load of population all over the world from medical examinations clearly demonstrate the importance of implementation of quality assurance and quality control programmes into the activities of radiological departments. The basic aim of quality assurance programme is to ensure that the radiation dose is kept as low as reasonably practicable consistent with adequate image quality. As many other fields, the rapid development of techniques brought change-over from the conventional analogue technique to the digital technique. In this connection conventional X-ray film is being abandoned and images are being viewed on either laser film or monitor. The main advantages of using digital equipment lay in improved image quality and diagnostic accuracy through digital image processing, reduction in patient exposure, cost reduction by reduction film usage, more efficient storage and retrieval of radiographic images through picture archiving. Several studies that have been conducted for comparison of various diagnostic examinations performed on digital and analogue X-ray equipment have shown that in barium meal examinations, there is potential for dose saving in the digital image intensifier technique. The aim of this study was to compare measured values of dose-area product for colon investigations using different X-ray equipment types, on digital and one analogue. Our material consisted of 60 randomly selected patients, 24 of them were examined with digital equipment and 36 patients with the analogue equipment. (author)

  17. Spectral structure of a polycapillary lens shaped X-ray beam

    Science.gov (United States)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  19. X-ray tube

    International Nuclear Information System (INIS)

    Webley, R.S.

    1975-01-01

    The object of the invention described is to provide an X-ray tube providing a scanned X-ray output which does not require a scanned electron beam. This is obtained by an X-ray tube including an anode which is rotatable about an axis, and a source of a beam of energy, for example an electron beam, arranged to impinge on a surface of the anode to generate X-radiation substantially at the region of incidence on the anode surface. The anode is rotatable about the axis to move the region of incidence over the surface. The anode is so shaped that the rotation causes the region of incidence to move in a predetermined manner relative to fixed parts of the tube so that the generated X-radiation is scanned in a predetermined manner relative to the tube. (UK)

  20. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  1. X-ray Ordinance

    International Nuclear Information System (INIS)

    Kramer, R.; Zerlett, G.

    1983-01-01

    This commentary, presented as volume 2 of the Deutsches Strahlenschutzrecht (German legislation on radiation protection) deals with the legal provisions of the ordinance on the protection against harmful effects of X-radiation (X-ray Ordinance - RoeV), of March 1, 1973 (announced in BGBl.I, page 173), as amended by the ordinance on the protection against harmful effects of ionizing radiation, of October 13, 1976 (announced in BGBl. I, page 2905). Thus volume 2 completes the task started with volume 1, namely to present a comprehensive view and account of the body of laws governing radiation protection, a task which was thought useful as developments in the FRG led to regulations being split up into the X-ray Ordinance, and the Radiation Protection Ordinance. In order to present a well-balanced commentary on the X-ray Ordinance, it was necessary to discuss the provisions both from the legal and the medical point of view. This edition takes into account the Fourth Public Notice of the BMA (Fed. Min. of Labour and Social Affairs) concerning the implementation of the X-ray Ordinance of January 4, 1982, as well as court decisions and literature published in this field, until September 1982. In addition, the judgment of the Federal Constitutional Court, dated October 19, 1982, concerning the voidness of the law on government liability, and two decisions by the Federal High Court, dated November 23, 1982, concerning the right to have insight into medical reports - of great significance in practice - have been considered. This commentary therefore is up to date with current developments. (orig.) [de

  2. Crystal glass used for X ray and gamma radiation shielding - Part two

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2007-01-01

    Crystal glass has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass, in order to minimize exposure to individuals. However, properties of the radiation attenuation of crystal glass commercially available in Brazil, for the different types of energy are not known. For this reason, this work was carried out aiming to determine the radiation attenuation, transmission curves and Half Value Layer. In this work, ten plates of crystal glass, with dimensions of 20 cm x 20 cm and range of thicknesses from 0.5 to 2.0 cm, were used. The plates were X-ray irradiated with potential constants of 60, 80, 110, 150 kV and gamma radiation of 60 Co. Analysis in the properties of the 60 Co radiation attenuation of barite plaster and barite concrete commercially available in Brazil were also carried out. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/mA.min) at 1 meter as a function of thickness. The thickness equivalent of a half value layer and deci value layer of crystal glass for all types of radiation and energies studied was also determined. (author)

  3. Clinical application of radiation dosimetry on X-ray radiotherapy

    International Nuclear Information System (INIS)

    Mizutani, Takeo

    1995-01-01

    In the case of radiotherapy, it is important to give proper dose for a tumor, to be treated with the objective of therapy, and to evaluate the dose, considering dose for other organs at risk to a sufficient extent. To provide an exposure dose at the target volume of tumor parts, it should be required to get a good understanding of the correct dosimetric method and also to apply this to clinical application in practice. All over the country, so as not to produce any difference in the given dose, 'A practical code for the dosimetry of high energy X-rays in radiotherapy' was issued by the Japanese Associations of radiological physicists in 1972. In 1986, it was revised. At about 85% of therapeutic facilities in the country, radiation engineers perform dose measurements and controls. Therefore, I have explained the process of measurement and dose calculation, with the main objective directed at the engineers in charge of the radiotherapy so as to easily radiation dosimetry of X-ray with dosemeters and phantom used at each facility according to the 'practical code'. (author)

  4. Device for monitoring X-ray radiation and method of using same

    International Nuclear Information System (INIS)

    Schaffer, D. L.

    1985-01-01

    Each of a plurality of thermoluminescent detectors (TLD's) is secured to one of a plurality of slides, which are removably mounted in a like plurality of pockets formed in a generally wallet-sized carrier to open on one edge thereof. One additional TLD is secured in a recess in one corner of the carrier to be exposed to all X-ray radiation which falls upon the carrier. Each slide is releasably secured in its associated pocket by means which prevents accidental removal of the side from the pocket. Whenever the owner of the carrier is subjected to an X-ray examination, he or she removes from the carrier one of the slides having thereon an unused TLD, and by a means of adhesive on the back of the slide adheres the associated TLD directly in the path of the X-ray radiation to which the patient is subjected during the examination. After the examination the slide is returned to its pocket in the carrier. Periodically the used TLD elements, as well as the non-removable TLD element, can be processed in a conventional manner to determine the total amount of radiation recorded by the respective elements. In one embodiment the removable slides are housed in lead-lined pockets and beneath a lead-lined, hinged cover member

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that ...

  6. X-ray holography. Atoms in three dimensions

    International Nuclear Information System (INIS)

    Tegze, M.

    2005-01-01

    The principles of atomic resolution X-ray holography was elaborated in 1991. X-ray photons scatter thousand times less on atoms than electrons of the same wavelength. As a result, both free path and penetration depth are higher which giver information about the bulk material. X-ray holography is realized by irradiating the single crystal sample with radiation from external X-ray source. The incident radiation is ionizing the atoms of the sample to emit fluorescent radiation. The angle dependence of the fluorescent radiation results an image containing the hologram. The hologram itself is extremely small compared to the background that needs 10 10 capturing photons to recover image. Using Thomas Gog's method and synchrotron radiation the X-ray holography becomes more usable, but the method still needs refining both experimentally and theoretically. (TRA)

  7. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  8. Shielding effect of clinical x-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc

    International Nuclear Information System (INIS)

    Fukuda, Atsushi; Takahashi, Masaaki; Kitabayashi, Keitarou; Koshida, Kichiro; Matsubara, Kousuke; Noto, Kimiya; Nakagawa, Hiroto; Kawabata, Chikako

    2004-01-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99m Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of 99m Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose. (author)

  9. [Shielding effect of clinical X-ray protector and lead glass against annihilation radiation and gamma rays of 99mTc].

    Science.gov (United States)

    Fukuda, Atsushi; Koshida, Kichiro; Yamaguchi, Ichiro; Takahashi, Masaaki; Kitabayashi, Keitarou; Matsubara, Kousuke; Noto, Kimiya; Kawabata, Chikako; Nakagawa, Hiroto

    2004-12-01

    Various pharmaceutical companies in Japan are making radioactive drugs available for positron emission tomography (PET) in hospitals without a cyclotron. With the distribution of these drugs to hospitals, medical check-ups and examinations using PET are expected to increase. However, the safety guidelines for radiation in the new deployment of PET have not been adequately improved. Therefore, we measured the shielding effect of a clinical X-ray protector and lead glass against annihilation radiation and gamma rays of (99m)Tc. We then calculated the shielding effect of a 0.25 mm lead protector, 1 mm lead, and lead glass using the EGS4 (Electron Gamma Shower Version 4) code. The shielding effects of 22-mm lead glass against annihilation radiation and gamma rays of (99m)Tc were approximately 31.5% and 93.3%, respectively. The clinical X-ray protector against annihilation radiation approximately doubled the skin-absorbed dose.

  10. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  11. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  12. Irradiation of intense characteristic x-rays from weakly ionized linear molybdenum plasma

    International Nuclear Information System (INIS)

    Sato, Eiichi; Hayasi, Yasuomi

    2003-01-01

    In the plasma flash x-ray generator, a high-voltage main condenser of approximately 200 nF is charged up to 55 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod molybdenum target of 2.0 mm in diameter by the electric field in the x-ray tube, weakly ionized linear plasma, which consists of molybdenum ions and electrons, forms by target evaporation. At a charging voltage of 55 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The K lines were quite sharp and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 700 ns, and the time-integrated x-ray intensity had a value of approximately 35 μC/kg at 1.0 m from the x-ray source with a charging voltage of 50 kV. (author)

  13. Medical X-ray sources now and for the future

    Science.gov (United States)

    Behling, Rolf

    2017-11-01

    This paper focuses on the use of X-rays in their largest field of application: medical diagnostic imaging and image-guided therapy. For this purpose, vacuum electronics in the form of X-ray tubes as the source of bremsstrahlung (braking radiation) have been the number one choice for X-ray production in the range of photon energies between about 16 keV for mammography and 150 keV for general radiography. Soft tissue on one end and bony structures on the other are sufficiently transparent and the contrast delivered by difference of absorption is sufficiently high for this spectral range. The dominance of X-ray tubes holds even more than 120 years after Conrad Roentgen's discovery of the bremsstrahlung mechanism. What are the specifics of current X-ray tubes and their medical diagnostic applications? How may the next available technology at or beyond the horizon look like? Can we hope for substantial game changers? Will flat panel sources, less expensive X-ray "LED's", compact X-ray Lasers, compact synchrotrons or equivalent X-ray sources appear in medical diagnostic imaging soon? After discussing the various modalities of imaging systems and their sources of radiation, this overview will briefly touch on the physics of bremsstrahlung generation, key characteristics of X-ray tubes, and material boundary conditions, which restrict performance. It will discuss the deficits of the bremsstrahlung technology and try to sketch future alternatives and their prospects of implementation in medical diagnostics.

  14. Crystal glass and barite used for x ray and gamma radiation shielding

    International Nuclear Information System (INIS)

    Antonio Filho, Joao

    2008-01-01

    Full text: Crystal glass, barite plaster and barite concrete has been widely used as shielding material in gamma radiation sources as well as x-ray generating equipment to replace the plumbiferous glass and in the wall covering, in order to minimize exposure to individuals. However, properties of the radiation attenuation of crystal glass commercially available in Brazil, for the different types of energy are not known. For this reason, this work was carried out aiming to determine the radiation attenuation, transmission curves and Half Value Layer. In this work, ten plates of crystal glass, with dimensions of 20 cm x 20 cm and range of thicknesses from 0.5 to 2.0 cm, and ten plates of barite plaster and five plates of barite concrete, with dimensions of 20 x 20 cm 2 and range of thicknesses from 1,0 to 5,0 cm, were used. The plates were X-ray irradiated with potential constants of 60, 80, 110, 150 kV and gamma radiation of 60 Co. Analysis in the properties of the 60 Co radiation attenuation of barite plaster and barite concrete commercially available in Brazil were also carried out. The curves of attenuation and of transmission were obtained for crystal glass, barite plaster and barite concrete (mGy/m A.min) at 1 meter as a function of thickness. The thickness equivalent of a half value layer and deci value layer of crystal glass for all types of radiation and energies studied was also determined. Although their use permits the dimensioning of the armor covering for external x-radiation whit precision and safety without elevating the cost of protection. (author)

  15. Wearable device for monitoring momentary presence of intense x-ray and/or ultra-violet radiations

    International Nuclear Information System (INIS)

    Shriner, W.

    1981-01-01

    A credit-card-size clear-plastic-encased device can be worn or carried by a person to warn him of the momentary presence of dangerous intensities of ultra-violet and/or x-ray radiations. A base lamina (e.g. of cardboard) is coated with a material (e.g. zinc-cadmium sulfide or lead-barium sulfate) which fluoresces under such radiations. Numerals, letters, words or symbols are printed over the fluorescent coat with a material inhibitory to said radiations so that a warning message in dark print will appear on a light background when dangerous intensities of said radiations are present. An x-ray-warning area is covered with an ultra-violet absorbing screen so that said area will glow only under x-rays (Which rays will also activate the remaining ultra-violet-responsive area). The colors of the laminas and the coats are so selected that the messages are not visible when dangerous radiations are not present. If desired, only the message can be printed with fluorescent material so as to glow on a darker background. Optionally, step-layer attenuation devices can be added to indicate degrees of radiation; and reflecting surfaces can underlie the fluorescent coat to increase efficiency and/or sensitively

  16. X-ray and nuclear radiation facilities: personnel safety features

    International Nuclear Information System (INIS)

    Mason, W.J.; Pipes, E.W.; Rucker, T.R.; Smith, D.N.; West, C.M.

    1976-10-01

    The Oak Ridge Y-12 Plant is a research and production installation. The nature and versatility of this work require the use of a large number and variety of x-ray and radiographic sources for nondestructive testing and material analyses. Presently, there are over 80 x-ray generators in the plant, which range in size from small, portable units which operate at a less than 50 kilovolts potential and 0.1 milliampere current to an electron linear accelerator which operates at 12-million electron volts and produces a radiation beam of such intensity that it could deliver a lethal dose to man in a fraction of a minute. There are also almost 50 gamma and neutron sources in use in the plant. These units range in size from a few millicuries to several hundred curies. Although the radiation safety at each of these facilities was considered adequate, the administrative and maintenance procedures became unduly complicated. Accordingly, engineering standards and uniform operating procedures were considered necessary to alleviate these complications and, in so doing, provide an improved measure of radiation safety. Development and implementation of these standards are described and the general philosophy and approach to these standards are outlined. Use of a matrix (type of installation versus radiation safety feature) to facilitate equipment classification and personnel safety feature requirements is presented. Included is a set of the standards showing formats, matrices, etc., and the detailed standards for each safety feature

  17. Radiation exposure with the NOMAD portable X-ray system.

    Science.gov (United States)

    Goren, A D; Bonvento, M; Biernacki, J; Colosi, D C

    2008-02-01

    A new hand-held battery-operated portable X-ray system was tested for possible leakage radiation through the existing heavy metal compounds surrounding the X-ray tube, backscatter radiation through the lead-filled acrylic shield attached at the end of the exit tube and patient exposure. Dose measurements were conducted using a DXTRR phantom and a water phantom. All measurements were recorded using calibrated thermoluminescent dosimetry (TLD), calibrated Unfors Model 583L dosemeter, and a calibrated Radcal MDH model 1015 dosemeter. The settings for all exposure were 60 kVp, 2.3 mA and 0.25 s using Kodak Insight (Class F) film. All backscatter measurements, in front of the shield, behind the shield, at the finger of the operator, the operator's chest, eyes and gonads were significantly below the maximum permissible radiation leakage as per the United States Food and Drug Administration regulations (100 mR h(-1)). Our measurements indicate that the exposure would be well within the occupational maximum permissible dose for an occupationally exposed person. Film dose was consistent with the manufacturer's recommendations. As a result of our measurements, the State of New York Bureau of Environmental Radiation Protection granted us a variance to use the NOMAD on a case-by-case basis. Our data have shown that the NOMAD presents risks that are no greater than with standard dental radiographic units to the patient or operator and the measured doses are well below recommended levels.

  18. Radiation protection and safety guide no. GRPB-G-5: safe use of x-rays

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, O.; Yeboah, J.; Osei, E.K.; Asiamah, S.D.

    1998-01-01

    If properly utilized, the use of x-rays can be instrumental in the improvement of the health and welfare of the public. This regulatory guide was developed to assist and encourage registrants in the safe and constructive use of x-rays and to prohibit and prevent exposure to ionizing radiation in amounts which are or may be detrimental to health. The present guide applies to the use of x-rays for diagnostic, therapeutic, and non medical purposes

  19. Development of (Cd,Zn)Te X-ray and gamma ray radiation detectors for medical and security applications

    International Nuclear Information System (INIS)

    Franc, J.; Hoeschl, P.; Belas, E.; Grill, V.; Fauler, A.; Dambacher, M.; Procz, S.

    2011-01-01

    Full text: There is a growing need for large area X-and Gamma radiation detectors for penetrating radiations in various fields of application e.g. astronomy, detectors for nuclear medicine, biosensor materials, security, non-proliferation of hazardous materials, and environmental applications etc. Direct X-rays conversion into electric charges in a semiconductor is envisaged with better spectroscopic characteristics to improve contrast and quantitative measurements compared to indirect detection using scintillators. The family of II-VI semiconductor materials combine a range of excellent properties such as their high sensitivity due to the high mobility-lifetime products, their high energy resolution as a consequence of the electron-hole pair formation energy, their reasonable maturity in terms of microelectronic technologies required for commercial detector fabrication, wide range of stopping power and band-gaps available. In particular, CdTe and Cd x Zn 1-x Te (CZT) with Zn=0.1 offer a favorable combination of physical and chemical properties that makes it attractive as a room temperature X-ray detector material of choice for many applications involving photon energies up to several hundreds of keV. From the scientific experience accumulated in the past years, the detector properties are strongly dependent on a series of parameters which must be strictly controlled during crystal growth, such as the homogeneity, stoichiometry and the related intrinsic defects which appear during the material growth, a high mobility-lifetime for electron and holes is mandatory etc. Production of detector-grade CdTe and CdZnTe on industrial scale is still a challenge and optimal growth methods and growth conditions have been under intensive investigation. Progress in crystal growth and characterization achieved in a project of Institute partnership between Charles University in Prague and University of Freiburg, Germany which was sponsored by Alexander von Humboldt Foundation, will

  20. Collective radiation dose from diagnostic x-ray examination in nine ...

    African Journals Online (AJOL)

    Background: Medical x-ray exposures have the largest man made source of population exposure to ionizing radiation in different countries. Recent developments in medical imaging have led to rapid increases in a number of high dose xray examinations performed with significant consequences for individual patient doses ...

