WorldWideScience

Sample records for characteristic resonance frequency

  1. Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites

    Institute of Scientific and Technical Information of China (English)

    Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong

    2013-01-01

    As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.

  2. Study on frequency characteristics of wireless power transmission system based on magnetic coupling resonance

    Science.gov (United States)

    Liang, L. H.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Yue, Z. K.; Cui, S.

    2017-11-01

    In order to study the frequency characteristics of the wireless energy transmission system based on the magnetic coupling resonance, a circuit model based on the magnetic coupling resonant wireless energy transmission system is established. The influence of the load on the frequency characteristics of the wireless power transmission system is analysed. The circuit coupling theory is used to derive the minimum load required to suppress frequency splitting. Simulation and experimental results verify that when the load size is lower than a certain value, the system will appear frequency splitting, increasing the load size can effectively suppress the frequency splitting phenomenon. The power regulation scheme of the wireless charging system based on magnetic coupling resonance is given. This study provides a theoretical basis for load selection and power regulation of wireless power transmission systems.

  3. The resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators

    International Nuclear Information System (INIS)

    Jin, Ke; Kou, Yong; Zheng, Xiaojing

    2012-01-01

    This paper focuses on the resonance frequency shift characteristic of Terfenol-D rods for magnetostrictive actuators. A 3D nonlinear dynamic model to describe the magneto-thermo-elastic coupling behavior of actuators is proposed based on a nonlinear constitutive model. The coupled interactions among stress- and magnetic-field-dependent variables for actuators are solved iteratively using the finite element method. The model simulations show a good correlation with the experimental data, which demonstrates that this model can capture the coupled resonance frequency shift features for magnetostrictive actuators well. Moreover, a comprehensive description for temperature, pre-stress and bias field dependences of resonance frequency is discussed in detail. These essential and important investigations will be of significant benefit to both theoretical research and the applications of magnetostrictive materials in smart or intelligent structures and systems. (paper)

  4. Frequency Characteristics of Double-Walled Carbon Nanotube Resonator with Different Length

    Directory of Open Access Journals (Sweden)

    Jun-Ha LEE

    2016-05-01

    Full Text Available In this paper, we have conducted classical molecular dynamics simulations for DWCNTs of various wall lengths to investigate their use as ultrahigh frequency nano-mechanical resonators. We sought to determine the variations in the frequency of these resonators according to changes in the DWCNT wall lengths. For a double-walled carbon nanotube resonator with a shorter inner nanotube, the shorter inner nanotube can be considered to be a flexible core, and thus, the length influences the fundamental frequency. In this paper, we analyze the variation in frequency of ultra-high frequency nano-mechnical resonators constructed from DWCNTs with different wall lengths.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12951

  5. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho, E-mail: whjhe@snu.ac.kr [Department of Physics and Astronomy, Institute of Applied Physics and Centre for THz-Bio Application Systems, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2016-08-21

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  6. Electrical tuning of mechanical characteristics in qPlus sensor: Active Q and resonance frequency control

    International Nuclear Information System (INIS)

    Lee, Manhee; Hwang, Jong Geun; Jahng, Junghoon; Kim, QHwan; Noh, Hanaul; An, Sangmin; Jhe, Wonho

    2016-01-01

    We present an electrical feedback method for independent and simultaneous tuning of both the resonance frequency and the quality factor of a harmonic oscillator, the so called “qPlus” configuration of quartz tuning forks. We incorporate a feedback circuit with two electronic gain parameters into the original actuation-detection system, and systematically demonstrate the control of the original resonance frequency of 32 592 Hz from 32 572 Hz to 32 610 Hz and the original quality factor 952 from 408 up to 20 000. This tunable module can be used for enhancing and optimizing the oscillator performance in compliance with specifics of applications.

  7. Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies.

    Science.gov (United States)

    Tsujino, Jiromaru; Hongoh, Misugi; Yoshikuni, Masafumi; Hashii, Hidekazu; Ueoka, Tetsugi

    2004-04-01

    The welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems that are driven at only the fundamental-resonance frequency vibration were compared, and also those of the welding systems that were driven at the fundamental and several higher resonance frequencies simultaneously were studied. At high frequency, welding characteristics can be improved due to the larger vibration loss of plastic materials. For welding of rather thin or small specimens, as the fundamental frequency of these welding systems is higher and the numbers of driven higher frequencies are driven simultaneously, larger welded area and weld strength were obtained.

  8. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  9. The influence of the dimensions of electrodes on the frequency-temperature characteristics of at and BT-cut quartz resonators

    International Nuclear Information System (INIS)

    Zelenka, J.

    1996-01-01

    The comparison of the measured resonant frequency-temperature characteristics of the AT-and BT-cut square and circular quartz resonators with the computed ones is given in the paper. The curves which express the frequency-temperature behavior of the resonators are compared. The influence of the thickness of the silver and gold electrodes on the first order frequency temperature coefficient is presented. The influence of the dimension ratio of the wafer on the orientation for which the zero first order temperature coefficient occurs at the temperature T O = 25 O C are given. (authors)

  10. Features of the effect of the parameters of resonance systems with different configurations on the current-voltage characteristics of resonant-tunneling nanostructures in a subterahertz frequency range

    International Nuclear Information System (INIS)

    Aleksanyan, A.A.; Volchkov, N.A.; Dravin, V.A.; Kazakov, I.P.; Karuzskij, A.L.; Murzin, V.N.; Perestoronin, A.V.; Tskhovrebov, A.M.; Shmelev, S.S.

    2014-01-01

    Features of the effect of a subterahertz microwave field on the current characteristics of a resonant-tunneling diode in resonance systems with different configurations have been studied. Changes in the current characteristics of the resonant-tunneling diode under variation of the electrophysical parameters of dielectric and microstrip resonators, in particular high-Q-factor superconducting microstrip resonators, have been experimentally studied and analyzed [ru

  11. Propagation characteristics of resonance cone in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Ohnuma, T.; Sanuki, H.

    1984-01-01

    Propagation characteristics of resonance cone field for frequencies below the electron cyclotron frequency are described in a mirror magnetic field on the basis of fluid equation. Theoretical results are compared qualitatively with those of experiment

  12. ON THE RESONANT FREQUENCIES OF THE OJA

    African Journals Online (AJOL)

    Dr Obe

    1997-09-01

    Oja' (a traditional Nigerian musical instrument) is developed. Support for the theory is provided by data derived from experimentally measured spectra of typical oja tones. It is also shown that for resonant frequencies below about ...

  13. Electrothermal Frequency Modulated Resonator for Mechanical Memory

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.

    2016-01-01

    In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure

  14. On Resonant Heating Below the Cyclotron Frequency

    International Nuclear Information System (INIS)

    Chen, Liu; Lin, Zhihong; White, R.

    2001-01-01

    Resonant heating of particles by an electrostatic wave propagating perpendicular to a confining uniform magnetic field is examined. It is shown that, with a sufficiently large wave amplitude, significant perpendicular stochastic heating can be obtained with wave frequency at a fraction of the cyclotron frequency

  15. On Frequency Combs in Monolithic Resonators

    Directory of Open Access Journals (Sweden)

    Savchenkov A. A.

    2016-06-01

    Full Text Available Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  16. On Frequency Combs in Monolithic Resonators

    Science.gov (United States)

    Savchenkov, A. A.; Matsko, A. B.; Maleki, L.

    2016-06-01

    Optical frequency combs have become indispensable in astronomical measurements, biological fingerprinting, optical metrology, and radio frequency photonic signal generation. Recently demonstrated microring resonator-based Kerr frequency combs point the way towards chip scale optical frequency comb generator retaining major properties of the lab scale devices. This technique is promising for integrated miniature radiofrequency and microwave sources, atomic clocks, optical references and femtosecond pulse generators. Here we present Kerr frequency comb development in a historical perspective emphasizing its similarities and differences with other physical phenomena. We elucidate fundamental principles and describe practical implementations of Kerr comb oscillators, highlighting associated solved and unsolved problems.

  17. Constant-frequency, clamped-mode resonant converters

    Science.gov (United States)

    Tsai, Fu-Sheng; Materu, Peter; Lee, Fred C.

    1987-01-01

    Two novel clamped-mode resonant converters are proposed which operate at a constant frequency while retaining many desired features of conventional series- and parallel-resonant converters. State-plane analysis techniques are used to identify all possible operating modes and define their mode boundaries. Control-to-output characteristics are derived that specify the regions for natural and forced commutation. The predicted operating modes are verified using a prototype circuit.

  18. Effect of metal coating and residual stress on the resonant frequency ...

    Indian Academy of Sciences (India)

    CranesSci MEMS Laboratory, Department of Mechanical Engineering, Indian. Institute of ... Finally, it is found that the analytical models give an error of ... As a resonator, the most important characteristics are the resonant frequency and.

  19. Superconducting high frequency high power resonators

    International Nuclear Information System (INIS)

    Hobbis, C.; Vardiman, R.; Weinman, L.

    1974-01-01

    A niobium superconducting quarter-wave helical resonator has been designed and built. The resonator has been electron-beam welded and electropolished to produce a smooth flaw-free surface. This has been followed by an anodization to produce a 1000 A layer of Nb 2 0 5 . At the resonant frequency of approximately 15 MHz the unloaded Q was approximately equal to 4.6x10 6 with minimal dielectric support. With the resonator open to the helium bath to provide cooling, and rigidly supported by a teflon cylinder, 350 V of power were transferred at a doubly loaded Q of 3500. The extrapolation of the results to a Qsub(DL) of 1000 meet the power handling criteria of one kilowatt for the intended application. (author)

  20. Resonant magnetic pumping at very low frequency

    International Nuclear Information System (INIS)

    Canobbio, Ernesto

    1978-01-01

    We propose to exploit for plasma heating purposes the very low frequency limit of the Alfven wave resonance condition, which reduces essentially to safety factor q=m/n, a rational number. It is shown that a substantial fraction of the total RF-energy can be absorbed by the plasma. The lowest possible frequency value is determined by the maximum tolerable width of the RF-magnetic islands which develop near the singular surface. The obvious interest of the proposed scheme is the low frequency value (f<=10 KHz) which allows the RF-coils to be protected by stainless steel or even to be put outside the liner

  1. Frequency division using a micromechanical resonance cascade

    Energy Technology Data Exchange (ETDEWEB)

    Qalandar, K. R., E-mail: kamala@engineering.ucsb.edu; Gibson, B.; Sharma, M.; Ma, A.; Turner, K. L. [Department of Mechanical Engineering, University of California at Santa Barbara, Santa Barbara, California 93106 (United States); Strachan, B. S. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Electrical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Shaw, S. W. [Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan 48823 (United States); Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48823 (United States)

    2014-12-15

    A coupled micromechanical resonator array demonstrates a mechanical realization of multi-stage frequency division. The mechanical structure consists of a set of N sequentially perpendicular microbeams that are connected by relatively weak elastic elements such that the system vibration modes are localized to individual microbeams and have natural frequencies with ratios close to 1:2:⋯:2{sup N}. Conservative (passive) nonlinear inter-modal coupling provides the required energy transfer between modes and is achieved by finite deformation kinematics. When the highest frequency beam is excited, this arrangement promotes a cascade of subharmonic resonances that achieve frequency division of 2{sup j} at microbeam j for j = 1, …, N. Results are shown for a capacitively driven three-stage divider in which an input signal of 824 kHz is passively divided through three modal stages, producing signals at 412 kHz, 206 kHz, and 103 kHz. The system modes are characterized and used to delineate the range of AC input voltages and frequencies over which the cascade occurs. This narrow band frequency divider has simple design rules that are scalable to higher frequencies and can be extended to a larger number of modal stages.

  2. Jump resonant frequency islands in nonlinear feedback control systems

    Science.gov (United States)

    Koenigsberg, W. D.; Dunn, J. C.

    1975-01-01

    A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.

  3. Multi-frequency modes in superconducting resonators: Bridging frequency gaps in off-resonant couplings

    Science.gov (United States)

    Andersen, Christian Kraglund; Mølmer, Klaus

    2015-03-01

    A SQUID inserted in a superconducting waveguide resonator imposes current and voltage boundary conditions that makes it suitable as a tuning element for the resonator modes. If such a SQUID element is subject to a periodically varying magnetic flux, the resonator modes acquire frequency side bands. We calculate the multi-frequency eigenmodes and these can couple resonantly to physical systems with different transition frequencies and this makes the resonator an efficient quantum bus for state transfer and coherent quantum operations in hybrid quantum systems. As an example of the application, we determine their coupling to transmon qubits with different frequencies and we present a bi-chromatic scheme for entanglement and gate operations. In this calculation, we obtain a maximally entangled state with a fidelity F = 95 % . Our proposal is competitive with the achievements of other entanglement-gates with superconducting devices and it may offer some advantages: (i) There is no need for additional control lines and dephasing associated with the conventional frequency tuning of qubits. (ii) When our qubits are idle, they are far detuned with respect to each other and to the resonator, and hence they are immune to cross talk and Purcell-enhanced decay.

  4. High quality factor gigahertz frequencies in nanomechanical diamond resonators

    OpenAIRE

    Gaidarzhy, Alexei; Imboden, Matthias; Mohanty, Pritiraj; Rankin, Janet; Sheldon, Brian W.

    2007-01-01

    We report actuation and detection of gigahertz-range resonance frequencies in nano-crystalline diamond mechanical resonators. High order transverse vibration modes are measured in coupled-beam resonators exhibiting frequencies up to 1.441 GHz. The cantilever-array design of the resonators translates the gigahertz-range resonant motion of micron-long cantilever elements to the displacement of the central supporting structure. Use of nano-crystalline diamond further increases the frequency comp...

  5. Electrothermal Frequency Modulated Resonator for Mechanical Memory

    KAUST Repository

    Hafiz, Md Abdullah Al

    2016-08-18

    In this paper, we experimentally demonstrate a mechanical memory device based on the nonlinear dynamics of an electrostatically actuated microelectromechanical resonator utilizing an electrothermal frequency modulation scheme. The microstructure is deliberately fabricated as an in-plane shallow arch to achieve geometric quadratic nonlinearity. We exploit this inherent nonlinearity of the arch and drive it at resonance with minimal actuation voltage into the nonlinear regime, thereby creating softening behavior, hysteresis, and coexistence of states. The hysteretic frequency band is controlled by the electrothermal actuation voltage. Binary values are assigned to the two allowed dynamical states on the hysteretic response curve of the arch resonator with respect to the electrothermal actuation voltage. Set-and-reset operations of the memory states are performed by applying controlled dc pulses provided through the electrothermal actuation scheme, while the read-out operation is performed simultaneously by measuring the motional current through a capacitive detection technique. This novel memory device has the advantages of operating at low voltages and under room temperature. [2016-0043

  6. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    Science.gov (United States)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  7. Resonance frequencies of AFM cantilevers in contact with a surface

    Energy Technology Data Exchange (ETDEWEB)

    Verbiest, G.J., E-mail: Verbiest@physik.rwth-aachen.de [JARA-FIT and II. Institute of Physics, RWTH Aachen University, 52074 Aachen (Germany); Rost, M.J., E-mail: Rost@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands)

    2016-12-15

    To make the forces in an Atomic Force Microscope that operates in a dynamic mode with one or multiple vibrations applied to the cantilever, quantitative, one needs to relate a change in resonance frequency of the cantilever to a specific tip–sample interaction. Due to the time dependence of the force between the tip and sample caused by the vibrations, this task is not only difficult, but in fact only possible to solve for certain limiting cases, if one follows common theoretical approaches with a Taylor expansion around the deflection point. Here, we present an analytical method for calculating the resonance frequencies of the cantilever that is valid for any tip–sample interaction. Instead of linearizing the tip–sample interaction locally, we calculate an averaged, weighted linearization taking into account all positions of the tip while vibrating. Our method bridges, therefore, the difficult gap between a free oscillating cantilever and a cantilever that is pushed infinitely hard into contact with a surface, which describes a clamped-pinned boundary condition. For a correct description of the cantilever dynamics, we take into account both the tip mass and the tip moment of inertia. Applying our model, we show that it is possible to calculate the modal response of a cantilever as a function of the tip–sample interaction strength. Based on these modal vibration characteristics, we show that the higher resonance frequencies of a cantilever are completely insensitive to the strength of the tip–sample interaction. - Highlights: • A method to calculate the resonances of AFM cantilevers under any force is proposed. • The analytical model is based on Euler-beam theory. • The shift in resonance frequency due to forces decrease with increasing mode number. • The proposed method enables quantitative ultrasound AFM experiments. • Our results explain also the applicability of the higher modes in SubSurface-AFM.

  8. Magnetodielectric effect of Mn–Zn ferrite at resonant frequency

    International Nuclear Information System (INIS)

    Pengfei, Pan; Ning, Zhang

    2016-01-01

    The dielectric properties and the magnetodielectric effect in Mn–Zn ferrite at resonant frequency have been studied in this paper. Dimensional-resonance-induced abnormal dielectric spectrum was observed at f≈1 MHz. The relatively large magnetodielectric ratio of 4500% in a magnetic field of 3.5 kOe was achieved from the Mn–Zn ferrite sample with the initial permeability of 15 K at resonant frequency at room temperature. Theoretical analysis suggests that the large MD effect at resonant frequency is attributed to the enhanced magnetostriction effect. - Highlights: • Dimensional resonance was measured in dielectric spectrum at f≈1 MHz. • The MD ratio of 4500% was induced by H = 3.5 kOe at resonant frequency. • The magnetostriction effect leads to the large MD effect at resonant frequency.

  9. Resonant characteristics and sensitivity dependency on the contact surface in QCM-micropillar-based system of coupled resonator sensors

    International Nuclear Information System (INIS)

    Kashan, M A M; Kalavally, V; Ramakrishnan, N; Lee, H W

    2016-01-01

    We report the characteristics and sensitivity dependence over the contact surface in coupled resonating sensors (CRSs) made of high aspect ratio resonant micropillars attached to a quartz crystal microbalance (QCM). Through experiments and simulation, we observed that when the pillars of resonant heights were placed in maximum displacement regions the resonance frequency of the QCM increased following the coupled resonance characteristics, as the pillar offered elastic loading to the QCM surface. However, the same pillars when placed in relatively lower displacement regions, in spite of their resonant dimension, offered inertial loading and resulted in a decrease in QCM resonance frequency, as the displacement amplitude was insufficient to couple the vibrations from the QCM to the pillars. Accordingly, we discovered that the coupled resonance characteristics not only depend on the resonant structure dimensions but also on the contact regions in the acoustic device. Further analysis revealed that acoustic pressure at the contact surface also influences the resonance frequency characteristics and sensitivity of the CRS. To demonstrate the significance of the present finding for sensing applications, humidity sensing is considered as the example measurand. When a sensing medium made of resonant SU-8 pillars was placed in a maximum displacement region on a QCM surface, the sensitivity increased by 14 times in comparison to a resonant sensing medium placed in a lower displacement region of a QCM surface. (paper)

  10. Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve

    Directory of Open Access Journals (Sweden)

    Guojun Pan

    2015-01-01

    Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.

  11. Low frequency noise in resonant Josephson soliton oscillators

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Holst, T.; Wellstood, Frederick C.

    1991-01-01

    The noise in the resonant soliton mode of long and narrow Josephson tunnel junctions (Josephson transmission lines or JTLs) have been measured in the frequency range from 0.1 Hz to 25 kHz by means of a DC SQUID. The measured white noise was found, to within a factor of two, to be equal...... to the Nyquist voltage noise in a resistance equal to the dynamic resistance RD of the current-voltage characteristic of the bias point. In contrast, measurements of the linewidth of the microwave radiation from the same JTL showed that the spectral density of the underlying noise voltage scaled as R D2/RS where...

  12. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    International Nuclear Information System (INIS)

    Kapaev, V. V.; Kopaev, Yu. V.; Savinov, S. A.; Murzin, V. N.

    2013-01-01

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schrödinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In 0.53 Ga 0.47 As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V dc in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in such structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.

  13. A Study on Measurement Variations in Resonant Characteristics of Electrostatically Actuated MEMS Resonators

    Directory of Open Access Journals (Sweden)

    Faisal Iqbal

    2018-04-01

    Full Text Available Microelectromechanical systems (MEMS resonators require fast, accurate, and cost-effective testing for mass production. Among the different test methods, frequency domain analysis is one of the easiest and fastest. This paper presents the measurement uncertainties in electrostatically actuated MEMS resonators, using frequency domain analysis. The influence of the applied driving force was studied to evaluate the measurement variations in resonant characteristics, such as the natural frequency and the quality factor of the resonator. To quantify the measurement results, measurement system analysis (MSA was performed using the analysis of variance (ANOVA method. The results demonstrate that the resonant frequency ( f r is mostly affected by systematic error. However, the quality (Q factor strongly depends on the applied driving force. To reduce the measurement variations in Q factor, experiments were carried out to study the influence of DC and/or AC driving voltages on the resonator. The results reveal that measurement uncertainties in the quality factor were high for a small electrostatic force.

  14. A vibration energy harvesting device with bidirectional resonance frequency tunability

    International Nuclear Information System (INIS)

    Challa, Vinod R; Prasad, M G; Shi Yong; Fisher, Frank T

    2008-01-01

    Vibration energy harvesting is an attractive technique for potential powering of wireless sensors and low power devices. While the technique can be employed to harvest energy from vibrations and vibrating structures, a general requirement independent of the energy transfer mechanism is that the vibration energy harvesting device operate in resonance at the excitation frequency. Most energy harvesting devices developed to date are single resonance frequency based, and while recent efforts have been made to broaden the frequency range of energy harvesting devices, what is lacking is a robust tunable energy harvesting technique. In this paper, the design and testing of a resonance frequency tunable energy harvesting device using a magnetic force technique is presented. This technique enabled resonance tuning to ± 20% of the untuned resonant frequency. In particular, this magnetic-based approach enables either an increase or decrease in the tuned resonant frequency. A piezoelectric cantilever beam with a natural frequency of 26 Hz is used as the energy harvesting cantilever, which is successfully tuned over a frequency range of 22–32 Hz to enable a continuous power output 240–280 µW over the entire frequency range tested. A theoretical model using variable damping is presented, whose results agree closely with the experimental results. The magnetic force applied for resonance frequency tuning and its effect on damping and load resistance have been experimentally determined

  15. Temperature dependence of the resonance frequency of thermogravimetric devices

    NARCIS (Netherlands)

    Iervolino, E.; Riccio, M.; Van Herwaarden, A.W.; Irace, A.; Breglio, G.; Van der Vlist, W.; Sarro, P.M.

    2010-01-01

    This paper investigates the temperature dependence of the resonance frequency of thermogravimetric (TG) devices for tip heating over the temperature range of View the MathML source 25–600?C. The resonance frequency of a fabricated TG device shows to be temperature independent for tip heating up to

  16. On the Resonant Frequencies of the Oja | Nwachukwu | Nigerian ...

    African Journals Online (AJOL)

    A method for calculating the unblown resonant frequencies of an 'Oja' (a traditional Nigerian musical instrument) is developed. Support for the theory is provided by data derived from experimentally measured spectra of typical oja tones. It is also shown that for resonant frequencies below about 2000Hz, the differences ...

  17. Mixed frequency excitation of an electrostatically actuated resonator

    KAUST Repository

    Ramini, Abdallah

    2015-04-24

    We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler vibrometer to reveal the interesting dynamics of the system when subjected to two-source excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation. © 2015 Springer-Verlag Berlin Heidelberg

  18. Impedance-Based High Frequency Resonance Analysis of DFIG System in Weak Grids

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    Resonance (SSR). However, the High Frequency Resonance (HFR) of DFIG systems due to the impedance interaction between DFIG system and parallel compensated weak network is often overlooked. This paper thus investigates the impedance characteristics of DFIG systems for the analysis of HFR. The influences...

  19. Radio frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  20. Variable frequency iteration MPPT for resonant power converters

    Science.gov (United States)

    Zhang, Qian; Bataresh, Issa; Chen, Lin

    2015-06-30

    A method of maximum power point tracking (MPPT) uses an MPPT algorithm to determine a switching frequency for a resonant power converter, including initializing by setting an initial boundary frequency range that is divided into initial frequency sub-ranges bounded by initial frequencies including an initial center frequency and first and second initial bounding frequencies. A first iteration includes measuring initial powers at the initial frequencies to determine a maximum power initial frequency that is used to set a first reduced frequency search range centered or bounded by the maximum power initial frequency including at least a first additional bounding frequency. A second iteration includes calculating first and second center frequencies by averaging adjacent frequent values in the first reduced frequency search range and measuring second power values at the first and second center frequencies. The switching frequency is determined from measured power values including the second power values.

  1. Resonant difference-frequency atomic force ultrasonic microscope

    Science.gov (United States)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  2. Ultra-Wideband Printed Slot Radiators with Controllable Frequency Characteristics

    Directory of Open Access Journals (Sweden)

    S. L. Chernyshev

    2015-01-01

    Full Text Available We have studied the possibility of creating ultra-wideband (UWB antennas with controlled frequency response of matching based on the printed slot antenna Vivaldi by introducing controlled resonators directly into the structure of the radiator. In the area of irregular slotline there are printed switched resonators with variable capacitance (varactor model, which allow tuning the frequency characteristics for each state of switching cavities, providing bandpass and band-barrage properties of the antenna. The investigation of reconfigurable printed resonators in the system of reconfigurable resonators of a bandpass filter is conducted. The paper considers filter to provide restructuring in the band (3-9 GHz. Electrodynamic simulation of the device was carried out in the time domain using a finite integration method. A bandstop reconfigurable filter is also investigated. The filter located on the substrate opposite the slit is based on tunable L-shaped resonator that has one end connected to the short-circuitor through the board metallization; the other end remains open and is brought into the region of interaction with the slotline. Such filter provides an effective narrow-band suppression and can be easily tuned to the desired frequency channel. The combination of these two types of filters allows you to create a controlled print Vivaldi slot antenna with combined properties. The paper investigates parameters of the scattering and radiation pattern of the antenna in different modes.

  3. Frequency characteristics of the laser film digitizer

    International Nuclear Information System (INIS)

    Ishimitsu, Y.; Taira, R.K.; Huang, H.K.

    1988-01-01

    The frequency characteristics of the laser film digitizer in the parallel and in the perpendicular scan direction are different. Because of this difference, moire pattern artifacts may appear in the digitized image. The authors found that this phenomenon is due to the frequency transfer characteristics of the various components in the laser film digitizer. From this observation, they derive a relationship between the spatial frequency content of the original image and the laser beam spot size based on the concept of image contrast. This relationship can be utilized to avoid the appearance of the moire pattern in the digitized image

  4. A Quarter Ellipse Microstrip Resonator for Filters in Microwave Frequencies

    Directory of Open Access Journals (Sweden)

    Samuel Á. Jaramillo-Flórez

    2013-11-01

    Full Text Available This work describes the results of computational simulations and construction of quadrant elliptical resonators excited by coplanar slot line waveguide for designing microwave filters in RF communications systems. By means of the equation of optics, are explained the fundamentals of these geometry of resonators proposed. Are described the construction of quadrant elliptical resonators, one of microstrip and other two of cavity, of size different, and an array of four quadrant elliptical resonators in cascade. The results of the measures and the computational calculus of scattering S11 and S21 of elliptical resonators is made for to identify the resonant frequencies of the resonators studied, proving that these have performance in frequency as complete ellipses by the image effect due to their two mirror in both semiaxis, occupying less area, and the possible applications are discussed.

  5. Resonance Frequency Readout Circuit for a 900 MHz SAW Device.

    Science.gov (United States)

    Liu, Heng; Zhang, Chun; Weng, Zhaoyang; Guo, Yanshu; Wang, Zhihua

    2017-09-15

    A monolithic resonance frequency readout circuit with high resolution and short measurement time is presented for a 900 MHz RF surface acoustic wave (SAW) sensor. The readout circuit is composed of a fractional-N phase-locked loop (PLL) as the stimulus source to the SAW device and a phase-based resonance frequency detecting circuit using successive approximation (SAR). A new resonance frequency searching strategy has been proposed based on the fact that the SAW device phase-frequency response crosses zero monotonically around the resonance frequency. A dedicated instant phase difference detecting circuit is adopted to facilitate the fast SAR operation for resonance frequency searching. The readout circuit has been implemented in 180 nm CMOS technology with a core area of 3.24 mm². In the experiment, it works with a 900 MHz SAW resonator with a quality factor of Q = 130. Experimental results show that the readout circuit consumes 7 mW power from 1.6 V supply. The frequency resolution is 733 Hz, and the relative accuracy is 0.82 ppm, and it takes 0.48 ms to complete one measurement. Compared to the previous results in the literature, this work has achieved the shortest measurement time with a trade-off between measurement accuracy and measurement time.

  6. High Energy Single Frequency Resonant Amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR phase I project proposes a single frequency high energy resonant amplifier for remote sensing. Current state-of-art technologies can not provide all...

  7. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.; Emira, Ahmed; Radwan, Ahmed Gomaa; Salama, Khaled N.

    2012-01-01

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality

  8. Method and apparatus for resonant frequency waveform modulation

    Science.gov (United States)

    Taubman, Matthew S [Richland, WA

    2011-06-07

    A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.

  9. Radiation-induced frequency transients in AT, BT, and SC cut quartz resonators

    International Nuclear Information System (INIS)

    Koehler, D.R.

    1979-01-01

    Earlier studies of transient frequency changes in high-purity swept AT quartz resonators led to the conclusion that impurity-induced effects were small, while the observed changes were qualitatively and quantitatively well characterized in terms of the time changing temperature of the vibrating quartz and its effect on frequency. 5 MHz, AT cut fifth overtone, and BT and SC cut third overtone resonators were prepared from a single stone of Sawyer swept Premium-Q quartz. The resonators were operated in precision ovenized oscillators at or near their turnover temperatures. Pulsed irradiation, at dose levels of the order of 10 4 rads (Si) per pulse, was accomplished at Sandia. The experimental data display negative frequency transients for the AT cut resonators, positive frequency transients for the BT cut resonators, and very small transient effects for the SC cut resonators. From these experimental results, it is concluded that no measurable impurity-induced frequency changes are observed in this high-purity swept-quartz and that the frequency transients are accurately modelled in terms of transient temperature effects stemming from the thermal characteristics of the resonator structure

  10. 3C-SiC microdisk mechanical resonators with multimode resonances at radio frequencies

    Science.gov (United States)

    Lee, Jaesung; Zamani, Hamidrera; Rajgopal, Srihari; Zorman, Christian A.; X-L Feng, Philip

    2017-07-01

    We report on the design, modeling, fabrication and measurement of single-crystal 3C-silicon carbide (SiC) microdisk mechanical resonators with multimode resonances operating at radio frequencies (RF). These microdisk resonators (center-clamped on a vertical stem pedestal) offer multiple flexural-mode resonances with frequencies dependent on both disk and anchor dimensions. The resonators are made using a novel fabrication method comprised of focused ion beam nanomachining and hydroflouic : nitric : acetic (HNA) acid etching. Resonance peaks (in the frequency spectrum) are detected through laser-interferometry measurements. Resonators with different dimensions are tested, and multimode resonances, mode splitting, energy dissipation (in the form of quality factor measurement) are investigated. Further, we demonstrate a feedback oscillator based on a passive 3C-SiC resonator. This investigation provides important guidelines for microdisk resonator development, ranging from an analytical prediction of frequency scaling law to fabrication, suggesting RF microdisk resonators can be good candidates for future sensing applications in harsh environments.

  11. Flood-frequency characteristics of Wisconsin streams

    Science.gov (United States)

    Walker, John F.; Peppler, Marie C.; Danz, Mari E.; Hubbard, Laura E.

    2017-05-22

    Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

  12. Chemisorption-Induced Resonance Frequency Shift of a Microcantilever

    International Nuclear Information System (INIS)

    Zhang Ji-Qiao; Feng Xi-Qiao; Yu Shou-Wen; Huang Gan-Yun

    2012-01-01

    The autonomy and property of atoms/molecules adsorbed on the surface of a microcantilever can be probed by measuring its resonance frequency shift due to adsorption. The resonance frequency change of a cantilever induced by chemisorption is theoretically studied. Oxygen chemisorbed on the Si(100) surface is taken as a representative example. We demonstrate that the resonant response of the cantilever is mainly determined by the chemisorption-induced bending stiffness variation, which depends on the bond configurations formed by the adsorbed atoms and substrate atoms. This study is helpful for optimal design of microcantilever-based sensors for various applications. (condensed matter: structure, mechanical and thermal properties)

  13. Vibrational resonances in biological systems at microwave frequencies.

    Science.gov (United States)

    Adair, Robert K

    2002-03-01

    Many biological systems can be expected to exhibit resonance behavior involving the mechanical vibration of system elements. The natural frequencies of such resonances will, generally, be in the microwave frequency range. Some of these systems will be coupled to the electromagnetic field by the charge distributions they carry, thus admitting the possibility that microwave exposures may generate physiological effects in man and other species. However, such microwave excitable resonances are expected to be strongly damped by interaction with their aqueous biological environment. Although those dissipation mechanisms have been studied, the limitations on energy transfers that follow from the limited coupling of these resonances to the electromagnetic field have not generally been considered. We show that this coupling must generally be very small and thus the absorbed energy is so strongly limited that such resonances cannot affect biology significantly even if the systems are much less strongly damped than expected from basic dissipation models.

  14. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    International Nuclear Information System (INIS)

    Dorogush, E S; Afonenko, A A

    2015-01-01

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  15. Double resonance modulation characteristics of optically injection-locked Fabry–Perot lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dorogush, E S; Afonenko, A A [Belarusian State University, Minsk (Belarus)

    2015-12-31

    The distributed resonator model is used to show the presence of several resonance responses on the modulation characteristic of optically injection-locked Fabry–Perot lasers. The positions of the resonance peaks on the modulation characteristic are determined by the resonator length and frequency detuning of optical injection. It is shown that an appropriate choice of the resonator length and injection locking conditions allows one to obtain efficient modulation in two ranges near 40 – 60 GHz or to increase the direct modulation bandwidth up to 50 GHz. (control of laser radiation parameters)

  16. Resonance cones below the ion cyclotron frequency: theory and experiment

    International Nuclear Information System (INIS)

    Bellan, P.

    1976-03-01

    The resonance cones existing below the ion cyclotron frequency, ω/sub c/sub i//, are shown, theoretically and experimentally, to be the asymptotes of hyperbolic constant-phase surfaces of low-frequency ion acoustic waves. Above ω/sub c/sub i// the surfaces transform into ellipses that are related to the electrostatic ion cyclotron waves and ion acoustic waves

  17. A high-switching-frequency flyback converter in resonant mode

    NARCIS (Netherlands)

    Li, Jianting; van Horck, Frank B.M.; Daniel, Bobby J.; Bergveld, Henk Jan

    2017-01-01

    The demand of miniaturization of power systems has accelerated the research on high-switching-frequency power converters. A flyback converter in resonant mode that features low switching losses, less transformer losses, and low switching noise at high switching frequency is investigated in this

  18. Circular High-Q Resonating Isotropic Strain Sensors with Large Shift of Resonance Frequency under Stress

    Directory of Open Access Journals (Sweden)

    Hilmi Volkan Demir

    2009-11-01

    Full Text Available We present circular architecture bioimplant strain sensors that facilitate a strong resonance frequency shift with mechanical deformation. The clinical application area of these sensors is for in vivo assessment of bone fractures. Using a rectangular geometry, we obtain a resonance shift of 330 MHz for a single device and 170 MHz for its triplet configuration (with three side-by-side resonators on chip under an applied load of 3,920 N. Using the same device parameters with a circular isotropic architecture, we achieve a resonance frequency shift of 500 MHz for the single device and 260 MHz for its triplet configuration, demonstrating substantially increased sensitivity.

  19. Resonance Spectrum Characteristics of Effective Electromechanical Coupling Coefficient of High-Overtone Bulk Acoustic Resonator

    Directory of Open Access Journals (Sweden)

    Jian Li

    2016-09-01

    Full Text Available A high-overtone bulk acoustic resonator (HBAR consisting of a piezoelectric film with two electrodes on a substrate exhibits a high quality factor (Q and multi-mode resonance spectrum. By analyzing the influences of each layer’s material and structure (thickness parameters on the effective electromechanical coupling coefficient (Keff2, the resonance spectrum characteristics of Keff2 have been investigated systematically, and the optimal design of HBAR has been provided. Besides, a device, corresponding to one of the theoretical cases studied, is fabricated and evaluated. The experimental results are basically consistent with the theoretical results. Finally, the effects of Keff2 on the function of the crystal oscillators constructed with HBARs are proposed. The crystal oscillators can operate in more modes and have a larger frequency hopping bandwidth by using the HBARs with a larger Keff2·Q.

  20. Ion–Cyclotron Resonance Frequency Interval Dependence on the O ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... The frequency intervals in which O VI ions get in resonance with ion–cyclotron waves are calculated using the kinetic model, for the latest six values found in literature on O VI ion number densities in the 1.5–3 region of the NPCH. It is found that the common resonance interval is 1.5 kHz to 3 kHz.

  1. Relationship between wingbeat frequency and resonant frequency of the wing in insects

    International Nuclear Information System (INIS)

    Ha, Ngoc San; Truong, Quang Tri; Goo, Nam Seo; Park, Hoon Cheol

    2013-01-01

    In this study, we experimentally studied the relationship between wingbeat frequency and resonant frequency of 30 individuals of eight insect species from five orders: Odonata (Sympetrum flaveolum), Lepidoptera (Pieris rapae, Plusia gamma and Ochlodes), Hymenoptera (Xylocopa pubescens and Bombus rupestric), Hemiptera (Tibicen linnei) and Coleoptera (Allomyrina dichotoma). The wingbeat frequency of free-flying insects was measured using a high-speed camera while the natural frequency was determined using a laser displacement sensor along with a Bruel and Kjaer fast Fourier transform analyzer based on the base excitation method. The results showed that the wingbeat frequency was related to body mass (m) and forewing area (A f ), following the proportionality f ∼ m 1/2 /A f , while the natural frequency was significantly correlated with area density (f 0  ∼ m w /A f , m w is the wing mass). In addition, from the comparison of wingbeat frequency to natural frequency, the ratio between wingbeat frequency and natural frequency was found to be, in general, between 0.13 and 0.67 for the insects flapping at a lower wingbeat frequency (less than 100 Hz) and higher than 1.22 for the insects flapping at a higher wingbeat frequency (higher than 100 Hz). These results suggest that wingbeat frequency does not have a strong relation with resonance frequency: in other words, insects have not been evolved sufficiently to flap at their wings' structural resonant frequency. This contradicts the general conclusion of other reports-–that insects flap at their wings' resonant frequency to take advantage of passive deformation to save energy. (paper)

  2. Frequency-difference-dependent stochastic resonance in neural systems

    Science.gov (United States)

    Guo, Daqing; Perc, Matjaž; Zhang, Yangsong; Xu, Peng; Yao, Dezhong

    2017-08-01

    Biological neurons receive multiple noisy oscillatory signals, and their dynamical response to the superposition of these signals is of fundamental importance for information processing in the brain. Here we study the response of neural systems to the weak envelope modulation signal, which is superimposed by two periodic signals with different frequencies. We show that stochastic resonance occurs at the beat frequency in neural systems at the single-neuron as well as the population level. The performance of this frequency-difference-dependent stochastic resonance is influenced by both the beat frequency and the two forcing frequencies. Compared to a single neuron, a population of neurons is more efficient in detecting the information carried by the weak envelope modulation signal at the beat frequency. Furthermore, an appropriate fine-tuning of the excitation-inhibition balance can further optimize the response of a neural ensemble to the superimposed signal. Our results thus introduce and provide insights into the generation and modulation mechanism of the frequency-difference-dependent stochastic resonance in neural systems.

  3. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  4. Bolus characteristics based on Magnetic Resonance Angiography

    Directory of Open Access Journals (Sweden)

    Bi Xiaoming

    2006-10-01

    Full Text Available Abstract Background A detailed contrast bolus propagation model is essential for optimizing bolus-chasing Computed Tomography Angiography (CTA. Bolus characteristics were studied using bolus-timing datasets from Magnetic Resonance Angiography (MRA for adaptive controller design and validation. Methods MRA bolus-timing datasets of the aorta in thirty patients were analyzed by a program developed with MATLAB. Bolus characteristics, such as peak position, dispersion and bolus velocity, were studied. The bolus profile was fit to a convolution function, which would serve as a mathematical model of bolus propagation in future controller design. Results The maximum speed of the bolus in the aorta ranged from 5–13 cm/s and the dwell time ranged from 7–13 seconds. Bolus characteristics were well described by the proposed propagation model, which included the exact functional relationships between the parameters and aortic location. Conclusion The convolution function describes bolus dynamics reasonably well and could be used to implement the adaptive controller design.

  5. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Science.gov (United States)

    Lück, S.; Pikovsky, A.

    2011-07-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed.

  6. Experimental characterization of graphene by electrostatic resonance frequency tuning

    NARCIS (Netherlands)

    Sajadi, B.; Alijani, F.; Davidovikj, D.; Goosen, J.F.L.; Steeneken, P.G.; van Keulen, A.

    2017-01-01

    In the last decade, graphene membranes have drawn tremendous attention due to their potential application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response curves of graphene resonators are powerful tools for their dynamic characterization and for extracting

  7. Helium gas purity monitor based on low frequency acoustic resonance

    Science.gov (United States)

    Kasthurirengan, S.; Jacob, S.; Karunanithi, R.; Karthikeyan, A.

    1996-05-01

    Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type are commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.

  8. Band Width of Acoustic Resonance Frequency Relatively Natural Frequency of Fuel Rod Vibration

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, Konstantin Nicolaevich; Moukhine, V.S.; Novikov, K.S.; Galivets, E.Yu. [MPEI - TU, 14, Krasnokazarmennaya str., Moscow, 111250 (Russian Federation)

    2009-06-15

    In flow induced vibrations the fluid flow is the energy source that causes vibration. Acoustic resonance in piping may lead to severe problems due to over-stressing of components or significant losses of efficiency. Steady oscillatory flow in NPP primary loop can be induced by the pulsating flow introduced by reactor circulating pump or may be set up by self-excitation. Dynamic forces generated by the turbulent flow of coolant in reactor cores cause fuel rods (FR) and fuel assembly (FA) to vibrate. Flow-induced FR and FA vibrations can generally be broken into three groups: large amplitude 'resonance type' vibrations, which can cause immediate rod failure or severe damage to the rod and its support structure, middle amplitude 'within bandwidth of resonance frequency type' vibrations responsible for more gradual wear and fatigue at the contact surface between the fuel cladding and rod support and small amplitude vibrations, 'out of bandwidth of resonance frequency type' responsible for permissible wear and fatigue at the contact surface between the fuel cladding and rod support. Ultimately, these vibration types can result in a cladding breach, and therefore must be accounted for in the thermal hydraulic design of FR and FA and reactor internals. In paper the technique of definition of quality factor (Q) of acoustic contour of the coolant is presented. The value of Q defines a range of frequencies of acoustic fluctuations of the coolant within which the resonance of oscillations of the structure and the coolant is realized. Method of evaluation of so called band width (BW) of acoustic resonance frequency is worked out and presented in the paper. BW characterises the range of the frequency of coolant pressure oscillations within which the frequency of coolant pressure oscillations matches the fuel assembly's natural frequency of vibration (its resonance frequency). Paper show the way of detuning acoustic resonance from natural

  9. All-dielectric metamaterial frequency selective surface based on spatial arrangement ceramic resonators

    Science.gov (United States)

    Li, Liyang; Wang, Jun; Feng, Mingde; Ma, Hua; Wang, Jiafu; Du, Hongliang; Qu, Shaobo

    In this paper, we demonstrate a method of designing all-dielectric metamaterial frequency selective surface (FSS) with ceramic resonators in spatial arrangement. Compared with the traditional way, spatial arrangement provides a flexible way to handle the permutation and combination of different ceramic resonators. With this method, the resonance response can be adjusted easily to achieve pass/stop band effects. As an example, a stop band spatial arrangement all-dielectric metamaterial FSS is designed. Its working band is in 11.65-12.23GHz. By adjusting permittivity and geometrical parameters of ceramic resonators, we can easily modulate the resonances, band pass or band stop characteristic, as well as the working band.

  10. Bi-Frequency Modulated Quasi-Resonant Converters: Theory and Applications

    Science.gov (United States)

    Zhang, Yuefeng

    1995-01-01

    To avoid the variable frequency operation of quasi -resonant converters, many soft-switching PWM converters have been proposed, all of them require an auxiliary switch, which will increase the cost and complexity of the power supply system. In this thesis, a new kind of technique for quasi -resonant converters has been proposed, which is called the bi-frequency modulation technique. By operating the quasi-resonant converters at two switching frequencies, this technique enables quasi-resonant converters to achieve the soft-switching, at fixed switching frequencies, without an auxiliary switch. The steady-state analysis of four commonly used quasi-resonant converters, namely, ZVS buck, ZCS buck, ZVS boost, and ZCS boost converter has been presented. Using the concepts of equivalent sources, equivalent sinks, and resonant tank, the large signal models of these four quasi -resonant converters were developed. Based on these models, the steady-state control characteristics of BFM ZVS buck, BFM ZCS buck, BFM ZVS boost, and BFM ZCS boost converter have been derived. The functional block and design consideration of the bi-frequency controller were presented, and one of the implementations of the bi-frequency controller was given. A complete design example has been presented. Both computer simulations and experimental results have verified that the bi-frequency modulated quasi-resonant converters can achieve soft-switching, at fixed switching frequencies, without an auxiliary switch. One of the application of bi-frequency modulation technique is for EMI reduction. The basic principle of using BFM technique for EMI reduction was introduced. Based on the spectral analysis, the EMI performances of the PWM, variable-frequency, and bi-frequency modulated control signals was evaluated, and the BFM control signals show the lowest EMI emission. The bi-frequency modulated technique has also been applied to the power factor correction. A BFM zero -current switching boost converter has

  11. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.

    Science.gov (United States)

    Weitzel, Erik K; Tasker, Ron; Brownell, William E

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  12. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    International Nuclear Information System (INIS)

    Lueck, S.; Pikovsky, A.

    2011-01-01

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  13. Dynamics of multi-frequency oscillator ensembles with resonant coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, S. [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany); Pikovsky, A., E-mail: pikovsky@stat.physik.uni-potsdam.de [Department of Physics and Astronomy, Potsdam University, Karl-Liebknecht-Str. 24-25, 14476 Potsdam (Germany)

    2011-07-11

    We study dynamics of populations of resonantly coupled oscillators having different frequencies. Starting from the coupled van der Pol equations we derive the Kuramoto-type phase model for the situation, where the natural frequencies of two interacting subpopulations are in relation 2:1. Depending on the parameter of coupling, ensembles can demonstrate fully synchronous clusters, partial synchrony (only one subpopulation synchronizes), or asynchrony in both subpopulations. Theoretical description of the dynamics based on the Watanabe-Strogatz approach is developed. -- Highlights: → Kuramoto model is generalized on the case of resonantly interacting oscillators having frequency ratio 2:1. → Regimes of full and partial synchrony, as well as non-synchronous ones are reported. → Analytical description is developed on the basis of the Watanabe-Strogatz approach.

  14. Thin Co films with tunable ferromagnetic resonance frequency

    International Nuclear Information System (INIS)

    Maklakov, Sergey S.; Maklakov, Sergey A.; Ryzhikov, Ilya A.; Rozanov, Konstantin N.; Osipov, Alexey V.

    2012-01-01

    The tailored production of thin Co films of 50 nm thick with ferromagnetic resonance frequency in a range from 2.9 to 7.3 GHz using the DC magnetron sputtering is reported. The ferromagnetic resonance frequency, coercivity, effective magnetic field and nanocrystalline structure parameters are shown to be governed by the Co deposition rate. For this investigation, FMR, VSM and TEM techniques were used. - Highlights: ► Thin Co films with FMR frequency in a range from 2.9 to 7.3 GHz are obtained. ► The films' properties are governed by the deposition rate during DC magnetron sputtering. ► FMR, VSM and TEM techniques were used during the study.

  15. Digital system to monitor the natural frequency of mechanical resonators

    International Nuclear Information System (INIS)

    Brengartner, Tobias; Siegel, Michael; Urban, Martin; Monse, Benjamin; Frühauf, Dietmar

    2013-01-01

    Mechanical resonators are often used in process or condition monitoring. They are used for liquid-level limit detection or for viscosity and density sensing. Therefore, the resonator is preferably actuated at its natural frequency. In industrial applications, this is achieved by analogue closed resonant circuits. These circuits have been established because of the low energy consumption and low component costs. Due to the future trend of microprocessors, digital systems are now an interesting alternative and can achieve better results compared to analogue realizations. In this context, this paper presents a novel digital system for monitoring the natural frequency of mechanical resonators. The system is realized with newly developed algorithms and is based on a simple signal processing procedure with minimum computational cost. This allows the use of a low-power microcontroller, thus making the system interesting for industrial use. It is shown that the natural frequency can be measured in respect of high industrial requirements on reliability, fastness and accuracy, combined with the possibility of reducing energy consumption. (paper)

  16. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Directory of Open Access Journals (Sweden)

    Kyung Ho Sun

    2014-10-01

    Full Text Available While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm3, which was designed for a target frequency of as low as 100 Hz.

