WorldWideScience

Sample records for characteristic geological rocks

  1. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  2. Pb, Sr and Nd isotope geological characteristics and its evolution of Jianchaling rock

    International Nuclear Information System (INIS)

    Pang Chunyong; Chen Minyang; Xu Wenxin

    2003-01-01

    It has been a long time debatable subject on the raw material source and its genesis of Jianchaling ultrabasic rock, because the original rock phases, the original mineral compositions, texture and structure, even part of the chemical components of the rocks had been changed completely after many periods and phases of metamorphism. According to the content of Pb, Rb, Sr, Nd elements and their Pb, Sr, Nd isotope compositions of the rocks, together with the isotope geological age of late magmatic activities, the authors analyze the evolution of Pb, Sr, Nd isotope compositions, The inferred initiate Nd isotope ratio of ultrabasic rocks is 0.510233, lower than that of meteorite unity at a corresponding period, its ε Nd(T)>O; The initiate Sr ratios inferred by the isotope geological age ranges from 0.702735 to 0.719028; Projecting the lead isotope compositions on the Pb tectonic evolution model, the result indicates that the raw material of Jianchaling ultrabasic rock coming from the deplete upper mantle. The ultrabasic magma which enrich of Mg, Ni and less S intruded the crust and formed the Jianchaling ultrabasic rock at late Proterozoic era (927 Ma±). The forming time of serpentinite is mostly equal to the granitoid intruding time, showing the intrusion o flate acidic magma caused a large scale alteration of the ultrabasic rocks and formed the meta-ultrabasic phase rock observed today. (authors)

  3. The characteristics of ginger-like rock and its geological significance in Northern Zhungeer basin

    International Nuclear Information System (INIS)

    Wu Rengui

    1998-01-01

    The author studies the characteristics of ginger-like stratum and its genesis in northern Zhungeer basin. There are many ginger-like strata of Tertiary-Quaternary exist in northern Zhungeer basin. It shows a good prospect for the formation of Tertiary sandstone type Uranium deposit which can be leached in-situ

  4. Rock-geological, tectonic and geophysical studies of the area of VOXNA and the therein situated characteristic area of SVARTBOBERGET

    International Nuclear Information System (INIS)

    Tiren, S.A.; Eriksson, L.; Henkel, H.

    1981-12-01

    The area the size of which is 500 km 2 , is situated in the district of Gaevleborg. The rock consists mainly of migmatic and gneissic granite. Greenstone and diabase are accessory constituents. The fracture zones are oriented in the direction NNW-SSE. Svartboberget is in the central part of a downfolded migmatite and forms a part of a rock which is poorly fractured. The water flow in the minor fracture zones is low and the small tension fractures are dominant in the NNE-SSW direction. Geophysical estimates give the thickness of migmatite to 500 m. (G.B.)

  5. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated WSn mineralization and their tectonic setting

    Science.gov (United States)

    Zaw, Khin

    The granitoid rocks in Burma extend over a distance of 1450 km from Putao, Kachin State in the north, through Mogok, Kyaukse, Yamethin and Pyinmana in the Mandalay Division, to Tavoy and Mergui areas, Tenasserim Division, in the south. The Burmese granitoids can be subdivided into three N-S trending, major belts viz. western granitoid belt, central graniotoid belt and eastern granitoid belt. The Upper Cretaceous-Lower Eocene western belt granitoids are characterized by high-level intrusions associated with porphyry Cu(Au) related, younger volcanics; these plutonic and volcanic rocks are thought to have been emplaced as a magmatic-volcanic arc (inner magmatic-volcanic arc) above an east-dipping, but westwardly migrating, subduction zone related to the prolonged plate convergence which occurred during Upper Mesozoic and Cenozoic. The central granitoid belt is characterized by mesozonal, Mostly Upper Cretaceous to Lower Eocene plutons associated with abundant pegmalites and aplites, numerous vein-type W-Sn deposits and rare co-magmatic volcanics. The country rocks are structurally deformed, metamorphic rocks of greenschist to upper amphibolite facies ranging in age as early as Upper Precambrian to Upper Paleozoic and locally of fossiliferous, metaclastic rocks (Mid Jurassic to Lower Cretaceous). Available K/Ar radiometric data indicate significant and possibly widespread thermal disturbances in the central granitoid belt during the Tertiary (mostly Miocence). In this study, the distribution, lithological, textural and structural characteristics of the central belt granitoids are reviewed, and their mineralogical, petrological, and geochemical features are presented. A brief description of W-Sn ore veins associated with these granitoid plutons is also reported. Present geological, petrological and geochemical evidences demonstrate that the W-Sn related, central belt granitoids are mostly granodiorite and granite which are commonly transformed into granitoid gneisses

  6. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  7. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    International Nuclear Information System (INIS)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-01-01

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  8. Hydrological characteristics of Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial to evaluate the hydrogeological characteristics of rock in Japan in order to assess the performance of geosphere. This report summarizes the hydrogeological characteristics of various rock types obtained from broad literature surveys and the fields experiments at the Kamaishi mine in northern Japan and at the Tono mine in central Japan. It is found that the hydraulic conductivity of rock mass ranges from 10 -9 m/s to 10 -8 m/s, whereas the hydraulic conductivity of fault zone ranges from 10 -9 m/s to 10 -3 m/s. It is also found that the hydraulic conductivity tends to decrease with depth. Therefore, the hydraulic conductivity of rock mass at the depth of a repository will be smaller than above values. From the investigations at outcrops and galleries throughout the country, fractures are observed as potential pathways in all rock types. All kinds of crystalline rocks and pre-Neogene sedimentary rocks are classified as fractured media where fracture flow is dominant. Among these rocks, granitic rock is considered the archetype fractured media. On the other hand, andesite, tuff and Neogene sedimentary rocks are considered as intermediate between fractured media and porous media where flow in fractures as well as in rock matrix are significant. (author)

  9. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  10. Oil geology of carbonate rock (Part 9)

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Kazuaki [Canpex Co., Ltd., Tokyo (Japan)

    1989-04-01

    As related with the oil exploration and development, the geological and environmental situation, where coral and other biological reef forms, was explained in Mubarras shoal and Bu Tinah shoal off Abu Dhabi, and the Okinawa islands. Generally, reef-natured sediment is distributed in marine areas, high in wave energy and facing open sea, and composed of coarse sediment. While, for the formation of biological reef, life must have so strong skeleton as to stand such severe wave, current and other oceanographic conditions. In Mubarras shoal, underground upheaval is found mainly in the northern part of shoal, while, in Bu Tinah shoal, it is found at the central part of shoal. Both the shoals are mutually different in condition of coral reef and coarse particulate sediment however common in the point that coral reef is always formed from the central part of upheaval toward offshore, inside which formation coarse calcareous sediment is formed. While the existence of calcareous mud prevents coral from growing and simultaneously lower reservoir rock in form condition. 26 figs.

  11. Survey of Jaemtland county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Antal, I.; Bergman, S.; Freden, C.; Gierup, J.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Jaemtland county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  12. Survey of Dalarna county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Linden, A.; Ripa, M.; Stoelen, L.K.; Thunholm, B.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Dalarna county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  13. Survey of Scania county (basement rock part). Geologic conditions

    International Nuclear Information System (INIS)

    Gierup, J.; Kuebler, L.; Pamnert, M.; Persson, Magnus; Thunholm, B.; Wahlgren, C.H.; Wikman, H.; Stephens, M.

    1999-06-01

    A broad survey of the geologic conditions in Scania county is presented, with the aim to give background for the location of a repository for spent fuels. The study is restricted to the basement rock part of the county

  14. Astronaut Neil Armstrong studies rock samples during geological field trip

    Science.gov (United States)

    1969-01-01

    Astronaut Neil Armstrong, commander of the Apollo 11 lunar landing mission, studies rock samples during a geological field trip to the Quitman Mountains area near the Fort Quitman ruins in far west Texas.

  15. Rocks and geology in the San Francisco Bay region

    Science.gov (United States)

    Stoffer, Philip W.

    2002-01-01

    The landscape of the San Francisco Bay region is host to a greater variety of rocks than most other regions in the United States. This introductory guide provides illustrated descriptions of 46 common and important varieties of igneous, sedimentary, and metamorphic rock found in the region. Rock types are described in context of their identification qualities, how they form, and where they occur in the region. The guide also provides discussion about of regional geology, plate tectonics, the rock cycle, the significance of the selected rock types in relation to both earth history and the impact of mineral resources on the development in the region. Maps and text also provide information where rocks, fossils, and geologic features can be visited on public lands or in association with public displays in regional museums, park visitor centers, and other public facilities.

  16. Thermal characteristics of rocks for high-level waste repository

    International Nuclear Information System (INIS)

    Shimooka, Kenji; Ishizaki, Kanjiro; Okamoto, Masamichi; Kumata, Masahiro; Araki, Kunio; Amano, Hiroshi

    1980-12-01

    Heat released by the radioactive decay of high-level waste in an underground repository causes a long term thermal disturbance in the surrounding rock mass. Several rocks constituting geological formations in Japan were gathered and specific heat, thermal conductivity, thermal expansion coefficient and compressive strength were measured. Thermal analysis and chemical analysis were also carried out. It was found that volcanic rocks, i.e. Andesite and Basalt had the most favorable thermal characteristics up to around 1000 0 C and plutonic rock, i.e. Granite had also favorable characteristics under 573 0 C, transition temperature of quartz. Other igneous rocks, i.e. Rhyolite and Propylite had a problem of decomposition at around 500 0 C. Sedimentary rocks, i.e. Zeolite, Tuff, Sandstone and Diatomite were less favorable because of their decomposition, low thermal conductivity and large thermal expansion coefficient. (author)

  17. Petrological-geochemical characteristics of coarse-grained clastic sedimentary rocks of Quantou Formation, Cretaceous in Songliao basin and their geological significance

    International Nuclear Information System (INIS)

    Wang Gan; Zhang Bangtong

    2005-01-01

    Clastic sedimentary rocks of Quantou Formation, Cretaceous in Qing-an area, Songliao basin are mainly composed of sandstone, mudstone and siltstone. The petrological-chemical analysis of clastic sedimentary rocks from Quantou Formation, Cretaceous indicates that their lithology mainly consists of arkose, shale and minor rock debris sandstone and greywacke by chemical classification of bulk elements. REE distribution pattern displays the apparent enrichment of LREE and negative anomaly of Eu and is similar to that of NASC and PAAS. The ratio of trace-element in sedimentary rocks to that of upper crust shows gentle character. All the above features indicate that these sedimentary rocks were slowly deposited under weakly active tectonic setting. They are sediments typical for passive continental margin and active continental margin. It is suggested that material source of clastic sediments of Quantou Formation, Cretaceous in Qing-an area, Songliao basin was originated from Hercynian granite of Zhangguangchai Mountain, and the granite was originated from upper crust. (authors)

  18. Geological and rock mechanics aspects of the long-term evolution of a crystalline rock site

    International Nuclear Information System (INIS)

    Cosgrove, J.W.; Hudson, J.A.

    2009-01-01

    We consider the stability of a crystalline rock mass and hence the integrity of a radioactive waste repository contained therein by, firstly, identifying the geological evolution of such a site and, secondly, by assessing the likely rock mechanics consequences of the natural perturbations to the repository. In this way, the potency of an integrated geological-rock mechanics approach is demonstrated. The factors considered are the pre-repository geological evolution, the period of repository excavation, emplacement and closure, and the subsequent degradation and natural geological perturbations introduced by glacial loading. It is found that the additional rock stresses associated with glacial advance and retreat have a first order effect on the stress magnitudes and are likely to cause a radical change in the stress regime. There are many factors involved in the related geosphere stability and so the paper concludes with a systems diagram of the total evolutionary considerations before, during and after repository construction. (authors)

  19. Compositional characteristics and industrial qualities of talcose rock ...

    African Journals Online (AJOL)

    Compositional characteristics and industrial qualities of talcose rock in Erin Omu area, southwestern Nigeria. OA Okunlola, FA Anikulapo. Abstract. No Abstract. Journal of Mining and Geology Vol. 42 (2) 2006: pp. 105-112. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  20. Rock solid: the geology of nuclear waste disposal

    International Nuclear Information System (INIS)

    Reid, Elspeth.

    1990-01-01

    With a number of nuclear submarines and power stations due to be decommissioned in the next decade, stores of radioactive waste, and arguments about storage increase. Whatever the direction taken by the nuclear industry in Britain, the legacy of waste remains for the foreseeable future. Geology is at the heart of the safety argument for nuclear wastes. It is claimed that rocks should act as the main safety barrier, protecting present and future generations from radiation. Rock Solid presents a clear, accessible and up to date account of the geological problems involved in building a nuclear waste repository. The author describes the geology of some of the possible UK repository sites (Sellafield, Dounreay, Altnabreac, Billingham), explains how sites are investigated (including computer models), and finally considers the crucial question: 'would geological containment of radioactive waste actually work?'. (author)

  1. Geological constraints for muon tomography: The world beyond standard rock

    Science.gov (United States)

    Lechmann, Alessandro; Mair, David; Ariga, Akitaka; Ariga, Tomoko; Ereditato, Antonio; Käser, Samuel; Nishiyama, Ryuichi; Scampoli, Paola; Vladymyrov, Mykhailo; Schlunegger, Fritz

    2017-04-01

    In present day muon tomography practice, one often encounters an experimental setup in which muons propagate several tens to a few hundreds of meters through a material to the detector. The goal of such an undertaking is usually centred on an attempt to make inferences from the measured muon flux to an anticipated subsurface structure. This can either be an underground interface geometry or a spatial material distribution. Inferences in this direction have until now mostly been done, thereby using the so called "standard rock" approximation. This includes a set of empirically determined parameters from several rocks found in the vicinity of physicist's laboratories. While this approach is reasonable to account for the effects of the tens of meters of soil/rock around a particle accelerator, we show, that for material thicknesses beyond that dimension, the elementary composition of the material (average atomic weight and atomic number) has a noticeable effect on the measured muon flux. Accordingly, the consecutive use of this approximation could potentially lead into a serious model bias, which in turn, might invalidate any tomographic inference, that base on this standard rock approximation. The parameters for standard rock are naturally close to a granitic (SiO2-rich) composition and thus can be safely used in such environments. As geophysical surveys are not restricted to any particular lithology, we investigated the effect of alternative rock compositions (carbonatic, basaltic and even ultramafic) and consequentially prefer to replace the standard rock approach with a dedicated geological investigation. Structural field data and laboratory measurements of density (He-Pycnometer) and composition (XRD) can be merged into an integrative geological model that can be used as an a priori constraint for the rock parameters of interest (density & composition) in the geophysical inversion. Modelling results show that when facing a non-granitic lithology the measured muon

  2. ROCK-CAD - computer aided geological modelling system

    International Nuclear Information System (INIS)

    Saksa, P.

    1995-12-01

    The study discusses surface and solid modelling methods, their use and interfacing with geodata. Application software named ROCK-CAD suitable for geological bedrock modelling has been developed with support from Teollisuuden Voima Oy (TVO). It has been utilized in the Finnish site characterization programme for spent nuclear fuel waste disposal during the 1980s and 1990s. The system is based on the solid modelling technique. It comprises also rich functionality for the particular geological modelling scheme. The ROCK-CAD system provides, among other things, varying graphical vertical and horizontal intersections and perspective illustrations. The specially developed features are the application of the boundary representation modelling method, parametric object generation language and the discipline approach. The ROCK-CAD system has been utilized in modelling spatial distribution of rock types and fracturing structures in TVO's site characterization. The Olkiluoto site at Eurajoki serves as an example case. The study comprises the description of the modelling process, models and illustration examples. The utilization of bedrock models in site characterization, in tentative repository siting as well as in groundwater flow simulation is depicted. The application software has improved the assessment of the sites studied, given a new basis for the documentation of interpretation and modelling work, substituted hand-drawing and enabled digital transfer to numerical analysis. Finally, aspects of presentation graphics in geological modelling are considered. (84 refs., 30 figs., 11 tabs.)

  3. Rock stress measurements in the Grimsel Underground Rock Laboratory and their geological interpretation

    International Nuclear Information System (INIS)

    Braeuer, V.; Heusermann, S.; Pahl, A.

    1989-01-01

    Rock stress is being studied as part of the Swiss-German cooperation between the National Cooperative for the Storage of Radioactive Waste (NAGRA), the Research Centre for Environmental Sciences (GSF), and the Federal Institute for Geosciences and Natural Resources (BGR) in the Grimsel Rock Laboratory in Switzerland. Several methods and various equipment for measuring rock stress have been developed and tested in an approximately 200-m borehole drilled from a gallery at a depth of 450 m. The measurements were made continually during overcoring; the data were recorded and processed in a computer located downhole or outside the borehole. The results of the overcoring tests and of frac tests indicate a principle horizontal stress of 25-40 MPa, directed mainly NW-SE. Detailed geological mapping shows relationships between stress and rock structure. A zone of nearly unfractured rock exhibits an increase in stress and a change in stress direction. (orig.)

  4. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  5. Geological site selection studies in Precambrian crystalline rocks in Finland

    International Nuclear Information System (INIS)

    Vuorela, P.