  1. Stochastic stimulated electronic x-ray Raman spectroscopy

    Directory of Open Access Journals (Sweden)

    Victor Kimberg

    2016-05-01

    → π * transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations.

  2. Requirements for industrial x-ray equipment

    International Nuclear Information System (INIS)

    1987-01-01

    This safety code is concerned with the protection of all individuals who may be exposed to radiation emitted by X-ray equipment operating at energies up to 1 MeV as used in industrial radiography. This code presents basic radiation safety information for the protection of personnel operating and servicing X-ray equipment and other workers and the general public in the vicinity of areas where X-ray equipment is in operation. It specifies general safety features of design, construction and functioning of X-ray equipment and facilities; describes the responsibilities of the user, operator and maintenance personnel; contains recommendations to ensure that the X-ray equipment is used and maintained in accordance with the ALARA principle; and describes a program of personnel monitoring and radiation safety surveys. ( 6 refs., 5 tabs., 4 figs.)

  3. Coherence properties of the radiation from X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2006-08-15

    We present a comprehensive analysis of coherence properties of the radiation from X-ray free electron laser (XFEL). We consider practically important case when XFEL is optimized for maximum gain. Such an optimization allows to reduce significantly parameter space. Application of similarity techniques to the results of numerical simulations allows to present all output characteristics of the optimized XFEL as functions of the only parameter, ratio of the emittance to the radiation wavelength, {epsilon}=2{pi} {epsilon}/{lambda}. Our studies show that optimum performance of the XFEL in terms of transverse coherence is achieved at the value of the parameter {epsilon} of about unity. At smaller values of {epsilon} the degree of transverse coherence is reduced due to strong influence of poor longitudinal coherence on a transverse one. At large values of the emittance the degree of transverse coherence degrades due to poor mode selection. Comparative analysis of existing XFEL projects, European XFEL, LCLS, and SCSS is presented as well. (orig.)

  4. Dense X-pinch plasmas for x-ray microlithography

    International Nuclear Information System (INIS)

    Kalantar, D.H.; Hammer, D.A.; Qi, N.; Mittal, K.C.

    1990-01-01

    The authors report experimental results from a study of the radiation emission from aluminum and magnesium x-pinch experiments. The single cross x-pinch, driven by the 0.5 TW, 40ns pulse width Lion accelerator, consists of 2-8 fine wires stretched between the output electrodes of Lion so as to touch at a single point. The wires were twisted up to 360 degrees at the crossing point. The number and size of Al and Mg wires were varied in order to optimize the K-shell line radiation. Diagnostics used for the experiments included pinhole photography, streak imaging, filtered photoconducting diodes and x-ray crystal spectroscopy. The source size and distribution are determined through x-ray pinhole photographs. The radiation energy spectrum is determined by x-ray spectroscopy and attenuation through filters. Energy intensities were obtained from the filtered photoconducting diodes

  5. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    Science.gov (United States)

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. X-rays revolutionized the world

    International Nuclear Information System (INIS)

    Holmberg, P.

    1995-01-01

    This year marks the 100th anniversary of Professor Wilhelm Conrad Roentgen's accidental discovery of x-radiation. On 8 November 1895, Roentgen was conducting laboratory tests at the University of Wuertsburg in order to study cathode rays in a gasdischarge tube. He noticed that a fluorescence paper that happened to be near the tube began to glow even though the radiation should not have penetrated the shield of the gas-discharge tube. Less than two months later Roentgen reported the discovery of a new type of penetrating radiation, which he called x-rays. The discovery became an immediate worldwide sensation, and doctors realised that they could now see inside the human body without surgery. In Finland, the first x-ray equipment was acquired as early as 1900. The following year, Roentgen was awarded the Nobel prize in physics for his work. The health risks of x-radiation were noticed early on, but their severity was not always understood. The new x-ray examination methods were difficult to control and the exposure times then were quite long. It was therefore not uncommon that radiation damage eventually led to skin cancer and haematological diseases. (orig.) (7 figs.)

  7. X-ray examinations pose little risk

    International Nuclear Information System (INIS)

    Servomaa, A.; Komppa, T.

    1997-01-01

    X-ray examinations account for about 15 per cent of Finns' radiation exposure and for roughly one out of a hundred deaths from cancer. The risk is small when compared to other risks in life and to the health benefits obtained from the examinations. About 4.1 million x-ray examinations were conducted in Finland in 1995, i.e. an average of 0.8 examinations per inhabitant. The mean effective dose was about 0.67 mSv per examination and about 0.54 mSv per inhabitant. Natural background radiation causes an annual radiation dose of approximately 3 mSv per person. Examinations of bones and soft tissues accounted for the highest number of x-ray images, roughly 2.1 million, of which half were examinations of the extremities. Some 1.3 million x-ray images were taken of the pulmonary organs, most of them being examinations of the lungs. Computed tomography and examinations of the gastrointestinal tract accounted for about 130,000 images each. To assess the radiation risk involved in x-ray examinations, we need knowledge or an estimate of the radiation doses of organs sensitive to radiation. Efficient calculation methods are available for this purpose. (orig.)

  8. Protective Effects of Polysaccharides from Soybean Meal Against X-ray Radiation Induced Damage in Mouse Spleen Lymphocytes

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2011-11-01

    Full Text Available The aim of this study was to investigate radioprotective effect of the polysaccharides from soybean meal (SMP against X-ray radiation-induced damage in mouse spleen lymphocytes. MTT and comet assay were performed to evaluate SMP’s ability to prevent cell death and DNA damage induced by radiation. The results show that, X-ray radiation (30 KV, 10 mA, 8 min (4 Gy can significantly increase cell death and DNA fragmentation of mouse spleen lymphocytes. Pretreatment with SMP for 2 h before radiation could increase cell viability, moreover, the SMP can reduce X-ray radiation-induced DNA damage. The percentage of tail DNA and the tail moment of the SMP groups were significantly lower than those of the radiation alone group (p < 0.05. These results suggest SMP may be a good candidate as a radioprotective agent.

  9. Comparative survey of site and personnel monitoring characteristics for operation of various types of diagnostic-X ray equipment

    International Nuclear Information System (INIS)

    Lyarskij, P.P.; Zol'nikova, N.I.

    1977-01-01

    Diagnostic X-ray machines in present use at medical facilities differ in design and operating parameters, this diversity producing, in turn, a variety of local radiological situations and levels of personnel exposure. Based on radiological safety characterization of working conditions, the authors present a breakdown of contemporary diagnostic X-ray equipment types, based on detailed examination of each group in terms of their associated site monitoring and dosimetry patterns. The paper reports data on personnel exposure levels not only as a function of equipment design and operating characteristics but also according to types of occupational activities for particular medical personnel groups (radiologists, surgeons, anesthesiologists, etc.). Included are health physics data for domestic and foreign X-ray equipment, levels of local and absorbed doses for radiologists, cardiovascular surgeons, neurosurgeons, urologists, traumatologists, anesthesiologists, etc. Measures are recommended for optimizing their activities from the standpoint of radiation safety. (author)

  10. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zeniya, T.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T

    2001-07-21

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  11. Integrated image presentation of transmission and fluorescent X-ray CT using synchrotron radiation

    Science.gov (United States)

    Zeniya, T.; Takeda, T.; Yu, Q.; Hasegawa, Y.; Hyodo, K.; Yuasa, T.; Hiranaka, Y.; Itai, Y.; Akatsuka, T.

    2001-07-01

    We have developed a computed tomography (CT) system with synchrotron radiation (SR) to detect fluorescent X-rays and transmitted X-rays simultaneously. Both SR transmission X-ray CT (SR-TXCT) and SR fluorescent X-ray CT (SR-FXCT) can describe cross-sectional images with high spatial and contrast resolutions as compared to conventional CT. TXCT gives morphological information and FXCT gives functional information of organs. So, superposed display system for SR-FXCT and SR-TXCT images has been developed for clinical diagnosis with higher reliability. Preliminary experiment with brain phantom was carried out and the superposition of both images was performed. The superposed SR-CT image gave us both functional and morphological information easily with high reliability, thus demonstrating the usefulness of this system.

  12. Upsurge of X-ray astronomy 230-

    International Nuclear Information System (INIS)

    Hudec, D.R.

    1978-01-01

    Instruments are described used for X-ray astronomy, namely X-ray detectors and X-ray telescopes. Unlike telescopes, the detectors do not comprise X-ray optics. A survey is given of the results obtained in solar and stellar X-ray astronomy and hypotheses are submitted on the origin of X radiation in the interstellar space. (J.B.)

  13. Radiation hormesis using an x-ray radiography device. The fourth report. Radiation hormesis of salad rocket

    International Nuclear Information System (INIS)

    Sakuma, Atsushi; Nakayama, Miho

    2006-01-01

    Radiation hormesis was studied for salad rocket plant (Eruca vesicaria sp.sativa), using different energies of X-ray (100 kV and 10 MV). To get the optimum dose for plant to provide the highest growth, the dose for the seeds was changed from 0 to 3000 mGy using 100 kV of X-ray. The highest growth of the plant was found for the dose of 600 mGy. When the seeds were irradiated to 600 mGy with 100 kV and 10 MV X-rays, in both cases, the growth of the irradiated seeds was higher than those without irradiation, where P-values were 0.0112 and 0.0214, respectively. In the case of 600 mGy irradiation, there was not any significant change in the plant growth between the seeds irradiated with 10 MV and 100 kV X-ray (P=0.862). (author)

  14. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... up in shades of gray and air appears black. Until recently, x-ray images were maintained on ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  17. Synchrotron radiation X-ray tomographic microscopy (SRXTM) of brachiopod shell interiors for taxonomy: Preliminary report

    OpenAIRE

    Motchurova-Dekova Neda; Harper David A.T.

    2010-01-01

    Synchrotron radiation X-ray tomographic microscopy (SRXTM) is a non-destructive technique for the investigation and visualization of the internal features of solid opaque objects, which allows reconstruction of a complete three-dimensional image of internal structures by recording of the differences in the effects on the passage of waves of energy reacting with those structures. Contrary to X-rays, produced in a conventional X-ray tube, the intense synchrot...

  18. Russian medical X-ray engineering is confidently going into the year 2000

    International Nuclear Information System (INIS)

    Chikirdin, Eh.G.

    2000-01-01

    The achievements of the national medical X-ray technique are analyzed on the basis of the materials of the International exhibition Public health-99 which took place in November-December 1999, are analyzed. Great attention of the enterprises-developers was paid to fluorographic-digital equipment due to actuality of the lungs tuberculosis control in Russia. The characteristics for several fluorographic digital facilities, wherein by high technical characteristics it proves possible to improve the design and obtain low radiation doses for the patients and sufficiently low cost of the equipment, are presented. The characteristics of mobile facilities for X-ray diagnostics, including a fluorograph, mammograph, dental X-ray apparatus, are also presented. The attention was also paid to a X-ray diagnostic complex, feed devices, phantom sets, tomograph, dental apparatus and other developments in the area of X-ray technique. The outlooks for developments in the area of the national medical Xray technique are noted [ru

  19. R and D toward a compact high-brilliance X-ray source based on channeling radiation

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P.; Brau, C. A.; Gabella, W. E.; Choi, B. K.; Jarvis, J. D.; Lewellen, J. W.; Mendenhall, M. H.; Mihalcea, D. [Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States) and Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235 (United States) and Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37235 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Physics Department and Combat Systems, Naval Postgraduate School, Monterey, CA 93943 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Northern Illinois Center for Accelerator and Detector Development and Department of Physics, Northern Illinois University, DeKalb, IL 60115 (United States)

    2012-12-21

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B{approx} 10{sup 12} photons.(mm-mrd){sup -2}. (0.1% BW){sup -1}.s{sup -1} is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  20. R and D Toward a Compact High-Brilliance X-Ray Source Based on Channeling Radiation

    International Nuclear Information System (INIS)

    Piot, P.; Brau, C.A.; Gabella, W.E.; Choi, B.K.; Jarvis, J.D.; Mendenhall, M.H.; Lewellen, J.W.; Mihalcea, D.

    2012-01-01

    X-rays have been valuable to a large number of fields including Science, Medicine, and Security. Yet, the availability of a compact high-spectral brilliance X-ray sources is limited. A technique to produce X-rays with spectral brilliance B ∼ 10 12 photons.(mm-mrd) -2 .(0.1% BW) -1 .s -1 is discussed. The method is based on the generation and acceleration of a low-emittance field-emitted electron bunches. The bunches are then focused on a diamond crystal thereby producing channeling radiation. In this paper, after presenting the overarching concept, we discuss the generation, acceleration and transport of the low-emittance bunches with parameters consistent with the production of high-brilliance X-rays through channeling radiation. We especially consider the example of the Advanced Superconducting Test Accelerator (ASTA) currently in construction at Fermilab where a proof-of-principle experiment is in preparation.

  1. A free-electron laser fourth-generation X-ray source

    International Nuclear Information System (INIS)

    Moncton, D. E.

    1999-01-01

    The field of synchrotrons radiation research has grown rapidly over the last 25 years due to both the push of the accelerator and magnet technology that produces the x-ray beams and the pull of the extraordinary scientific research those beams make possible. Three successive generations of synchrotrons radiation facilities have resulted in beam brilliances 11 to 12 orders of magnitude greater than the standard laboratory x-ray tube. However, greater advances can be easily imagined given the fact that x-ray beams from present-day facilities do not exhibit the coherence or time structure so familiar with the.optical laser. Theoretical work over the last ten years or so has pointed to the possibility of generating hard x-ray beams with laser-like characteristics. The concept is based on self-amplified spontaneous emission in free electron lasers. The use of a superconducting linac could produce a major, cost-effective facility that spans wavelengths from the ultraviolet to the hard x-ray regime, simultaneously servicing large numbers experimenters from a wide range of disciplines. As with each past generation of synchrotron facilities, immense new scientific opportunities from fourth-generation sources

  2. Development and application of sub-nanosecond pulse-repeatable hard X-ray source

    International Nuclear Information System (INIS)

    Quan Lin; Fan Yajun; Tu Jing

    2013-01-01

    A multipurpose X-ray source was developed to meet the needs of multitask application such as radiation detection, radiation imaging and so on. The multipurpose X-ray source has characteristic of adjustable width and energy, pulse-repetition operation, ultra-short pulse and fine stability. Its rising time is close to 98.6 ps, the operation voltage reaches 425 kV, and the peak fluence rate exceeds 2.07 × 10 18 cm -2 · s -1 at 10 cm, which provides an ideal radiation environment for relevant application. (authors)

  3. X-ray diagnostics - benefits and risks; Roentgendiagnostik - Nutzen und Risiken

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomaeus, Melanie (comp.)

    2016-10-15

    The brochure on benefits and risks of X-ray diagnostics discusses the following issues: X radiation - a pioneering discovery and medical sensation, fundamentals of X radiation, frequency of X-ray examinations in Germany in relation to CT imaging, radiation doses resulting from X-ray diagnostics, benefits of X-ray diagnostics - indication and examples, risks - measures for radiation exposure reductions, avoidance of unnecessary examinations.

  4. Low-energy x-ray dosimetry studies (7 to 17.5 keV) with synchroton radiation

    International Nuclear Information System (INIS)

    Ipe, N.E.; Bellamy, H.; Flood, J.R.

    1995-06-01

    Unique properties of synchrotron radiation (SR), such as its high intensity, brightness, polarization, and broad spectral distribution (extending from x-ray to infra-red wavelengths) make it an attractive light source for numerous experiments. As SR facilities are rapidly being built all over the world, they introduce the need for low-energy x-ray dosemeters because of the potential radiation exposure to experimenters. However, they also provide a unique opportunity for low-energy x-ray dosimetry studies because of the availability of monochromatic x-ray beams. Results of such studies performed at the Stanford Synchrotron Radiation Laboratory are described. Lithium fluoride TLDs (TLD-100) of varying thicknesses (0.015 to 0.08 cm) were exposed free in air to monochromatic x-rays (7 to 17.5 keV). These exposures were monitored with ionization chambers. The response (nC/Gy) was found to increase with increasing TLD thickness and with increasing beam energy. A steeper increase in response with increasing energy was observed with the thicker TLDs. The responses at 7 and 17.5 keV were within a factor of 2.3 and 5.2 for the 0.015 and 0.08 cm-thick TLDs, respectively. The effects of narrow (beam size smaller than the dosemeter) and broad (beam size larger than the dosemeter) beams on the response of the TLDs are also reported

  5. Relationship between images of risk and anxiety toward radiation. Comparison of radiation from chest X-rays and nuclear power plants

    International Nuclear Information System (INIS)

    Matsui, Yuko

    2003-01-01

    In order to clarify the components of people's images of radiation risk and the determinants for the degree of anxiety about radiation exposure, an investigation was conducted. Two kinds of radiation, from nuclear power plants and during a chest X-ray, which are relatively familiar to people, were focused on. As a result, only a 'dread' factor was common to both radiation types of. Although the degree of anxiety toward both types of radiation showed a positive correlation with the 'dread' image, the anxiety toward X-ray radiation showed a negative correlation with the 'feeling of conquest'. Anxiety toward radiation from nuclear power plants had a negative correlation with 'control by experts'. These results suggest that the words radiation from nuclear power plants' evoke an image of a situation with high radiation exposure, which is beyond the experts' control abilities. (author)

  6. Physiologically gated microbeam radiation using a field emission x-ray source array

    Energy Technology Data Exchange (ETDEWEB)

    Chtcheprov, Pavel, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Biomedical Engineering, University of North Carolina, 152 MacNider Hall, Campus Box 7575, Chapel Hill, North Carolina 27599 (United States); Burk, Laurel; Inscoe, Christina; Ger, Rachel; Hadsell, Michael; Lu, Jianping [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 (United States); Yuan, Hong [Department of Radiology, University of North Carolina, 2006 Old Clinic, CB #7510, Chapel Hill, North Carolina 27599 (United States); Zhang, Lei [Department of Applied Physical Sciences, University of North Carolina, Chapman Hall, CB#3216, Chapel Hill, North Carolina 27599 (United States); Chang, Sha [Department of Radiation Oncology, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States); Zhou, Otto, E-mail: PavelC@unc.edu, E-mail: zhou@email.unc.edu [Department of Physics and Astronomy, University of North Carolina, Phillips Hall, CB #3255, 120 East Cameron Avenue, Chapel Hill, North Carolina 27599 and UNC Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, North Carolina 27514 (United States)

    2014-08-15

    Purpose: Microbeam radiation therapy (MRT) uses narrow planes of high dose radiation beams to treat cancerous tumors. This experimental therapy method based on synchrotron radiation has been shown to spare normal tissue at up to 1000 Gy of peak entrance dose while still being effective in tumor eradication and extending the lifetime of tumor-bearing small animal models. Motion during treatment can lead to significant movement of microbeam positions resulting in broader beam width and lower peak to valley dose ratio (PVDR), which reduces the effectiveness of MRT. Recently, the authors have demonstrated the feasibility of generating microbeam radiation for small animal treatment using a carbon nanotube (CNT) x-ray source array. The purpose of this study is to incorporate physiological gating to the CNT microbeam irradiator to minimize motion-induced microbeam blurring. Methods: The CNT field emission x-ray source array with a narrow line focal track was operated at 160 kVp. The x-ray radiation was collimated to a single 280 μm wide microbeam at entrance. The microbeam beam pattern was recorded using EBT2 Gafchromic{sup ©} films. For the feasibility study, a strip of EBT2 film was attached to an oscillating mechanical phantom mimicking mouse chest respiratory motion. The servo arm was put against a pressure sensor to monitor the motion. The film was irradiated with three microbeams under gated and nongated conditions and the full width at half maximums and PVDRs were compared. An in vivo study was also performed with adult male athymic mice. The liver was chosen as the target organ for proof of concept due to its large motion during respiration compared to other organs. The mouse was immobilized in a specialized mouse bed and anesthetized using isoflurane. A pressure sensor was attached to a mouse's chest to monitor its respiration. The output signal triggered the electron extraction voltage of the field emission source such that x-ray was generated only

  7. Synchrotron radiation X-ray microfluorescence techniques

    Indian Academy of Sciences (India)

    Synchrotron X-ray imaging systems with fluorescence techniques was developed for biomedical researches in Brazilian Synchrotron Laboratory. An X-ray fluorescence microtomography system was implemented to analyse human prostate and breast samples and an X-ray microfluorescence system was implemented to ...