  17. A small-form-factor piezoelectric vibration energy harvester using a resonant frequency-down conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kyung Ho; Kim, Young-Cheol [Department of System Dynamics, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 305-343 (Korea, Republic of); Kim, Jae Eun, E-mail: jekim@cu.ac.kr [School of Mechanical and Automotive Engineering, Catholic University of Daegu, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan-Si, Gyeongsangbuk-Do 712-702 (Korea, Republic of)

    2014-10-15

    While environmental vibrations are usually in the range of a few hundred Hertz, small-form-factor piezoelectric vibration energy harvesters will have higher resonant frequencies due to the structural size effect. To address this issue, we propose a resonant frequency-down conversion based on the theory of dynamic vibration absorber for the design of a small-form-factor piezoelectric vibration energy harvester. The proposed energy harvester consists of two frequency-tuned elastic components for lowering the first resonant frequency of an integrated system but is so configured that an energy harvesting beam component is inverted with respect to the other supporting beam component for a small form factor. Furthermore, in order to change the unwanted modal characteristic of small separation of resonant frequencies, as is the case with an inverted configuration, a proof mass on the supporting beam component is slightly shifted toward a second proof mass on the tip of the energy harvesting beam component. The proposed small-form-factor design capability was experimentally verified using a fabricated prototype with an occupation volume of 20 × 39 × 6.9 mm{sup 3}, which was designed for a target frequency of as low as 100 Hz.

  18. Superthin resonator dye laser with THz intermode frequency separation

    International Nuclear Information System (INIS)

    Rudych, P D; Surovtsev, N V

    2014-01-01

    Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated. (letter)

  19. A setup for measuring characteristics of microwave electric vacuum devices with open resonance structures

    DEFF Research Database (Denmark)

    Rybalko, Oleksandr; Ruban, A. I.; Vorob’ev, G. S.

    2015-01-01

    -tuning range, an additional periodic metal–dielectric structure is introduced into the open resonator. The experimental results of investigations of the energy, volt–ampere, and frequency characteristics of the modified diffraction-radiation generator prototype are compared to the characteristics...... of the generator without a metal–dielectric structure....

  20. Resonant-frequency discharge in a multi-cell radio frequency cavity

    International Nuclear Information System (INIS)

    Popović, S.; Upadhyay, J.; Nikolić, M.; Vušković, L.; Mammosser, J.

    2014-01-01

    We are reporting experimental results on a microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency cryo-module. This discharge offers a mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the issues related to resonant detuning due to sustained multi-cell cavity plasma. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal

  1. Resonant interactions between cometary ions and low frequency electromagnetic waves

    Science.gov (United States)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  2. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad

    2018-02-03

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined through the middle by a coupling beam of the same size. The resonator is fabricated via a multi-layer surface micromachining process. A special fabrication process and device design is employed to enable operation in air and to achieve mechanical amplification of the output response. Moreover, mixed-frequency excitation is used to demonstrate a tunable wide band filter for low frequency applications. It is demonstrated that through the multi-source harmonic excitation and the operation in air, an improved band-pass filter with flat response and minimal ripples can be achieved.

  3. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Science.gov (United States)

    Zhang, Yiming; Zhao, Zhengming; Chen, Kainan; Fan, Jun

    2017-05-01

    Wireless Power Transfer (WPT) has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  4. Load characteristics of wireless power transfer system with different resonant types and resonator numbers

    Directory of Open Access Journals (Sweden)

    Yiming Zhang

    2017-05-01

    Full Text Available Wireless Power Transfer (WPT has been the research focus and applied in many fields. Normally power is transferred wirelessly to charge the battery, which requires specific load characteristics. The load characteristics are essential for the design and operation of the WPT system. This paper investigates the load characteristics of the WPT system with different resonant types and resonator numbers. It is found that in a WPT system with series or LCL resonance under a constant voltage source, the load characteristic is determined by the number of inductors. Even number of inductors results in a constant current characteristic and odd number constant voltage characteristic. Calculations, simulations, and experiments verify the analysis.

  5. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  6. Fundamental frequency characteristics of Jordanian Arabic speakers.

    Science.gov (United States)

    Natour, Yaser S; Wingate, Judith M

    2009-09-01

    This study is the first in a series of investigations designed to test the acoustic characteristics of the normal Arabic voice. The subjects were three hundred normal Jordanian Arabic speakers (100 adult males, 100 adult females, and 100 children). The subjects produced a sustained phonation of the vowel /a:/ and stated their complete names (i.e. first, second, third and surname) using a carrier phrase. The samples were analyzed using the Multi Dimensional Voice Program (MDVP). Fundamental frequency (F0) from the /a:/ and speaking fundamental frequency (SF0) from the sentence were analyzed. Results revealed a significant difference of both F0 and SF0 values among adult Jordanian Arabic-speaking males (F0=131.34Hz +/- 18.65, SF0=137.45 +/- 18.93), females (F0=231.13Hz +/- 20.86, SF0=230.84 +/- 16.50) and children (F0=270.93Hz +/- 20.01, SF0=278.04 +/- 32.07). Comparison with other ethnicities indicated that F0 values of adult Jordanian Arabic-speaking males and females are generally consistent with adult Caucasian and African-American values. However, for Jordanian Arabic-speaking children, a higher trend in F0 values was present than their Western counterparts. SF0 values for adult Jordanian Arabic-speaking males are generally consistent with the adult Caucasian male SF0 values. However, SF0 values of adult Jordanian-speaking females and children were relatively higher than the reported Western values. It is recommended that speech-language pathologists in Arabic-speaking countries, Jordan in specific, utilize the new data provided (F0 and SF0) when evaluating and/or treating Arabic-speaking patients. Due to its cross-linguistic variability, SF0 emerged as a preferred measurement when conducting cross-cultural comparisons of voice features.

  7. Operation States Analysis of the Series-Parallel resonant Converter Working Above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Peter Dzurko

    2007-01-01

    Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.

  8. Operation Analysis of the Series-Parallel Resonant Converter Working above Resonance Frequency

    Directory of Open Access Journals (Sweden)

    Peter Dzurko

    2006-01-01

    Full Text Available The present article deals with theoretical analysis of operation of a series-parallel converter working above resonance frequency. Derived are principal equations for individual operation intervals. Based on these made out are waveforms of individual quantities during both the inverter operation at load and no-load operation. The waveforms may be utilised at designing the inverter individual parts.

  9. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  10. Long Elastic Open Neck Acoustic Resonator for low frequency absorption

    Science.gov (United States)

    Simon, Frank

    2018-05-01

    Passive acoustic liners, used in aeronautic engine nacelles to reduce radiated fan noise, have a quarter-wavelength behavior, because of perforated sheets backed by honeycombs (with one or two degrees of freedom). However, their acoustic absorption ability is naturally limited to medium and high frequencies because of constraints in thickness. The low ratio "plate thickness/hole diameter" generates impedance levels dependent on the incident sound pressure level and the grazing mean flow (by a mechanism of nonlinear dissipation through vortex shedding), which penalises the optimal design of liners. The aim of this paper is to overcome this problem by a concept called LEONAR ("Long Elastic Open Neck Acoustic Resonator"), in which a perforated plate is coupled with tubes of variable lengths inserted in a limited volume of a back cavity. To do this, experimental and theoretical studies, using different types of liners (material nature, hole diameter, tube length, cavity thickness) are described in this paper. It is shown that the impedance can be precisely determined with an analytical approach based on parallel transfer matrices of tubes coupled to the cavity. Moreover, the introduction of tubes in a cavity of a conventional resonator generates a significant shift in the frequency range of absorption towards lower frequencies or allows a reduction of cavity thickness. The impedance is practically independent of sound pressure level because of a high ratio "tube length/tube hole diameter". Finally, a test led in an aeroacoustic bench suggests that a grazing flow at a bulk Mach number of 0.3 has little impact on the impedance value. These first results allow considering these resonators with linear behavior as an alternative to classical resonators, in particular, as needed for future Ultra High Bypass Ratio engines with shorter and thinner nacelles.

  11. Whispering gallery mode resonators for frequency metrology applications

    Science.gov (United States)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  12. Two Novel Measurements for the Drive-Mode Resonant Frequency of a Micromachined Vibratory Gyroscope

    Directory of Open Access Journals (Sweden)

    Ancheng Wang

    2013-11-01

    Full Text Available To investigate the drive-mode resonance frequency of a micromachined vibratory gyroscope (MVG, one needs to measure it accurately and efficiently. The conventional approach to measure the resonant frequency is by performing a sweep frequency test and spectrum analysis. The method is time-consuming and inconvenient because of the requirements of many test points, a lot of data storage and off-line analyses. In this paper, we propose two novel measurement methods, the search method and track method, respectively. The former is based on the magnitude-frequency characteristics of the drive mode, utilizing a one-dimensional search technique. The latter is based on the phase-frequency characteristics, applying a feedback control loop. Their performances in precision, noise resistivity and efficiency are analyzed through detailed simulations. A test system is implemented based on a field programmable gate array (FPGA and experiments are carried out. By comparing with the common approach, feasibility and superiorities of the proposed methods are validated. In particular, significant efficiency improvements are achieved whereby the conventional frequency method consumes nearly 5,000 s to finish a measurement, while only 5 s is needed for the track method and 1 s for the search method.

  13. Suppression of nonlinear frequency-sweeping of resonant interchange modes in a magnetic dipole with applied radio frequency fields

    International Nuclear Information System (INIS)

    Maslovsky, D.; Levitt, B.; Mauel, M. E.

    2003-01-01

    Interchange instabilities excited by energetic electrons trapped by a magnetic dipole nonlinearly saturate and exhibit complex, coherent spectral characteristics and frequency sweeping [H. P. Warren and M. E. Mauel, Phys. Plasmas 2, 4185 (1995)]. When monochromatic radio frequency (rf) fields are applied in the range of 100-1000 MHz, the saturation behavior of the interchange instability changes dramatically. For applied fields of sufficient intensity and pulse-length, coherent interchange fluctuations are suppressed and frequency sweeping is eliminated. When rf fields are switched off, coherent frequency sweeping reappears. Since low frequency interchange instabilities preserve the electron's first and second adiabatic invariants, these observations can be interpreted as resulting from nonlinear resonant wave-particle interactions described within a particle phase-space, (ψ,φ), comprised of the third adiabatic invariant and the azimuthal angle. Self-consistent numerical simulation is used to study (1) the nonlinear development of the instability, (2) the radial mode structure of the interchange instability, and (3) the suppression of frequency sweeping. When the applied rf heating is modeled as an 'rf collisionality', the simulation reproduces frequency sweeping suppression and suggests an explanation for the observations that is consistent with Berk and co-workers [H. L. Berk et al., Phys. Plasmas 6, 3102 (1999)

  14. Resonance Frequency of Optical Microbubble Resonators: Direct Measurements and Mitigation of Fluctuations

    Directory of Open Access Journals (Sweden)

    Alessandro Cosci

    2016-08-01

    Full Text Available This work shows the improvements in the sensing capabilities and precision of an Optical Microbubble Resonator due to the introduction of an encaging poly(methyl methacrylate (PMMA box. A frequency fluctuation parameter σ was defined as a score of resonance stability and was evaluated in the presence and absence of the encaging system and in the case of air- or water-filling of the cavity. Furthermore, the noise interference introduced by the peristaltic and the syringe pumping system was studied. The measurements showed a reduction of σ in the presence of the encaging PMMA box and when the syringe pump was used as flowing system.

  15. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  16. Exploiting NiTi shape memory alloy films in design of tunable high frequency microcantilever resonators

    Science.gov (United States)

    Stachiv, I.; Sittner, P.; Olejnicek, J.; Landa, M.; Heller, L.

    2017-11-01

    Shape memory alloy (SMA) films are very attractive materials for microactuators because of their high energy density. However, all currently developed SMA actuators utilize martensitic transformation activated by periodically generated heating and cooling; therefore, they have a slow actuation speed, just a few Hz, which restricts their use in most of the nanotechnology applications such as high frequency microcantilever based physical and chemical sensors, atomic force microscopes, or RF filters. Here, we design tunable high frequency SMA microcantilevers for nanotechnology applications. They consist of a phase transforming NiTi SMA film sputtered on the common elastic substrate material; in our case, it is a single-crystal silicon. The reversible tuning of microcantilever resonant frequencies is then realized by intentionally changing the Young's modulus and the interlayer stress of the NiTi film by temperature, while the elastic substrate guarantees the high frequency actuation (up to hundreds of kHz) of the microcantilever. The experimental results qualitatively agree with predictions obtained from the dedicated model based on the continuum mechanics theory and a phase characteristic of NiTi. The present design of SMA microcantilevers expands the capability of current micro-/nanomechanical resonators by enabling tunability of several consecutive resonant frequencies.

  17. Resonant frequency and elastic modulus measurements on hardened cement pastes

    International Nuclear Information System (INIS)

    Lee, D.J.

    1982-12-01

    A new technique for measuring resonant frequency and elastic modulus is described. This has been used on specimens of hardened cement paste containing water with no simulated waste, and the results compared with measurements of ultrasonic pulse velocity, dimensional movements and compressive strength made on the same formulations. In addition, measurements were made on a specimen containing simulated waste which demonstrated the applicability of the new technique for following the development of the mechanical properties of cemented simulant radioactive waste in the laboratory. (U.K.)

  18. RF MEMS Fractal Capacitors With High Self-Resonant Frequencies

    KAUST Repository

    Elshurafa, Amro M.

    2012-07-23

    This letter demonstrates RF microelectromechanical systems (MEMS) fractal capacitors possessing the highest reported self-resonant frequencies (SRFs) in PolyMUMPS to date. Explicitly, measurement results show SRFs beyond 20 GHz. Furthermore, quality factors higher than 4 throughout a band of 1-15 GHz and reaching as high as 28 were achieved. Additional benefits that are readily attainable from implementing fractal capacitors in MEMS are discussed, including suppressing residual stress warping, eliminating the need for etching holes, and reducing parasitics. The latter benefits were acquired without any fabrication intervention. © 2011 IEEE.

  19. Resonant behavior of a fractional oscillator with fluctuating frequency

    Science.gov (United States)

    Soika, Erkki; Mankin, Romi; Ainsaar, Ain

    2010-01-01

    The long-time behavior of the first moment for the output signal of a fractional oscillator with fluctuating frequency subjected to an external periodic force is considered. Colored fluctuations of the oscillator eigenfrequency are modeled as a dichotomous noise. The viscoelastic type friction kernel with memory is assumed as a power-law function of time. Using the Shapiro-Loginov formula, exact expressions for the response to an external periodic field and for the complex susceptibility are presented. On the basis of the exact formulas it is demonstrated that interplay of colored noise and memory can generate a variety of cooperation effects, such as multiresonances versus the driving frequency and the friction coefficient as well as stochastic resonance versus noise parameters. The necessary and sufficient conditions for the cooperation effects are also discussed. Particularly, two different critical memory exponents have been found, which mark dynamical transitions in the behavior of the system.

  20. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  1. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  2. Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis.

    Science.gov (United States)

    Johns, Lennart D

    2002-07-01

    To present the frequency resonance hypothesis, a possible mechanical mechanism by which treatment with non-thermal levels of ultrasound stimulates therapeutic effects. The review encompasses a 4-decade history but focuses on recent reports describing the effects of nonthermal therapeutic levels of ultrasound at the cellular and molecular levels. A search of MEDLINE from 1965 through 2000 using the terms ultrasound and therapeutic ultrasound. The literature provides a number of examples in which exposure of cells to therapeutic ultrasound under nonthermal conditions modified cellular functions. Nonthermal levels of ultrasound are reported to modulate membrane properties, alter cellular proliferation, and produce increases in proteins associated with inflammation and injury repair. Combined, these data suggest that nonthermal effects of therapeutic ultrasound can modify the inflammatory response. The concept of the absorption of ultrasonic energy by enzymatic proteins leading to changes in the enzymes activity is not novel. However, recent reports demonstrating that ultrasound affects enzyme activity and possibly gene regulation provide sufficient data to present a probable molecular mechanism of ultrasound's nonthermal therapeutic action. The frequency resonance hypothesis describes 2 possible biological mechanisms that may alter protein function as a result of the absorption of ultrasonic energy. First, absorption of mechanical energy by a protein may produce a transient conformational shift (modifying the 3-dimensional structure) and alter the protein's functional activity. Second, the resonance or shearing properties of the wave (or both) may dissociate a multimolecular complex, thereby disrupting the complex's function. This review focuses on recent studies that have reported cellular and molecular effects of therapeutic ultrasound and presents a mechanical mechanism that may lead to a better understanding of how the nonthermal effects of ultrasound may be

  3. Inverter-Current-Feedback Resonance-Suppression Method for LCL-Type DG System to Reduce Resonance-Frequency Offset and Grid-Inductance Effect

    DEFF Research Database (Denmark)

    Zhou, Leming; Zhou, Xiaoping; Chen, Yandong

    2018-01-01

    For the LCL-type grid-connected distributed generation system, the grid-current-feedback active damping (GCFAD) methods have a conflict between the resonance-suppression ability and harmonic-currents amplification. For this, an inverter-current-feedback reso-nance-suppression (ICFRS) method without...... additional sensors is proposed to reduce resonance-frequency offset and grid-inductance effect due to its unattenuated damping characteristic under high-frequency bandwidth. By analyzing two types of equivalent impedance models of ICFRS and GCFAD with a high-pass filter (HPF), GCFAD can suppress...

  4. Fabrication and characterization of non-resonant magneto-mechanical low-frequency vibration energy harvester

    Science.gov (United States)

    Nammari, Abdullah; Caskey, Logan; Negrete, Johnny; Bardaweel, Hamzeh

    2018-03-01

    This article presents a non-resonant magneto-mechanical vibration energy harvester. When externally excited, the energy harvester converts vibrations into electric charge using a guided levitated magnet oscillating inside a multi-turn coil that is fixed around the exterior of the energy harvester. The levitated magnet is guided using four oblique mechanical springs. A prototype of the energy harvester is fabricated using additive manufacturing. Both experiment and model are used to characterize the static and dynamic behavior of the energy harvester. Measured restoring forces show that the fabricated energy harvester retains a mono-stable potential energy well with desired stiffness nonlinearities. Results show that magnetic spring results in hardening effect which increases the resonant frequency of the energy harvester. Additionally, oblique mechanical springs introduce geometric, negative, nonlinear stiffness which improves the harvester's response towards lower frequency spectrum. The unique design can produce a tunable energy harvester with multi-well potential energy characteristics. A finite element model is developed to estimate the average radial flux density experienced by the multi-turn coil. Also, a lumped parameter model of the energy harvester is developed and validated against measured data. Both upward and downward frequency sweeps are performed to determine the frequency response of the harvester. Results show that at higher excitation levels hardening effects become more apparent, and the system dynamic response turns into non-resonant. Frequency response curves exhibit frequency jump phenomena as a result of coexistence of multiple energy states at the frequency branch. The fabricated energy harvester is hand-held and measures approximately 100.5 [cm3] total volume. For a base excitation of 1.0 g [m/s2], the prototype generates a peak voltage and normalized power density of approximately 3.5 [V] and 0.133 [mW/cm3 g2], respectively, at 15.5 [Hz].

  5. Frequency characteristics of geomagnetic induction anomalies in ...

    Indian Academy of Sciences (India)

    P V Vijaya Kumar

    2017-10-07

    Oct 7, 2017 ... characteristics of electrical conductivity distribution are presented in the form of induction arrows. From ... High resistive block related to underplating mantle material has .... Recent seismic tomography studies indicate low.

  6. Suppression of mechanical resonance in digital servo system considering oscillation frequency deviation

    DEFF Research Database (Denmark)

    Chen, Yangyang; Yang, Ming; Hu, Kun

    2017-01-01

    High-stiffness servo system is easy to cause mechanical resonance in elastic coupling servo system. Although on-line adaptive notch filter is effective in most cases, it will lead to a severer resonance when resonance frequency deviated from the natural torsional frequency. To explain...

  7. Electrical characteristics for capacitively coupled radio frequency ...

    Indian Academy of Sciences (India)

    MURAT TANISLI

    2017-08-16

    Aug 16, 2017 ... b; 52.80.Pi. 1. Introduction. It is interesting to study the behaviour of plasma. There are many ... and then the model is described in §3. Graphs and ... inductor (Lbp) occur in the bulk plasma circuit. The ... the parallel plate, the electron density, the mass of the ... The electron neutral collision frequency may be.

  8. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  9. Frequency shift of a crystal quartz resonator in thickness-shear modes induced by an array of hemispherical material units.

    Science.gov (United States)

    Yuantai Hu; Huiliang Hu; Bin Luo; Huan Xue; Jiemin Xie; Ji Wang

    2013-08-01

    A two-dimensional model was established to study the dynamic characteristics of a quartz crystal resonator with the upper surface covered by an array of hemispherical material units. A frequency-dependent equivalent mass ratio was proposed to simulate the effect of the covered units on frequency shift of the resonator system. It was found that the equivalent mass ratio alternately becomes positive or negative with change of shear modulus and radius of each material unit, which indicates that the equivalent mass ratio is strongly related to the vibration mode of the covered loadings. The further numerical results show the cyclical feature in the relationship of frequency shift and shear modulus/radius as expected. The solutions are useful in the analysis of frequency stability of quartz resonators and acoustic wave sensors.

  10. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  11. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  12. (Electro-) mechanical characteristics of electrostatically driven vacuum encapsulated polysilicon resonators

    NARCIS (Netherlands)

    Tilmans, H.A.C.; Tilmans, H.A.C.; Legtenberg, Rob; Legtenberg, R.; Schurer, H.; Schurer, H.; IJntema, D.J.; Ijntema, D.J.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    The design, fabrication and performance of vacuum-encapsulated electrostatically driven polysilicon resonating beams, 210-510 μm long, 100 μm wide, and 1.5 μm thick, are described. The shortest beams have a fundamental frequency of 324 kHz, a gauge factor of 2400 and a quality factor of 600 at

  13. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    Science.gov (United States)

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  14. Piezoelectric Actuator with Frequency Characteristics for a Middle-Ear Implant.

    Science.gov (United States)

    Shin, Dong Ho; Cho, Jin-Ho

    2018-05-24

    The design and implementation of a novel piezoelectric-based actuator for an implantable middle-ear hearing aid is described in this paper. The proposed actuator has excellent low-frequency output characteristics, and can generate high output in a specific frequency band by adjusting the mechanical resonance. The actuator consists of a piezoelectric element, a miniature bellows, a cantilever membrane, a metal ring support, a ceramic tip, and titanium housing. The optimal structure of the cantilever-membrane design, which determines the frequency characteristics of the piezoelectric actuator, was derived through finite element analysis. Based on the results, the piezoelectric actuator was implemented, and its performance was verified through a cadaveric experiment. It was confirmed that the proposed actuator provides better performance than currently used actuators, in terms of frequency characteristics.

  15. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    Directory of Open Access Journals (Sweden)

    Kim Sun Ho

    2017-01-01

    Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  16. Dissimilar trend of nonlinearity in ultrasound transducers and systems at resonance and non-resonance frequencies

    DEFF Research Database (Denmark)

    Ghasemi, Negareh; Zare, Firuz; Davari, Pooya

    2017-01-01

    Several factors can affect performance of an ultrasound system such as quality of excitation signal and ultrasound transducer behaviour. Nonlinearity of piezoelectric ultrasound transducers is a key determinant in designing a proper driving power supply. Although, the nonlinearity of piezoelectric...... was excited at different frequencies. Different excitation signals were generated using a linear power amplifier and a multilevel converter within a range of 30–200 V. Empirical relation was developed to express the resistance of the piezoelectric transducer as a nonlinear function of both excitation voltage...... and resonance frequency. The impedance measurements revealed that at higher voltage ranges, the piezoelectric transducer can be easily saturated. Also, it was shown that for the developed ultrasound system composed of two transducers (one transmitter and one receiver), the output voltage measured across...

  17. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    Science.gov (United States)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  18. Resonant frequencies of massless scalar field in rotating black-brane spacetime

    Institute of Scientific and Technical Information of China (English)

    Jing Ji-Liang; Pan Qi-Yuan

    2008-01-01

    This paper investigates the resonant frequencies of the massless scalar field in the near extremal Kerr-like black-brahe spacetime. It is shown that the different angular quantum number will present different resonant frequencies. It is also shown that the real part of the resonant frequencies increases as the compact dimensions parameter μi increases, but the magnitude of the imaginary part decreases as μi increases.

  19. Effect of magnetic resonance imaging characteristics on uterine fibroid treatment

    Directory of Open Access Journals (Sweden)

    Duc NM

    2018-04-01

    Full Text Available Nguyen Minh Duc, Huynh Quang HuyDepartment of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, VietnamAbstract: Uterine fibroids are the most common gynecological benign tumors adversely affecting the quality of life of women of a reproductive age. Magnetic resonance imaging (MRI is efficient at localizing the site of lesions and characterizing uterine fibroids before treatment. Understanding the different characteristics of uterine fibroids on MRI is essential, because it not only enables prompt diagnosis, but also guides the development of suitable therapeutic methods. This pictorial review demonstrates the effect of MRI features on uterine fibroid treatment. Keywords: uterine fibroids, characteristics, magnetic resonance imaging, treatments

  20. Magnetic Resonance Mediated Radio Frequency Coagulation for Vascular Repair

    Science.gov (United States)

    Zhao, Ming

    Purpose. Magnetic Resonance Mediated Radiofrequency Coagulation employs the RF heating effect of MRI scanning to coagulate biomaterials for repair of vascular defects. Coagulation of a protein biomaterial by MR-induced RF heating is a novel means to effect repair of defects such as aneurysms or arteriovenous malformations. Our novel method is to coagulate a thermosetting material (such as egg white, which can be used for investigating heat coagulation behavior and MR relaxation properties) delivered endovascularly by catheter and coagulated by RF-induced heating of an intracatheter resonant wire antenna in the scanner. Methods. Experiments were performed on a Siemens 1.5 T MRI scanner and a Bruker 14T NMR spectrometer. Egg white was brought to equilibrium at seven temperatures (20, 30, 40, 50, 60, 70 and 37 °C) in sequence. Measurement of the water spin-lattice relaxation time Ti, spin-spin relaxation time T2, spin-lattice relaxation time in the rotating frame T1p, or full width at half maximum of the MT spectrum were performed at each temperature. Relaxation parameters of raw egg white and egg white after coagulation at 70 °C were measured in the scanner at 20 °C to determine optimum inversion time, echo time and offset frequency for good image contrast between coagulated and uncoagulated protein. Finally, coagulation of egg white within a glass aneurysm phantom by RF heating in the scanner was performed to demonstrate the MR coagulation methodology and the ability to achieve image contrast between coagulated and uncoagulated biomaterial. Results. Water T2, T1p and MT gave the most definitive indication of the change from uncoagulated at low temperature to fully coagulated at 60 °C, while water T1 showed only the expected gradual increase with temperature, and no response to coagulation. MT weighted imaging is expected to be the optimum method to establish the coagulation condition of the biomaterial.

  1. RF MEMS suspended band-stop resonator and filter for frequency and bandwidth continuous fine tuning

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Yong-Kweon; Llamas-Garro, Ignacio; Kim, Jung-Mu

    2012-01-01

    We firstly propose the concept of a frequency and bandwidth fine-tuning method using an RF MEMS-based suspended tunable band-stop resonator. We experimentally show the feasibility of the continuously tuned resonator, including a second-order filter, which consists of cascaded resonators to achieve center frequency and bandwidth fine tuning. The structure consists of a freestanding half-wavelength (λ/2) resonator connected to a large displacement comb actuator. The lateral movement of the λ/2 resonator over the main transmission line produces different electromagnetic decoupling values from the main transmission line. The decoupled energy leads to continuous center frequency and bandwidth tuning using the band-stop resonator circuit for fine-tuning applications. The freestanding λ/2 resonator plays the role of a variable capacitor as well as a decoupling resonator in the proposed structure. The fabricated tunable filter shows suitability for Ku-band wireless communication system applications with continuous reconfiguration

  2. Resonance-Based Time-Frequency Manifold for Feature Extraction of Ship-Radiated Noise

    Science.gov (United States)

    Yan, Jiaquan; Sun, Haixin; Chen, Hailan; Junejo, Naveed Ur Rehman; Cheng, En

    2018-01-01

    In this paper, a novel time-frequency signature using resonance-based sparse signal decomposition (RSSD), phase space reconstruction (PSR), time-frequency distribution (TFD) and manifold learning is proposed for feature extraction of ship-radiated noise, which is called resonance-based time-frequency manifold (RTFM). This is suitable for analyzing signals with oscillatory, non-stationary and non-linear characteristics in a situation of serious noise pollution. Unlike the traditional methods which are sensitive to noise and just consider one side of oscillatory, non-stationary and non-linear characteristics, the proposed RTFM can provide the intact feature signature of all these characteristics in the form of a time-frequency signature by the following steps: first, RSSD is employed on the raw signal to extract the high-oscillatory component and abandon the low-oscillatory component. Second, PSR is performed on the high-oscillatory component to map the one-dimensional signal to the high-dimensional phase space. Third, TFD is employed to reveal non-stationary information in the phase space. Finally, manifold learning is applied to the TFDs to fetch the intrinsic non-linear manifold. A proportional addition of the top two RTFMs is adopted to produce the improved RTFM signature. All of the case studies are validated on real audio recordings of ship-radiated noise. Case studies of ship-radiated noise on different datasets and various degrees of noise pollution manifest the effectiveness and robustness of the proposed method. PMID:29565288

  3. The Tracking Resonance Frequency Method for Photoacoustic Measurements Based on the Phase Response

    Science.gov (United States)

    Suchenek, Mariusz

    2017-04-01

    One of the major issues in the use of the resonant photoacoustic cell is the resonance frequency of the cell. The frequency is not stable, and its changes depend mostly on temperature and gas mixture. This paper presents a new method for tracking resonance frequency, where both the amplitude and phase are calculated from the input samples. The stimulating frequency can be adjusted to the resonance frequency of the cell based on the phase. This method was implemented using a digital measurement system with an analog to digital converter, field programmable gate array (FPGA) and a microcontroller. The resonance frequency was changed by the injection of carbon dioxide into the cell. A theoretical description and experimental results are also presented.

  4. Thin-film piezoelectric-on-silicon resonators for high-frequency reference oscillator applications.

    Science.gov (United States)

    Abdolvand, Reza; Lavasani, Hossein M; Ho, Gavin K; Ayazi, Farrokh

    2008-12-01

    This paper studies the application of lateral bulk acoustic thin-film piezoelectric-on-substrate (TPoS) resonators in high-frequency reference oscillators. Low-motional-impedance TPoS resonators are designed and fabricated in 2 classes--high-order and coupled-array. Devices of each class are used to assemble reference oscillators and the performance characteristics of the oscillators are measured and discussed. Since the motional impedance of these devices is small, the transimpedance amplifier (TIA) in the oscillator loop can be reduced to a single transistor and 3 resistors, a format that is very power-efficient. The lowest reported power consumption is approximately 350 microW for an oscillator operating at approximately 106 MHz. A passive temperature compensation method is also utilized by including the buried oxide layer of the silicon-on-insulator (SOI) substrate in the structural resonant body of the device, and a very small (-2.4 ppm/ degrees C) temperature coefficient of frequency is obtained for an 82-MHz oscillator.

  5. Simulation and Experimental Investigation of Structural Dynamic Frequency Characteristics Control

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-04-01

    Full Text Available In general, mechanical equipment such as cars, airplanes, and machine tools all operate with constant frequency characteristics. These constant working characteristics should be controlled if the dynamic performance of the equipment demands improvement or the dynamic characteristics is intended to change with different working conditions. Active control is a stable and beneficial method for this, but current active control methods mainly focus on vibration control for reducing the vibration amplitudes in the time domain or frequency domain. In this paper, a new method of dynamic frequency characteristics active control (DFCAC is presented for a flat plate, which can not only accomplish vibration control but also arbitrarily change the dynamic characteristics of the equipment. The proposed DFCAC algorithm is based on a neural network including two parts of the identification implement and the controller. The effectiveness of the DFCAC method is verified by several simulation and experiments, which provide desirable results.

  6. Outphasing control of gallium nitride based very high frequency resonant converters

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2015-01-01

    In this paper an outphasing modulation control method suitable for line regulation of very high frequency resonant converters is described. The pros and cons of several control methods suitable for very high frequency resonant converters are described and compared to outphasing modulation...

  7. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  8. Radio-frequency quadrupole resonator for linear accelerator

    Science.gov (United States)

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  9. Insertion torque, resonance frequency, and removal torque analysis of microimplants.

    Science.gov (United States)

    Tseng, Yu-Chuan; Ting, Chun-Chan; Du, Je-Kang; Chen, Chun-Ming; Wu, Ju-Hui; Chen, Hong-Sen

    2016-09-01

    This study aimed to compare the insertion torque (IT), resonance frequency (RF), and removal torque (RT) among three microimplant brands. Thirty microimplants of the three brands were used as follows: Type A (titanium alloy, 1.5-mm × 8-mm), Type B (stainless steel, 1.5-mm × 8-mm), and Type C (titanium alloy, 1.5-mm × 9-mm). A synthetic bone with a 2-mm cortical bone and bone marrow was used. Each microimplant was inserted into the synthetic bone, without predrilling, to a 7 mm depth. The IT, RF, and RT were measured in both vertical and horizontal directions. One-way analysis of variance and Spearman's rank correlation coefficient tests were used for intergroup and intragroup comparisons, respectively. In the vertical test, the ITs of Type C (7.8 Ncm) and Type B (7.5 Ncm) were significantly higher than that of Type A (4.4 Ncm). The RFs of Type C (11.5 kHz) and Type A (10.2 kHz) were significantly higher than that of Type B (7.5 kHz). Type C (7.4 Ncm) and Type B (7.3 Ncm) had significantly higher RTs than did Type A (4.1 Ncm). In the horizontal test, both the ITs and RTs were significantly higher for Type C, compared with Type A. No significant differences were found among the groups, and the study hypothesis was accepted. Type A had the lowest inner/outer diameter ratio and widest apical facing angle, engendering the lowest IT and highest RF values. However, no significant correlations in the IT, RF, and RT were observed among the three groups. Copyright © 2016. Published by Elsevier Taiwan.

  10. High Frequency LLC Resonant Converter with Magnetic Shunt Integrated Planar Transformer

    DEFF Research Database (Denmark)

    Li, Mingxiao; Ouyang, Ziwei; Andersen, Michael A. E.

    2018-01-01

    High Frequency LLC requires a smaller resonant inductance which is usually implemented by transformer leakage inductance. However, this small resonant inductance is difficult to deal with a wide input voltage range. This paper proposes a new method to implement a larger resonant inductance by using...... a magnetic shunt integrated into planar transformer. The switching frequency can be greatly narrowed by designing a smaller inductance ratio of magnetizing inductance to resonant inductance. Since this method can well deal with a wide input voltage range without adding extra inductor and increasing the size...... of the transformer, the power density can be improved. The precise leakage inductance calculation method for this transformer and detailed LLC converter design procedure are presented. A 280-380V and 48V-100W half bridge LLC resonant converter with 1 MHz resonant frequency is built to verify the design methodology....

  11. Frequency-domain analysis of resonant-type ring magnet power supplies

    International Nuclear Information System (INIS)

    Kim, J.M.S.; Reiniger, K.W.

    1993-01-01

    For fast-cycling synchrotrons, resonant-type ring magnet power supplies are commonly used to provide a dc-biased ac excitation for the ring magnets. Up to the present, this power supply system has been analyzed using simplified analytical approximation, namely assuming the resonant frequency of the ring magnet network is fixed and equal to the accelerator frequency. This paper presents a frequency-domain analysis technique for a more accurate analysis of resonant-type ring magnet power supplies. This approach identifies that, with the variation of the resonant frequency, the operating conditions of the power supply changes quite dramatically because of the high Q value of the resonant network. The analytical results are verified, using both experimental results and simulation results

  12. Method for Estimating Optimum Free Resonant Frequencies in Overcoupled WPT System

    Directory of Open Access Journals (Sweden)

    Dong-Wook Seo

    2017-01-01

    Full Text Available In our previous work, we proposed the method to maximize the output power even in the overcoupled state of the wireless power transfer (WPT system by controlling free resonant frequencies and derived closed-form expression for optimum free resonant frequencies of the primary and secondary resonators. In this paper, we propose the mutual coupling approach to derive the optimum free resonant frequencies and show the measured power transfer efficiency (PTE using the transmission efficiency as well as the system energy efficiency. The results of the proposed approach exactly coincide with those of the previous work, and the fabricated prototype achieves the transmission efficiency of about 80% by tuning the free resonant frequencies to the optimum values in the overcoupled state.

  13. Design of etch holes to compensate spring width loss for reliable resonant frequencies

    International Nuclear Information System (INIS)

    Jang, Yun-Ho; Kim, Jong-Wan; Kim, Yong-Kweon; Kim, Jung-Mu

    2012-01-01

    A pattern width loss during the fabrication of lateral silicon resonators degrades resonant frequency reliability since such a width loss causes the significant deviation of spring stiffness. Here we present a design guide for etch holes to obtain reliable resonant frequencies by controlling etch holes geometries. The new function of an etch hole is to generate the comparable amount of the width loss between springs and etch holes, in turn to minimize the effect of the spring width loss on resonant frequency shift and deviation. An analytic expression reveals that a compensation factor (CF), defined by the circumference (C u ) of a unit etch hole divided by its silicon area (A u ), is a key parameter for reliable frequencies. The protrusive etch holes were proposed and compared with square etch holes to demonstrate the frequency reliability according to CF values and etch hole shapes. The normalized resonant frequency shift and deviation of the protrusive etch hole (−13.0% ± 6.9%) were significantly improved compared to those of a square etch hole with a small CF value (−42.8% ± 14.8%). The proposed design guide based on the CF value and protrusive shapes can be used to achieve reliable resonant frequencies for high performance silicon resonators. (technical note)

  14. The frequency characteristics of medium voltage distribution system impedances

    Directory of Open Access Journals (Sweden)

    Liviu Emil Petrean

    2009-10-01

    Full Text Available In this paper we present the frequency characteristics of impedances involved in the electrical equivalent circuit of a large medium voltage distribution system. These impedances influence harmonics distortions propagation occurring due to the nonsinusoidal loads. We analyse the case of a 10 kV large urban distribution system which supplies industrial, commercial and residential customers. The influence of various parameters of the distribution network on the frequency characteristics are presented, in order to assess the interaction of harmonic distortion and distribution system network.

  15. Theoretical approach for plasma series resonance effect in geometrically symmetric dual radio frequency plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.

    2012-01-01

    Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.

  16. Operational characteristics of the VEC radio-frequency system

    Energy Technology Data Exchange (ETDEWEB)

    Khemka, P K; Basu Mallik, D N; Bhattacharya, D S; Mukherjee, A K; Mukherjee, B; Ramamurthy, S S [Bhabha Atomic Research Centre, Bombay (India). Variable Energy Cyclotron Project

    1979-01-01

    The operating characteristics of the 400 kW rf system of the VEC, based on the RCA 6949 oscillator tube, and covering a frequency range of 5.5 to 16.5 MHz, are described. The frequency stability of the system is measured to be 1 part in 10/sup 5/, and a dee voltage of 40 kV at 8 MHz has been achieved. The results of experimental adjustments of ratio capacitor for proper excitation and appropriate fixed dee voltage over the entire frequency range are discussed. An analysis of the multi-pactoring encountered during beam trials is presented.

  17. Operational characteristics of the VEC radio frequency system

    International Nuclear Information System (INIS)

    Khemka, P.K.; Basu Mallik, D.N.; Bhattacharya, D.S.; Mukherjee, A.K.; Mukherjee, B.; Ramamurthy, S.S.

    1979-01-01

    The operating characteristics of the 400 KW RF system of the VEC, based on the RCA 6949 oscillator tube, and covering a frequency range of 5.5 to 16.5 MHZ, are described. The frequency stability of the system is measured to be 1 part in 10 5 , and a dee voltage of 40 kV at 8 MHZ has been achieved. The results of experimental adjustments of ratio capacitor for proper excitation and appropriate fixed dee voltage over the entire frequency range are discussed. An analysis of the multi-pactoring encountered during beam trials is presented. (auth.)

  18. A MEMS coupled resonator for frequency filtering in air

    KAUST Repository

    Ilyas, Saad; Jaber, Nizar; Younis, Mohammad I.

    2018-01-01

    We present design, fabrication, and characterization of a mechanically coupled MEMS H resonator capable of performing simultaneous mechanical amplification and filtering in air. The device comprises of two doubly clamped polyimide microbeams joined

  19. INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH ION CYCLOTRON RESONANCE FREQUENCY WAVES

    International Nuclear Information System (INIS)

    CHOI, M.; CHAN, V.S.; CHIU, S.C.; OMELCHENKO, Y.A.; SENTOKU, Y.; STJOH, H.E.

    2003-01-01

    OAK B202 INTERACTION OF NEUTRAL BEAM INJECTED FAST IONS WITH CYCLOTRON RESONANCE FREQUENCY WAVES. Existing tokamaks such as DIII-D and future experiments like ITER employ both NB injection (NBI) and ion-cyclotron resonance heating (ICRH) for auxiliary heating and current drive. The presence of energetic particles produced by NBI can result in absorption of the Ion cyclotron radio frequency (ICRF) power. ICRF can also interact with the energetic beam ions to alter the characteristics of NBI momentum deposition and resultant impact on current drive and plasma rotation. To study the synergism between NBI and ICRF, a simple physical model for the slowing-down of NB injected fast ions is implemented in a Monte-Carlo rf orbit code. This paper presents the first results. The velocity space distributions of energetic ions generated by ICRF and NBI are calculated and compared. The change in mechanical momentum of the beam and an estimate of its impact on the NB-driven current are presented and compared with ONETWO simulation results

  20. On the frequency and field linewidth conversion of ferromagnetic resonance spectra

    International Nuclear Information System (INIS)

    Wei, Yajun; Svedlindh, Peter; Liang Chin, Shin

    2015-01-01

    Both frequency swept and field swept ferromagnetic resonance measurements have been carried out for a number of different samples with negligible, moderate and significant extrinsic frequency independent linewidth contribution to analyze the correlation between the experimentally measured frequency and field linewidths. Contrary to the belief commonly held by many researchers, it is found that the frequency and field linewidth conversion relation does not hold for all cases. Instead it holds only for samples with negligible frequency independent linewidth contributions. For samples with non-negligible frequency independent linewidth contribution, the field linewidth values converted from the measured frequency linewidth are larger than the experimentally measured field linewidth. A close examination of the literature reveals that previously reported results support our findings, with successful conversions related to samples with negligible frequency independent linewidth contributions and unsuccessful conversions related to samples with significant frequency independent linewidth. The findings are important in providing guidance in ferromagnetic resonance linewidth conversions. (paper)

  1. External Ear Resonant Amplitude and Frequency of 3-7 Year Old Children

    Directory of Open Access Journals (Sweden)

    Amir Hossein Zare

    2004-06-01

    Full Text Available Objective: To measure external ear resonant amplitude and frequency in children (3-7 years old and to compare with adult measures. Method and materials: The external ear resonance peak amplitude and frequency of 63 children 3-7 years old were recorded. All of the children had normal tympanogram and there was no cerumen in external auditory canal. 20 adult of 21-24 years old (10 male , 10 female were selected in order to compare with children that had normal tympanogram. The tests included : 1-otoscopy 2- tympanometry 3-microphone probe tube test. Results: The average of resonance peak frequency for children and adult is 4200 Hz and 3200 Hz , respectively. The resonance frequency of children had significantly diffrence with average of resonance frequency in adults. The average of resonance peak amplitude for children and adult is 17.70 dB and 17.17 dB , respectively. Conclusion: Resonant frequency and amplitude affect the hearing aid prescription and fitting process and calculating insertion gain; so, this measures seem should be considered in children hearing aid fitting.

  2. Elastic-plastic response characteristics during frequency nonstationary waves

    International Nuclear Information System (INIS)

    Miyama, T.; Kanda, J.; Iwasaki, R.; Sunohara, H.

    1987-01-01

    The purpose of this paper is to study fundamental effects of the frequency nonstationarity on the inelastic responses. First, the inelastic response characteristics are examined by applying stationary waves. Then simple representation of nonstationary characteristics is considered to general nonstationary input. The effects for frequency nonstationary response are summarized for inelastic systems. The inelastic response characteristics under white noise and simple frequency nonstationary wave were investigated, and conclusions can be summarized as follows. 1) The maximum response values for both BL model and OO model corresponds fairly well with those estimated from the energy constant law, even when R is small. For the OO model, the maximum displacement response forms a unique curve except for very small R. 2) The plastic deformation for the BL model is affected by wide frequency components, as R decreases. The plastic deformation for the OO model can be determined from the last stiffness. 3). The inelastic response of the BL model is considerably affected by the frequency nonstationarity of the input motion, while the response is less affected by the nonstationarity for OO model. (orig./HP)

  3. Structure of bending resonances frequencies in supercritical rotors of gaseous centrifuges

    International Nuclear Information System (INIS)

    Andronov, I.N.; Grigor'ev, G.Yu.; Vyazovetskij, Yu.V.; Senchenkov, A.P.; Senchenkov, S.A.

    2000-01-01

    The position and the structure bending resonances for the model supercritical rotors with different construction of the tube are measured. Considerable complication of the resonance system for the tubes with nonuniform properties was established. The effect of the structure of the resonance on the complication of its realization and the ways of optimization of the rotor resonance system is discussed. Made measuring point to possibility for creation highly productive centrifuges relating to supercritical rotors with uniform concrete size carbon composite tube and structure of winding, working after the third bending resonance. The frequency of the fifth resonance falls in the zone of the performance frequency on the rotors with bellows crimps. Carbon composite tubes with the areas of raised flexibility is provided with greater in several times decrement [ru

  4. Characteristics of low frequency MHD fluctuations in the PRETEXT tokamak

    International Nuclear Information System (INIS)

    Kochanski, T.P.

    1981-05-01

    The temporal and spectral characteristics of low frequency (< 100KHz) MHD fluctuations, which are commonly associated with disruptions, have been investigated in the PRETEXT tokamak. There exists rigid phase coherence between the internal m = 1, and externally detected m = 2 modes indicative of strong mode coupling. A parametric study of the frequency of the mode, in the saturated state, indicates that the frequency scales with the toroidal magnetic field, and is inversely proportional to the plasma current. The frequency is observed to decrease abruptly as the mode amplitude rapidly increases prior to a plasma disruption. The burst type growth of the m = 2 mode appears to be inextricably linked to the occurrence of the disruptive instability

  5. Single-Chip Multiple-Frequency RF MEMS Resonant Platform for Wireless Communications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel, single-chip, multiple-frequency platform for RF/IF filtering and clock reference based on contour-mode aluminum nitride (AlN) MEMS piezoelectric resonators...

  6. GaN-based High Power High Frequency Wide Range LLC Resonant Converter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SET Group will design, build and demonstrate a Gallium Nitride (GaN) based High Power High Frequency Wide Range LLC Resonant Converter capable of handling high power...

  7. Time-frequency analysis of the restricted three-body problem: transport and resonance transitions

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V; Marsden, Jerrold E

    2004-01-01

    A method of time-frequency analysis based on wavelets is applied to the problem of transport between different regions of the solar system, using the model of the circular restricted three-body problem in both the planar and the spatial versions of the problem. The method is based on the extraction of instantaneous frequencies from the wavelet transform of numerical solutions. Time-varying frequencies provide a good diagnostic tool to discern chaotic trajectories from regular ones, and we can identify resonance islands that greatly affect the dynamics. Good accuracy in the calculation of time-varying frequencies allows us to determine resonance trappings of chaotic trajectories and resonance transitions. We show the relation between resonance transitions and transport in different regions of the phase space

  8. Fabrication of Terahertz Wave Resonators with Alumina Diamond Photonic Crystals for Frequency Amplification in Water Solvents

    International Nuclear Information System (INIS)

    Ohta, N; Niki, T; Kirihara, S

    2011-01-01

    Terahertz wave resonators composed of alumina photonic crystals with diamond lattice structures were designed and fabricated by using micro stereolithography. These three dimensional periodic structures can reflect perfectly electromagnetic waves through Bragg diffraction. A micro glass cell including water solutions was put between the photonic crystals as a novel resonance sensor with terahertz frequency range. The localized and amplified waves in the resonators were measured by a spectroscopy, and visualized by theoretical simulations.

  9. Low frequency torsional vibration gaps in the shaft with locally resonant structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing

    2006-01-01

    The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control

  10. Self-excited nonlinear plasma series resonance oscillations in geometrically symmetric capacitively coupled radio frequency discharges

    International Nuclear Information System (INIS)

    Donko, Z.; Schulze, J.; Czarnetzki, U.; Luggenhoelscher, D.

    2009-01-01

    At low pressures, nonlinear self-excited plasma series resonance (PSR) oscillations are known to drastically enhance electron heating in geometrically asymmetric capacitively coupled radio frequency discharges by nonlinear electron resonance heating (NERH). Here we demonstrate via particle-in-cell simulations that high-frequency PSR oscillations can also be excited in geometrically symmetric discharges if the driving voltage waveform makes the discharge electrically asymmetric. This can be achieved by a dual-frequency (f+2f) excitation, when PSR oscillations and NERH are turned on and off depending on the electrical discharge asymmetry, controlled by the phase difference of the driving frequencies

  11. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  12. Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations

    International Nuclear Information System (INIS)

    Finn, J.M.; Sudan, R.N.