    1988-01-01

    In general geological investigations made since 1977 the Finnish crystalline bedrock has been determined to be suitable for the final disposal of the spent nuclear fuel. Regional investigations have been mainly based on already existing geological studies. Special attention has been paid on the international geological Finland as the Baltic Shield is stiff and stable and situated far outside the zones of volcanic and seismic activity. The present day crustal movements in Finland are related to landuplift process. Movements and possible faults in the bedrock follow fracture zones which devide the bedrock into mosaiclike blocks. As compared to small scale geological maps the bedrock blocks are often indicated as large granite rock formations which are less broken than the surrounding rocks, though the age of granite formations is at least 1500 millions of years. The large bedrock blocks (20-300 km 2 ) are divided to smaller units by different magnitudes of fractures and these smaller bedrock units (5-20 km 2 ) have been selected for further site selection investigations. At the first stage of investigations 327 suitable regional bedrock blocks have been identified on the basis of Landsat-1 winter and summer mosaics of Finland. After two years of investigations 134 investigation areas were selected inside 61 bedrock blocks and classified to four priority classes, the three first of which were redommended for further investigations. Geological criteries used in classification indicated clear differences between the classes one and three, however all classified areas are situated in large rather homogenous bedrock blocks and more exact three dimensional suitability errors may not be observed until deep bore holes have been made

  6. Ultrapotassic rocks geology from Salgueiro region, Pernambuco state, Brazil

    International Nuclear Information System (INIS)

    Silva Filho, A.F. da; Guimaraes, I.P.

    1990-01-01

    The Cachoeirinha-Salgueiro belt has Proterozoic age and is located in the Borborema Province, NE Brazil. The ultrapotassic rocks from Salgueiro region intrudes the Cachoeirinha-Salgueiro belt rocks. The ultrapotassics from Salgueiro region constitutes of three units; Serra do Livramento pluton, and two dyke swarms called respectively beige alkali feldspar granites and green alkali feldspar syenite/quartz-syenite. The Serra do Livramento pluton shows E-W direction, boudin shape, width between 0,15 and 2,10 km, and it is intruded into metamorphic rocks and into the Terra Nova complex. Detailed geological mapping at the Serra das Duas Irmas allowed us to establish the dyke swarm chronology. The mapping reveals seven intrusion episodes, into the Terra Nova pluton, of green alkali feldspar syenite/quartz-syenite and five episodes of bege alkali feldspar granite. They alternate between them in space and time, and there are evidence that they were intruded under the tectonic control of the Pernambuco lineament. A systematic whole-rock Rb-Sr geochronology was done in the green alkali feldspar syenite/quartz-syenite, and an age of 514,8 ± 20,3 Ma was obtained. The initial ratio is 0,710615 + 0,000441. The age obtained shows small error and an initial ratio compatible with a strong crustal contamination. (author)

  7. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    Min, Kibok

    2011-01-01

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  8. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    Energy Technology Data Exchange (ETDEWEB)

    Hardenby, Carljohan (Vattenfall Power Consultant AB (Sweden)); Sigurdsson, Oskar (HAskGeokonsult AB (Sweden))

    2010-12-15

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m2. As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories (&apos

  9. Aespoe Hard Rock Laboratory. The TASS-tunnel. Geological mapping

    International Nuclear Information System (INIS)

    Hardenby, Carljohan; Sigurdsson, Oskar

    2010-12-01

    The project entitled 'Sealing of tunnel at great depth' (Fintaetning av tunnel paa stort djup) needed a new tunnel in an area as undisturbed as possible and with cross-cutting water-bearing structures. The new tunnel, which was given the name TASS, was excavated on the -450 m level of SKB's Aespoe Hard Rock Laboratory (Aespoe HRL). The length of the tunnel is approximately 80 m and the theoretical tunnel area 19 m 2 . As is the case with all the other tunnels of the Aespoe HRL, the new tunnel has been geologically mapped. In addition, laser scanning combined with digital photography has been carried out. The tunnel was also used to test various types of explosives, borehole layouts and drilling techniques. The geological mapping of tunnel floor, walls and roof took place on four major occasions when a halt was made in tunnel excavation to allow for various tests. Before the mapping started on these occasions, laser scanning took place. The tunnel faces were mapped after each round (drilling, blasting and unloading). The present report describes the geological features of the tunnel and briefly how the laser scanning was performed. Water-bearing structures have been compared to similar structures in the neighbouring tunnels. The rock type names used here follow the old established Aespoe HRL nomenclature. Narrow (<0.1 m wide) dykes are normally mapped as fracture fillings. The dominating rock type is Aespoe diorite, which constitutes some 90 % of the rock mass. It is mostly mapped as fresh rock. . Minor constituents of the rock mass are fine-grained granite, hybrid rock, pegmatite, quartz veins/lenses and undifferentiated mafic rock. The mapping of fractures and deformation zones considers a number of parameters such as number of fractures, open/healed, width, length, description of fracture surfaces (roughness, planarity, etc), fracture filling, alteration and water. The deformation zones are discriminated into two main categories ('increased fracturing' and

  10. ENGINEERING GEOLOGICAL CHARACTERISTICS OF THE ROAD SOLIN - KLIS (DALMATIA, CROATIA

    Directory of Open Access Journals (Sweden)

    Slobodan Šestanović

    1993-12-01

    Full Text Available The research, that has been done both on the »intact« terrain and on the opened cuts and discontinuities, and which has been carried on in the basic caves of the object, as well as in the tunnels; has verified the engineering geological and basic tectonic characteristics of Senonian limestones, Eocene flysch, the Promina breccias and breccia-conglomerates, as well as Oligocene poorly sorted breccias, on the route of semi-highway Solin-Klis (Dalmatia, Croatia. The lab analyses, of the great number of the rock samples, have brought out the parametres of their basic physical and mechanical features within a particular engineering geological unit. The results, thus obtained, have been compared to the qualities of the rock structure block as a whole, and had been previously evaluated by applying RMR-classification of the rocks, and the results of the measured velocities of the longitudinal waves. It has been pointed out that similar procedure may be applied in the publication of General Engineering Geological Map of the Republic of Croatia (the paper is published in Croatian.

  11. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  12. Influence of geological factors on the mechanical properties of rock in the Palo Duro Basin

    International Nuclear Information System (INIS)

    Cregger, D.M.; Corkum, D.H.; Gokce, A.O.; Peck, J.H.

    1985-01-01

    Sedimentary formations in the Palo Duro Basin of the Texas Panhandle exhibit a variety of petrofabrics which contribute to different mechanical behavior. Similarly classified rock core specimens, upon closer inspection, are comprised of different textures and slight compositional variations. The resultant rock mass characteristics interpreted from laboratory tests and deep borehole geophysical logs are seen to be a direct result of the depositional environment and geologic history. Depositional environments include chemical precipitation in shallow brine pools, basin filling with terrigenous or eolian supply of clastics, restricted circulation, and transgression of normal marine waters. Geochemical transformations of the deposits, (diagenesis), can or may result in profound changes to the mechanical properties of the rock. Structural deformation of the bedded salts is slight and may be far less important in its effect on mechanical properties than diagenetic changes

  13. Parametric study of geohydrologic performance characteristics for geologic waste repositories

    International Nuclear Information System (INIS)

    Bailey, C.E.; Marine, I.W.

    1980-11-01

    One of the major objectives of the National Waste Terminal Storage Program is to identify potential geologic sites for storage and isolation of radioactive waste (and possibly irradiated fuel). Potential sites for the storage and isolation of radioactive waste or spent fuel in a geologic rock unit are being carefully evaluated to ensure that radionuclides from the stored waste or fuel will never appear in the biosphere in amounts that would constitute a hazard to the health and safety of the public. The objective of this report is to quantify and present in graphical form the effects of significant geohydrologic and other performance characteristics that would influence the movement of radionuclides from a storage site in a rock unit to the biosphere. The effort in this study was focused on transport by groundwater because that is the most likely method of radionuclide escape. Graphs of the major performance characteristics that influence the transport of radionuclides from a repository to the biosphere by groundwater are presented. The major characteristics addressed are radioactive decay, leach rate, hydraulic conductivity, porosity, groundwater gradient, hydrodynamic dispersion, ion exchange, and distance to the biosphere. These major performance characteristics are combind with each other and with the results of certain other combinations and presented in graphical form to provide the interrelationships of values measured during field studies. The graphical form of presentation should be useful in the screening process of site selection. An appendix illustrates the use of these graphs to assess the suitability of a site

  14. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system.

  15. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system

  16. Clay club catalogue of characteristics of argillaceous rocks

    International Nuclear Information System (INIS)

    2005-01-01

    The OECD/NEA Working Group on the Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations, namely the Clay Club, examines the various argillaceous rocks that are being considered for the deep geological disposal of radioactive waste, i.e. from plastic, soft, poorly indurated clays to brittle, hard mud-stones or shales. The Clay Club considered it necessary and timely to provide a catalogue to gather in a structured way the key geo-scientific characteristics of the various argillaceous formations that are - or were - studied in NEA member countries with regard to radioactive waste disposal. The present catalogue represents the outcomes of this Clay Club initiative. (author)

  17. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    Science.gov (United States)

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  18. Technical summary of geological, hydrological, and engineering studies at the Slick Rock Uranium Mill Tailings sites, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1990-12-01

    The purpose of this document is to provide the Colorado Department of Health (CDH) with a summary of the technical aspects of the proposed remedial action for the Slick Rock tailings near Slick Rock, Colorado. The technical issues summarized in this document are the geology and groundwater at the Burro Canyon disposal site and preliminary engineering considerations for the disposal cell

  19. 10 CFR 960.5-2-9 - Rock characteristics.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Rock characteristics. 960.5-2-9 Section 960.5-2-9 Energy... Rock characteristics. (a) Qualifying condition. The site shall be located such that (1) the thickness and lateral extent and the characteristics and composition of the host rock will be suitable for...

  20. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  1. Water flow characteristics of rock fractures

    International Nuclear Information System (INIS)

    Joensson, Lennart

    1990-03-01

    This report has been worked out within the project 'Groundwater flow and dispersion processes in fractured rock' supported by the National Board for Spent Nuclear Fuel (SKN) in Sweden, dnr 96/85. This project is attached to the safety problems involved in the final disposal of spent nuclear fuel. The purpose of the report is to give a survey of the knowledge of fracture characteristics and to discuss this knowledge in relation to the modelling of flow and dispersion of radioactive substances in the fractures

  2. Study on structural plane characteristics of deep rock mass based on acoustic borehole TV

    International Nuclear Information System (INIS)

    Wang Xiyong; Su Rui; Chen Liang; Tian Xiao

    2014-01-01

    Deep rock mass structural plane characteristics are one of the basic data for evaluating the quality of rock mass. Based on acoustic borehole TV, the structural plane quantity, density, attitude, dominant set, structural plane aperture of deep rock mass in boreholes BS15 # and BS16 # located in Beishan granite rock mass of Gansu Province have been calculated and compared with the results of geological documentation of drill core. The results indicate that acoustic borehole TV has the effect in study on characteristics of structural plane. But as a kind of technique of geophysical logging, the acoustic borehole TV has certain defect, and need to combine with the analysis of the other geological materials in applications. (authors)

  3. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  4. Geologic history of the Slick Rock district and vicinity, San Miguel and Dolores Counties, Colorado

    International Nuclear Information System (INIS)

    Shawe, D.R.

    1976-01-01

    This report is a narrative summary and interpretation, in the form of a geologic history of the Slick Rock district and vicinity, of four previously published chapters in this series dealing with stratigraphy of the Slick Rock district and vicinity, petrography of sedimentary rocks of the district, structure of the district and vicinity, and altered sedimentary rocks of the district, and of other previously published reports on the district. It forms the background, with the earlier reports, for presentation of a final report in the series describing the uranium-vanadium ore deposits. A review of the origin of sedimentary rocks and geologic history of the region indicates that formation of uranium-vanadium deposits was a natural result of the deposition of th rocks, the occurrence of intrastratal waters therein, and the post-depositional movement of the waters resulting from evolution of the sedimentary rock environment. 31 refs

  5. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    Science.gov (United States)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  6. Analysis of effects of geological structures in rock driving by TBM

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2006-12-01

    Full Text Available Although mechanical properties belongs to important parameter for the excavation modelling, effect of geological structures on the rock massive fragmentation is often much higher than varying rock properties. This paper deals with the analysis of geological structures. It is focused on the schistosity orientation towards the tunnel azimuth. The aim is to define of schistosity effect on the penetration rate. It is a basis creating of fuzzy rules for the performance model full-profile tunnel boring machine

  7. Not Just "Rocks for Jocks": Who Are Introductory Geology Students and Why Are They Here?

    Science.gov (United States)

    Gilbert, Lisa A.; Stempien, Jennifer; McConnell, David A.; Budd, David A.; van der Hoeven Kraft, Katrien J.; Bykerk-Kauffman, Ann; Jones, Megan H.; Knight, Catharine C.; Matheney, Ronald K.; Perkins, Dexter; Wirth, Karl R.

    2012-01-01

    Do students really enroll in Introductory Geology because they think it is "rocks for jocks"? In this study, we examine the widely held assumption that students view geology as a qualitative and remedial option for fulfilling a general education requirement. We present the first quantitative characterization of a large number of…

  8. Some geological and geophysical aspects in electric rock breaking

    CSIR Research Space (South Africa)

    Henry, G

    2011-08-01

    Full Text Available an important role in any rock-breaking techniques using electrical power. The research done at the CSIR's Centre for Mining Innovation is towards understanding the science behind electric rock breaking. This understanding would lead to a practical method...

  9. Foliation: Geological background, rock mechanics significance, and preliminary investigations at Olkiluoto

    International Nuclear Information System (INIS)

    Milnes, A.G.; Hudson, J.; Wikstroem, L.; Aaltonen, I.

    2006-01-01

    A well developed, pervasive foliation is a characteristic feature of the migmatites and gneisses in the Olkiluoto bedrock, and is expected to have a significant influence on the underground construction, the design and layout and the groundwater flow regime of a deep spent nuclear fuel repository. This Working Report reviews the geological background and rock mechanics significance of foliation, and develops a methodology for the systematic acquisition of foliation data in cored boreholes and in tunnels at the Olkiluoto site, to provide the necessary basis for future geological, rock mechanics and hydrogeological modelling. The first part of the methodology concerns foliation characterisation, and develops a characterisation scheme based on two variables: the foliation type (G = gneissic, B = banded, S = schistose), which is a function of mineral composition and degree of smallscale heterogeneity, and the foliation intensity (1 = low, 2 = intermediate, 3 = high), which is a function of the type and intensity of the deformation by which it was produced (under high-grade metamorphic conditions in the core of the Svecofennian orogenic belt). At the suggested reference scales (1 m length of core, 10 m 2 area of tunnel wall), the most representative foliation type and intensity is assessed using a standard set of core photographs, which are included as an Appendix at the end of the report, providing a systematic description in terms of 9 descriptive types (G1, G2, G3, B1, B2, B3, S1, S2, S3). As a further step, the rock mechanics significance of these types is assessed and a rock mechanics foliation (RMF) number is assigned (RMF 0 = no significance, RMF 1, RMF 2 and RMF 3 = low, intermediate and high significance, respectively). The second part of the methodology concerns the orientations of the foliation within the same 1 m core lengths or 10 m2 wall areas, which have been characterised as above. This combined analysis of foliation character and foliation orientation

  10. Characteristics and genesis of porphyroclastic lava rock in Xiangshan

    International Nuclear Information System (INIS)

    Zhou Xiaohua; Wang Zhuning

    2012-01-01

    Due to the transitional characteristics of porphyroclastic lava rock in Xiangshan of Jiangxi province, there are a variety of views on its genesis, petrographic attribution. This is because the marginal facies of the porphyroclastic lava is with ignimbrite and tuff characteristics, its transition phase has the characteristics of lava, and its intermediate phase has the feature of sub-volcanic rocks, further more, different texture of the rocks bears transition relationship. By the study of mineral composition, REE pattern, trace elements, isotopes, we put forward that the porphyroclastic lava is formed by the remelting of basement metamorphic rocks. The rocks was believed to be formed in the environment similar to volcanics and subvolcanics, and quite different to plutonic rocks due to the features of low-structure of potassium feldspar phenocrysts and solution mechanism, because the porphyroclastic lava phenocrysts occurs as fragments and maybe related to cryptoexplosion. Therefore the rocks was believed to belong to the volcano extrusive facies. (authors)

  11. Mineralogical and geological study of fault rocks and associated strata

    International Nuclear Information System (INIS)

    Kim, Jeon Jin; Jeong, Gyo Cheol; Bae, Doo Won; Park, Seong Min; Kim, Jun Yeong

    2007-01-01

    Mineralogical characterizations of fault clay and associated strata in fault zone with field study and analytical methods. Mineral composition and color of fault clay and rock occur in fracture zone different from bed rocks. Fault clay mainly composed of smectite with minor zeolite such as laumontite and stilbite, and halloysite, illite, Illite and halloysite grow on the surface of smectite, and laumontite and stilbite result from precipitation or alteration of Ca rich bed rock. The result of mineralogical study at Ipsil, Wangsan, Gaegok, Yugyeori, Gacheon in Gyeongju area, the detail research of microstructure in the fault clay making it possible for prediction to age of fault activity

  12. Mineralogical and geological study of fault rocks and associated strata

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeon Jin; Jeong, Gyo Cheol; Bae, Doo Won; Park, Seong Min; Kim, Jun Yeong [Andong Univ., Andong (Korea, Republic of)

    2007-01-15

    Mineralogical characterizations of fault clay and associated strata in fault zone with field study and analytical methods. Mineral composition and color of fault clay and rock occur in fracture zone different from bed rocks. Fault clay mainly composed of smectite with minor zeolite such as laumontite and stilbite, and halloysite, illite, Illite and halloysite grow on the surface of smectite, and laumontite and stilbite result from precipitation or alteration of Ca rich bed rock. The result of mineralogical study at Ipsil, Wangsan, Gaegok, Yugyeori, Gacheon in Gyeongju area, the detail research of microstructure in the fault clay making it possible for prediction to age of fault activity.