  8. Summary of: radiation protection in dental X-ray surgeries--still rooms for improvement.

    Science.gov (United States)

    Walker, Anne

    2013-03-01

    To illustrate the authors' experience in the provision of radiation protection adviser (RPA)/medical physics expert (MPE) services and critical examination/radiation quality assurance (QA) testing, to demonstrate any continuing variability of the compliance of X-ray sets with existing guidance and of compliance of dental practices with existing legislation. Data was collected from a series of critical examination and routine three-yearly radiation QA tests on 915 intra-oral X-ray sets and 124 panoramic sets. Data are the result of direct measurements on the sets, made using a traceably calibrated Unfors Xi meter. The testing covered the measurement of peak kilovoltage (kVp); filtration; timer accuracy and consistency; X-ray beam size; and radiation output, measured as the entrance surface dose in milliGray (mGy) for intra-oral sets and dose-area product (DAP), measured in mGy.cm(2) for panoramic sets. Physical checks, including mechanical stability, were also included as part of the testing process. The Health and Safety Executive has expressed concern about the poor standards of compliance with the regulations during inspections at dental practices. Thirty-five percent of intra-oral sets exceeded the UK adult diagnostic reference level on at least one setting, as did 61% of those with child dose settings. There is a clear advantage of digital radiography and rectangular collimation in dose terms, with the mean dose from digital sets 59% that of film-based sets and a rectangular collimator 76% that of circular collimators. The data shows the unrealised potential for dose saving in many digital sets and also marked differences in dose between sets. Provision of radiation protection advice to over 150 general dental practitioners raised a number of issues on the design of surgeries with X-ray equipment and critical examination testing. There is also considerable variation in advice given on the need (or lack of need) for room shielding. Where no radiation protection

  9. Radiation Protection Control Area Around Baggage Control X-ray Units

    International Nuclear Information System (INIS)

    Prlic, I.; Radalj, Z.; Milkovic-Kraus, S.; Cerovac, Z.

    2003-01-01

    The importance of prompt occupational dose reporting rises when dose is received within a short-time interval or when the radiation source suffers any technical failures. Radiation exposure is to be recognized as a private/or group hazard of each person alone. Actual radiation quality of the source is to be taken into account. To optimize the radiological radiation protection Quality Control measurements of the source are done. We have developed digital dosemeters of type ALARA OD2 for external dosimetry to be used for establishing the real pattern of occupational dose delivered to the workers or/and as the (Ort) professional environmental measuring station. We are using dosemeter to define the control areas and areas of concern - point (Ort) around the source. This upgrade to legal obligatory external (film badge) dosimetry will help us to ease defining the professional stuff and working places which are actually exposed to ionising radiation of concern and for which it is necessary to provide legally required, or even additional, occupational health care programme. This means the analysis of exposure situations for specific jobs near the X-ray equipment used for baggage control in the context of carrying out a detailed study for the optimisation of radiation protection. PC data readout from device forms a real time exposure dose rate pattern that proves that any worker or other employee working nearby the baggage X-ray unit is not obliged to undergo any legal occupational monitoring (dosimetry or health) hence the total dose per year will not exceed 1 mSv under the worst working conditions. (author)

  10. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  11. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  12. X-ray analysis of a single aerosol particle with combination of scanning electron microscope and synchrotron radiation X-ray microscope

    International Nuclear Information System (INIS)

    Toyoda, Masatoshi; Kaibuchi, Kazuki; Nagasono, Mitsuru; Terada, Yasuko; Tanabe, Teruo; Hayakawa, Shinjiro; Kawai, Jun

    2004-01-01

    We developed a microscope by a combination of synchrotron radiation X-ray fluorescence (SR-XRF) microscope and scanning electron microscope (SEM) with an energy dispersive X-ray spectrometer (EDX). SR-XRF is appropriate to detect trace and micro amount of elements and sensitive to heavy elements in an analyte but it cannot observe the real time image. SEM-EDX can observe the secondary electron image of a single particle in real time and is appropriate to detect lighter elements. This combination microscope can ensure the identification of the XRF spectrum to the SEM image without transferring the sample. For aerosol analysis, it is important to analyze each particle. The present method makes feasible to analyze not only the average elemental composition as the total particles but also elemental composition of each particle, which is dependent on the particle shape and size. The microscope was applied to an individual aerosol particle study. The X-ray spectra were different among the particles, but also different between SR-XRF and SEM-EDX for the same particle, due to the difference in fluorescence yields between X-ray excitation and electron excitation

  13. Hematological findings in male x-ray technicians

    International Nuclear Information System (INIS)

    Meo, Sultan A.

    2004-01-01

    In view of the known health hazards of x-ray radiation, this study focuses on the basic hematological parameters: red blood cells (RBCs), white blood cells (WBCs) and platelets count in x-ray technicians. The aim was to identify the affect of x-ray radiation on blood cell counts in x-ray technicians. The present study was conducted in the Department of Physiology, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia during the year 2002. In this study, a group of 40 apparently healthy male x-ray technicians with age ranging from 25-50-years were recruited. They were matched with another group of 40 apparently healthy control subjects in terms of age, sex and ethnic origin. Both groups met with exclusion criteria as per standard. Red blood cells, WBC and platelets count were performed by using a blood cell auto analyser. The mean value of platelet count was significantly decreased (p<0.01) in x-ray technicians when compared to controls. However, no significant difference was observed in RBC and WBC count between the groups. Radiation causes decreased platelet count. Further, studies are needed to study the long-term effects of x-ray radiation on blood cell count in x-ray technicians. (author)

  14. Deep X-ray lithography for the fabrication of microstructures at ELSA

    Energy Technology Data Exchange (ETDEWEB)

    Pantenburg, F.J. E-mail: pantenburg@imt.fzk.de; Mohr, J

    2001-07-21

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 {mu}m are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.

  15. Deep X-ray lithography for the fabrication of microstructures at ELSA

    Science.gov (United States)

    Pantenburg, F. J.; Mohr, J.

    2001-07-01

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.

  16. Deep X-ray lithography for the fabrication of microstructures at ELSA

    International Nuclear Information System (INIS)

    Pantenburg, F.J.; Mohr, J.

    2001-01-01

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 μm are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described

  17. Deep X-ray lithography for the fabrication of microstructures at ELSA

    CERN Document Server

    Pantenburg, F J

    2001-01-01

    Two beamlines at the Electron Stretcher Accelerator (ELSA) of Bonn University are dedicated for the production of microstructures by deep X-ray lithography with synchrotron radiation. They are equipped with state-of-the-art X-ray scanners, maintained and used by Forschungszentrum Karlsruhe. Polymer microstructure heights between 30 and 3000 mu m are manufactured regularly for research and industrial projects. This requires different characteristic energies. Therefore, ELSA operates routinely at 1.6, 2.3 and 2.7 GeV, for high-resolution X-ray mask fabrication, deep and ultra-deep X-ray lithography, respectively. The experimental setup, as well as the structure quality of deep and ultra deep X-ray lithographic microstructures are described.

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... over time. top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and easiest ... bear denotes child-specific content. Related Articles and Media Radiation Dose in X-Ray and CT Exams ...

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... clothing that might interfere with the x-ray images. Women should always inform their physician and x-ray ... lowest radiation dose possible while producing the best images for ... organizations continually review and update the technique standards used ...

  20. X-ray spectroscopy of electronic quasimolecules. I. Isolation and study of particular K molecular-orbital transitions

    International Nuclear Information System (INIS)

    Liarokapis, E.; Zouros, T.J.M.; Greenberg, J.S.

    1987-01-01

    Selected K molecular-orbital (MO) transitions in collisions of 100-, 160-, and 200-MeV /sup 93/Nb on /sup 93/Nb and 200-MeV /sup 93/Nb on /sup 120/Sn have been isolated in a MO x-ray--K x-ray coincidence measurement. This experiment exploits the cascade relationship between the MO x rays emitted in transitions from the (2pπ/sub x/, 2pσ) MO's into the 1sσ MO and the characteristic K x ray which follows from the filling of the ensuing vacancy in the projectile or target atoms after their separation. In both symmetric and asymmetric systems, most of the high-energy MO x rays (C2 radiation) were found to be in coincidence with characteristic K x rays while the low-energy MO x rays (C1 radiation) were not correlated to the K x rays. Noncascade processes due to multiple vacancies in the 1sσ and 2pσ MO's were also found to contribute a small amount to the true MO x-ray--K x-ray coincidences. Theoretical estimates of the relative contributions of the isolated transitions as well as contributions from multiple vacancies are discussed

  1. Interfering line in trace analysis by X-ray spectrometry: Radiative auger satellites

    International Nuclear Information System (INIS)

    Maeda, Kuniko; Kawai, Jun.

    1994-01-01

    Strong characteristic X-ray lines (e.g. Kα and Kβ) are accompanied by broad low-energy satellites caused by the radiative Auger effect (RAE). In order to prove how the RAE satellites interfere the analysis of minor elements, low-energy side spectra of Ca and Ti Kβ, and Ca-Fe Kα were measured. The obtained RAE intensities are summarized together with published experimental and theoretical data. The integrated intensities of satellites due to K → MM, K → LM and K → LL RAE relative to that of Kα are determined to be of the order of 0.01-0.1%. This warns that the neglecting of the RAE satellites will introduce a serious error in trace analysis. (author)

  2. Fluorescent scanning x-ray tomography with synchrotron radiation

    Science.gov (United States)

    Takeda, Tohoru; Maeda, Toshikazu; Yuasa, Tetsuya; Akatsuka, Takao; Ito, Tatsuo; Kishi, Kenichi; Wu, Jin; Kazama, Masahiro; Hyodo, Kazuyuki; Itai, Yuji

    1995-02-01

    Fluorescent scanning (FS) x-ray tomography was developed to detect nonradioactive tracer materials (iodine and gadolinium) in a living object. FS x-ray tomography consists of a silicon (111) channel cut monochromator, an x-ray shutter, an x-ray slit system and a collimator for detection, a scanning table for the target organ, and an x-ray detector with pure germanium. The minimal detectable dose of iodine in this experiment was 100 ng in a volume of 2 mm3 and a linear relationship was shown between the photon counts of a fluorescent x ray and the concentration of iodine contrast material. A FS x-ray tomographic image was clearly obtained with a phantom.

  3. Superluminescence of cadmium sulfide crystals under pulse X-ray radiation

    International Nuclear Information System (INIS)

    Pavlovskaya, N.G.; Tarasov, M.D.; Balakin, V.A.; Varava, V.P.; Lobov, S.I.; Surskij, O.K.; Tsukerman, V.A.

    1977-01-01

    Studies were made to elucidate luminescence properties of CdS crystal radiated by short pulses of braking x-ray radiation. Such a radiation causes the appearance of superluminescence. The radiation was carried out at 295 and 170 K, the radiation dose being changed from 3600 to 1600 r/pulse. At the temperature of 295 K light luminescence was registered at the wave length of 528 nm and half-width of 15 nm. While the temperature lowers, the radiation shifts to the range of shorter wave lengths, and a decrease of the spectrum half-width is observed. With the increase of radiation dose the decrease of radiation spectrum half-width is observed. Approximate calculations show that to achieve the spectrum narrowing to 1 nm at room temperature it is necessary to increase radiation dose per pulse 5-6 times

  4. Optical and X-ray luminosities of expanding nebulae around ultraluminous X-ray sources

    Science.gov (United States)

    Siwek, Magdalena; Sądowski, Aleksander; Narayan, Ramesh; Roberts, Timothy P.; Soria, Roberto

    2017-09-01

    We have performed a set of simulations of expanding, spherically symmetric nebulae inflated by winds from accreting black holes in ultraluminous X-ray sources (ULXs). We implemented a realistic cooling function to account for free-free and bound-free cooling. For all model parameters we considered, the forward shock in the interstellar medium becomes radiative at a radius ˜100 pc. The emission is primarily in optical and UV, and the radiative luminosity is about 50 per cent of the total kinetic luminosity of the wind. In contrast, the reverse shock in the wind is adiabatic so long as the terminal outflow velocity of the wind vw ≳ 0.003c. The shocked wind in these models radiates in X-rays, but with a luminosity of only ˜1035 erg s-1. For wind velocities vw ≲ 0.001c, the shocked wind becomes radiative, but it is no longer hot enough to produce X-rays. Instead it emits in optical and UV, and the radiative luminosity is comparable to 100 per cent of the wind kinetic luminosity. We suggest that measuring the optical luminosities and putting limits on the X-ray and radio emission from shock-ionized ULX bubbles may help in estimating the mass outflow rate of the central accretion disc and the velocity of the outflow.

  5. Sources of linear polarized x-rays

    International Nuclear Information System (INIS)

    Aiginger, H.; Wobrauschek, P.

    1989-01-01

    Linear polarized X-rays are used in X-ray fluorescence analysis to decrease the background caused by scattered photons. Various experiments, calculations and constructions have demonstrated the possibility to produce polarized radiation in an analytical laboratory with an X-ray tube and polarizer-analyzer facilities as auxiliary equipment. The results obtained with Bragg-polarizers of flat and curved focussing geometry and of Barkla-polarizers are presented. The advantages and disadvantages of the method are discussed and compared with the respective quality of synchrotron radiation. Polarization by scattering reduces the intensity of the primary radiation. Recently much effort is devoted to the construction of integrated high power X-ray tube polarizer-analyzer arrangements. The detailed design, geometry and performance of such a facility is described. (author)

  6. X-RAY AND GAMMA-RAY FLASHES FROM TYPE Ia SUPERNOVAE?

    International Nuclear Information System (INIS)

    Hoeflich, Peter; Schaefer, Bradley E.

    2009-01-01

    We investigate two potential mechanisms that will produce X-ray and γ-ray flashes from Type Ia supernovae (SN-Ia). The first mechanism is the breakout of the thermonuclear burning front as it reaches the surface of the white dwarf (WD). The second mechanism is the interaction of the rapidly expanding envelope with material within an accretion disk in the progenitor system. Our study is based on the delayed detonation scenario because this can account for the majority of light curves, spectra, and statistical properties of 'Branch-normal' SN-Ia. Based on detailed radiation-hydro calculations which include nuclear networks, we find that both mechanisms produce brief flashes of high-energy radiation with peak luminosities of 10 48 -10 50 erg s -1 . The breakout from the WD surface produces flashes with a rapid exponential decay by 3-4 orders of magnitude on timescales of a few tenths of a second and with most of the radiation in the X-ray and soft γ-ray range. The shocks produced in gases in and around the binary will produce flashes with a characteristic duration of a few seconds with most of the radiation coming out as X-rays and γ-rays. In both mechanisms, we expect a fast rise and slow decline and, after the peak, an evolution from hard to softer radiation due to adiabatic expansion. In many cases, flashes from both mechanisms will be superposed. The X- and γ-ray visibility of an SN-Ia will depend strongly on self-absorption within the progenitor system, specifically on the properties of the accretion disk and its orientation toward the observer. Such X-ray and γ-ray flashes could be detected as triggered events by gamma-ray burst (GRB) detectors on satellites, with events in current GRB catalogs. We have searched through the GRB catalogs (for the BATSE, HETE, and Swift experiments) for GRBs that occur at the extrapolated time of explosion and in the correct direction for known Type Ia supernovae with radial velocity of less than 3000 km s -1 . For the Burst

  7. Teratogenic effects of x-rays

    International Nuclear Information System (INIS)

    Faisal, Arif

    1981-01-01

    The application of x-rays in the medical field has positive and negative effects. The effects of x-ray radiation to the intrauterine embryo and foetus depend on the period of gestation. In the first trimester the embryo may be resorbed and aborted and may also be born with serious defects. In the late trimester radiation may cause less serious defects and it may disturb the function of organs. Many defects involve nerve tissues and are associated with symptoms of mental retardation. To prevent radiation exposure to embryo and foetus, it is necessary to observe the ''ten-day rule'', when x-ray examination is performed. The threshold doses for embryo and foetus are still unknown. (author)

  8. Inelastic X-ray scattering activities in Europe

    International Nuclear Information System (INIS)

    Dorner, B.