    We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed

  13. A dual resonant rectilinear-to-rotary oscillation converter for low frequency broadband electromagnetic energy harvesting

    Science.gov (United States)

    Deng, Wei; Wang, Ya

    2017-09-01

    This paper reports a dual resonant rectilinear-to-rotary oscillation converter (RROC) for low frequency broadband electromagnetic energy harvesting from ambient vibrations. An approximate theoretical model has been established to integrate the electromechanical coupling into a comprehensive electromagnetic-dynamic model of the dual resonant RROC. Numerical simulation has proved the nature of dual resonances by revealing that both the rectilinear resonance and the rotary resonance could be achieved when the stand-alone rectilinear oscillator (RLO) and the stand-alone rotary oscillator (RTO) were excited independently. Simulation on the magnetically coupled RROC has also shown that the rectilinear resonance and the rotary resonance could be obtained simultaneously in the low-frequency region (2-14 Hz) with well-defined restoring torque (M r ) and the initial rotation angle of the RLO (ψ). The magnetic interaction patterns between the rectilinear and the RTOs have been categorized based on aforementioned simulation results. Both simulation and experimental results have demonstrated broadband output attributing from the dual resonances. Experimental results have also indicated that the RROC could have wide bandwidth in a much lower frequency region (2-8 Hz) even without the rotary resonance as long as the system parameters are carefully tuned. Parameter analysis on different values of M r and ψ are experimentally carried out to provide a quantitative guidance of designing the RROC to achieve an optimal power density.

  14. Shear resonance mode decoupling to determine the characteristic matrix of piezoceramics for 3-D modeling.

    Science.gov (United States)

    Pardo, Lorena; García, Alvaro; de Espinosa, Francisco Montero; Brebøl, Klaus

    2011-03-01

    The determination of the characteristic frequencies of an electromechanical resonance does not provide enough data to obtain the material properties of piezoceramics, including all losses, from complex impedance measurements. Values of impedance around resonance and antiresonance frequencies are also required to calculate the material losses. Uncoupled resonances are needed for this purpose. The shear plates used for the material characterization present unavoidable mode coupling of the shear mode and other modes of the plate. A study of the evolution of the complex material coefficients as the coupling of modes evolves with the change in the aspect ratio (lateral dimension/thickness) of the plate is presented here. These are obtained using software. A soft commercial PZT ceramic was used in this study and several shear plates amenable to material characterization were obtained in the range of aspect ratios below 15. The validity of the material properties for 3-D modeling of piezoceramics is assessed by means of finite element analysis, which shows that uncoupled resonances are virtually pure thickness-driven shear modes.

  15. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  16. Investigation of natural frequencies of laser inertial confinement fusion capsules using resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaojun [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Xing; Wang, Zongwei [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Chen, Qian; Qian, Menglu [Institute of Acoustic, Tongji University, Shanghai 200433 (China); Meng, Jie [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Tang, Yongjian [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Research Center of Laser Fusion, CAEP, Mianyang 621900 (China); Zou, Yaming; Shen, Hao [Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Gao, Dangzhong, E-mail: dgaocn@163.com [Research Center of Laser Fusion, CAEP, Mianyang 621900 (China)

    2017-01-15

    Highlights: • The frequency equation of isotropic multi-layer hollow spheres was derived using three-dimension (3D) elasticity theory and transfer matrix method. • The natural frequencies of the capsules with a millimeter-sized diameter are determined experimentally using resonant ultrasound spectrum (RUS) system. • The predicted natural frequencies of the frequency equation accord well with the observed results. • The theoretical and experimental investigation has proved the potential applicability of RUS to both metallic and non-metallic capsules. - Abstract: The natural frequency problem of laser inertial confinement fusion (ICF) capsules is one of the basic problems for determining non-destructively the elasticity modulus of each layer material using resonant ultrasound spectroscopy (RUS). In this paper, the frequency equation of isotropic one-layer hollow spheres was derived using three dimension (3D) elasticity theory and some simplified frequency equations were discussed under axisymmetric and spherical symmetry conditions. The corresponding equation of isotropic multi-layer hollow spheres was given employing transfer matrix method. To confirm the validity of the frequency equation and explore the feasibility of RUS for characterizing the ICF capsules, three representative capsules with a millimeter-sized diameter were determined by piezoelectric-based resonant ultrasound spectroscopy (PZT-RUS) and laser-based resonant ultrasound spectroscopy (LRUS) techniques. On the basis of both theoretical and experimental results, it is proved that the calculated and measured natural frequencies are accurate enough for determining the ICF capsules.

  17. Advances in Computational High-Resolution Mechanical Spectroscopy HRMS Part II: Resonant Frequency – Young's Modulus

    International Nuclear Information System (INIS)

    Majewski, M; Magalas, L B

    2012-01-01

    In this paper, we compare the values of the resonant frequency f 0 of free decaying oscillations computed according to the parametric OMI method (Optimization in Multiple Intervals) and nonparametric DFT-based (discrete Fourier transform) methods as a function of the sampling frequency. The analysis is carried out for free decaying signals embedded in an experimental noise recorded for metallic samples in a low-frequency resonant mechanical spectrometer. The Yoshida method (Y), the Agrez' method (A), and new interpolated discrete Fourier transform (IpDFT) methods, that is, the Yoshida-Magalas (YM) and (YM C ) methods developed by the authors are carefully compared for the resonant frequency f 0 = 1.12345 Hz and the logarithmic decrement, δ = 0.0005. Precise estimation of the resonant frequency (Youngs' modulus ∼ f 0 2 ) for real experimental conditions, i.e., for exponentially damped harmonic signals embedded in an experimental noise, is a complex task. In this work, various computing methods are analyzed as a function of the sampling frequency used to digitize free decaying oscillations. The importance of computing techniques to obtain reliable and precise values of the resonant frequency (i.e. Young's modulus) in materials science is emphasized.

  18. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry at the Cyclotron Frequency.

    Science.gov (United States)

    Nagornov, Konstantin O; Kozhinov, Anton N; Tsybin, Yury O

    2017-04-01

    The phenomenon of ion cyclotron resonance allows for determining mass-to-charge ratio, m/z, of an ensemble of ions by means of measurements of their cyclotron frequency, ω c . In Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), the ω c quantity is usually unavailable for direct measurements: the resonant state is located close to the reduced cyclotron frequency (ω + ), whereas the ω c and the corresponding m/z values may be calculated via theoretical derivation from an experimental estimate of the ω + quantity. Here, we describe an experimental observation of a new resonant state, which is located close to the ω c frequency and is established because of azimuthally-dependent trapping electric fields of the recently developed ICR cells with narrow aperture detection electrodes. We show that in mass spectra, peaks close to ω + frequencies can be reduced to negligible levels relative to peaks close to ω c frequencies. Due to reduced errors with which the ω c quantity is obtained, the new resonance provides a means of cyclotron frequency measurements with precision greater than that achieved when ω + frequency peaks are employed. The described phenomenon may be considered for a development into an FT-ICR MS technology with increased mass accuracy for applications in basic research, life, and environmental sciences. Graphical Abstract ᅟ.

  19. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  20. Stochastic resonance in a single-mode laser driven by frequency modulated signal and coloured noises

    Institute of Scientific and Technical Information of China (English)

    Jin Guo-Xiang; Zhang Liang-Ying; Cao Li

    2009-01-01

    By adding frequency modulated signals to the intensity equation of gain-noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.

  1. Experimental results of high power dual frequency resonant magnet excitation at TRIUMF

    International Nuclear Information System (INIS)

    Reiniger, K.W.; Heritier, G.

    1988-06-01

    We present some results of duel frequency resonant magnet excitation at full power using the old NINA synchrotron dipoles. These tests will simulate a typical resonant cell as proposed for the accelerating rings of the TRIUMF KAON Factory. These test have two main purposes: to verify circuit parameters and component ratings for the dual frequency resonant power supply system; and to measure directly electrical losses in a transverse magnet field, such as eddy current losses in magnet conductors, vacuum tubes and core losses in laminations. These data will be required for the detailed design of the accelerator system components. (Author) (Ref., 9 figs., tab.)

  2. Nuclear magnetic resonance imaging characteristics of gallstones in vitro

    International Nuclear Information System (INIS)

    Moon, K.L. Jr.; Hricak, H.; Margulis, A.R.; Bernhoft, R.; Way, L.W.; Filly, R.A.; Crooks, L.E.

    1983-01-01

    The nuclear magnetic resonance (NMR) imaging characteristics of gallstones of various composition from 36 patients were studied in vitro using a spin-echo imaging technique. The majority of gallstones (83%) produced no measurable NMR signal despite having a mean water content of 12% and a mean cholesterol content of 61%. Six (17%) of the stones had a weak but measurable signal in the center of the stone, which was thought to represent signal from water in clefts or pores within the stones. The mean water and cholesterol content of the stones with measurable signal did not differ significantly from that of stones with no signal. A possible explanation for these findings, based on the known NMR characteristics of solid materials, is offered

  3. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  4. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    Science.gov (United States)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Suryo Wasisto, Hutomo; Peiner, Erwin

    2016-10-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor (Q) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10-6. This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor.

  5. Asymmetric resonance frequency analysis of in-plane electrothermal silicon cantilevers for nanoparticle sensors

    International Nuclear Information System (INIS)

    Bertke, Maik; Hamdana, Gerry; Wu, Wenze; Marks, Markus; Wasisto, Hutomo Suryo; Peiner, Erwin

    2016-01-01

    The asymmetric resonance frequency analysis of silicon cantilevers for a low-cost wearable airborne nanoparticle detector (Cantor) is described in this paper. The cantilevers, which are operated in the fundamental in-plane resonance mode, are used as a mass-sensitive microbalance. They are manufactured out of bulk silicon, containing a full piezoresistive Wheatstone bridge and an integrated thermal heater for reading the measurement output signal and stimulating the in-plane excitation, respectively. To optimize the sensor performance, cantilevers with different cantilever geometries are designed, fabricated and characterized. Besides the resonance frequency, the quality factor ( Q ) of the resonance curve has a high influence concerning the sensor sensitivity. Because of an asymmetric resonance behaviour, a novel fitting function and method to extract the Q is created, different from that of the simple harmonic oscillator (SHO). For testing the sensor in a long-term frequency analysis, a phase- locked loop (PLL) circuit is employed, yielding a frequency stability of up to 0.753 Hz at an Allan variance of 3.77 × 10 -6 . This proposed asymmetric resonance frequency analysis method is expected to be further used in the process development of the next-generation Cantor. (paper)

  6. Resonant frequency analysis on an electrostatically actuated microplate under uniform hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Zhikang; Zhao Libo; Ye Zhiying; Zhao Yulong; Jiang Zhuangde; Wang Hongyan

    2013-01-01

    The resonant frequency of a microplate is influenced by various physical parameters such as mass, surface stress, hydrostatic pressure and electrostatic force. In this paper, the effects of both electrostatic force and uniform hydrostatic pressure on the resonant frequency of a clamped circular microplate are investigated. An approximate solution is derived for the fundamental resonance frequency of the mciroplate under both types of loads using an energy equivalent method. It is found that both electrostatic force and uniform hydrostatic pressure decrease the resonant frequency of the microplate under small deflections. Additionally, the linearized expression of this solution shows that the resonant frequency varies linearly with pressure in the low and ultra-low range, and the corresponding pressure sensitivity depends on the voltage applied to the microplate. The analytical results are well validated by the finite element method. This study may be helpful for the design and optimization of electrostatically actuated resonance devices based on microplates, especially electrostatically actuated low- or ultra-low-pressure sensors. (paper)

  7. Resonant frequencies and Q factors of dielectric parallelepipeds by measurement and by FDTD

    Energy Technology Data Exchange (ETDEWEB)

    Trueman, C.W. [Concordia Univ., Montreal, Quebec (Canada); Mishra, S.R.; Larose, C.L. [David Florida Lab., Ottawa (Canada)] [and others

    1994-12-31

    This paper describes the measurement and computation of the resonant frequencies and the associated Q factors of dielectric parallelepipeds made of high-permittivity, low-loss ceramic materials. Each resonance peak is measured separately with a fine frequency step. A curve-fitting method is used to accurately estimate the resonant frequency and 3 dB bandwidth from the somewhat noisy measured data. The finite-difference time-domain method is used to compute the initial portion of the backscattered field due to a Gaussian pulse plane wave. The time response is then extended to zero value by Prony`s method. The measured and computed data is compared for a parallelepiped resonator of permittivity 37.84.

  8. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout.

    Science.gov (United States)

    Song, Xuefeng; Oksanen, Mika; Sillanpää, Mika A; Craighead, H G; Parpia, J M; Hakonen, Pertti J

    2012-01-11

    We present a simple micromanipulation technique to transfer suspended graphene flakes onto any substrate and to assemble them with small localized gates into mechanical resonators. The mechanical motion of the graphene is detected using an electrical, radio frequency (RF) reflection readout scheme where the time-varying graphene capacitor reflects a RF carrier at f = 5-6 GHz producing modulation sidebands at f ± f(m). A mechanical resonance frequency up to f(m) = 178 MHz is demonstrated. We find both hardening/softening Duffing effects on different samples and obtain a critical amplitude of ~40 pm for the onset of nonlinearity in graphene mechanical resonators. Measurements of the quality factor of the mechanical resonance as a function of dc bias voltage V(dc) indicates that dissipation due to motion-induced displacement currents in graphene electrode is important at high frequencies and large V(dc). © 2011 American Chemical Society

  9. Radio-frequency characteristic variation of interdigital capacitor having multilayer graphene of various widths

    Science.gov (United States)

    Lee, Hee-Jo; Hong, Young-Pyo

    2018-03-01

    In this paper, a radio-frequency circuit model of an interdigital capacitor (IDC) with a multilayer graphene (MLG) width variation is proposed. The circuit model with three sample configurations, i.e., a bare IDC, IDC-MLG with a width of 5 μm, and IDC-MLG with a width of 20 μm, is constructed via a fitted method based on the measured samples. The simulated results of the circuit model are validated through the RF characteristics, e.g., the capacitance and the self-resonance frequency, of the measured samples. From the circuit model, all samples show not only a similar capacitance behavior but also an identical self-resonance frequency of 10 GHz. Moreover, the R, L, and C values of MLG with a 5 μm width (MLG with a 20 μm width) alone are approximately 0.8 kΩ (0.5 kΩ), 0.5 nH (0.9 nH), and 0.3 pF (0.1 pF), respectively. As a result, we find that the simulated results are in good agreement with RF characteristics of the measured samples. In the future, we expect that the proposed circuit model of an IDC with MLG will offer assistance with performance predictions of diverse IDC-based 2D material applications, such as biosensors and gas sensors, as well as supercapacitors.

  10. Noise Depression of Parasitic Capacitance for Frequency Detection of Micromechanical Bulk Disk Resonator

    DEFF Research Database (Denmark)

    Tang, Meng; Cagliani, Alberto; Escouflaire, Marie

    2010-01-01

    the frequency noise of the system. A capacitor cancellation circuit is used to subtract the parasitic capacitor. Measurements are conducted before and after the cancellation, and results show that after cancellation, the anti resonance is suppressed and the frequency noise is decreased, thus decreasing...

  11. Optical fiber strain sensor using fiber resonator based on frequency comb Vernier spectroscopy

    DEFF Research Database (Denmark)

    Zhang, Liang; Lu, Ping; Chen, Li

    2012-01-01

    A novel (to our best knowledge) optical fiber strain sensor using a fiber ring resonator based on frequency comb Vernier spectroscopy is proposed and demonstrated. A passively mode-locked optical fiber laser is employed to generate a phased-locked frequency comb. Strain applied to the optical fib...

  12. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...

  13. Multi-frequency interpolation in spiral magnetic resonance fingerprinting for correction of off-resonance blurring.

    Science.gov (United States)

    Ostenson, Jason; Robison, Ryan K; Zwart, Nicholas R; Welch, E Brian

    2017-09-01

    Magnetic resonance fingerprinting (MRF) pulse sequences often employ spiral trajectories for data readout. Spiral k-space acquisitions are vulnerable to blurring in the spatial domain in the presence of static field off-resonance. This work describes a blurring correction algorithm for use in spiral MRF and demonstrates its effectiveness in phantom and in vivo experiments. Results show that image quality of T1 and T2 parametric maps is improved by application of this correction. This MRF correction has negligible effect on the concordance correlation coefficient and improves coefficient of variation in regions of off-resonance relative to uncorrected measurements. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Measurements of time average series resonance effect in capacitively coupled radio frequency discharge plasma

    International Nuclear Information System (INIS)

    Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.; Kakati, M.

    2011-01-01

    Self-excited plasma series resonance is observed in low pressure capacitvely coupled radio frequency discharges as high-frequency oscillations superimposed on the normal radio frequency current. This high-frequency contribution to the radio frequency current is generated by a series resonance between the capacitive sheath and the inductive and resistive bulk plasma. In this report, we present an experimental method to measure the plasma series resonance in a capacitively coupled radio frequency argon plasma by modifying the homogeneous discharge model. The homogeneous discharge model is modified by introducing a correction factor to the plasma resistance. Plasma parameters are also calculated by considering the plasma series resonances effect. Experimental measurements show that the self-excitation of the plasma series resonance, which arises in capacitive discharge due to the nonlinear interaction of plasma bulk and sheath, significantly enhances both the Ohmic and stochastic heating. The experimentally measured total dissipation, which is the sum of the Ohmic and stochastic heating, is found to increase significantly with decreasing pressure.

  15. Tunability of resonance frequencies in a superconducting microwave resonator by using SrTiO sub 3 ferroelectric films

    CERN Document Server

    Sok, J; Lee, E H

    1998-01-01

    An applied dc voltage varies the dielectric constant of ferroelectric SrTiO sub 3 films. A tuning mechanism for superconducting microwave resonators was realized by using the variation in the dielectric constant of SrTiO sub 3 films. In order to estimate the values of the capacitance, C, and the loss tangent, tan delta, of SrTiO sub 3 ferroelectric capacitors, we used high-temperature superconducting microwave resonators which were composed of two ports, two poles, and dc bias circuits at the zero-field points. SrTiO sub 3 ferroelectric capacitors successfully controlled the resonant frequency of the resonator. Resonant frequencies of 3.98 GHz and 4.20 GHz were measured at bias voltages of 0 V and 50 V which correspond to capacitance values of 0.94 pF and 0.7pF, respectively. The values of the loss tangent, tan delta sub e sub f sub f , obtained in this measurements, were about 0.01.

  16. Characteristics of Schumann Resonance Parameters at Kuju Station

    Directory of Open Access Journals (Sweden)

    Ikeda Akihiro

    2017-01-01

    Full Text Available The ground magnetic field variation in the extremely low frequency (ELF range has been measured by an induction magnetometer at Kuju, Japan (KUJ; M.Lat. = 23.4 degrees, M. Lon. = 201.0 degrees since 2003. The first mode of the Schumann resonance (SR around 8 Hz can be seen at KUJ. The SR in H (horizontal northward component shows maximum peaks around 08 UT and 15 UT. In the case of D (horizontal eastward component, the SR shows its maximum peak around 08 UT. These peaks are coincident with the enhancement of lightning activity in Africa and Asia. Thus, we found the influence of the lightning activity on the observed SR at KUJ.

  17. Active cooling of an audio-frequency electrical resonator to microkelvin temperatures

    Science.gov (United States)

    Vinante, A.; Bonaldi, M.; Mezzena, R.; Falferi, P.

    2010-11-01

    We have cooled a macroscopic LC electrical resonator using feedback-cooling combined with an ultrasensitive dc Superconducting Quantum Interference Device (SQUID) current amplifier. The resonator, with resonance frequency of 11.5 kHz and bath temperature of 135 mK, is operated in the high coupling limit so that the SQUID back-action noise overcomes the intrinsic resonator thermal noise. The effect of correlations between the amplifier noise sources clearly show up in the experimental data, as well as the interplay of the amplifier noise with the resonator thermal noise. The lowest temperature achieved by feedback is 14 μK, corresponding to 26 resonator photons, and approaches the limit imposed by the noise energy of the SQUID amplifier.

  18. Design and analysis of planar spiral resonator bandstop filter for microwave frequency

    Science.gov (United States)

    Motakabber, S. M. A.; Shaifudin Suharsono, Muhammad

    2017-11-01

    In microwave frequency, a spiral resonator can act as either frequency reject or acceptor circuits. A planar logarithmic spiral resonator bandstop filter has been developed based on this property. This project focuses on the rejection property of the spiral resonator. The performance analysis of the exhibited filter circuit has been performed by using scattering parameters (S-parameters) technique in the ultra-wideband microwave frequency. The proposed filter is built, simulated and S-parameters analysis have been accomplished by using electromagnetic simulation software CST microwave studio. The commercial microwave substrate Taconic TLX-8 has been used to build this filter. Experimental results showed that the -10 dB rejection bandwidth of the filter is 2.32 GHz and central frequency is 5.72 GHz which is suitable for ultra-wideband applications. The proposed design has been full of good compliance with the simulated and experimental results here.

  19. Off-resonance frequency operation for power transfer in a loosely coupled air core transformer

    Science.gov (United States)

    Scudiere, Matthew B

    2012-11-13

    A power transmission system includes a loosely coupled air core transformer having a resonance frequency determined by a product of inductance and capacitance of a primary circuit including a primary coil. A secondary circuit is configured to have a substantially same product of inductance and capacitance. A back EMF generating device (e.g., a battery), which generates a back EMF with power transfer, is attached to the secondary circuit. Once the load power of the back EMF generating device exceeds a certain threshold level, which depends on the system parameters, the power transfer can be achieved at higher transfer efficiency if performed at an operating frequency less than the resonance frequency, which can be from 50% to 95% of the resonance frequency.

  20. Atomic resolution ultrafast scanning tunneling microscope with scan rate breaking the resonant frequency of a quartz tuning fork resonator.

    Science.gov (United States)

    Li, Quanfeng; Lu, Qingyou

    2011-05-01

    We present an ultra-fast scanning tunneling microscope with atomic resolution at 26 kHz scan rate which surpasses the resonant frequency of the quartz tuning fork resonator used as the fast scan actuator. The main improvements employed in achieving this new record are (1) fully low voltage design (2) independent scan control and data acquisition, where the tuning fork (carrying a tip) is blindly driven to scan by a function generator with the scan voltage and tunneling current (I(T)) being measured as image data (this is unlike the traditional point-by-point move and measure method where data acquisition and scan control are switched many times).

  1. Efficient analysis for nonlinear microwave characteristics of high-power HTS thin film microstrip resonators

    International Nuclear Information System (INIS)

    Kedar, Ashutosh; Kataria, N D

    2005-01-01

    This paper investigates the nonlinear effects of high-T c superconducting (HTS) thin film in high-power applications. A nonlinear model for complex surface impedance has been proposed for the efficient analysis of the nonlinearity of HTS thin films. Further, using the developed model, analysis of HTS-MSR has been done using the spectral domain method (SDM). The SDM formulation has been modified to account for finite conductivity and thickness of HTS films by incorporating a complex resistive boundary condition. The results have been validated with the experiments performed with microstrip resonators (MSRs) based on YBa 2 Cu 3 O 7-x (YBCO) thin films made by a laser ablation technique on LaAlO 3 substrates, characterized for their characteristics, namely, resonant frequency and quality factor measured as a function of temperature and input RF power. A close agreement between the theoretical and measured results has been achieved validating the analysis

  2. Improved measurements of elastic properties at acoustic resonant frequencies

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1976-01-01

    The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)

  3. Open Resonator for Summation of Powers in Sub-Terahertz and Terahertz Frequencies

    Science.gov (United States)

    Kuz'michev, I. K.; Yeryomka, V. D.; May, A. V.; Troshchilo, A. S.

    2017-03-01

    Purpose: Study of excitation features for the first higher axialasymmetric type oscillations in an open resonator connected into the waveguide transmission line. Design/methodology/approach: To determine the efficiency of higher oscillation excitation in the resonator by using the highest wave of a rectangular waveguide, the coefficient of the antenna surface utilization is used. The coefficient of reflection from the open resonator is determined by the known method of summation of the partial coefficients of reflection from the resonant system. Findings: The excitation efficiency of the first higher axial asymmetric type TEM10q oscillations in an open resonator connected into the waveguide transmission line, using the TE20 type wave, is considered. The research efforts were made with accounting for the electromagnetic field vector nature. It is shown that for certain sizes of exciting coupler the excitation efficiency of the working excitation is equal to 0.867. Besides, this resonant system has a single frequency response within a wide band of frequencies. Due to this, it can be applied for summation of powers for individual sources of oscillations. Since this resonant system allows separating the matching functions as to the field and coupling, it is possible to provide any prescribed coupling of sources with a resonant volume. For this purpose, one- dimensional diffraction gratings (E-polarization) are used. Conclusions: With the matched excitation of axially asymmetric modes of oscillations the resonant system has an angular and frequency spectrum selection that is of great practical importance for powers summation. By application of one- dimensional diffraction gratings (E-polarization), located in apertures of coupling elements, the active elements can be matched with the resonant volume.

  4. Resonator as high frequency electromagnetic field oscillation generator

    International Nuclear Information System (INIS)

    Svoroba, O.V.; Scherbina, V.O.

    2007-01-01

    The problem of finding the u(x-vector) field potential in a specific waveguide with generalized corrugated core geometry is considered. The perturbation is brought to the system by high energy electron beam, injected in a waveguide. It is shown that the Neumann spectral problem can be reduced to finding Green approximation solution, and how it can be solved by the discretization technique. Considered parameterization allow to optimize the u(x-vector) field for specific frequency tuning. This method can be used as plasma heating method for thermonuclear temperature control

  5. Magnetic resonance imaging characteristics of fibrocystic change of the breast.

    Science.gov (United States)

    van den Bosch, Maurice A A J; Daniel, Bruce L; Mariano, Michelle N; Nowels, Kent N; Birdwell, Robyn L; Fong, Kathy J; Desmond, Pam S; Plevritis, Sylvia; Stables, Lara A; Zakhour, Marowan; Herfkens, Robert J; Ikeda, Debra M

    2005-07-01

    The objective of this study was to identify magnetic resonance imaging (MRI) characteristics of fibrocystic change (FCC) of the breast. Fourteen patients with a histopathologic diagnosis of solitary FCC of the breast underwent x-ray mammography and MRI of the breast. Three experienced breast imaging radiologists retrospectively reviewed the MRI findings and categorized the lesions on morphologic and kinetic criteria according to the ACR BI-RADS-MRI Lexicon. The most striking morphologic feature of fibrocystic change was nonmass-like regional enhancement found in 6 of 14 (43%) FCC lesions. Based on morphologic criteria alone, 12 of 14 (86%) lesions were correctly classified as benign. According to analysis of the time-intensity curves, 10 of 14 (71%) FCC lesions were correctly classified as benign. Although FCC has a wide spectrum of morphologic and kinetic features on MRI, it most often presents as a mass or a nonmass-like regional enhancing lesion with benign enhancement kinetics.

  6. Parametric Amplification Protocol for Frequency-Modulated Magnetic Resonance Force Microscopy Signals

    Science.gov (United States)

    Harrell, Lee; Moore, Eric; Lee, Sanggap; Hickman, Steven; Marohn, John

    2011-03-01

    We present data and theoretical signal and noise calculations for a protocol using parametric amplification to evade the inherent tradeoff between signal and detector frequency noise in force-gradient magnetic resonance force microscopy signals, which are manifested as a modulated frequency shift of a high- Q microcantilever. Substrate-induced frequency noise has a 1 / f frequency dependence, while detector noise exhibits an f2 dependence on modulation frequency f . Modulation of sample spins at a frequency that minimizes these two contributions typically results in a surface frequency noise power an order of magnitude or more above the thermal limit and may prove incompatible with sample spin relaxation times as well. We show that the frequency modulated force-gradient signal can be used to excite the fundamental resonant mode of the cantilever, resulting in an audio frequency amplitude signal that is readily detected with a low-noise fiber optic interferometer. This technique allows us to modulate the force-gradient signal at a sufficiently high frequency so that substrate-induced frequency noise is evaded without subjecting the signal to the normal f2 detector noise of conventional demodulation.

  7. Research on the Band Gap Characteristics of Two-Dimensional Phononic Crystals Microcavity with Local Resonant Structure

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2015-01-01

    Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.

  8. Radio frequency scanning tunneling spectroscopy for single-molecule spin resonance.

    Science.gov (United States)

    Müllegger, Stefan; Tebi, Stefano; Das, Amal K; Schöfberger, Wolfgang; Faschinger, Felix; Koch, Reinhold

    2014-09-26

    We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.

  9. A model for precalculus students to determine the resonance frequency of a trumpet mouthpiece

    Science.gov (United States)

    Chapman, Robert C.

    2004-05-01

    The trumpet mouthpiece as a Helmholtz resonator is used to show precalculus students a mathematical model for determining the approximate resonance frequency of the mouthpiece. The mathematics is limited to algebra and trigonometry. Using a system of mouthpieces that have interchangeable cups and backbores, students are introduced to the acoustics of this resonator. By gathering data on 51 different configurations of mouthpieces, the author modifies the existing Helmholtz resonator equation to account for both cup volumes and backbore configurations. Students then use this model for frequency predictions. Included are how to measure the different physical attributes of a trumpet mouthpiece at minimal cost. This includes methods for measuring cup volume, backbore volume, backbore length, throat area, etc. A portion of this phase is de-signed for students to become acquainted with some of the vocabulary of acoustics and the physics of sound.

  10. Achilles tendinopathy modulates force frequency characteristics of eccentric exercise.

    Science.gov (United States)

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2013-03-01

    Previous research has demonstrated that ground reaction force (GRF) recorded during eccentric ankle exercise is characterized by greater power in the 8- to 12-Hz bandwidth when compared with that recorded during concentric ankle exercise. Subsequently, it was suggested that vibrations in this bandwidth may underpin the beneficial effect of eccentric loading in tendon repair. However, this observation has been made only in individuals without Achilles tendinopathy. This research compared the force frequency characteristics of eccentric and concentric exercises in individuals with and without Achilles tendinopathy. Eleven male adults with unilateral midportion Achilles tendinopathy and nine control male adults without tendinopathy participated in the research. Kinematics and GRF were recorded while the participants performed a common eccentric rehabilitation exercise protocol and a concentric equivalent. Ankle joint kinematics and the frequency power spectrum of the resultant GRF were calculated. Eccentric exercise was characterized by a significantly greater proportion of spectral power between 4.5 and 11.5 Hz when compared with concentric exercise. There were no significant differences between limbs in the force frequency characteristics of concentric exercise. Eccentric exercise, in contrast, was defined by a shift in the power spectrum of the symptomatic limb, resulting in a second spectral peak at 9 Hz, rather than 10 Hz in the control limb. Compared with healthy tendon, Achilles tendinopathy was characterized by lower frequency vibrations during eccentric rehabilitation exercises. This finding may be associated with changes in neuromuscular activation and tendon stiffness that have been shown to occur with tendinopathy and provides a possible rationale for the previous observation of a different biochemical response to eccentric exercise in healthy and injured Achilles tendons.

  11. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  12. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    International Nuclear Information System (INIS)

    Hu, M.; Bai, Y. Z.; Zhou, Z. B.; Li, Z. X.; Luo, J.

    2014-01-01

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided

  13. Resonant frequency detection and adjustment method for a capacitive transducer with differential transformer bridge

    Energy Technology Data Exchange (ETDEWEB)

    Hu, M.; Bai, Y. Z., E-mail: abai@mail.hust.edu.cn; Zhou, Z. B., E-mail: zhouzb@mail.hust.edu.cn; Li, Z. X.; Luo, J. [MOE Key Laboratory of Fundamental Physical Quantities Measurement, School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-05-15

    The capacitive transducer with differential transformer bridge is widely used in ultra-sensitive space accelerometers due to their simple structure and high resolution. In this paper, the front-end electronics of an inductive-capacitive resonant bridge transducer is analyzed. The analysis result shows that the performance of this transducer depends upon the case that the AC pumping frequency operates at the resonance point of the inductive-capacitive bridge. The effect of possible mismatch between the AC pumping frequency and the actual resonant frequency is discussed, and the theoretical analysis indicates that the output voltage noise of the front-end electronics will deteriorate by a factor of about 3 due to either a 5% variation of the AC pumping frequency or a 10% variation of the tuning capacitance. A pre-scanning method to determine the actual resonant frequency is proposed followed by the adjustment of the operating frequency or the change of the tuning capacitance in order to maintain expected high resolution level. An experiment to verify the mismatching effect and the adjustment method is provided.

  14. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  15. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  16. Low frequency wireless power transfer using modified parallel resonance matching at a complex load

    Directory of Open Access Journals (Sweden)

    Artit Rittiplang

    2016-10-01

    Full Text Available In the Impedance Matching (IM condition of Wireless Power Transfer (WPT, series resonant and strong coupling structures have been widely studied which operate at an optimal parameter, a resistive load, and the high resonant frequency of greater than 1 MHz. However, i The optimal parameter (particular value limits the design, ii the common loads are complex, iii The high frequency RF sources are usually inefficient. This paper presents a modified parallel resonant structure that can operate at a low frequency of 15 kHz without an optimal parameter under the IM condition with a complex load, and the calculated efficiency is equal to 71.2 % at 5-cm transfer distance.

  17. Modifying the frequency and characteristics of involuntary autobiographical memories.

    Science.gov (United States)

    Vannucci, Manila; Batool, Iram; Pelagatti, Claudia; Mazzoni, Giuliana

    2014-01-01

    Recent studies have shown that involuntary autobiographical memories (IAMs) can be elicited in the laboratory. Here we assessed whether the specific instructions given to participants can change the nature of the IAMs reported, in terms of both their frequency and their characteristics. People were either made or not made aware that the aim of the study was to examine IAMs. They reported mental contents either whenever they became aware of them or following a predetermined schedule. Both making people aware of the aim of the study and following a fixed schedule of interruptions increased significantly the number of IAMs reported. When aware of the aim of the study, participants reported more specific memories that had been retrieved and rehearsed more often in the past. These findings demonstrate that the number and characteristics of memories depend on the procedure used. Explanations of these effects and their implications for research on IAMs are discussed.

  18. Modifying the frequency and characteristics of involuntary autobiographical memories.

    Directory of Open Access Journals (Sweden)

    Manila Vannucci

    Full Text Available Recent studies have shown that involuntary autobiographical memories (IAMs can be elicited in the laboratory. Here we assessed whether the specific instructions given to participants can change the nature of the IAMs reported, in terms of both their frequency and their characteristics. People were either made or not made aware that the aim of the study was to examine IAMs. They reported mental contents either whenever they became aware of them or following a predetermined schedule. Both making people aware of the aim of the study and following a fixed schedule of interruptions increased significantly the number of IAMs reported. When aware of the aim of the study, participants reported more specific memories that had been retrieved and rehearsed more often in the past. These findings demonstrate that the number and characteristics of memories depend on the procedure used. Explanations of these effects and their implications for research on IAMs are discussed.

  19. Dependence of excitation frequency of resonant circuit on RF irradiation position of MRI equipment

    International Nuclear Information System (INIS)

    Shimizu, Masato; Yamada, Tsutomu; Takemura, Yasushi; Niwa, Touru; Inoue, Tomio

    2010-01-01

    Hyperthermia using implants is a cancer treatment in which cancer tissue is heated to over 42.5 deg C to selectively kill the cancer cells. In this study, a resonant circuit was used as an implant, and a weak magnetic field of radiofrequency (RF) pulses from a magnetic resonance imaging (MRI) device was used as an excitation source. We report here how the temperature of the resonant circuit was controlled by changing the excitation frequency of the MRI. As a result, the temperature rise of the resonant circuit was successfully found to depend on its position in the MRI device. This significant result indicates that the temperature of the resonant circuit can be controlled only by adjusting the excitation position. Accurate temperature control is therefore expected to be possible by combining this control technique with the temperature measurement function of MRI equipment. (author)

  20. Lithographed Superconducting Resonator Development for Next-Generation Frequency Multiplexing Readout of Transition-Edge Sensors

    Science.gov (United States)

    Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.

    2018-03-01

    Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.

  1. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn

    NARCIS (Netherlands)

    Rooze, J.; Rebrov, E.V.; Schouten, J.C.; Keurentjes, J.T.F.

    2011-01-01

    The sonochemical oxidation efficiency (¿ox) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to

  2. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.

    Science.gov (United States)

    Kretschmann, H M; Heine, F; Huber, G; Halldórsson, T

    1997-10-01

    A new resonator design for doubly resonant continuous-wave intracavity sum-frequency mixing is presented. We generated 212 mW of coherent radiation at 618 nm by mixing the radiation of a 1080-nm Nd(3+):YAlO(3) laser and a 1444-nm Nd(3+):YAG laser. Two different mixing resonator setups and several nonlinear-optical crystals were investigated. So far output is limited by unequal performance of the two fundamental lasers and coating problems of the nonlinear crystals.

  3. Vibrational characteristics of FRP-bonded concrete interfacial defects in a low frequency regime

    Science.gov (United States)

    Cheng, Tin Kei; Lau, Denvid

    2014-04-01

    As externally bonded fiber-reinforced polymer (FRP) is a critical load-bearing component of strengthened or retrofitted civil infrastructures, the betterment of structural health monitoring (SHM) methodology for such composites is imperative. Henceforth the vibrational characteristics of near surface interfacial defects involving delamination and trapped air pockets at the FRP-concrete interface are investigated in this study using a finite element approach. Intuitively, due to its lower interfacial stiffness compared with an intact interface, a damaged region is expected to have a set of resonance frequencies different from an intact region when excited by acoustic waves. It has been observed that, when excited acoustically, both the vibrational amplitudes and frequency peaks in the response spectrum of the defects demonstrate a significant deviation from an intact FRP-bonded region. For a thin sheet of FRP bonded to concrete with sizable interfacial defects, the fundamental mode under free vibration is shown to be relatively low, in the order of kHz. Due to the low resonance frequencies of the defects, the use of low-cost equipment for interfacial defect detection via response spectrum analysis is highly feasible.

  4. An analytical model for the determination of resonance frequencies of perforated beams

    International Nuclear Information System (INIS)

    Luschi, Luca; Pieri, Francesco

    2014-01-01

    In this paper, we develop closed expressions for the equivalent bending and shear stiffness of beams with regular square perforations, and apply them to the problem of determining the resonance frequencies of slender, regularly perforated clamped–clamped beams, which are of interest in the development of MEMS resonant devices. We prove that, depending on the perforation size, the Euler–Bernoulli equation or the more complex shear equation needs to be used to obtain accurate values for these frequencies. Extensive finite element method simulations are used to validate the proposed model over the full practical range of possible hole sizes. An experimental verification of the model is also presented. (paper)

  5. Analysis of the Behavior of Undamped and Unstable High-Frequency Resonance in DFIG System

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2017-01-01

    As the wind power generation develops, the Doubly Fed Induction Generator (DFIG) based wind power system may suffer Sub Synchronous Resonance (SSR) and High Frequency Resonance (HFR) in the series and parallel compensated weak network. The principle and frequency of HFR have been discussed using...... the Bode diagram as an analysis tool. However, the HFR can be categorized into two different types: undamped HFR (which exists in steady state) and unstable HFR (which eventually results in complete instability and divergence), both of them are not investigated before. Since both the undamped HFR...

  6. R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes

    Energy Technology Data Exchange (ETDEWEB)

    Taillet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)

  7. R. F. plasmoids and resonant discharges; Plasmoides a haute frequence et decharges resonnantes

    Energy Technology Data Exchange (ETDEWEB)

    Taillet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-06-15

    In R.F. discharges at reduced pressure a resonance can increase by an order of magnitude the intensity of the plasma R.F. electric field. The electron density of the plasma adjusts itself to keep the resonant frequency equal to the excitation frequency. This behaviour has been observed by an electron beam technique. When such a discharge is excited in electronegative gases, the negative ion density may be higher than the electron density. Therefore, the D.C. potential distribution in plasma and sheath is modified. The plasma appears as a luminous body isolated from the walls by a large sheath (R.F. plasmoid). (author) [French] Dans les decharges H.F. a faible pression une resonance peut elever d'un ordre de grandeur l'intensite du champ electrique interne du plasma. La densite electronique s'ajuste elle-meme de facon a rendre egales la frequence d'excitation et la frequence de la resonance. Ce mecanisme a ete observe a l'aide de faisceaux electroniques. Lorsqu'une telle decharge est excitee dans un gaz electronegatif, la densite des ions negatifs peut etre plus elevee, que la densite electronique, ce qui modifie la distribution du potentiel continu dans le plasma et la gaine. Le plasma apparait comme un corps lumineux isole des parois par une large gaine (plasmoide a haute frequence). (auteur)

  8. Pulse width modulation based pneumatic frequency tuner of the superconducting resonators at IUAC

    International Nuclear Information System (INIS)

    Pandey, A.; Suman, S.K.; Mathuria, D.S.

    2015-01-01

    The existing phase locking scheme of the quarter wave resonators (QWR) used in superconducting linear accelerator (LINAC) of IUAC consists of a fast time (electronic) and a slow time (pneumatic) control. Presently, piezo based mechanical tuners are being used to phase lock the resonators installed in the second and third accelerating modules of LINAC. However, due to space constraint, the piezo tuner can't be implemented on the resonators of the first accelerating module. Therefore, helium gas operated mechanical tuners are being used to phase lock the resonators against the master oscillator (MO) frequency. The present pneumatic frequency tuner has limitations of non-linearity, hysteresis and slow response time. To overcome these problems and to improve the dynamics of the existing tuner, a new pulse width modulation (PWM) based pneumatic frequency tuning system was adopted and successfully tested. After successful test, the PWM based pneumatic frequency tuner was installed in four QWR of the first accelerating module of LINAC. During beam run the PWM based frequency tuner performed well and the cavities could be phase locked at comparatively higher accelerating fields. A comparison of the existing tuning mechanism and the PWM based tuning system along with the test results will be presented in the paper. (author)

  9. Fluctuations in Fission Characteristics in the Resonance Range

    International Nuclear Information System (INIS)

    Fort, E.; Courcelle, A.

    2006-01-01

    In the resonance range, experimental data exhibit meaningful fluctuations of the number of prompt neutrons ν p (E) and γ-rays emitted in fission. Fluctuations of delayed-neutrons multiplicity ν d (E) are also expected. Although these fluctuations may have a non-negligible impact on reactor integral parameters (such as k eff , β eff ), they are usually not described in the current nuclear-data libraries Endf, JENDL or Jeff (except for 239 Pu evaluation in Jeff.1). Experiments by Hambsch et al. on 235 U have justified the fluctuations of total kinetic energy of fission fragments [i.e TKE(E)] by the fluctuations in the mass distributions. An interesting channel-mode formalism, described by Furman, provides a methodology to assess the fluctuations of fission characteristics in the resonance range. This approach is based on ideas relating fission channels or transition states as proposed by Bohr and fission modes as parameterized for instance by Brosa et al. This formalism requires the knowledge of physical parameters rarely measured up to now, such as PP JK (E), the energy dependant probability to form a transition state with a spin J and its projection along the deformation axis K, w m JK , the probability to feed the fission mode m from a (J,K) transition state. Nevertheless, in the case of 3 - and 4 - resonances of 235 U, various experiments permit these data to be extracted. The present study proposes a tentative evaluation of ν p of 235 U based on these ideas. The evaluation of νp for 239 Pu, performed in the 80's for the JEF library, was also revisited. At that time, the model was based on the existence of pre-fission gamma (the so called n-γf effect) as well as a spin effect (prescription of different ν p values for each spin state 0 + and 1 + ). This paper emphasizes the need for further measurements to provide more accurate information on the parameters used in this formalism, and improve the present work. (authors)

  10. Compensation of temperature frequency pushing in microwave resonator-meters on the basis VCO

    Directory of Open Access Journals (Sweden)

    Drobakhin O. O.

    2008-02-01

    Full Text Available It is shown that the influence of temperature oscillations on the error of measurements of parameters in the case of the application of microwave resonator meters on the basis of a voltage-controlled oscillator (VCO can be minimized by software using a special algorithm of VCO frequency setting correction. An algorithm of VCO frequency setting correction for triangle control voltage is proposed.

  11. Thickness resonances dispersion characteristics of a lossy piezoceramic plate with electrodes of arbitrary conductivity.

    Science.gov (United States)

    Mezheritsky, Alex A; Mezheritsky, Alex V

    2007-12-01

    A theoretical description of the dissipative phenomena in the wave dispersion related to the "energytrap" effect in a thickness-vibrating, infinite thicknesspolarized piezoceramic plate with resistive electrodes is presented. The three-dimensional (3-D) equations of linear piezoelectricity were used to obtain symmetric and antisymmetric solutions of plane harmonic waves and investigate the eigen-modes of thickness longitudinal (TL) up to third harmonic and shear (TSh) up to ninth harmonic vibrations of odd- and even-orders. The effects of internal and electrode energy dissipation parameters on the wave propagation under regimes ranging from a short-circuit (sc) condition through RC-type relaxation dispersion to an opencircuit (oc) condition are examined in detail for PZT piezoceramics with three characteristic T -mode energy-trap figure-of-merit c-(D)(33)/c-(E)(44) values - less, near equal and higher 4 - when the second harmonic spurious TSh resonance lies below, inside, and above the fundamental TL resonanceantiresonance frequency interval. Calculated complex lateral wave number dispersion dependences on frequency and electrode resistance are found to follow the universal scaling formula similar to those for dielectrics characterization. Formally represented as a Cole-Cole diagram, the dispersion branches basically exhibit Debye-like and modified Davidson Cole dependences. Varying the dissipation parameters of internal loss and electrode conductivity, the interaction of different branches was demonstrated by analytical and numerical analysis. For the purposes of dispersion characterization of at least any thickness resonance, the following theorem was stated: the ratio of two characteristic determinants, specifically constructed from the oc and sc boundary conditions, in the limit of zero lateral wave number, is equal to the basic elementary-mode normalized admittance. As was found based on the theorem, the dispersion near the basic and nonbasic TL and TSh

  12. Correlations between the resonant frequency shifts and the thermodynamic quantities for the α-β transition in quartz

    Science.gov (United States)

    Lider, M. C.; Yurtseven, H.

    2018-05-01

    The resonant frequency shifts are related to the thermodynamic quantities (compressibility, order parameter and susceptibility) for the α-β transition in quartz. The experimental data for the resonant frequencies and the bulk modulus from the literature are used for those correlations. By calculating the order parameter from the mean field theory, correlation between the resonant frequencies of various modes and the order parameter is examined according to the quasi-harmonic phonon theory for the α-β transition in quartz. Also, correlation between the bulk modulus in relation to the resonant frequency shifts and the order parameter susceptibility is constructed for the α-β transition in this crystalline system.

  13. A Fixed-Frequency Bidirectional Resonant DC-DC Converter Suitable for Wide Voltage Gain Range

    DEFF Research Database (Denmark)

    Shen, Yanfeng; Wang, Huai; Blaabjerg, Frede

    2017-01-01

    This paper proposes a new bidirectional resonant dc-dc converter suitable for wide voltage gain range applications (e.g., energy storage systems). The proposed converter overcomes the narrow voltage gain range of conventional resonant DC-DC converters, and meanwhile achieves high efficiency...... and characteristics of the proposed converter are analyzed. Finally, a 1-kW converter prototype is built and the experimental results verify the theoretical analyses....

  14. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  15. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  16. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle

    DEFF Research Database (Denmark)

    De Poorter, J; De Wagter, C; De Deene, Y

    1995-01-01

    The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused on the...

  17. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    When operating in a micro or weak grid which has a relatively large network impedance, the Doubly Fed Induction Generator (DFIG) based wind power generation system is prone to suffer high frequency resonance due to the impedance interaction between DFIG system and the parallel compensated network...

  18. Modeling of Nanophotonic Resonators with the Finite-Difference Frequency-Domain Method

    DEFF Research Database (Denmark)

    Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Shyroki, Dzmitry

    2011-01-01

    Finite-difference frequency-domain method with perfectly matched layers and free-space squeezing is applied to model open photonic resonators of arbitrary morphology in three dimensions. Treating each spatial dimension independently, nonuniform mesh of continuously varying density can be built ea...

  19. A study of the high frequency limitations of series resonant converters

    Science.gov (United States)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  20. Reflex reading epilepsy: effect of linguistic characteristics on spike frequency.

    Science.gov (United States)

    Safi, Dima; Lassonde, Maryse; Nguyen, Dang Khoa; Denault, Carole; Macoir, Joël; Rouleau, Isabelle; Béland, Renée

    2011-04-01

    Reading epilepsy is a rare reflex epilepsy in which seizures are provoked by reading. Several cases have been described in the literature, but the pathophysiological processes vary widely and remain unclear. We describe a 42-year-old male patient with reading epilepsy evaluated using clinical assessments and continuous video/EEG recordings. We administered verbal, nonverbal, and reading tasks to determine factors precipitating seizures. Linguistic characteristics of the words were manipulated. Results indicated that reading-induced seizures were significantly more numerous than those observed during verbal and nonverbal tasks. In reading tasks, spike frequency significantly increased with involvement of the phonological reading route. Spikes were recorded predominantly in left parasagittal regions. Future cerebral imaging studies will enable us to visualize the spatial localization and temporal course of reading-induced seizures and brain activity involved in reading. A better understanding of reading epilepsy is crucial for reading rehabilitation in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Grid Cell Relaxation Effects on the High Frequency Vibration Characteristics

    International Nuclear Information System (INIS)

    Ryu, Joo-Young; Eom, Kyong-Bo; Jeon, Sang-Youn; Kim, Jae-Ik

    2015-01-01

    The plate structure of the grid of fuel assembly is always exposed to serious vortex induced vibration. Also, High Frequency flow induced Vibration (HFV) is primarily generated by vortex-shedding effect. When it comes to grid design as a fuel assembly component, HFV should be considered in advance since it is one of the critical factors. Excessive HFV has a possibility of making degradation of the fuel reliability that is directly related to the fuel robustness and operating performance. KEPCO NF (KNF) has performed HFV tests with various grid designs. While studying the HFV characteristics through the HFV tests, it has been observed that HFV amplitudes show different levels according to grid cell relaxation. It means that the testing could give different interpretations due to the condition of grid cell. Since the amount of relaxation is different under operating conditions and environments in a reactor, test specimens should be modified as much as possible to the real state of the fuel. Therefore, in order to consider the grid cell relaxation effects on the HFV tests, it is important to use cell sized or non-cell sized grids. The main focus of this study is to find out how the HFV characteristics such as amplitude and frequency are affected by grid cell relaxation. Three cases of the grid cell sized specimen which is nickel alloy were prepared and tested. Through the comparison of the test results, it could be concluded that HFV amplitudes show decreasing trend according to the grid cell relaxation in the case of nickel alloy grid. It is also possible to expect the tendency of grid cell relaxation of a zirconium alloy grid based on test results

  2. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  3. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    International Nuclear Information System (INIS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection

  4. Inhibition of Salmonella typhi growth using extremely low frequency electromagnetic (ELF-EM) waves at resonance frequency.