  13. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 5. Baseline rock properties-granite

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/5, Baseline Rock Properties--Granite, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report, on the rock properties of typical granites, includes an evaluation of the various test results reported in the literature. Firstly, a literature survey was made in order to obtain a feel for the range of rock properties encountered. Then, granites representative of different geologic ages and from different parts of the United States were selected and studied in further detail. Some of the special characteristics of granite, such as anisotropy, creep and weathering were also investigated. Lastly, intact properties for a typical granite were selected and rock mass properties were derived using appropriate correction factors

  14. Case Studies of Rock Bursts Under Complicated Geological Conditions During Multi-seam Mining at a Depth of 800 m

    Science.gov (United States)

    Zhao, Tong-bin; Guo, Wei-yao; Tan, Yun-liang; Yin, Yan-chun; Cai, Lai-sheng; Pan, Jun-feng

    2018-05-01

    A serious rock burst ("4.19" event) occurred on 19 April 2016 in the No. 4 working face of the No. 10 coal seam in Da'anshan Coal Mine, Jingxi Coalfield. According to the China National Seismological Network, a 2.7 magnitude earthquake was simultaneously recorded in this area. The "4.19" event resulted in damage to the entire longwall face and two gateways that were 105 m in long. In addition, several precursor bursts and mine earthquakes had occurred between October 2014 and April 2016 in the two uphill roadways and the No. 4 working face. In this paper, the engineering geological characteristics and in situ stress field are provided, and then the rock burst distributions are introduced. Next, the temporal and spatial characteristics, geological and mining conditions, and other related essential information are reviewed in detail. The available evidence and possible explanations for the rock burst mechanisms are also presented and discussed. Based on the description and analysis of these bursts, a detailed classification system of rock burst mechanisms is established. According to the main causes and different disturbance stresses (i.e., high/low disturbance stresses and far-field/near-field high disturbance stresses), there are a total of nine types of rock bursts. Thus, some guidelines for controlling or mitigating different types of rock bursts are provided. These experiences and strategies not only provide an essential reference for understanding the different rock burst mechanisms, but also build a critical foundation for selecting mitigation measures and optimizing the related technical parameters during mining or tunnelling under similar conditions.

  15. Experimental research on the electromagnetic radiation (EMR) characteristics of cracked rock.

    Science.gov (United States)

    Song, Xiaoyan; Li, Xuelong; Li, Zhonghui; Cheng, Fuqi; Zhang, Zhibo; Niu, Yue

    2018-03-01

    Coal rock would emit the electromagnetic radiation (EMR) while deformation and fracture, and there exists structural body in the coal rock because of mining and geological structure. In this paper, we conducted an experimental test the EMR characteristics of cracked rock under loading. Results show that crack appears firstly in the prefabricated crack tip then grows stably parallel to the maximum principal stress, and the coal rock buckling failure is caused by the wing crack tension. Besides, the compressive strength significantly decreases because of the precrack, and the compressive strength increases with the crack angle. Intact rock EMR increases with the loading, and the cracked rock EMR shows stage and fluctuant characteristics. The bigger the angle, the more obvious the stage and fluctuant characteristics, that is EMR becomes richer. While the cracked angle is little, EMR is mainly caused by the electric charge rapid separates because of friction sliding. While the cracked angle is big, there is another significant contribution to EMR, which is caused by the electric dipole transient of crack expansion. Through this, we can know more clear about the crack extends route and the corresponding influence on the EMR characteristic and mechanism, which has important theoretical and practical significance to monitor the coal rock dynamical disasters.

  16. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  17. Geological history and its impact on the rock mechanics properties of the Olkiluoto site

    International Nuclear Information System (INIS)

    Hudson, J.A.; Cosgrove, J.W.

    2006-03-01

    This report is one of three documents with background information for supporting the development of Posiva's future rock mechanics programme. The other two reports are a summary of all the rock mechanics work completed for Posiva before 2005 (Posiva Working Report) and a technical audit of the numerical modeling work that has been conducted previously for Posiva (REC Memo). The purpose of this report is to establish the extent to which the mechanical properties of the rocks at the Olkiluoto site can be estimated from a knowledge of the geological environment. The main information required for rock mechanics studies of the site is a knowledge of the prevailing stress state, the properties of the intact rock, and the properties of the fractures at all scales - from sizes that could form blocks in the tunnel roof up to the major brittle deformation zones that could be influence the location of the ONKALO and the subsequent repository. Thus, the summary of the geological history in Chapter 2 concentrates on these features and we summarise the ductile and brittle deformational tectonic history of the site, with emphasis on the inferred stress states causing the deformations. Then, in Chapter 3, the rock stress, the hierarchy of brittle fracturing, the fracture properties and the mechanical properties of the rock mass are considered in the light of the geological environment. These features provide the baseline knowledge of the host rock from which the logic of the future rock mechanics programme can be developed, based on: the bedrock model; the site investigation results; the requirements for generating the site descriptive model; the prediction-outcome ONKALO studies; and numerically modeling the effects of excavation for design and safety analysis. The implications of this study for the future rock mechanics work are outlined in Chapter 4 with emphasis on the key features for modeling. (orig.)

  18. Geologic setting of the St. Catherine basement rocks, Sinai, Egypt

    OpenAIRE

    Abdel Maksoud, M. A. [محمد علي عبدالمقصود; Khalek, M. L. Abdel; Oweiss, K. A.

    1993-01-01

    St. Catherine area, some 900 km in size, is dominated by basement rocks Encompassing old continental gneisses, metasediments, greenstone belt, calc-alkaline granites (G-II-granites), rift-related volcanics (RV), and anorogenic within plate granites (G-III-granites). The greenstone belt is composed of subduction-related volcanics (SV) intercalated with metasediments. These volcanics split into older group (moderately metamorphosed) and younger group (slightly metamorphosed). The calc-alkaline ...

  19. Digitizing rocks: Standardizing the process of geologic description with workstations

    International Nuclear Information System (INIS)

    Saunders, M.R.; Shields, J.A.; Taylor, M.R.

    1995-01-01

    In the drive to squeeze the most value from every dollar spent on exploration and development, increasing use is being made of stored data through methods that rely on the completeness and accuracy of the database for their usefulness. Although many types of engineering data are available to the process, geologic data, especially those collected at a sufficiently detailed level to show reservoir heterogeneity, are often unavailable to later workers in any useful form. Traditionally, most wellsite geologic data are recorded on worksheets or notebooks, from which summary data are often transferred to computers. The only changes in recent years have been related to the process by which computer-drafted lithology logs have superseded hand-drawn logs; in some exceptions, some of the plotting data may be held in a simple database. These descriptions and analyses, gathered at considerable cost and capable of showing significant petrological detail, are not available to the whole field-development process. The authors set out to tackle these problems of limited usefulness and development a system that would deliver quality geologic data deep into the field of play in a form that was easy to select and integrated with existing models

  20. Geomass: geological modelling analysis and simulation software for the characterisation of fractured hard rock environments

    International Nuclear Information System (INIS)

    White, M.J.; Humm, J.P.; Todaka, N.; Takeuchi, S.

    1998-01-01

    This paper presents the development and functionality of a suite of applications which are being developed to support the geological investigations in the Tono URL. GEOMASS will include 3D geological modelling, 3D fluid flow and solute transport and 3D visualisation capabilities. The 3D geological modelling in GEOMASS will be undertaken using a commercially available 3D geological modelling system, EarthVision. EarthVision provides 3D mapping, interpolation, analysis and well planning software. It is being used in the GEOMASS system to provide the geological framework (structure of the tectonic faults and stratigraphic and lithological contacts) to the 3D flow code. It is also being used to gather the geological data into a standard format for use throughout the investigation programme. The 3D flow solver to be used in GEOMASS is called Frac-Affinity. Frac-Affinity models the 3D geometry of the flow system as a hybrid medium, in which the rock contains both permeable, intact rock and fractures. Frac-Affinity also performs interpolation of heterogeneous rock mass property data using a fractal based approach and the generation of stochastic fracture networks. The code solves for transient flow over a user defined sub-region of the geological framework supplied by EarthVision. The results from Frac-Affinity are passed back to EarthVision so that the flow simulation can be visualized alongside the geological structure. This work-flow allows rapid assessment of the role of geological features in controlling flow. This paper will present the concepts and approach of GEOMASS and illustrate the practical application of GEOMASS using data from Tono

  1. 10 CFR 960.4-2-3 - Rock characteristics.

    Science.gov (United States)

    2010-01-01

    ... DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-3 Rock characteristics. (a) Qualifying condition. The present and... the waste could significantly decrease the isolation provided by the host rock as compared with pre...

  2. A study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sato, Haruo

    1998-01-01

    This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. (J.P.N.). 117 refs

  3. Geological and Petrographic Characteristics of Kimberlite Pipes

    Directory of Open Access Journals (Sweden)

    N. N. Zinchuk

    2016-12-01

    Full Text Available Studies of the geological structure and petrochemical composition of the Siberian Platform kimberlites indicated complexity, diversity of geological, tectonic, and paleogeographic situations, which must be considered for proper prospecting-exploration for diamonds in each area of investigation. Information about petrochemical composition of potential diatremes, hosting, and overlying sedimentary and magmatic formations is an important prerequisite for prospecting of kimberlite deposits in different geologic-tectonic conditions. The most attention should be paid to typomorphic specific features of primary and secondary minerals of diatremes. Each diamondiferous region is characterized by a certain set of typomorphic associations of kimberlites primary and secondary minerals. The diamonds with ultrabasic association of solid phase inclusions (olivine, chrome-spinel, pyrope, etc. dominate in majority of kimberlite pipes.

  4. Solute transport in crystalline rocks at Aspö--I: geological basis and model calibration.

    Science.gov (United States)

    Mazurek, Martin; Jakob, Andreas; Bossart, Paul

    2003-03-01

    (test PDT3), which clearly showed that matrix diffusion had to be included in the model even over the short experimental time scales, evidenced by a characteristic shape of the trailing edge of the breakthrough curve. Using the geological information and therefore considering limited matrix diffusion into a thin fault gouge horizon resulted in a good fit to the experiment. On the other hand, fresh granite was found not to interact noticeably with the tracers over the time scales of the experiments. While fracture-filling gouge materials are very efficient in retarding tracers over short periods of time (hours-days), their volume is very small and, with time progressing, retardation will be dominated by altered wall rock and, finally, by fresh granite. In such rocks, both porosity (and therefore the effective diffusion coefficient) and sorption K(d)s are more than one order of magnitude smaller compared to fault gouge, thus indicating that long-term retardation is expected to occur but to be less pronounced. Copyright 2002 Elsevier Science B.V.

  5. Evaluation of dynamic characteristics of hard rock based on numerical simulations of in situ rock tests

    International Nuclear Information System (INIS)

    Yamagami, Yuya; Ikusada, Koji; Jiang, Yujing

    2009-01-01

    In situ rock tests of hard rock of conglomerate in which discontinuities in high angle are dominant were conducted. In this study, in order to confirm the validity of the test results and the test condition, and in order to elucidate the deformation behaviour and the mechanism of shear strength of the rock mass, the numerical simulations of the in situ rock tests by using distinct element method were performed. As a result, it was clarified that the behaviour of the rock mass strongly depends on both geometrical distribution of discontinuities and those mechanical properties. It is thought that a series of evaluation processes showed in this study contribute to improve the reliability of the dynamic characteristic evaluation of the rock mass. (author)

  6. Scoping study of salt domes, basalts and crystalline rock as related to long term risk modeling for deep geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    1978-11-01

    Purpose is to provide a preliminary geotechnical data base sufficient to initiate the development of Long-Term Risk Models for salt domes, basalt, and crystalline rock. Geology, hydrology, specific sites, and potential release pathways are considered for each type. A summary table of site suitability characteristics is presented

  7. Studies on the radiation absorption characteristics of various rocks

    International Nuclear Information System (INIS)

    Rahman, K.N.; Abdullah, S.A.; Gazzaz, M.A.

    1984-05-01

    Radiation absorption characteristics of nine different rocks, namely, ferrugenous quartz, metabasalt, larvikite, coarse grained diorite, coarse grained granite, coarse grained alkali granite, marble, quartz mica schist, and metamorphosed rock are studied. The rocks were collected from Jeddah, Makkah, Mina and Taif areas. Special attention was given on the availability, compactness, physical formation and uniform composition in selecting the rocks. The rocks were identified by optical method and their elemental composition determined by chemical analysis. The data were used to calculate the effective atomic numbers, half value layers mass and linear attenuation coefficients. The half value layers and the linear attenuation coefficientsof these rocks were determined experimentally using Am-241, Cs-137,and Co-60 sources. The results are compared with those obtained by theoretical calculations and agrre within 10%. Most of the rocks show much higher radiation attenuation characteristics than the standard concrete. Rocks containing higher percentage of Fe, Ca, Ti, and Mn show much higher radiation absorption characteristics than concrete. Only granites are found to be almost equivalent to concrete. 12 Ref

  8. The Application of Spectral Analysis of Surface Wave (SASW) Method as a New Rock Mass Classification Technique in Engineering Geology

    International Nuclear Information System (INIS)

    Abdul Rahim Samsuddin; Abdul Ghani Rafek; Umar Hamzah; Suharsono; Khairul Anuar Mohd Nayan

    2008-01-01

    Spectral analysis of surface waves (SASW) is a seismic method that uses the dispersive characteristics of Rayleigh waves propagating through layered material to evaluate S-wave velocity profile. The SASW is an in situ non intrusive method for geotechnical site characterization which is cost effective as compared to the conventional drilling method. In this study, a total of 20 stations from 13 sites were selected. A software (WINSASW 2.0) was used for the inversion process to produce S-wave velocity versus depth profiles. These profiles were then separately analyzed in relation to several engineering rock mass geological parameters such as stiffness, rock quality designation (RQD), anisotropy and the excavability properties. The analysis of the SASW data was based on the assumption that the rock mass is an isotropic homogeneous material with various intensity of discontinuity which influenced the velocity of surface wave propagation within the rock mass. Measurement of dynamic soil properties was carried out employing the shear wave velocities and the N values of the Standard Penetration Test (N SPT ) from borehole data. A new linear equation V s = 4.44 N SPT + 213.84 which relates S-wave and N SPT was deduced. An empirical equation is also proposed to calculate Rock Quality Designation (RQD) values based on S-wave velocity derived from SASW and that of ultrasonic tests. The result of this equation was found to be less than 10% in comparison to the RQD obtained from actual borehole data. An isotropic analysis of the rock mass was carried out using S-wave velocities derived from SASW measurements in four directions. The plots of S-wave - ultrasonic velocity ratio versus ultrasonic velocity were used to evaluate the excavability properties of rock mass. Five classes of rock mass excavability curves were finally proposed in relation to easy digging, easy ripping, hard ripping, hydraulic breaking and blasting. (author)

  9. Geological and Rock Mechanics Perspectives for Underground Coal Gasification in India

    Science.gov (United States)

    Singh, Ajay K.; Singh, Rajendra

    2017-07-01

    The geological resources of coal in India are more than 308 billion tonnes upto a depth of 1200 m, out of which proved reserve has been reported at around 130 billion tonnes. There is an increasing requirement to increase the energy extraction efficiency from coal as the developmental prospects of India increase. Underground coal gasification (UCG) is a potential mechanism which may be utilized for extraction of deep-seated coal reserves. Some previous studies suggest that lignites from Gujarat and Rajasthan, along with tertiary coals from northeastern India can be useful from the point of view of UCG. We discuss some geological literature available for these areas. Coming to the rock mechanics perspectives, during UCG the rock temperature is considerable high. At this temperature, most empirical models of rock mechanics may not be applied. In this situation, the challenges for numerical modelling of UCG sites increases manifold. We discuss some of the important modelling geomechanical issues related to UCG in India.

  10. Range of engineering-geological properties for some carbonate rock complexes for Balkan peninsula

    International Nuclear Information System (INIS)

    Jovanovski, Milorad; Shpago, Azra; Peshevski, Igor

    2010-01-01

    The Carbonate Rock masses are a geological media with extremely complex states and properties, which has a certain influences on the mechanical and hydraulic behavior during construction and exploitation of engineering structures. Practical aspects of the problem analysis arise from the fact that the areas of Bosnia and Herzegovina, Macedonia and the entire Balkans is characterized by presence of wide areas covered with carbonate complexes, where large number of complex engineering structures have been, or shall be constructed in the future. In this context, their engineering-geological modeling is still a practical and scientific challenge. The analysis of engineering- geological properties is one of the main steps in forming of analytical and geotechnical models for complex rock structures. This article gives a data about the range for these properties, according to the results from an extensive investigation program. Some original correlations and testing results are given and they are compared with some published relations from the world. (Author)

  11. Dynamic deformation and failure characteristic of rock foundation by means of effect of cyclic shear loading

    International Nuclear Information System (INIS)

    Fujiwara, Yoshikazu; Hibino, Satoshi; Kanagawa, Tadashi; Komada, Hiroya; Nakagawa, Kameichiro

    1984-01-01

    The main structures of nuclear power plants are built on hard and soft rocks. The rock-dynamic properties used for investigating the stability of the structures have been determined so far by laboratory tests for soft rocks. In hard rocks, however, joints and cracks exist, and the test including these effects is not able to be performed in laboratories at present. Therefore, a dynamic repeating shearing test equipment to be used under the condition including the joints and cracks of actual ground has been made for a base rock of tuff breccia. In this paper, the test results are reported as follows. The geological features of the testing site and the arrangement of tested rocks, the preparation for tests, test equipment, loading method, measuring method, analysis, and the result and the examination. The results of dynamic deformation and failure characteristics were as follows: (1) the dynamic shear-elasticity-modulus Gd of the base rock showed greater values as the normal stress increased, while Gd decreased and showed the strain dependence as the dynamic shear strain amplitude γ increased; (2) the relationship between Gd and γ was well represented with the equation proposed by Hardin-Drnevich; (3) damping ratio increased as γ increased, and decreased as normal stress increased; (4) When a specimen was about to break, γ suddenly increased, and the dynamic shear strain amplitude at yield point was in the range of approximately (3.4 to 4.1) x 10 -3 . (Wakatsuki, Y.)