    1984-01-01

    Inelastic X-ray scattering requires an energy determination before and after the scattering process together with a technique to vary at least one energy continuously in a controlled way. Sufficiently monochromatic beams can only be produced by Bragg reflection from single crystals. Stationary X-ray monochromators are standard equipment of conventional X-ray generators to select a particular characteristic line. Quite often they are curved to focus on the sample or the detector. Devices with variable Bragg angle have been and are used as analyzers in Compton scattering which is inelastic X-ray scattering with moderate resolution. With the rapidly increasing availability of synchrotron radiation (SR) monochromators and analyzers became more and more sophisticated improving momentum (Q) resolution and only somewhat the energy resolution ΔE which stays in the order of eV. Very high energy resolution can only be obtained with Bragg angles Theta near to 90 0 . This field is the topic of the present paper

  9. Effect of infrared and X-ray radiation on thymus cells and the rate of growth of Ehrlich carcinoma.

    Science.gov (United States)

    Dyukina, A R; Zaichkina, S I; Rozanova, O M; Aptikaeva, G F; Romanchenko, S P; Sorokina, S S

    2012-09-01

    We studied the effect of infrared light with a wavelength of 850 nm and modulated frequency of 101 Hz and X-ray radiation on the induction of cross-adaptive and radiation responses in the thymus and on the rate of tumor growth in mice in vivo. Preliminary exposure to infrared and X-ray radiation was shown to result in recovery in thymus weight after irradiation in a dose of 1.5 Gy and also inhibited the growth rate of Ehrlich carcinoma. These data attest to common mechanisms of the adaptive response induced by infrared and X-ray radiation in mice. Infrared light can be used as an adaptogen to adapt the animals to adverse factors.

  10. X-raying with low dose irradiation

    International Nuclear Information System (INIS)

    Malevich, E.E.; Kisel, E.M.; Shpita, I.D.; Lazovsky, A.S.

    2001-01-01

    With the purpose of the improvement of diagnostics quality and reduction of beam load on a patient in modern x-ray devices pulse x-raying is applied. It is based on the using of radiation pulses with various frequencies of intervals between them instead of continuous radiation. At pulse x-raying with the net control the principle of filling of an interval is used, when the information about the image, received with the last pulse, get into memory and is displayed before occurrence of other pulse. It creates impression of the continuous image even at low frequency of pulses. Due to the unique concept of the simultaneous (double) control, all of 3 parameters, which define the quality of the image (pressure(voltage), force of a current and length of a pulse), are adjusted automatically at each pulse, thus optimum adaptation to varied thickness of object during dynamic researches occurs. At x-raying pulse the presence of a free interval from x-ray radiation between two pulses results in the decrease of a radiation dose. Pulsing occurs some times per one second with equal intervals between pulses. Thus, the degree of decrease irradiation dose depends on duration of a pause between pulses. On the screen the image of last pulse before occurrence of the following is kept and repeats. The principle of x-raying pulse was realized in system Grid Controlled Fluoroscopy by the firm 'Philips Medi zin Systeme'. In the x-ray tube of this system inclusion and de energizing of radiation occurs directly on a source. Electron cloud is broken off by the special grid, which is located between the cathode and the anode and operates as a barrier. Thus the tube continues to be energized. In usual devices for pulses formation is used generator pulsation system, which at increase and attenuation of a x-ray pulse results in occurrence of the increasing and fading radiation which are not participating in the formation of the image, but creating beam load on the patient and the personnel. Thus

  11. A study on enforcement effects of radiation safety control regulations for diagnostic X-ray equipment

    International Nuclear Information System (INIS)

    Sung, Mo IL; Park, Myeong Hwan; Kwon, Duk Moon; Lee, Joon IL

    1999-01-01

    The purposes of this study are to analyze the realities after enforcements of safety control regulations for diagnostic X-ray equipment and to suggest means for an improvement of low radiation safety control. A questionnaire survey for medical radiologic technologists was carried out to determine enforcement effects of the safety control regulations. The results of analysis from the survey are as follows. That is, most of he respondents realized the importance of the radiation safety control system, but about a half of them revealed that regulations were not well observed in accordance with their purposes. Only 43.9 percent of the respondents took an active part in quality control of radiation. And responsibility, sex, age, and knowledge for safety control were important indicators for observations of the regulations. Training for the safety control regulations are needed to ensure safety control and proper usage of diagnostic X-ray equipment. And management of organizations using diagnostic X-ray equipment have to understand and stress the importance of radiation safety control system. (author)

  12. Characterization of Scintillating X-ray Optical Fiber Sensors

    Science.gov (United States)

    Sporea, Dan; Mihai, Laura; Vâţă, Ion; McCarthy, Denis; O'Keeffe, Sinead; Lewis, Elfed

    2014-01-01

    The paper presents a set of tests carried out in order to evaluate the design characteristics and the operating performance of a set of six X-ray extrinsic optical fiber sensors. The extrinsic sensor we developed is intended to be used as a low energy X-ray detector for monitoring radiation levels in radiotherapy, industrial applications and for personnel dosimetry. The reproducibility of the manufacturing process and the characteristics of the sensors were assessed. The sensors dynamic range, linearity, sensitivity, and reproducibility are evaluated through radioluminescence measurements, X-ray fluorescence and X-ray imaging investigations. Their response to the operating conditions of the excitation source was estimated. The effect of the sensors design and implementation, on the collecting efficiency of the radioluminescence signal was measured. The study indicated that the sensors are efficient only in the first 5 mm of the tip, and that a reflective coating can improve their response. Additional tests were done to investigate the concentricity of the sensors tip against the core of the optical fiber guiding the optical signal. The influence of the active material concentration on the sensor response to X-ray was studied. The tests were carried out by measuring the radioluminescence signal with an optical fiber spectrometer and with a Multi-Pixel Photon Counter. PMID:24556676

  13. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  14. FDTD parallel computational analysis of grid-type scattering filter characteristics for medical X-ray image diagnosis

    International Nuclear Information System (INIS)

    Takahashi, Koichi; Miyazaki, Yasumitsu; Goto, Nobuo

    2007-01-01

    X-ray diagnosis depends on the intensity of transmitted and scattered waves in X-ray propagation in biomedical media. X-ray is scattered and absorbed by tissues, such as fat, bone and internal organs. However, image processing for medical diagnosis, based on the scattering and absorption characteristics of these tissues in X-ray spectrum is not so much studied. To obtain precise information of tissues in a living body, the accurate characteristics of scattering and absorption are required. In this paper, X-ray scattering and absorption in biomedical media are studied using 2-dimensional finite difference time domain (FDTD) method. In FDTD method, the size of analysis space is very limited by the performance of available computers. To overcome this limitation, parallel and successive FDTD method is introduced. As a result of computer simulation, the amplitude of transmitted and scattered waves are presented numerically. The fundamental filtering characteristics of grid-type filter are also shown numerically. (author)

  15. Arrangement for X-ray shield

    International Nuclear Information System (INIS)

    1980-01-01

    X-ray screen unit consisting of a light transmissive carrier onto which scintillation material is deposited, which is able to generate light under the influence of incident X-ray irradiation, characterised in that the X-ray screen comprises a number of sectors, wherein the surface with respect to the incident X-radiation is maintained at an acute angle. (G.C.)

  16. Beryllium window flange for synchrotron radiation X-ray beamline fabricated by hot isostatic press method

    International Nuclear Information System (INIS)

    Asaoka, Seiji; Maezawa, Hideki; Nishida, Kiyotoshi; Sakamoto, Naoki.

    1995-01-01

    The synchrotron radiation experimental facilities in National Laboratory for High Energy Physics are the experimental facilities for joint utilization, that possess the positron storage ring of 2.5 GeV exclusively used for synchrotron radiation. Synchrotron radiation is led through a mainstay beam channel to the laboratory, and in the beam line of X-ray, it is used for experiment through the taking-out window made of beryllium. At this time, the function of the taking-out window is to shut off between the ultrahigh vacuum in the mainstay beam channel and the atmosphere, and to cut the low energy component of synchrotron radiation spectra. The experiment using X-ray is carried out mostly in the atmosphere. The design of the efficient cooling water channel which is compatible with the flange construction is important under the high thermal load of synchrotron radiation. The beryllium window flange for synchrotron radiation X-ray was made by HIP method, and the ultrahigh vacuum test, the high pressure water flow test and the actual machine test were carried out by heat cycle. The properties required for the window material, the requirement of the construction, the new development of HIP method, and the experiments for evaluating the manufactured beryllium window are described. (K.I.)

  17. Measurement of the energy and power radiated by a pulsed blackbody x-ray source

    International Nuclear Information System (INIS)

    Chandler, Gordon Andrew; McDaniel, Dillon Heirman; Jorgenson, Roy E.; Warne, Larry Kevin; Dropinski, Steven Clark; Hanson, Donald L.; Johnson, William Arthur; York, Mathew William; Lewis, D.F.; Korde, R.; Haslett, C.L.; Wall, D.L.; Ruggles, Laurence E.; Ramirez, L.E.; Stygar, William A.; Porter, John Larry Jr.; McKenney, John Lee; Bryce, Edwin Anthony; Cuneo, Michael Edward; Torres, Jose A.; Mills, Jerry Alan; Leeper, Ramon Joe; McGurn, John Stephen; Fehl, David Lee; Spielman, R. B.; Pyle, John H.; Mazarakis, Michael Gerrassimos; Ives III, Harry Crockett; Seamen, Johann F.; Simpson, Walter W.

    2006-01-01

    We have developed a diagnostic system that measures the spectrally integrated (i.e. the total) energy and power radiated by a pulsed blackbody x-ray source. The total-energy-and-power (TEP) diagnostic system is optimized for blackbody temperatures between 50 and 350 eV. The system can view apertured sources that radiate energies and powers as high as 2 MJ and 200 TW, respectively, and has been successfully tested at 0.84 MJ and 73 TW on the Z pulsed-power accelerator. The TEP system consists of two pinhole arrays, two silicon-diode detectors, and two thin-film nickel bolometers. Each of the two pinhole arrays is paired with a single silicon diode. Each array consists of a 38 x 38 square array of 10-(micro)m-diameter pinholes in a 50-(micro)m-thick tantalum plate. The arrays achromatically attenuate the x-ray flux by a factor of ∼1800. The use of such arrays for the attenuation of soft x rays was first proposed by Turner and co-workers [Rev. Sci. Instrum. 70, 656 (1999)RSINAK0034-674810.1063/1.1149385]. The attenuated flux from each array illuminates its associated diode; the diode's output current is recorded by a data-acquisition system with 0.6-ns time resolution. The arrays and diodes are located 19 and 24 m from the source, respectively. Because the diodes are designed to have an approximately flat spectral sensitivity, the output current from each diode is proportional to the x-ray power. The nickel bolometers are fielded at a slightly different angle from the array-diode combinations, and view (without pinhole attenuation) the same x-ray source. The bolometers measure the total x-ray energy radiated by the source and--on every shot--provide an in situ calibration of the array-diode combinations. Two array-diode pairs and two bolometers are fielded to reduce random uncertainties. An analytic model (which accounts for pinhole-diffraction effects) of the sensitivity of an array-diode combination is presented

  18. X-ray image intensifier photography

    International Nuclear Information System (INIS)

    Richter, K.; Angerstein, W.; Steinhardt, L.

    1980-01-01

    The present treatise on X-ray image intensifier photography starts with introductory remarks on the history of X-ray imaging and image intensifiers. In the physical-technological part especially the quality of image and the methods of its measurement are discussed in detail. The relevant equipment such as image intensifier cameras, X-ray television, video recorder and devices of display and evaluation of images are presented as well as problems of radiation doses and radiation protection. Based on 25,000 examinations of the digestive, the biliary and the urinary tract, resp., as well as of the blood vessels the applicability of the X-ray image intensifier photography and its diagnostic value are demonstrated in the medical part of the book

  19. Improvement way for mobile X-ray examinations by rule revision about safety management of diagnosis radiation occurrence system

    International Nuclear Information System (INIS)

    Choi, Jun Gu; Kim, Gyeong Su; Kim, Byeong Gi; Ahn, Nam Jun; Kim, Hyeong Sun; Kim, Sang Geon; Lim, Si Eun

    2007-01-01

    A safety management rule of the diagnosis radiation system which opened a court 2006 February 10th was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this study is to minimize injury by radiation that can happen to patients and people around a sick ward when managing mobile X-ray system. This study analyzed sickroom environment of mobile X-ray examination and the statistical data of the Konkuk medical Information System (KIS) and the Picture Archiving Communication System (PACS). This study also investigated patient conditions, infection, relation information and related data, when the sickroom mobile X-ray examination is used. Through data analysis, many problems were expected such as restriction of space side, manpower and expense of business side, satisfaction degree decline of patient and protector of operation side. Therefore, we tried to restrict examination of multi bed sickroom, and to use treatment room in each ward to solve problem mentioned. As a result, the whole sickroom mobile X-ray examination rate decreased to near 50%, and mobile X-ray examination rate for inpatients decreased to more than 85%. This study shows that several attempts we did should be helpful for manpower, patients satisfaction and expenses. Also, they should protect patients in sickroom from unnecessary radiation exposure and could minimize inconvenience of patients and their family members from x-ray examination

  20. A New Two-fluid Radiation-hydrodynamical Model for X-Ray Pulsar Accretion Columns

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA USA (United States)

    2017-02-01

    Previous research centered on the hydrodynamics in X-ray pulsar accretion columns has largely focused on the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface. This type of model has been relatively successful in describing the overall properties of the accretion flows, but it does not account for the possible dynamical effect of the gas pressure. On the other hand, the most successful radiative transport models for pulsars generally do not include a rigorous treatment of the dynamical structure of the column, instead assuming an ad hoc velocity profile. In this paper, we explore the structure of X-ray pulsar accretion columns using a new, self-consistent, “two-fluid” model, which incorporates the dynamical effect of the gas and radiation pressures, the dipole variation of the magnetic field, the thermodynamic effect of all of the relevant coupling and cooling processes, and a rigorous set of physical boundary conditions. The model has six free parameters, which we vary in order to approximately fit the phase-averaged spectra in Her X-1, Cen X-3, and LMC X-4. In this paper, we focus on the dynamical results, which shed new light on the surface magnetic field strength, the inclination of the magnetic field axis relative to the rotation axis, the relative importance of gas and radiation pressures, and the radial variation of the ion, electron, and inverse-Compton temperatures. The results obtained for the X-ray spectra are presented in a separate paper.

  1. Radiation exposure to the patient during X-ray fluoroscopy and radiography

    International Nuclear Information System (INIS)

    Dimov, A.; Vassileva, J.

    2006-01-01

    Full text: The aim of this study is to assess the patient doses received during conventional and digital X-ray radiography, conventional fluoroscopy of the lungs, and one of the highest dose X-ray procedures - contrast examination of the large intestine (Barium enema examination). The measured quantity is Kerma area product (KAP), registered with a clinical dosimeter DRK-1 (Doza, Russia). A total number of 89 patients are included in the study. The Organ doses and Effective doses were assessed using Monte Carlo calculation code (PCXMC 1.4 (Finland). The measurements took place at the following X-ray units: a CGR (Koch and Sterzel) with two working posts - for radiography and fluoroscopy, a Philips Telediagnost (for barium enema) and an Oldelft N800HF Digidelca (for digital radiography of the chest). The typical KAP per procedure at digital radiography, conventional X-ray radiography and fluoroscopy and Barium enema examination are: 17; 95; 928 and 3630 cGy.cm 2 respectively; the average effective doses are: 0.022; 0.053; 0.728 and 8.0 mSv respectively. Doses to the lungs at digital radiography, conventional radiography and fluoroscopy are: 0.066; 0.136 and 2.412 mSv respectively and the dose to the upper and lower large intestine are: 11.7 and 8.6 mSv respectively. Conclusion: The approach used is applicable for assessment of radiation exposure to the patient during X-ray radiography and fluoroscopy. It needs registration of KAP meter readings when this device is installed on the stationary X-ray units

  2. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Science.gov (United States)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  3. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  4. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    International Nuclear Information System (INIS)

    Heintz, Desiree Ellen

    2012-07-01

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  5. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  6. X-ray optics, a vital aspect of work with synchrotron radiation

    International Nuclear Information System (INIS)

    Bilderback, D.H.

    1986-01-01

    The kind of optical components that have been developed over the centuries to make use of visible light won't work for x-rays. New ways must be found to manipulate the much shorter-wavelength x-ray beams to produce effects similar to those achieved with such familiar devices as mirrors, lenses, prisms, and gratings. This is the province of the field of x-ray optics. One challenge is to design optical elements that can focus, disperse, or reflect beams in the x-ray region of the electromagnetic spectrum, where wavelengths are about a thousand times shorter than those in the region of visible light. A second problem is encountered in using the intense, high-energy x-radiation from a synchrotron: how to make the desired beam accessible to a user who is conducting an experiment in a shielded enclosure many meters away from the synchrotron storage ring. Depending on the application, one might want to pick out a single wavelength from the broad spectrum available from the synchrotron, or isolate a narrow band of wavelengths. Then the beam must be collimated. When samples to be exposed are of millimeter dimension or smaller, it may be desirable to increase the intensity by focusing the x-ray beam horizontally and vertically. All these manipulations are analogous to those done with visible light, but the shape and form of the optical components can be quite different

  7. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-11-02

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location ({approx}1.7 m from the target) would be {approx}1.4e9/cm{sup 2}. Previous measurements suggest the onset of significant background at a neutron fluence of {approx} 1e8/cm{sup 2}. The radiation damage and operational upsets which starts at {approx}1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor {approx}50.

  8. Neutron Radiation Shielding For The NIF Streaked X-Ray Detector (SXD) Diagnostic

    International Nuclear Information System (INIS)

    Song, P; Holder, J; Young, B; Kalantar, D; Eder, D; Kimbrough, J

    2006-01-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is preparing for the National Ignition Campaign (NIC) scheduled in 2010. The NIC is comprised of several ''tuning'' physics subcampaigns leading up to a demonstration of Inertial Confinement Fusion (ICF) ignition. In some of these experiments, time-resolved x-ray imaging of the imploding capsule may be required to measure capsule trajectory (shock timing) or x-ray ''bang-time''. A capsule fueled with pure tritium (T) instead of a deutriun-tritium (DT) mixture is thought to offer useful physics surrogacy, with reduced yields of up to 5e14 neutrons. These measurements will require the use of the NIF streak x-ray detector (SXD). The resulting prompt neutron fluence at the planned SXD location (∼1.7 m from the target) would be ∼1.4e9/cm 2 . Previous measurements suggest the onset of significant background at a neutron fluence of ∼ 1e8/cm 2 . The radiation damage and operational upsets which starts at ∼1e8 rad-Si/sec must be factored into an integrated experimental campaign plan. Monte Carlo analyses were performed to predict the neutron and gamma/x-ray fluences and radiation doses for the proposed diagnostic configuration. A possible shielding configuration is proposed to mitigate radiation effects. The primary component of this shielding is an 80 cm thickness of Polyethylene (PE) between target chamber center (TCC) and the SXD diagnostic. Additionally, 6-8 cm of PE around the detector provide from the large number of neutrons that scatter off the inside of the target chamber. This proposed shielding configuration reduces the high-energy neutron fluence at the SXD by approximately a factor ∼50

  9. Center for X-ray Optics, 1988

    International Nuclear Information System (INIS)

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source

  10. [Standards and guidelines of radiation protection and safety in dental X-ray examinations].