    Science.gov (United States)

    Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H

    2014-08-01

    Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.

  5. Study on the dependence of the resonance frequency of accelerators on the cavities internal diameter

    International Nuclear Information System (INIS)

    Serrao, V.A.; Franco, M.A.R.; Fuhrmann, C.

    1988-05-01

    The resonance frequencies of individual cavities and of a six cell disk-loaded prototype of an accelerating structure were measured as a function of cavity inner diameter. A linear relationship between the indidual cavity frequency and the six cell stack 2Π/3 mode frequency was obtained that will be very useful during the final tuning of the accelerating strutures of the IEAV linac. The dispersion diagrams were also obtained for various internal cavity diameters; these diagrams were utilized to estimate the group velocity and the RF filling time of the accelerating structure. (author) [pt

  6. Single-frequency, fully integrated, miniature DPSS laser based on monolithic resonator

    Science.gov (United States)

    Dudzik, G.; Sotor, J.; Krzempek, K.; Soboń, G.; Abramski, K. M.

    2014-02-01

    We present a single frequency, stable, narrow linewidth, miniature laser sources operating at 532 nm (or 1064 nm) based on a monolithic resonators. Such resonators utilize birefringent filters formed by YVO4 beam displacer and KTP or YVO4 crystals to force single frequency operation at 532 nm or 1064 nm, respectively. In both configurations Nd:YVO4 gain crystal is used. The resonators dimensions are 1x1x10.5 mm3 and 1x1x8.5 mm3 for green and infrared configurations, respectively. Presented laser devices, with total dimensions of 40x52x120 mm3, are fully equipped with driving electronics, pump diode, optical and mechanical components. The highly integrated (36x15x65 mm3) low noise driving electronics with implemented digital PID controller was designed. It provides pump current and resonator temperature stability of ±30 μA@650 mA and ±0,003ºC, respectively. The laser parameters can be set and monitored via the USB interface by external application. The developed laser construction is universal. Hence, the other wavelengths can be obtained only by replacing the monolithic resonator. The optical output powers in single frequency regime was at the level of 42 mW@532 nm and 0.5 W@1064 nm with the long-term fluctuations of ±0.85 %. The linewidth and the passive frequency stability under the free running conditions were Δν < 100 kHz and 3ṡ10-9@1 s integration time, respectively. The total electrical power supply consumption of laser module was only 4 W. Presented compact, single frequency laser operating at 532 nm and 1064 nm may be used as an excellent source for laser vibrometry, interferometry or seed laser for fiber amplifiers.

  7. Frequency, Context and Characteristics of Smile Used in Advertising.

    Science.gov (United States)

    Lukež, Ana; Katić, Višnja; Lauš, Iva; Grbeša, Marijana; Špalj, Stjepan

    2017-03-01

    The images of smiling people are omnipresent in marketing. Frequency, smile characteristics, context of the smile and target audience in newspaper advertisements were points of interest of this study. Four examiners analyzed 600 advertisements from 46 European magazines and newspapers by using content and framing analysis. Twenty items of the analysis form the presence of people, smile characteristics, context of smile use, impression of success and health, and targeted audience. The chi-square test was used in statistical analysis. People were present in over 70% of the newspapers advertisements, and almost 80% of them were smiling, relating the product or service with positive context more often than with neutral or negative context (ptargeted the adults more frequently (70.6%) and adolescents (33.6%), and less often the elderly (22.2%) and children (4.2%); women (45.9%) or both genders (29.2%) were targeted more often than solely men (2.6%). Smile mostly filled out one quarter of the size of the entire advertisement (97%), equally spontaneous and posed smiles were used. In 82% of cases teeth were visible during smile, and buccal corridors were present in 39% of them. Smile is often used in newspaper advertisements, mostly targeting adult women, and providing the context of positive emotions. Most people will show teeth when they smile. Parameters of micro smile esthetics are not in the focus of an advertisement.

  8. Frequency, Context and Characteristics of Smile Used in Advertising

    Directory of Open Access Journals (Sweden)

    Ana Lukež

    2017-01-01

    Full Text Available Objective: The images of smiling people are omnipresent in marketing. Frequency, smile characteristics, context of the smile and target audience in newspaper advertisements were points of interest of this study. Material and methods: Four examiners analyzed 600 advertisements from 46 European magazines and newspapers by using content and framing analysis. Twenty items of the analysis form the presence of people, smile characteristics, context of smile use, impression of success and health, and targeted audience. The chi-square test was used in statistical analysis. Results: People were present in over 70% of the newspapers advertisements, and almost 80% of them were smiling, relating the product or service with positive context more often than with neutral or negative context (p<0.001. The advertisements with smile targeted the adults more frequently (70.6% and adolescents (33.6%, and less often the elderly (22.2% and children (4.2%; women (45.9% or both genders (29.2% were targeted more often than solely men (2.6%. Smile mostly filled out one quarter of the size of the entire advertisement (97%, equally spontaneous and posed smiles were used. In 82% of cases teeth were visible during smile, and buccal corridors were present in 39% of them. Conclusions: Smile is often used in newspaper advertisements, mostly targeting adult women, and providing the context of positive emotions. Most people will show teeth when they smile. Parameters of micro smile esthetics are not in the focus of an advertisement.

  9. Characteristics of different frequency ranges in scanning electron microscope images

    International Nuclear Information System (INIS)

    Sim, K. S.; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S.

    2015-01-01

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement

  10. Characteristics of different frequency ranges in scanning electron microscope images

    Energy Technology Data Exchange (ETDEWEB)

    Sim, K. S., E-mail: kssim@mmu.edu.my; Nia, M. E.; Tan, T. L.; Tso, C. P.; Ee, C. S. [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia)

    2015-07-22

    We demonstrate a new approach to characterize the frequency range in general scanning electron microscope (SEM) images. First, pure frequency images are generated from low frequency to high frequency, and then, the magnification of each type of frequency image is implemented. By comparing the edge percentage of the SEM image to the self-generated frequency images, we can define the frequency ranges of the SEM images. Characterization of frequency ranges of SEM images benefits further processing and analysis of those SEM images, such as in noise filtering and contrast enhancement.

  11. Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers

    Science.gov (United States)

    Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.

    2018-04-01

    In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.

  12. Magnetic resonance of beta-active nuclei at double Larmor frequency in LiF polycrystals with dislocations

    International Nuclear Information System (INIS)

    Bulgakov, M.I.; Dzheparov, F.S.; Gul'ko, A.D.; Shestopal, V.E.; Stepanov, S.V.; Trostin, S.S.

    1989-01-01

    β-NMR-spectroscopy investigations of the resonance at double Larmor frequency of β-active nuclei 8 Li in LiF polycrystals are presented. The qualitative analysis of the dislocation influence on this resonance is developed. An important role of correlations in dislocation distributions as well as high responsivity of this resonance to quadrupole interactions are found. 13 refs.; 2 figs

  13. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Directory of Open Access Journals (Sweden)

    N. I. Polzikova

    2018-05-01

    Full Text Available We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE dc voltage driven by an acoustic spin pumping (ASP in a bulk acoustic wave (BAW resonator formed by a Al-ZnO-Al-YIG(1-GGG-YIG(2-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ∼ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2 to Pt in the area ∼ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H on the (f, H plane. At the same time a significant asymmetry of the VISHE(fn(H value in reference to the magnetoelastic resonance (MER line fMER(H position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  14. Frequency and magnetic field mapping of magnetoelastic spin pumping in high overtone bulk acoustic wave resonator

    Science.gov (United States)

    Polzikova, N. I.; Alekseev, S. G.; Pyataikin, I. I.; Luzanov, V. A.; Raevskiy, A. O.; Kotov, V. A.

    2018-05-01

    We report on the first observation of microvolt-scale inverse spin Hall effect (ISHE) dc voltage driven by an acoustic spin pumping (ASP) in a bulk acoustic wave (BAW) resonator formed by a Al-ZnO-Al-YIG(1)-GGG-YIG(2)-Pt structure. When 2 mW power is applied to an Al-ZnO-Al transducer, the voltage VISHE ˜ 4 μV in the Pt film is observed as a result of resonant ASP from YIG(2) to Pt in the area ˜ 170 μm. The results of frequency and magnetic field mapping of VISHE(f,H) together with reflectivity of the resonator show an obvious agreement between the positions of the voltage maxima and BAW resonance frequencies fn(H) on the (f, H) plane. At the same time a significant asymmetry of the VISHE(fn(H)) value in reference to the magnetoelastic resonance (MER) line fMER(H) position is revealed, which is explained by asymmetry of the magnetoelastic waves dispersion law.

  15. Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics

    International Nuclear Information System (INIS)

    Zhou, Changjian; Shu, Yi; Yang, Yi; Ren, Tian-Ling; Jin, Hao; Dong, Shu-Rong; Chan, Mansun

    2015-01-01

    Flexible electronics have inspired many novel and very important applications in recent years and various flexible electronic devices such as diodes, transistors, circuits, sensors, and radiofrequency (RF) passive devices including antennas and inductors have been reported. However, the lack of a high-performance RF resonator is one of the key bottlenecks to implement flexible wireless electronics. In this study, for the first time, a novel ultra-flexible structured film bulk acoustic resonator (FBAR) is proposed. The flexible FBAR is fabricated on a flexible polyimide substrate using piezoelectric thin film aluminum nitride (AlN) for acoustic wave excitation. Both the shear wave and longitudinal wave can be excited under the surface interdigital electrodes configuration we proposed. In the case of the thickness extension mode, a flexible resonator with a working frequency as high as of 5.2325 GHz has been realized. The resonators stay fully functional under bending status and after repeated bending and re-flattening operations. This flexible high-frequency resonator will serve as a key building block for the future flexible wireless electronics, greatly expanding the application scope of flexible electronics. (paper)

  16. Particle acceleration through the resonance of high magnetic field and high frequency electromagnetic wave

    International Nuclear Information System (INIS)

    Hong, Liu; He, X.T.; Chen, S.G.; Zhang, W.Y.; He, X.T.; Hong, Liu

    2004-01-01

    We propose a new particle acceleration mechanism. Electrons can be accelerated to relativistic energy within a few electromagnetic wave cycles through the mechanism which is named electromagnetic and magnetic field resonance acceleration (EMRA). We find that the electron acceleration depends not only on the electromagnetic wave intensity, but also on the ratio between electron Larmor frequency and electromagnetic wave frequency. As the ratio approaches to unity, a clear resonance peak is observed, corresponding to the EMRA. Near the resonance regime, the strong magnetic fields still affect the electron acceleration dramatically. We derive an approximate analytical solution of the relativistic electron energy in adiabatic limit, which provides a full understanding of this phenomenon. In typical parameters of pulsar magnetospheres, the mechanism allows particles to increase their energies through the resonance of high magnetic field and high frequency electromagnetic wave in each electromagnetic wave period. The energy spectra of the accelerated particles exhibit the synchrotron radiation behavior. These can help to understand the remaining emission of high energy electron from radio pulsar within supernova remnant. The other potential application of our theory in fast ignition scheme of inertial confinement fusion is also discussed. (authors)

  17. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    International Nuclear Information System (INIS)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2016-01-01

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  18. Repetition rate multiplication of frequency comb using all-pass fiber resonator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lijun; Yang, Honglei; Zhang, Hongyuan; Wei, Haoyun; Li, Yan, E-mail: liyan@mail.tsinghua.edu.cn [State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments, Tsinghua University, Beijing 100084 (China)

    2016-09-15

    We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The input and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.

  19. A frequency controlled LCL - T resonant converter for H- ion source

    International Nuclear Information System (INIS)

    Gauttam, V.K.; Kasliwal, A.; Banwari, R.; Pandit, T.G.; Thakurta, A.C.

    2013-01-01

    An H - ion source is being developed at Raja Ramanna Centre for Advanced Technology, Indore. An LCL-T resonant power converter with variable frequency control is proposed which is utilized to develop a -20 kV/100 mA high voltage (HV) power supply for extraction of H - ions. The LCL-T resonant topology offers many advantages like gainful utilization of the transformer parasitics as a part of resonant network and low circulating current. The power converter is operated with variable frequency control and above resonance to get well known zero-voltage switching (ZVS) advantages for full bridge semiconductor switches in full load range. The converter energizes the symmetrical Cockcroft-Walton (CW) based HV generator to achieve required high voltage. The CW circuit is an attractive solution for HV generation since it has features like low stored energy and low output ripple. The HV power supply is operated in constant current (CC) mode with closed loop control and soft start of the power supply is achieved by sweeping the switching frequency from 40 kHz to defined operating point. Design parameters, simulation results and experimental results of the power converter are presented in this paper. (author)

  20. Constructive influence of noise flatness and friction on the resonant behavior of a harmonic oscillator with fluctuating frequency.

    Science.gov (United States)

    Laas, Katrin; Mankin, Romi; Rekker, Astrid

    2009-05-01

    The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator [Phys. Rev. E 78, 031120 (2008)], where the connection between the occurrence of energetic instability and stochastic multiresonance is established. Here we report some unexpected results not considered in the previous work. Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike enhancement at intermediate values of the friction coefficient.

  1. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM Sensors and the Mechanical Characteristics of Biofilms

    Directory of Open Access Journals (Sweden)

    Pedro Castro

    2017-06-01

    Full Text Available This work analyzes some key aspects of the behavior of sensors based on piezoelectric Thickness Shear Mode (TSM resonators to study and monitor microbial biofilms. The operation of these sensors is based on the analysis of their resonance properties (both resonance frequency and dissipation factor that vary in contact with the analyzed sample. This work shows that different variations during the microorganism growth can be detected by the sensors and highlights which of these changes are indicative of biofilm formation. TSM sensors have been used to monitor in real time the development of Staphylococcus epidermidis and Escherichia coli biofilms, formed on the gold electrode of the quartz crystal resonators, without any coating. Strains with different ability to produce biofilm have been tested. It was shown that, once a first homogeneous adhesion of bacteria was produced on the substrate, the biofilm can be considered as a semi-infinite layer and the quartz sensor reflects only the viscoelastic properties of the region immediately adjacent to the resonator, not being sensitive to upper layers of the biofilm. The experiments allow the microrheological evaluation of the complex shear modulus (G* = G′ + jG″ of the biofilm at 5 MHz and at 15 MHz, showing that the characteristic parameter that indicates the adhesion of a biofilm for the case of S. epidermidis and E. coli, is an increase in the resonance frequency shift of the quartz crystal sensor, which is connected with an increase of the real shear modulus, related to the elasticity or stiffness of the layer. In addition both the real and the imaginary shear modulus are frequency dependent at these high frequencies in biofilms.

  2. Algorithm of resonance orders for the objects

    Science.gov (United States)

    Zhang, YongGang; Zhang, JianXue

    2018-03-01

    In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.

  3. Numerical Investigation of Terahertz Emission Properties of Microring Difference-Frequency Resonators

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Bisgaard, Christer Zoffmann; Andronico, Alessio

    2013-01-01

    We investigate the electromagnetic design of whispering gallery mode (WGM) terahertz (THz) resonators. Terahertz radiation is generated by difference-frequency mixing of two electrically pumped high-order near-infrared laser WGM's at room temperature in the active cavity. Due to the leaky nature...... this symmetry by modification of the dielectric environment of the resonator, and demonstrate a fabrication-optimized structure based on a concentric grating design which efficiently couples the emitted radiation into a narrow, near-gaussian forward-propagating cone of well-defined linear or circular...

  4. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...... with 40 V input and 15 V output are made. The simulation shows possibility of achieving efficiency up to 87 % even with a HEXFET Power MOSFET. Three prototypes of the simulated converter are implemented showing good correlation with simulations. The prototypes have efficiencies up to 84 % and power...

  5. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.

    2016-09-15

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator\\'s nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli\\'s beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  6. Displacement sensing based on resonant frequency monitoring of electrostatically actuated curved micro beams

    International Nuclear Information System (INIS)

    Krakover, Naftaly; Krylov, Slava; Ilic, B Robert

    2016-01-01

    The ability to control nonlinear interactions of suspended mechanical structures offers a unique opportunity to engineer rich dynamical behavior that extends the dynamic range and ultimate device sensitivity. We demonstrate a displacement sensing technique based on resonant frequency monitoring of curved, doubly clamped, bistable micromechanical beams interacting with a movable electrode. In this configuration, the electrode displacement influences the nonlinear electrostatic interactions, effective stiffness and frequency of the curved beam. Increased sensitivity is made possible by dynamically operating the beam near the snap-through bistability onset. Various in-plane device architectures were fabricated from single crystal silicon and measured under ambient conditions using laser Doppler vibrometry. In agreement with the reduced order Galerkin-based model predictions, our experimental results show a significant resonant frequency reduction near critical snap-through, followed by a frequency increase within the post-buckling configuration. Interactions with a stationary electrode yield a voltage sensitivity up to  ≈560 Hz V −1 and results with a movable electrode allow motion sensitivity up to  ≈1.5 Hz nm −1 . Our theoretical and experimental results collectively reveal the potential of displacement sensing using nonlinear interactions of geometrically curved beams near instabilities, with possible applications ranging from highly sensitive resonant inertial detectors to complex optomechanical platforms providing an interface between the classical and quantum domains. (paper)

  7. HIGHER MODE FREQUENCY EFFECTS ON RESONANCE IN MACHINERY, STRUCTURES, AND PIPE SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.

    2010-05-02

    The complexities of resonance in multi-degree of freedom systems (multi-DOF) may be clarified using graphic presentations. Multi-DOF systems represent actual systems, such as beams or springs, where multiple, higher order, natural frequencies occur. Resonance occurs when a cyclic load is applied to a structure, and the frequency of the applied load equals one of the natural frequencies. Both equations and graphic presentations are available in the literature for single degree of freedom (SDOF) systems, which describe the response of spring-mass-damper systems to harmonically applied, or cyclic, loads. Loads may be forces, moments, or forced displacements applied to one end of a structure. Multi-DOF systems are typically described only by equations in the literature, and while equations certainly permit a case by case analysis for specific conditions, graphs provide an overall comprehension not gleaned from single equations. In fact, this collection of graphed equations provides novel results, which describe the interactions between multiple natural frequencies, as well as a comprehensive description of increased vibrations near resonance.

  8. Cylindrical optical resonators: fundamental properties and bio-sensing characteristics

    Science.gov (United States)

    Khozeymeh, Foroogh; Razaghi, Mohammad

    2018-04-01

    In this paper, detailed theoretical analysis of cylindrical resonators is demonstrated. As illustrated, these kinds of resonators can be used as optical bio-sensing devices. The proposed structure is analyzed using an analytical method based on Lam's approximation. This method is systematic and has simplified the tedious process of whispering-gallery mode (WGM) wavelength analysis in optical cylindrical biosensors. By this method, analysis of higher radial orders of high angular momentum WGMs has been possible. Using closed-form analytical equations, resonance wavelengths of higher radial and angular order WGMs of TE and TM polarization waves are calculated. It is shown that high angular momentum WGMs are more appropriate for bio-sensing applications. Some of the calculations are done using a numerical non-linear Newton method. A perfect match of 99.84% between the analytical and the numerical methods has been achieved. In order to verify the validity of the calculations, Meep simulations based on the finite difference time domain (FDTD) method are performed. In this case, a match of 96.70% between the analytical and FDTD results has been obtained. The analytical predictions are in good agreement with other experimental work (99.99% match). These results validate the proposed analytical modelling for the fast design of optical cylindrical biosensors. It is shown that by extending the proposed two-layer resonator structure analyzing scheme, it is possible to study a three-layer cylindrical resonator structure as well. Moreover, by this method, fast sensitivity optimization in cylindrical resonator-based biosensors has been possible. Sensitivity of the WGM resonances is analyzed as a function of the structural parameters of the cylindrical resonators. Based on the results, fourth radial order WGMs, with a resonator radius of 50 μm, display the most bulk refractive index sensitivity of 41.50 (nm/RIU).

  9. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory

    Science.gov (United States)

    Elnaggar, Sameh Y.; Tervo, Richard; Mattar, Saba M.

    2014-01-01

    Probes consisting of a dielectric resonator (DR) inserted in a cavity are important integral components of electron paramagnetic resonance (EPR) spectrometers because of their high signal-to-noise ratio. This article studies the behavior of this system, based on the coupling between its dielectric and cavity modes. Coupled-mode theory (CMT) is used to determine the frequencies and electromagnetic fields of this coupled system. General expressions for the frequencies and field distributions are derived for both the resulting symmetric and anti-symmetric modes. These expressions are applicable to a wide range of frequencies (from MHz to THz). The coupling of cavities and DRs of various sizes and their resonant frequencies are studied in detail. Since the DR is situated within the cavity then the coupling between them is strong. In some cases the coupling coefficient, κ, is found to be as high as 0.4 even though the frequency difference between the uncoupled modes is large. This is directly attributed to the strong overlap between the fields of the uncoupled DR and cavity modes. In most cases, this improves the signal to noise ratio of the spectrometer. When the DR and the cavity have the same frequency, the coupled electromagnetic fields are found to contain equal contributions from the fields of the two uncoupled modes. This situation is ideal for the excitation of the probe through an iris on the cavity wall. To verify and validate the results, finite element simulations are carried out. This is achieved by simulating the coupling between a cylindrical cavity's TE011 and the dielectric insert's TE01δ modes. Coupling between the modes of higher order is also investigated and discussed. Based on CMT, closed form expressions for the fields of the coupled system are proposed. These expressions are crucial in the analysis of the probe's performance.

  10. Low Noise Frequency Comb Sources Based on Synchronously Pumped Doubly Resonant Optical Parametric Oscillators

    Science.gov (United States)

    Wan, Chenchen

    Optical frequency combs are coherent light sources consist of thousands of equally spaced frequency lines. Frequency combs have achieved success in applications of metrology, spectroscopy and precise pulse manipulation and control. The most common way to generate frequency combs is based on mode-locked lasers which has the output spectrum of comb structures. To generate stable frequency combs, the output from mode-locked lasers need to be phase stabilized. The whole comb lines will be stabilized if the pulse train repetition rate corresponding to comb spacing and the pulse carrier envelope offset (CEO) frequency are both stabilized. The output from a laser always has fluctuations in parameters known as noise. In laser applications, noise is an important factor to limit the performance and often need to be well controlled. For example in precision measurement such as frequency metrology and precise spectroscopy, low laser intensity and phase noise is required. In mode-locked lasers there are different types of noise like intensity noise, pulse temporal position noise also known as timing jitter, optical phase noise. In term for frequency combs, these noise dynamics is more complex and often related. Understanding the noise behavior is not only of great interest in practical applications but also help understand fundamental laser physics. In this dissertation, the noise of frequency combs and mode-locked lasers will be studied in two projects. First, the CEO frequency phase noise of a synchronously pumped doubly resonant optical parametric oscillators (OPO) will be explored. This is very important for applications of the OPO as a coherent frequency comb source. Another project will focus on the intensity noise coupling in a soliton fiber oscillator, the finding of different noise coupling in soliton pulses and the dispersive waves generated from soliton perturbation can provide very practical guidance for low noise soliton laser design. OPOs are used to generate

  11. Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators

    International Nuclear Information System (INIS)

    Eriksson, A M; Midtvedt, D; Croy, A; Isacsson, A

    2013-01-01

    We study circular nanomechanical graphene resonators by means of continuum elasticity theory, treating them as membranes. We derive dynamic equations for the flexural mode amplitudes. Due to the geometrical nonlinearity the mode dynamics can be modeled by coupled Duffing equations. By solving the Airy stress problem we obtain analytic expressions for the eigenfrequencies and nonlinear coefficients as functions of the radius, suspension height, initial tension, back-gate voltage and elastic constants, which we compare with finite element simulations. Using perturbation theory, we show that it is necessary to include the effects of the non-uniform stress distribution for finite deflections. This correctly reproduces the spectrum and frequency tuning of the resonator, including frequency crossings. (paper)

  12. Computing resonant frequency of C-shaped compact microstrip antennas by using ANFIS

    Science.gov (United States)

    Akdagli, Ali; Kayabasi, Ahmet; Develi, Ibrahim

    2015-03-01

    In this work, the resonant frequency of C-shaped compact microstrip antennas (CCMAs) operating at UHF band is computed by using the adaptive neuro-fuzzy inference system (ANFIS). For this purpose, 144 CCMAs with various relative dielectric constants and different physical dimensions were simulated by the XFDTD software package based on the finite-difference time domain (FDTD) method. One hundred and twenty-nine CCMAs were employed for training, while the remaining 15 CCMAs were used for testing of the ANFIS model. Average percentage error (APE) values were obtained as 0.8413% and 1.259% for training and testing, respectively. In order to demonstrate its validity and accuracy, the proposed ANFIS model was also tested over the simulation data given in the literature, and APE was obtained as 0.916%. These results show that ANFIS can be successfully used to compute the resonant frequency of CCMAs.

  13. Vibration energy harvester with low resonant frequency based on flexible coil and liquid spring

    Science.gov (United States)

    Wang, Y.; Zhang, Q.; Zhao, L.; Tang, Y.; Shkel, A.; Kim, E. S.

    2016-11-01

    This paper reports an electromagnetic vibration-energy harvester with low resonant frequency based on liquid spring composed of ferrofluid. Cylinder magnet array formed by four disc NdFeB magnets is suspended by ferrofluid in a laser-machined acrylic tube which is wrapped by flexible planar coil fabricated with microfabrication process. The magnet array and coil are aligned automatically by the ferrofluid. Restoring force when the magnet array is deviated from the balance position is proportional to the deviated distance, which makes the ferrofluid work as a liquid spring obeying Hook's law. Experimental results show that the electromagnetic energy harvester occupying 1.8 cc and weighing 5 g has a resonant frequency of 16 Hz and generates an induced electromotive force of Vrms = 2.58 mV (delivering 79 nW power into matched load of 21 Ω) from 3 g acceleration at 16 Hz.

  14. Suppression of cyclotron instability in Electron Cyclotron Resonance ion sources by two-frequency heating

    International Nuclear Information System (INIS)

    Skalyga, V.; Izotov, I.; Mansfeld, D.; Kalvas, T.; Koivisto, H.; Komppula, J.; Kronholm, R.; Laulainen, J.; Tarvainen, O.

    2015-01-01

    Multiple frequency heating is one of the most effective techniques to improve the performance of Electron Cyclotron Resonance (ECR) ion sources. The method increases the beam current and average charge state of the extracted ions and enhances the temporal stability of the ion beams. It is demonstrated in this paper that the stabilizing effect of two-frequency heating is connected with the suppression of electron cyclotron instability. Experimental data show that the interaction between the secondary microwave radiation and the hot electron component of ECR ion source plasmas plays a crucial role in mitigation of the instabilities

  15. Effects of frequency mismatch on a self-consistent arbitrary amplitude cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Pakter, R.; Schneider, R.S.; Rizzato, F.B.

    1993-01-01

    The cyclotron-resonance laser accelerator (CRLA), where a coherent electromagnetic wave may transfer a large amount of energy to a beam of electrons gravitating in a guide magnetic field is studied. This large amount of transferred energy takes place due to the autoresonance mechanism where, under some ideal conditions, an initial wave-particle synchronism is self-sustained throughout the accelerating period. An improved analysis of the mentioned self-consistent wave-particle interaction, taking into account a possible frequency mismatch between wave and particles. It is also shown how the frequency mismatch can compensate the dispersion effects. (L.C.J.A.)

  16. Fully-resonant, tunable, monolithic frequency conversion as a coherent UVA source.

    Science.gov (United States)

    Zielińska, Joanna A; Zukauskas, Andrius; Canalias, Carlota; Noyan, Mehmet A; Mitchell, Morgan W

    2017-01-23

    We demonstrate a monolithic frequency converter incorporating up to four tuning degrees of freedom, three temperature and one strain, allowing resonance of pump and generated wavelengths simultaneous with optimal phase-matching. With a Rb-doped periodically-poled potassium titanyl phosphate (KTP) implementation, we demonstrate efficient continuous-wave second harmonic generation from 795 to 397, with low-power efficiency of 72% and high-power slope efficiency of 4.5%. The measured performance shows good agreement with theoretical modeling of the device. We measure optical bistability effects, and show how they can be used to improve the stability of the output against pump frequency and amplitude variations.

  17. Far off-resonance laser frequency stabilization using multipass cells in Faraday rotation spectroscopy.

    Science.gov (United States)

    Quan, Wei; Li, Yang; Li, Rujie; Shang, Huining; Fang, Zishan; Qin, Jie; Wan, Shuangai

    2016-04-01

    We propose a far off-resonance laser frequency stabilization method by using multipass cells in Rb Faraday rotation spectroscopy. Based on the detuning equation, if multipass cells with several meters optical path length are used in the conventional Faraday spectroscopy, the detuning of the lock point can be extended much further from the alkali metal resonance. A plate beam splitter was used to generate two different Faraday signals at the same time. The transmitted optical path length was L=50  mm and the reflected optical path length was 2L=100  mm. When the optical path length doubled, the detuning of the lock points moved further away from the atomic resonance. The temperature dependence of the detuning of the lock point was also analyzed. A temperature-insensitive lock point was found near resonance when the cell temperature was between 110°C and 130°C. We achieved an rms fluctuation of 0.9 MHz/23 h at a detuning of 0.5 GHz. A frequency drift of 16 MHz/h at a detuning of -5.6  GHz and 4 MHz/h at a detuning of -5.2  GHz were also obtained for the transmitted and reflected light Faraday signal.

  18. Process and equipment for automatic measurement of resonant frequencies in seismic detectors

    International Nuclear Information System (INIS)

    Fredriksson, O.A.; Thomas, E.L.

    1977-01-01

    This is a process for the automatic indication of the resonant frequency of one or more detector elements which have operated inside a geophysical data-gathering system. Geophones or hydrophones or groups of both instruments are to be understood as comprising the detector elements. The invention concerns the creation of a process and of equipment working with laboratory precision, although it can be used in the field. (orig./RW) [de

  19. Efficient analysis for nonlinear microwave characteristics of high-power HTS thin film microstrip resonators

    Energy Technology Data Exchange (ETDEWEB)

    Kedar, Ashutosh [RADL Division, Electronics and Radar Development Establishment, C V Raman Nagar, Bangalore-560093 (India); Kataria, N D [National Physical Laboratory, New Delhi (India)

    2005-08-01

    This paper investigates the nonlinear effects of high-T{sub c} superconducting (HTS) thin film in high-power applications. A nonlinear model for complex surface impedance has been proposed for the efficient analysis of the nonlinearity of HTS thin films. Further, using the developed model, analysis of HTS-MSR has been done using the spectral domain method (SDM). The SDM formulation has been modified to account for finite conductivity and thickness of HTS films by incorporating a complex resistive boundary condition. The results have been validated with the experiments performed with microstrip resonators (MSRs) based on YBa{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) thin films made by a laser ablation technique on LaAlO{sub 3} substrates, characterized for their characteristics, namely, resonant frequency and quality factor measured as a function of temperature and input RF power. A close agreement between the theoretical and measured results has been achieved validating the analysis.

  20. Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator

    International Nuclear Information System (INIS)

    Zhao Ji-Cong; Yuan Quan; Wang Feng-Xiang; Kan Xiao; Han Guo-Wei; Yang Jin-Ling; Yang Fu-Hua; Sun Ling; Sun Hai-Yan

    2017-01-01

    In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au–Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor ( Q -factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency–temperature ( f – T ) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q -factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. (paper)

  1. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    Science.gov (United States)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  2. Generation of THz frequency using PANDA ring resonator for THz imaging

    Directory of Open Access Journals (Sweden)

    Ong CT

    2012-02-01

    Full Text Available MA Jalil1, Afroozeh Abdolkarim2, T Saktioto2, CT Ong3, Preecha P Yupapin41Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM,81310, Johor Bahru, Malaysia; 2Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia (UTM, 81310, Johor Bahru, Malaysia; 3Department of Mathematics, Universiti Teknologi Malaysia 81310 Skudai, Johor Bahru, Malaysia; 4Nanoscale Science and Engineering Research Alliance (N'SERA, Advanced Research Center for Photonics, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, ThailandAbstract: In this study, we have generated terahertz (THz frequency by a novel design of microring resonators for medical applications. The dense wavelength-division multiplexing can be generated and obtained by using a Gaussian pulse propagating within a modified PANDA ring resonator and an add/drop filter system. Our results show that the THz frequency region can be obtained between 40–50 THz. This area of frequency provides a reliable frequency band for THz pulsed imaging.Keywords: THz imaging, THz technology, MRRs, PANDA, add/drop filter

  3. Design and kinetic analysis of piezoelectric energy harvesters with self-adjusting resonant frequency

    Science.gov (United States)

    Yu-Jen, Wang; Tsung-Yi, Chuang; Jui-Hsin, Yu

    2017-09-01

    Vibration-based energy harvesters have been developed as power sources for wireless sensor networks. Because the vibration frequency of the environment is varied with surrounding conditions, how to design an adaptive energy harvester is a practical topic. This paper proposes a design for a piezoelectric energy harvester possessing the ability to self-adjust its resonant frequency in rotational environments. The effective length of a trapezoidal cantilever is extended by centrifugal force from a rotating wheel to vary its area moment of inertia. The analytical solution for the natural frequency of the piezoelectric energy harvester was derived from the parameter design process, which could specify a structure approaching resonance at any wheel rotating frequency. The kinetic equation and electrical damping induced by power generation were derived from a Lagrange method and a mechanical-electrical coupling model, respectively. An energy harvester with adequate parameters can generate power at a wide range of car speeds. The output power of an experimental prototype composed of piezoelectric thin films and connected to a 3.3 MΩ external resistor was approximately 70-140 μW at wheel speeds ranging from 200 to 700 RPM. These results demonstrate that the proposed piezoelectric energy harvester can be applied as a power source for the wireless tire pressure monitoring sensor.

  4. Characteristics of the λ/4 transmission line resonator

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Masuda, H.; Yoshida, K.; Arai, S.; Niki, K.

    1994-01-01

    Though the spiral cavity is adequate for low frequency operation, mechanical instability becomes serious for such a low frequency as 20 MHz. We have then studied how to shorten the spiral length by using λ/4 transmission line models. Four models with reduced spiral length are presented. (author)

  5. Fatigue of 1 {mu}m-scale gold by vibration with reduced resonant frequency

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Matsumoto, Kenta [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Tsuchiya, Toshiyuki [Department of Micro Engineering, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan); Kitamura, Takayuki [Department of Mechanical Engineering and Science, Kyoto University, Yoshidahommachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2012-10-30

    In order to investigate the fatigue strength of micro-metal (1 {mu}m-scale), a testing method using resonant vibration is developed. Although the loading by vibration can solve the difficulties associated with the fatigue experiment of micro-specimen (e.g., specimen gripping and high-cycle loading under tension-compression), it inherently has an excessively high resonance frequency (more than several GHz at least) in a 1 {mu}m-scale metal specimen. For control of the fatigue cycle, the resonance frequency must be reduced to several hundreds of kHz by tuning the specimen shape. We design a cantilever specimen of 1 {mu}m scale gold with a weight at the tip, which reduces the resonant frequency to about 330 kHz. The unique specimen with the test section of 1.26 {mu}m Multiplication-Sign 0.94 {mu}m Multiplication-Sign 1.52 {mu}m is successfully fabricated by a novel technique using a focused ion beam and the tension-compression fatigue cycle is applied to it by means of a piezoelectric actuator. The test section breaks at about 1.6 Multiplication-Sign 10{sup 6} cycles under {Delta}{sigma}/2=230 MPa, which is within the targeted range of this project. It is easy to extend this method to high-cycle fatigue for actual use (including the failure cycles of over 10{sup 8} cycles). The slip bands observed on the surface, which have concavity and convexity similar to the intrusions/extrusions of PSBs, indicate that the failure is induced by the fatigue.

  6. Capabilities, performance, and future possibilities of high frequency polyphase resonant converters

    International Nuclear Information System (INIS)

    Reass, W.A.; Baca, D.M.; Bradley, J.T. III; Hardek, T.W.; Kwon, S.I.; Lynch, M.T.; Rees, D.E.

    2004-01-01

    High Frequency Polyphase Resonant Power Conditioning (PRPC) techniques developed at Los Alamos National Laboratory (LANL) are now being utilized for the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS) accelerator klystron RF amplifier power systems. Three different styles of polyphase resonant converter modulators were developed for the SNS application. The various systems operate up to 140 kV, or 11 MW pulses, or up to 1.1 MW average power, all from a DC input of +/- 1.2 kV. Component improvements realized with the SNS effort coupled with new applied engineering techniques have resulted in dramatic changes in RF power conditioning topology. As an example, the high-voltage transformers are over 100 times smaller and lighter than equivalent 60 Hz versions. With resonant conversion techniques, load protective networks are not required. A shorted load de-tunes the resonance and little power transfer can occur. This provides for power conditioning systems that are inherently self-protective, with automatic fault 'ride-through' capabilities. By altering the Los Alamos design, higher power and CW power conditioning systems can be realized without further demands of the individual component voltage or current capabilities. This has led to designs that can accommodate 30 MW long pulse applications and megawatt class CW systems with high efficiencies. The same PRPC techniques can also be utilized for lower average power systems (∼250 kW). This permits the use of significantly higher frequency conversion techniques that result in extremely compact systems with short pulse (10 to 100 us) capabilities. These lower power PRPC systems may be suitable for medical Linacs and mobile RF systems. This paper will briefly review the performance achieved for the SNS accelerator and examine designs for high efficiency megawatt class CW systems and 30 MW peak power applications. The devices and designs for compact higher frequency converters utilized for short pulse

  7. Field and frequency modulated sub-THz electron spin resonance spectrometer

    Directory of Open Access Journals (Sweden)

    Christian Caspers

    2016-05-01

    Full Text Available 260-GHz radiation is used for a quasi-optical electron spin resonance (ESR spectrometer which features both field and frequency modulation. Free space propagation is used to implement Martin-Puplett interferometry with quasi-optical isolation, mirror beam focusing, and electronic polarization control. Computer-aided design and polarization pathway simulation lead to the design of a compact interferometer, featuring lateral dimensions less than a foot and high mechanical stability, with all components rated for power levels of several Watts suitable for gyrotron radiation. Benchmark results were obtained with ESR standards (BDPA, DPPH using field modulation. Original high-field ESR of 4f electrons in Sm3+-doped Ceria was detected using frequency modulation. Distinct combinations of field and modulation frequency reach a signal-to-noise ratio of 35 dB in spectra of BDPA, corresponding to a detection limit of about 1014 spins.

  8. A complete dc characterization of a constant-frequency, clamped-mode, series-resonant converter

    Science.gov (United States)

    Tsai, Fu-Sheng; Lee, Fred C.

    1988-01-01

    The dc behavior of a clamped-mode series-resonant converter is characterized systematically. Given a circuit operating condition, the converter's mode of operation is determined and various circuit parameters are calculated, such as average inductor current (load current), rms inductor current, peak capacitor voltage, rms switch currents, average diode currents, switch turn-on currents, and switch turn-off currents. Regions of operation are defined, and various circuit characteristics are derived to facilitate the converter design.

  9. Multi frequency excited MEMS cantilever beam resonator for Mixer-Filter applications

    KAUST Repository

    Chandran, Akhil A.; Younis, Mohammad I.

    2016-01-01

    Wireless communication uses Radio Frequency waves to transfer information from one point to another. The modern RF front end devices are implementing MEMS in their designs so as to exploit the inherent properties of MEMS devices, such as its low mass, low power consumption, and small size. Among the components in the RF transceivers, band pass filters and mixers play a vital role in achieving the optimum RF performance. And this paper aims at utilizing an electrostatically actuated micro cantilever beam resonator's nonlinear frequency mixing property to realize a Mixer-Filter configuration through multi-frequency excitation. The paper studies about the statics and dynamics of the device. Simulations are carried out to study the added benefits of multi frequency excitation. The modelling of the cantilever beam has been done using a Reduced Order Model of the Euler-Bernoulli's beam equation by implementing the Galerkin discretization. The device is shown to be able to down-convert signals from 960 MHz of frequency to an intermediate frequency around 50 MHz and 70 MHz in Phase 1 and 2, respectively. The simulation showed promising results to take the project to the next level. © 2016 IEEE.

  10. Effect of antiferromagnetic interfacial coupling on spin-wave resonance frequency of multi-layer film

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Rong-ke, E-mail: rkqiu@163.com; Cai, Wei

    2017-08-15

    Highlights: • A quantum approach is developed to study the SWR of a bicomponent multi-layer films. • The comparison of the SWR in films with FM and AFM interfacial coupling has been made. • The present results show the method to enhance and adjust the SWR frequency of films. - Abstract: We investigate the spin-wave resonance (SWR) frequency in a bicomponent bilayer and triple-layer films with antiferromagnetic or ferromagnetic interfacial couplings, as function of interfacial coupling, surface anisotropy, interface anisotropy, thickness and external magnetic field, using the linear spin-wave approximation and Green’s function technique. The microwave properties for multi-layer magnetic film with antiferromagnetic interfacial coupling is different from those for multi-layer magnetic film with ferromagnetic interfacial coupling. For the bilayer film with antiferromagnetic interfacial couplings, as the lower (upper) surface anisotropy increases, only the SWR frequencies of the odd (even) number modes increase. The lower (upper) surface anisotropy does not affect the SWR frequencies of the even (odd) number modes{sub .} For the multi-layer film with antiferromagnetic interfacial coupling, the SWR frequency of modes m = 1, 3 and 4 decreases while that of mode m = 2 increases with increasing thickness of the film within a proper parameter region. The present results could be useful in enhancing our fundamental understanding and show the method to enhance and adjust the SWR frequency of bicomponent multi-layer magnetic films with antiferromagnetic or ferromagnetic interfacial coupling.

  11. Spin-wave resonance frequency in ferromagnetic thin film with interlayer exchange coupling and surface anisotropy

    Science.gov (United States)

    Zhang, Shuhui; Rong, Jianhong; Wang, Huan; Wang, Dong; Zhang, Lei

    2018-01-01

    We have investigated the dependence of spin-wave resonance(SWR) frequency on the surface anisotropy, the interlayer exchange coupling, the ferromagnetic layer thickness, the mode number and the external magnetic field in a ferromagnetic superlattice film by means of the linear spin-wave approximation and Green's function technique. The SWR frequency of the ferromagnetic thin film is shifted to higher values corresponding to those of above factors, respectively. It is found that the linear behavior of SWR frequency curves of all modes in the system is observed as the external magnetic field is increasing, however, SWR frequency curves are nonlinear with the lower and the higher modes for different surface anisotropy and interlayer exchange coupling in the system. In addition, the SWR frequency of the lowest (highest) mode is shifted to higher (lower) values when the film thickness is thinner. The interlayer exchange coupling is more important for the energetically higher modes than for the energetically lower modes. The surface anisotropy has a little effect on the SWR frequency of the highest mode, when the surface anisotropy field is further increased.

  12. Improvement of grid frequency dynamic characteristic with novel wind turbine based on electromagnetic coupler

    DEFF Research Database (Denmark)

    You, Rui; Barahona, Braulio; Chai, Jianyun

    2017-01-01

    . Additional power should be generated in response to a grid frequency drop in order to improve the dynamic characteristic of the grid frequency. In this paper, a novel control strategy for WT-EMC to improve the dynamic characteristic of grid frequency is proposed. The principle is to detect active power...... torque to stabilize the rotor speed, therefore directly improving the grid frequency. The proposed control strategy effectiveness is firstly tested through simulations and then validated on a specially built experimental platform....

  13. Measurements of resonance frequencies on prestressed concrete beams during post-tensioning

    International Nuclear Information System (INIS)

    Lundqvist, P.; Ryden, N.

    2011-01-01

    The reactor containment, which is a concrete structure prestressed vertically and horizontally, is the most essential safety barrier in a nuclear power plant and is designed to withstand a severe internal accident. The safety of the containment depends on the induced compressive stresses in the concrete, however due to various long-term mechanisms the tendon forces will decrease with time. Today, no methods exist for measuring these prestress losses in containments with bonded tendons and thus there is a need for non-destructive methods for estimating the losses in these structures. Recent results from non-linear ultrasonic measurements during uniaxial loading have demonstrated a strong acoustic and elastic effect in concrete. The present research applies resonant acoustic spectroscopy (RAS) during static loading and unloading of three prestressed concrete beams. At each load step multiple modes of vibration are measured using an accelerometer and a small impact source. Measured resonant frequencies increase with increasing compressive stress. The stress dependency of the modulus of elasticity indicates that the change in state of stress in a simple concrete structure can be estimated by simply measuring the resonance frequency

  14. Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator

    Science.gov (United States)

    Zhao, Ji-Cong; Yuan, Quan; Wang, Feng-Xiang; Kan, Xiao; Han, Guo-Wei; Sun, Ling; Sun, Hai-Yan; Yang, Jin-Ling; Yang, Fu-Hua

    2017-06-01

    In this paper, we present a three-dimensional (3D) vacuum packaging technique at a wafer level for a radio frequency micro-electromechanical system (RF MEMS) resonator, in which low-loss silicon vias is used to transmit RF signals. Au-Sn solder bonding is adopted to provide a vacuum encapsulation as well as electrical conductions. A RF model of the encapsulation cap is established to evaluate the parasitic effect of the packaging, which provides an effective design solution of 3D RF MEMS encapsulation. With the proposed packaging structure, the signal-to-background ratio (SBR) of 24 dB is achieved, as well as the quality factor (Q-factor) of the resonator increases from 8000 to 10400 after packaging. The packaged resonator has a linear frequency-temperature (f-T) characteristic in a temperature range between 0 °C and 100 °C. And the package shows favorable long-term stability of the Q-factor over 200 days, which indicates that the package has excellent hermeticity. Furthermore, the average shear strength is measured to be 43.58 MPa among 10 samples. Project supported by the National Natural Science Foundation of China (Grant Nos. 61234007, 61404136, and 61504130), the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ16055103), the Key Research & Development Program of Jiangsu Province, China (Grant No. BE2016007-2), and the Major Project of Natural Science Research of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJA510006).

  15. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    International Nuclear Information System (INIS)

    Haverkort, Maurits W.

    2016-01-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty , a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org. (paper)

  16. Frequency-Controlled Current-Fed Resonant Converter with No Input Ripple Current

    Directory of Open Access Journals (Sweden)

    Bor-Ren Lin

    2018-02-01

    Full Text Available This paper studies a frequency-controlled current-fed resonant circuit. The adopted direct current (DC-to-DC converter contains two boost circuits and a resonant circuit on the primary side. First, two boost circuits are connected in parallel to achieve voltage step-up and reduce input ripple current by using interleaved pulse-width modulation. Therefore, the size and current rating of boost inductors are decreased in the proposed converter. Second, the boost voltage is connected to the resonant circuit to realize the mechanism of the zero-voltage switching of all active switches and zero-current switching of all diodes. Two boost circuits and a resonant circuit use the same power devices in order to lessen the switch counts. The voltage doubler topology is adopted on the secondary side (high-voltage side. Therefore, the voltage rating of diodes on the high-voltage side is clamped at output voltage. The feasibility of the studied circuit is confirmed by the experimental tests with a 1 kW prototype circuit.

  17. Biophysical control of the growth of Agrobacterium tumefaciens using extremely low frequency electromagnetic waves at resonance frequency.