  12. Comprenhensive Program of Engineering and Geologic Surveys for Designing and Constructing Radioactive Waste Storage Facilities in Hard Rock Massifs

    International Nuclear Information System (INIS)

    Gupalo, T.; Milovidov, V.; Prokopoca, O.; Jardine, L.

    2002-01-01

    Geological, geophysical, and engineering-geological research conducted at the 'Yeniseisky' site obtained data on climatic, geomorphologic, geological conditions, structure and properties of composing rock, and conditions of underground water recharge and discharge. These results provide suficient information to make an estimate of the suitability of locating a radioactive waste (RW) underground isolation facility at the Nizhnekansky granitoid massif.

  13. Thermoluminescence characteristics and dating of some egyptian rocks using gamma-rays

    International Nuclear Information System (INIS)

    Sharaf, M.M.; Mohamed, R.I.; Rabie, N.

    1994-01-01

    The thermoluminescence (T L) characteristics and dating of some natural samples which were collected from different areas in the eastern desert of egypt have been studied. The T L- glow curves of all natural samples show three peaks, shallow peak, dosimetric peak and dating peak. T L response to gamma rays for the samples under examination shows a linear response from 4.5 Gy up to 7.5 kGy followed by saturation. Ages of these geological rocks from the selected areas A (hutait), B(Urga), C(Tendba), D(Sebaya) and E(Atad) in the Eastern desert were found to be 4 X 108, 1.5 X 109, 0.5 X 108, 2.5 X 107 and 3 X 107 years, respectively. It can be concluded that these geological rocks belong to the precambrian period of the history. 4 figs., 4 tabs

  14. Thermoluminescence characteristics and dating of some egyptian rocks using gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Sharaf, M M; Mohamed, R I; Rabie, N [Acodemy of Scientific Research and Technology, National Institute for Standards, Pyramids, Giza (Egypt)

    1994-12-31

    The thermoluminescence (T L) characteristics and dating of some natural samples which were collected from different areas in the eastern desert of egypt have been studied. The T L- glow curves of all natural samples show three peaks, shallow peak, dosimetric peak and dating peak. T L response to gamma rays for the samples under examination shows a linear response from 4.5 Gy up to 7.5 kGy followed by saturation. Ages of these geological rocks from the selected areas A (hutait), B(Urga), C(Tendba), D(Sebaya) and E(Atad) in the Eastern desert were found to be 4 X 108, 1.5 X 109, 0.5 X 108, 2.5 X 107 and 3 X 107 years, respectively. It can be concluded that these geological rocks belong to the precambrian period of the history. 4 figs., 4 tabs.

  15. Geological disposal of high-level radioactive waste and the role of rock engineering

    International Nuclear Information System (INIS)

    Sugihara, Kozo

    2008-01-01

    Japan Atomic Energy Agency (JAEA) and its predecessors have been conducting an extensive geoscientific research program since the 1970's in order to contribute to the formation of a firm scientific and technological basis for the geological disposal of high level radioactive waste in Japan. As a part of this program, in situ experiments have been performed at the Tono Mine in soft sedimentary rocks and at the Kamaishi Mine in hard crystalline rocks. An experiment on excavation disturbance has been one of these experiments and has revealed the extent and properties of the excavation disturbed zone (EDZ) and the applicability of available measurement methods. It is suggested that mechanical excavation and controlled excavation have reduced excavation damage of the rock mass around a drift, although some improvements in the currently available methods for measuring and simulating the EDZ are essential to understand excavation disturbance in more detail. JAEA is now promoting two underground research laboratory projects in Japan; the Mizunami Underground Research Laboratory (MIU) project for crystalline rocks and the Horonobe Underground Research Laboratory (Horonobe URL) project for sedimentary rocks. From a rock mechanical point of view, the major interest in these projects will be paid to failure phenomenon deep underground, rock stress estimation at larger scales and long-term physical stability of underground structure. These projects are open for international collaboration. (author)

  16. Dynamic characteristics of rocks and method of their determine

    OpenAIRE

    Radoslav Schügerl

    2009-01-01

    This paper presents selected problems of the research of the influence of technical vibrations on rocks. The vibrations are the products of the technological procedure, such as mining blasting, ramming of the piles, using of the drilling-equipment or vibration machines. The vibrations could be also evocated by road or train traffic. The most important dynamic characteristics of rocks are dynamic modulus of elasticity Edyn; dynamic modulus of deformation Edef, dyn; dynamic shear-modulus Gdyn; ...

  17. The British Geological Survey's Lexicon of Named Rock Units as Online and Linked Data

    Science.gov (United States)

    McCormick, T.

    2012-12-01

    The British Geological Survey's Lexicon of Named Rock Units provides freely accessible definitions and supplementary information about geological units of Great Britain, Northern Ireland, and their associated continental shelf. It is an online database that can be searched at www.bgs.ac.uk/Lexicon/. It has existed since 1990 (under different names) but the database and user interface have recently been completely redesigned to improve their semantic capabilities and suitability for describing different styles of geology. The data are also now freely available as linked data from data.bgs.ac.uk/. The Lexicon of Named Rock Units serves two purposes. First, it is a dictionary, defining and constraining the geological units that are referenced in the Survey's data sets, workflows, products and services. These can include printed and digital geological maps at a variety of scales, reports, books and memoirs, and 3- and 4-dimensional geological models. All geological units referenced in any of these must first be present and defined, at least to a basic level of completeness, in the Lexicon database. Only then do they become available for use. The second purpose of the Lexicon is as a repository of knowledge about the geology of the UK and its continental shelf, providing authoritative descriptions written and checked by BGS geoscientists. Geological units are assigned to one of four themes: bedrock, superficial, mass movement and artificial. They are further assigned to one of nine classes: lithostratigraphical, lithodemic intrusive, lithodemic tectono-metamorphic, lithodemic mixed, litho-morpho-genetic, man-made, age-based, composite, and miscellaneous. The combination of theme and class controls the fields that are available to describe each geological unit, so that appropriate fields are offered for each, whether it is a Precambrian tectono-metamorphic complex, a Devonian sandstone formation, or a Devensian river terrace deposit. Information that may be recorded

  18. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  19. Viscosity characteristics of selected volcanic rock melts

    Science.gov (United States)

    Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd

    2011-02-01

    A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.

  20. A study on the characteristics of site-scale fracture system in granite and volcanic rock

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Su; Kim, Chun Soo; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The safety of waste disposal can be achieved by a complete isolation of radioactive wastes from biosphere or by a retardation of nuclide migration to reach an acceptable dose level. For the deep geological disposal of high-level radioactive waste, the potential pathways of nuclide primarily depend on the spatial distribution characteristics of conductive fractures. Major key issues in the quantification of fracture system for a disposal site are involved in classification criteria, hydraulic parameters, geometry, field investigation methods etc. This research aims to characterize the spatial distribution characteristics of conductive fractures in granite and volcanic rock mass. 10 refs., 32 figs., 13 tabs. (Author)

  1. Evaluation of geologic characteristics at Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Halfman, S.E.; Vonder Haar, S.P.

    1981-01-01

    Computerized well-log analysis of Cerro Prieto has led to the identification of a relatively large and irregular low-density volume extending from near the surface in the vicinity of Laguna Volcano to greater depths toward the northeast. This low-density volume is located about a plane of symmetry of a self-potential anomaly and a group of northeast trending active faults. The presence of a volume of relatively high-density rock has been recognized at shallow depths in the initially developed part of the resource. It is believed to be due to minerals deposited by cooled, rising geothermal brine. Storativity calculated from well logs at the south end of the western part of the field shows acceptable comparison with storativity calculated from well tests. The amount of fluid produced from the field during the period 1973-1977 is greater than the amount in situ calculated from the completed interval thicknesses. Because this part of the field is still producing today, fluid must be recharging this part of the field.

  2. Influence of different geological structures on stress–strain state of hard rock mass

    Science.gov (United States)

    Kuznetzov, NN; Fedotova, YuV

    2018-03-01

    The results of numerical simulation of stress–strain state in a hard rock mass area with the complex geological structures are presented. The variants of the stress value change are considered depending on the boundary conditions and physical properties of the model blocks. Furthermore, the possibility of in-situ stress formation under the influence of energy coming from the deeper Earth’s layers is demonstrated in terms of the Khibiny Massif.

  3. Barcelona Rocks, a mobile app to learn geology in your city

    Science.gov (United States)

    Geyer, Adelina; Cabrera, Lluis; Alias, Gemma; Aulinas, Meritxell; Becerra, Margarita; Casadellà, Jordi; Clotet, Roger; Delclós, Xavier; Fernández-Turiel, José-Luis; Tarragó, Marta; Travé, Anna

    2016-04-01

    Barcelona Rocks is an application for personal mobile devices suitable for secondary and high school students as well as the general public without a solid background in Earth Sciences. The main objective of this app is to teach Geology using as learning resource our city façades and pavements. Additionally, Barcelona Rocks provides a short explanation about the significance of the appearance of the different rock types at the different historical periods of the city. Although it has been designed as a playful learning resource for secondary school students, the level of knowledge also allows bringing some basic concepts and principles of Earth Sciences to the general public, irrespective of age. This app is intended to provide the degree of interactivity and entertainment required by the different individual users and aims to: (i) Explain the techniques and experiments that allow the user to identify the different rocks, as well as their genesis. (ii) Introduce geology to the youngest users in a more attractive and entertaining way, providing also some information regarding the use of the different ornamental rocks during the different historical periods of the city: roman, medieval, etc. (iii) Provide historical and architectural information of the selected buildings in order to improve the city's historical architectural knowledge of the users. (iv) Show the non-expert public the importance of their country's geology. (v) Develop of outreach and dissemination resources taking advantage of the versatile and potent mobile application format using also the content as support material for science courses, seminars, or social learning events. (vi) Encourage new generations of Earth Scientists (vii) Promote science and scientific culture of the society, integrating culture and innovation as essential for the emergence of new scientific and technological vocations, promoting critical thinking, understanding of the scientific method and the social interest in science

  4. Leonardo da Vinci's Geology: The Authenticity of The Virgin of the Rocks

    Science.gov (United States)

    Pizzorusso, Ann

    2017-04-01

    Viewed from a geological perspective, all of Leonardo's paintings and drawings reveal a remarkable fidelity to nature. The Virgin of the Rocks in the National Gallery in London (1495-1508), attributed to him, displays no such fidelity. If we compare it to the Virgin of the Rocks in the Louvre in Paris (1483-86) whose geological accuracy is astounding, we cannot help questioning whether Leonardo painted the background in the National Gallery work. Over the centuries, various arguments have called into question the attribution of the National Gallery painting to Leonardo. Scholars have analyzed the brush strokes, undertaken document searches and tried to prove definitively that Leonardo produced the National Gallery version. However, there have always been doubts, naysayers and many unanswered questions concerning its authenticity. The fact that attribution of the work has been the subject of such controversy throughout history suggests that new diagnostic means of determining authenticity is in order. A comparison of the representations of geological formations in the two paintings offers such means. It seems unlikely that the same person could have portrayed rock formations so accurately in the Louvre work and so incongruously in the National Gallery painting.

  5. Laboratory investigations into fracture propagation characteristics of rock material

    Science.gov (United States)

    Prasad, B. N. V. Siva; Murthy, V. M. S. R.

    2018-04-01

    After Industrial Revolution, demand of materials for building up structures have increased enormously. Unfortunately, failures of such structures resulted in loss of life and property. Rock is anisotropic and discontinuous in nature with inherent flaws or so-called discontinuities in it. Rock is apparently used for construction in mining, civil, tunnelling, hydropower, geothermal and nuclear sectors [1]. Therefore, the strength of the structure built up considering rockmass as the construction material needs proper technical evaluation during designing stage itself to prevent and predict the scenarios of catastrophic failures due to these inherent fractures [2]. In this study, samples collected from nine different drilling sites have been investigated in laboratory for understanding the fracture propagation characteristics in rock. Rock material properties, ultrasonic velocities through pulse transmission technique and Mode I Fracture Toughness Testing of different variants of Dolomites and Graywackes are determined in laboratory and the resistance of the rock material to catastrophic crack extension or propagation has been determined. Based on the Fracture Toughness values and the rock properties, critical Energy Release Rates have been estimated. However further studies in this direction is to be carried out to understand the fracture propagation characteristics in three-dimensional space.

  6. The determination of initial ratio of strontium isotope in rocks and its geological application

    International Nuclear Information System (INIS)

    Ying Junlong; Zhao Puyun; Lin Xiulan

    1989-04-01

    The method to determine the initial ratio of strontium isotopes existed in rocks of poor rubidium and rich strontium and main carrier minerals is introduced. The initial ratio obtained from this method is equivalent to that acquired by Rb-Sr isochrone. Based on this result, information on regional rock genesis and mineralization regularities can be provided. It has great significance in the research on activities of ancient continental margin and material sources as well as their evolution. The migration of rock, and ore-forming materials, matallogenetic mechanism and its distribution in the space and time evolution are studied by using these data. In conclusion, the determination of strontium isotopes has broad prospects in the geological research

  7. Geology and Geochemistry of Magmatic Rocks from the Southern Part of the Kyushu-Palau Ridge in the Philippine Sea

    Science.gov (United States)

    Lelikov, E. P.; Sedin, V. T.; Pugachev, A. A.

    2018-03-01

    The paper reports the results of a geochemical study of volcanogenic rocks from the southern part of the Kyushu-Palau Ridge. Volcanic structures, such as plateaulike rises, mountain massifs, and single volcanoes, are the major relief-forming elements of the southern part of the Kyushu-Palau Ridge. They are divided into three types according to the features of the relief and geological structure: shield, cone-shaped, and dome-shaped volcanoes. The ridge was formed on oceanic crust in the Late Mesozoic and underwent several stages of evolution with different significance and application of forces (tension and compression). Change in the geodynamic conditions during the geological evolution of the ridge mostly determined the composition of volcanic rocks of deep-mantle nature. Most of the ridge was formed by the Early Paleogene under geodynamic conditions close to the formation of oceanic islands (shield volcanoes) under tension. The island arc formed on the oceanic basement in the compression mode in the Late Eocene-Early Oligocene. Dome-shaped volcanic edifices composed of alkaline volcanic rocks were formed in the Late Oligocene-Early Miocene under tension. Based on the new geochemical data, detailed characteristics of volcanic rocks making up the shield, cone-shape, and dome-shape stratovolcanoes resulting in the features of these volcanic edifices are given for the first time. Continuous volcanism (with an age from the Cretaceous to the Late Miocene and composition from oceanic tholeiite to calc-alkaline volcanites of the island arc type) resulting in growth of the Earth's crust beneath the Kyushu-Palau Ridge was the major factor in the formation this ridge.

  8. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  9. Application of Ga-Al discrimination plots in identification of high strength granitic host rocks for deep geological repository of high level radioactive waste

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.; Trivedi, R.K.; Purohit, M.K.

    2010-01-01

    The permanent disposal of vitrified high level wastes and in some cases even spent fuel, is being planned in specifically designed and built deep geological repository located in the depth range of 500-600m in appropriate host rock at carefully selected sites. Such facilities are expected to provide very long term isolation and confinement to the disposed waste by means of long term mechanical stability of such structures that results from very high strength and homogeneity of the chosen rock, geochemical compatible environment around the disposed waste and general lack of groundwater. In Indian geological repository development programme, granites have been selected as target host rock and large scale characterization studies have been undertaken to develop database of mineralogy, petrology, geochemistry and rock mechanical characteristics. The paper proposes a new approach for demarcation of high strength homogeneous granite rocks from within an area of about 100 square kilometres wherein a cocktail of granites of different origins with varying rock mass characteristics co exists. The study area is characterised by the presence of A, S and I type granites toughly intermixed. The S type granites are derived from sedimentary parent material and therefore carry relics of parent fabric and at times undigested material with resultant reduction in their strength and increased inhomogeneity. On the other hand I type varieties are derived from igneous parents and are more homogeneous with sufficient strength. The A type granites are emplaced as molten mass in a complete non-tectonic setting with resultant homogeneous compositions, absence of tectonic fabric and very high strength. Besides they are silica rich with less vulnerability to alterations with time. Thus A type granites are most suited for construction of Deep Geological Repository. For developing a geochemical approach for establishing relation between chemical compositions and rock strength parameters, a

  10. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch

  11. The analysis of creep characteristics of the surrounding rock of the carbonaceous rock tunnel based on Singh-Mitchell model

    Science.gov (United States)

    Luo, Junhui; Mi, Decai; Ye, Qiongyao; Deng, Shengqiang; Zeng, Fuquan; Zeng, Yongjun

    2018-01-01

    Carbonaceous rock has the characteristics of easy disintegration, softening, swelling and environmental sensitivity, which belongs to soft surrounding rock, and the deformation during excavation and long-term stability of the surrounding rock of carbonaceous rock tunnel are common problems in the construction of carbonaceous rock tunnel. According to the above, the Monitor and measure the displacement, temperature and osmotic pressure of the surrounding carbonaceous rock of the tunnel of Guangxi Hebai highway. Then it based on the obtaining data to study the creep mechanism of surrounding rock using Singh-Mitchell model and predict the deformation of surrounding rock before the tunnel is operation. The results show that the Singh-Mitchell creep model can effectively analyse and predict the deformation development law of surrounding rock of tunnel without considering temperature and osmotic pressure, it can provide reference for the construction of carbonaceous rock tunnel and the measures to prevent and reinforce it..