    Science.gov (United States)

    Guo, X L; Li, G; Cheng, Y; Yu, Q; Wang, H; Zhang, Z Y

    2017-12-09

    With the rapid development of imaging technology, the application of dental imaging in diagnosis, treatment planning, intraoperative surgical navigation, monitoring of treatment or lesion development and assessment of treatment outcomes is playing an essential role in oral healthcare. The increased total number of dental X-ray examinations is accompanied by a relatively significant increase in collective dose to patients as well as to dental healthcare workers, which is harmful to human bodies to a certain degree. Some radiation protection standards and guidelines in dental radiology have been published in European countries, US, Canada and Australia, etc. Adherence to these standards and guidelines helps to achieve images with diagnostic quality and avoid unnecessary and repeated exposures. However, no radiation protection standard or guideline with regard to dental X-ray examinations has been put in force so far in mainland China. Therefore, a literature review on available radiation protection standards and guidelines was conducted to provide reference to the development of radiation protection standards or guidelines in mainland China.

  11. Observations of several disruptions in PLT using soft and ultra-soft x-ray radiation

    International Nuclear Information System (INIS)

    Eames, D.R.; von Goeler, S.; Sauthoff, N.R.; Stodiek, W.

    1979-03-01

    The evolution of ultra-soft x-ray radiation (USX, hν approx. > 100 eV) is compared to that of the soft x-ray radiation (SX, hν approx. > 1000 eV) during several disruptions in PLT. Spatial resolution is obtained in both cases by arrays of silicon surface barrier detectors viewing along different chords. During some disruptions the USX behaves quite differently from the SX, and a classification is made based on the USX behavior. Different interpretations of the data are discussed, along with the possibility that these measurements may distinguish between the roles of temperature and impurity density changes during disruptions

  12. Recent trends of projection X-ray microscopy in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Yada, K. [Tohken CO., LTD. 2-27-7 Tamagawa Chofu, Tokyo 182-0025 (Japan)], E-mail: kyada@tohken.co.jp

    2009-08-15

    Recent activities of projection X-ray microscopy in Japan are reviewed. 1) By employing high brightness Schottky electron gun, resolution of 0.1 {mu}m is realized by Tohken CO. group and some application examples are shown. 2) Deblurring of Fresnel diffracted image formed by synchrotron orbital radiation (SOR) X-rays is successfully tried by Chiba University group. Remarkable Fresnel fringes appearing at HeLa cell are mostly reconstructed by an iteration method. 3) Element analysis is carried out by Meiji University group utilizing absorption-edge characteristics between two kinds of X-ray targets without X-ray spectrometer. Actually, Cu and Ni targets are used with an inter-changeable system for elemental analysis of Fe{sub 2}O{sub 3} particles and iron component in a mosquito larva.

  13. Evaluation of the Beam Quality of Intraoral X-ray Equipment using Intraoral Standard Films

    International Nuclear Information System (INIS)

    Lee, Sang Sub; Kwon, Hyok Rak; Sim, Woo Hyoun; Oh, Seung Hyoun; Lee, Ji Youn; Jeon, Kug Jin; Kim, Kee Deog; Park, Chang Seo

    2000-01-01

    This study was to evaluate the beam quality of intraoral X-ray equipment used at Yonsei University Dental Hospital (YUDH) using the half value layer (HVL) and the characteristic curve of intraoral standard X-ray film. The study was done using the intraoral X-ray equipment used at each clinical department at YUDH. Aluminum filter was used to determine the HVL. Intraoral standard film was used to get the characteristic curve of each intraoral X-ray equipment. Most of the HVLs of intraoral X-ray equipment were higher than the least recommended thickness, but the REX 601 model used at the operative dentistry department and the X-707 model used at the pediatric dentistry department had HVLs lower than the recommended thickness. The slopes of the characteristic curves of films taken using the PANPAS 601 model and REX 601 model at operative dentistry department, the X-70S model of prosthodontic dentistry department, and the REX 601 model at the student clinic were relatively low. HVL and the characteristic curve of X-ray film can be used to evaluate the beam quality of intraoral X-ray equipment. In order to get the best X-ray films with the least radiation exposure to patients and best diagnostic information in clinical dentistry, X-ray equipment should be managed in the planned and organized fashion.

  14. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Vives, Ana Elisa Sirito de; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario

    2005-01-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of ∼ 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  15. Metals determination in wood treated by synchrotron radiation X-ray fluorescence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br; Silva, Richard Maximiliano da Cunha [Centro de Energia Nuclear na Agricultura, Piracicaba, SP (Brazil)]. E-mail: maxcunha@cena.usp.br; Medeiros, Jean Gabriel da Silva; Tomazello Filho, Mario [Sao Paulo Univ., Piracicaba, SP (Brazil). Escola Superior de Agricultura Luiz de Queiroz]. E-mail: jeangm@esalq.usp.br; mtomazel@esalq.usp.br; Moreira, Silvana [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: Silvana@fec.unicamp.br; Zucchi, Orgheda Luiza Araujo Domingues [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Barroso, Regina Cely [Universidade do Estado, Rio de Janeiro, RJ (Brazil)]. E-mail: cely@uerj.br

    2005-07-01

    The paper describes the use of X-Ray fluorescence analysis for distribution and quantification of metals in the hardwood (Eucalyptus sp) and softwood (Pinus sp) treated with CCA (copper-chromium-arsenic). The sapwood/heartwood for hardwood sample and the growth-rings for softwood sample were analyzed. The samples were scanned in 320 mm steps in the vertical direction. For excitation of the elements a white beam synchrotron radiation of {approx} 320 x 180 mm was employed and for the X-ray detection a Si(Li) semiconductor detector. The elements K, Ca, Cr, Mn, Cu, Zn and As were determined. Fundamental parameters were used to quantify the elements concentrations. (author)

  16. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  17. X-ray transport and radiation response assessment (XTRRA) experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B., E-mail: fournier2@llnl.gov; Brown, C. G.; Yeoman, M. F.; Compton, S.; Holdener, F. R.; Kemp, G. E.; Blue, B. E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States); Fisher, J. H.; Newlander, C. D.; Gilliam, R. P.; Froula, N. [Fifth Gait Technologies, Inc., 14040 Camden Circle, Huntsville, Alabama 35803 (United States); Seiler, S. W.; Davis, J. F.; Lerch, MAJ. A. [Defense Threat Reduction Agency, 8725 John J. Kingman Road, Fort Belvoir, Virginia 22060-6201 (United States); Hinshelwood, D. [Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375 (United States); Lilly, M. [Dynasen, Inc., 20 Arnold Pl., Goleta, California 93117 (United States)

    2016-11-15

    Our team has developed an experimental platform to evaluate the x-ray-generated stress and impulse in materials. Experimental activities include x-ray source development, design of the sample mounting hardware and sensors interfaced to the National Ignition Facility’s diagnostics insertion system, and system integration into the facility. This paper focuses on the X-ray Transport and Radiation Response Assessment (XTRRA) test cassettes built for these experiments. The test cassette is designed to position six samples at three predetermined distances from the source, each known to within ±1% accuracy. Built-in calorimeters give in situ measurements of the x-ray environment along the sample lines of sight. The measured accuracy of sample responses as well as planned modifications to the XTRRA cassette is discussed.

  18. Characteristics of X-ray fluorescence of nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seunghoon; Kwak, Sung-Woo; Shin, Jung-Ki; Park, Uk-Rayng; Jung, Heejun [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-10-15

    LED is a technique of determination of uranium concentration as a continuous X-ray energy beams transmit a uranium liquid sample for safeguards. Compared to K-edge densitometer, due to relatively lower energy (L-edge energy is 17.17 keV) of Uranium L series energy than K-series energy, L-edge densitometer does not require high purity germanium detector with liquid nitride cooling. Therefore, the Ledge densitometer is appropriate for portable equipment for on-site nuclear material inspection and safeguards at facility sites. XRF combined with LED is a technique of finding of nuclear materials from reflected characteristic X-ray photons. In this study, characteristics of XRF of nuclear materials are simulated Monte Carlo method (Geant4) for feasibility of the system for determination of concentration of nuclear species. The analysis method of uranium concentration or minor actinides is applied using combination of linear extrapolation from jump of L-edge of sample and ratio between uranium and minor actinide from XRF measurement. In this study, The XRF ch aracteristics was simulated from Monte Carlo method. The peaks were obtained from nuclear material mixture. The estimated nuclear material concentration is low due to the volume effect of the sample. The correction factor or minimization of the effect is required.

  19. X-ray radiation detectors of 'scintillator-photoreceiving device type' for industrial digital radiography with improved spatial resolution

    International Nuclear Information System (INIS)

    Ryzhykov, V.D.; Lysetska, O.K.; Opolonin, O.D.; Kozin, D.N.

    2003-01-01

    Main types of photo receivers used in X-ray digital radiography systems are luminescent screens that transfer the optical image onto charge collection instruments, which require cooling, and semiconductor silicon detectors, which limit the contrast sensitivity. We have developed and produced X-ray radiation detectors of 'scintillator-photoreceiving device' (S-PRD) type, which are integrally located on the inverse side of the photodiode (PD). The receiving-converting circuit (RCC) is designed for data conversion into digital form and their input into PC. Software is provided for RCC control and image visualization. Main advantages of these detectors are high industrial resolution (3-5 line pairs per mm), detecting activity up to 20 μm, controlled sensitivity, low weight and small size, imaging low (0.1-0.3 mrad) object dose in real time. In this work, main characteristics of 32-, 64- and 1024-channel detectors of S-PRD type were studied and compared for X-ray sensitivity with S-PD detectors. Images of the tested objects have been obtained. Recommendations are given on the use of different scintillation materials, depending upon the purpose of a digital radiographic system. The detectors operate in a broad energy range of ionizing radiation, hence the size of the controlled object is not limited. The system is sufficiently powerful to ensure frontal (through two walls) observation of pipelines with wall thickness up to 10 cm

  20. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Rosado, P.H.G.; Cunha, P.G. [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  1. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    International Nuclear Information System (INIS)

    Guimarães, M.C.; Silva, C.R.E.; Silva, T.A. da; Rosado, P.H.G.; Cunha, P.G.

    2017-01-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work. (author)

  2. Study of electrons distribution produced by laser-plasma interaction on x-ray generation

    International Nuclear Information System (INIS)

    Nikzad, L.; Sadighi-Bonabi, R.

    2010-01-01

    Complete text of publication follows. In the present work, X-ray beams are generated from interaction of relativistic electron beams produced by interaction of 500 mJ, 30 femtosecond Ti:sapphire laser pulses with thin solid targets such as lead, molybdenum and tungsten. After interaction of an intense pulsed laser with He gas-jet, a micron-scale laser produced plasma, creates and accelerates electron bunches, which propagate in the ion channel produced in the wake of the laser pulse. When an electron bunch is injected into the bubble in phase with its field, it will gain relativistic energies within very short distance. These accelerated electrons with Megaelectron-Volt energy and different distributions, can interact with targets to generate X-ray radiation with Kiloelectron-Volt energy, providing to be close enough to the gas-jet, where the relativistic accelerated electrons exist. Here, to determine the results, Monte Carlo simulation (MCNP-4C code) is employed to present Bremsstrahlung and characteristic X-ray production by quasi-Maxwellian and quasi-monoenergetic electron beams for three samples with different thicknesses. The outcome shows that for one specific electron spectrum and one definite target, the energy which the maximum characteristic x-ray flux takes place, varies with thickness. Also, for each material the energy which this maximum happens is constant for all thicknesses, for both produced electron spectra. For each sample, x-ray flux is calculated for different thicknesses and the thickness which the maximum characteristic x-ray flux occurs is obtained. Besides, it is concluded that by increasing the atomic number of the target, maximum X-ray flux moves towards higher energy. Also, comparison of the results for three targets and two electron distributions shows that by using quasi-monoenergetic electron spectra, more intense and narrower characteristic X-ray can be produced compared to the quasi-Maxwellian electron distribution, almost for all

  3. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography. The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source. 8 refs., 5 figs

  4. High-energy synchrotron radiation x-ray microscopy: Present status and future prospects

    International Nuclear Information System (INIS)

    Jones, K.W.; Gordon, B.M.; Spanne, P.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    High-energy radiation synchrotron x-ray microscopy is used to characterize materials of importance to the chemical and materials sciences and chemical engineering. The x-ray microscope (XRM) forms images of elemental distributions fluorescent x rays or images of mass distributions by measurement of the linear attenuation coefficient of the material. Distributions of sections through materials are obtained non-destructively using the technique of computed microtomography (CMT). The energy range of the x rays used for the XRM ranges from a few keV at the minimum value to more than 100 keV, which is sufficient to excite the K-edge of all naturally occurring elements. The work in progress at the Brookhaven NSLS X26 and X17 XRM is described in order to show the current status of the XRM. While there are many possible approaches to the XRM instrumentation, this instrument gives state-of-the-art performance in most respects and serves as a reasonable example of the present status of the instrumentation in terms of the spatial resolution and minimum detection limits (MDLs) obtainable. The examples of applications cited give an idea of the types of research fields that are currently under investigation. They can be used to illustrate how the field of x-ray microscopy will benefit from the use of bending magnets and insertion devices at the Advanced Photon Source (APS)

  5. Interpretation of the X-ray variability of type 1 Seyfert galaxy nuclei and quasars

    International Nuclear Information System (INIS)

    Zentsova, A.S.

    1985-01-01

    The hypothesis is analyzed that the X-ray variability of type 1 Seyfert galaxies ad quasars causes the absorption of the central object X radiation by emission clouds. It is shown that this hypothesis can explain the characteristic time scale of the X-ray variability and its amplitude. It is indicated that systematic X-ray observations of Seyfert galaxies and quasars for the investigation of the physical conditions in the emission clouds are important

  6. Radiation damage resistance in mercuric iodide X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B E; Dolin, R C; Devore, T M; Markakis, J M [EG and G Energy Measurements, Inc., Goleta, CA (USA); Iwanczyk, J S; Dorri, N [Xsirius, Inc., Marina del Rey, CA (USA); Trombka, J [National Aeronautics and Space Administration, Greenbelt, MD (USA). Goddard Space Flight Center

    1990-12-20

    Mercuric iodide (HgI{sub 2}) radiation detectors show great potential as ambient-temperature solid-state detectors for X-rays, gamma rays and visible light, with parameters that are competitive with existing technologies. In a previous experiment, HgI{sub 2} detectors irradiated with 10 MeV protons/cm{sup 2} exhibited no damage. The 10 MeV protons represent only the low range of the spectrum of energies that are important. An experiment has been conducted at the Saturne accelerator facility at Saclay, France, to determine the susceptibility of these detectors to radiation damage by high-energy (1.5 GeV) protons. The detectors were irradiated to a fluence of 10{sup 8} protons/cm{sup 2}. This fluence is equivalent to the cosmic radiation expected in a one-year period in space. The resolution of the detectors was measured as a function of the integral dose. No degradation in the response of any of the detectors or spectrometers was seen. It is clear from this data that HgI{sub 2} has extremely high radiation-damage resistance, exceeding that of most other semiconductor materials used for radiation detectors. Based on the results shown to date, HgI{sub 2} detectors are suitable for applications in which they may be exposed to high integral dose levels. (orig.).

  7. Dose inspection and risk assessment on radiation safety for the use of non-medical X-ray machines in Taiwan

    Science.gov (United States)

    Hsu, Fang-Yuh; Hsu, Shih-Ming; Chao, Jiunn-Hsing

    2017-11-01

    The subject of this study is the on-site visits and inspections of facilities commissioned by the Atomic Energy Council (AEC) in Taiwan. This research was conducted to evaluate the possible dose and dose rate of cabinet-type X-ray equipment with nominal voltages of 30-150 kV and open-beam (portable or handheld) equipment, taking both normal operation and possibly abnormal operation conditions into account. Doses and dose rates were measured using a plastic scintillation survey meter and an electronic personal dosimeter. In total, 401 X-ray machines were inspected, including 139 units with nominal voltages of 30-50 kV X-ray equipment, 140 units with nominal voltages of 50-150 kV, and 122 open-beam (portable or handheld) X-ray equipment. The investigated doses for radiation workers and non-radiation workers operating cabinet-type X-ray equipment under normal safety conditions were all at the background dose level. Several investigated dose rates at the position of 10 cm away from the surface of open-beam (portable or handheld) X-ray equipment were very high, such X-ray machines are used by aeronautical police for the detection of suspected explosives, radiation workers are far away (at least 10 m away) from the X-ray machine during its operation. The doses per operation in X-ray equipment with a 30-50 kV nominal voltage were less than 1 mSv in all cases of abnormal use. Some doses were higher than 1 mSv per operation for X-ray equipment of 50-150 kV nominal voltage X-ray. The maximum dose rates at the beam exit have a very wide range, mostly less than 100 μSv/s and the largest value is about 3.92 mSv/s for open-beam (portable or handheld) X-ray devices. The risk induced by operating X-ray devices with nominal voltages of 30-50 kV is extremely low. The 11.5 mSv dose due to one operation at nominal voltage of 50-150 kV X-ray device is equivalent to the exposure of taking 575 chest X-rays. In the abnormal use of open-beam (portable or handheld) X-ray equipment, the

  8. Radiation-hygienic assessment of theroid exposure in children resulted from X-ray examination of chest organs

    International Nuclear Information System (INIS)

    Kostenetskij, M.I.

    1983-01-01

    Radiation doses for thyroid in children in the case of X-ray examination of chest organs with the aim of optimization of investigation regimes are studied. Dosimetric measurements are performed in aqueous plexiglass phantoms imitating children of different age. It is shown that the maximum radiation dose for thyroid is registered in breast-fed children and constitutes, about 50% of the annual radiation background; in the older age it constiturotes 8-10% of the natural annual radiation backgund. The increase of intensity at the X-ray tube with the simultaneous decrease of explosure in the case of constant filtration of radiation gives the increase of radiation dose of thyroid in breast-fed children are inconsiderable; in older children, approximately in 1.7 times

  9. Optically stimulated luminescence in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass

    Science.gov (United States)

    Nanto, H.; Nakagawa, R.; Takei, Y.; Hirasawa, K.; Miyamoto, Y.; Masai, H.; Kurobori, T.; Yanagida, T.; Fujimoto, Y.