    Science.gov (United States)

    Fadel, M Ali; El-Gebaly, Reem H; Mohamed, Shaimaa A; Abdelbacki, Ashraf M M

    2017-12-09

    Isolated Agrobacterium tumefaciens was exposed to different extremely low frequencies of square amplitude modulated waves (QAMW) from two generators to determine the resonance frequency that causes growth inhibition. The carrier was 10 MHz sine wave with amplitude ±10 Vpp which was modulated by a second wave generator with a modulation depth of ± 2Vpp and constant field strength of 200 V/m at 28 °C. The exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min inhibited the bacterial growth by 49.2%. In addition, the tested antibiotics became more effective against A. tumefaciens after the exposure. Furthermore, results of DNA, dielectric relaxation and TEM showed highly significant molecular and morphological changes due to the exposure to 1.0 Hz QAMW for 90 min. An in-vivo study has been carried out on healthy tomato plants to test the pathogenicity of A. tumefaciens before and after the exposure to QAMW at the inhibiting frequency. Symptoms of crown gall and all pathological symptoms were more aggressive in tomato plants treated with non-exposed bacteria, comparing with those treated with exposed bacteria. We concluded that, the exposure of A. tumefaciens to 1.0 Hz QAMW for 90 min modified its cellular activity and DNA structure, which inhibited the growth and affected the microbe pathogenicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Improvement of frequency variability of the folded-coaxial radio-frequency quadrupole linac by installing a detachable stem in its resonator

    International Nuclear Information System (INIS)

    Kamigaito, Osamu; Goto, Akira; Miyazawa, Yoshitoshi; Chiba, Toshiya; Hemmi, Masatake; Kase, Masayuki; Kohara, Shigeo; Yano, Yasushige

    1995-01-01

    The beneficial effect of adding a detachable stem to the folded-coaxial resonator of the frequency-variable radio-frequency quadrupole (RFQ) linac previously reported was examined experimentally using a half-scale model as well as by numerical analyses. As a result, this simple modification was found to extend variable frequencies to a high region without increase of rf power consumption. (author)

  19. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Rekker, A., E-mail: Astrid.Rekker@tlu.ee; Mankin, R., E-mail: Romi.Mankin@tlu.ee [Institute of Mathematics and Natural Sciences, Tallinn University, 29 Narva Road, 10120 Tallinn (Estonia)

    2015-10-28

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  20. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2017-06-01

    Full Text Available Acoustic metasurfaces (AMSs are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  1. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator

    Science.gov (United States)

    Zhao, Xiang; Cai, Li; Yu, Dianlong; Lu, Zhimiao; Wen, Jihong

    2017-06-01

    Acoustic metasurfaces (AMSs) are able to manipulate wavefronts at an anomalous angle through a subwavelength layer. Their application provide a new way to control sound waves in addition to traditional materials. In this work, we introduced the AMS into the design of a Helmholtz resonator (HR) and studied the acoustic transmission through the modified HR in a pipe with one branch. The variation of sound insulation capacity with the phase gradient of the AMS was studied, and the results show that the AMS can remarkably lower the frequency band of the sound insulation without increasing the size. Our investigation provides a new degree of freedom for acoustic control with a Helmholtz resonator, which is of great significance in acoustic metasurface theory and sound insulation design.

  2. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    Science.gov (United States)

    Rekker, A.; Mankin, R.

    2015-10-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer's response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed.

  3. Influence of the Basset force on the resonant behavior of an oscillator with fluctuating frequency

    International Nuclear Information System (INIS)

    Rekker, A.; Mankin, R.

    2015-01-01

    The influence of hydrodynamic interactions, such as Stokes and Basset forces, on the dynamics of a harmonically trapped Brownian tracer is considered. A generalized Langevin equation is used to describe the tracer’s response to an external periodic force and to dichotomous fluctuations of the stiffness of the trapping potential. Relying on the Shapiro-Loginov formula, exact expressions for the complex susceptibility and for the response function are presented. On the basis of these exact formulas, it is demonstrated that interplay of a multiplicative colored noise and the Basset force induced memory effects can generate a variety of cooperation effects, such as multiresonance versus the driving frequency, as well as stochastic resonance versus noise parameters. In particular, in certain parameter regions the response function exhibits a resonance-like enhancement at intermediate values of the intensity of the Basset force. Conditions for the appearance of these effects are also discussed

  4. Analysis of Middle Frequency Resonance in DFIG System Considering Phase Locked Loop

    DEFF Research Database (Denmark)

    Song, Yipeng; Blaabjerg, Frede

    2018-01-01

    compensated weak network. Besides these two resonances, a Middle Frequency Resonance (MFR) between 200 Hz and 800 Hz may appear when the Phase Locked Loop (PLL) with fast control dynamics is applied. In order to analyze the MFR, the DFIG system impedance considering the PLL is studied based on the Vector...... Oriented Control (VOC) strategy in Rotor Side Converter (RSC) and Grid Side Converter (GSC). On the basis of the established impedance modeling of the DFIG system, it is found that the PLL with fast control dynamics may result in the occurrence of MFR due to a decreasing phase margin. The simulation...... results of both a 7.5 kW small scale DFIG system and a 2 MW large scale DFIG system are provided to validate the theoretical analysis of the MFR....

  5. Numerical prediction of the natural frequency of an Oscillating Water Column operating under resonant conditions

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2016-12-01

    Full Text Available Among the different technologies developed in order to harness wave energy, the Oscillating Water Column devices are the most accredited for an actual diffusion. Recently, Boccotti has patented the REWEC1 (REsonant sea Wave Energy Converter solution 1, a submerged breakwater that performs an active coast protection, embedding an Oscillating Water Column device, which is capable of operating under resonant conditions with that sea state, which gives the highest yearly energy contribution. The REWEC1 dynamic behavior can be approximated by means of a mass-spring-damper system. According to this approximation, a criterion for evaluating the oscillating natural frequency of the REWEC1 has been derived. This criterion has been validated against both experimental results and computational fluid dynamics simulations, performed on a REWEC1 laboratory-scale model. The numerical simulations have shown a good agreement between measurements and predictions.

  6. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency

    Directory of Open Access Journals (Sweden)

    Yu Xu

    2016-02-01

    Full Text Available For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  7. A Novel Piezoresistive Accelerometer with SPBs to Improve the Tradeoff between the Sensitivity and the Resonant Frequency.

    Science.gov (United States)

    Xu, Yu; Zhao, Libo; Jiang, Zhuangde; Ding, Jianjun; Peng, Niancai; Zhao, Yulong

    2016-02-06

    For improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers, the dependency between the stress of the piezoresistor and the displacement of the structure is taken into consideration in this paper. In order to weaken the dependency, a novel structure with suspended piezoresistive beams (SPBs) is designed, and a theoretical model is established for calculating the location of SPBs, the stress of SPBs and the resonant frequency of the whole structure. Finite element method (FEM) simulations, comparative simulations and experiments are carried out to verify the good agreement with the theoretical model. It is demonstrated that increasing the sensitivity greatly without sacrificing the resonant frequency is possible in the piezoresistive accelerometer design. Therefore, the proposed structure with SPBs is potentially a novel option for improving the tradeoff between the sensitivity and the resonant frequency of piezoresistive accelerometers.

  8. Equivalent circuit method research of resonant magnetoelectric characteristic in magnetoelectric laminate composites using nonlinear magnetostrictive constitutive model

    International Nuclear Information System (INIS)

    Zhou, Hao-Miao; Li, Chao; Xuan, Li-Ming; Zhao, Ji-Xiang; Wei, Jing

    2011-01-01

    This paper analyzes the magnetoelectric (ME) response around the resonance frequency in the magnetostrictive/piezoelectric/magnetostrictive (MPM) magnetoelectric laminate composites. Following the equivalent circuit method and considering the mechanical loss, we select the nonlinear magnetostrictive constitutive model to present a novel explicit nonlinear expression for the resonant magnetoelectric (ME) coefficient of the magnetoelectric laminate composites. Compared with the experimental results, the predicted resonant ME coefficient of the explicit expression shows a good agreement both qualitatively and quantitatively. Also, when the electromechanical coupling factor of the piezoelectric material, k 31 p , is small, this explicit expression can be reduced to the existing model. On this basis, this paper considers and predicts the magnetoelectric conversion characteristics of the magnetoelectric laminate composites, calculates and analyzes the influences of the thickness ratio of magnetostrictive layer and piezoelectric material, bias magnetic field, and saturation magnetostrictive coefficient on the resonant ME coefficient. This research can provide a theoretical basis for the preparation of magnetoelectric devices with good magnetoelectric conversion characteristics, such as magnetoelectric sensors, energy harvesting transducers, microwave devices etc

  9. High-temperature superconducting coplanar-waveguide quarter-wavelength resonator with odd- and even-mode resonant frequencies for dual-band bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kei; Takagi, Yuta; Narahashi, Shoichi [Research Laboratories, NTT DOCOMO, INC., 3-6 Hikari-no-oka Yokosuka, Kanagawa 239-8536 Japan (Japan); Nojima, Toshio, E-mail: satokei@nttdocomo.co.j [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 Japan (Japan)

    2010-06-01

    This paper presents a high-temperature superconducting coplanar-waveguide quarter-wavelength resonator that has two different resonant modes for use in a dual-band bandpass filter (DBPF). An RF filter with multiple passbands such as the DBPF is a basic element that is expected to achieve broadband transmission by using separated frequency bands aggregately and simultaneously in future mobile communication systems. The proposed resonator has a folded center conductor and two open stubs that are aligned close to it. The odd- and even-mode resonant frequencies are configured using the space between the folded center conductor and the open stubs. It is easy to configure the odd- and even-mode coupling coefficients independently because the two resonant modes have different current density distributions. Consequently, a DBPF with two different bandwidths can be easily designed. This paper presents three design examples for a four-pole Chebyshev DBPF with different combinations of fractional bandwidths in order to investigate the validity of the proposed resonator. This paper also presents measured results of the DBPF based on the design examples from the standpoint of experimental investigation. The designed and measured frequency responses confirm that the proposed resonator is effective in achieving DBPFs not only with two of the same bandwidths but also with two different bandwidths.

  10. Tunable ferromagnetic resonance in La-Co substituted barium hexaferrites at millimeter wave frequencies

    Science.gov (United States)

    Korolev, Konstantin A.; Wu, Chuanjian; Yu, Zhong; Sun, Ke; Afsar, Mohammed N.; Harris, Vincent G.

    2018-05-01

    Transmittance measurements have been performed on La-Co substituted barium hexaferrites in millimeter waves. Broadband millimeter-wave measurements have been carried out using the free space quasi-optical spectrometer, equipped with a set of high power backward wave oscillators covering the frequency range of 30 - 120 GHz. Strong absorption zones have been observed in the millimeter-wave transmittance spectra of all La-Co substituted barium hexaferrites due to the ferromagnetic resonance. Linear shift of ferromagnetic resonance frequency as functions of La-Co substitutions have been found. Real and imaginary parts of dielectric permittivity of La-Co substituted barium hexaferrites have been calculated using the analysis of recorded high precision transmittance spectra. Frequency dependences of magnetic permeability of La-Co substituted barium hexaferrites, as well as saturation magnetization and anisotropy field have been determined based on Schlömann's theory for partially magnetized ferrites. La-Co substituted barium hexaferrites have been further investigated by DC magnetization to assess magnetic behavior and compare with millimeter wave data. Consistency of saturation magnetization determined independently by both millimeter wave absorption and DC magnetization have been found for all La-Co substituted barium hexaferrites. These materials seem to be quite promising as tunable millimeter wave absorbers, filters, circulators, based on the adjusting of their substitution parameters.

  11. Resonant Frequency Calculation and Optimal Design of Peano Fractal Antenna for Partial Discharge Detection

    Directory of Open Access Journals (Sweden)

    Jian Li

    2012-01-01

    Full Text Available Ultra-high-frequency (UHF approaches have caught increasing attention recently and have been considered as a promising technology for online monitoring partial discharge (PD signals. This paper presents a Peano fractal antenna for UHF PD online monitoring of transformer with small size and multiband. The approximate formula for calculating the first resonant frequency of the Peano fractal antenna is presented. The results show that the first resonant frequency of the Peano fractal antenna is smaller than the Hilbert fractal antenna when the outer dimensions are equivalent approximately. The optimal geometric parameters of the antenna were obtained through simulation. Actual PD experiments had been carried out for two typically artificial insulation defect models, while the proposed antenna and the existing Hilbert antenna were both used for the PD measurement. The experimental results show that Peano fractal antenna is qualified for PD online UHF monitoring and a little more suitable than the Hilbert fractal antenna for pattern recognition by analyzing the waveforms of detected UHF PD signals.

  12. A Switched Capacitor Based AC/DC Resonant Converter for High Frequency AC Power Generation

    Directory of Open Access Journals (Sweden)

    Cuidong Xu

    2015-09-01

    Full Text Available A switched capacitor based AC-DC resonant power converter is proposed for high frequency power generation output conversion. This converter is suitable for small scale, high frequency wind power generation. It has a high conversion ratio to provide a step down from high voltage to low voltage for easy use. The voltage conversion ratio of conventional switched capacitor power converters is fixed to n, 1/n or −1/n (n is the switched capacitor cell. In this paper, A circuit which can provide n, 1/n and 2n/m of the voltage conversion ratio is presented (n is stepping up the switched capacitor cell, m is stepping down the switching capacitor cell. The conversion ratio can be changed greatly by using only two switches. A resonant tank is used to assist in zero current switching, and hence the current spike, which usually exists in a classical switching switched capacitor converter, can be eliminated. Both easy operation and efficiency are possible. Principles of operation, computer simulations and experimental results of the proposed circuit are presented. General analysis and design methods are given. The experimental result verifies the theoretical analysis of high frequency AC power generation.

  13. Recurrent frequency-size distribution of characteristic events

    Directory of Open Access Journals (Sweden)

    S. G. Abaimov

    2009-04-01

    Full Text Available Statistical frequency-size (frequency-magnitude properties of earthquake occurrence play an important role in seismic hazard assessments. The behavior of earthquakes is represented by two different statistics: interoccurrent behavior in a region and recurrent behavior at a given point on a fault (or at a given fault. The interoccurrent frequency-size behavior has been investigated by many authors and generally obeys the power-law Gutenberg-Richter distribution to a good approximation. It is expected that the recurrent frequency-size behavior should obey different statistics. However, this problem has received little attention because historic earthquake sequences do not contain enough events to reconstruct the necessary statistics. To overcome this lack of data, this paper investigates the recurrent frequency-size behavior for several problems. First, the sequences of creep events on a creeping section of the San Andreas fault are investigated. The applicability of the Brownian passage-time, lognormal, and Weibull distributions to the recurrent frequency-size statistics of slip events is tested and the Weibull distribution is found to be the best-fit distribution. To verify this result the behaviors of numerical slider-block and sand-pile models are investigated and the Weibull distribution is confirmed as the applicable distribution for these models as well. Exponents β of the best-fit Weibull distributions for the observed creep event sequences and for the slider-block model are found to have similar values ranging from 1.6 to 2.2 with the corresponding aperiodicities CV of the applied distribution ranging from 0.47 to 0.64. We also note similarities between recurrent time-interval statistics and recurrent frequency-size statistics.

  14. Resonance frequency of fluid-filled and prestressed spherical shell-A model of the human eyeball.

    Science.gov (United States)

    Shih, Po-Jen; Guo, Yi-Ren

    2016-04-01

    An acoustic tonometer that measures shifts in resonance frequencies associated with intraocular pressure (IOP) could provide an opportunity for a type of tonometer that can be operated at home or worn by patients. However, there is insufficient theoretical background, especially with respect to the uncertainty in operating frequency ranges and the unknown relationships between IOPs and resonance frequencies. The purpose of this paper is to develop a frequency function for application in an acoustic tonometer. A linear wave theory is used to derive an explicit frequency function, consisting of an IOP and seven other physiological parameters. In addition, impulse response experiments are performed to measure the natural frequencies of porcine eyes to validate the provided function. From a real-time detection perspective, explicitly providing a frequency function can be the best way to set up an acoustic tonometer. The theory shows that the resonance oscillation of the eyeball is mainly dominated by liquid inside the eyeball. The experimental validation demonstrates the good prediction of IOPs and resonance frequencies. The proposed explicit frequency function supports further modal analysis not only of the dynamics of eyeballs, but also of the natural frequencies, for further development of the acoustic tonometer.

  15. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser

    International Nuclear Information System (INIS)

    Spirin, V V; Lopez-Mercado, C A; Megret, P; Fotiadi, A A

    2012-01-01

    We demonstrate a single-mode Brillouin fiber ring laser, which is passively stabilized at pump resonance frequency by using self-injection locking of semiconductor pump laser. Resonance condition for Stokes radiation is achieved by length fitting of Brillouin laser cavity. The laser generate single-frequency Stokes wave with linewidth less than 0.5 kHz using approximately 17-m length cavity

  16. Influence of simulated bone-implant contact and implant diameter on secondary stability: a resonance frequency in vitro study.

    Science.gov (United States)

    Veltri, Mario; González-Martín, Oscar; Belser, Urs C

    2014-08-01

    This study tested the hypothesis of no differences in resonance frequency for standardized amounts of simulated bone-implant contact around implants with different diameters. In addition, it was evaluated if resonance frequency is able to detect a difference between stable and rotation mobile ("spinning") implants. Implants with diameters of 3.3, 4.1 and 4.8 mm were placed in a purposely designed metal mould where liquid polyurethane resin was then poured to obtain a simulated bone-implant specimen. By regulating the mould, it was possible to create the following simulated bone-implant contact groups: 3.3 mm (198.6 mm(2)); 4.1 mm (198.8 mm(2)); 4.8 mm (200.2 mm(2)); 4.8 mm (231.7 mm(2)); 4.8 mm (294.7 mm(2)). Each group included 10 specimens. After resin setting, resonance frequency was measured. On the last group, measurements were repeated after establishing implant rotational mobility. One-way ANOVA tests with post hoc comparisons, a Pearson's correlation coefficient and a t-test for repeated measurements were used to evaluate statistically significant differences. Implants with different diameters but with the same amount of simulated osseointegration revealed no differences in resonance frequency. On the contrary, an increase of simulated bone-implant contact resulted in significantly higher resonance frequency. A clear direct linear correlation resulted between resonance frequency and simulated bone-implant contact. Furthermore, a significant difference resulted between resonance frequency measured before and after creation of rotational mobility. Within the conditions of this study, the secondary stability was correlated with the simulated bone-implant contact. In addition, resonance frequency was able to discern between stable and rotation mobile implants. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Some recent multi-frequency electron paramagnetic resonance results on systems relevant for dosimetry and dating.

    Science.gov (United States)

    Callens, F; Vanhaelewyn, G; Matthys, P

    2002-04-01

    Electron Paramagnetic Resonance (EPR) applications like e.g. EPR dosimetry and dating, are usually performed at X-band frequencies because of practical reasons (cost, sample size, etc.). However, it is increasingly recognized that the radiation-induced EPR signals are strongly composite, what might affect dose/age estimates. A few recent examples from both the dosimetry and dating field, illustrating the problems, will be presented. The involved spectra are mainly due to carbonate-derived radicals (CO2-, CO3(3-), etc.). Measurements at higher microwave frequencies are often recommended to improve the insight into the spectra and/or the practical signal quantification. Recent results at Q- and W-band frequencies will show that a multi-frequency approach indeed opens many interesting perspectives in this field but also that each frequency may have specific (dis)advantages depending on the EPR probe and application involved. The discussion will concern carbonate-containing apatite single crystals, shells, modern and fossil tooth enamel.

  18. Frequency Shifts of Micro and Nano Cantilever Beam Resonators Due to Added Masses

    KAUST Repository

    Bouchaala, Adam M.

    2016-03-21

    We present analytical and numerical techniques to accurately calculate the shifts in the natural frequencies of electrically actuated micro and nano (carbon nanotubes (CNTs)) cantilever beams implemented as resonant sensors for mass detection of biological entities, particularly Escherichia coli (E. coli) and prostate specific antigen (PSA) cells. The beams are modeled as Euler-Bernoulli beams, including the nonlinear electrostatic forces and the added biological cells, which are modeled as discrete point masses. The frequency shifts due to the added masses of the cells are calculated for the fundamental and higher-order modes of vibrations. Analytical expressions of the natural frequency shifts under a direct current (DC) voltage and an added mass have been developed using perturbation techniques and the Galerkin approximation. Numerical techniques are also used to calculate the frequency shifts and compared with the analytical technique. We found that a hybrid approach that relies on the analytical perturbation expression and the Galerkin procedure for calculating accurately the static behavior presents the most computationally efficient approach. We found that using higher-order modes of vibration of micro-electro-mechanical-system (MEMS) beams or miniaturizing the sizes of the beams to nanoscale leads to significant improved frequency shifts, and thus increased sensitivities. © 2016 by ASME.

  19. Correlation Between Resonance Frequency Analysis and Bone Quality Assessments at Dental Implant Recipient Sites.

    Science.gov (United States)

    Fu, Min-Wen; Fu, Earl; Lin, Fu-Gong; Chang, Wei-Jeng; Hsieh, Yao-Dung; Shen, E-Chin

    To evaluate whether primary implant stability could be used to predict bone quality, the association between the implant stability quotient (ISQ) value and the bone type at the implant site was evaluated. Ninety-five implant sites in 50 patients were included. Bone type (categorized by Lekholm and Zarb) at the implant site was initially assessed using presurgical dental radiography. During the preparation of the implant site, a bone core specimen was carefully obtained. The bone type was assessed by tactile sensation during the drilling operation, according to the Misch criteria. The primary stability of the inserted implant was evaluated by resonance frequency analysis (RFA). The ISQ value was recorded. The bone core specimen was then examined by stereomicroscopy or microcomputed tomography (micro-CT), and the bone type was determined by the surface characteristics of the specimen, based on Lekholm and Zarb classification. Agreement between the bone quality assessed by the four methods (ie, presurgical radiography, tactile sensation, stereomicroscopy, and micro-CT) was tested by Cohen's kappa statistics, whereas the association between the ISQ value and the bone type was evaluated by the generalized linear regression model. The mean ISQ score was 72.6, and the score was significantly influenced by the maxillary or mandibular arch (P = .001). The bone type at the implant sites varied according to the assessment method. However, a significant influence of the arch was repeatedly noted when using radiography or tactile sensation. Among the four bone-quality assessment methods, a weak agreement existed only between stereomicroscopy and micro-CT, especially in the maxilla (κ = 0.469). A negative association between the ISQ value and the bone type assessed by stereomicroscopy or by micro-CT was significant in the maxilla, but not in the mandible, after adjustments for sex, age, and right/left side (P = .013 and P = .027 for stereomicroscopy and micro-CT, respectively

  20. Transport Characteristics of Mesoscopic Radio-Frequency Single Electron Transistor

    International Nuclear Information System (INIS)

    Phillips, A. H.; Kirah, K.; Aly, N. A. I.; El-Sayes, H. E.

    2008-01-01

    The transport property of a quantum dot under the influence of external time-dependent field is investigated. The mesoscopic device is modelled as semiconductor quantum dot coupled weakly to superconducting leads via asymmetric double tunnel barriers of different heights. An expression for the current is deduced by using the Landauer–Buttiker formula, taking into consideration of both the Coulomb blockade effect and the magnetic field. It is found that the periodic oscillation of the current with the magnetic field is controlled by the ratio of the frequency of the applied ac-field to the electron cyclotron frequency. Our results show that the present device operates as a radio-frequency single electron transistor

  1. Virtual Resonance and Frequency Difference Generation by van der Waals Interaction

    Science.gov (United States)

    Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.

    2011-05-01

    The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.

  2. A finite element computer program for the calculation of the resonant frequencies of anisotropic materials

    International Nuclear Information System (INIS)

    Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.

    1975-09-01

    A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or higher symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (author)

  3. Summary of experimental core turbulence characteristics in ohmic and electron cyclotron resonance heated discharges in T-10 tokamak plasmas

    International Nuclear Information System (INIS)

    Vershkov, V.A.; Shelukhin, D.A.; Soldatov, S.V.; Urazbaev, A.O.; Grashin, S.A.; Eliseev, L.G.; Melnikov, A.V.

    2005-01-01

    This report summarizes the results of experimental turbulence investigations carried out at T-10 for more than 10 years. The turbulence characteristics were investigated using correlation reflectometry, multipin Langmuir probe (MLP) and heavy ion beam probe diagnostics. The reflectometry capabilities were analysed using 2D full-wave simulations and verified by direct comparison using a MLP. The ohmic and electron cyclotron resonance heated discharges show the distinct transition from the core turbulence, having complex spectral structure, to the unstructured one in the scrape-off layer. The core turbulence includes 'broad band, quasi-coherent' features, arising due to the excitation of rational surfaces with high poloidal m-numbers, with a low frequency near zero and specific oscillations at 15-30 kHz. All experimentally measured properties of low frequency and high frequency quasi-coherent oscillations are in good agreement with predictions of linear theory for the ion temperature gradient/dissipative trapped electron mode instabilities. Significant local changes in the turbulence characteristics were observed at the edge velocity shear layer and in the core near q = 1 radius after switching off the electron cyclotron resonance heating (ECRH). The local decrease in the electron heat conductivity and decrease in the turbulence level could be evidence of the formation of an electron internal transport barrier. The dynamic behaviour of the core turbulence was also investigated for the case of fast edge cooling and the beginning phase of ECRH

  4. Frequency dependent characteristics of solar impulsive radio bursts

    International Nuclear Information System (INIS)

    Das, T.K.; Das Gupta, M.K.

    1983-01-01

    An investigation was made of the impulsive radio bursts observed in the frequency range 0.245 to 35 GHz. Important results obtained are: (i) Simple type 1 bursts with intensities 0 to 10 f.u. and simple type 2 bursts with intensities 10 to 500 f.u. are predominant in the frequency ranges 1.415 to 4.995 GHz and 4.995 to 8.8 GHz, respectively; (ii) With maxima around 2.7 GHz and 4 GHz for the first and second types respectively, the durations of the radio bursts decrease gradually both towards lower and higher frequencies; (iii) As regards occurrences, the first type dominates in the southern solar hemisphere peaking around 8.8 GHz, whereas the second type favours the north with no well-defined maximum in any frequency; (iv) Both types prefer the eastern hemisphere, the peak occurrences being around 8.8 GHz and 5 GHz for the two successive types, respectively; (c) The spectra of impulsive radio bursts are generally of the inverted U-type with the maximum emission intensity between 5 and 15 GHz. (author)

  5. Characteristics of spectro-temporal modulation frequency selectivity in humans.

    Science.gov (United States)

    Oetjen, Arne; Verhey, Jesko L

    2017-03-01

    There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.

  6. Authentication of Radio Frequency Identification Devices Using Electronic Characteristics

    Science.gov (United States)

    Chinnappa Gounder Periaswamy, Senthilkumar

    2010-01-01

    Radio frequency identification (RFID) tags are low-cost devices that are used to uniquely identify the objects to which they are attached. Due to the low cost and size that is driving the technology, a tag has limited computational capabilities and resources. This limitation makes the implementation of conventional security protocols to prevent…

  7. Experimental Investigation on Frequency Characteristics of Plasma Synthetic Jets

    NARCIS (Netherlands)

    Zong, H.; Kotsonis, M.

    2017-01-01

    The performance of a two–electrode plasma synthetic jet actuator (PSJA) is investigated for a wide range of dimensionless actuation frequencies (f*) using high-speed phase-locked Particle Imaging Velocimetry (PIV) measurements. The jet-induced velocity fields in the

  8. Optimizing Power–Frequency Droop Characteristics of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Guggilam, Swaroop S.; Zhao, Changhong; Dall Anese, Emiliano; Chen, Yu Christine; Dhople, Sairaj V.

    2018-05-01

    This paper outlines a procedure to design power-frequency droop slopes for distributed energy resources (DERs) installed in distribution networks to optimally participate in primary frequency response. In particular, the droop slopes are engineered such that DERs respond in proportion to their power ratings and they are not unfairly penalized in power provisioning based on their location in the distribution network. The main contribution of our approach is that a guaranteed level of frequency regulation can be guaranteed at the feeder head, while ensuring that the outputs of individual DERs conform to some well-defined notion of fairness. The approach we adopt leverages an optimization-based perspective and suitable linearizations of the power-flow equations to embed notions of fairness and information regarding the physics of the power flows within the distribution network into the droop slopes. Time-domain simulations from a differential algebraic equation model of the 39-bus New England test-case system augmented with three instances of the IEEE 37-node distribution-network with frequency-sensitive DERs are provided to validate our approach.

  9. Transverse susceptibility as the low-frequency limit of ferromagnetic resonance

    International Nuclear Information System (INIS)

    Spinu, L.; Dumitru, I.; Stancu, A.; Cimpoesu, D.

    2006-01-01

    A new theory of transverse susceptibility (TS) based on magnetization vector dynamics, as described by the Landau-Lifshitz equation of motion, is given. It is shown that the traditional TS experiment is, in fact, the zero-frequency limit of the ferromagnetic resonance (FMR). The importance of these results resides in the generality of the approach which allows one to find the TS for virtually any magnetic system if an expression for the magnetic free-energy density is known. Moreover, the effect of the frequency of excitatory AC field on the TS experiments and the effect of energy dissipation through the imaginary part of TS emerge coherently from the new TS model

  10. Waves on fluid-loaded shells and their resonance frequency spectrum

    DEFF Research Database (Denmark)

    Bao, X.L.; Uberall, H.; Raju, P.K.

    2005-01-01

    , or axially propagating waves both in the shell material, and in the fluid loading. Previous results by Bao et al. (J. Acoust. Soc. Am. 105 (1999) 2704) were obtained for the circumferential-wave dispersion curves on doubly loaded aluminum shells; the present study extends this to fluid-filled shells in air......Technical requirements for elastic (metal) cylindrical shells include the knowledge of their natural frequency spectrum. These shells may be empty and fluid-immersed, or fluid-filled in an ambient medium of air, or doubly fluid-loaded inside and out. They may support circumferential waves....... For practical applications, steel shells are most important and we have here obtained corresponding results for these. To find the natural frequencies of cylindrical shells, one may invoke the principle of phase matching where resonating standing waves are formed around the circumference, or in the axial...

  11. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles

    DEFF Research Database (Denmark)

    El-Ella, Haitham; Ahmadi, Sepehr; Wojciechowski, Adam

    2017-01-01

    transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≥ 1=4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate......Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional...... to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin...

  12. Bi-resonant structure with piezoelectric PVDF films for energy harvesting from random vibration sources at low frequency

    DEFF Research Database (Denmark)

    Liang, Shanshan; Crovetto, Andrea; Peng, Zhuoteng

    2016-01-01

    and experiments with piezoelectric elements show that the energy harvesting device with the bi-resonant structure can generate higher power output than that of the sum of the two separate devices from random vibration sources at low frequency, and hence significantly improves the vibration-to- electricity......This paper reports on a bi-resonant structure of piezoelectric PVDF films energy harvester (PPEH), which consists of two cantilevers with resonant frequencies of 15 Hz and 22 Hz. With increased acceleration, the vibration amplitudes of the two cantilever-mass structures are increased and collision...

  13. Validation of the force and frequency characteristics of the activator adjusting instrument: effectiveness as a mechanical impedance measurement tool.

    Science.gov (United States)

    Keller, T S; Colloca, C J; Fuhr, A W

    1999-02-01

    To determine the dynamic force-time and force-frequency characteristics of the Activator Adjusting Instrument and to validate its effectiveness as a mechanical impedance measurement device; in addition, to refine or optimize the force-frequency characteristics of the Activator Adjusting Instrument to provide enhanced dynamic structural measurement reliability and accuracy. An idealized test structure consisting of a rectangular steel beam with a static stiffness similar to that of the human thoracolumbar spine was used for validation of a method to determine the dynamic mechanical response of the spine. The Activator Adjusting Instrument equipped with a load cell and accelerometer was used to measure forces and accelerations during mechanical excitation of the steel beam. Driving point and transfer mechanical impedance and resonant frequency of the beam were determined by use of a frequency spectrum analysis for different force settings, stylus masses, and stylus tips. Results were compared with beam theory and transfer impedance measurements obtained by use of a commercial electronic PCB impact hammer. The Activator Adjusting Instrument imparted a very complex dynamic impact comprising an initial high force (116 to 140 N), short duration pulse (analysis of the Activator Adjusting Instrument impulse indicated that the Activator Adjusting Instrument has a variable force spectrum and delivers its peak energy at a frequency of 20 Hz. Added masses and different durometer stylus tips had very little influence on the Activator Adjusting Instrument force spectrum. The resonant frequency of the beam was accurately predicted by both the Activator Adjusting Instrument and electronic PCB impact hammer, but variations in the magnitude of the driving point impedance at the resonant frequency were high (67%) compared with the transfer impedance measurements obtained with the electronic PCB impact hammer, which had a more uniform force spectrum and was more repeatable (frequency

  14. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children with Cerebral Palsy

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-01-01

    Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…

  15. Characteristic analysis of a polarization output coupling Porro prism resonator

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-02-01

    An Electro-optical Q-switched Nd:YAG slab laser with a crossed misalignment Porro prism resonator for space applications has been theoretically and experimentally investigated. The phase shift induced by the combination of different wave plates and Porro prism azimuth angles have been studied for creating high loss condition prior to Q-switching. The relationship of the effective output coupling reflectivity and the employed Q-switch driving voltage is explored by using Jones matrix optics. In the experiment, the maximum output pulse energy of 93 mJ with 14-ns pulse duration is obtained at the repetition rate of 20 Hz and the optical-to-optical conversion efficiency is 16.8%. The beam quality factors are M 2 x = 2.5 and M 2y = 2.2, respectively.

  16. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    Directory of Open Access Journals (Sweden)

    Mohamed Sultan Mohamed Ali

    2014-07-01

    Full Text Available This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF. The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA. The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit’s resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/µm or more for a full out-of-plane travel range of 466 µm and an average actuation velocity of up to 155 µm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device.

  17. Ferromagnetic resonance of a YIG film in the low frequency regime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seongjae [Department of Physics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Grudichak, Scott; Sklenar, Joseph; Ketterson, John B. [Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208 (United States); Tsai, C. C. [Department of Engineering and Management of Advanced Technology, Chang Jung Christian University, Tainan 71101, Taiwan (China); Jang, Moongyu [Department of Materials Science and Engineering, Hallym University, Chuncheon 200-702 (Korea, Republic of); Yang, Qinghui; Zhang, Huaiwu [State Key Laboratory of Electronic Films and Integrated Devices, University of Electronic Science and Technology, Chengdu, Sichuan 610054 (China)

    2016-07-21

    An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the ferromagnetic resonance (FMR) spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR is observed turns out to be quite sensitive to anisotropy constants (by more than a factor ten) in the low frequency (<2 GHz) regime, and when the orientation of the magnetic field is nearly normal to the sample plane; the restoring force on the magnetization arising from the magnetocrystalline anisotropy fields is then comparable to that from the external field, thereby allowing the anisotropy constants to be determined with greater accuracy. In this region, unusual dynamical behaviors are observed such as multiple resonances and a switching of FMR resonance with only a 1° change in field orientation at 0.7 GHz.

  18. An experimental investigation on the pressure characteristics of high speed self-resonating pulsed waterjets influenced by feeding pipe diameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Kang, Dong; Ding, Xiao Long; Wang, Xiao Huan; Fang, Zhen Long [School of Power and Mechanical Engineering, Wuhan University, Hubei Province (China)

    2016-11-15

    The destructive power of a continuous waterjet issuing from a nozzle can be greatly enhanced by generating self-resonance in the nozzle assembly to produce a Self-resonating pulsed waterjet (SRPW). To further improve the performance of SRPW, effects of feeding pipe diameter on the pressure characteristics were experimentally investigated by measuring and analyzing the axial pressure oscillation peaks and amplitudes. Four organ-pipe nozzles of different chamber lengths and three feeding pipes of different diameters were employed. Results show that feeding pipe diameter cannot change the feature of SRPW of having an optimum standoff distance, but it slightly changes the oscillating frequency of the jet. It is also found that feeding pipe diameter significantly affects the magnitudes of pressure oscillation peak and amplitude, largely depending on the pump pressure and standoff distance. The enhancement or attenuation of the pressure oscillation peak and amplitude can be differently affected by the same feeding pipe diameter.

  19. Stimulation of Protein Expression Through the Harmonic Resonance of Frequency-Specific Music.

    Science.gov (United States)

    Orhan, Ibrahim Y; Gulbahar, Burak A

    2016-12-01

    The use of specific frequencies for specific individual amino acids may increase the potential energy of protein molecules in the medium [1]. The resonance would also increase the movement of particles in the cytosol, increasing the collisions necessary for the conduction of protein expression. The clash of two waves that share frequencies will exhibit an increase in energy through an increase in amplitude [2]. The increase in energy would in turn increase the number of collisions forming the tRNA-amino acid, increasing the amino acid acquiry for ribosomes to improve intracellular efficiency in gene expression. To test the hypothesis, Red Fluorescent Protein (RFP) in transformated BL-21 strains of E. coli and p53 protein of MCF-7 were examined after exposure to sounds of specific frequencies. Through the exposure of the experimental systems to a sequence of sounds that match the frequencies of specific amino acids, the levels of RFP exhibition respective to the control groups in the bacterial medium increased two-fold in terms of RFU. The experiments that targeted the p53 protein with the 'music' showed a decrease in the cell prevalence in the MCF-7 type breast cancer cells by 28%, by decreasing the speed of tumour formation. Exposure to 'music' that was designed through assigning a musical note for every single one of the twenty unique amino acids, produced both an analytical and a visible shift in protein synthesis, making it as potential tool for reducing procedural time uptake.

  20. Time-frequency peak filtering for random noise attenuation of magnetic resonance sounding signal

    Science.gov (United States)

    Lin, Tingting; Zhang, Yang; Yi, Xiaofeng; Fan, Tiehu; Wan, Ling

    2018-05-01

    When measuring in a geomagnetic field, the method of magnetic resonance sounding (MRS) is often limited because of the notably low signal-to-noise ratio (SNR). Most current studies focus on discarding spiky noise and power-line harmonic noise cancellation. However, the effects of random noise should not be underestimated. The common method for random noise attenuation is stacking, but collecting multiple recordings merely to suppress random noise is time-consuming. Moreover, stacking is insufficient to suppress high-level random noise. Here, we propose the use of time-frequency peak filtering for random noise attenuation, which is performed after the traditional de-spiking and power-line harmonic removal method. By encoding the noisy signal with frequency modulation and estimating the instantaneous frequency using the peak of the time-frequency representation of the encoded signal, the desired MRS signal can be acquired from only one stack. The performance of the proposed method is tested on synthetic envelope signals and field data from different surveys. Good estimations of the signal parameters are obtained at different SNRs. Moreover, an attempt to use the proposed method to handle a single recording provides better results compared to 16 stacks. Our results suggest that the number of stacks can be appropriately reduced to shorten the measurement time and improve the measurement efficiency.

  1. Optimised frequency modulation for continuous-wave optical magnetic resonance sensing using nitrogen-vacancy ensembles.

    Science.gov (United States)

    El-Ella, Haitham A R; Ahmadi, Sepehr; Wojciechowski, Adam M; Huck, Alexander; Andersen, Ulrik L

    2017-06-26

    Magnetometers based on ensembles of nitrogen-vacancy centres are a promising platform for continuously sensing static and low-frequency magnetic fields. Their combination with phase-sensitive (lock-in) detection creates a highly versatile sensor with a sensitivity that is proportional to the derivative of the optical magnetic resonance lock-in spectrum, which is in turn dependant on the lock-in modulation parameters. Here we study the dependence of the lock-in spectral slope on the modulation of the spin-driving microwave field. Given the presence of the intrinsic nitrogen hyperfine spin transitions, we experimentally show that when the ratio between the hyperfine linewidth and their separation is ≳ 1/4, square-wave based frequency modulation generates the steepest slope at modulation depths exceeding the separation of the hyperfine lines, compared to sine-wave based modulation. We formulate a model for calculating lock-in spectra which shows excellent agreement with our experiments, and which shows that an optimum slope is achieved when the linewidth/separation ratio is ≲ 1/4 and the modulation depth is less then the resonance linewidth, irrespective of the modulation function used.

  2. Effect of planecta and ROSE? on the frequency characteristics of blood pressure-transducer kits

    OpenAIRE

    Fujiwara, Shigeki; Kawakubo, Yoshifumi; Mori, Satoshi; Tachihara, Keiichi; Toyoguchi, Izumi; Yokoyama, Takeshi

    2014-01-01

    Pressure-transducer kits have frequency characteristics such as natural frequency and damping coefficient, which affect the monitoring accuracy. The aim of the present study was to investigate the effect of planecta ports and a damping device (ROSE?, Argon Medical Devices, TX, USA) on the frequency characteristics of pressure-transducer kits. The FloTrac sensor kit (Edwards Lifesciences, CA, USA) and the DTXplus transducer kit (Argon Medical Devices) were prepared with planecta ports, and the...

  3. Lunch frequency among adolescents:associations with sociodemographic factors and school characteristics

    OpenAIRE

    Pedersen, Trine Pagh; Holstein, Bjørn E; Krølner, Rikke; Ersbøll, Annette Kjær; Jørgensen, Thea Suldrup; Aarestrup, Anne Kristine; Utter, Jennifer; McNaughton, Sarah A; Neumark-Stzainer, Dianne; Rasmussen, Mette

    2016-01-01

    OBJECTIVE: To investigate: (i) how lunch frequency of adolescents varies between schools and between classes within schools; (ii) the associations between frequency of lunch and individual sociodemographic factors and school characteristics; and (iii) if any observed associations between lunch frequency and school characteristics vary by gender and age groups.DESIGN: Cross-sectional study in which students and school headmasters completed self-administered questionnaires. Associations were es...

  4. Comparison of capacitive and radio frequency resonator sensors for monitoring parallelized droplet microfluidic production

    KAUST Repository

    Conchouso Gonzalez, David

    2016-06-28

    Scaled-up production of microfluidic droplets, through the parallelization of hundreds of droplet generators, has received a lot of attention to bring novel multiphase microfluidics research to industrial applications. However, apart from droplet generation, other significant challenges relevant to this goal have never been discussed. Examples include monitoring systems, high-throughput processing of droplets and quality control procedures among others. In this paper, we present and compare capacitive and radio frequency (RF) resonator sensors as two candidates that can measure the dielectric properties of emulsions in microfluidic channels. By placing several of these sensors in a parallelization device, the stability of the droplet generation at different locations can be compared, and potential malfunctions can be detected. This strategy enables for the first time the monitoring of scaled-up microfluidic droplet production. Both sensors were prototyped and characterized using emulsions with droplets of 100-150 μm in diameter, which were generated in parallelization devices at water-in-oil volume fractions (φ) between 11.1% and 33.3%.Using these sensors, we were able to measure accurately increments as small as 2.4% in the water volume fraction of the emulsions. Although both methods rely on the dielectric properties of the emulsions, the main advantage of the RF resonator sensors is the fact that they can be designed to resonate at multiple frequencies of the broadband transmission line. Consequently with careful design, two or more sensors can be parallelized and read out by a single signal. Finally, a comparison between these sensors based on their sensitivity, readout cost and simplicity, and design flexibility is also discussed. © 2016 The Royal Society of Chemistry.

  5. Frequency and Variance of Communication Characteristics in Aviation Safety Events

    NARCIS (Netherlands)

    Karanikas, Nektarios; Kaspers, Steffen

    2017-01-01

    In the aviation sector, communication problems have contributed into 70% to 80% of safety occurrences. However, to date we haven’t depicted which communication aspects have affected aviation safety most frequently. Based on literature, we developed a tool which includes communication characteristics

  6. Development of a Magnetron Resonance Frequency Auto Tuning System for Medical Xband [9300 MHz] RF Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sung Su; Lee, Byung Cheol [University of Science and Technology, Daejeon (Korea, Republic of); Kim, Yujong; Park, Hyung Dal; Lee, Byeong-No; Joo, Youngwoo; Cha, Hyungki; Lee, Soo Min; Song, Ki Baek [KAERI, Daejeon (Korea, Republic of); Lee, Seung Hyun [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-05-15

    The total components of the accelerator are the magnetron, electron gun, accelerating structure, a set of solenoid magnets, four sets of steering coils, a modulator, and a circulator. One of the accelerator components of the accelerating structure is made of oxygen-free high-conductivity copper (OFHC), and its volume is changed according to the ambient temperature. As the volume changes, the resonant frequency of the accelerating structure is changed. Accordingly, the resonance frequency is mismatched between the source of the magnetron and the accelerating structure. An automatic frequency tuning system is automatically matched with the resonant frequency of the magnetron and accelerating structure, which allows a high output power and reliable accelerator operation. An automatic frequency tuning system is composed of a step motor control part for correcting the frequency of the source and power measuring parts, i.e., the forward and reflected power between the magnetron and accelerating structure. In this paper, the design, fabrication, and RF power test of the automatic frequency tuning system for the X-band linac are presented. A frequency tuning system was developed to overcome an unstable accelerator operation owing to the frequency mismatch between the magnetron and accelerating structure. The frequency measurement accuracy is 100 kHz and 0.72 degree per pulse.

  7. The effect of magnetic stress and stiffness modulus on resonant characteristics of Ni-Mn-Ga ferromagnetic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Techapiesancharoenkij, Ratchatee; Kostamo, Jari; Allen, Samuel M.; O'Handley, Robert C.

    2011-01-01

    The prospect of using ferromagnetic shape memory alloys (FSMAs) is promising for a resonant actuator that requires large strain output and a drive frequency below 1 kHz. In this investigation, three FSMA actuators, equipped with tetragonal off-stoichiometric Ni 2 MnGa single crystals, were developed to study their frequency response and resonant characteristics. The first actuator, labeled as A1, was constructed with low-k bias springs and one Ni-Mn-Ga single crystal. The second actuator, labeled as A2, was constructed with high-k bias springs and one Ni-Mn-Ga crystal. The third actuator, labeled as A3, was constructed with high-k bias springs and two Ni-Mn-Ga crystals connected in parallel. The three actuators were magnetically driven over the frequency range of 10 Hz-1 kHz under 2 and 3.5 kOe magnetic-field amplitudes. The field amplitude of 2 kOe is insufficient to generate significant strain output from all three actuators; the maximum magnetic-field-induced strain (MFIS) at resonance is 2%. The resonant MFIS output improves to 5% under 3.5-kOe amplitude. The frequency responses of all three actuators show a strong effect of the spring k constant and the Ni-Mn-Ga modulus stiffness on the resonant frequencies. The resonant frequency of the Ni-Mn-Ga actuator was raised from 450 to 650 Hz by increasing bias spring k constant and/or the number of Ni-Mn-Ga crystals. The higher number of the Ni-Mn-Ga crystals not only increases the magnetic force output but also raises the total stiffness of the actuator resulting in a higher resonant frequency. The effective modulus of the Ni-Mn-Ga is calculated from the measured resonant frequencies using the mass-spring equation; the calculated modulus values for the three actuators fall in the range of 50-60 MPa. The calculated effective modulus appears to be close to the average modulus value between the low twinning modulus and high elastic modulus of the untwined Ni-Mn-Ga crystal. - Highlights: → Dynamic FSMA actuation shows

  8. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    International Nuclear Information System (INIS)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J.; Baumann, Susanne

    2016-01-01

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  9. Generation of constant-amplitude radio-frequency sweeps at a tunnel junction for spin resonance STM

    Energy Technology Data Exchange (ETDEWEB)

    Paul, William; Lutz, Christopher P.; Heinrich, Andreas J. [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Baumann, Susanne [IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-07-15

    We describe the measurement and successful compensation of the radio-frequency transfer function of a scanning tunneling microscope over a wide frequency range (15.5–35.5 GHz) and with high dynamic range (>50 dB). The precise compensation of cabling resonances and attenuations is critical for the production of constant-voltage frequency sweeps for electric-field driven electron spin resonance (ESR) experiments. We also demonstrate that a well-calibrated tunnel junction voltage is necessary to avoid spurious ESR peaks that can arise due to a non-flat transfer function.

  10. Investigation of the sideband effect for the LCL-type grid-connected inverter with high LCL resonance frequency

    DEFF Research Database (Denmark)

    Yang, Dongsheng; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    The LCL-type grid connected inverter has been widely used as the intelligent power interface between the distributed generation unit and the power grid. To reduce the cost and volume of the filter, it is desirable to design the LCL filter with higher resonance frequency provided that the quality...... of injected grid current is not compromised. Actually, it is the typical case for the T-type or NPC three-level inverter to design its LCL resonance frequency close to half of the switching frequency. In this case, however, the sideband effect of SPWM modulation can impose a significant impact on the system...

  11. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  12. Panels with low-Q-factor resonators with theoretically infinite sound-proofing ability at a single frequency

    Science.gov (United States)

    Lazarev, L. A.

    2015-07-01

    An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.

  13. Multiparametric magnetic resonance imaging characteristics of prostate tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yue; Huang, Lixiang; Zhang, Xiaodong; Ji, Qian; Shen, Wen [Dept. of Radiology, Tianjin First Central Hospital, Tianjin (China)

    2015-08-15

    To describe the multiparametric magnetic resonance imaging (MRI) appearance of prostate tuberculosis. Six patients with prostate tuberculosis were analyzed retrospectively. The mean age of the patients was 60.5 years (range, 48-67 years). The mean prostate specific antigen concentration was 6.62 ng/mL (range, 0.54-14.57 ng/mL). All patients underwent a multiparametric MRI examination. The histopathological results were obtained from biopsies in four men and from transurethral resection of the prostate in two men after the MRI examination. Nodular (33%, 2/6 patients) and diffuse lesions (67%, 4/6 patients) were seen on MRI. The nodular lesions were featured by extremely low signal intensity (similar to that of muscle) on T2-weighted imaging (T2WI). The T2WI signal intensity of the diffuse lesions was low but higher than that of muscle, which showed high signal intensity on diffusion weighted imaging and low signal intensity on an apparent diffusion coefficient map. MR spectroscopic imaging of this type showed a normal-like spectrum. Abscesses were found in one patient with the nodular type and in one with the diffuse type. The appearance of prostate tuberculosis on MRI can be separated into multiple nodular and diffuse types. Multiparametric MRI may offer useful information for diagnosing prostate tuberculosis.

  14. Changes in speaking fundamental frequency characteristics with aging.

    Science.gov (United States)

    Nishio, Masaki; Niimi, Seiji

    2008-01-01

    Changes in speaking fundamental frequency (SFF) associated with aging were studied in a total of 374 healthy normal speakers (187 males and 187 females) from adolescent to older age groups. Participants were asked to read a sample passage aloud, and acoustic analysis was performed. The main results were as follows: (1) Males exhibited no significant trend for SFF changes in aging. However, a slight increase was observed in participants aged 70 years or older. (2) Females in their 30s and 40s showed obviously lower frequencies than those in their 20s. Across all age groups, including the 80s, SFF tended to decrease markedly in association with aging. (3) The degree of SFF change in association with aging was much larger in females than in males. In addition, reference intervals (mean +/- 1.96 SD) obtained for males and females in each age group are considered useful for clinical detection of abnormalities of SFF, as well as for detection of laryngeal diseases causing SFF abnormality. 2008 S. Karger AG, Basel.