  12. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2015-07-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  13. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    International Nuclear Information System (INIS)

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T.

    2015-01-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  14. Geology and sratigraphy of the Cainozoic Sedimantary Rocks in the Kale-Kurbalık Area, Denizli, Southwestern Turkey

    Directory of Open Access Journals (Sweden)

    H.Yavuz HAKYEMEZ

    1989-06-01

    Full Text Available In this work, the geological and stratigraphical characteristics of the Cainozoic sedimentary rocks exposed at the Kale-Kurbalık (SW Denizli area have been investigated. In the study area the Palaeozoic and Mesozoic rocks form the basement rocks and are overlain by the Oligocene to the Quaternary aged sedimentary rocks. The Tertiary rocks have been considered in two groups, namely the Akçay group and the Muğla group. The Oligocene to the Burdigalian aged Akçay group is represented by the Karadere, Mortuma, Yenidere, Künar and Kale formations. During this time interval, mostly the terrestrial fine and coarse clastics were deposited, but in the last stage of this time shallow marine carbonates were sedimented on the some parts of the region. There is an angular unconformity between the Mortuma and the Yenidere formations of the Akçay group; others are conformable to each other. The Akçay group is 4100 meter thick. The Upper Astarasian (Middle Miocene to Pliocene aged Muğla group which overlies the Akçay group uncorformably is formed of the Sekköy, Yatağan and Milet formations. During this time interval, the lacustrine siltstones and carbonates and the terrestrial coarse elastics were deposited. The formations of the Muğla group are conformable and gradational to each other. The Muğla group is 550 meter thick. The Quaternary deposits have been considered in two units, namely "Lower" and "Upper" Quaternary sediments. Only the Mortuma formation of all units of the study area is gently folded, but others have low degree dips. Tectonic activity has played a big important role in the forming of the various sedimentary basins which have been generated since the beginning of the Oligocene up to the present.

  15. Radioactivity of rocks from the geological formations belonging to the Tibagi River hydrographic basin

    International Nuclear Information System (INIS)

    Bastos, Rodrigo Oliveira

    2008-01-01

    This work is a study of the 40 K and the 238 U and 232 Th series radioactivity in rocks measured with high resolution gamma ray spectrometry. The rocks were taken from the geologic formations in the region of the Tibagi river hydrographic basin. The course of this river cuts through the Paleozoic and Mesozoic stratigraphic sequences of the Parana sedimentary basin. In order to take into account the background radiation attenuation by the samples, a technique was developed that eliminated the need to measure a blank sample. The effects of the radiation's self-attenuation in the sample matrix were taken into account by using a gamma ray direct transmission method. The results for 87 rock samples, taken from 14 distinct formations, and their corresponding radioactivity variations are presented and discussed according to the possible geological processes from which they originated. Among the most discussed results are: an outcrop that profiles shale, limestone and rhythmite in the Irati Formation; a sandstone and siltstone sequence from the Rio do Rasto Formation; and a profile sampled in a coal mine located in the Rio Bonito Formation. The calculations of the rocks' contributions to the outdoor gamma radiation dose rate agree with the values presented by other authors for similar rocks. The highest dose values were obtained from felsic rocks (rhyolite of the Castro group, 129.8 ± 3.7 nGy.h -1 , and Cunhaporanga granite, 167 ± 37 nGy.h -1 ). The other highest values correspond to the shale rocks from the Irati Formation (109 ± 16 nGy.h -1 ) and the siltic shale rocks from the Ponta Grossa Formation (107.9 ± 0.7 nGy.h -1 ). The most recent geological formations presented the lowest dose values (e.g. the Botucatu sandstone, 3.3 ± 0.6 nGy.h -1 ). The average value for sedimentary rocks from seven other formations is equal to 59 ± 26 nGy.h -1 . The Rio Bonito Formation presented the highest dose value (334 ± 193 nGy.h -1 ) mainly due to the anomalous 226 Ra

  16. Representation and judgement of possible host rock formations and areas under consideration of geology and safety

    International Nuclear Information System (INIS)

    2005-08-01

    This comprehensive report issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the representation and judgement of possible host rock formations and areas as far as safety and geological aspects are concerned. Nagra has to demonstrate the basic feasibility of the safe disposal of spent fuel (SF), vitrified high-level waste (HLW) and long-lived intermediate-level waste (ILW) in a deep geological repository, The report shows which possibilities for the disposal of SF, HLW and ILW exist in Switzerland and summarises the current state of general academic and applied geo-scientific research as well as the project-specific knowledge base that has been developed by Nagra over the past 30 years. The descriptions and assessments of the potential host rocks and areas are based on attributes that take into account experience gained both in Switzerland and abroad and are in agreement with international practice. An assessment of potential siting areas is looked at, in view of the preparation of a General Licence application, Nagra will also have to consider land-use planning and socio-economic aspects. This will be carried out in the next step according to the Sectoral Plan for Geological Disposal under the guidance of the relevant Swiss authorities

  17. Linear geologic structure and magic rock discrimination as determined from infrared data

    Science.gov (United States)

    Offield, T. W.; Rowan, L. C.; Watson, R. D.

    1970-01-01

    Color infrared photographs of the Beartooth Mountains, Montana show the distribution of mafic dikes and amphibolite bodies. Lineaments that cross grassy plateaus can be identified as dikes by the marked constrast between the dark rocks and the red vegetation. Some amphibolite bodies in granitic terrain can also be detected by infrared photography and their contacts can be accurately drawn due to enchanced contrast of the two types of rock in the near infrared. Reflectance measurements made in the field for amphibolite and granite show that the granite is 25% to 50% more reflective in the near infrared than in the visible region. Further enhancement is due to less atmospheric scattering than in the visible region. Thermal infrared images of the Mill Creek, Oklahoma test site provided information on geologic faults and fracture systems not obtainable from photographs. Subtle stripes that cross outcrop and intervening soil areas and which probably record water distribution are also shown on infrared photographs.

  18. Geological rock property and production problems of the underground gas storage reservoir of Ketzin

    Energy Technology Data Exchange (ETDEWEB)

    Lange, W

    1966-01-01

    The purpose of the program of operation for an industrial injection of gas is briefly reviewed. It is emphasized that the works constitute the final stage of exploration. The decisive economic and extractive aspects are given. Final remarks deal with the methods of floor consolidation and tightness control. In the interest of the perspective exploration of the reservoir it is concluded and must be realized as an operating principle that the main problem, after determining the probable reservoir structure, consists in determining step-by-step (by combined theoretical, technical and economic parameters) the surface equipment needed from the geological and rock property factors, which were determined by suitable methods (hydro-exploration, gas injection). The technique and time-table of the geological exploration, and the design and construction of the installations will depend on the solution of the main problem. At the beginning, partial capacities will be sufficient for the surface installation. (12 refs.)

  19. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    Science.gov (United States)

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  20. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    International Nuclear Information System (INIS)

    Staub, Isabelle; Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15Φ76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to σ 1 . This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily oxidized brittle

  1. Aespoe Pillar Stability Experiment. Geology and mechanical properties of the rock in TASQ

    Energy Technology Data Exchange (ETDEWEB)

    Staub, Isabelle [Golder Associates AB, Uppsala (Sweden); Andersson, J. Christer; Magnor, Bjoern

    2004-03-01

    An extensive characterization programme has been performed in the drift, TASQ, excavated for the Aespoe Pillar Stability Experiment, APSE, including the rock volume that will host the experiment pillar between the two deposition holes. The two major objectives with the characterization has been to 1) derive material properties for the final numerical modelling of the experiment and 2) to ensure that the pillar location is suitable from a structural and rock mechanical point of view. In summary the following activities have been performed: Geological mapping of the drift, the pilot holes cores and deposition hole DQ0066G01. 3D-visualisation of the geological mapping in the experiment (pillar) volume of TASQ. Convergence measurements during the excavation and back calculation of the results for determination of the stress tensor and the rock mass Young's modulus. Laboratory tests on core samples from the 15{phi}76 mm core boreholes drilled around the pillar volume for determination of: compressive strength, thermal properties and fracture properties. P-wave velocity measurements on core samples and between boreholes for estimation of the excavation damaged zone and rock mass properties. The geological mapping and the 3D-visualisation gives a good description of the TASQ drift in general and the experiment volume in the drift in particular. The fracturing of the drift follows the pattern of the rest of Aespoe. Three fracture sets have been mapped in TASQ. The major fracture set is sub-vertical and trending NW, in principle parallel to {sigma}{sub 1}. This set is the most conductive at Aespoe and is the only water bearing set in TASQ. A second less pronounced set is trending NE, parallel to TASQ, and is also sub-vertical. The third set is sub-horizontal. It is interesting to note that the third set is the only one that almost completely consists of sealed fractures. The first two sets have mostly open fractures. One unique feature in the drift is a heavily

  2. Caving thickness effects of surrounding rocks macro stress shell evolving characteristics

    Institute of Scientific and Technical Information of China (English)

    XIE Guang-xiang; YANG Ke

    2009-01-01

    In order to explore the influence of different caving thicknesses on the MSS dis-tribution and evolving characteristics of surrounding rocks in unsymmetrical disposal and fully mechanized top-coal caving (FMTC), based on unsymmetrical disposal characteris-tics, the analyses of numerical simulation, material simulation and in-situ observation were synthetically applied according to the geological and technical conditions of the 1151(3) working face in Xieqiao Mine. The results show that the stress peak value of the MSS-base and the ratio of MSS-body height to caving thickness are nonlinear and inversely proportional to the caving thickness. The MSS-base width, the MSS-body height, the MSS-base distance to working face wall and the rise distance of MSS-base beside coal pillar are nonlinear and directly proportional to the caving thickness. The characteristics of MSS distribution and its evolving rules of surrounding rocks and the integrated caving thickness effects are obtained. The investigations will provide lots of theoretic references to the surrounding rocks' stability control of the working face and roadway, roadway layout, gas extraction and exploitation, and efficiency of caving, etc.

  3. Geological and geomechanical properties of the carbonate rocks at the eastern Black Sea Region (NE Turkey)

    Science.gov (United States)

    Ersoy, Hakan; Yalçinalp, Bülent; Arslan, Mehmet; Babacan, Ali Erden; Çetiner, Gözde

    2016-11-01

    Turkey located in the Alpine-Himalayan Mountain Belt has 35% of the natural stone reserves of the world and has good quality marble, limestone, travertine and onyx reserves especially in the western regions of the country. The eastern Black Sea Region with a 1.4 million meters cubes reserve has a little role on the natural stone production in the country. For this reason, this paper deals with investigation on the potential of carbonate stone in the region and determination of the geological and geo-mechanical properties of these rocks in order to provide economic contribution to the national economy. While the study sites are selected among the all carbonate rock sites, the importance as well as the representative of the sites were carefully considered for the region. After representative samples were analyzed for major oxide and trace element compositions to find out petrochemical variations, the experimental program conducted on rock samples for determination of both physical and strength properties of the carbonate rocks. The results of the tests showed that there are significant variations in the geo-mechanical properties of the studied rock groups. The density values vary from 2.48 to 2.70 gr/cm3, water absorption by weight values range from 0.07 to 1.15% and the apparent porosity of the carbonate rocks are between 0.19 and 3.29%. However, the values of the UCS shows variation from 36 to 80 MPa. Tensile and bending strength values range from 3.2 to 7.5 MPa and 6.0-9.2 MPa respectively. Although the onyx samples have the lowest values of apparent porosity and water absorption by weight, these samples do not have the highest values of UCS values owing to occurrence of the micro-cracks. The UCS values of the rock samples were also found after cycling tests However, the limestone samples have less than 5% deterioration after freezing-thawing and wetting-drying tests, but travertine and onyx samples have more than 15% deterioration. Exception of the apparent

  4. Historical rock collection of the Commission for the Geological Map of Spainpreserved in the Madrid School of Civil Engineering

    International Nuclear Information System (INIS)

    Sanz Pérez, E.; Pérez Ruy-Díaz, J.A.; Menéndez-Pidal de Navascués, I.; Sanz Ojeda, P.; Pascual-Arribas, C.

    2017-01-01

    The collection of 200 rocks prepared by the Commission for the Geological Map of Spain for the Madrid School of Civil Engineering, without known author and dated between 1898 and 1907, is one of the collections sent by the Commission to meet the specific needs of engineering institutes, and in which have survived 200 explanatory index cards accompanying each of the specimens. The collection is national in scope and is designed with a clear teaching purpose focused on civil engineering students. Its main feature is to teach the historical geology of Spain summarized in a collection of representative rocks from the Spanish territory classified by geological periods. So that, by knowing the most common rocks that appear in the synthetic stratigraphic column of Spain, this could provide for uses for coeval type of rocks, such as building materials or as foundations. Petrologic classifications and the division of geological periods are used according to these times. The index cards, where many observations about uses of civil engineering rocks are made, endeavor to identify rocks as samples with one’s own eyes and at scale of outcrop in the field, within the regional stratigraphic context. [es

  5. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 7. Baseline rock properties-basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM-36/7 Baseline Rock Properties--Basalt, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. This report contains an evaluation of the results of a literature survey to define the rock mass properties of a generic basalt, which could be considered as a geological medium for storing radioactive waste. The general formation and structure of basaltic rocks is described. This is followed by specific descriptions and rock property data for the Dresser Basalt, the Amchitka Island Basalt, the Nevada Test Site Basalt and the Columbia River Group Basalt. Engineering judgment has been used to derive the rock mass properties of a typical basalt from the relevant intact rock property data and the geological information pertaining to structural defects, such as joints and faults

  6. Natural radioactivity measurements in rock samples of Cuihua Mountain National Geological Park (China))

    International Nuclear Information System (INIS)

    Lu, X.; Zhang, X.

    2008-01-01

    The concentrations of the natural radionuclides namely 40 K, 232 Th and 226 Ra in rock samples collected from Cuihua Mountain National Geological Park of China have been determined using a NaI(Tl) detector. The concentrations of 226 Ra, 232 Th and 40 K in the studied rock samples range from 10.7 to 34.8, 19.9 to 53.6 and 642.7 to 1609.9 Bq kg -1 with an average of 20.4, 30.1 and 1009.5 Bq kg -1 , respectively. The concentrations of these radionuclides are compared with the typical world values. To evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity, the air absorbed dose rate, the annual effective dose rate, the representative level index and the values of both external and internal hazard indices were evaluated and compared with the internationally approved values. The radium equivalent activity values of all rock samples are lower than the limit of 370 Bq kg -1 . The values of H ex and H in are less than unity. The mean outdoor air absorbed dose rate is 69.7 nGy h -1 , and the corresponding outdoor effective dose rate is 0.086 mSv y -1 . (authors)

  7. On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas

    Directory of Open Access Journals (Sweden)

    L. Fischer

    2012-01-01

    Full Text Available The ongoing debate about the effects of changes in the high-mountain cryosphere on rockfalls and rock avalanches suggests a need for more knowledge about characteristics and distribution of recent rock-slope instabilities. This paper investigates 56 sites with slope failures between 1900 and 2007 in the central European Alps with respect to their geological and topographical settings and zones of possible permafrost degradation and glacial recession. Analyses of the temporal distribution show an increase in frequency within the last decades. A large proportion of the slope failures (60% originated from a relatively small area above 3000 m a.s.l. (i.e. 10% of the entire investigation area. This increased proportion of detachment zones above 3000 m a.s.l. is postulated to be a result of a combination of factors, namely a larger proportion of high slope angles, high periglacial weathering due to recent glacier retreat (almost half of the slope failures having occurred in areas with recent deglaciation, and widespread permafrost occurrence. The lithological setting appears to influence volume rather than frequency of a slope failure. However, our analyses show that not only the changes in cryosphere, but also other factors which remain constant over long periods play an important role in slope failures.

  8. Retrievability of high-level nuclear waste from geologic repositories - Regulatory and rock mechanics/design considerations

    International Nuclear Information System (INIS)

    Tanious, N.S.; Nataraja, M.S.; Daemen, J.J.K.

    1987-01-01

    Retrievability of nuclear waste from high-level geologic repositories is one of the performance objectives identified in 10CFR60 (Code of Federal Regulations, 1985). 10CFR60.111 states that the geologic repository operations area shall be designed to preserve the option of waste retrieval. In designing the repository operations area, rock mechanics considerations play a major role especially in evaluating the feasibility of retrieval operations. This paper discusses generic considerations affecting retrievability as they relate to repository design, construction, and operation, with emphasis on regulatory and rock mechanics aspects

  9. Forecasting the changes in engineering-geological properties of loess rocks by a penetration-logging method

    International Nuclear Information System (INIS)

    Saparov, A.