    2015-06-01

    An intense optically stimulated luminescence (OSL) was observed, for the first time, in x-ray irradiated xSnO-(25-x)SrO-75B2O3 glass. It was found that the peak wavelength of OSL emission spectrum and its stimulation spectrum is about 400 nm and 600 nm, respectively. The OSL intensity is depended on the SnO contents (x=0.05-1.5) and the most intense OSL was observed in 1.0 mol% SnO doped glass. It was found that the OSL intensity is increased with increasing x-ray absorbed dose. Fairly good fading characteristics were observed in the x-ray irradiated glass, showing that this glass is useful as a candidate for OSL sensor materials for ionizing radiation monitoring.

  10. X-ray astronomy

    International Nuclear Information System (INIS)

    Narayanan, M.S.

    1976-01-01

    The deployment of detectors outside the deleterious effects of the atmosphere by sending them in space vehicles, has been explained. This has thrown open the entire spectrum of the electromagnetic and particle radiation to direct observations, thus enlarging the vistas of the field of astronomy and astrophysics. The discovery of strong emitters of X-rays such as SCO X-1, NorX-2, transient sources such as Cen X-2, Cen X-4, Cen X-1, Supernova remnants Tan X-1, etc., are reported. The background of the X-ray spectrum as measured during two rocket flights over Thumba, India is presented. (K.B.)

  11. Multilayer optics for x-ray analysis: design - fabrication - application

    International Nuclear Information System (INIS)

    Dietsch, R.; Holz, Th.; Bruegemann, L.

    2002-01-01

    Full text: The use of multilayer optics induced a decisive extension of opportunities in laboratory based X-ray analysis. With the growing number of different applications, more and more dedicated X-ray optics are required, optimized for the spectral range they are intended to be used for. Both the characteristic of the used X-ray source and the design of the multilayer optics finally define the performance of the conditioned incident beam for the application. In any case, qualified spacer and absorber materials have to be selected for the deposition of the multilayer in respect to the designated X-ray wavelength. X-ray optical devices based on uniform multilayers have the advantage of a wide acceptance angle but show chromatic aberrations. This effect can be avoided by synthesizing a multilayer with a lateral thickness gradient. The gradient ensures that any beam of a certain wavelength emitted from an infinite narrow X-ray source impinging the multilayer optics fulfills the Bragg condition. Three different types of curvature of laterally graded multilayer mirrors are used for X-ray analysis experiments: parabolic, elliptic and planar, which result in parallel, focusing and divergent beam conditions, respectively. Furthermore, the X-ray beam characteristics: intensity, monochromasy, divergence, beam width and brilliance can be additionally conditioned by combining one multilayer optics with either a different optic and/or with a crystal monochromator. The deposition of nanometer-multilayers, used as X-ray optical components, result in extraordinary requirements of the deposition process concerning precision, reproducibility and long term stability. Across a stack of more than 150 individual layers with thicknesses in the range between 1 to 10 nm, a variation of single layer thickness considerably lower than σ D = 0.1 nm and an interface roughness below σ R = 0.25 nm have to be achieved. Thickness homogeneity Δd/d -8 have to be guaranteed across macroscopic

  12. Chest X-Ray

    Medline Plus

    Full Text Available ... exams and use a very small dose of ionizing radiation to produce pictures of the inside of the ... chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs ...

  13. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  14. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  15. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  16. X-ray image coding

    International Nuclear Information System (INIS)

    1974-01-01

    The invention aims at decreasing the effect of stray radiation in X-ray images. This is achieved by putting a plate between source and object with parallel zones of alternating high and low absorption coefficients for X-radiation. The image is scanned with the help of electronic circuits which decode the signal space coded by the plate, thus removing the stray radiation

  17. A study on the fusion reactor - Development of x-ray spectrometer for diagnosis of tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Hong Young; Choi, Duk In; Seo, Sung Hun; Kwon, Gi Chung; Jun, Sang Jin; Heo, Sung Hoi; Lee, Chan Hui [Korea Advanced Institute of Science and Technolgoy, Taejon (Korea, Republic of)

    1996-09-01

    This report of research is on the development of X-ray Photo-Electron Spectrometer (PES) for diagnosis of tokamak plasma. The spectrometer utilizes the fact that the energy of photo-electron is given by the difference between the energy of X-ray and the binding energy of materials. In the research of this year, we constructed two spectrometers; one is operated in KAIST tokamak and the other in KT1 tokamak. In addition, we reviewed the characteristics of the x-ray filter, the photo-electric effect of carbon foils and the detection efficiency of MCP and x-ray radiation of plasma. We measured the x-ray radiation in tokamak and diagnosed the qualitative plasma parameters from the analysis of data. The major interesting plasma parameters, which we can diagnose with the spectrometer, are the electron temperature, Z{sub eff}, the spatial distribution of x-ray radiation and etc. 27 refs., 2 tabs., 20 figs. (author)

  18. Photovoltaic X-ray detectors based on epitaxial GaAs structures

    Energy Technology Data Exchange (ETDEWEB)

    Achmadullin, R.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Artemov, V.V. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, 59 Leninski pr., Moscow B-333, 117333 (Russian Federation); Dvoryankin, V.F. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation)]. E-mail: vfd217@ire216.msk.su; Dvoryankina, G.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Dikaev, Yu.M. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakov, M.G. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Ermakova, O.N. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Chmil, V.B. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Holodenko, A.G. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation); Kudryashov, A.A.; Krikunov, A.I.; Petrov, A.G.; Telegin, A.A. [Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 1 Ac. Vvedenski square, Fryazino 141190, Moscow region (Russian Federation); Vorobiev, A.P. [Scientific State Center, High Energy Physics Institute, Protvino, Moscow region (Russian Federation)

    2005-12-01

    A new type of the photovoltaic X-ray detector based on epitaxial p{sup +}-n-n'-n{sup +} GaAs structures which provides a high efficiency of charge collection in the non-bias operation mode at room temperature is proposed. The GaAs epitaxial structures were grown by vapor-phase epitaxy on heavily doped n{sup +}-GaAs(1 0 0) substrates. The absorption efficiency of GaAs X-ray detector is discussed. I-V and C-V characteristics of the photovoltaic X-ray detectors are analyzed. The built-in electric field profiles in the depletion region of epitaxial structures are measured by the EBIC method. Charge collection efficiency to {alpha}-particles and {gamma}-radiation are measured. The application of X-ray detectors is discussed.

  19. Stellar winds in binary X-ray systems

    Science.gov (United States)

    Macgregor, K. B.; Vitello, P. A. J.

    1982-01-01

    It is thought that accretion from a strong stellar wind by a compact object may be responsible for the X-ray emission from binary systems containing a massive early-type primary. To investigate the effect of X-ray heating and ionization on the mass transfer process in systems of this type, an idealized model is constructed for the flow of a radiation-driven wind in the presence of an X-ray source of specified luminosity, L sub x. It is noted that for low values of L sub x, X-ray photoionization gives rise to additional ions having spectral lines with wavelengths situated near the peak of the primary continuum flux distribution. As a consequence, the radiation force acting on the gas increases in relation to its value in the absence of X-rays, and the wind is accelerated to higher velocities. As L sub x is increased, the degree of ionization of the wind increases, and the magnitude of the radiation force is diminished in comparison with the case in which L sub x = 0. This reduction leads at first to a decrease in the wind velocity and ultimately (for L sub x sufficiently large) to the termination of radiatively driven mass loss.

  20. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    International Nuclear Information System (INIS)

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01

    Accurate timing of ultrafast x-ray probe pulses emitted from a synchrotron radiation source with respect to the signal initiating a process in the sample under study is critical for the investigation of structural dynamics in the femtosecond regime. We describe schemes for achieving accurate timing of femtosecond x-ray synchrotron radiation pulses relative to a pump laser, where x-rays pulses of <100 fs duration are generated from the proposed LUX source based on a recirculating superconducting linac. We present a description of the timing signal generation and distribution systems to minimize timing jitter of the x-rays relative to the experimental lasers

  1. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  2. Gamma detector for use with luggage X-ray systems

    International Nuclear Information System (INIS)

    McHugh, H.; Quam, W.

    1998-01-01

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  3. Radiation exposure of the UK population from medical and dental x-ray examinations

    International Nuclear Information System (INIS)

    Hart, D.; Wall, B.F.

    2002-03-01

    Knowledge of recent trends in the radiation doses from x-ray examinations and their distribution for the UK population provides useful guidance on where best to concentrate efforts on patient dose reduction in order to optimise the protection of the population in a cost-effective manner. In this report, the results of a recent survey of the frequency of medical and dental x-ray examinations in the UK and contemporary data on the radiation doses typically received by patients, are used to assess trends in the extent and the pattern of the population exposure. Individual patient doses, expressed in terms of the effective dose, range from a few microsieverts for simple radiographic examinations of the teeth, limbs or chest to tens of millisieverts for prolonged fluoroscopic procedures or some computed tomography (CT) examinations. A total of about 41.5 million medical and dental x-ray examinations are now conducted each year in the UK (0.70 examination per head of population) resulting in an annual per caput effective dose of 330 μSv. This is not significantly different from the previous rough estimate of 350 μSv for 1991. However, over the last ten years CT has more than doubled its contribution and is now responsible for 40% of the total dose to the population from medical x-rays. In contrast, the contribution from conventional radiographic and fluoroscopic examinations has nearly halved to about 44%. Interventional and angiographic procedures together contribute the remaining 16%. The annual per caput dose of 330 μSv is low in comparison with other countries having similarly developed systems of health care. This is due to both a lower frequency of x-ray examinations per head of population and generally lower doses in the UK than in other developed countries. However, the much increased contributions of CT, angiography and interventional procedures to the UK population dose indicate an urgent need to develop radiation protection and optimisation activities for

  4. Air kerma national standard of Russian Federation for x-ray and gamma radiation. Activity SSDL/VNIIM in medical radiation dosimetry field

    International Nuclear Information System (INIS)

    Kharitonov, I.A.; Villevalde, N.D.; Oborin, A.V.; Fominykh, V.I.

    2002-01-01

    Primary standard of unities air kerma and air kerma rate X-ray and gamma radiation, placed at VNIIM, consists of: plate-parallel free-air ionization chamber IK 10-60 for low-energy X-ray in the generating potential range from 10 to 50 kV; plate-parallel free-air ionization chamber IK 50-400 for medium-energy X-ray in the generating potential range from 50 to 300 kV; cavity cylindrical graphite chambers C1 and C30 with volumes 1 cm 3 and 30 cm 3 for reproduction and transmission the dimensions gamma radiation unities using Cs-137 and Co-60 sources. The next irradiation facilities are used at VNIIM: in low-energy X-ray range: a constant-potential high-voltage generator and a tungsten-anode Xray tube with inherent filtration of around 1 mm Be; in medium-energy X-ray range: set on the basis of an industrial X-ray apparatus Isovolt-400 and a tungsten-anode X-ray tube with inherent filtration of around 3,5 mm Al; in gamma radiations field: units with a radioactive sources Cs-137 with activity 140 and 1200 GBq and Co-60 with activity 120 GBq and irradiation set with a source from Co-60 (activity 3200 GBq). The last one belongs to Central Research Institute for Radiology and Roentgenology (CNIRRI). For measuring currents and charges of standard chambers we use electrometers such as Keithley of model 6517A and B7-45 manufactured by 'Belvar' (Republic Belarus). The reference radiation qualities L, N, H series according to ISO 4037 and the radiation qualities RQR, RQA and RQF according to IEC 61267 for calibration and verification of the therapeutic, diagnostic measurement means are realized in the low-energy and medium-energy X-ray standards. The VNIIM air kerma primary standard of has been participated in the international comparisons: key comparison BIPM.R1(I)-K1 for gamma radiation of Co-60 in 1997; supplementary comparisons BIPM.R1(I)-S10 for gamma radiation of Cs-137 in 1997; key comparison BIPM.R1(I)-K2 for low-energy X-ray range in 1998; key comparison BIPM.R1(I)-K3

  5. Origin of the cosmic x-ray background

    International Nuclear Information System (INIS)

    Margon, B.

    1983-01-01

    Since 1962, it has been known that every part of the sky emits a uniform glow of x-rays. After two decades of intense study the origin of this diffuse x-ray background is still a subject of controversy. The near perfect isotropy of the x-ray background is clearly a vital clue to its origin. A second clue to the origin of the x-ray background arises from the fact that it is x-radiation tha is generated, rather than some longer wavelength radiation. Two hypotheses of the origin of this x-ray background are discussed. One hypothesis is that the x-ray background can be attributed to bremsstrahlung from a hot intergalactic medium. The second hypothesis is that the x-ray background originates from a large number of quasars. Because there is no estimate independent of the intensity of the x-ray background of how much hot intergalactic medium exists (if any), there is a real possibility that both sources contribute to the observed x-rays. (SC)

  6. Evaluation of the effects of high energy X-ray radiation in materials used in dental restorations

    International Nuclear Information System (INIS)

    Maio, Mireia Florencio; Santos, Adimir dos; Fernandes, Marco Antonio Rodrigues

    2011-01-01

    This work studied the behavior of the physical features and chemical composition of materials used in dental restorations (titanium, amalgam, composite resin and glass ionomer cement) which were submitted to x-ray radiation of 6.0 Mega-Volt (MV) of energy produced in a linear accelerator that is used in radiotherapy of head and neck tumors 1 2. The samples were analyzed using a x-ray fluorescence technique by comparing the chemical composition before and after irradiation. In order to check the residual radiation in the samples, measurements of the sample dosimetry were performed with Geiger-Mueller radiation detectors and an ionization chamber. The samples were also analyzed by gamma-ray spectrometry using a hyper-pure Germanium (HPGe) detector. From these tests, we aimed to verify small changes in the composition of the test bodies due to the radiation. (author)

  7. Evaluation of the effects of high energy X-ray radiation in materials used in dental restorations

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Mireia Florencio; Santos, Adimir dos, E-mail: mfmaio@ipen.br, E-mail: asantos@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Fernandes, Marco Antonio Rodrigues, E-mail: marfernandes@fmb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil). Departamento de Radioterapia

    2011-07-01

    This work studied the behavior of the physical features and chemical composition of materials used in dental restorations (titanium, amalgam, composite resin and glass ionomer cement) which were submitted to x-ray radiation of 6.0 Mega-Volt (MV) of energy produced in a linear accelerator that is used in radiotherapy of head and neck tumors 1 2. The samples were analyzed using a x-ray fluorescence technique by comparing the chemical composition before and after irradiation. In order to check the residual radiation in the samples, measurements of the sample dosimetry were performed with Geiger-Mueller radiation detectors and an ionization chamber. The samples were also analyzed by gamma-ray spectrometry using a hyper-pure Germanium (HPGe) detector. From these tests, we aimed to verify small changes in the composition of the test bodies due to the radiation. (author)

  8. A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses

    International Nuclear Information System (INIS)

    Hristov, Dimitre; Maltz, Jonathan

    2008-01-01

    A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy

  9. Observing Solvation Dynamics with Simultaneous Femtosecond X-ray Emission Spectroscopy and X-ray Scattering

    DEFF Research Database (Denmark)

    Haldrup, Kristoffer; Gawelda, Wojciech; Abela, Rafael

    2016-01-01

    and structural changes, and local solvent structural changes are desired. We have studied the intra- and intermolecular dynamics of a model chromophore, aqueous [Fe(bpy)3]2+, with complementary X-ray tools in a single experiment exploiting intense XFEL radiation as a probe. We monitored the ultrafast structural...... rearrangement of the solute with X-ray emission spectroscopy, thus establishing time zero for the ensuing X-ray diffuse scattering analysis. The simultaneously recorded X-ray diffuse scattering atterns reveal slower subpicosecond dynamics triggered by the intramolecular structural dynamics of the photoexcited...

  10. Synchrotron radiation and free-electron lasers principles of coherent X-ray generation

    CERN Document Server

    Kim, Kwang-Je; Lindberg, Ryan

    2017-01-01

    Learn about the latest advances in high-brightness X-ray physics and technology with this authoritative text. Drawing upon the most recent theoretical developments, pre-eminent leaders in the field guide readers through the fundamental principles and techniques of high-brightness X-ray generation from both synchrotron and free-electron laser sources. A wide range of topics is covered, including high-brightness synchrotron radiation from undulators, self-amplified spontaneous emission, seeded high-gain amplifiers with harmonic generation, ultra-short pulses, tapering for higher power, free-electron laser oscillators, and X-ray oscillator and amplifier configuration. Novel mathematical approaches and numerous figures accompanied by intuitive explanations enable easy understanding of key concepts, whilst practical considerations of performance-improving techniques and discussion of recent experimental results provide the tools and knowledge needed to address current research problems in the field. This is a comp...

  11. Hohlraums energy balance and x-ray drive

    International Nuclear Information System (INIS)

    Kilkenny, J.D.

    1994-01-01

    For many years there has been an active ICF program in the US concentrating on x-ray drive. X-ray drive is produced by focusing laser beams into a high Z hohlraum. Conceptually, the radiation field comes close to thermodynamic equilibrium, that is it becomes isotropic and Planckian. These properties lead to the benefits of x-ray drive--it is relatively easy to obtain drive symmetry on a capsule with no small scalelengths drive perturbations. Other advantages of x-ray drive is the higher mass ablation rate, leading to lower growth rates for hydrodynamic instabilities. X-ray drive has disadvantages, principally the loss of energy to the walls of the hohlraum. This report is divided into the following sections: (1) review of blackbody radiation; (2) laser absorption and conversion to x-rays; (3) x-ray absorption coefficient in matter and Rosseland mean free path; (4) Marshak waves in high Z material; (5) x-ray albedo; and (6) power balance and hohlraum temperature

  12. Quiet Sun X-rays as Signature for New Particles

    CERN Document Server

    Zioutas, Konstantin; Di Lella, L; Hoffmann, Dieter H H; Jacoby, J; Papaevangelou, T

    2004-01-01

    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more pr...