  15. Magnetic Resonance Imaging Characteristics of Ovarian Clear Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available To probe the magnetic resonance imaging (MRI features of ovarian clear cell carcinoma (OCCC.This study retrospectively collected MRI data for 21 pathology-confirmed OCCCs from 19 female patients. The MRI findings were analyzed to determine the tumor size, shape/edge, shape and number of protrusions within the cyst, cystic or necrotic components, signal intensity (SI and enhancement features.The age of the 19 patients ranged from 28 to 63 years (mean age: 53 years. Unilateral tumors were found in 17 patients (17/19, 89%; the average size of all tumors was 10.8 cm. The tumors on MRI were classified into two categories: (a "cystic adnexal mass with solid protrusions" in 12 (57% and (b "solid adnexal mass with cystic areas or necrosis" in 9 (43%. For group a, high to very high SI was observed for most tumors (10/12, 83% on T1-weighted images (T1WIs, and very high SI was observed on T2-weighted images (T2WIs for all 12 tumors. Most solid protrusions were irregular and few in number and exhibited heterogeneous intermediate SI on T1WIs and T2WIs and prolonged enhanced SI in the contrast study. All 9 OCCCs in group b were predominantly solid masses with unequally sized necrotic or cystic areas in which some cysts were located at the periphery of the tumor (4/9, 44%. The solid components in all 9 tumors showed iso- or slightly high SI on T1WIs, heterogeneous iso-high SI on T2WIs and heterogeneous prolonged enhancement. According to FIGO classification, 14 tumors (14/19, 74% were stages I-II, and 5 (5/19, 26% were stages III-IV.On MRI, OCCCs present as large unilateral multilocular or unilocular cystic masses with irregular intermediate SI solid protrusions or predominantly solid masses with cysts or necrosis at an early FIGO stage.

  16. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  17. HEATING CHARACTERISTICS OF SOFTWOODS IN A HIGH FREQUENCY FIELD

    Directory of Open Access Journals (Sweden)

    Ciprian LĂZĂRESCU

    2012-12-01

    Full Text Available The research aimed to establish whetherdielectric heating at radio frequencies might be afeasible option for phytosanitation of green softwoodboards. Results are presented for two softwoodspecies, namely, lodgepole pine (Pinus contorta andwestern red cedar (Thujaplicata Donn., and forsingle-specimen testing configurations with a crosssection of 40x90mm surrounded on three sides bysimilar cross-section kiln dried boards. In terms ofdielectric properties, red cedar is nature "designed" toabsorb more easily the dielectric fields. Heating rateswere not correlated with moisture content for neitherspecies investigated thus underlining the versatility ofRF-heating that allows simultaneous rise oftemperature within dry and wet areas. Convectionlosses through air contact may reduce the averageheating rate of the shell by about 40%.

  18. Experimental Validation of a Theory for a Variable Resonant Frequency Wave Energy Converter (VRFWEC)

    Science.gov (United States)

    Park, Minok; Virey, Louis; Chen, Zhongfei; Mäkiharju, Simo

    2016-11-01

    A point absorber wave energy converter designed to adapt to changes in wave frequency and be highly resilient to harsh conditions, was tested in a wave tank for wave periods from 0.8 s to 2.5 s. The VRFWEC consists of a closed cylindrical floater containing an internal mass moving vertically and connected to the floater through a spring system. The internal mass and equivalent spring constant are adjustable and enable to match the resonance frequency of the device to the exciting wave frequency, hence optimizing the performance. In a full scale device, a Permanent Magnet Linear Generator will convert the relative motion between the internal mass and the floater into electricity. For a PMLG as described in Yeung et al. (OMAE2012), the electromagnetic force proved to cause dominantly linear damping. Thus, for the present preliminary study it was possible to replace the generator with a linear damper. While the full scale device with 2.2 m diameter is expected to generate O(50 kW), the prototype could generate O(1 W). For the initial experiments the prototype was restricted to heave motion and data compared to predictions from a newly developed theoretical model (Chen, 2016).

  19. Non-resonant energy harvester with elastic constraints for low rotating frequencies

    Science.gov (United States)

    Machado, Sebastián P.; Febbo, Mariano; Gatti, Claudio D.; Ramirez, José M.

    2017-11-01

    This paper presents a non-resonant piezoelectric energy harvester (PEH) which is designed to capture energy from low frequency rotational vibration. The proposed device works out of the plane of rotation where the motion of a mass-spring system is transferred to a piezoelectric layer with the intention to generate energy to power wireless structural monitoring systems or sensors. The mechanical structure is formed by two beams with rigid and elastic boundary conditions at the clamped end. On the free boundaries, heavy masses connected by a spring are placed in order to increase voltage generation and diminish the natural frequency. A mathematical framework and the equations governing the energy-harvesting system are presented. Numerical simulations and experimental verifications are performed for different rotation speeds ranging from 0.7 to 2.5 Hz. An output power of 125 μW is obtained for maximum rotating frequency demonstrating that the proposed design can collect enough energy for the suggested application.

  20. Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Waleed Tariq Sethi

    2015-01-01

    Full Text Available The last decade has witnessed a remarkable growth in the telecommunication industry. With the introduction of smart gadgets, the demand for high data rate and bandwidth for wireless applications have increased exponentially at the cost of exponential consumption of energy. The latter is pushing the research and industry communities to devise green communication solutions that require the design of energy saving devices and techniques in one part and ambient energy harvesting techniques in the other part. With the advent of nanocomponents fabrication technology, researchers are now able to tap into the THz frequency regime and fabricate optical low profile antennas at a nanoscale. Optical antennas have proved their potential and are revolutionizing a class of novel optical detectors, interconnectors, sensors, and energy harvesting related fields. Authors in this paper propose an equilateral triangular dielectric resonator nantenna (ETDRNA working at 193.5 THz standard optical frequency. The simulated antenna achieves an impedance bandwidth from 192.3 THz to 197.3 THz with an end-fire directivity of 8.6 dBi, covering the entire standard optical window of C-band. Numerical demonstrations prove the efficiency of the nantenna at the frequencies of interest, making it a viable candidate for future green energy harvesting and high speed optical applications.

  1. Study on electromagnetic characteristics of the magnetic coupling resonant coil for the wireless power transmission system.

    Science.gov (United States)

    Wang, Zhongxian; Liu, Yiping; Wei, Yonggeng; Song, Yilin

    2018-01-01

    The resonant coil design is taken as the core technology in the magnetic coupling resonant wireless power transmission system, which achieves energy transmission by the coupling of the resonant coil. This paper studies the effect of the resonant coil on energy transmission and the efficiency of the system. Combining a two-coil with a three-coil system, the optimum design method for the resonant coil is given to propose a novel coil structure. First, the co-simulation methods of Pspice and Maxwell are used. When the coupling coefficient of the resonant coil is different, the relationship between system transmission efficiency, output power, and frequency is analyzed. When the self-inductance of the resonant coil is different, the relationship between the performance and frequency of the system transmission is analyzed. Then, two-coil and three-coil structure models are built, and the parameters of the magnetic field of the coils are calculated and analyzed using the finite element method. In the end, a dual E-type simulation circuit model is used to optimize the design of the novel resonance coil. The co-simulation results show that the coupling coefficients of the two-coil, three-coil, and novel coil systems are 0.017, 0.17 and 0.0126, respectively. The power loss of the novel coil is 16.4 mW. There is an obvious improvement in the three-coil system, which shows that the magnetic leakage of the field and the energy coupling are relatively small. The new structure coil has better performance, and the load loss is lower; it can improve the system output power and transmission efficiency.

  2. Correlation between radiographic analysis of alveolar bone density around dental implant and resonance frequency of dental implant

    Science.gov (United States)

    Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.

    2017-08-01

    The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.

  3. Hyperfine interaction mediated electric-dipole spin resonance: the role of frequency modulation

    International Nuclear Information System (INIS)

    Li, Rui

    2016-01-01

    The electron spin in a semiconductor quantum dot can be coherently controlled by an external electric field, an effect called electric-dipole spin resonance (EDSR). Several mechanisms can give rise to the EDSR effect, among which there is a hyperfine mechanism, where the spin-electric coupling is mediated by the electron–nucleus hyperfine interaction. Here, we investigate the influence of frequency modulation (FM) on the spin-flip efficiency. Our results reveal that FM plays an important role in the hyperfine mechanism. Without FM, the electric field almost cannot flip the electron spin; the spin-flip probability is only about 20%. While under FM, the spin-flip probability can be improved to approximately 70%. In particular, we find that the modulation amplitude has a lower bound, which is related to the width of the fluctuated hyperfine field. (paper)

  4. Optical sum-frequency generation in a whispering-gallery-mode resonator

    International Nuclear Information System (INIS)

    Strekalov, Dmitry V; Kowligy, Abijith S; Huang, Yu-Ping; Kumar, Prem

    2014-01-01

    We demonstrate sum-frequency generation between a telecom wavelength and the Rb D2 line, achieved through natural phase matching in a nonlinear whispering gallery mode resonator. Due to the strong optical field confinement and ultra high Q of the cavity, the process saturates already at sub-mW pump peak power, at least two orders of magnitude lower than in existing waveguide-based devices. The experimental data are in agreement with the nonlinear dynamics and phase matching theory based on spherical geometry. Our experimental and theoretical results point toward a new platform for manipulating the color and quantum states of light waves for applications such as atomic memory based quantum networking and logic operations with optical signals. (paper)

  5. Adjustable ferromagnetic resonance frequency in CoO/CoFeB system

    Energy Technology Data Exchange (ETDEWEB)

    Bonneau-Brault, A. [CEA Le Ripault, BP16, 37260 Monts (France); GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France); Dubourg, S. [CEA Le Ripault, BP16, 37260 Monts (France); Thiaville, A. [LPS, CNRS UMR 8502, University of Paris-Sud, 91405 Orsay Cedex (France); Rioual, S. [LMB EA4522, University of Brest, 6 av. Le Gorgeu, 29238 Brest Cedex 3 (France); Valente, D. [GREMAN, CNRS UMR 7347, University of Tours, 37200 Tours (France)

    2015-01-21

    Static and dynamic properties of (CoO/CoFeB){sub n} multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained.

  6. Analysis of High Frequency Resonance in DFIG-based Offshore Wind Farm via Long Transmission Cable

    DEFF Research Database (Denmark)

    Song, Yipeng; Ebrahimzadeh, Esmaeil; Blaabjerg, Frede

    2018-01-01

    During the past two decades, the Doubly Fed Induction Generator (DFIG) based wind farm has been under rapid growth, and the increasing wind power penetration has been seen. Practically, these wind farms are connected to the three-phase AC grid through long transmission cable which can be modelled...... as several II units. The impedance of this cable cannot be neglected and requires careful investigation due to its long distance. As a result, the impedance interaction between the DFIG based wind farm and the long cable is inevitable, and may produce High Frequency Resonance (HFR) in the wind farm....... This paper discusses the HFR of the large scale DFIG based wind farm connected to the long cable. Several influencing factors, including 1) the length of the cable, 2) the output active power and 3) the rotor speed, are investigated. Simulation validations using MATLAB / Simulink have been conducted...

  7. Adjustable ferromagnetic resonance frequency in CoO/CoFeB system

    International Nuclear Information System (INIS)

    Bonneau-Brault, A.; Dubourg, S.; Thiaville, A.; Rioual, S.; Valente, D.

    2015-01-01

    Static and dynamic properties of (CoO/CoFeB) n multilayers have been investigated. An anisotropy field enhancement was evidenced when the CoO layer was deposited under the CoFeB layer. Tuning the relative CoFeB and CoO layers thicknesses, high ferromagnetic resonance frequencies up to 4 GHz were achieved. The coupling effect between the CoO and CoFeB layers was induced by a dipolar coupling due to the anisotropic roughness topology of the CoO layer. This anisotropic roughness was induced by the deposition geometry and evidenced by atomic force microscopy. The strength of the dipolar interfacial coupling was calculated thanks to Schlömann's model. Multilayer stacks were fabricated and the magnetic properties observed for the trilayers could be maintained

  8. High-Frequency Electron Paramagnetic Resonance Spectroscopy of Nitroxide-Functionalized Nanodiamonds in Aqueous Solution.

    Science.gov (United States)

    Akiel, R D; Stepanov, V; Takahashi, S

    2017-06-01

    Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.

  9. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)

  10. Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology

    Science.gov (United States)

    Hirth, Michael; Kuhn, Jochen; Müller, Andreas

    2015-02-01

    Recent articles about smartphone experiments have described their applications as experimental tools in different physical contexts.1-4 They have established that smartphones facilitate experimental setups, thanks to the small size and diverse functions of mobile devices, in comparison to setups with computer-based measurements. In the experiment described in this article, the experimental setup is reduced to a minimum. The objective of the experiment is to determine the speed of sound with a high degree of accuracy using everyday tools. An article published recently proposes a time-of-flight method where sound or acoustic pulses are reflected at the ends of an open tube.5 In contrast, the following experiment idea is based on the harmonic resonant frequencies of such a tube, simultaneously triggered by a noise signal.

  11. Applicability of ultralow-frequency global resonances for investigating lightning activity on Venus

    International Nuclear Information System (INIS)

    Nikolaenko, A.P.; Rabinovich, L.M.

    1987-01-01

    The application to experiments on Venus of methods of investigating global lightning activity that are used on earth in the ultralow-frequency range is discussed. Calculations of the electromagnetic fields in the range from a few Hertz to tens of Hertz are carried out in the framework of the model of the lower ionosphere of Venus, which generalizes the information about the planet's atmosphere which is presently available. The calculations showed that observations of global resonances on Venus must, as on the earth, allow one to obtain data about the global distribution of lightning in space and time, and to make the values of the parameters of the lower ionosphere model more precise

  12. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    International Nuclear Information System (INIS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan

    2016-01-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10"1"7 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  13. Materials tests and analyses of Faraday shield tubes for ICRF [ion cyclotron resonant frequency] antennas

    International Nuclear Information System (INIS)

    King, J.F.; Baity, F.W.; Hoffman, D.J.; Walls, J.C.; Taylor, D.J.

    1988-01-01

    The ion cyclotron resonant frequency (ICRF) antennas for heating fusion plasmas require careful analysis of the materials selected for the design and the successful fabrication of high integrity braze bonds. Graphite tiles are brazed to Inconel 625 Faraday shield tubes to protect the antenna from the plasma. The bond between the graphite and Inconel tube is difficult to achieve due to the different coefficients of thermal expansion. A 2-D stress analysis showed the graphite could be bonded to Inconel with a Ag-Cu-Ti braze alloy without cracking the graphite. Brazing procedures and nondestructive examination methods have been developed for these joints. This paper presents the results of our joining development and proof testing. 2 refs., 3 figs

  14. Effect of planecta and ROSE™ on the frequency characteristics of blood pressure-transducer kits.

    Science.gov (United States)

    Fujiwara, Shigeki; Kawakubo, Yoshifumi; Mori, Satoshi; Tachihara, Keiichi; Toyoguchi, Izumi; Yokoyama, Takeshi

    2015-12-01

    Pressure-transducer kits have frequency characteristics such as natural frequency and damping coefficient, which affect the monitoring accuracy. The aim of the present study was to investigate the effect of planecta ports and a damping device (ROSE™, Argon Medical Devices, TX, USA) on the frequency characteristics of pressure-transducer kits. The FloTrac sensor kit (Edwards Lifesciences, CA, USA) and the DTXplus transducer kit (Argon Medical Devices) were prepared with planecta ports, and their frequency characteristics were tested with or without ROSE™. The natural frequency and damping coefficient of each kit were obtained using frequency characteristics analysis software and evaluated by plotting them on the Gardner's chart. By inserting a planecta port, the natural frequency markedly decreased in both the FloTrac sensor kit (from 40 to 22 Hz) and the DTXplus transducer kit (from 35 to 22 Hz). In both kits with one planecta port, the damping coefficient markedly increased by insertion of ROSE™ from 0.2 to 0.5, optimising frequency characteristics. In both kits with two planecta ports, however, the natural frequency decreased from 22 to 12 Hz. The damping coefficient increased from 0.2 to 0.8 by insertion of ROSE™; however, optimisation was not achieved even by ROSE™ insertion. Planecta ports decrease the natural frequency of the kit. ROSE™ is useful to optimise the frequency characteristics in the kits without or with one planecta port. However, optimisation is difficult with two or more planecta ports, even with the ROSE™ device.

  15. Ferromagnetic resonance frequency increase and resonance line broadening of a ferromagnetic Fe–Co–Hf–N film with in-plane uniaxial anisotropy by high-frequency field perturbation

    International Nuclear Information System (INIS)

    Seemann, K.; Leiste, H.; Krüger, K.

    2013-01-01

    Soft ferromagnetic Fe-Co-Hf-N films, produced by reactive r.f. magnetron sputtering, are useful to study the ferromagnetic resonance (FMR) by means of frequency domain permeability measurements up to the GHz range. Films with the composition Fe 33 Co 43 Hf 10 N 14 exhibit a saturation polarisation J s of around 1.35 T. They are consequently considered as being uniformly magnetised due to an in-plane uniaxial anisotropy of approximately μ 0 H u ≈4.5 m T after annealing them, e.g., at 400 °C in a static magnetic field for 1 h. Being exposed to a high-frequency field, the precession of magnetic moments leads to a marked frequency-dependent permeability with a sharp Lorentzian shaped imaginary part at around 2.33 GHz (natural resonance peak), which is in a very good agreement with the modified Landau–Lifschitz–Gilbert (LLG) differential equation. A slightly increased FMR frequency and a clear increase in the resonance line broadening due to an increase of the exciting high-frequency power (1–25.1 mW), considered as an additional perturbation of the precessing system of magnetic moments, could be discovered. By solving the homogenous LLG differential equation with respect to the in-plane uniaxial anisotropy, it was revealed that the high-frequency field perturbation impacts the resonance peak position f FMR and resonance line broadening Δf FMR characterised by a completed damping parameter α=α eff +Δα. Adapted from this result, the increase in f FMR and decrease in lifetime of the excited level of magnetic moments associated with Δf FMR , similar to a spin-½ particle in a static magnetic field, was theoretically elaborated as well as compared with experimental data. - Highlights: • Impact on the resonance frequency and resonance line by the high-frequency power. • Theoretic approach by solving the LLG differential equation. • Experimental verification and magnon processes. • Theoretical and experimental determination of the resonance state

  16. Classification of thyroid nodules using a resonance-frequency-based electrical impedance spectroscopy: progress assessment

    Science.gov (United States)

    Zheng, Bin; Tublin, Mitchell E.; Lederman, Dror; Klym, Amy H.; Brown, Erica D.; Gur, David

    2012-02-01

    The incidence of thyroid cancer is rising faster than other malignancies and has nearly doubled in the United States (U.S.) in the last 30 years. However, classifying between malignant and benign thyroid nodules is often difficult. Although ultrasound guided Fine Needle Aspiration Biopsy (FNAB) is considered an excellent tool for triaging patients, up to 25% of FNABs are inconclusive. As a result, definitive diagnosis requires an exploratory surgery and a large number of these are performed in the U.S. annually. It would be extremely beneficial to develop a non-invasive tool or procedure that could assist in assessing the likelihood of malignancy of otherwise indeterminate thyroid nodules, thereby reducing the number of exploratory thyroidectomies that are performed under general anesthesia. In this preliminary study we demonstrate a unique hand-held Resonance-frequency based Electrical Impedance Spectroscopy (REIS) device with six pairs of detection probes to detect and classify thyroid nodules using multi-channel EIS output signal sweeps. Under an Institutional Review Board (IRB)-approved case collection protocol, this REIS device is being tested in our clinical facility and we have been collecting an initial patient data set since March of this year. Between March and August of 2011, 65 EIS tests were conducted on 65 patients. Among these cases, six depicted pathology-verified malignant cells. Our initial assessment indicates the feasibility of easily applying this REIS device and measurement approach in a very busy clinical setting. The measured resonance frequency differences between malignant and benign nodules could potentially make it possible to accurately classify indeterminate thyroid nodules.

  17. Low propagation loss in a one-port SAW resonator fabricated on single-crystal diamond for super-high-frequency applications.

    Science.gov (United States)

    Fujii, Satoshi; Odawara, Tatsuya; Yamada, Haruya; Omori, Tatsuya; Hashimoto, Ken-Ya; Torii, Hironori; Umezawa, Hitoshi; Shikata, Shinichi

    2013-05-01

    Diamond has the highest known SAW phase velocity, sufficient for applications in the gigahertz range. However, although numerous studies have demonstrated SAW devices on polycrystalline diamond thin films, all have had much larger propagation loss than single-crystal materials such as LiNbO3. Hence, in this study, we fabricated and characterized one-port SAW resonators on single-crystal diamond substrates synthesized using a high-pressure and high-temperature method to identify and minimize sources of propagation loss. A series of one-port resonators were fabricated with the interdigital transducer/ AlN/diamond structure and their characteristics were measured. The device with the best performance exhibited a resonance frequency f of 5.3 GHz, and the equivalent circuit model gave a quality factor Q of 5509. Thus, a large fQ product of approximately 2.9 × 10(13) was obtained, and the propagation loss was found to be only 0.006 dB/wavelength. These excellent properties are attributed mainly to the reduction of scattering loss in a substrate using a single-crystal diamond, which originated from the grain boundary of diamond and the surface roughness of the AlN thin film and the diamond substrate. These results show that single-crystal diamond SAW resonators have great potential for use in low-noise super-high-frequency oscillators.

  18. Resonant frequency of the silicon micro-structure of MEMS vector hydrophone in fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Guojun Zhang

    2015-04-01

    Full Text Available The MEMS vector hydrophone developed by the North University of China has advantages of high Signal to Noise Ratio, ease of array integration, etc. However, the resonance frequency of the MEMS device in the liquid is different from that in the air due to the fluid-structure interaction (FSI. Based on the theory of Fluid-Solid Coupling, a generalized distributed mass attached on the micro-structure has been found, which results in the resonance frequency of the microstructure in the liquid being lower than that in the air. Then, an FSI simulation was conducted by ANSYS software. Finally, the hydrophone was measured by using a shaking table and a vector hydrophone calibration system respectively. Results show that, due to the FSI, the resonance frequency of the MEMS devices of the bionic vector hydrophone in the liquid declines approximately 30% compared to the case in the air.

  19. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor.

    Science.gov (United States)

    Shao, Yu; Wang, Ying; Cao, Shaoqing; Huang, Yijian; Zhang, Longfei; Zhang, Feng; Liao, Changrui; Wang, Yiping

    2018-06-25

    A surface plasmon resonance (SPR) sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA) is demonstrated for relative humidity (RH) sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  20. Mechanism and Characteristics of Humidity Sensing with Polyvinyl Alcohol-Coated Fiber Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Yu Shao

    2018-06-01

    Full Text Available A surface plasmon resonance (SPR sensor based on a side-polished single mode fiber coated with polyvinyl alcohol (PVA is demonstrated for relative humidity (RH sensing. The SPR sensor exhibits a resonant dip in the transmission spectrum in ambient air after PVA film coating, and the resonant wavelength shifts to longer wavelengths as the thickness of the PVA film increases. When RH changes, the resonant dip of the sensor with different film-thicknesses exhibits interesting characteristics for optical spectrum evolution. For sensors with initial wavelengths between 550 nm and 750 nm, the resonant dip shifts to longer wavelengths with increasing RH. The averaged sensitivity increases firstly and then drops, and shows a maximal sensitivity of 1.01 nm/RH%. Once the initial wavelength of the SPR sensor exceeds 850 nm, an inflection point of the resonant wavelength shift can be observed with RH increasing, and the resonant dip shifts to shorter wavelengths for RH values exceeding this point, and sensitivity as high as −4.97 nm/RH% can be obtained in the experiment. The sensor is expected to have potential applications in highly sensitive and cost effective humidity sensing.

  1. Microwave-to-optical frequency conversion using a cesium atom coupled to a superconducting resonator

    Science.gov (United States)

    Gard, Bryan T.; Jacobs, Kurt; McDermott, R.; Saffman, M.

    2017-07-01

    A candidate for converting quantum information from microwave to optical frequencies is the use of a single atom that interacts with a superconducting microwave resonator on one hand and an optical cavity on the other. The large electric dipole moments and microwave transition frequencies possessed by Rydberg states allow them to couple strongly to superconducting devices. Lasers can then be used to connect a Rydberg transition to an optical transition to realize the conversion. Since the fundamental source of noise in this process is spontaneous emission from the atomic levels, the resulting control problem involves choosing the pulse shapes of the driving lasers so as to maximize the transfer rate while minimizing this loss. Here we consider the concrete example of a cesium atom, along with two specific choices for the levels to be used in the conversion cycle. Under the assumption that spontaneous emission is the only significant source of errors, we use numerical optimization to determine the likely rates for reliable quantum communication that could be achieved with this device. These rates are on the order of a few megaqubits per second.

  2. Shape of a clamped stiff harpsichord wire driven at a resonant frequency

    Science.gov (United States)

    Hanson, Roger J.; Macomber, Hilliard Kent; Boucher, Mathew A.

    2002-05-01

    A wire transversely driven by a sinusoidal force at the resonant frequency of a vibrational mode vibrates at the driving frequency and at harmonics generated by nonlinear processes in the wire. If the amplitude of a harmonic is measured as a function of position along the wire, its shape is revealed. It differs significantly from a sinusoid in the vicinity of either end of the wire because the ends are clamped and the wire has significant stiffness. The shapes of various harmonics have been determined for a brass harpsichord wire, 70 cm long, from optical detector measurements made at different distances from a clamped end. Knowledge of shape facilitates the determination of antinode amplitudes of harmonics when the gross motion of the wire is so large that the detectors must be positioned near an end of the wire because of their very limited dynamic range. Some observations of harmonics and related phenomena were reported previously [Hanson et al., J. Acoust Soc. Am. 108, 2592 (2000); 106, 2141 (1999)]. The shape information is also needed to help separate nonlinear effects possibly occurring in the detectors from those of interest, occurring in the wire itself.

  3. Effect of non-ideal clamping shape on the resonance frequencies of silicon nanocantilevers

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Nicu, Liviu [CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse Cedex 4 (France); Perisanu, Sorin; Vincent, Pascal [LPMCN, Universite Claude Bernard Lyon 1 et CNRS, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France); Lazarus, Arnaud; Thomas, Olivier, E-mail: sguillon@laas.fr [Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Metiers, 2 rue Conte, 75003 Paris (France)

    2011-06-17

    In this paper, we investigate the effects of non-ideal clamping shapes on the dynamic behavior of silicon nanocantilevers. We fabricated silicon nanocantilevers using silicon on insulator (SOI) wafers by employing stepper ultraviolet (UV) lithography, which permits a resolution of under 100 nm. The nanocantilevers were driven by electrostatic force inside a scanning electron microscope (SEM). Both lateral and out-of-plane resonance frequencies were visually detected with the SEM. Next, we discuss overhanging of the cantilever support and curvature at the clamping point in the silicon nanocantilevers, which generally arises in the fabrication process. We found that the fundamental out-of-plane frequency of a realistically clamped cantilever is always lower than that for a perfectly clamped cantilever, and depends on the cantilever width and the geometry of the clamping point structure. Using simulation with the finite-elements method, we demonstrate that this discrepancy is attributed to the particular geometry of the clamping point (non-zero joining curvatures and a flexible overhanging) that is obtained in the fabrication process. The influence of the material orthotropy is also investigated and is shown to be negligible.

  4. Vibration-response due to thickness loss on steel plate excited by resonance frequency

    Science.gov (United States)

    Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.

    2018-04-01

    The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.

  5. Comprehensive high frequency electron paramagnetic resonance studies of single molecule magnets

    Science.gov (United States)

    Lawrence, Jonathan D.

    This dissertation presents research on a number of single molecule magnet (SMM) compounds conducted using high frequency, low temperature magnetic resonance spectroscopy of single crystals. By developing a new technique that incorporated other devices such as a piezoelectric transducer or Hall magnetometer with our high frequency microwaves, we were able to collect unique measurements on SMMs. This class of materials, which possess a negative, axial anisotropy barrier, exhibit unique magnetic properties such as quantum tunneling of a large magnetic moment vector. There are a number of spin Hamiltonians used to model these systems, the most common one being the giant spin approximation. Work done on two nickel systems with identical symmetry and microenvironments indicates that this model can contain terms that lack any physical significance. In this case, one must turn to a coupled single ion approach to model the system. This provides information on the nature of the exchange interactions between the constituent ions of the molecule. Additional studies on two similar cobalt systems show that, for these compounds, one must use a coupled single ion approach since the assumptions of the giant spin model are no longer valid. Finally, we conducted a collection of studies on the most famous SMM, Mn12Ac. Three different techniques were used to study magnetization dynamics in this system: stand-alone HFEPR in two different magnetization relaxation regimes, HFEPR combined with magnetometry, and HFEPR combined with surface acoustic waves. All of this research gives insight into the relaxation mechanisms in Mn12Ac.

  6. Patch Antenna based on a Photovoltaic Cell with a Dual resonance Frequency

    Directory of Open Access Journals (Sweden)

    C. Baccouch

    2016-11-01

    Full Text Available The present work was to use photovoltaic solar cells in patch antenna structures. The radiating patch element of a patch antenna was replaced by a solar cell. Direct Current (DC generation remained the original feature of the solar cell, but additionally   it was now able to receive and transmit electromagnetic waves. Here, we used a new patch antenna structure based on a photovoltaic solar cell. It was then used to collect photo-generated current as well as Radio Frequency (RF transmission. A mathematical model which would serve the minimization of power losses of the cell and therefore the improvement in the conversion efficiency was studied. A simulation allowed analysing the performance of the antenna, with a silicon material, and testing its parameters such as the reflection coefficient (S11, gain, directivity and radiated power. The performance analysis of the solar cell patch antenna was conducted using Advanced Design System (ADS software. Simulation results for this antenna showed a dual resonance frequency of 5.77 GHz and of 6.18 GHz with an effective return loss of -38.22dB and a gain of 1.59dBi.

  7. Broadband frequency ECR ion source concepts with large resonant plasma volumes

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    New techniques are proposed for enhancing the performances of ECR ion sources. The techniques are based on the use of high-power, variable-frequency, multiple-discrete-frequency, or broadband microwave radiation, derived from standard TWT technology, to effect large resonant ''volume'' ECR sources. The creation of a large ECR plasma ''volume'' permits coupling of more power into the plasma, resulting in the heating of a much larger electron population to higher energies, the effect of which is to produce higher charge state distributions and much higher intensities within a particular charge state than possible in present forms of the ECR ion source. If successful, these developments could significantly impact future accelerator designs and accelerator-based, heavy-ion-research programs by providing multiply-charged ion beams with the energies and intensities required for nuclear physics research from existing ECR ion sources. The methods described in this article can be used to retrofit any ECR ion source predicated on B-minimum plasma confinement techniques

  8. A Dual-Bridge LLC Resonant Converter with Fixed-Frequency PWM Control for Wide Input Applications

    DEFF Research Database (Denmark)

    Xiaofeng, Sun; Li, Xiaohua; Shen, Yanfeng

    2017-01-01

    This paper proposes a dual-bridge (DB) LLC resonant converter for wide input applications. The topology is an integration of a half-bridge (HB) LLC circuit and a full-bridge (FB) LLC circuit. The fixed-frequency PWM control is employed and a range of twice the minimum input voltage can be covered....... Compared with the traditional pulse frequency modulation (PFM) controlled HB/FB LLC resonant converter, the voltage gain range is independent of the quality factor and the magnetizing inductor has little influence on the voltage gain, which can simplify the parameter selection process and benefit...

  9. Length-extension resonator as a force sensor for high-resolution frequency-modulation atomic force microscopy in air.

    Science.gov (United States)

    Beyer, Hannes; Wagner, Tino; Stemmer, Andreas

    2016-01-01

    Frequency-modulation atomic force microscopy has turned into a well-established method to obtain atomic resolution on flat surfaces, but is often limited to ultra-high vacuum conditions and cryogenic temperatures. Measurements under ambient conditions are influenced by variations of the dew point and thin water layers present on practically every surface, complicating stable imaging with high resolution. We demonstrate high-resolution imaging in air using a length-extension resonator operating at small amplitudes. An additional slow feedback compensates for changes in the free resonance frequency, allowing stable imaging over a long period of time with changing environmental conditions.

  10. The Effect of Menstrual Cycle on Nasal Resonance Characteristics in Females

    Science.gov (United States)

    Kumar, Suman; Basu, Shriya; Sinha, Anisha; Chatterjee, Indranil

    2012-01-01

    The purpose of this study was to analyze resonance characteristics (nasality and nasalance values) during the menstrual cycle. Previous studies indicate changes in voice quality and nasal mucosa due to temporary falling estrogen levels in human females during their menstrual cycle. The present study compared the nasality and "nasalance scores"…

  11. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    Science.gov (United States)

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (pstate condition. The distributions of PSD of tremor were symmetrical, regardless of conditions. Tremor is more evident and typical tremor characteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels. Copyright © 2016. Published by Elsevier B.V.

  12. Statistical Modelling of Resonant Cross Section Structure in URR, Model of the Characteristic Function

    International Nuclear Information System (INIS)

    Koyumdjieva, N.

    2006-01-01

    A statistical model for the resonant cross section structure in the Unresolved Resonance Region has been developed in the framework of the R-matrix formalism in Reich Moore approach with effective accounting of the resonance parameters fluctuations. The model uses only the average resonance parameters and can be effectively applied for analyses of cross sections functional, averaged over many resonances. Those are cross section moments, transmission and self-indication functions measured through thick sample. In this statistical model the resonant cross sections structure is accepted to be periodic and the R-matrix is a function of ε=E/D with period 0≤ε≤N; R nc (ε)=π/2√(S n *S c )1/NΣ(i=1,N)(β in *β ic *ctg[π(ε i - = ε-iS i )/N]; Here S n ,S c ,S i is respectively neutron strength function, strength function for fission or inelastic channel and strength function for radiative capture, N is the number of resonances (ε i ,β i ) that obey the statistic of Porter-Thomas and Wigner's one. The simple case of this statistical model concerns the resonant cross section structure for non-fissile nuclei under the threshold for inelastic scattering - the model of the characteristic function with HARFOR program. In the above model some improvements of calculation of the phases and logarithmic derivatives of neutron channels have been done. In the parameterization we use the free parameter R l ∞ , which accounts the influence of long-distant resonances. The above scheme for statistical modelling of the resonant cross section structure has been applied for evaluation of experimental data for total, capture and inelastic cross sections for 232 Th in the URR (4-150) keV and also the transmission and self-indication functions in (4-175) keV. The set of evaluated average resonance parameters have been obtained. The evaluated average resonance parameters in the URR are consistent with those in the Resolved Resonance Region (CRP for Th-U cycle, Vienna, 2006

  13. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra, E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in [Excimer Laser Section, LMPD, Raja Ramanna Center for Advanced Technology, Indore 452013 (India)

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  14. Resonant magneto-acoustic switching: influence of Rayleigh wave frequency and wavevector

    Science.gov (United States)

    Kuszewski, P.; Camara, I. S.; Biarrotte, N.; Becerra, L.; von Bardeleben, J.; Savero Torres, W.; Lemaître, A.; Gourdon, C.; Duquesne, J.-Y.; Thevenard, L.

    2018-06-01

    We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of , much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.

  15. Theoretical investigation of resonance frequencies in long wavelength electromagnetic wave scattering process from plasma prolate and oblate spheroids placed in a dielectric layer

    Science.gov (United States)

    Ahmadizadeh, Y.; Jazi, B.; Abdoli-Arani, A.

    2014-01-01

    Response of a prolate spheroid plasma and/or an oblate spheroid plasma in presence of long wavelength electromagnetic wave has been studied. The resonance frequencies of these objects are obtained and it is found that they reduce to the resonance frequency of spherical cold plasma. Moreover, the resonant frequencies of prolate spheroid plasma and oblate spheroid plasma covered by a dielectric are investigated as well. Furthermore, their dependency on dielectric permittivity and geometry dimensions is simulated.

  16. Intercomparison of Methods for Determination of Resonant Frequency Shift of a Microstrip Patch Antenna Loaded with Hevea Rubber Latex

    Directory of Open Access Journals (Sweden)

    Nor Zakiah Yahaya

    2014-01-01

    Full Text Available This paper presents an intercomparison between the finite element method, method of moment, and the variational method to determine the effect of moisture content on the resonant frequency shift of a microstrip patch loaded with wet material. The samples selected for this study were Hevea rubber latex with different percentages of moisture content from 35% to 85%. The results were compared with the measurement data in the frequency range between 1 GHz and 4 GHz. It was found that the finite element method is the most accurate among all the three computational techniques with 0.1 mean error when compared to the measured resonant frequency shift. A calibration equation was obtained to predict moisture content from the measured frequency shift with an accuracy of 2%.

  17. Comparison of pulse characteristic of low frequency ultrasonic probes for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Suhairy Sani; Muhammad Pauzi Ismail

    2006-01-01

    Ultrasonic testing of concrete or large volume of composites usually is done in low frequency range. To obtain low frequency pulse, a low frequency pulser/receiver is used attached to a low frequency probe as transmitter/receiver. Concrete is highly attenuative and a high energy pulse is essential to ensure good penetration of test samples. High energy pulse can be obtained by producing low frequency ultrasonic waves.To achieve high penetration in concrete, a low frequency probe is fabricated with the centre frequency lying at around 100 kHz. The probe is fabricated with single crystal of 18 mm thickness without any backing material to obtain wider pulse and higher pulse power. Then, comparison of pulse characteristic is done between the fabricated probe and a commercially available probe to determine the quality of the probe fabricated. (Author)

  18. Novel Simplified Model for Asynchronous Machine with Consideration of Frequency Characteristic

    Directory of Open Access Journals (Sweden)

    Changchun Cai

    2014-01-01

    Full Text Available The frequency characteristic of electric equipment should be considered in the digital simulation of power systems. The traditional asynchronous machine third-order transient model excludes not only the stator transient but also the frequency characteristics, thus decreasing the application sphere of the model and resulting in a large error under some special conditions. Based on the physical equivalent circuit and Park model for asynchronous machines, this study proposes a novel asynchronous third-order transient machine model with consideration of the frequency characteristic. In the new definitions of variables, the voltages behind the reactance are redefined as the linear equation of flux linkage. In this way, the rotor voltage equation is not associated with the derivative terms of frequency. However, the derivative terms of frequency should not always be ignored in the application of the traditional third-order transient model. Compared with the traditional third-order transient model, the novel simplified third-order transient model with consideration of the frequency characteristic is more accurate without increasing the order and complexity. Simulation results show that the novel third-order transient model for the asynchronous machine is suitable and effective and is more accurate than the widely used traditional simplified third-order transient model under some special conditions with drastic frequency fluctuations.

  19. Tuning characteristic of band gap and waveguide in a multi-stub locally resonant phononic crystal plate

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Wang

    2015-10-01

    Full Text Available In this paper, the tuning characteristics of band gaps and waveguides in a locally resonant phononic crystal structure, consisting of multiple square stubs deposited on a thin homogeneous plate, are investigated. Using the finite element method and supercell technique, the dispersion relationships and power transmission spectra of those structures are calculated. In contrast to a system of one square stub, systems of multiple square stubs show wide band gaps at lower frequencies and an increased quantity of band gaps at higher frequencies. The vibration modes of the band gap edges are analyzed to clarify the mechanism of the generation of the lowest band gap. Additionally, the influence of the stubs arrangement on the band gaps in multi-stub systems is investigated. The arrangements of the stubs were found to influence the band gaps; this is critical to understand for practical applications. Based on this finding, a novel method to form defect scatterers by changing the arrangement of square stubs in a multi-stub perfect phononic crystal plate was developed. Defect bands can be induced by creating defects inside the original complete band gaps. The frequency can then be tuned by changing the defect scatterers’ stub arrangement. These results will help in fabricating devices such as acoustic filters and waveguides whose band frequency can be modulated.

  20. Tuning the Stiffness Balance Using Characteristic Frequencies as a Criterion for a Superconducting Gravity Gradiometer

    Science.gov (United States)

    Liu, Xikai; Ma, Dong; Chen, Liang; Liu, Xiangdong

    2018-01-01

    Tuning the stiffness balance is crucial to full-band common-mode rejection for a superconducting gravity gradiometer (SGG). A reliable method to do so has been proposed and experimentally tested. In the tuning scheme, the frequency response functions of the displacement of individual test mass upon common-mode accelerations were measured and thus determined a characteristic frequency for each test mass. A reduced difference in characteristic frequencies between the two test masses was utilized as the criterion for an effective tuning. Since the measurement of the characteristic frequencies does not depend on the scale factors of displacement detection, stiffness tuning can be done independently. We have tested this new method on a single-component SGG and obtained a reduction of two orders of magnitude in stiffness mismatch. PMID:29419796

  1. Split Hopkinson Resonant Bar Test for Sonic-Frequency Acoustic Velocity and Attenuation Measurements of Small, Isotropic Geologic Samples

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S.

    2011-04-01

    Mechanical properties (seismic velocities and attenuation) of geological materials are often frequency dependent, which necessitates measurements of the properties at frequencies relevant to a problem at hand. Conventional acoustic resonant bar tests allow measuring seismic properties of rocks and sediments at sonic frequencies (several kilohertz) that are close to the frequencies employed for geophysical exploration of oil and gas resources. However, the tests require a long, slender sample, which is often difficult to obtain from the deep subsurface or from weak and fractured geological formations. In this paper, an alternative measurement technique to conventional resonant bar tests is presented. This technique uses only a small, jacketed rock or sediment core sample mediating a pair of long, metal extension bars with attached seismic source and receiver - the same geometry as the split Hopkinson pressure bar test for large-strain, dynamic impact experiments. Because of the length and mass added to the sample, the resonance frequency of the entire system can be lowered significantly, compared to the sample alone. The experiment can be conducted under elevated confining pressures up to tens of MPa and temperatures above 100 C, and concurrently with x-ray CT imaging. The described Split Hopkinson Resonant Bar (SHRB) test is applied in two steps. First, extension and torsion-mode resonance frequencies and attenuation of the entire system are measured. Next, numerical inversions for the complex Young's and shear moduli of the sample are performed. One particularly important step is the correction of the inverted Young's moduli for the effect of sample-rod interfaces. Examples of the application are given for homogeneous, isotropic polymer samples and a natural rock sample.

  2. Evaluation of acoustic resonance at branch section in main steam line. Part 2. Proposal of method for predicting resonance frequency in steam flow

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2012-01-01

    Flow-induced acoustic resonances of piping system containing closed side-branches are sometimes encountered in power plants. Acoustic standing waves with large amplitude pressure fluctuation in closed side-branches are excited by the unstable shear layer which separates the mean flow in the main piping from the stagnant fluid in the branch. In U.S. NPP, the steam dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a power uprating condition. Our previous research developed the method for evaluating the acoustic resonance at the branch sections in actual power plants by using CFD. In the method, sound speed in wet steam is evaluated by its theory on the assumption of homogeneous flow, although it may be different from practical sound speed in wet steam. So, it is necessary to consider and introduce the most suitable model of practical sound speed in wet steam. In addition, we tried to develop simplified prediction method of the amplitude and frequency of pressure fluctuation in wet steam flow. Our previous experimental research clarified that resonance amplitude of fluctuating pressure at the top of the branch in wet steam. However, the resonance frequency in steam condition could not be estimated by using theoretical equation as the end correction in steam condition and sound speed in wet steam is not clarified as same reason as CFD. Therefore, in this study, we tried to evaluate the end correction in each dry and wet steam and sound speed of wet steam from experimental results. As a result, method for predicting resonance frequency by using theoretical equation in each wet and dry steam condition was proposed. (author)

  3. Unified analytical expressions for calculating resonant frequencies, transimpedances, and equivalent input noise current densities of tuned receiver front ends

    DEFF Research Database (Denmark)

    Liu, Qing Zhong

    1992-01-01

    Unified analytical expressions have been derived for calculating the resonant frequencies, transimpedance and equivalent input noise current densities of the four most widely used tuned optical receiver front ends built with FETs and p-i-n diodes. A more accurate FET model has been used to improve...

  4. Acoustic loss and frequency stability studies of gamma- and proton-irradiated alpha-quartz crystal resonators

    International Nuclear Information System (INIS)

    Suter, J.J.

    1988-01-01

    This work examines the radiation-induced effects in alpha-quartz crystal resonators and distinguishes the various acoustic losses responsible for the frequency susceptibility over these dose ranges. Simulation of low-earth-orbit proton radiation was accomplished with protons from the Harvard University Cyclotron using a novel proton-beam modulator, which was designed to emulate a 10-120 MeV proton spectrum for the radiation susceptibility and acoustic-loss studies on AT quartz resonators. Quartz resonators having aluminum defect center concentrations between 0.01 and 19 ppm experienced proton-induced frequency shifts not correlated to their aluminum impurity content. It was also found that AT quartz resonators of the electrode-less BVA design experienced the smallest frequency shifts. Experiments conducted with 1.25-MeV gamma rays from a cobalt 60 source demonstrated identical frequency shifts in quartz, indicating that the energy losses of gamma rays and protons in quartz over the examined dose and energy ranges were similar. Acoustic-loss measurements conducted over the 0.3-70 K range revealed that the phonon-phonon and two-level energy excitation peaks near 20 and 5 K, respectively, were not affected by proton or cobalt 60 radiation

  5. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Directory of Open Access Journals (Sweden)

    Thi Dep Ha

    2016-04-01

    Full Text Available Phononic crystals (PnCs and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1 a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2 influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  6. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Thi Dep, E-mail: hathidep@yahoo.com [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China); Faculty of Electronic Technology, Industrial University of Ho Chi Minh City, Hochiminh City (Viet Nam); Bao, JingFu, E-mail: baojingfu@uestc.edu.cn [School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731 (China)

    2016-04-15

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young’s modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  7. Frequency of referral of patients with safety-related contraindications to magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dewey, Marc [Departments of Radiology, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: marc.dewey@charite.de; Schink, Tania [Medical Biometry, Charite, Medical School, Humboldt-Universitaet zu Berlin (Germany)]. E-mail: tania.schink@charite.de; Dewey, Charles F. [Radiology, Outpatient Centre Loebau, Poststr. 20, 02738 Loebau (Germany)]. E-mail: dewey@t-online.de

    2007-07-15

    Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians.

  8. Frequency of referral of patients with safety-related contraindications to magnetic resonance imaging

    International Nuclear Information System (INIS)

    Dewey, Marc; Schink, Tania; Dewey, Charles F.

    2007-01-01

    Purpose: To analyse the frequency of patients with absolute and relative contraindications to magnetic resonance (MR) imaging who were actually referred to an outpatient imaging centre for an MR examination Materials and methods: Altogether a total of 51,547 consecutive patients were included between November 1997 and December 2005. Reasons preventing MR imaging were classified into the following categories: absolute and relative contraindications. Results: The referral frequency of patients with absolute contraindications to MR imaging was 0.41% (211 of 51,547 patients; 95% CI, 0.36-0.47%). The absolute contraindications were shrapnels located in biologically sensitive areas (121 patients, 0.23%; 95% CI, 0.20-0.28%), cardiac pacemakers (42 patients, 0.08%; 95% CI, 0.06-0.11%), and other unsafe implants (48 patients, 0.09%; 95% CI, 0.07-0.12%). Also patients with a relative contraindication to MR imaging were referred such as women with a first-trimester pregnancy (13 patients, 0.03%; 95% CI, 0.01-0.04%). Conclusion: Surprisingly, a considerable number of patients (0.41%) with cardiac pacemakers, other metallic implants (not approved for MR), or shrapnels are referred to MR facilities despite the well-known recommendations not to examine such patients. Thus, absolute contraindications to MR imaging are commonly found among patients referred for MR examinations and every effort needs to be made to screen patients prior to MR imaging for such contraindications to avoid detrimental results. Also, institutions placing implants (approved and unapproved for MR) should become legally responsible for providing the required information to the patients and their physicians

  9. Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation

    Directory of Open Access Journals (Sweden)

    N Hatefi Kargan

    2013-09-01

    Full Text Available  In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.

  10. Theta-frequency resonance at the cerebellum input stage improves spike-timing on the millisecond time-scale

    Directory of Open Access Journals (Sweden)

    Daniela eGandolfi

    2013-04-01

    Full Text Available The neuronal circuits of the brain are thought to use resonance and oscillations to improve communication over specific frequency bands (Llinas, 1988; Buzsaki, 2006. However, the properties and mechanism of these phenomena in brain circuits remain largely unknown. Here we show that, at the cerebellum input stage, the granular layer generates its maximum response at 5-7 Hz both in vivo following tactile sensory stimulation of the whisker pad and in acute slices following mossy fiber-bundle stimulation. The spatial analysis of granular layer activity performed using voltage-sensitive dye (VSD imaging revealed 5-7 Hz resonance covering large granular layer areas. In single granule cells, resonance appeared as a reorganization of output spike bursts on the millisecond time-scale, such that the first spike occurred earlier and with higher temporal precision and the probability of spike generation increased. Resonance was independent from circuit inhibition, as it persisted with little variation in the presence of the GABAA receptor blocker, gabazine. However, circuit inhibition reduced the resonance area more markedly at 7 Hz. Simulations with detailed computational models suggested that resonance depended on intrinsic granule cells ionic mechanisms: specifically, Kslow (M-like and KA currents acted as resonators and the persistent Na current and NMDA current acted as amplifiers. This form of resonance may play an important role for enhancing coherent spike emission from the granular layer when theta-frequency bursts are transmitted by the cerebral cortex and peripheral sensory structures during sensory-motor processing, cognition and learning.