    1977-01-01

    Changes of volume weight, volume numidity, side friction and head resistance of loess rocks are considered. It is established, that the most perspective methods for forecasting engineering-geological properties of loess rocks are the methods of radioactivity logging and static probing. The quantitative determinations of physical and mechanical properties are made using the data of the following geophysical methods: gamma-gamma logging, neutron logging and gamma logging

  10. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  11. Characteristics of uranium geological anomaly in Northern Guangdong province

    International Nuclear Information System (INIS)

    Wang Xinwu; Cheng Danping

    2001-01-01

    The geological anomaly characteristics of uranium deposit region in northern Guangdong are discussed on the aspects of uranium source, structure and thermal activity. Uranium deposits usually occur in the uranium-rich background field. Structure activity provides favourable places for the transportation and precipitation of uranium. Uranium deposits are formed in the central and edge of frequent thermal activity. The assembled entropy anomaly field is the synthetical display for above three anomaly. The biggest assembled entropy anomaly is the most favourable space field for forming uranium deposit

  12. Nagra technical report 14-02, Geological basics - Dossier VI - Barrier properties of proposed host rock sediments and neighbouring rock

    International Nuclear Information System (INIS)

    Gautschi, A.; Deplazes, G.; Traber, D.; Marschall, P.; Mazurek, M.; Gimmi, T.; Maeder, U.

    2014-01-01

    This dossier is the sixth of a series of eight reports concerning the safety and technical aspects of locations for the disposal of radioactive wastes in Switzerland. It discusses the barrier properties of the proposed host rock sediments and neighbouring rock layers. The mineralogical composition of the host rocks are discussed as are their pore densities and hydrological properties. Diffusion aspects are discussed. The aquifer systems in the proposed depository areas and their classification are looked at. The barrier properties of the host rocks and those of neighbouring sediments are discussed. Finally, modelling concepts and parameters for the transport of radionuclides in the rocks are discussed

  13. The Khida terrane - Geology of Paleoproterozoic rocks in the Muhayil area, eastern Arabian Shield, Saudi Arabia

    Science.gov (United States)

    Stoeser, D.B.; Whitehouse, M.J.; Stacey, J.S.

    2001-01-01

    The bulk of the Arabian Shield of Saudi Arabia is underlain by Neoproterozoic terranes of oceanic affinity that were accreted during Pan-African time (about 680- 640Ma). Geologicalmappingandisotopicinvestigations during the 1980’s,however, provided the first evidence for Paleoproterozoic continental crust within the east- central part of the shield in Saudi Arabia. These studies delineated an older basement domain, herein referred to as the Khida terrane (Fig. l), which is defined as that part of the southern Afif composite terrane underlain by Paleoproterozoicto Archean continental crust (Stoeser and Stacey, 1988). The isotopic and geochronologic work to support our current studies within the Khida terrane are discussed in a companion abstract (Whitehouse et al., this volume). The regional geology and geochronology of the region has been summarized in detail by Johnson (1996). The current study is based on the continued use of samples previously collected in the Khida area by the authors and others as well as new field work conducted by us in 1999. This work further defines the occurrence of late Paleoproterozoic rocks at Jabal Muhayil, which is located at the eastern margin of the exposed terrane (Fig. 1). Our isotopic work is at an early stage and this abstract partly relates geologic problems that remain to be resolved. 

  14. Cathodoluminescence (CL Characteristics of Quartz from Different Metamorphic Rocks within the Kaoko Belt (Namibia

    Directory of Open Access Journals (Sweden)

    Jonathan Sittner

    2018-05-01

    Full Text Available Quartz of metamorphic rocks from the Kaoko belt (Namibia representing metamorphic zones from greenshist to granulite facies were investigated by cathodoluminescence (CL microscopy and spectroscopy to characterize their CL properties. The samples cover P-T conditions from the garnet zone (500 ± 30 °C, 9 ± 1 kbar up to the garnet-cordierite-sillimanite-K-feldspar zone (750 ± 30 °C, 4.0–5.5 kbar. Quartz from 10 different localities and metamorphic environments exclusively exhibits blue CL. The observed CL colors and spectra seem to be more or less independent of the metamorphic grade of the host rocks, but are determined by the regional geological conditions. Quartz from different localities of the garnet-cordierite-sillimanite-K-feldspar zone shows a dominant 450 nm emission band similar to quartz from igneous rocks, which might be related to recrystallization processes. In contrast, quartz from different metamorphic zones in the western part of the central Kaoko zone (garnet, staurolite, kyanite, and kyanite-sillimanite-muscovite zone is characterized by a heterogeneous blue-green CL and a dominant 500 nm emission band that strongly decreases in intensity under electron irradiation. Such CL characteristics are typical for quartz of pegmatitic and/or hydrothermal origin and indicate the participation of fluids during neoformation of quartz during metamorphism.

  15. Study to optimize a disposal tunnel layout taking into account heterogeneous characteristics of the geological environment

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2007-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favorable from the perspective of long-term safety and ones that are less favorable. In order that the spatially heterogeneous environment itself may be utilized most effectively as an NBS, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a 'variable disposal tunnel layout'. The optimization approach minimizes the number of locations where major water conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability. (author)

  16. The geology of the surrounding metamorphic rock of Zaer granite (Morocco): contribution to the search for uranium

    International Nuclear Information System (INIS)

    Mathias, Laurent

    1984-01-01

    This research thesis reports a study which aimed at reconstituting the geological history of the Zaer region in Morocco with objectives of mining exploration and of assessment of its uranium metallogenic potential. The author examined the whole geological context by studying stratigraphy, sedimentology, tectonic, and petrography of rocks belonging to the concerned area. The main objective was to determine the origin of uranium between a granitic one and a sedimentary one. This meant a reconstitution of the geological history, and therefore the study of the metamorphized sedimentary surrounding rock, of the intrusive granite and of their different possible relationships. On a first part, the author analysed outcropping formations and tried to assign them with a stratigraphic position. He also tried to define the deposition modalities of these formations which could have conditioned sedimentary sites. In a second part, the author reports the study of geological structures and tectonic in order to try to recognise possible structures which could have promoted uranium deposition and trapping in the surrounding rock as well as in granite. The last part addresses the petrography of the different rocks met in the area, and mineralization, notably that of uranium [fr

  17. 10 CFR 72.102 - Geological and seismological characteristics for applications before October 16, 2003 and...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for... WASTE Siting Evaluation Factors § 72.102 Geological and seismological characteristics for applications..., sites will be acceptable if the results from onsite foundation and geological investigation, literature...

  18. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  19. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  20. Groundwater characteristics and problems in volcanic rock terrains

    International Nuclear Information System (INIS)

    Custodio, E.

    1989-01-01

    Volcanic rock formations, each with their own particular hydrogeological characteristics, occur in circumstances that cover a multiplicity of situations. These range from permeable porous rock formations to permeable fissured formations and include all types of intermediate situation between the two. The type of volcanism, distance from the source of emission, age, alteration processes and tectonics are all factors which determine their behaviour. Volcanic formations usually constitute a single aquifer system, even though this may be very heterogeneous and may locally be separated into clearly defined subunits. At times, formations may be hundreds of metres thick and are fairly permeable almost throughout. As a rule, volcanic material does not yield directly soluble salts to the water that flows through it. Mineralization of the water is due to the concentration of rainfall and the hydrolysis of silicates as a result of CO 2 being absorbed from the atmosphere and the ground, or as a result of volcanism itself. Cationic grouping is usually closely correlated to that of the rock formation in which the chemical composition is formed. Most environmental isotope and radioisotope techniques may be used, and at times are of unquestionable value. However, the existence of evaporation in the soil with possible isotopic fractionation, the effects of marked relief, the dilution of dissolved carbon by volcanic carbon and isotopic exchange brought about by volcanic carbon, etc., should be taken into account before valid conclusions are drawn. The paper uses examples taken from existing studies, mainly those being carried out in the Canary Islands (Spain). (author). 98 refs, 18 figs, 4 tabs

  1. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  2. Response characteristics of reactor building on weathered soft rock ground

    International Nuclear Information System (INIS)

    Hirata, Kazuta; Tochigi, Hitoshi

    1991-01-01

    The purpose of this study is to investigate the seismic stability of nuclear power plants on layered soft bedrock grounds, focusing on the seismic response of reactor buildings. In this case, the soft bedrock grounds refer to the weathered soft bedrocks with several tens meter thickness overlaying hard bedrocks. Under this condition, there are two subjects regarding the estimation of the seismic response of reactor buildings. One is the estimation of the seismic response of surface ground, and another is the estimation of soil-structure interaction characteristics for the structures embedded in the layered grounds with low impedandce ratio between the surface ground and the bedrock. Paying attention to these subjects, many cases of seismic response analysis were carried out, and the following facts were clarified. In the soft rock grounds overlaying hard bedrocks, it was proved that the response acceleration was larger than the case of uniform hard bedrocks. A simplified sway and rocking model was proposed to consider soil-structure interaction. It was proved that the response of reactor buildings was small when the effect of embedment was considered. (K.I.)

  3. Geology and Geochemistry of some crystalline basement rocks in ilesha area, southwestern nigeria: implications on provenance and evolution

    International Nuclear Information System (INIS)

    Oyinloye, A.O.

    2007-01-01

    Geological and geochemical study of the basement complex rocks in ilesha schist belt revealed that amphibolite, hornblende gneiss and granite gneiss are the major constituents. The gneisses are composed of similar rock forming silicates with variations in abundance. The amphibolite being a mafic rock has different compositions, containing abundant pyroxene, actinolite and tremolite. Monazite is present in the mineralogy of all these rocks. Chemical composition of these rocks revealed that they are petrogenetically related. Geochemical diagrams, plotted from chemical composition of these rocks, REE fractionation trends and presence of monazite in their mineralogy reveal that all these rocks were derived from a mixed magma source which did not originate from a pure tipper mantle, but possibly from a back arc tectonic setting. The pattern of the REE, progressively increasing negative Eu/Eu anomaly, La/sub N//Yb/sub N/ from the amphibolite to the granite gneiss and marked Eu depletion tend to implicate evolution through fractionation of a mixed basaltic magma to form the precursor of these rocks. The amphibolite probably represents the sample of the original basaltic magma. (author)

  4. Characteristics of core sampling from crumbing Paleozoic rock

    Energy Technology Data Exchange (ETDEWEB)

    Barabashkin, I I; Edelman, Y A; Filippov, V N; Lychev, V N

    1981-01-01

    The results of analysis of core sampling using standard core sampling tools with small and medium inside diameter are cited. It is demonstrated that when using these tools loss of core in Paleozoic deposits promising with regard to oil and gas content does not exceed 25 - 30%. The use of a new core sampling tool with a large inside diameter which includes drill bits of different types and a core lifter ''Krembriy'' SKU-172/100 made it possible to increase core removal approximately 52%. A representative core from a highly crumbling and vesicular rock belinging to groups III - IV in terms of difficulty of core sampling was obtained first. A description of a new core sampling tool is given. The characteristics of the technology of its use which promote preservation of the core are cited. Means of continued improvement of this tool are noted.

  5. Survey on the characteristics of rock under low and high temperature

    International Nuclear Information System (INIS)

    Shin, Koich; Kitano, Koichi

    1987-01-01

    Rock caverns for Superconducting Magnetic Energy Storage (SMES), Radioactive Waste Disposal, or Liquified Natural Gas Storage will suffer extraordinary temperature. Therefore, authors have researched the rock characteristics under the low temperature conditions and the rock mass behavior when it is heated, by papers so far reported. As a result, rock characteristics such as strength, linear expansion coefficient, thermal conductivity etc. are found to be ready to change with temperature condition and the kind of rocks. Even an anisotropy of some kind appears under some conditions. So, when sitting those facilities before mentioned, rock characteristics under each temperature condition must be enough clarified for the purpose of the evaluation of rock cavern stability and especially, rock behavior when it is loaded dynamically under low temperature must be cleared from now on, for such studies have been few. (author)

  6. Explosion Source Characteristics in Frozen and Unfrozen Rock

    National Research Council Canada - National Science Library

    Bonner, Jessie L; Leidig, Mark R; Murphy, Katherine; Dougherty, Sara L; Martin, Randolph J

    2008-01-01

    .... Central Alaska has abrupt lateral boundaries in discontinuous permafrost, and we detonated 3 shots in frozen, saturated rock and 3 shots nearby in unfrozen, dry rock ranging in size from 200 to 350 Ibs...

  7. Probabilistic modelling of rock damage: application to geological storage of CO2

    International Nuclear Information System (INIS)

    Guy, N.

    2010-01-01

    The storage of CO 2 in deep geological formations is considered as a possible way to reduce emissions of greenhouse gases in the atmosphere. The condition of the rocks constituting the reservoir is a key parameter on which rely both storage safety and efficiency. The objective of this thesis is to characterize the risks generated by a possible change of mechanical and transfer properties of the material of the basement after an injection of CO 2 . Large-scale simulations aiming at representing the process of injection of CO 2 at the supercritical state into an underground reservoir were performed. An analysis of the obtained stress fields shows the possibility of generating various forms of material degradation for high injection rates. The work is devoted to the study of the emergence of opened cracks. Following an analytical and simplified study of the initiation and growth of opened cracks based on a probabilistic model, it is shown that the formation of a crack network is possible. The focus is then to develop in the finite element code Code Aster a numerical tool to simulate the formation of crack networks. A nonlocal model based on stress regularization is proposed. A test on the stress intensity factor is used to describe crack propagation. The initiation of new cracks is modeled by a Poisson-Weibull process. The used parameters are identified by an experimental campaign conducted on samples from an actual geological site for CO 2 storage. The model developed is then validated on numerical cases, and also against experimental results carried out herein. (author)

  8. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  9. Influence of Subjectivity in Geological Mapping on the Net Penetration Rate Prediction for a Hard Rock TBM

    Science.gov (United States)

    Seo, Yongbeom; Macias, Francisco Javier; Jakobsen, Pål Drevland; Bruland, Amund

    2018-05-01

    The net penetration rate of hard rock tunnel boring machines (TBM) is influenced by rock mass degree of fracturing. This influence is taken into account in the NTNU prediction model by the rock mass fracturing factor ( k s). k s is evaluated by geological mapping, the measurement of the orientation of fractures and the spacing of fractures and fracture type. Geological mapping is a subjective procedure. Mapping results can therefore contain considerable uncertainty. The mapping data of a tunnel mapped by three researchers were compared, and the influence of the variation in geological mapping was estimated to assess the influence of subjectivity in geological mapping. This study compares predicted net penetration rates and actual net penetration rates for TBM tunneling (from field data) and suggests mapping methods that can reduce the error related to subjectivity. The main findings of this paper are as follows: (1) variation of mapping data between individuals; (2) effect of observed variation on uncertainty in predicted net penetration rates; (3) influence of mapping methods on the difference between predicted and actual net penetration rate.

  10. Surficial geologic map of the Red Rock Lakes area, southwest Montana

    Science.gov (United States)

    Pierce, Kenneth L.; Chesley-Preston, Tara L.; Sojda, Richard L.

    2014-01-01

    The Centennial Valley and Centennial Range continue to be formed by ongoing displacement on the Centennial fault. The dominant fault movement is downward, creating space in the valley for lakes and the deposition of sediment. The Centennial Valley originally drained to the northeast through a canyon now represented by a chain of lakes starting with Elk Lake. Subsequently, large landslides blocked and dammed the drainage, which created Lake Centennial, in the Centennial Valley. Sediments deposited in this late Pleistocene lake underlie much of the valley floor and rest on permeable sand and gravel deposited when the valley drained to the northeast. Cold Pleistocene climates enhanced colluvial supply of gravelly sediment to mountain streams and high peak flows carried gravelly sediment into the valley. There, the lower gradient of the streams resulted in deposition of alluvial fans peripheral to Lake Centennial as the lake lowered through time to the level of the two present lakes. Pleistocene glaciers formed in the high Centennial Range, built glacial moraines, and also supplied glacial outwash to the alluvial fans. Winds from the west and south blew sand to the northeast side of the valley building up high dunes. The central part of the map area is flat, sloping to the west by only 0.6 meters in 13 kilometers (2 feet in 8 miles) to form a watery lowland. This lowland contains Upper and Lower Red Rock Lakes, many ponds, and peat lands inside the “water plane,” above which are somewhat steeper slopes. The permeable sands and gravels beneath Lake Centennial sediments provide a path for groundwater recharged from the adjacent uplands. This groundwater leaks upward through Lake Centennial sediments and sustains wetland vegetation into late summer. Upper and Lower Red Rock Lakes are formed by alluvial-fan dams. Alluvial fans converge from both the south and the north to form outlet thresholds that dam the two shallow lakes upstream. The surficial geology aids in

  11. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  12. Geological modeling of a fault zone in clay rocks at the Mont-Terri laboratory (Switzerland)

    Science.gov (United States)

    Kakurina, M.; Guglielmi, Y.; Nussbaum, C.; Valley, B.