  13. Evaluation of radiation tolerance of FETs used for Astro-E2 hard X-ray detector (HXD-II)

    International Nuclear Information System (INIS)

    Itoh, Takeshi; Niko, Hisako; Kokubun, Motohide; Makishima, Kazuo; Kawaharada, Madoka; Takahashi, Isao; Miyasaka, Hiromasa

    2005-01-01

    We evaluated the radiation tolerance of three types of metal-can MOS Field Effect Transistors (FETs). They are candidates for flight electronics of the Hard X-ray Detector (HXD-II) experiment which is onboard the cosmic X-ray satellite Astro-E2 scheduled for launch in 2005. We irradiated FETs with a Co60γ-ray source under several different experimental conditions, and measured changes in their I-V characteristic curves. After a 10krad irradiation during which the gate voltage is set at 0V, all types showed a decrease in the switching voltage by ∼0.2-0.4V. In addition, the gate conductance increased under some irradiation conditions. These experimental results may be explained in terms of trapped charges and boundary levels in the oxide layer beneath the gate electrode. We have confirmed that at least two types of FETs can be used in our satellite-borne experiment, one as relay-driving FETs and the other in TTL-ECL conversion circuits

  14. The radiation effects of aspergillus oryzae spores with soft x-rays near the K shell absorption edges of C, N, O elements from synchrotron radiation

    International Nuclear Information System (INIS)

    Chen Liang; Jiang Shiping; Wan Libiao; Ma Xiaodong; Li Meifang

    2007-01-01

    The dose deposition of different parts of Aspergillus oryzae spores were analyzed with soft X-ray energies near the K-shell absorption edges of C, N, O elements (4.4nm, 3.2nm and 2.3nm), respectively. At the same time, the spores were irradiated with the three wavelengths of soft X-rays on the soft X-ray microscopy from synchrotron radiation at NSRL, and the survivals were compared. The theoretical analyses showed that the deposition doses of different parts of the spore were varying with X-ray energies because of the effects of C, N, O K-shell absorption edges and elemental contents of the different parts of spore. The experimental studies proved three wavelengths of soft X-rays all had high killing abilities. Among these, 2.3nm wavelength X-rays had higher radiation damage to spore than that of 3.2nm, 4.4nm. (authors)

  15. Multiple wavelength X-ray monochromators

    International Nuclear Information System (INIS)

    Steinmeyer, P.A.

    1992-01-01

    An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs

  16. Performances of synchrotron radiation microbeam focused by monolithic half focusing polycapillary X-ray lens

    International Nuclear Information System (INIS)

    Sun Tianxi; Liu Zhiguo; He Bo; Wei Shiqiang; Xie Yaning; Liu Tao; Hu Tiandou; Ding Xunliang

    2007-01-01

    A monolithic half focusing polycapillary X-ray lens (MHFPXRL) composed of 289,000 capillaries is used to produce a synchrotron radiation microbeam. The energy dependence of the output focal distance, focal spot size, transmission efficiency, vertical beam position, and gain in flux density of this microbeam is studied in detail. There is a slight change in the output focal distance of the MHFPXRL when the X-ray energies change

  17. 3D non-destructive fluorescent X-ray computed tomography (FXCT) with a CdTe array

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chang Yeon; Lee, Won Ho; Kim, Young Hak [Dept. of Bio-convergence Engineering, Korea University Graduate School, Seoul (Korea, Republic of)

    2015-10-15

    In our research, the material was exposed to an X-ray and not only the conventional transmission image but also 3D images based on the information of characteristic X-ray detected by a 2D CdTe planar detector array were reconstructed. Since atoms have their own characteristic X-ray energy, our system was able to discriminate materials of even a same density if the materials were composed of different atomic numbers. We applied FXCT to distinguish various unknown materials with similar densities. The materials with similar densities were clearly distinguished in the 3D reconstructed images based on the information of the detected characteristic X-ray, while they were not discriminated from each other in the images based on the information of the detected transmission X-ray. In the fused images consisting of 3D transmitted and characteristic X-ray images, all of the positions, densities and atomic numbers of materials enclosed in plastic phantom or pipe were clearly identified by analyzing energy, position and amount of detected radiation.

  18. Current state of radiation protection in x-ray diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Orito, T; Koshida, K; Maekawa, R; Sanada, S; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine

    1979-09-01

    The therapeutic roentgenologic technician's concern for and providing of protection from radiation while patients underwent x-ray examination in 1973 was reported. An investigation was carried out to determine the degree of changes 5 years later. Questionnaires were distributed to 200 subjects. These subjects were selected, according to duoble sampling process, from a membership list of the Japan Society of Radiologic Technologists. Answers were obtained from 135 (67.5%). The results showed that the size of the field was restricted in 60.7% of the patients, the germinal glands were protected in 64.4% of the patients, the apparatuses were checked regularly in 9.6% of the institutions, and protectors were put on 62.5% of the attendants (mothers, etc.) when children underwent x-ray examination. Also, all of the apparatuses were set up in on section in 61.6% of the institutions and the films were monitored in 57.0% of departments.

  19. Current state of radiation protection in x-ray diagnosis

    International Nuclear Information System (INIS)

    Orito, Takeo; Koshida, Kichiro; Maekawa, Ryuichi; Sanada, Shigeru; Hiraki, Tatsunosuke

    1979-01-01

    The therapeutic roentgenologic technician's concern for and providing of protection from radiation while patients underwent x-ray examination in 1973 was reported. An investigation was carried out to determine the degree of changes 5 years later. Questionnaires were distributed to 200 subjects. These subjects were selected, according to duoble sampling process, from a membership list of the Japan Society of Radiologic Technologists. Answers were obtained from 135 (67.5%). The results showed that the size of the field was restricted in 60.7% of the patients, the germinal glands were protected in 64.4% of the patients, the apparatuses were checked regularly in 9.6% of the institutions, and protectors were put on 62.5% of the attendants (mothers, etc.) when children underwent x-ray examination. Also, all of the apparatuses were set up in on section in 61.6% of the institutions and the films were monitored in 57.0% of departments. (Nishio, M.)

  20. Relationship between radiation dose and changes of blood cells in medical diagnostic X-ray workers in China

    International Nuclear Information System (INIS)

    Zhao Wenzheng

    1984-01-01

    The hematological changes of 2867 cases of medical X-ray workers and 1152 cases of non-X-ray medical workers were compared. It was shown that the total number of leukocytes, the numbers of neutrophils, lymphocytes and platelets were significantly lower in X-ray workers than those in controls. However, the percentages of monocytes, eosinophils, basophils and the concentration of hemoglobin were higher in the irradiated group. the difference between the two groups was statistically significant. The degree of changes in the number of blood cells was dose-dependent. A negative correlation could be found between the changes of leukocyte and neutrophil counts and cumulative dose (<250 mGy), annual dose (<15 mGy/a) and length of service of the X-ray workers; and a positive correlation existed between the percentages of basophils, eosinophils and monocytes, and the radiation dose. The abnormality rate of blood picture in the irradiated group was higher than that in the control group. Most X-ray workers with abnormal blood picture were distributed in low-dose group. The data also showed that radiation effect on male X-ray workers was greater than that on female workers. (Author)

  1. Ultimate capabilities of soft x-ray optics

    International Nuclear Information System (INIS)

    Vinogradov, A.V.; Zorev, N.N.; Kozhevnikov, I.V.

    1988-01-01

    Nonimaging soft X-ray optics is examined. The ultimate capabilities of a number of X-ray optical components designed for concentration and collimation of radiation from point sources are determined. The applications of X-ray optics are discussed together with the properties of materials in the X-ray range

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... body. Once it is carefully aimed at the part of the body being examined, an x-ray machine produces a small burst of radiation that passes through the body, recording an image on photographic film or a special detector. Different parts of the body absorb the x-rays in ...

  3. Irradiated ISM : Discriminating between cosmic rays and X-rays

    NARCIS (Netherlands)

    Meijerink, R.; Spaans, M.; Israel, F. P.

    2006-01-01

    The interstellar medium ( ISM) at the centers of active galaxies is exposed to a combination of cosmic-ray, far-ultraviolet (FUV), and X-ray radiation. We apply photodissociation region (PDR) models to this ISM with both "normal" and highly elevated (5 x 10(-15) s(-1)) cosmic- ray (CR) rates and

  4. Soft X-ray excited colour-centre luminescence and XANES studies of calcium oxide

    International Nuclear Information System (INIS)

    Ko, J.Y.P.; Heigl, F.; Yiu, Y.M.; Zhou, X.-T.; Regier, T.; Blyth, R.I.R.; Sham, T.-K.

    2007-01-01

    In this study, we show that colour centres can be produced by irradiating calcium oxide with soft X-rays from a synchrotron radiation source. Using the X-ray excited optical Iuminescence (XEOL) technique, two colour centres, F-centre, and F + -centre can be identified. These colour centres emit photons at characteristic wavelengths. In addition, by performing time-resolved XEOL (TRXEOL), we are able to reveal timing and decay characteristics of the colour centres. We also present X-ray absorption near-edge structure (XANES) spectra collected across oxygen K-edge, calcium L 3,2 -edge, and calcium K-edge. Experimental results are compared with density functional theory (DFT) calculations. (author)

  5. Micro-fresnel structures for microscopy of laser generated bright x-ray sources

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Shavers, D.C.; Flanders, D.C.; Smith, H.I.

    1979-01-01

    A brief parametric survey of the x-ray characteristics of a gold micro-disk irradiated at 3 x 10 14 watt/cm 2 by a 1 nsec Nd-glass laser pulse has been provided as an example of a laser generated bright x-ray source. It was shown that a simple phenomenological model of the laser generated x-ray source as a microscopic equilibrium plasma radiating as a blackbody for a finite time determined by its hydrodynamic disassembly and radiation losses, serves to provide an adequate approximation to the x-ray characteristics of such sources. The current state of x-ray microscopy within the LLL laser fusion program was briefly reviewed. Kirpatrick--Baez grazing incidence reflection x-ray microscopes are being used to provide 3 to 5 μm resolution, broadband images (ΔE/E approx. 0.3) over a spectral range from .6 keV to 3.5 keV. Zone Plate Coded Imaging is used to provide 5 to 10 μm resolution, broadband (ΔE/E approx. 0.5) images over a spectral range from 3 keV to 50 keV. Efficient x-ray lensing elements with anticipated submicron resolution are being developed for narrowband (ΔE/E approx. 10 -2 ) imaging applications over a spectral range .1 keV to 8 keV. The x-ray lens design is that of a transmission blazed Fresnel phase plate. Micro--Fresnel zone plates with 3200 A minimum linewidth have been fabricated and preliminary resolution tests begun. The first resolution test pattern, having minimum linewidth of 2.5 μm, was imaged in lambda = 8.34 A light with no difficulty. Newer test patterns with submicron minimum line are being prepared for the next stage of resolution testing. An off-axis Fresnel zone plate with 1600 A minimum linewidth is presently being fabricated for use as an imaging spectrometer in order to provide spatially separated, chromatically distinct images of characteristic line emissions from laser fusion targets

  6. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    International Nuclear Information System (INIS)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong; He, You; Zhou, Guangzhao; Xiao, Tiqiao; Huang, Qingjie

    2016-01-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  7. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Science.gov (United States)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong

    2016-03-01

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  8. Equally sloped X-ray microtomography of living insects with low radiation dose and improved resolution capability

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; Sun, Zhibin; Zhang, Jianhua; Jiang, Huaidong, E-mail: hdjiang@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); He, You; Zhou, Guangzhao; Xiao, Tiqiao [Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Huang, Qingjie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2016-03-21

    Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.

  9. X-ray speckle correlation interferometer

    International Nuclear Information System (INIS)

    Eisenhower, Rachel; Materlik, Gerhard

    2000-01-01

    Speckle Pattern Correlation Interferometry (SPCI) is a well-established technique in the visible-light regime for observing surface disturbances. Although not a direct imaging technique, SPCI gives full-field, high-resolution information about an object's motion. Since x-ray synchrotron radiation beamlines with high coherent flux have allowed the observation of x-ray speckle, x-ray SPCI could provide a means to measure strains and other quasi-static motions in disordered systems. This paper therefore examines the feasibility of an x-ray speckle correlation interferometer

  10. X-ray radiography with highly charged ions

    Science.gov (United States)

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  11. Plasma focus as an x-ray source for tailoring of radiation in different energy windows

    International Nuclear Information System (INIS)

    Zakaullah, M.; Alamgir, K.; Shafiq, M.; Sharif, M.

    2001-01-01

    A low energy (2.3 kj) plasma focus energized by a single 32 micro f capacitor charged at 12 kv with filling gases hydrogen, neon and argon is investigated as an X-ray source. Experiments are conducted with a copper and an aluminum anode. Specifically, attention in given to tailoring the radiation in different windows, e. g. 1.2-1.3 keV, 1.3-1.5 keV, 2.5-5 keV and Cu-Ka line radiation. The highest X-ray emission is observed with neon filling and the copper anode in the 1.2-1.3 keV window, which speculated to be generated due to recombination of hydrogen like neon ions with a few eV to a few 10s of eV electrons. The wall-plug efficiency of the device is found to be 4%. The other significant emission occurs with Hydrogen filling, which exhibits wall plug efficiency of 1.7% for over all x-ray emission and 0.35% for Cu- Ka line radiation. The emission is dominated by the interaction of electrons in the current sheath with the anode tip. The emission with the aluminum anode and hydrogen filling is up to 10 j, which corresponds to wall-plug efficiency of 0.4%. The X-ray emission with argon filling is less significant. (author)

  12. X-ray detector

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1977-01-01

    An ionization chamber for use in determining the spatial distribution of x-ray photons in tomography systems comprises a plurality of substantially parallel, planar anodes separated by parallel, planar cathodes and enclosed in a gas of high atomic weight at a pressure from approximately 10 atmospheres to approximately 50 atmospheres. The cathode and anode structures comprise metals which are substantially opaque to x-ray radiation and thereby tend to reduce the resolution limiting effects of x-ray fluoresence in the gas. In another embodiment of the invention the anodes comprise parallel conductive bars disposed between two planar cathodes. Guard rings eliminate surface leakage currents between adjacent electrodes. 8 figures

  13. Legal directives in the X-ray regulation for the field of X-ray diagnostics; Rechtsvorschriften der Roentgenverordnung fuer den Bereich der Roentgendiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Walter [Ministerium fuer Arbeit, Integration und Soziales des Landes Nordrhein-Westfalen, Duesseldorf (Germany)

    2012-11-01

    The operation of each X-ray device is subject to the requirements of the X-ray regulations (RoeV); for different operational modes or applications like curative diagnostics, X-ray serial examinations, X-ray radiotherapy and teleradiology different directives exist and have to be respected. The report discusses the issues licensing and notification procedures, radiation protection representative, requirements for the commissioning (teleradiology, serial X.ray examinations), technical qualification and radiation protection knowledge of physicians, technical qualification of the assistant personnel.

  14. Radiation exposure in X-ray examinations of the pelvis

    International Nuclear Information System (INIS)

    Kainberger, F.

    1977-01-01

    The article reports on radiation exposure during X-ray treatment of the pelvis of children. Special attention is paid to genetical radiation exposure. Generally a dose of 100 mR is assumed to be taken up if no adequate shielding is provided. In order to be able to judge the value of a shielding with suitable lead-equivalent values, measurements were carried out on a phantom. These measurements showed that the dosage can be reduced by at least a factor 100 by using a lead shielding. When doing this, the lead equivalent value must be 1 mm. The form of gonad protection also has great importance for the shielding efficiency. (orig.) [de

  15. Synchrotron radiation sources: their properties and applications for VUV and X-ray spectroscopy

    International Nuclear Information System (INIS)

    Koch, E.E.

    1976-09-01

    Synchrotron radiation from accelerators and storage rings offers far reaching possibilities for many fields of basic and applied physics. The properties of synchrotron radiation, existing and planned synchrotron radiation facilities, as well as instrumental aspects are discussed. In order to illustrate the usefulness of the synchrotron radiation sources a few highlights from atomic, molelucar, and solid state spectroscopy are presented and examples from x-ray experiments and from the field of applied physics are given. (orig.) [de

  16. Ultrafast coherent diffractive imaging of nanoparticles using X-ray free-electron laser radiation

    International Nuclear Information System (INIS)

    Kassemeyer, Stephan

    2014-01-01

    Coherent diffractive imaging with X-ray free-electron lasers (X-FEL) promises high-resolution structure determination of single microscopic particles without the need for crystallization. The diffraction signal of small samples can be very weak, a difficulty that can not be countered by merely increasing the number of photons because the sample would be damaged by a high absorbed radiation dose. Traditional X-ray crystallography avoids this problem by bringing many sample particles into a periodic arrangement, which amplifies the individual signals while distributing the absorbed dose. Depending on the sample, however, crystallization can be very difficult or even impossible. This thesis presents algorithms for a new imaging approach using X-FEL radiation that works with single, non-crystalline sample particles. X-FELs can deliver X-rays with a peak brilliance many orders of magnitude higher than conventional X-ray sources, compensating for their weak interaction cross sections. At the same time, FELs can produce ultra-short pulses down to a few femtoseconds. In this way it is possible to perform ultra-fast imaging, essentially ''freezing'' the atomic positions in time and terminating the imaging process before the sample is destroyed by the absorbed radiation. This thesis primarily focuses on the three-dimensional reconstruction of single (and not necessarily crystalline) particles using coherent diffractive imaging at X-FELs: in order to extract three-dimensional information from scattering data, two-dimensional diffraction patterns from many different viewing angles must be combined. Therefore, the diffraction signal of many identical sample copies in random orientations is measured. The main result of this work is a globally optimal algorithm that can recover the sample orientations solely based on the diffraction signal, enabling three-dimensional imaging for arbitrary samples. The problem of finding three-dimensional orientations is

  17. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  18. Application of X-ray fluorescence analysis in environmental research

    International Nuclear Information System (INIS)

    Kliment, V.; Kliman, J.; Turzo, I.

    1978-01-01

    A description is presented of the X-ray fluorescence analysis principles and of its possibilities in the study of environmental pollution impact. Experiments with X-ray fluorescence analysis using 241-Am and a Ge(Li) semiconductor detector are discussed. The reproducibility of determinations in dependence on the sample preparation and the evaluation of peak surfaces of characteristic radiation is shown. The dependence of the peak surface on the elemental contents in the sample was linear. Detection limits of the investigated elements ranged in tenths of μg for 300 s measurement. (author)

  19. DMF-T index in patients undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Department of Radiotherapy, Dr. Hasan Sadikin Hospital

    Directory of Open Access Journals (Sweden)

    S. Sabrina

    2007-11-01

    Full Text Available Radiation therapy for head and neck cancer frequently caused severe salivary gland dysfunction. The salivary gland dysfunction possibly decreased the protective function of saliva and caused dental caries. The purpose of this study was to obtain an illustration about DMF-T index in patient undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Department of Radiotherapy, Dr. Hasan Sadikin Hospital in January-February 2007. The study was a simple descriptive. The study was conducted on 7 males and 9 females undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer. The ages of patient are between 37 years and 77 years. The severity of caries was measured by DMF-T index. DMF-T index in 16 patient undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Dr. Hasan Sadikin Hospital is 10.6 as the result of this study. The conclusion of this study showed that the DMF-T index in 16 patient undergoing radiation therapy with LINAC X-ray radiation for head and neck cancer at Dr. Hasan Sadikin Hospital had very high grade based on WHO classification, which the value was over 6.6.