  11. Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators.

    Science.gov (United States)

    Melnychuk, O; Grassellino, A; Romanenko, A

    2014-12-01

    In this paper, we discuss error analysis for intrinsic quality factor (Q0) and accelerating gradient (Eacc) measurements in superconducting radio frequency (SRF) resonators. The analysis is applicable for cavity performance tests that are routinely performed at SRF facilities worldwide. We review the sources of uncertainties along with the assumptions on their correlations and present uncertainty calculations with a more complete procedure for treatment of correlations than in previous publications [T. Powers, in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27]. Applying this approach to cavity data collected at Vertical Test Stand facility at Fermilab, we estimated total uncertainty for both Q0 and Eacc to be at the level of approximately 4% for input coupler coupling parameter β1 in the [0.5, 2.5] range. Above 2.5 (below 0.5) Q0 uncertainty increases (decreases) with β1 whereas Eacc uncertainty, in contrast with results in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27], is independent of β1. Overall, our estimated Q0 uncertainty is approximately half as large as that in Powers [in Proceedings of the 12th Workshop on RF Superconductivity, SuP02 (Elsevier, 2005), pp. 24-27].

  12. Measurement of Primary and Secondary Stability of Dental Implants by Resonance Frequency Analysis Method in Mandible

    Science.gov (United States)

    Shokri, Mehran; Daraeighadikolaei, Arash

    2013-01-01

    Background. There is no doubt that the success of the dental implants depends on the stability. The aim of this work was to measure the stability of dental implants prior to loading the implants, using a resonance frequency analysis (RFA) by Osstell mentor device. Methods. Ten healthy and nonsmoker patients over 40 years of age with at least six months of complete or partial edentulous mouth received screw-type dental implants by a 1-stage procedure. RFA measurements were obtained at surgery and 1, 2, 3, 4, 5, 7, and 11 weeks after the implant surgery. Results. Among fifteen implants, the lowest mean stability measurement was for the 4th week after surgery in all bone types. At placement, the mean ISQ obtained with the magnetic device was 77.2 with 95% confidence interval (CI) = 2.49, and then it decreased until the 4th week to 72.13 (95% CI = 2.88), and at the last measurement, the mean implant stability significantly (P value implant placement. These suggestions need to be further assessed through future studies. PMID:23737790

  13. Hybrid method to predict the resonant frequencies and to characterise dual band proximity coupled microstrip antennas

    Science.gov (United States)

    Varma, Ruchi; Ghosh, Jayanta

    2018-06-01

    A new hybrid technique, which is a combination of neural network (NN) and support vector machine, is proposed for designing of different slotted dual band proximity coupled microstrip antennas. Slots on the patch are employed to produce the second resonance along with size reduction. The proposed hybrid model provides flexibility to design the dual band antennas in the frequency range from 1 to 6 GHz. This includes DCS (1.71-1.88 GHz), PCS (1.88-1.99 GHz), UMTS (1.92-2.17 GHz), LTE2300 (2.3-2.4 GHz), Bluetooth (2.4-2.485 GHz), WiMAX (3.3-3.7 GHz), and WLAN (5.15-5.35 GHz, 5.725-5.825 GHz) bands applications. Also, the comparative study of this proposed technique is done with the existing methods like knowledge based NN and support vector machine. The proposed method is found to be more accurate in terms of % error and root mean square % error and the results are in good accord with the measured values.

  14. Magnetic resonance imaging of lumbar spine disc diseases. Frequency of false negatives; Imagerie par resonance magnetique pour pathologie discale lombaire. Frequence des faux-negatifs

    Energy Technology Data Exchange (ETDEWEB)

    Berthelot, J.M.; Maugars, Y.; Delecrin, Y.; Caillon, F.; Prost, A. [Hopital Hotel-Dieu de Nantes, 44 (France)

    1995-10-01

    Magnetic resonance imaging (MRI) has had an impressive impact on evaluation of degenerative diseases of the spine. Nevertheless, false negatives can occur on images involving lumbar discs. Degenerative disc diseases documented on discography and/or pathology examination of the discs can go unrecognized. Likewise sensitivity for the detection of protruding disc hernias is not totally satisfactory (20% false negatives). Finally, a magnetic resonance image visualizing displacement of the disc is not specific (10 to 15% false positives); images showing protrusion or hernia can be seen in 30% of asymptomatic patients. Although MRI gives slightly more information than other imaging techniques, false images do exist. Moreover, the usefulness of MRI to demonstrate disc disease in case of a negative CT-scan remains to be demonstrated. (authors). 26 refs.

  15. Prediction of multiple resonance characteristics by an extended resistor-inductor-capacitor circuit model for plasmonic metamaterials absorbers in infrared.

    Science.gov (United States)

    Xu, Xiaolun; Li, Yongqian; Wang, Binbin; Zhou, Zili

    2015-10-01

    The resonance characteristics of plasmonic metamaterials absorbers (PMAs) are strongly dependent on geometric parameters. A resistor-inductor-capacitor (RLC) circuit model has been extended to predict the resonance wavelengths and the bandwidths of multiple magnetic polaritons modes in PMAs. For a typical metallic-dielectric-metallic structure absorber working in the infrared region, the developed model describes the correlation between the resonance characteristics and the dimensional sizes. In particular, the RLC model is suitable for not only the fundamental resonance mode, but also for the second- and third-order resonance modes. The prediction of the resonance characteristics agrees fairly well with those calculated by the finite-difference time-domain simulation and the experimental results. The developed RLC model enables the facilitation of designing multi-band PMAs for infrared radiation detectors and thermal emitters.

  16. A High-Frequency Isolation (HFI Charging DC Port Combining a Front-End Three-Level Converter with a Back-End LLC Resonant Converter

    Directory of Open Access Journals (Sweden)

    Guowei Cai

    2017-09-01

    Full Text Available The high-frequency isolation (HFI charging DC port can serve as the interface between unipolar/bipolar DC buses and electric vehicles (EVs through the two-power-stage system structure that combines the front-end three-level converter with the back-end logical link control (LLC resonant converter. The DC output voltage can be maintained within the desired voltage range by the front-end converter. The electrical isolation can be realized by the back-end LLC converter, which has the bus converter function. According to the three-level topology, the low-voltage rating power devices can be adapted for half-voltage stress of the total DC grid, and the PWM phase-shift control can double the equivalent switching frequency to greatly reduce the filter volume. LLC resonant converters have advance characteristics of inverter-side zero-voltage-switching (ZVS and rectifier-side zero-current switching (ZCS. In particular, it can achieve better performance under quasi-resonant frequency mode. Additionally, the magnetizing current can be modified following different DC output voltages, which have the self-adaptation ZVS condition for decreasing the circulating current. Here, the principles of the proposed topology are analyzed in detail, and the design conditions of the three-level output filter and high-frequency isolation transformer are explored. Finally, a 20 kW prototype with the 760 V input and 200–500 V output are designed and tested. The experimental results are demonstrated to verify the validity and performance of this charging DC port system structure.

  17. Studies of frequency dependent C-V characteristics of neutron irradiated p+-n silicon detectors

    International Nuclear Information System (INIS)

    Li, Zheng; Kraner, H.W.

    1990-10-01

    Frequency-dependent capacitance-voltage fluence (C-V) characteristics of neutron irradiated high resistivity silicon p + -n detectors have been observed up to a fluence of 8.0 x 10 12 n/cm 2 . It has been found that frequency dependence of the deviation of the C-V characteristic (from its normal V -1/2 dependence), is strongly dependent on the ratio of the defect density and the effective doping density N t /N' d . As the defect density approaches the effective dopant density, or N t /N' d → 1, the junction capacitance eventually assumes the value of the detector geometry capacitance at high frequencies (f ≤ 10 5 Hz), independent of voltage. A two-trap-level model using the concept of quasi-fermi levels has been developed, which predicts both the effects of C-V frequency dependence and dopant compensation observed in this study

  18. Angular characteristics of a multimode fibre surface plasmon resonance sensor under wavelength interrogation

    International Nuclear Information System (INIS)

    Tan, Zhixin; Hao, Xin; Li, Xuejin; Chen, Yuzhi; Hong, Xueming; Fan, Ping

    2016-01-01

    In this paper the angular characteristics of a multimode fibre SPR sensor are theoretically investigated. By separating the contributions of beams incident at different angles, a compact model is presented to predict the shift of the resonance wavelength with respect to the angle and the environmental refractive index. The result suggests that the performance of conventional fibre SPR sensors can be substantially improved by optimizing the incident angle. Furthermore, our investigation suggests some problems in previous reports. (paper)

  19. Study of titanium nitride elasticity characteristics in the homogeneity range by ultrasonic resonance method

    International Nuclear Information System (INIS)

    Khidirov, I.; Khajdarov, T.

    1995-01-01

    Elasticity characteristics of cubic and tetragonal phases of titanium nitride in the homogeneity range were studied for the first time by ultrasonic resonance method. It is established that the Young modulus, the shift and volume module of cubic titanium nitride elasticity in the homogeneity range change nonlinearly with decrease in nitrogen concentration and correlate with concentration dependences of other physical properties.15 refs., 2 figs

  20. Femtosecond pulse with THz repetition frequency based on the coupling between quantum emitters and a plasmonic resonator

    Science.gov (United States)

    Li, Shilei; Ding, Yinxing; Jiao, Rongzhen; Duan, Gaoyan; Yu, Li

    2018-03-01

    Nanoscale pulsed light is highly desirable in nano-integrated optics. In this paper, we obtained femtosecond pulses with THz repetition frequency via the coupling between quantum emitters (QEs) and plasmonic resonators. Our structure consists of a V -groove (VG) plasmonic resonator and a nanowire embedded with two-level QEs. The influences of the incident light intensity and QE number density on the transmission response for this hybrid system are investigated through semiclassical theory and simulation. The results show that the transmission response can be modulated to the pulse form. And the repetition frequency and extinction ratio of the pulses can be controlled by the incident light intensity and QE number density. The reason is that the coupling causes the output power of nanowire to behave as an oscillating form, the oscillating output power in turn causes the field amplitude in the resonator to oscillate over time. A feedback system is formed between the plasmonic resonator and the QEs in the nanowire. This provides a method for generating narrow pulsed lasers with ultrahigh repetition frequencies in plasmonic systems using a continuous wave input, which has potential applications in generating optical clock signals at the nanoscale.

  1. A novel method of support vector machine to compute the resonant frequency of annular ring compact microstrip antennas

    Directory of Open Access Journals (Sweden)

    Ahmet Kayabasi

    2015-12-01

    Full Text Available An application of support vector machine (SVM to compute the resonant frequency at dominant mode TM11 of annular ring compact microstrip antennas (ARCMAs is presented in this paper. ARCMAs have some useful features; resonant modes can be adjusted by controlling the ratio of the outer radius to the inner radius. The resonant frequencies of 100 ARCMAs with varied dimensions and electrical parameters in accordance with UHF band covering GSM, LTE, WLAN, and WiMAX applications were simulated with IE3D™ which is a robust numerical electromagnetic computational tool. Then, the SVM model was built with simulation data and 88 simulated ARCMAs were operated for training and the remaining 12 ARCMAs were used for testing this model. The proposed model has been confirmed by comparing with the suggestions reported elsewhere via measurement data published earlier in the literature, and it has further validated on an ARCMA operating at 3 GHz fabricated in this study. The obtained results show that this technique can be successfully used to compute the resonant frequency of ARCMAs without involving any sophisticated methods. The novelty of the approach described here is to offer ease of designing the process using this method.

  2. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  3. Resonant frequencies in an elevated spherical container partially filled with water: FEM and measurement

    Science.gov (United States)

    Curadelli, O.; Ambrosini, D.; Mirasso, A.; Amani, M.

    2010-01-01

    In this paper, a numerical-experimental study of the overall dynamical response of elevated spherical tanks subjected to horizontal base motion is presented. The main objective is to gain insight in the physical response of this particular structural typology widely used in the petrochemical industry as liquefied petroleum gas (LPG) containers. In order to identify the natural frequencies of the modes that mainly contribute to the response, experimental free vibration tests on an elevated spherical tank model for different liquid levels were carried out. Next, a numerical model that takes into account the coupling between fluid and structure was developed and validated against the experimental results. A very good agreement between experimental and numerical results was obtained. The results obtained show the influence of liquid levels on natural frequencies and indicate that the sloshing has a significant effect on the dynamical characteristics of the analyzed system. In order to obtain a good representation of the overall dynamical behaviour of the system by means of a simplified lumped mass model, a minimum of three masses is suggested. Finally, appropriate names of these three masses are proposed in the present paper.

  4. Damping characteristic identification of non-linear soil-structural system interaction by phase resonance

    International Nuclear Information System (INIS)

    Poterasu, V.F.

    1984-01-01

    It is presented a method and the phase resonance for damping characteristic identification of non-linear soil-structural interaction. The algorithm can be applied in case of any, not necessarily, damping characteristic of the system examined. For the identification, the system is harmonically excited and are considered the super-harmonic amplitudes for odd and even powers of the x. The response of shear beam system for different levels of base excitation and for different locations of the load is considered. (Author) [pt

  5. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  6. Study on DFIG wind turbines control strategy for improving frequency response characteristics

    Science.gov (United States)

    Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu

    2012-01-01

    The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.

  7. Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn.

    Science.gov (United States)

    Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F

    2011-01-01

    The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox). Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Spatiotemporal frequency characteristics of cerebral oscillations during the perception of fundamental frequency contour changes in one-syllable intonation.

    Science.gov (United States)

    Ueno, Sanae; Okumura, Eiichi; Remijn, Gerard B; Yoshimura, Yuko; Kikuchi, Mitsuru; Shitamichi, Kiyomi; Nagao, Kikuko; Mochiduki, Masayuki; Haruta, Yasuhiro; Hayashi, Norio; Munesue, Toshio; Tsubokawa, Tsunehisa; Oi, Manabu; Nakatani, Hideo; Higashida, Haruhiro; Minabe, Yoshio

    2012-05-02

    Accurate perception of fundamental frequency (F0) contour changes in the human voice is important for understanding a speaker's intonation, and consequently also his/her attitude. In this study, we investigated the neural processes involved in the perception of F0 contour changes in the Japanese one-syllable interjection "ne" in 21 native-Japanese listeners. A passive oddball paradigm was applied in which "ne" with a high falling F0 contour, used when urging a reaction from the listener, was randomly presented as a rare deviant among a frequent "ne" syllable with a flat F0 contour (i.e., meaningless intonation). We applied an adaptive spatial filtering method to the neuromagnetic time course recorded by whole-head magnetoencephalography (MEG) and estimated the spatiotemporal frequency dynamics of event-related cerebral oscillatory changes in the oddball paradigm. Our results demonstrated a significant elevation of beta band event-related desynchronization (ERD) in the right temporal and frontal areas, in time windows from 100 to 300 and from 300 to 500 ms after the onset of deviant stimuli (high falling F0 contour). This is the first study to reveal detailed spatiotemporal frequency characteristics of cerebral oscillations during the perception of intonational (not lexical) F0 contour changes in the human voice. The results further confirmed that the right hemisphere is associated with perception of intonational F0 contour information in the human voice, especially in early time windows. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    International Nuclear Information System (INIS)

    Mantsinen, M.

    1999-01-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  10. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  11. Low frequency fluctuations in resting-state functional magnetic resonance imaging and their applications

    International Nuclear Information System (INIS)

    Küblböck, M.

    2015-01-01

    Over the course of the last two decades, functional magnetic resonance imaging (fMRI) has emerged as a widely used, highly accepted and very popular method for the assessment of neuronal activity in the human brain. It is a completely non-invasive imaging technique with high temporal resolution, which relies on the measurement of local differences in magnetic susceptibility between oxygenated and deoxygenated blood. Therefore, fMRI can be regarded as an indirect measure of neuronal activity via measurement of localised changes in cerebral blood flow and cerebral oxygen consumption. Maps of neuronal activity are calculated from fMRI data acquired either in the presence of an explicit task (task-based fMRI) or in absence of a task (resting-state fMRI). While in task-based fMRI task-specific patterns of brain activity are subject to research, resting-state fMRI reveals fundamental networks of intrinsic brain activity. These networks are characterized by low-frequency oscillations in the power spectrum of resting-state fMRI data. In the present work, we first introduce the physical principles and the technical background that allow us to measure these changes in blood oxygenation, followed by an introduction to the blood oxygenation level dependent (BOLD) effect and to analysis methods for both task-based and resting-state fMRI data. We also analyse the temporal signal-to-noise ratio (tSNR) of a novel 2D-EPI sequence, which allows the experimenter to acquire several slices simultaneously in order to assess the optimal parameter settings for this sequence at 3T. We then proceed to investigate the temporal properties of measures for the amplitude of low-frequency oscillations in resting-state fMRI data, which are regarded as potential biomarkers for a wide range of mental diseases in various clinical studies and show the high stability and robustness of these data, which are important prerequisites for application as a biomarker as well as their dependency on head motion

  12. Incidental extracerebral findings on brain nonenhanced magnetic resonance imaging: frequency, nondetection rate, and clinical importance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming-Liang; Wei, Xiao-Er [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Lu, Li-Yan [Nanjing Medical University, Department of Radiology, Nanjing First Hospital, Nanjing (China); Li, Wen-Bin [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Kashgar Prefecture Second People' s Hospital, Imaging Center, Kashgar (China)

    2017-03-15

    This study aims to elucidate the frequency, nondetection rate, and clinical importance of incidental extracerebral findings (IECFs) on brain nonenhanced magnetic resonance imaging (MRI). A total of 8284 brain MRIs performed between January 1, 2015 and December 31, 2015 were evaluated for the presence of IECFs and the distribution of IECFs was analyzed. IECFs were categorized as E1 (clinically unimportant, e.g., sinus mucosal thickening); E2 (likely unimportant, e.g., pharyngeal mucosal symmetrical thickening); and E3 (potentially important, e.g., pharyngeal mucosal asymmetrical thickening). The nondetection rate was determined by comparing the results of the structured approach with the initial MRI reports. The medical records were examined for patients with E3 IECFs to assess clinical importance and outcome of these lesions. A total of 5992 IECFs were found in 4469 of the 8284 patients (54.0%). E1 findings constituted 82.2% (4924/5992) of all IECFs; E2 constituted 16.6% (995/5992) and E3 constituted 1.2% (73/5992). Overall IECFs and E1 findings were significantly more common in male patients (P < 0.05). Statistically significant difference was also seen between the different age groups (P < 0.001). The nondetection rate was 56.9% (3409/5992) for overall IECFs and 32.9% (24/73) for E3 IECFs. Of the 73 patients with E3 IECFs, 34 (46.6%) received final diagnosis and appropriate treatment during the study period. IECFs are prevalent in clinical patients on brain MR images with a nondetection rate of 32.9% for potentially important (E3) findings. The reporting of IECFs according to clinical importance is helpful for patients' management. (orig.)

  13. Development of Energy Efficiency Design Map based on acoustic resonance frequency of suction muffler in compressor

    International Nuclear Information System (INIS)

    Oh, Seungjae; Wang, Semyung; Cho, Sungman

    2015-01-01

    Highlights: • Development of Energy Efficiency Design Map. • Experimental validation of Energy Efficiency Design Map. • Suggestion regarding the Acoustically Supercharged Energy Efficiency. • Sensitivity analysis of the Energy Efficiency Ratio with respect to acoustic pressure. • Suggestion regarding the hybrid coupling method for acoustic analysis in compressor. - Abstract: The volumetric efficiency of the Internal Combustion (IC) engine and compressor can be increased by properly adjusting the acoustic resonance frequency of the suction muffler or the suction valve timing without any additional equipment or power source. This effect is known as acoustic supercharging. However, the energy efficiency has become more important than the volumetric efficiency because of the energy shortage issue and factors influencing consumers’ purchasing decisions. Therefore, methods for increasing the energy efficiency using the acoustic effect in the suction part of IC engine and compressor should be considered. In this study, a systematic method for improving the energy efficiency using the acoustic effect in the suction part of the compressor used in refrigerators and air conditioners was developed for the first time. This effect is named as the Acoustically Supercharged Energy Efficiency (ASEE). For the ASEE, first, a hybrid coupling method was suggested for the acoustical analysis in the suction part of the compressor. Next, an Energy Efficiency Design Map (EEDM) was proposed. This can serve as a design guide for suction mufflers in terms of the energy efficiency. Finally, sensitivity analyses of the Energy Efficiency Ratio (EER) and total massflow rate with respect to the acoustic pressure were conducted to identify the relationship between the acoustic pressure and the suction valve motion. This provides the physical background for the EEDM

  14. The Impact of Resonance Frequency Breathing on Measures of Heart Rate Variability, Blood Pressure, and Mood

    Directory of Open Access Journals (Sweden)

    Patrick R. Steffen

    2017-08-01

    Full Text Available Heart rate variability biofeedback (HRVB significantly improves heart rate variability (HRV. Breathing at resonance frequency (RF, approximately 6 breaths/min constitutes a key part of HRVB training and is hypothesized to be a pathway through which biofeedback improves HRV. No studies to date, however, have experimentally examined whether RF breathing impacts measures of HRV. The present study addressed this question by comparing three groups: the RF group breathed at their determined RF for 15 min; the RF + 1 group breathed at 1 breath/min higher than their determined RF for 15 min; and the third group sat quietly for 15 min. After this 15-min period, all groups participated in the Paced Auditory Serial Addition Task (PASAT for 8 min, and then sat quietly during a 10-min recovery period. HRV, blood pressure, and mood were measured throughout the experiment. Groups were not significantly different on any of the measures at baseline. After the breathing exercise, the RF group reported higher positive mood than the other two groups and a significantly higher LF/HF HRV ratio relative to the control group, a key goal in HRVB training (p < 0.05. Additionally, the RF group showed lower systolic blood pressure during the PASAT and during the recovery period relative to the control group, with the RF + 1 group not being significantly different from either group (p < 0.05. Overall, RF breathing appears to play an important role in the positive effect HRVB has on measures of HRV.

  15. Correlation analysis between team communication characteristics and frequency of inappropriate communications

    International Nuclear Information System (INIS)

    Kim, Ar Ryum; Lee, Seung Woo; Park, Jinkyun; Kang, Hyun Gook; Seong, Poong Hyun

    2013-01-01

    Highlights: • We proposed a method to evaluate team communication characteristics based on social network analysis. • We compare team communication characteristics with the frequency of inappropriate communications. • Frequency of inappropriate communications were decreased when more operators perform the same types of role as others. • Frequency of inappropriate communications were decreased for teams who provide more number of acknowledgment. - Abstract: The characteristics of team communications are important since large process systems such as nuclear power plants, airline, and railways are operated by operating teams. In such situation, inappropriate communications can cause a lack of situational information and lead to serious consequences for the systems. As a result, the communication characteristics of operating teams should be understood in order to extract meaningful insights to address the nature of inappropriate communications. The purpose of this study was to develop a method to evaluate the characteristics of team communications based on social network analysis and compare them with the frequency of inappropriate communications. In order to perform the analysis, verbal protocol data, which were audio-visual recorded under training sessions by operating teams, were used and interfacing system loss of coolant accident scenarios were selected. As a result of the study, it was found that the frequency of inappropriate communications decreased when more operators perform the same types of role as other operators, since they can easily and effectively back up each other. Also, the frequency of inappropriate communication is decreased for teams which provide a relatively large communication content that acknowledge or confirm another communication content

  16. Classification of multiple sclerosis patients by latent class analysis of magnetic resonance imaging characteristics.

    Science.gov (United States)

    Zwemmer, J N P; Berkhof, J; Castelijns, J A; Barkhof, F; Polman, C H; Uitdehaag, B M J

    2006-10-01

    Disease heterogeneity is a major issue in multiple sclerosis (MS). Classification of MS patients is usually based on clinical characteristics. More recently, a pathological classification has been presented. While clinical subtypes differ by magnetic resonance imaging (MRI) signature on a group level, a classification of individual MS patients based purely on MRI characteristics has not been presented so far. To investigate whether a restricted classification of MS patients can be made based on a combination of quantitative and qualitative MRI characteristics and to test whether the resulting subgroups are associated with clinical and laboratory characteristics. MRI examinations of the brain and spinal cord of 50 patients were scored for 21 quantitative and qualitative characteristics. Using latent class analysis, subgroups were identified, for whom disease characteristics and laboratory measures were compared. Latent class analysis revealed two subgroups that mainly differed in the extent of lesion confluency and MRI correlates of neuronal loss in the brain. Demographics and disease characteristics were comparable except for cognitive deficits. No correlations with laboratory measures were found. Latent class analysis offers a feasible approach for classifying subgroups of MS patients based on the presence of MRI characteristics. The reproducibility, longitudinal evolution and further clinical or prognostic relevance of the observed classification will have to be explored in a larger and independent sample of patients.

  17. Design of LCL-filters with LCL resonance frequencies beyond the Nyquist frequency for grid-connected inverters

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2015-01-01

    , and this observation is so far not discussed in the literature. In this case, very cost-effective LCL-filter design can be achieved for grid-connected converters whose dominant switching harmonics may appear at double of the switching frequency, e.g. in unipolar modulated three-level full bridge converters and 12...

  18. Design of LCL Filters With LCL Resonance Frequencies Beyond the Nyquist Frequency for Grid-Connected Converters

    DEFF Research Database (Denmark)

    Tang, Yi; Yao, Wenli; Loh, Poh Chiang

    2016-01-01

    , and this observation is so far not discussed in the literature. In this case, a very cost-effective LCL filter design can be achieved for the grid-connected converters, whose dominant switching harmonics may appear at double the switching frequency, e.g., in unipolar-modulated three-level full-bridge converters and 12...

  19. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  20. A series-resonant converter used as an amplitude and frequency function generator

    NARCIS (Netherlands)

    Huisman, H.; Gravendeel, B.

    1988-01-01

    A series-resonant power converter system is presented which allows generation of multiphase output voltages with very low distortion at high efficiency. The self-commutated resonant operation mode ensures the converter to be short-circuit proof. After a discussion of the control concept, some

  1. Enhancement of ohmic and stochastic heating by resonance effects in capacitive radio frequency discharges: a theoretical approach.

    Science.gov (United States)

    Mussenbrock, T; Brinkmann, R P; Lieberman, M A; Lichtenberg, A J; Kawamura, E

    2008-08-22

    In low-pressure capacitive radio frequency discharges, two mechanisms of electron heating are dominant: (i) Ohmic heating due to collisions of electrons with neutrals of the background gas and (ii) stochastic heating due to momentum transfer from the oscillating boundary sheath. In this work we show by means of a nonlinear global model that the self-excitation of the plasma series resonance which arises in asymmetric capacitive discharges due to nonlinear interaction of plasma bulk and sheath significantly affects both Ohmic heating and stochastic heating. We observe that the series resonance effect increases the dissipation by factors of 2-5. We conclude that the nonlinear plasma dynamics should be taken into account in order to describe quantitatively correct electron heating in asymmetric capacitive radio frequency discharges.

  2. Active Magnetic Bearings Stiffness and Damping Identification from Frequency Characteristics of Control System

    Directory of Open Access Journals (Sweden)

    Chaowu Jin

    2016-01-01

    Full Text Available At present, the stiffness and damping identification for active magnetic bearings (AMBs are still in the stage of theoretical analysis. The theoretical analysis indicates that if the mechanical structure and system parameters are determined, AMBs stiffness and damping are only related to frequency characteristic of control system, ignoring operating condition. More importantly, few verification methods are proposed. Considering the shortcomings of the theoretical identification, this paper obtains these coefficients from the experiment by using the magnetic bearing as a sine exciter. The identification results show that AMBs stiffness and damping have a great relationship with the control system and rotating speed. Specifically, at low rotating speed, the stiffness and damping can be obtained from the rotor static suspension by adding the same excitation frequency. However, at high speed, different from the static suspension situation, the AMBs supporting coefficients are not only related to the frequency characteristics of control system, but also related to the system operating conditions.

  3. Role of growth temperature on the frequency response characteristics of pentacene-based organic devices

    International Nuclear Information System (INIS)

    Shao, Yayun; Zhang, Yang; He, Wenqiang; Wu, Sujuan; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J-M; Liu, Chuan; Minari, Takeo

    2015-01-01

    The ac frequency response characteristics (FRC) of organic thin film transistors and metal-insulator semiconductor diodes were highly improved by controlling the morphology and electrical characteristics of semiconducting pentacene films. The devices with films grown at 50 °C show much higher cutoff frequency and better frequency stability of flat-band voltage, as compared to those with films grown at other temperatures below or above. The improvement mainly originates from the maximum field effect carrier mobility of 0.78 cm 2 V −1 s −1 and a small metal/organic contact resistance (R c ) obtained in the optimum thin film transistors. Our results indicate growth temperature precisely tunes the film microstructure and metal/semiconductor interface, which together determine the FRC of pentacene-based organic devices. (paper)

  4. Propagation characteristics of a Gaussian laser beam in plasma with modulated collision frequency

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Gao Ruilin; Li Lei; Du Yanwei

    2012-01-01

    The propagation characteristics of a Gaussian laser beam in cold plasma with the electron collision frequency modulated by laser intensity are presented. The nonlinear dynamics of the ponderomotive force, which induce nonlinear self-focusing as opposed to spatial diffraction, are considered. The effective dielectric function of the Drude model and complex eikonal function are adopted in deriving coupled differential equations of the varying laser beam parameters. In the framework of ponderomotive nonlinearity, the frequency of electron collision in plasmas, which is proportional to the spatial electron density, is strongly interrelated with the laser beam propagation characteristics. Hence, the propagation properties of the laser beam and the modulated electron collision frequency distribution in plasma were studied and explained in depth. Employing this self-consistent method, the obtained simulation results approach practical conditions, which is of significance to the study of laser–plasma interactions.

  5. Development and characterization of high-frequency resonance-enhanced microjet actuators for control of high-speed jets

    Science.gov (United States)

    Upadhyay, Puja; Gustavsson, Jonas P. R.; Alvi, Farrukh S.

    2016-05-01

    For flow control applications requiring high-frequency excitation, very few actuators have sufficient dynamic response and/or control authority to be useful in high-speed flows. Due to this reason, experiments involving high-frequency excitation, attempted in the past, have been limited to either low-frequency actuation with reasonable control authority or moderate-frequency actuation with limited control authority. The current work expands on the previous development of the resonance-enhanced microactuators to design actuators that are capable of producing high-amplitude pulses at much higher frequencies [{O} (10 kHz)]. Using lumped element modeling, two actuators have been designed with nominal frequencies of 20 and 50 kHz. Extensive benchtop characterization using acoustic measurements as well as optical diagnostics using a high-resolution micro-schlieren setup is employed to characterize the dynamic response of these actuators. The actuators performed at a range of frequencies, 20.3-27.8 and 54.8-78.2 kHz, respectively. In addition to providing information on the actuator flow physics and performance at various operating conditions, this study serves to develop easy-to-integrate high-frequency actuators for active control of high-speed jets. Preliminary testing of these actuators is performed by implementing the 20-kHz actuator on a Mach 0.9 free jet flow field for noise reduction. Acoustic measurements in the jet near field demonstrate attenuation of radiated noise at all observation angles.

  6. High frequency Soft Switching Half Bridge Series-Resonant DC-DC Converter Utilizing Gallium Nitride FETs

    DEFF Research Database (Denmark)

    Nour, Yasser; Knott, Arnold; Petersen, Lars Press

    2017-01-01

    The need for efficient, smaller, lighter and cheaper power supply units drive the investigation of using high switching frequency soft switching resonant converters. This work presents an 88% efficient 48V nominal input converter switching at 6 MHz and output power of 21 Watts achieving power...... density of 7 W/cm3 for Power-over-Ethernet LED lighting applications. The switching frequency is used to control the output current delivered to the load resistance. The converter was tested using a constant resistance load. The performance and thermal behavior were investigated and reported in this work....

  7. Calculation of the resonance frequency change for a cavity charged by a plasma with or without a static magnetic field

    International Nuclear Information System (INIS)

    Melin, G.

    1967-03-01

    In the mere case of a cold plasma with or without static magnetic field, are given two methods of calculation of resonance frequency shift and absorption in a cylindrical cavity crossed by a plasma column: 1. A perturbation method, already known and used for electronic density measurements is restated and its application is used for several high frequency cavity modes. 2. An exact method employing Maxwell's equations, which however necessitates a computer, is compared with the first one; it permits a determination of the validity limits of the perturbation method and to draw conclusions, [fr

  8. Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity

    OpenAIRE

    Xin Zhao; G. Ciovati; T. R. Bieler

    2010-01-01

    The performance of superconducting radio-frequency (SRF) resonant cavities made of bulk niobium is limited by nonlinear localized effects. Surface analysis of regions of higher power dissipation is thus of intense interest. Such areas (referred to as “hotspots”) were identified in a large-grain single-cell cavity that had been buffered-chemical polished and dissected for examination by high resolution electron microscopy, electron backscattered diffraction microscopy (EBSD), and optical micro...

  9. Self-organised aggregation of a pair of particles with different resonant frequencies and electric dipole moments of transitions, controlled by an external quasi-resonant field

    Energy Technology Data Exchange (ETDEWEB)

    Slabko, V V; Tsipotan, A S; Aleksandrovsky, A S [Institute of Engineering Physics and Radio Electronics, Siberian Federal University, Krasnoyarsk (Russian Federation)

    2013-05-31

    The influence of the oscillation phases of the dipole moments induced in metal nanoparticles and quantum dots by an external laser field on their interaction energy is considered. It is shown that a difference in resonant frequencies leads to the formation of additional minima and maxima, which are absent in the spectral dependence of the interaction energy of identical particles at similar orientations of the pair of particles with respect to the plane of polarisation of radiation. These features are due to the fact that the oscillation phase difference of the induced dipole moments of particles reaches values close to {pi}. (interaction of laser radiation with matter. laser plasma)

  10. Optimal Design of a High Efficiency LLC Resonant Converter with a Narrow Frequency Range for Voltage Regulation

    Directory of Open Access Journals (Sweden)

    Junhao Luo

    2018-05-01

    Full Text Available As a key factor in the design of a voltage-adjustable LLC resonant converter, frequency regulation range is very important to the optimization of magnetic components and efficiency improvement. This paper presents a novel optimal design method for LLC resonant converters, which can narrow the frequency variation range and ensure high efficiency under the premise of a required gain achievement. A simplified gain model was utilized to simplify the calculation and the expected efficiency was initially set as 96.5%. The restricted area of parameter optimization design can be obtained by taking the intersection of the gain requirement, the efficiency requirement, and three restrictions of ZVS (Zero Voltage Switch. The proposed method was verified by simulation and experiments of a 150 W prototype. The results show that the proposed method can achieve ZVS from full-load to no-load conditions and can reach 1.6 times the normalized voltage gain in the frequency variation range of 18 kHz with a peak efficiency of up to 96.3%. Moreover, the expected efficiency is adjustable, which means a converter with a higher efficiency can be designed. The proposed method can also be used for the design of large-power LLC resonant converters to obtain a wide output voltage range and higher efficiency.

  11. Confluent Heun functions and the physics of black holes: Resonant frequencies, Hawking radiation and scattering of scalar waves

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)

    2016-10-15

    We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.

  12. Lunch frequency among adolescents: associations with sociodemographic factors and school characteristics.

    Science.gov (United States)

    Pedersen, Trine Pagh; Holstein, Bjørn E; Krølner, Rikke; Ersbøll, Annette Kjær; Jørgensen, Thea Suldrup; Aarestrup, Anne Kristine; Utter, Jennifer; McNaughton, Sarah A; Neumark-Stzainer, Dianne; Rasmussen, Mette

    2016-04-01

    To investigate: (i) how lunch frequency of adolescents varies between schools and between classes within schools; (ii) the associations between frequency of lunch and individual sociodemographic factors and school characteristics; and (iii) if any observed associations between lunch frequency and school characteristics vary by gender and age groups. Cross-sectional study in which students and school headmasters completed self-administered questionnaires. Associations were estimated by multilevel multivariate logistic regression. The Danish arm of the Health Behaviour in School-Aged Children study 2010. Students (n 4922) aged 11, 13 and 15 years attending a random sample of seventy-three schools. The school-level and class-level variations in low lunch frequency were small (intraclass correlation coefficient lunch frequency was most common among students who were boys, 13- and 15-year-olds, from medium and low family social class, descendants of immigrants, living in a single-parent family and in a reconstructed family. School-level analyses suggested that having access to a canteen at school was associated with low lunch frequency (OR=1·47; 95% CI 1·14, 1·89). Likewise not having an adult present during lunch breaks was associated with low lunch frequency (OR=1·44; 95% CI 1·18, 1·75). Cross-level interactions suggested that these associations differed by age group. Lunch frequency among Danish students appears to be largely influenced by sociodemographic factors. Additionally, the presence of an adult during lunch breaks promotes frequent lunch consumption while availability of a canteen may discourage frequent lunch consumption. These findings vary between older and younger students.

  13. Biomechanical characteristics of adults walking forward and backward in water at different stride frequencies.

    Science.gov (United States)

    Cadenas-Sánchez, Cristina; Arellano, Raúl; Taladriz, Sonia; López-Contreras, Gracia

    2016-01-01

    The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: -12.2 vs. -14.5º; P water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.

  14. Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Visschere, Pieter J.L. de; Pattyn, Eva; Villeirs, Geert M. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Vral, Anne [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); Perletti, Gianpaolo [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); University of Insubria, Clinical Pharmacology, Medical and Surgical Sciences Section, Department of Biotechnology and Life Sciences, Varese (Italy); Praet, Marleen [Ghent University Hospital, Department of Pathology, Ghent (Belgium); Magri, Vittorio [Instituti Clinici di Perfezionamento, Urology Clinic, Milano (Italy)

    2017-05-15

    To identify the multiparametric magnetic resonance imaging (mpMRI) characteristics of normal, benign and malignant conditions in the prostate. Fifty-six histopathological whole-mount radical prostatectomy specimens from ten randomly selected patients with prostate cancer (PC) were matched with corresponding transverse mpMRI slices. The mpMRI was performed prior to biopsy and consisted of T2-weighted imaging (T2-WI), diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging (DCE) and magnetic resonance spectroscopic imaging (MRSI). In each prostate specimen, a wide range of histopathological conditions were observed. They showed consistent but overlapping characteristics on mpMRI. Normal glands in the transition zone showed lower signal intensity (SI) on T2-WI, lower ADC values and lower citrate peaks on MRSI as compared to the peripheral zone (PZ) due to sparser glandular elements and more prominent collagenous fibres. In the PZ, normal glands were iso-intense on T2-WI, while high SI areas represented cystic atrophy. Mimickers of well-differentiated PC on mpMRI were inflammation, adenosis, HG-PIN and post-atrophic hyperplasia. Each prostate is a unique mix of normal, benign and/or malignant areas that vary in extent and distribution resulting in very heterogeneous characteristics on mpMRI. Understanding the main concepts of this mpMRI-histopathological correlation may increase the diagnostic confidence in reporting mpMRI. (orig.)

  15. Analysis of the current-voltage characteristics lineshapes of resonant tunneling diodes

    International Nuclear Information System (INIS)

    Rivera, P.H.; Schulz, P.A.

    1996-01-01

    It is discussed the influence of a two dimensional electron gas at the emitter-barrier interface on the current-voltage characteristics of a Ga As-Al Ga As double-barrier quantum well resonant tunneling diode. This effect is characterized by the modification of the space charge distribution along the structure. Within the framework of a self-consistent calculation we analyse the current-voltage characteristics of the tunneling diodes. This analysis permits us to infer different tunneling ways, related to the formation of confined states in the emitter region, and their signatures in the current-voltage characteristics. We show that varying the spacer layer, together with barrier heights, changes drastically the current density-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics lineshapes. We compare our results with a variety of current-voltage characteristics reported in the literature. The general trend of experimental lineshapes can be reproduced and interpreted with our model. The possibility of tunneling paths is predicted for a range that has not yet been explored experimentally. (author). 12 refs., 4 figs

  16. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements

    Science.gov (United States)

    Oregui, M.; Li, Z.; Dollevoet, R.

    2015-03-01

    In this paper, the feasibility of the Frequency Response Function (FRF)-based statistical method to identify the characteristic frequencies of railway track defects is studied. The method compares a damaged track state to a healthy state based on non-destructive field hammer test measurements. First, a study is carried out to investigate the repeatability of hammer tests in railway tracks. By changing the excitation and measurement locations it is shown that the variability introduced by the test process is negligible. Second, following the concepts of control charts employed in process monitoring, a method to define an approximate healthy state is introduced by using hammer test measurements at locations without visual damage. Then, the feasibility study includes an investigation into squats (i.e. a major type of rail surface defect) of varying severity. The identified frequency ranges related to squats agree with those found in an extensively validated vehicle-borne detection system. Therefore, the FRF-based statistical method in combination with the non-destructive hammer test measurements has the potential to be employed to identify the characteristic frequencies of damaged conditions in railway tracks in the frequency range of 300-3000 Hz.

  17. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    Science.gov (United States)

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  18. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    International Nuclear Information System (INIS)

    Breger, M.; Montgomery, M. H.

    2014-01-01

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day –1 (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day –1 in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  19. Evidence of resonant mode coupling and the relationship between low and high frequencies in a rapidly rotating a star

    Energy Technology Data Exchange (ETDEWEB)

    Breger, M.; Montgomery, M. H. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-03-10

    In the theory of resonant mode coupling, the parent and child modes are directly related in frequency and phase. The oscillations present in the fast rotating δ Sct star KIC 8054146 allow us to test the most general and generic aspects of such a theory. The only direct way to separate the parent and coupled (child) modes is to examine the correlations in amplitude variability between the different frequencies. For the dominant family of related frequencies, only a single mode and a triplet are the origins of nine dominant frequency peaks ranging from 2.93 to 66.30 cycles day{sup –1} (as well as dozens of small-amplitude combination modes and a predicted and detected third high-frequency triplet). The mode-coupling model correctly predicts the large amplitude variations of the coupled modes as a product of the amplitudes of the parent modes, while the phase changes are also correctly modeled. This differs from the behavior of 'normal' combination frequencies in that the amplitudes are three orders of magnitude larger and may exceed even the amplitudes of the parent modes. We show that two dominant low frequencies at 5.86 and 2.93 cycles day{sup –1} in the gravity-mode region are not harmonics of each other, and their properties follow those of the almost equidistant high-frequency triplet. We note that the previously puzzling situation of finding two strong peaks in the low-frequency region related by nearly a factor of two in frequency has been seen in other δ Sct stars as well.

  20. Segmentation of head magnetic resonance image using self-mapping characteristic

    International Nuclear Information System (INIS)

    Madokoro, Hirokazu; Sato, Kazuhito; Ishii, Masaki; Kadowaki, Sakura

    2004-01-01

    In this paper, we proposed a segmentation method, for head magnetic resonance (MR) images. Our method used self mapping characteristic of a self-organization map (SOM), and it does not need the setting of the representative point by the operator. We considered the continuity and boundary in the brain tissues by the definition of the local block. In the evaluation experiment, we obtained the segmentation result of matching anatomical structure information. In addition, our method applied the clinical MR images, it was possible to obtain the effective and objective result for supporting the diagnosis of the brain atrophy by the doctor. (author)

  1. Characteristic modes and the transition to chaos of a resonant Josephson circuit

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, P M; Imry, Y [IBM Watson Research Center, Yorktown Heights, NY (USA)

    1982-01-01

    The periodic modes of a voltage-driven resonant small-junction Josephson circuit are studied by accurate numerical methods starting from large dissipation. As dissipation decreases, sections of the average current vs. voltage characteristic become unstable and new branches develop on those sections, corresponding to new modes which are exact subharmonics of the old mode. For low enough dissipation chaotic ranges of voltage occur, i.e., ranges with no stable periodic modes. This circuit is a component of many experimental circuits, e.g., finite junctions, DC and RF squids, etc., and so the behavior found here should occur widely.

  2. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Borg, Michael; Collu, M.

    2015-01-01

    The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency......-domain characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...

  3. A study on thermal characteristics analysis model of high frequency switching transformer

    Science.gov (United States)

    Yoo, Jin-Hyung; Jung, Tae-Uk

    2015-05-01

    Recently, interest has been shown in research on the module-integrated converter (MIC) in small-scale photovoltaic (PV) generation. In an MIC, the voltage boosting high frequency transformer should be designed to be compact in size and have high efficiency. In response to the need to satisfy these requirements, this paper presents a coupled electromagnetic analysis model of a transformer connected with a high frequency switching DC-DC converter circuit while considering thermal characteristics due to the copper and core losses. A design optimization procedure for high efficiency is also presented using this design analysis method, and it is verified by the experimental result.

  4. Analysis on characteristic and application of THz frequency comb and THz sub-comb

    International Nuclear Information System (INIS)

    Liu Pengxiang; Xu Degang; Yao Jianquan

    2011-01-01

    In this paper, we proposed a method for THz sub-comb generation based on spectral interference. The result of our calculation indicated that the THz pulse train, generated by surface-emitted optical rectification of femtosecond (fs) laser pulse in periodically poled lithium niobate (PPLN), has a comb-like spectrum. The characteristic of this THz sub-comb was analyzed both in frequency and time domain. Compared with the THz frequency comb emitted by a photoconductive antenna (PCA), THz sub-comb has a lower spectral resolution and wider free spectral range. Thus it could be an ideal source for wavelength division multiplexing (WDM) in THz wireless communication system.

  5. Analytical study of the frequency shifts of micro and nano clamped–clamped beam resonators due to an added mass

    KAUST Repository

    Bouchaala, Adam M.

    2016-03-18

    We present analytical formulations to calculate the induced resonance frequency shifts of electrically actuated clamped–clamped micro and nano (Carbon nanotube) beams due to an added mass. Based on the Euler–Bernoulli beam theory, we investigate the linear dynamic responses of the beams added masses, which are modeled as discrete point masses. Analytical expressions based on perturbation techniques and a one-mode Galerkin approximation are developed to calculate accurately the frequency shifts under a DC voltage as a function of the added mass and position. The analytical results are compared to numerical solution of the eigenvalue problem. Results are shown for the fundamental as well as the higher-order modes of the beams. The results indicate a significant increase in the frequency shift, and hence the sensitivity of detection, when scaling down to nano scale and using higher-order modes. © 2016 Springer Science+Business Media Dordrecht

  6. Study on guided-mode resonance characteristic of multilayer dielectric grating with broadband and wide using-angle

    International Nuclear Information System (INIS)

    Jian-Peng, Wang; Yun-Xia, Jin; Jian-Yong, Ma; Jian-Da, Shao; Zheng-Xiu, Fan

    2010-01-01

    Guided-mode resonance in a diffraction band of multilayer dielectric gratings may lead to a catastrophic result in laser system, especially in the ultrashort pulse laser system, so the inhibition of guided-mode resonance is very important. In this paper the characteristics of guided-mode resonance in multilayer dielectric grating are studied with the aim of better understanding the physical process of guided-mode resonance and designing a broadband multilayer dielectric grating with no guided-mode resonance. By employing waveguide theory, all guided-wave modes appearing in multilayer dielectric grating are found, and the incident conditions, separately, corresponding to each guided-wave mode are also obtained. The electric field enhancement in multilayer dielectric grating is shown obviously. Furthermore, from the detailed analyses on the guided-mode resonance conditions, it is found that the reduction of the grating period would effectively avoid the appearing of guided-mode resonance. And the expressions for calculating maximum periods, which ensure that no guided-mode resonance occurs in the requiring broad angle or wavelength range, are first reported. The above results calculated by waveguide theory and Fourier mode method are compared with each other, and they are coincident completely. Moreover, the method that relies on waveguide theory is more helpful for understanding the guided-mode resonance excited process and analyzing how each parameter affects the characteristic of guided-mode resonance. Therefore, the effects of multilayer dielectric grating parameters, such as period, fill factor, thickness of grating layer, et al., on the guided-mode resonance characteristic are discussed in detail based on waveguide theory, and some meaningful results are obtained. (classical areas of phenomenology)

  7. Study of geometrical and operational parameters controlling the low frequency microjet atmospheric pressure plasma characteristics

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Rhee, J. K.; Moon, S. Y.; Choe, W.

    2006-01-01

    Controllability of small size atmospheric pressure plasma generated at low frequency in a pin to dielectric plane electrode configuration was studied. It was shown that the plasma characteristics could be controlled by geometrical and operational parameters of the experiment. Under most circumstances, continuous glow discharges were observed, but both the corona and/or the dielectric barrier discharge characteristics were observed depending on the position of the pin electrode. The plasma size and the rotational temperature were also varied by the parameters. The rotational temperature was between 300 and 490 K, being low enough to treat thermally sensitive materials

  8. Magnetic resonance characteristics and susceptibility weighted imaging of the brain in gadolinium encephalopathy.

    Science.gov (United States)

    Samardzic, Dejan; Thamburaj, Krishnamoorthy

    2015-01-01

    To report the brain imaging features on magnetic resonance imaging (MRI) in inadvertent intrathecal gadolinium administration. A 67-year-old female with gadolinium encephalopathy from inadvertent high dose intrathecal gadolinium administration during an epidural steroid injection was studied with multisequence 3T MRI. T1-weighted imaging shows pseudo-T2 appearance with diffusion of gadolinium into the brain parenchyma, olivary bodies, and membranous labyrinth. Nulling of cerebrospinal fluid (CSF) signal is absent on fluid attenuation recovery (FLAIR). Susceptibility-weighted imaging (SWI) demonstrates features similar to subarachnoid hemorrhage. CT may demonstrate a pseudo-cerebral edema pattern given the high attenuation characteristics of gadolinium. Intrathecal gadolinium demonstrates characteristic imaging features on MRI of the brain and may mimic subarachnoid hemorrhage on susceptibility-weighted imaging. Identifying high dose gadolinium within the CSF spaces on MRI is essential to avoid diagnostic and therapeutic errors. Copyright © 2013 by the American Society of Neuroimaging.