    2016-12-01

    Clay-rich formations are considered to be a natural barrier for radionuclides or fluids (water, hydrocarbons, CO2) migration. However, little is known about the architecture of faults affecting clay formations because of their quick alteration at the Earth's surface. The Mont Terri Underground Research Laboratory provides exceptional conditions to investigate an un-weathered, perfectly exposed clay fault zone architecture and to conduct fault activation experiments that allow explore the conditions for stability of such clay faults. Here we show first results from a detailed geological model of the Mont Terri Main Fault architecture, using GoCad software, a detailed structural analysis of 6 fully cored and logged 30-to-50m long and 3-to-15m spaced boreholes crossing the fault zone. These high-definition geological data were acquired within the Fault Slip (FS) experiment project that consisted in fluid injections in different intervals within the fault using the SIMFIP probe to explore the conditions for the fault mechanical and seismic stability. The Mont Terri Main Fault "core" consists of a thrust zone about 0.8 to 3m wide that is bounded by two major fault planes. Between these planes, there is an assembly of distinct slickensided surfaces and various facies including scaly clays, fault gouge and fractured zones. Scaly clay including S-C bands and microfolds occurs in larger zones at top and bottom of the Mail Fault. A cm-thin layer of gouge, that is known to accommodate high strain parts, runs along the upper fault zone boundary. The non-scaly part mainly consists of undeformed rock block, bounded by slickensides. Such a complexity as well as the continuity of the two major surfaces are hard to correlate between the different boreholes even with the high density of geological data within the relatively small volume of the experiment. This may show that a poor strain localization occurred during faulting giving some perspectives about the potential for

  13. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  14. Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers.

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2014-08-01

    A model is developed to describe solute transport and retention in fractured rocks. It accounts for advection along the fracture, molecular diffusion from the fracture to the rock matrix composed of several geological layers, adsorption on the fracture surface, adsorption in the rock matrix layers and radioactive decay-chains. The analytical solution, obtained for the Laplace-transformed concentration at the outlet of the flowing channel, can conveniently be transformed back to the time domain by the use of the de Hoog algorithm. This allows one to readily include it into a fracture network model or a channel network model to predict nuclide transport through channels in heterogeneous fractured media consisting of an arbitrary number of rock units with piecewise constant properties. More importantly, the simulations made in this study recommend that it is necessary to account for decay-chains and also rock matrix comprising at least two different geological layers, if justified, in safety and performance assessment of the repositories for spent nuclear fuel. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, Jesper (Vattenfall Power Consultant AB, Stockholm (Sweden)); Curtis, Philip; Bockgaard, Niclas (Golder Associates AB (Sweden)); Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-01-15

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images

  16. Site investigation SFR. Rock type coding, overview geological mapping and identification of rock units and possible deformation zones in drill cores from the construction of SFR

    International Nuclear Information System (INIS)

    Petersson, Jesper; Curtis, Philip; Bockgaard, Niclas; Mattsson, Haakan

    2011-01-01

    This report presents the rock type coding, overview lithological mapping and identification of rock units and possible deformation zones in drill cores from 32 boreholes associated with the construction of SFR. This work can be seen as complementary to single-hole interpretations of other older SFR boreholes earlier reported in /Petersson and Andersson 2010/: KFR04, KFR08, KFR09, KFR13, KFR35, KFR36, KFR54, KFR55, KFR7A, KFR7B and KFR7C. Due to deficiencies in the available material, the necessary activities have deviated somewhat from the established methodologies used during the recent Forsmark site investigations for the final repository for spent nuclear fuel. The aim of the current work has been, wherever possible, to allow the incorporation of all relevant material from older boreholes in the ongoing SFR geological modelling work in spite of the deficiencies. The activities include: - Rock type coding of the original geological mapping according to the nomenclature used during the preceding Forsmark site investigation. As part of the Forsmark site investigation such rock type coding has already been performed on most of the old SFR boreholes if the original geological mapping results were available. This earlier work has been complemented by rock type coding on two further boreholes: KFR01 and KFR02. - Lithological overview mapping, including documentation of (1) rock types, (2) ductile and brittle-ductile deformation and (3) alteration for drill cores from eleven of the boreholes for which no original geological borehole mapping was available (KFR31, KFR32, KFR34, KFR37,KFR38, KFR51, KFR69, KFR70, KFR71, KFR72 and KFR89). - Identification of possible deformation zones and merging of similar rock types into rock units. This follows SKB's established criteria and methodology of the geological Single-hole interpretation (SHI) process wherever possible. Deviations from the standard SHI process are associated with the lack of data, for example BIPS images, or a

  17. Radiogeochemical characteristic of rocks of the Crimea peninsula and some principles of sedimentation

    International Nuclear Information System (INIS)

    Gherasimov, Yu.G.

    1983-01-01

    Radiogeochemical mapping with rock sampling of profiles, crossing all main structural facies zones of the Crimea peninsula was conducted. 1000 samples were taken. Uranium determination in samples was performed by fluorescence method (2 g/t threshold sensitivity). The distributions of U and Th background contents in rocks of the Crimea were tabulated. Maps of sampling of geological formations and distribution of U and Th background contents in rocks are given. It is shown that radioelement content in Crimea rocks is for the most part lower than clark one: 1.3-2.1 g/t contents prevail for U, Th contents don't exceed 12 g/t. Closeness of some radiogeochemical parameters points to the formation of terrigenous Crimea rocks due to removal of the material from the Ukrainian shield. Reworking of initial terrigenous material by hypergene processes led to U and Th separation, as well as to enrichment of younger sedimentary rocks with uranium

  18. Deposit Mariovo geological characteristics coal quality and quantity

    International Nuclear Information System (INIS)

    Andreevski, Borche

    2008-01-01

    Evaluation of the actual situation with energy resources, in a global scale, shows negative trends, which is result from the numerous complex factors influences. Special influence over these trends has increased requirement and consumption of the fossil fuels, driven by the intensive technological development and unplanned long-term exploitation, which causes huge reduction of the available fossil fuels deposits and significant price oscillations. Additional contribution to this tendency has the fact that potential fossil fuels reserves are controlled from limited number of owners, which allows them to have global geo-strategic control over the energy resources, world politics and other types of influences. In such conditions underdevelopment countries will feel the biggest consequences and they will be forced to provide(conditionally, if there is an energy surplus at the market) and to save considerable financial resources for satisfying their needs. Maximal usage of country's own possessed energy raw material bases the only way out from this situation and it is also used by the countries which are at he greatest development level then ours. If we want to incorporate these reserves into the energetic strategy and energy balances they must be exactly defined and determined. According to the presented approach, paper has aim to make synthesis of previous investigations, through argumentation of geological specifics and quantitative-qualitative characteristics of deposit Mariovo coal given in the available documentation, and also has intention to point out its respectable characteristics. (Author)

  19. Deposit Mariovo geological characteristics coal quality and quantity

    International Nuclear Information System (INIS)

    Andreevski, Borche

    2007-01-01

    Evaluation of the actual situation with energy resources, in a global scale, shows negative trends, which is result from the numerous complex factors influences. Special influence over these trends has increased requirement and consumption of the fossil fuels, driven by the intensive technological development and unplanned long-term exploitation, which causes huge reduction of the available fossil fuels deposits and significant price oscillations. Additional contribution to this tendency has the fact that potential fossil fuels reserves are controlled from limited number of owners, which allows them to have global geo-strategic control over the energy resources, world politics and other types of influences. In such conditions underdevelopment countries will feel the biggest consequences and they will be forced to provide(conditionally, if there is an energy surplus at the market) and to save considerable financial resources for satisfying their needs. Maximal usage of country's own possessed energy raw material bases the only way out from this situation and it is also used by the countries which are at he greatest development level then ours. If we want to incorporate these reserves into the energetic strategy and energy balances they must be exactly defined and determined. According to the presented approach, paper has aim to make synthesis of previous investigations, through argumentation of geological specifics and quantitative-qualitative characteristics of deposit Mariovo coal given in the available documentation, and also has intention to point out its respectable characteristics. (Author)

  20. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    Science.gov (United States)

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  1. Heterogeneous 40Ar/39Ar laser probe apparent ages in low-grade mylonitic rocks: Constraining a meaningful geological age

    International Nuclear Information System (INIS)

    Arancibia, G

    2001-01-01

    Obtaining meaningful geological ages from mylonitic rocks has been a major problem for structural geologist, because apparent ages have usually no geologic significance. Over the last years, in situ high spatial resolutions 40 Ar/ 39 Ar studies (e.g. Ruffet et al., 1991; Reddy et al., 1996; Pickles et al., 1997), permit obtain apparent ages of mineral and link them directly with textural, microstructural and chemical patterns that can previously be obtained by optical and scanning electron (SEM) microscopes and electron microprobe. In this work, heterogeneous 40 Ar/ 39 Ar laser probe ages from low-grade volcanic mylonites show complex argon distributions patterns. Inverse isochron analysis suggests that most obtained apparent ages contain argon excess and only younger ages have a meaningful geologically interpretation (au)

  2. Assessment of natural radioactivity levels in rocks and their relationships with the geological structure of Johor state, Malaysia.

    Science.gov (United States)

    Alnour, I A; Wagiran, H; Ibrahim, N; Hamzah, S; Elias, M S; Laili, Z; Omar, M

    2014-01-01

    The distribution of natural radionuclides ((238)U, (232)Th and (40)K) and their radiological hazard effect in rocks collected from the state of Johor, Malaysia were determined by gamma spectroscopy using a high-purity germanium detector. The highest values of (238)U, (232)Th and (40)K activity concentrations (67±6, 85±7 and 722±18 Bg kg(-1), respectively) were observed in the granite rock. The lowest concentrations of (238)U and (232)Th (2±0.1 Bq kg(-1) for (238)U and 2±0.1 Bq kg(-1) for (232)Th) were observed in gabbro rock. The lowest concentration of (40)K (45±2 Bq kg(-1)) was detected in sandstone. The radium equivalent activity concentrations for all rock samples investigated were lower than the internationally accepted value of 370 Bq kg(-1). The highest value of radium equivalent in the present study (239±17 Bq kg(-1)) was recorded in the area of granite belonging to an acid intrusive rock geological structure. The absorbed dose rate was found to range from 4 to 112 nGy h(-1). The effective dose ranged from 5 to 138 μSv h(-1). The internal and external hazard index values were given in results lower than unity. The purpose of this study is to provide information related to radioactivity background levels and the effects of radiation on residents in the study area under investigation. Moreover, the relationships between the radioactivity levels in the rocks within the geological structure of the studied area are discussed.

  3. The geological map of Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.; Ferrando, L.; Fernandez, A.; Elizalde, G.; Morales, H.; Ledesma, J.; Carballo, E.; Medina, E.; Ford, I.; Montana, J.

    1975-01-01

    The geological map of Uruguay is about the morphological characteristics of the soil such as rocks, sediments and granites belong to different periods. These periods are the proterozoic, paleozoic, permian, mesozoic, jurassic, cretaceous, cenozoic and holocene.

  4. Mineralogical and textural characteristics of Kakul (Hazara) phosphate rock, NWFP, Pakistan

    International Nuclear Information System (INIS)

    Mehmood, R.; Bhatti, M.A.; Kazmi, K.R.; Mehmood, A.; Sheikh, S.T.; Aleem Shah, S.A.

    2010-01-01

    Various types of minerals, present in phosphate rock of Hazara area of Khyber Pukhtoonkhwa Province of Pakistan, were identified and their concentration was determined using a suitable method. The characteristics of the rock were defined by petrography, X-ray diffraction, and chemical analysis and the textural characteristics such as grain size, grain shape and their arrangement in the rock body were also investigated. The degree of liberation of phosphate-bearing mineral was studied by the particle-counting method. Mineralogical and textural observations indicated that fine-grained rock may be suitable for beneficiation by the froth flotation separation technique. (author)

  5. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  6. Late Paleozoic volcanic rocks of the Intra-Sudetic Basin, Bohemian Massif: Petrological and geochemical characteristics

    Czech Academy of Sciences Publication Activity Database

    Ulrych, Jaromír; Fediuk, F.; Lang, Miloš; Martinec, Petr

    2004-01-01

    Roč. 64, č. 2 (2004), s. 127-153 ISSN 0009-2819 R&D Projects: GA AV ČR(CZ) IAA3013903 Keywords : Late Paleozoic * volcanic rocks * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.643, year: 2004

  7. Predictability of the evolution of hydrogeological and hydrogeochemical systems; geological disposal of nuclear waste in crystalline rocks

    International Nuclear Information System (INIS)

    Murphy, W.M.; Diodato, D.M.

    2009-01-01

    Confidence in long-term geologic isolation of high-level nuclear waste and spent nuclear fuel requires confidence in predictions of the evolution of hydrogeological and hydrogeochemical systems. Prediction of the evolution of hydrogeological and hydrogeochemical systems is based on scientific understanding of those systems in the present - an understanding that can be tested with data from the past. Crystalline rock settings that have been geologically stable for millions of years and longer offer the potential of predictable, long-term waste isolation. Confidence in predictions of geologic isolation of radioactive waste can measured by evaluating the extent to which those predictions and their underlying analyses are consistent with multiple independent lines of evidence identified in the geologic system being analysed, as well as with evidence identified in analogs to that geologic system. The proposed nuclear waste repository at Yucca Mountain, Nevada, United States, differs in significant ways from potential repository sites being considered by other nations. Nonetheless, observations of hydrogeological and hydrogeochemical systems of Yucca Mountain and Yucca Mountain analogs present multiple independent lines of evidence that can be used in evaluating long-term predictions of the evolution of hydrogeological and hydrogeochemical systems at Yucca Mountain. (authors)

  8. Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: A further discussion

    Directory of Open Access Journals (Sweden)

    Zhao Wenzhi

    2014-10-01

    Full Text Available Deep marine carbonate rocks have become one of the key targets of onshore oil and gas exploration and development for reserves replacement in China. Further geological researches of such rocks may practically facilitate the sustainable, steady and smooth development of the petroleum industry in the country. Therefore, through a deep investigation into the fundamental geological conditions of deep marine carbonate reservoirs, we found higher-than-expected resource potential therein, which may uncover large oil or gas fields. The findings were reflected in four aspects. Firstly, there are two kinds of hydrocarbon kitchens which were respectively formed by conventional source rocks and liquid hydrocarbons cracking that were detained in source rocks, and both of them can provide large-scale hydrocarbons. Secondly, as controlled by the bedding and interstratal karstification, as well as the burial and hydrothermal dolomitization, effective carbonate reservoirs may be extensively developed in the deep and ultra-deep strata. Thirdly, under the coupling action of progressive burial and annealing heating, some marine source rocks could form hydrocarbon accumulations spanning important tectonic phases, and large quantity of liquid hydrocarbons could be kept in late stage, contributing to rich oil and gas in such deep marine strata. Fourthly, large-scale uplifts were formed by the stacking of multi-episodic tectonism and oil and gas could be accumulated in three modes (i.e., stratoid large-area reservoir-forming mode of karst reservoirs in the slope area of uplift, back-flow type large-area reservoir-forming mode of buried hill weathered crust karst reservoirs, and wide-range reservoir-forming mode of reef-shoal reservoirs; groups of stratigraphic and lithologic traps were widely developed in the areas of periclinal structures of paleohighs and continental margins. In conclusion, deep marine carbonate strata in China onshore contain the conditions for

  9. Normal dynamic deformation characteristics of non-consecutive jointed rock masses under impact loads

    Science.gov (United States)

    Zeng, Sheng; Jiang, Bowei; Sun, Bing

    2017-08-01

    In order to study deformation characteristics of non-consecutive single jointed rock masses under impact loads, we used the cement mortar materials to make simulative jointed rock mass samples, and tested the samples under impact loads by the drop hammer. Through analyzing the time-history signal of the force and the displacement, first we find that the dynamic compression displacement of the jointed rock mass is significantly larger than that of the intact jointless rock mass, the compression displacement is positively correlated with the joint length and the impact height. Secondly, the vertical compressive displacement of the jointed rock mass is mainly due to the closure of opening joints under small impact loads. Finally, the peak intensity of the intact rock mass is larger than that of the non-consecutive jointed rock mass and negatively correlated with the joint length under the same impact energy.

  10. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    Science.gov (United States)

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  11. The geological and microbiological controls on the enrichment of Se and Te in sedimentary rocks

    Science.gov (United States)

    Bullock, Liam; Parnell, John; Armstrong, Joseph; Boyce, Adrian; Perez, Magali

    2017-04-01

    Selenium (Se) and tellurium (Te) have become elements of high interest, mainly due to their photovoltaic and photoconductive properties, and can contaminate local soils and groundwater systems during mobilisation. Due to their economic and environmental significance, it is important to understand the processes that lead to Se- and Te-enrichment in sediments. The distribution of Se and Te in sedimentary environments is primarily a function of redox conditions, and may be transported and concentrated by the movement of reduced fluids through oxidised strata. Se and Te concentrations have been measured in a suite of late Neoproterozoic Gwna Group black shales (UK) and uranium red bed (roll-front) samples (USA). Due to the chemical affinity of Se and sulphur (S), variations in the S isotopic composition of pyrite have also been measured in order to provide insights into their origin. Scanning electron microscopy of pyrite in the black shales shows abundant inclusions of the lead selenide mineral clausthalite. The data for the black shale samples show marked enrichment in Te and Se relative to crustal mean and several hundreds of other samples processed through our laboratory. While Se levels in sulphidic black shales are typically below 5 ppm, the measured values of up to 116 ppm are remarkable. The Se enrichment in roll-fronts (up to 168 ppm) is restricted to a narrow band of alteration at the interface between the barren oxidised core, and the highly mineralised reduced nose of the front. Te is depleted in roll-fronts with respect to the continental crust and other geological settings and deposits. S isotope compositions for pyrite in both the black shales and roll-fronts are very light and indicate precipitation by microbial sulphate reduction, suggesting that Se was microbially sequestered. Results show that Gwna Group black shales and U.S roll-front deposits contain marked elemental enrichments (particularly Se content). In Gwna Group black shales, Se and Te were

  12. Reduction of the greenhouse effect by geological mineral in-situ sequestration of CO2 in basic rocks: bibliographic synthesis and possibilities in France. Final report

    International Nuclear Information System (INIS)

    Marechal, J.C.; Lachassagne, P.