  20. Direct observations of cracks and voids in structural materials by X-ray imaging using ultra-bright synchrotron radiation

    International Nuclear Information System (INIS)

    Nakayama, Takenori; Yuse, Fumio; Tsubokawa, Yoshiyuki; Matsui, Junji

    2003-01-01

    Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)

  1. Direct observations of cracks and voids in structural materials by X-ray imaging using ultra-bright synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Takenori; Yuse, Fumio [Kobe Steel, Ltd., Materials Research Laboratory, Kobe, Hyogo (Japan); Tsubokawa, Yoshiyuki [Kobelco Research Inst., Kobe, Hyogo (Japan); Matsui, Junji [Himeji Inst. of Technology, Kamigori, Hyogo (Japan)

    2003-04-01

    Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)

  2. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    International Nuclear Information System (INIS)

    Barty, C.P.J.

    2000-01-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  3. Ultrafast, laser-based, x-ray science: the dawn of atomic-scale cinematography

    Energy Technology Data Exchange (ETDEWEB)

    Barty, C.P.J. [University of California, Department of Applied Mechanics and Engineering Science, Urey Hall, Mali Code 0339, San Diego, La Jolla, CA (United States)

    2000-03-01

    The characteristics of ultrafast chirped pulse amplification systems are reviewed. Application of ultrafast chirped pulse amplification to the generation of femtosecond, incoherent, 8-keV line radiation is outlined and the use of femtosecond laser-based, x-rays for novel time-resolved diffraction studies of crystalline dynamics with sub-picosecond temporal resolution and sub-picometer spatial resolution is reviewed in detail. Possible extensions of laser-based, x-ray technology and evaluation of alternative x-ray approaches for time-resolved studies of the atomic scale dynamics are given. (author)

  4. Undulator commissioning by characterization of radiation in x-ray free electron lasers

    Directory of Open Access Journals (Sweden)

    Takashi Tanaka

    2012-11-01

    Full Text Available In x-ray free electron lasers (XFELs where a long undulator composed of many segments is installed, there exist a number of error sources to reduce the FEL gain such as the trajectory error, K value discrepancy, and phase mismatch, which are related to the segmented-undulator structure. Undulator commissioning, which refers to the tuning and alignment processes to eliminate the possible error sources, is thus an important step toward realization of lasing. In the SPring-8 angstrom compact free electron laser (SACLA facility, the undulator commissioning has been carried out by means of characterization of x-ray radiation, i.e., measurements of the spatial and spectral profiles of monochromatized spontaneous undulator radiation as well as by probing the FEL intensity. The achieved tuning and alignment accuracies estimated from the statistics of actual measurements in SACLA show the effectiveness of this commissioning scheme.

  5. Detection of coherent X-ray transition radiation and its application to beam diagnostics

    International Nuclear Information System (INIS)

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Li Qiang; Moran, M.J.; Bergstrom, J.C.; Caplan, H.S.; Silzer, R.M.; Skopik, D.M.; Rothbart, G.B.

    1989-01-01

    We investigate the use of coherent X-ray transition radiation to measure the energy of ultra-relativistic charged particles. This can be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The research also has possible applications for the detection and identification of these particles. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charged particle energies. We have constructed three coherent radiators and tested them at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft X-ray emission (1-3 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5-9.0 mrad. The angle of peak emission was found to increase with electron-beam energy, in contrast to the incoherent case for which the angle of emission varies inversely with electron-beam energy. (orig.)

  6. Radiation detectors of PIN type for X-rays

    International Nuclear Information System (INIS)

    Ramirez-Jimenez, F.J.

    2003-01-01

    In this laboratory session, tree experiments are proposed: the measurement of X-ray energy spectra from radioactive sources with a high resolution cooled Si-Li detector, with a room temperature PIN diode and the measurement of the response of a PIN diode to the intensity of X-rays of radio-diagnostic units. The spectra obtained with the Si-Li detector help to understand the energy distribution of X-rays and are used as a reference to compare the results obtained with the PIN diode. Measurements in medical X-ray machines are proposed. Low cost, simple electronic instruments and systems are used as tools to make measurements in X-ray units used in radio-diagnostic

  7. Performance Characteristics Of An Intensity Modulated Advanced X-Ray Source (IMAXS) For Homeland Security Applications

    International Nuclear Information System (INIS)

    Langeveld, Willem G. J.; Brown, Craig; Condron, Cathie; Ingle, Mike; Christensen, Phil A.; Johnson, William A.; Owen, Roger D.; Hernandez, Michael; Schonberg, Russell G.; Ross, Randy

    2011-01-01

    X-ray cargo inspection systems for the detection and verification of threats and contraband must address stringent, competitive performance requirements. High x-ray intensity is needed to penetrate dense cargo, while low intensity is desirable to minimize the radiation footprint, i.e. the size of the controlled area, required shielding and the dose to personnel. In a collaborative effort between HESCO/PTSE Inc., XScell Corp., Stangenes Industries, Inc. and Rapiscan Laboratories, Inc., an Intensity Modulated Advanced X-ray Source (IMAXS) was designed and produced. Cargo inspection systems utilizing such a source have been projected to achieve up to 2 inches steel-equivalent greater penetration capability, while on average producing the same or smaller radiation footprint as present fixed-intensity sources. Alternatively, the design can be used to obtain the same penetration capability as with conventional sources, but reducing the radiation footprint by about a factor of three. The key idea is to anticipate the needed intensity for each x-ray pulse by evaluating signal strength in the cargo inspection system detector array for the previous pulse. The IMAXS is therefore capable of changing intensity from one pulse to the next by an electronic signal provided by electronics inside the cargo inspection system detector array, which determine the required source intensity for the next pulse. We report on the completion of a 9 MV S-band (2998 MHz) IMAXS source and comment on its performance.

  8. Characterisation and application of a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    Graetz, M.

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm 2 onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained

  9. Characterisation and application of a laser-based hard x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Graetz, M

    1998-11-01

    Hard X-rays are generated by focusing 110 fs laser pulses with intensities of about 1017 W/cm{sup 2} onto solid metal targets. Characteristic properties of this X-ray source are the small source size, the short pulse duration and the high peak flux. The aim of the present work was to characterise this X-ray source and to demonstrate possible applications. A comparison with other X-ray sources and conventional imaging techniques is made. Characterising measurements were performed, including source size, emission spectrum, temporal behaviour, source stability and the influence of various laser parameters. The emission spectrum was measured using both energy-dispersive solid-state detectors and wavelength-dispersive crystal spectroscopy. The conversion efficiency from laser light to X-ray radiation was measured for different target materials. The laser ablation from different targets was studied. The feasibility of special imaging techniques, e.g. differential imaging and time-gated imaging, was investigated both theoretically and experimentally. Differential imaging allows for selective imaging of contrast agents, while time-gated imaging can reduce the influence of scattered radiation in X-ray imaging. Time-gated imaging was demonstrated in different imaging geometries, both for planar imaging and computed tomography imaging. Reasonable agreement between theoretically calculated values and experimental results was obtained 120 refs, figs, tabs

  10. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  11. The clinical characteristics of the radiation pneumonia

    International Nuclear Information System (INIS)

    Zhang Fuzheng; Wang Mingzhi; Chen Jianjiang; Wang Zhongxiang; Mao Yongjie

    2000-01-01

    Objective: To analyse the clinical characteristics of the radiation pneumonia, sum the experience and the basis of the radiation pneumonia for its prevention and treatment. Method: Twenty three cases with radiation pneumonia from 1991 to 1998 were retrospectively analysed. Its clinical manifestation, chest X-ray, thoracic CT and blood routine were evaluated. Result: The acute manifestation was fever, cough, dyspnea, and the chronic manifestation was cough and insufficiency of pulmonary function. Conclusion: The prevention of radiation pneumonia is more important, high dose cortical steroids and antibiotics were prescribed during the acute stage and the chronic radiation pneumonia is irreversible

  12. Frequency filter of seed x-ray by use of x-ray laser medium. Toward the generation of the temporally coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kato, Yoshiaki; Renzhong, Tai

    2009-01-01

    We evaluate the characteristics of a higher-order harmonics light as a seed X-ray amplified through a laser-produced X-ray amplifier. The narrow spectral bandwidth of the X-ray amplifier works as the frequency filter of the seed X-ray, resulting in that only the temporally coherent X-ray is amplified. Experimental investigation using the 29th-order harmonic light of the Ti:sapphire laser at a wavelength of 26.9 nm together with a neon-like manganese X-ray laser medium shows evident spectral narrowing of the seed X-ray and amplification without serious diffraction effects on the propagation of the amplified X-ray beam. This implies that the present combination is potential to realize temporally coherent X-ray lasers, with an expected duration of approximately 400 fs. (author)

  13. X-Ray Psoralen Activated Cancer Therapy (X-PACT)

    Science.gov (United States)

    Oldham, Mark; Yoon, Paul; Fathi, Zak; Beyer, Wayne F.; Adamson, Justus; Liu, Leihua; Alcorta, David; Xia, Wenle; Osada, Takuya; Liu, Congxiao; Yang, Xiao Y.; Dodd, Rebecca D.; Herndon, James E.; Meng, Boyu; Kirsch, David G.; Lyerly, H. Kim; Dewhirst, Mark W.; Fecci, Peter; Walder, Harold; Spector, Neil L.

    2016-01-01

    This work investigates X-PACT (X-ray Psoralen Activated Cancer Therapy): a new approach for the treatment of solid cancer. X-PACT utilizes psoralen, a potent anti-cancer therapeutic with current application to proliferative disease and extracorporeal photopheresis (ECP) of cutaneous T Cell Lymphoma. An immunogenic role for light-activated psoralen has been reported, contributing to long-term clinical responses. Psoralen therapies have to-date been limited to superficial or extracorporeal scenarios due to the requirement for psoralen activation by UVA light, which has limited penetration in tissue. X-PACT solves this challenge by activating psoralen with UV light emitted from novel non-tethered phosphors (co-incubated with psoralen) that absorb x-rays and re-radiate (phosphoresce) at UV wavelengths. The efficacy of X-PACT was evaluated in both in-vitro and in-vivo settings. In-vitro studies utilized breast (4T1), glioma (CT2A) and sarcoma (KP-B) cell lines. Cells were exposed to X-PACT treatments where the concentrations of drug (psoralen and phosphor) and radiation parameters (energy, dose, and dose rate) were varied. Efficacy was evaluated primarily using flow cell cytometry in combination with complimentary assays, and the in-vivo mouse study. In an in-vitro study, we show that X-PACT induces significant tumor cell apoptosis and cytotoxicity, unlike psoralen or phosphor alone (pphosphor, psoralen, or radiation increase. Finally, in an in-vivo pilot study of BALBc mice with syngeneic 4T1 tumors, we show that the rate of tumor growth is slower with X-PACT than with saline or AMT + X-ray (p<0.0001). Overall these studies demonstrate a potential therapeutic effect for X-PACT, and provide a foundation and rationale for future studies. In summary, X-PACT represents a novel treatment approach in which well-tolerated low doses of x-ray radiation are delivered to a specific tumor site to generate UVA light which in-turn unleashes both short- and potentially long

  14. X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    International Nuclear Information System (INIS)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.

    2010-01-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  15. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Science.gov (United States)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  16. Laboratory Calibration of X-ray Velocimeters for Radiation Driven Winds and Outflows Surrounding X-ray Binaries and Active Galactic Nuclei

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, P.; Graf, A.; Hell, N.; Liedahl, D.; Magee, E. W.; Träbert, E.; Beilmann, C.; Bernitt, S.; Crespo-Lopez-Urritiua, J.; Eberle, S.; Kubicek, K.; Mäckel, V.; Rudolph, J.; Steinbrügge, R.; Ullrich, J.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Rasmussen, A.; Simon, M.; Epp, S.

    2011-09-01

    High resolution measurements of X-ray absorption and fluorescence by radiation driven winds and outflows surrounding X-ray binaries and AGN provide a powerful means for measuring wind velocities. The accuracy of these X-ray velocimeters is limited by the accuracy of atomic data. For example, in the case of the high mass X-ray binary Vela X-1 the uncertainty in the calculated transition wavelengths of the K alpha lines produced by photoionization and photoexcitation of Si L-shell ions is comparable to the likely Doppler shifts, making it impossible to determine a reliable velocity. Similar problems also exist in the case of absorption of X-rays by M-shell Fe ions, which produces in some AGN the so-called unresolved transition array across the 15-17 angstrom band. In this case, there is a 15-45 milliangstrom variation among different wavelength calculations. The uncertainty in the calculations makes it impossible to reliably determine the true velocity structure of the outflow, and in turn, prevents a reliable determination of the mass-loss rate of the AGN. We present results of a recent series of laboratory experiments conducted using an electron beam ion trap coupled with the LCLS X-ray free electron laser and the BESSY-II synchrotron and designed to calibrate the velocimeters provided by high resolution instruments on Chandra and XMM-Newton. We also present results of resonant photoexcitation measurements of the transition wavelength of an Fe XVI satellite line 'coincident' with the 2p-3d Fe XVII line 3D at 15.26 angstroms. This line has never been resolved using emission spectroscopy and its measurement confirms the intensity of line 3D is sensitive to the relative abundance of Fe XVI and XVII and thus temperature. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program.

  17. X-ray semiotics of radiations affections of the lungs

    International Nuclear Information System (INIS)

    Rabinovich, R.M.; Shapiro, I.V.

    1976-01-01

    On the hasis of analysis of roentgenograms, tomograms, and bronchograms in 189 patients a repeated study was made of the X-ray semiotics of radiation affections of the lungs. The leading roentgenological symptom of radiation affections of the lungs irrespective of their primary localization, was linear deformity and intensification of the broncho-vascular patten in the peripheral zone. This was expressed on roentgenograms in the form of radially- and cross- coursing shadows from the root: tomog.raphically it was manifested in narrowed shadows of the vessels, a change of their course, their approximation and a tendency to approach the centre; analogous disturbances of topography of the bronchi with phenomena of deforming bronchitis were seen in bronchography. A significant si.gn of radiation injuries of the lung tissue is a tendency to progressive development of connective tissue, which was expressed roentgenologically in extensive pneumosclerosis, sometimes with an outcome into fibrothorax with marked topographic disturbances. Radiation injuries are accompanied by an adhesive reaction of the pleura

  18. Assessment of patient radiation doses in chest X-ray examinations

    International Nuclear Information System (INIS)

    Orsini, S.; Scribano, V.S.; Merluzzi, F.; Tosca, L.

    1987-01-01

    The paper reports the initial results of a radioprotection programme for diagnostic radiology carried out in a major hospital in Milan. The data cover chest X-ray examinations. The dose values were obtained using different techniques, according to the specific diagnostic requirements in each departement. A wide radiation dose range was observed between the different techniques, with a ratio between maximum and minimum dose > 30 for the skin and the spine. The doses were however lower than those capable of inducing non-stochastic effects by about 10000 and were so low that the probability of a stochastics effect is minimal. Nevertheless, because chest X-rays are performed so frequently, it is recommended that radiologists take greater account of patient dose, as far as compatible with diagnostic requirements. Radiology technicians must strictly observe the regulations for radioprotection of the patient

  19. Actinide science with soft x-ray synchrotron radiation

    International Nuclear Information System (INIS)

    Shuh, D.

    2002-01-01

    Several workshops, some dating back more than fifteen years, recognised both the potential scientific impact and opportunities that would be made available by the capability to investigate actinide materials in the vacuum ultraviolet (VUV)/soft X-ray region of the synchrotron radiation (SR) spectrum. This spectral region revolutionized the approach to surface materials chemistry and physics nearly two decades ego. The actinide science community was unable to capitalize on these SR methodologies for the study of actinide materials until recently because of radiological safety concerns. ,The Advanced Light Source (ALS) at LBNL is a third-generation light source providing state-of-the-art performance in the VUV/soft X-ray region. Along with corresponding improvements in detector and vacuum technology, the ALS has rendered experiments with small amounts of actinide materials possible. In particular, it has been the emergence and development of micro-spectroscopic techniques that have enabled investigations of actinide materials at the ALS. The primary methods for the experimental investigation of actinide materials in the VUV/soft X-ray region are the complementary photoelectron spectroscopies, near-edge X-ray absorption fine structure (NEXAFS) and X-ray emission spectroscopy (XES) techniques. Resonant photo-emission is capable of resolving the 5f electron contributions to actinide bonding and can be used to characterise the electronic structure of actinide materials. This technique is clearly a most important methodology afforded by the tunable SR source. Core level and valence band photoelectron spectroscopies are valuable for the characterisation of the electronic properties of actinide materials, as well as for general analytical purposes. High-resolution core-level photo-emission and resonant photo-emission measurements from the a (monoclinic) and δ (FCC) allotropic phases of plutonium metal have been collected on beam line 7.0 at the ALS and the spectra show

  20. On the accuracy of X-ray lithography using synchrotron radiation for the fabrication of technical separation nozzle elements

    International Nuclear Information System (INIS)

    Becker, E.W.; Ehrfeld, W.; Muenchmeyer, D.

    1984-04-01

    As a method for the fabrication of technical separation nozzle elements with extremely small characteristic dimensions, the Institut fuer Kernverfahrenstechnik of the University and the Nuclear Research Centre of Karlsruhe in co-operation with the Siemens AG, Munich, and the Fraunhofer Institute for Solid-State Technology, Munich, are developping the LIGA-process. In this process, poly(methylmethacrylate) layers of an approximate thickness of 0.5 mm are structured by means of X-ray depth-lithography using synchrotron radiation. Subsequently, the nozzle structures are electroformed with nickel using the PMMA-layers as a mould. The manufacturing precision which can be obtained by X-ray depth-lithography was investigated by means of computer simulation of both the irradiation and the development step. In the first step the precision is limited by diffraction, photoelectrons, and beam divergency, respectively. It is shown, that under appropriate conditions each of these effects contributes only some 0.1 μm to errors at the structure edges. The simulation of the development step is based on experiments on the dissolution properties of both irradiated and unirradiated PMMA in a special developing agent. From the results of the computer simulation it can be seen, that the ratio of the slit length to the smallest width which is required for the fabrication of separation nozzles and the required precision are already obtainable in the one-step lithographic process at a characteristic wavelength of 0.2 nm. If an extreme structure height in combination with high precision is required or if a radiation source with a longer characteristic wavelength has to be used, the multi-step process can be applied. The calculations may easily be adapted to different manufacturing parameters concerning the radiation source or the developer characteristic. (orig.) [de