  9. Current-voltage characteristics of a tunnel junction with resonant centers

    International Nuclear Information System (INIS)

    Ivanov, T.; Valtchinov, V.

    1994-05-01

    We calculated the I-V characteristics of a tunnel junction containing impurities in the barrier. We consider the indirect resonant tunneling involving the impurities. The Coulomb repulsion energy E c between two electrons with opposite spins simultaneously residing on the impurity is introduced by an Anderson Hamiltonian. At low temperatures T is much less than E c the I-V characteristics is linear in V both for V c and for V>E c and changes slope at V=E c . This behaviour reflects the energy spectrum of the impurity electrons - the finite value of the charging energy E c . At T ∼ E c the junction reveals an ohmic-like behaviour as a result of the smearing out of the charging effects by the thermal fluctuations. (author). 10 refs, 2 figs

  10. Radiation Characteristics Enhancement of Dielectric Resonator Antenna Using Solid/Discrete Dielectric Lenses

    Directory of Open Access Journals (Sweden)

    H. A. E. Malhat

    2015-02-01

    Full Text Available The radiation characteristics of the dielectric resonator antennas (DRA is enhanced using different types of solid and discrete dielectric lenses. One of these approaches is by loading the DRA with planar superstrate, spherical lens, or by discrete lens (transmitarray. The dimensions and dielectric constant of each lens are optimized to maximize the gain of the DRA. A comparison between the radiations characteristics of the DRA loaded with different lenses are introduced. The design of the dielectric transmitarray depends on optimizing the heights of the dielectric material of the unit cell. The optimized transmitarray achieves 7 dBi extra gain over the single DRA with preserving the circular polarization. The proposed antenna is suitable for various applications that need high gain and focused antenna beam.

  11. Age-Specific Frequencies and Characteristics of Ovarian Cysts in Children and Adolescents

    OpenAIRE

    Emeksiz, Hamdi Cihan; Derin?z, Ok?an; Akkoyun, Esra Bet?l; G??l? P?narl?, Faruk; Bideci, Aysun

    2017-01-01

    Objective: The aim of the present study was to document ovarian cyst frequency and characteristics as well as distribution of these parameters with respect to age in children and adolescents. Methods: We retrospectively analyzed the medical records of 1009 girls between the ages of 5-18 years who presented to our pediatric emergency department (PED) with pelvic pain and therefore underwent pelvic ultrasound examination between June 2011 and May 2014. Results: In total, 132 of 1009 girls (13.1...

  12. Comparison of the frequency response characteristics of catheter-mounted piezoelectric and micromanometric phonotransducers.

    Science.gov (United States)

    Garcia, J C; Layton, S A; Rubal, B J

    1989-05-01

    This study compares the frequency response characteristics of catheter-mounted piezoelectric sound transducers with micromanometric transducers. The tip of a 8F catheter with two piezoelectric transducers and two micromanometers was inserted into a water-filled chamber that had a speaker fixed at one end. The speaker was driven by a power amplifier and sine wave generator. The outputs of the transducers were connected to a low-level amplifier. The piezoelectric transducer behaved as a tunable high-pass filter that could be modified by altering the input impedance of the low level amplifier; the frequency response characteristics were examined at five input impedances ranging from 0.96 to 11.8 megohms. The peak-to-peak outputs of the piezoelectric and pressure transducers were recorded at frequency ranges from DC to 1 kHz with a wide-band oscilloscope. The ratio of the outputs from the piezotransducer and micromanometer (Vph/Vpr) was plotted vs. frequency for each input impedance and analyzed to determine the piezotransducer's output resistance and equivalent capacitance; roll-off frequencies were then calculated. The equivalent capacitance of the piezo-element was determined to be 500-700 picofarads. Series capacitance acted with network resistance to produce a predictable frequency-dependent change in signal amplitude and phase angle. The inherent noise of the pressure transducer was found to be approximately 0.2 mm Hg, while the noise of the piezoelectric transducer was immeasurably low. The piezoelectric phonotransducers were superior to micromanometer transducers in their higher gain and lower noise, suggesting that these transducers may prove useful to physiologic and clinical studies for measuring intravascular sound.

  13. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  14. Low frequency mechanical resonance of the vocal tract in vocal exercises that apply tubes

    Czech Academy of Sciences Publication Activity Database

    Horáček, Jaromír; Radolf, Vojtěch; Laukkanen, A. M.

    2017-01-01

    Roč. 37, August (2017), s. 39-49 ISSN 1746-8094 R&D Projects: GA ČR(CZ) GA16-01246S Institutional support: RVO:61388998 Keywords : biomechanics of voice * vocal tract acoustics * phonation into tubes * water resistance voice therapy * bubbling frequency * formant frequencies Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.214, year: 2016

  15. US Mains Stacked Very High Frequency Self-oscillating Resonant Power Converter with Unified Rectifier

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Mønster, Jakob Døllner

    2016-01-01

    This paper describes a Very High Frequency (VHF) converter made with three Class-E inverters and a single ClassDE rectifier. The converter is designed for the US mains (120 V, 60 Hz) and can deliver 9 W to a 60 V LED. The converter has a switching frequency of 37 MHz and achieves an efficiency...

  16. Vibration-induced displacement using high-frequency resonators and friction layers

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    1998-01-01

    A mathematical model is set up to quantify vibration-induced motions of a slider with an imbedded resonator. A simple approximate expression is presented for predicting average velocities of the slider, agreeing fairly well with numerical integration of the full equations of motion. The simple ex...

  17. Frequency control of a 1163 nm singly resonant OPO based on MgO:PPLN

    NARCIS (Netherlands)

    Gross, P.; Lindsay, I.D.; Lee, Christopher James; Nittmann, M.; Bauer, T.; Bartschke, J.; Warring, U.; Fischer, A.; Kellenbauer, A.; Boller, Klaus J.

    2010-01-01

    We report the realization of a singly resonant optical parametric oscillator (SRO) that is designed to provide narrow-bandwidth, continuously tunable radiation at a wavelength of 1163 nm for optical cooling of osmium ions. The SRO is based on periodically poled, magnesium-oxide-doped lithium niobate

  18. Resonant circuit which provides dual frequency excitation for rapid cycling of an electromagnet

    Science.gov (United States)

    Praeg, Walter F.

    1984-01-01

    Disclosed is a ring magnet control circuit that permits synchrotron repetition rates much higher than the frequency of the cosinusoidal guide field of the ring magnet during particle acceleration. the control circuit generates cosinusoidal excitation currents of different frequencies in the half waves. During radio frequency acceleration of the particles in the synchrotron, the control circuit operates with a lower frequency cosine wave and thereafter the electromagnets are reset with a higher frequency half cosine wave. Flat-bottom and flat-top wave shaping circuits maintain the magnetic guide field in a relatively time-invariant mode during times when the particles are being injected into the ring magnets and when the particles are being ejected from the ring magnets.

  19. Electrical Stimulation Frequency and Skeletal Muscle Characteristics: Effects on Force and Fatigue

    Directory of Open Access Journals (Sweden)

    Maria Vromans

    2017-12-01

    Full Text Available This investigation aimed to determine the force and muscle surface electromyography (EMG responses to different frequencies of electrical stimulation (ES in two groups of muscles with different size and fiber composition (fast- and slow-twitch fiber proportions during a fatigue-inducing protocol. Progression towards fatigue was evaluated in the abductor pollicis brevis (APB and vastus lateralis (VL when activated by ES at three frequencies (10, 35, and 50Hz. Ten healthy adults (mean age: 23.2 ± 3.0 years were recruited; participants signed an IRB approved consent form prior to participation. Protocols were developed to 1 identify initial ES current intensity required to generate the 25% maximal voluntary contraction (MVC at each ES frequency and 2 evaluate changes in force and EMG activity during ES-induced contraction at each frequency while progressing towards fatigue. For both muscles, stimulation at 10Hz required higher current intensity of ES to generate the initial force. There was a significant decline in force in response to ES-induced fatigue for all frequencies and for both muscles (p<0.05. However, the EMG response was not consistent between muscles. During the progression towards fatigue, the APB displayed an initial drop in force followed by an increase in EMG activity and the VL displayed a decrease in EMG activity for all frequencies. Overall, it appeared that there were some significant interactions between muscle size and fiber composition during progression towards fatigue for different ES frequencies. It could be postulated that muscle characteristics (size and fiber composition should be considered when evaluating progression towards fatigue as EMG and force responses are not consistent between muscles.

  20. Investigation of DC current injection effect on the microwave characteristics of HTS YBCO microstrip resonators

    Energy Technology Data Exchange (ETDEWEB)

    Nurgaliev, T., E-mail: timur@ie.bas.bg [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Blagoev, B.; Mateev, E.; Neshkov, L. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Strbik, V. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia); Uspenskaya, L. [Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow (Russian Federation); Nedkov, I. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chausse, 1784 Sofia (Bulgaria); Chromik, Š. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava (Slovakia)

    2014-03-15

    Highlights: • Current (spin) injection effect in LSMO/YBCO was studied by impedance measurements. • Complex impedance of YBCO increases at current injection from LSMO to YBCO at 77 K. • This increase is due to an increase of the quasiparticle conductivity of YBCO. • Injection does not significantly affect the relaxation time of the quasiparticles. - Abstract: The DC current injection effect from a ferromagnetic (FM) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) to a high temperature superconducting (HTS) Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7−x} (YBCO) thin film was investigated by the microwave surface impedance measurements in a FM/HTS structure, formed as a microstrip resonator for improving the sensitivity of the experiments. The quality factor and the resonance frequency of this structure were found to strongly depend on the current strength, injected from the LSMO electrode into the HTS microstrip electrode. The magnetic penetration depth and the quasiparticle conductivity of the HTS component were determined to increase under DC current injection process, which in all probability stimulated breaking of Cooper pairs and led to a decrease of the superfluid concentration and an increase of the normal fluid concentration without significantly affecting the relaxation time of the quasiparticles.

  1. The frequency, characteristics and aetiology of stroke mimic presentations: a narrative review.

    Science.gov (United States)

    McClelland, Graham; Rodgers, Helen; Flynn, Darren; Price, Christopher I

    2018-05-01

    A significant proportion of patients with acute stroke symptoms have an alternative 'mimic' diagnosis. A narrative review was carried out to explore the frequency, characteristics and aetiology of stroke mimics. Prehospital and thrombolysis-treated patients were described separately. Overall, 9972 studies were identified from the initial search and 79 studies were included with a median stroke mimic rate of 19% (range: 1-64%). The prehospital median was 27% (range: 4-43%) and the thrombolysis median 10% (range: 1-25%). Seizures, migraines and psychiatric disorders are the most frequently reported causes of stroke mimics. Several characteristics are consistently associated with stroke mimics; however, they do not fully exclude the possibility of stroke. Nineteen per cent of suspected stroke patients had a mimic condition. Stroke mimics were more common with younger age and female sex. The range of mimic diagnoses, a lack of clear differentiating characteristics and the short treatment window for ischaemic stroke create challenges for early identification.

  2. Advantages of frequency-domain modeling in dynamic-susceptibility contrast magnetic resonance cerebral blood flow quantification.

    Science.gov (United States)

    Chen, Jean J; Smith, Michael R; Frayne, Richard

    2005-03-01

    In dynamic-susceptibility contrast magnetic resonance perfusion imaging, the cerebral blood flow (CBF) is estimated from the tissue residue function obtained through deconvolution of the contrast concentration functions. However, the reliability of CBF estimates obtained by deconvolution is sensitive to various distortions including high-frequency noise amplification. The frequency-domain Fourier transform-based and the time-domain singular-value decomposition-based (SVD) algorithms both have biases introduced into their CBF estimates when noise stability criteria are applied or when contrast recirculation is present. The recovery of the desired signal components from amid these distortions by modeling the residue function in the frequency domain is demonstrated. The basic advantages and applicability of the frequency-domain modeling concept are explored through a simple frequency-domain Lorentzian model (FDLM); with results compared to standard SVD-based approaches. The performance of the FDLM method is model dependent, well representing residue functions in the exponential family while less accurately representing other functions. (c) 2005 Wiley-Liss, Inc.

  3. Sociodemographic characteristics associated with frequency and duration of eating family meals: a cross-sectional analysis.

    Science.gov (United States)

    Skeer, Margie R; Yantsides, Konstantina E; Eliasziw, Misha; Tracy, Migdalia R; Carlton-Smith, Allison R; Spirito, Anthony

    2016-01-01

    Children who frequently eat family meals are less likely to develop risk- and behavior-related outcomes, such as substance misuse, sexual risk, and obesity. Few studies have examined sociodemographic characteristics associated with both meal frequency (i.e., number of meals) and duration (i.e., number of minutes spent at mealtimes). We examine the association between sociodemographics and family meal frequency and duration among a sample of 85 parents in a large New England city that was recruited through the public-school system. Additionally, we examined differences in family meals by race/ethnicity and parental nativity. Unadjusted ANOVA and adjusted ANCOVA models were used to assess the associations between sociodemographic characteristics and frequency and duration of meals. Sociodemographic characteristics were not significantly associated with the frequency of family meals; however, in the adjusted models, differences were associated with duration of meals. Parents who were born outside the U.S. spent an average of 135.0 min eating meals per day with their children compared to 76.2 for parents who were born in the U.S. ( p  meals (126.7 min) compared to parents who reported being married or partnered (84.4; p  = 0.02). Differences existed in meal duration by parental nativity and race/ethnicity, ranging from 63.7 min among multi-racial/other parents born in the U.S. to 182.8 min among black parents born outside the U.S. This study builds a foundation for focused research into the mechanisms of family meals. Future longitudinal epidemiologic research on family meals may help to delineate targets for prevention of maladaptive behaviors, which could affect family-based practices, interventions, and policies.

  4. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Klofai, Yerima; Essimbi, B Z; Jaeger, D

    2011-01-01

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  5. Superconducting electron tunneling as detection method for low frequency resonant vibration modes of interstitials in fcc lead

    International Nuclear Information System (INIS)

    Adrian, H.

    1981-01-01

    The influence of crystal defects on the phonon spectra was studied for fcc lead using superconducting tunneling spectroscopy. The theory predicts low frequency modes for the vibrational states of interstitials in (100) dumbbell configuration. Low temperature irradiation of superconducting point contacts with fast ions (point contact thickness small compared to the average ion range) showed radiation-induced structures in the low-energy part of the Eliashberg function for lead. These resonant modes are reduced by annealing at 18.5 K; they are attributed to small interstitial clusters. The radiation-induced structures are completely removed by room temperature annealing. (orig.)

  6. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  7. Vessel size effect on the characteristic frequency of the free surface fluctuations

    International Nuclear Information System (INIS)

    Nam, Ho Yun; Kim, Min Joon; Kim, Jong Man; Choi, Byoung Hae

    2004-01-01

    Studies of the free surface fluctuations is one of the important topics in a liquid metal nuclear reactor using sodium as the coolant that has a free surface in the upper plenum of the reactor vessel. The main reasons for the study on the free surface fluctuations can be summarized as: 1. to secure the structural integrity of a reactor vessel by considering the thermal stress on the vessel wall induced by the fluctuations of the free surface between the hot sodium and cold cover gas, 2. to prevent the cover gas entrainment at the free surface of the sodium because the entrained gas causes a change in the reactivity and also reduces the heat removal capability in the core. Some experimental studies on the free surface fluctuations have been reported. However, most of them focus on the gas entrainment phenomena and only a few works concern the basic characteristics of the free surface fluctuations. Since the thermal stress on the wall is strongly dependent on the amplitude and frequency of the free surface fluctuations, studies on the amplitudes and frequencies should receive more attention. In Nam, empirical formulae on the amplitudes and frequencies with respect to the geometric and hydraulic parameters were introduced. It is an interesting result, but the experiment was performed within the parameter range near the onset point of the fluctuations. In the real reactor condition, larger sized fluctuations may exist and the formula needs to be modified. In this study, we performed experiments on the free surface fluctuations, especially on larger sized fluctuations and made an analysis of the amplitudes and frequencies. The main focus of this paper is the effect of the vessel size on the characteristic frequencies. It is thought to be helpful for finding the scaling laws, for example, designing a scale-down experiment

  8. Singly-resonant sum frequency generation of visible light in a semiconductor disk laser

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Schlosser, P.J.; Hastie, J.E.

    2009-01-01

    In this paper a generic approach for visible light generation is presented. It is based on sum frequency generation between a semiconductor disk laser and a solid-state laser, where the frequency mixing is achieved within the cavity of the semiconductor disk laser using a singlepass of the solid......-state laser light. This exploits the good beam quality and high intra-cavity power present in the semiconductor disk laser to achieve high conversion efficiency. Combining sum frequency mixing and semiconductor disk lasers in this manner allows in principle for generation of any wavelength within the visible...

  9. Characteristic frequencies of a non-Maxwellian plasma - A method for localizing the exact frequencies of magnetospheric intense natural waves near fpe

    International Nuclear Information System (INIS)

    Belmont, G.

    1981-01-01

    Intense natural waves are commonly observed onboard satellites in the outer earth's magnetosphere, inside a narrow frequency range, including the electron plasma and upper hybrid frequencies. In order to progress in the understanding of their emission processes, it is necessary to determine precisely the relationship which exists between their frequencies and the characteristic frequencies of the magnetospheric plasma. For this purpose, it is necessary to take into account the fact that some of these characteristic frequencies, which are provided by active sounding of the plasma, not only depend on the total density, but also on the shape of the distribution function (which has generally been assumed to be Maxwellian). A method providing a fine diagnosis of general non-Maxwellian plasmas is developed. This method of analysis of the experimental data is based on a theoretical study which points out the influence of the shape of the distribution function on the dispersion curves (for wave vectors perpendicular to the static magnetic field)

  10. Magnetic resonance imaging of lumbar spine disc diseases. Frequency of false negatives

    International Nuclear Information System (INIS)

    Berthelot, J.M.; Maugars, Y.; Delecrin, Y.; Caillon, F.; Prost, A.

    1995-01-01

    Magnetic resonance imaging (MRI) has had an impressive impact on evaluation of degenerative diseases of the spine. Nevertheless, false negatives can occur on images involving lumbar discs. Degenerative disc diseases documented on discography and/or pathology examination of the discs can go unrecognized. Likewise sensitivity for the detection of protruding disc hernias is not totally satisfactory (20% false negatives). Finally, a magnetic resonance image visualizing displacement of the disc is not specific (10 to 15% false positives); images showing protrusion or hernia can be seen in 30% of asymptomatic patients. Although MRI gives slightly more information than other imaging techniques, false images do exist. Moreover, the usefulness of MRI to demonstrate disc disease in case of a negative CT-scan remains to be demonstrated. (authors). 26 refs

  11. High frequency, high time resolution time-to-digital converter employing passive resonating circuits.

    Science.gov (United States)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-05-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  12. High frequency, high time resolution time-to-digital converter employing passive resonating circuits

    International Nuclear Information System (INIS)

    Ripamonti, Giancarlo; Abba, Andrea; Geraci, Angelo

    2010-01-01

    A method for measuring time intervals accurate to the picosecond range is based on phase measurements of oscillating waveforms synchronous with their beginning and/or end. The oscillation is generated by triggering an LC resonant circuit, whose capacitance is precharged. By using high Q resonators and a final active quenching of the oscillation, it is possible to conjugate high time resolution and a small measurement time, which allows a high measurement rate. Methods for fast analysis of the data are considered and discussed with reference to computing resource requirements, speed, and accuracy. Experimental tests show the feasibility of the method and a time accuracy better than 4 ps rms. Methods aimed at further reducing hardware resources are finally discussed.

  13. Research on Distributed PV Storage Virtual Synchronous Generator System and Its Static Frequency Characteristic Analysis

    Directory of Open Access Journals (Sweden)

    Xiangwu Yan

    2018-03-01

    Full Text Available The increasing penetration rate of grid connected renewable energy power generation reduces the primary frequency regulation capability of the system and poses a challenge to the security and stability of the power grid. In this paper, a distributed photovoltaic (PV storage virtual synchronous generator system is constructed, which realizes the external characteristics of synchronous generator/motor. For this kind of input/output bidirectional devices (e.g., renewable power generation/storage combined systems, pumped storage power stations, battery energy storage systems, and vehicle-to-grid electric vehicles, a synthesis analysis method for system power-frequency considering source-load static frequency characteristics (S-L analysis method is proposed in order to depict the system’s power balance dynamic adjustment process visually. Simultaneously, an inertia matching method is proposed to solve the problem of inertia matching in the power grid. Through the simulation experiment in MATLAB, the feasibility of the distributed PV storage synchronous virtual machine system is verified as well as the effectiveness of S-L analysis method and inertia matching method.

  14. Adaptive Fuzzy Control for Power-Frequency Characteristic Regulation in High-RES Power Systems

    Directory of Open Access Journals (Sweden)

    Evangelos Rikos

    2017-07-01

    Full Text Available Future power systems control will require large-scale activation of reserves at distribution level. Despite their high potential, distributed energy resources (DER used for frequency control pose challenges due to unpredictability, grid bottlenecks, etc. To deal with these issues, this study presents a novel strategy of power frequency characteristic dynamic adjustment based on the imbalance state. This way, the concerned operators become aware of the imbalance location but also a more accurate redistribution of responsibilities in terms of reserves activations is achieved. The proposed control is based on the concept of “cells” which are power systems with operating capabilities and responsibilities similar to control areas (CAs, but fostering the use of resources at all voltage levels, particularly distribution grids. Control autonomy of cells allows increased RES hosting. In this study, the power frequency characteristic of a cell is adjusted in real time by means of a fuzzy controller, which curtails part of the reserves, in order to avoid unnecessary deployment throughout a synchronous area, leading to a more localised activation and reducing losses, congestions and reserves exhaustion. Simulation tests in a four-cell reference power system prove that the controller significantly reduces the use of reserves without compromising the overall stability.

  15. Robust parameterization of time-frequency characteristics for recognition of musical genres of Mexican culture

    Science.gov (United States)

    Pérez Rosas, Osvaldo G.; Rivera Martínez, José L.; Maldonado Cano, Luis A.; López Rodríguez, Mario; Amaya Reyes, Laura M.; Cano Martínez, Elizabeth; García Vázquez, Mireya S.; Ramírez Acosta, Alejandro A.

    2017-09-01

    The automatic identification and classification of musical genres based on the sound similarities to form musical textures, it is a very active investigation area. In this context it has been created recognition systems of musical genres, formed by time-frequency characteristics extraction methods and by classification methods. The selection of this methods are important for a good development in the recognition systems. In this article they are proposed the Mel-Frequency Cepstral Coefficients (MFCC) methods as a characteristic extractor and Support Vector Machines (SVM) as a classifier for our system. The stablished parameters of the MFCC method in the system by our time-frequency analysis, represents the gamma of Mexican culture musical genres in this article. For the precision of a classification system of musical genres it is necessary that the descriptors represent the correct spectrum of each gender; to achieve this we must realize a correct parametrization of the MFCC like the one we present in this article. With the system developed we get satisfactory detection results, where the least identification percentage of musical genres was 66.67% and the one with the most precision was 100%.

  16. Frequency Preference Response to Oscillatory Inputs in Two-dimensional Neural Models: A Geometric Approach to Subthreshold Amplitude and Phase Resonance.

    Science.gov (United States)

    Rotstein, Horacio G

    2014-01-01

    We investigate the dynamic mechanisms of generation of subthreshold and phase resonance in two-dimensional linear and linearized biophysical (conductance-based) models, and we extend our analysis to account for the effect of simple, but not necessarily weak, types of nonlinearities. Subthreshold resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred non-zero (resonant) frequency. Phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a non-zero (phase-resonant) frequency. We adapt the classical phase-plane analysis approach to account for the dynamic effects of oscillatory inputs and develop a tool, the envelope-plane diagrams, that captures the role that conductances and time scales play in amplifying the voltage response at the resonant frequency band as compared to smaller and larger frequencies. We use envelope-plane diagrams in our analysis. We explain why the resonance phenomena do not necessarily arise from the presence of imaginary eigenvalues at rest, but rather they emerge from the interplay of the intrinsic and input time scales. We further explain why an increase in the time-scale separation causes an amplification of the voltage response in addition to shifting the resonant and phase-resonant frequencies. This is of fundamental importance for neural models since neurons typically exhibit a strong separation of time scales. We extend this approach to explain the effects of nonlinearities on both resonance and phase-resonance. We demonstrate that nonlinearities in the voltage equation cause amplifications of the voltage response and shifts in the resonant and phase-resonant frequencies that are not predicted by the corresponding linearized model. The differences between the nonlinear response and the linear prediction increase with increasing levels of the time scale separation between

  17. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children With Cerebral Palsy.

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-05-24

    The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). The study included 172 children with CP who underwent brain MRI and language assessments between 3 and 7 years of age. The MRI characteristics were categorized as normal, malformation, periventricular white matter lesion (PVWL), deep gray matter lesion, focal infarct, cortical/subcortical lesion, and others. Neurodevelopmental outcomes such as ambulatory status, manual ability, cognitive function, and accompanying impairments were assessed. Both receptive and expressive language development quotients (DQs) were significantly related to PVWL or deep gray matter lesion severity. In multivariable analysis, only cognitive function was significantly related to receptive language development, whereas ambulatory status and cognitive function were significantly associated with expressive language development. More than one third of the children had a language developmental discrepancy between receptive and expressive DQs. Children with cortical/subcortical lesions were at high risk for this discrepancy. Cognitive function is a key factor for both receptive and expressive language development. In children with PVWL or deep gray matter lesion, lesion severity seems to be useful to predict language development.

  18. A theoretical study of resonant tunneling characteristics in triangular double-barrier diodes

    International Nuclear Information System (INIS)

    Wang Hongmei; Xu Huaizhe; Zhang Yafei

    2006-01-01

    Resonant tunneling characteristics of triangular double-barrier diodes have been investigated systematically in this Letter, using Airy function approach to solve time-independent Schroedinger function in triangular double-barrier structures. Originally, the exact analytic expressions of quasi-bound levels and quasi-level lifetime in symmetrical triangular double-barrier structures have been derived within the effective-mass approximation as a function of structure parameters including well width, slope width and barrier height. Based on our derived analytic expressions, numerical results show that quasi-bound levels and quasi-level lifetime vary nearly linearly with the structure parameters except that the second quasi-level lifetime changes parabolically with slope width. Furthermore, according to our improved transmission coefficient of triangular double-barrier structures under external electric field, the current densities of triangular double-barrier diodes with different slope width at 0 K have been calculated numerically. The results show that the N-shaped negative differential resistance behaviors have been observed in current-voltage characteristics and current-voltage characteristics depend on the slope width

  19. Magnetic properties and high frequency characteristics of FeCoN thin films

    Directory of Open Access Journals (Sweden)

    Tae-Jong Hwang

    2016-05-01

    Full Text Available (Fe65Co35N soft magnetic thin films were prepared by reactive RF magnetron sputtering with the sputtering power of 100 W on thermally oxidized Si substrate in various nitrogen partial pressures (PN2. A strong uniaxial in-plane magnetic anisotropy with the easy-axis coercive field as low as 1∼2 Oe was observed in films grown at PN2 in the range from 3.3% to 5.5%. The saturation magnetizations for those films were about 20 KG. Outside this range, almost isotropic magnetization curves were observed. Vector network analyzer and grounded coplanar waveguide were used to measure the ferromagnetic resonance (FMR signals up to 25 GHz. The FMR signals were detected only in anisotropic films and their FMR frequencies were well fit to the Kittel formula. The obtained g-values and damping parameters at magnetic fields >20 kOe for films grown at PN2 of 3.3%, 4.8% and 5.5% were 1.96, 1.86, 1.92 and 0.0055, 0.0047, 0.0046, respectively. This low damping factor qualifies FeCoN thin films for high-frequency applications.

  20. Transmission Characteristics of a Generalized Parallel Plate Dielectric Waveguide at THz Frequencies

    International Nuclear Information System (INIS)

    Ye Long-Fang; Xu Rui-Min; Zhang Yong; Lin Wei-Gan

    2011-01-01

    A generalized parallel-plate dielectric waveguide (G-PPDW) is proposed as a new guiding medium for terahertz wave. A theoretical analysis of the transmission characteristics for the TE modes of this generalized structure is performed. Equations are presented for the field components, dispersion, power ratio, transmission loss and characteristic impedance as functions of the operating frequencies, dimensions and material constants. In the case of the lowest-order mode TE 10 , design curves covering frequencies and dimensions for the given material constants in the THz region are presented. The theoretical results of transmission characteristics obtained from these equations are verified by the finite-element method with a good agreement. The investigation results show that by selecting proper dimensions and dielectric materials, G-PPDW can be used to guide THz waves efficiently with high power confinement and low attenuation. These outstanding properties may open up a way to many important applications for THz integrated circuits and systems. (fundamental areas of phenomenology(including applications))

  1. Influence of horizontally curved roadway section characteristics on motorcycle-to-barrier crash frequency.

    Science.gov (United States)

    Gabauer, Douglas J; Li, Xiaolong

    2015-04-01

    The purpose of this study was to investigate motorcycle-to-barrier crash frequency on horizontally curved roadway sections in Washington State using police-reported crash data linked with roadway data and augmented with barrier presence information. Data included 4915 horizontal curved roadway sections with 252 of these sections experiencing 329 motorcycle-to-barrier crashes between 2002 and 2011. Negative binomial regression was used to predict motorcycle-to-barrier crash frequency using horizontal curvature and other roadway characteristics. Based on the model results, the strongest predictor of crash frequency was found to be curve radius. This supports a motorcycle-to-barrier crash countermeasure placement criterion based, at the very least, on horizontal curve radius. With respect to the existing horizontal curve criterion of 820 feet or less, curves meeting this criterion were found to increase motorcycle-to-barrier crash frequency rate by a factor of 10 compared to curves not meeting this criterion. Other statistically significant predictors were curve length, traffic volume and the location of adjacent curves. Assuming curves of identical radius, the model results suggest that longer curves, those with higher traffic volume, and those that have no adjacent curved sections within 300 feet of either curve end would likely be better candidates for a motorcycle-to-barrier crash countermeasure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  3. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    International Nuclear Information System (INIS)

    Cao Yu; Li Xiangyou; Zeng Xiaoyan

    2008-01-01

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated

  4. Frequency characteristics of the MIM thick film capacitors fabricated by laser micro-cladding electronic pastes

    Energy Technology Data Exchange (ETDEWEB)

    Cao Yu; Li Xiangyou [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China); Zeng Xiaoyan [Wuhan National Laboratory for Optoelectronics, Huazhong University of Sci and Tech, 430074 Wuhan, Hubei (China)], E-mail: xyzeng@mail.hust.edu.cn

    2008-05-25

    With rapid development of the electronic industry, how to respond the market requests quickly, shorten R and D prototyping fabrication period, and reduce the cost of the electronic devices have become a challenge work, which need flexible manufacturing methods. In this work, two direct write processing methods, direct material deposition by microPen and Nd:YAG laser micro-cladding, are integrated with CAD/CAM technology for the hybrid fabrication of passive electronic components. Especially, the metal-insulator-metal (MIM) type thick film capacitors are fabricated on ceramic substrates by this method. A basic two-step procedure of laser micro-cladding electronic pastes (LMCEPs) process for the thick film pattern preparation is presented. For a better understanding of the MIM thick film capacitor characterization, equivalent circuit models at low-frequency and high-frequency domains are introduced, respectively. The frequency characteristics tests up to 1.8 GHz of capacitance stability, equivalent series resistance (ESR), equivalent series inductance (ESL) and impendence are performed, and the results show good DC voltage stability (<2.48%), good frequency stability (<2.6%) and low dissipation factor (<0.6%) of the MIM thick film capacitors, which may get application to megahertz regions. The further developments of the LMCEP process for fabricating MIM thick film capacitors are also investigated.

  5. Characteristics of Cranial Aneurysmal Bone Cyst on Computed Tomography and Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Sen-Ping Lin

    2007-01-01

    Full Text Available Aneurysmal bone cysts are benign bone tumors that most commonly occur in people younger than 30 years. The cysts are most often found in the metaphyses of long bones and rarely affect the skull. We present a 54-year-old woman with a rapidly enlarging mass in the left occipital region that caused tenderness for 2 weeks. Computed tomography (CT revealed an expansile, osteolytic lesion with characteristic soap-bubble appearance and fluid-fluid levels. Magnetic resonance images showed a dark rim surrounding the lesion, as well as multilocular spaces with fluid-fluid levels. The tumor was soft, fragile, and pulsatile during surgery. The patient was treated with en bloc resection of the tumor with cranioplasty. Follow-up CT 5 months later showed no evidence of recurrence. [J Formos Med Assoc 2007;106(3:255-259

  6. The Transfer of Resonance Line Polarization with Partial Frequency Redistribution in the General Hanle–Zeeman Regime

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, E. Alsina; Bueno, J. Trujillo [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Belluzzi, L., E-mail: ealsina@iac.es [Istituto Ricerche Solari Locarno, CH-6605 Locarno Monti (Switzerland)

    2017-02-10

    The spectral line polarization encodes a wealth of information about the thermal and magnetic properties of the solar atmosphere. Modeling the Stokes profiles of strong resonance lines is, however, a complex problem both from a theoretical and computational point of view, especially when partial frequency redistribution (PRD) effects need to be taken into account. In this work, we consider a two-level atom in the presence of magnetic fields of arbitrary intensity (Hanle–Zeeman regime) and orientation, both deterministic and micro-structured. Working within the framework of a rigorous PRD theoretical approach, we have developed a numerical code that solves the full non-LTE radiative transfer problem for polarized radiation, in one-dimensional models of the solar atmosphere, accounting for the combined action of the Hanle and Zeeman effects, as well as for PRD phenomena. After briefly discussing the relevant equations, we describe the iterative method of solution of the problem and the numerical tools that we have developed and implemented. We finally present some illustrative applications to two resonance lines that form at different heights in the solar atmosphere, and provide a detailed physical interpretation of the calculated Stokes profiles. We find that magneto-optical effects have a strong impact on the linear polarization signals that PRD effects produce in the wings of strong resonance lines. We also show that the weak-field approximation has to be used with caution when PRD effects are considered.

  7. The double-resonance enhancement of stimulated low-frequency Raman scattering in silver-capped nanodiamonds

    Science.gov (United States)

    Baranov, A. N.; Butsen, A. V.; Ionin, A. A.; Ivanova, A. K.; Kuchmizhak, A. A.; Kudryashov, S. I.; Kudryavtseva, A. D.; Levchenko, A. O.; Rudenko, A. A.; Saraeva, I. N.; Strokov, M. A.; Tcherniega, N. V.; Zayarny, D. A.

    2017-09-01

    Hybrid plasmonic-dielectric nano- and (sub)microparticles exhibit magnetic and electrical dipolar Mie-resonances, which makes them useful as efficient basic elements in surface-enhanced spectroscopy, non-linear light conversion and nanoscale light control. We report the stimulated low-frequency Raman scattering (SLFRS) of a nanosecond ruby laser radiation (central wavelength λ = 694.3 nm (full-width at half-maximum ≈ 0.015 cm-1), gaussian 1/e-intensity pulsewidth τ ≈ 20 ns, TEM00-mode pulse energy Emax ≈ 0.3 J) in nanodiamond (R ≈ 120 nm) hydrosols, induced via optomechanical coherent excitation of fundamental breathing eigen-modes, and the two-fold enhancement of SLFRS in Ag-decorated nanodiamonds, characterized by hybrid dipolar resonances of electrical (silver) and magnetic (diamond) nature. Hybrid metal-dielectric particles were prepared by means of nanosecond IR-laser ablation of solid silver target in diamond hydrosols with consecutive Ag-capping of diamonds, and were characterized by scanning electron microscopy, UV-vis, photoluminescence and energy-dispersive X-ray spectroscopy. Intensities of the SLFR-scattered components and their size-dependent spectral shifts were measured in the highly sensitive stimulated scattering regime, indicating the high (≈ 30%) SLFRS conversion efficiency and the resonant character of the scattering species.

  8. MEASURE CHARACTERISTICS OF MOTOR TESTS OF MOVEMENT FREQUENCY WITH STUDENT FROM MACEDONIA AND KOSOVO

    Directory of Open Access Journals (Sweden)

    Georgi Georgiev

    2014-06-01

    Full Text Available Introduction: The tests of good measure characteristics are a multiple matter of interest. They can be property used in the work of selecting young athletes as well as programming the physical activities and giving marks in classes. There are many authors who have conducted researches and established measure characteristics of motor tests. Measure characteristics are constantly an actual issue for research. This research was conducted with the aim of establishing and comparing the measure characteristics of the used motor tests of movement frequencies with 11-year-old students from Macedonia and Kosovo. Methods: The sample of respondents consists of 180 male students at the age of 11 (100 from Macedonia and 80 from Kosovo. They were tested with three composite motor tests to assess the movement frequency. For the obtained data there calculated: basic descriptive parameters, Pearson coefficient of correlation, factor analyse, Cronbach α and Spearman-Brown’s coefficients (Vincent, 2005. Results: On the based of the received results, it is obvious that regarding the three tests satisfactory measure characteristics are established (validity and reliability. Discussion: In kinesiology, by using motor tests, we indirectly form a concept about the motor abilities of the respondents. That is why, it is of great importance to use tests that have satisfactory measure characteristics. The used tests are recommended for application in assessing motor abilities’ movement frequency. The final results correspond to a great extent with the researches of Metikos et al, (1989, Georgiev (1996, 2007, Pireva (2013 and other. References: Georgiev G (1996. Definiranje na stepenot na faktorskata validnost, relijabilnost i drugi merni karakteristiki vo biomotorniot prostor kaj učenicite od dvata pola od 11-godišna vozrast. (Magisterski trud, Univerzitet “Sv. Kiril i Metodij”, Fakultet za fizička kultura, Skopje. Georgiev G (2007. Sport i nauka, 5, 224

  9. Characteristics of Large Low-frequency Debris Flow Hazards and Mitigation Strategies

    Institute of Scientific and Technical Information of China (English)

    WANG Shige

    2005-01-01

    A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.

  10. Analysis on voltage oscillation of a mid-frequency series resonant inverter for DRMP coils on J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Long-jian, E-mail: liulongjian001@yeah.net [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yu, Ke-xun; Zhang, Ming; Nan, Jie-yin; Jiang, Guo-zhong; Rao, Bo; Li, Xuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-01-15

    Highlights: • The reason of high-voltage oscillation of a series resonant inverter for DRMP coils is analyzed. • The condition or method for reduction of high-voltage oscillation is discussed. • The considerations of dead time and switch frequency for reduction of high-voltage oscillation are discussed. - Abstract: This paper deals with the voltage oscillation of an AC power supply for generating dynamic magnetic perturbation (DRMP) on J-TEXT. The power supply is a series resonant inverter with a matching transformer. It was noted that the high-voltage oscillation at transformer primary side is caused by an interaction between the line inductance and the stray capacitance of the matching transformer at switching transitions. In order to reduce the high-voltage oscillation and consider the requirement for soft-switching technique simultaneously, the switching frequency should be chosen properly by fine-tuning. The dead time should be chosen according to the relative size of minimum required dead time for protection and the optimal dead time.

  11. Alpha-wave frequency characteristics in health and insomnia during sleep.

    Science.gov (United States)

    Schwabedal, Justus T C; Riedl, Maik; Penzel, Thomas; Wessel, Niels

    2016-06-01

    Appearances of alpha waves in the sleep electrencephalogram indicate physiological, brief states of awakening that lie in between wakefulness and sleep. These microstates may also cause the loss in sleep quality experienced by individuals suffering from insomnia. To distinguish such pathological awakenings from physiological ones, differences in alpha-wave characteristics between transient awakening and wakefulness observed before the onset of sleep were studied. In polysomnographic datasets of sleep-healthy participants (n = 18) and patients with insomnia (n = 10), alpha waves were extracted from the relaxed, wake state before sleep onset, wake after sleep-onset periods and arousals of sleep. In these, alpha frequency and variability were determined as the median and standard deviation of inverse peak-to-peak intervals. Before sleep onset, patients with insomnia showed a decreased alpha variability compared with healthy participants (P insomnia, alpha variability increased for short wake after sleep-onset periods. Major differences between the two groups were encountered during arousal. In particular, the alpha frequency in patients with insomnia rebounded to wake levels, while the frequency in healthy participants remained at the reduced level of short wake after sleep-onset periods. Reductions in alpha frequency during wake after sleep-onset periods may be related to the microstate between sleep and wakefulness that was described for such brief awakenings. Reduced alpha variability before sleep may indicate a dysfunction of the alpha generation mechanism in insomnia. Alpha characteristics may also prove valuable in the study of other sleep and attention disorders. © 2016 European Sleep Research Society.

  12. Low-Frequency Acoustic Noise Mitigation Characteristics of Metamaterials-Inspired Vibro-Impact Structures

    Science.gov (United States)

    Rekhy, Anuj

    Acoustic absorbers like foams, fiberglass or liners have been used commonly in structures for infrastructural, industrial, automotive and aerospace applications to mitigate noise. However, these conventional materials have limited effectiveness to mitigate low-frequency (LF) acoustic waves with frequency less than 400 Hz owing to the need for impractically large mass or volume. LF acoustic waves contribute significantly towards environmental noise pollution as well as unwanted structural responses. Therefore, there is a need to develop lightweight, compact, structurally-integrated solutions to mitigate LF noise in several applications. Inspired by metamaterials, which are man-made structural materials that derive their unique dynamic behavior not just from material constituents but more so from engineered configurations, tuned mass-loaded membranes as vibro-impact attachments on a baseline structure are investigated to determine their performance as a LF acoustic barrier. The hypothesis is that the LF incident waves are up-converted via impact to higher modes in the baseline structure which are far more evanescent and may then be effectively mitigated using conventional means. Such Metamaterials-Inspired Vibro-Impact Structures (MIVIS) could be tuned to match the dominant frequency content of LF acoustic sources in specific applications. Prototype MIVIS unit cells were designed and tested to study the energy transfer mechanism via impact-induced frequency up-conversion, and the consequent sound transmission loss. Structural acoustic simulations were done to predict responses using models based on normal incidence transmission loss tests. Experimental proof-of-concept was achieved and further correlations to simulations were utilized to optimize the energy up-conversion mechanism using parametric studies. Up to 36 dB of sound transmission loss increase is obtained at the anti-resonance frequency (326 Hz) within a tunable LF bandwidth of about 200 Hz while impact

  13. Workplace characteristics and work-to-family conflict: does caregiving frequency matter?

    Science.gov (United States)

    Brown, Melissa; Pitt-Catsouphes, Marcie

    2013-01-01

    Many workers can expect to provide care to an elder relative at some point during their tenure in the workforce. This study extends previous research by exploring whether caregiving frequency (providing care on a regular, weekly basis vs. intermittently) moderates the relationship between certain workplace characteristics and work-to-family conflict. Utilizing a sample of 465 respondents from the National Study of the Changing Workforce (Families and Work Institute, 2008), results indicate that access to workplace flexibility has a stronger effect on reducing work-to-family conflict among intermittent caregivers than among those who provide care regularly.

  14. Split-Capacitance and Conductance-Frequency Characteristics of SOI Wafers in Pseudo-MOSFET Configuration

    KAUST Repository

    Pirro, Luca; Diab, Amer El Hajj; Ionica, Irina; Ghibaudo, Gerard; Faraone, Lorenzo; Cristoloveanu, Sorin

    2015-01-01

    Recent experimental results have demonstrated the possibility of characterizing silicon-on-insulator (SOI) wafers through split C-V measurements in the pseudo-MOSFET configuration. This paper analyzes the capacitance and conductance versus frequency characteristics. We discuss the conditions under which it is possible to extract interface trap density in bare SOI wafers. The results indicate, through both measurements and simulations, that the signature due to interface trap density is present in small-area samples, but is masked by the RC response of the channel in regular, large-area ones, making the extraction in standard samples problematic. © 1963-2012 IEEE.

  15. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    Science.gov (United States)

    Kamlovskii, O. V.

    2013-12-01

    We consider some properties of the coordinate sequences of linear recurrences over Galois rings which characterize the possibility of regarding them as pseudo-random sequences. We study the periodicity properties, linear complexity and frequency characteristics of these sequences. Up to now, these parameters have been studied mainly in the case when the linear recurring sequence has maximal possible period. We investigate the coordinate sequences of linear recurrences of not necessarily maximal period. We obtain sharpened and generalized estimates for the number of elements and r-patterns on the cycles and intervals of these sequences.

  16. Frequency characteristics of coordinate sequences of linear recurrences over Galois rings

    International Nuclear Information System (INIS)

    Certification Research Center, Moscow (Russian Federation))" data-affiliation=" (LLC Certification Research Center, Moscow (Russian Federation))" >Kamlovskii, O V

    2013-01-01

    We consider some properties of the coordinate sequences of linear recurrences over Galois rings which characterize the possibility of regarding them as pseudo-random sequences. We study the periodicity properties, linear complexity and frequency characteristics of these sequences. Up to now, these parameters have been studied mainly in the case when the linear recurring sequence has maximal possible period. We investigate the coordinate sequences of linear recurrences of not necessarily maximal period. We obtain sharpened and generalized estimates for the number of elements and r-patterns on the cycles and intervals of these sequences

  17. Split-Capacitance and Conductance-Frequency Characteristics of SOI Wafers in Pseudo-MOSFET Configuration

    KAUST Repository

    Pirro, Luca

    2015-09-01

    Recent experimental results have demonstrated the possibility of characterizing silicon-on-insulator (SOI) wafers through split C-V measurements in the pseudo-MOSFET configuration. This paper analyzes the capacitance and conductance versus frequency characteristics. We discuss the conditions under which it is possible to extract interface trap density in bare SOI wafers. The results indicate, through both measurements and simulations, that the signature due to interface trap density is present in small-area samples, but is masked by the RC response of the channel in regular, large-area ones, making the extraction in standard samples problematic. © 1963-2012 IEEE.

  18. Improved Nyquist Pulses Produced By A Filter with Senary Piece-wise Polynomial Frequency Characteristic

    Directory of Open Access Journals (Sweden)

    BALAN, A. L.

    2014-05-01

    Full Text Available A novel family of inter-symbol interference (ISI free pulses generated by improved Nyquist filters with a frequency characteristic composed of six parabolic pieces is proposed. We studied the performance of the new pulses in terms of the ISI error probability when the impulse response is sampled with a timing offset. To illustrate the achieved improvement, the new pulses are compared with other performing pulses that were reported in the literature. Simulation results show that comparable or enhanced ISI performance can be obtained at reasonable complexity.

  19. High speed resonant frequency determination applied to field mapping using perturbation techniques

    International Nuclear Information System (INIS)

    Smith, B.H.; Burton, R.J.; Hutcheon, R.M.

    1992-01-01

    Perturbation techniques are commonly used for measuring electric and magnetic field distributions in resonant structures. A field measurement system has been assembled using a Hewlett Packard model 8753C network analyzer interfaced via an HPIB bus to a personal computer to form an accurate, rapid and flexible system for data acquisition, control, and analysis of such measurements. Characterization of long linac structures (up to 3 m) is accomplished in about three minutes, minimizing thermal drift effects. This paper describes the system, its application and its extension to applications such as confirming the presence of weak, off-axis quadrupole fields in an on-axis coupled linac. (Author) 5 figs., 10 refs

  20. Electron heating via self-excited plasma series resonance in geometrically symmetric multi-frequency capacitive plasmas

    International Nuclear Information System (INIS)

    Schüngel, E; Brandt, S; Schulze, J; Donkó, Z; Korolov, I; Derzsi, A

    2015-01-01

    The self-excitation of plasma series resonance (PSR) oscillations plays an important role in the electron heating dynamics in capacitively coupled radio-frequency (CCRF) plasmas. In a combined approach of PIC/MCC simulations and a theoretical model based on an equivalent circuit, we investigate the self-excitation of PSR oscillations and their effect on the electron heating in geometrically symmetric CCRF plasmas driven by multiple consecutive harmonics. The discharge symmetry is controlled via the electrical asymmetry effect (EAE), i.e. by varying the total number of harmonics and tuning the phase shifts between them. It is demonstrated that PSR oscillations will be self-excited under both symmetric and asymmetric conditions, if (i) the charge–voltage relation of the plasma sheaths deviates from a simple quadratic behavior and (ii) the inductance of the plasma bulk exhibits a temporal modulation. These two effects have been neglected up to now, but we show that they must be included in the model in order to properly describe the nonlinear series resonance circuit and reproduce the self-excitation of PSR oscillations, which are observed in the electron current density resulting from simulations of geometrically symmetric CCRF plasmas. Furthermore, the effect of PSR self-excitation on the discharge current and the plasma properties, such as the potential profile, is illustrated by applying Fourier analysis. High-frequency oscillations in the entire spectrum between the applied frequencies and the local electron plasma frequency are observed. As a consequence, the electron heating is strongly enhanced by the presence of PSR oscillations. A complex electron heating dynamics is found during the expansion phase of the sheath, which is fully collapsed, when the PSR is initially self-excited. The nonlinear electron resonance heating (NERH) associated with the PSR oscillations causes a spatial asymmetry in the electron heating. By discussing the resulting ionization