    2004-01-01

    The report constitutes a first bibliographic study defining the environments the most adapted to the geological mineral in-situ sequestration of CO 2 . For each environment the lithology and the rocks permeability and porosity are analyzed. Thus the possible rocks and deposits in France are presented. (A.L.B.)

  13. Study on characteristics of sedimentary rock at the Horonobe site (2). Report of collaboration research between CRIEPI and JAEA

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kiho, Kenzo; Suzuki, Koichi; Nakata, Eiji; Tanaka, Shiro; Hasegawa, Takuma; Nakata, Kotaro; Nagaoka, Toru; Nakamura, Takamichi; Fukushima, Tatsuo; Ishii, Eiichi; Kunimaru; Takanori; Hama, Katsuhiro; Iwatsuki, Teruki; Sugita, Yutaka; Yabuuchi, Satoshi; Miyahara, Shigenori; Takahashi, Kazuharu

    2010-01-01

    successfully done with around 100% of core recovery and hydro-geological characteristics was estimated. (6) Groundwater dating. The results of estimation of groundwater age by 4 He and 36 Cl indicate groundwater in Wakkanai layer has been stagnant from sedimentation of Wakkanai formation. (7) Microbial analyses of sedimentary rocks. To understand the relationship between microbial activity and geochemical conditions, we analyzed the microbial activity and diversity in sedimentary rocks from the east shaft of Horonobe underground research center. In the rocks, the abundance of microbes was lower, revealing simple microbial community. The fundamental data to understand the relationship between microbial activity, diversity and geochemical conditions were obtained. (author)

  14. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for... § 72.103 Geological and seismological characteristics for applications for dry cask modes of storage on... foundation and geological investigation, literature review, and regional geological reconnaissance show no...

  15. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    Science.gov (United States)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  16. Study of the method to estimate the hydraulic characteristics in rock masses by using elastic wave

    International Nuclear Information System (INIS)

    Katsu, Kenta; Ohnishi, Yuzo; Nishiyama, Satoshi; Yano, Takao; Ando, Kenichi; Yoshimura, Kimitaka

    2008-01-01

    In the area of radioactive waste repository, estimating radionuclide migration through the rock mass is an important factor for assessment of the repository. The purpose of this study is to develop a method to estimate hydraulic characteristics of rock masses by using elastic wave velocity dispersion. This method is based on dynamics poroelastic relations such as Biot and BISQ theories. These theories indicate relations between velocity dispersion and hydraulic characteristics. In order to verify the validity of these theories in crystalline rocks, we performed laboratory experiments. The results of experiments show the dependency of elastic wave velocity on its frequency. To test the applicability of this method to real rock masses, we performed in-situ experiment for tuff rock masses. The results of in-situ experiment show the possibility as a practical method to estimate the hydraulic characteristics by using elastic wave velocity dispersion. (author)

  17. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  18. Rock slope stability analysis along the North Carolina section of the Blue Ridge Parkway: Using a geographic information system (GIS) to integrate site data and digital geologic maps

    Science.gov (United States)

    Latham, R.S.; Wooten, R.M.; Cattanach, B.L.; Merschat, C.E.; Bozdog, G.N.

    2009-01-01

    In 2008, the North Carolina Geological Survey (NCGS) completed a five-year geologic and geohazards inventory of the 406-km long North Carolina segment of the Blue Ridge Parkway (BRP). The ArcGIS??? format deliverables for rock slopes include a slope movement and slope movement deposit database and maps and site-specific rock slope stability assessments at 158 locations. Database entries for known and potential rock slope failures include: location data, failure modes and dimensions, activity dates and levels, structural and lithologic data, the occurrence of sulfide minerals and acid-producing potential test results. Rock slope stability assessments include photographs of the rock cuts and show locations and orientations of rock data, seepage zones, and kinematic stability analyses. Assigned preliminary geologic hazard ratings of low, moderate and high indicate the generalized relative probability of rock fall and/or rock slide activity at a given location. Statistics compiled based on the database indicate some general patterns within the data. This information provides the National Park Service with tools that can aid in emergency preparedness, and in budgeting mitigation, maintenance and repair measures. Copyright 2009 ARMA, American Rock Mechanics Association.

  19. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 6. Baseline rock properties-shale

    International Nuclear Information System (INIS)

    1978-04-01

    This volume, Y/OWI/TM36/6 Baseline Rock Properties--Shale, is one of a 23-volume series, ''Technical Support for GEIS: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-36'' which supplements a ''Contribution to Draft Generic Environmental Impact Statement on Commercial Waste Management: Radioactive Waste Isolation in Geologic Formations, Y/OWI/TM-44.'' The series provides a more complete technical basis for the preconceptual designs, resource requirements, and environmental source terms associated with isolating commercial LWR wastes in underground repositories in salt, granite, shale and basalt. Wastes are considered from three fuel cycles: uranium and plutonium recycling, no recycling of spent fuel and uranium-only recycling. The report is a result of a literature survey of the rock properties of shales occurring in the United States. Firstly, data were collected from a wide variety of sources in order to obtain a feel for the range of properties encountered. Secondly, some typical shales were selected for detailed review and these are written up as separate chapters in this report. Owing to the wide variability in lithology and properties of shales occurring in the United States, it became necessary to focus the study on consolidated illite shales. Using the specific information already generated, a consistent set of intact properties for a typical, consolidated illite shale was obtained. Correction factors, largely based on geological considerations, were then applied to the intact data in order to yield typical rock mass properties for this type of shale. Lastly, excavation problems in shale formations were reviewed and three tunnel jobs were written up as case histories

  20. Petrophysical Characteristics of Rocks in Girei Local Government ...

    African Journals Online (AJOL)

    Petrophysical measurements namely; electrical resistivity, density, porosity, electrical resistivity anisotropy and water saturation were performed on fourteen representative surface rock samples from Girei, part of the Yola arm of the Upper Benue trough, NE Nigeria. The purpose was to provide information required for ...

  1. Radiation damage studies on natural rock salt from various geological localities of interest to the radioactive waste disposal program

    International Nuclear Information System (INIS)

    Levy, P.W.

    1981-01-01

    As part of a program to investigate radiation damage in geological materials of interest to the radioactive waste disposal program, radiation damage, particularly radiation induced sodium metal colloid formation, has been studied in 14 natural rock salt samples. All measurements were made with equipment for making optical absorption and other measurements on samples, in a temperature controlled irradiation chamber, during and after 0.5 to 3.0 MeV electron irradiation. Samples were chosen for practical and scientific purposes, from localities that are potential repository sites and from different horizons at certain localities

  2. Geologic and mineralogic controls on acid and metal-rich rock drainage in an alpine watershed, Handcart Gulch, Colorado

    Science.gov (United States)

    Bove, Dana J.; Caine, Jonathan S.; Lowers, Heather

    2012-01-01

    The surface and subsurface geology, hydrothermal alteration, and mineralogy of the Handcart Gulch area was studied using map and drill core data as part of a multidisciplinary approach to understand the hydrology and affects of geology on acid-rock drainage in a mineralized alpine watershed. Handcart Gulch was the locus of intense hydrothermal alteration that affected an area of nearly 3 square kilometers. Hydrothermal alteration and accompanied weak mineralization are spatially and genetically associated with small dacite to low-silica rhyolite stocks and plugs emplaced about 37-36 Ma. Felsic lithologies are commonly altered to a quartz-sericite-pyrite mineral assemblage at the surface, but alteration is more variable in the subsurface, ranging from quartz-sericite-pyrite-dominant in upper core sections to a propylitic variant that is more typical in deeper drill core intervals. Late-stage, hydrothermal argillic alteration [kaolinite and(or) smectite] was superimposed over earlier-formed alteration assemblages in the felsic rocks. Smectite in this late stage assemblage is mostly neoformed resulting from dissolution of chlorite, plagioclase, and minor illite in more weakly altered rocks. Hydrothermally altered amphibolites are characterized by biotitic alteration of amphibole, and subsequent alteration of both primary and secondary biotite to chlorite. Whereas pyrite is present both as disseminations and in small veinlets in the felsic lithologies, it is mostly restricted to small veinlets in the amphibolites. Base-metal sulfides including molybdenite, chalcopyrite, sphalerite, and galena are present in minor to trace amounts in the altered rocks. However, geologic data in conjunction with water geochemical studies indicate that copper mineralization may be present in unknown abundance in two distinct areas. The altered rocks contain an average of 8 weight percent fine pyrite that is largely devoid of metals in the crystal structure, which can be a significant

  3. Subsurface Geology of the Fenton Hill Hot Dry Rock Geothermal Energy Site

    Energy Technology Data Exchange (ETDEWEB)

    Levey, Schon S.

    2010-12-01

    The Precambrian rock penetrated by wells EE-2A and -3A belongs to one or more granitic to granodioritic plutons. The plutonic rock contains two major xenolith zones of amphibolite, locally surrounded by fine-grained mafic rock of hybrid igneous origin. The granodiorite is cut by numerous leucogranite dikes that diminish in abundance with depth. The most prominent structural feature is the main breccia zone, in which the rock is highly fractured and moderately altered. This zone is at least 75 m thick and is of uncertain but near-horizontal orientation. Fracture abundance decreases with increasing depth below the main breccia zone, and fractures tend to be associated with leucogranite dikes. This association suggests that at least some of the fractures making up the geothermal reservoir are of Precambrian age or have long-range orientations controlled by the presence of Precambrian-age granitic dikes.

  4. Characteristics of micro transfer paths and diffusion phenomena in the matrix of deep crystalline rock

    International Nuclear Information System (INIS)

    Ishibashi, Masayuki; Sasao, Eiji; Hama, Katsuhiro

    2016-01-01

    Matrix diffusion is one of the important phenomena for evaluating the safety of the geological disposal of high level waste because it has an effect of retarding mass transport in crystalline rocks. Previous studies indicated that the altered granitic rocks have high retardation functions due to the micropore formation associated with hydrothermal alteration; however, there has not been enough knowledge on the matrix diffusion in weakly unaltered rocks (macroscopically unaltered rocks). Since the macroscopically altered granitic rocks in Japan are likely to be affected by deuteric alteration due to hydrothermal flu resulting from crystallization of granitic magma, it is important to understand the effect of deuteric alteration on the matrix diffusion. Therefore, detailed observations were carried out to clarify the effects of deuteric alteration focused on the macroscopically unaltered granite sampled from 300 m and 500 m below ground levels at the Mizunami Underground Research Laboratory, central Japan. The results provide that the micropores are selectively formed in plagioclases due to deuteric alteration and they have the potential of acting as matrix diffusion paths. This is indicating the possibility that deuteric alteration can retard the mass transport in crystalline rocks in Japan. That plays a significant role in enforcing the barrier function of crystalline rocks. (author)

  5. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    Science.gov (United States)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  6. Organic compositions of lacustrine source rocks in Jiyang super-depression and its implication to petroleum geology

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The compositions of organic matter in four immature source rocks from Tertiary strata of Jiyang super-depression, the most typical continental rift subsidence basin in East China, have been studied by different extracting methods with CHCl3, MAC and CS2/NMP, respectively. The results suggest that there are great differences among the chemical compositions of organic matter in the source rocks derived from different depositional environments. About 79% of all the organic matter exists by non- covalent bond in the Es4 source rocks which were deposited under the saline lacustrine, indicating that its organic matter is not the real kerogen, but mainly composed of soluble organic matter which is easy to generate hydrocarbon at lower temperature. This is why the immature oils were derived from Es4 source rocks in Dongying depression. In contrast, around 60% of organic matter exists by covalent bond in Es3 source rocks which were deposited under the deep brackish-fresh lacustrine, showing that Es3 source rocks are mainly composed of kerogen producing mature hydrocarbon at higher temperature. The thermal simulation experiments, upon the remaining solid source rocks which were sequentially extracted by the three solvents, have been carried out. The chloroform extracts from the simulation product have been compared with the other three solvent extracts gained at room temperature. It is obvious that remarkable odd/even predominance (OEP) is mainly the characteristic of soluble organic matter; phytane mostly exists in the soluble organic matter by means of non-covalent bonds and characteristics of soluble organic matter are similar to these in immature oils produced in Jiyang super-depression.

  7. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  8. Geology, mineralogy and ore fluid characteristics of the Masjed Daghi gold bearing veins system, NW Iran

    Directory of Open Access Journals (Sweden)

    Susan Ebrahimi

    2017-11-01

    Full Text Available Introduction The Masjed- Daghi gold deposit lies in an area of widespread Cenozoic volcanic and plutonic rocks at the intersection of the Alborz- Azarbaijan and Urumieh- Dokhtar belts. The area was covered by a detailed exploration program, including geological maps at 1:1,000 scales (~8 km², several hundred meters of trenches and systematic sampling for Au, Ag, Pb, Zn, Cu, As, Hg analysis, and 16 diamond drill holes at a total of 1200 meters (Mohammadi et al, 2005. The vein type gold deposit in Masjed- Daghi is closely associated with a porphyry type Cu-Au deposit. Our study focuses on the gold bearing veins system in an attempt to understand the characteristics of ore fluids and mechanisms of ore formation, and to develop exploration criteria for Masjed Daghi and similar occurrences in Alborz and other Cenozoic magmatic assemblages in Iran. Materials and methods Various rock types, alteration assemblages and mineral parageneses were characterized by transmitting and reflected light microscopy, X-ray diffraction (XRD and electron microprobe analysis. Microprobe analyses were performed using a JEOL 8600 Superprobe electron microprobe at Saskatchewan University. Operating conditions were an accelerating voltage of 15 kV and a beam current of 50 nA. Representative samples from drill holes were selected for fluid inclusion studies. Fluid inclusion data were obtained using a fluid Inc. adapted USGS gas flow heating and freezing system at the Department of Geological Science at the University of Saskatchewan, Canada. To investigate the source of ore fluids, representative sulfidic samples from drill holes were selected for sulfur isotope studies. Isotopic analyses were performed using a Thermo Finnigan DeltaPlus at the G.G. Hatch Stable Isotope Laboratories, University of Ottawa. The standard error of analyses is less than ±0.1 per mil. Results Auriferous quartz veins in Masjed- Daghi are associated with porphyry style mineralization. Various

  9. Contribution To The Geology Of Basement Rocks In The South Western Desert Of Egypt

    International Nuclear Information System (INIS)

    Sadek, M.F.; Khyamy, A.A.

    2003-01-01

    Three major Precambrian basement inliers are exposed in the South Western Desert of Egypt between Long. 29 degree E and the River Nile within the Uweinat-Bir Safsaf-Aswan E-W uplift system. These are Bir Safsaf, Gabal EI-Asr and Gabal Umm Shaghir areas. Smaller outcrops include Gabal EI-Gara El-Hamra and Gabal El-Gara EI-Soda, Gabal Siri, GabaI EI-Fantas and Aswan-Kalabsha area as well as the scattered outcrops around Darb El-Arbain road. Band ratios 5/7, 5/1, 4 of Landsat TM images were applied to delineate the borders, the lithologic units and structural features of low relief basement outcrops within the surrounding flat lying sedimentary rocks and sand plains. These basement rocks comprise ortho gneisses (assumed by many authors as related to old continent pre Pan-African rocks), G 1 tonalite-granodiorite, and G2 monzogranite-alkali feldspar granite intruded by variable dykes. The boundaries between the basement exposures and the sedimentary rocks are marked by nonconformity surfaces or sets of faults. Both basement and sedimentary rocks are intruded by Mesozoic syenite-G3 granites, rhyolite, trachytic plugs and Upper Cretaceous to Tertiary basalts. The basement exposures are structurally controlled by major E- W fault systems. Their vertical uplifting is overprinted by folding the overlying sedimentary rocks. This study revealed that, the different basement exposures in the SE of the Western Desert of Egypt are similar in appearance and field relations to the Pan-African basement rocks extending towards the east of the River Nile and exposed everywhere in the Eastern Desert of Egypt

  10. Geological and geotechnical properties of the medieval rock hewn churches of Lalibela, Northern Ethiopia

    Science.gov (United States)

    Asrat, Asfawossen; Ayallew, Yodit

    2011-01-01

    Lalibela is a medieval settlement in Northern Ethiopia famous for its 11 beautifully carved rock hewn churches, registered as World Heritage Site in 1978. The rock hewn churches are grouped into three based on their proximity: the Bete Medhane Alem (Church of the Holy Saviour), Bete Gabriel-Rufael (Church of St. Gabriel-Rafael) and Bete Giorgis (Church of St. George) groups. The churches are carved out of a single, massive scoriaceous basalt hill which was deposited along an East-West extending palaeovalley in the Oligo-Miocene Trap basalt of the northwestern Ethiopian plateau. The Rock Mass Rating (RMR) classification scheme was used to classify the rock mass (assuming each church as a separate rock mass) based on their uniaxial compressive strength and the spacing and conditions of discontinuities. Though most of the churches are hewn from medium to high strength rock mass, discontinuities make them vulnerable to other deteriorating agents mainly weathering, and water infiltration. Most of the rock hewn churches are affected by pre-carving cooling joints and bedding plane discontinuities, and by mostly but not necessarily post-carving tectonic and seismic induced cracks and fractures. Material loss due to deep weathering triggered by rain water infiltration and uncontrolled groundwater seepage affects most of the churches, particularly the Bete Merqorios (Church of St. Mark) and Bete Aba Libanos (Church of Father Libanos) churches. The scoriaceous basalt which is porous and permeable allows easy passage of water while the underlying basalt is impermeable, increasing the residence time of water in the porous material, causing deep weathering and subsequent loss of material in some of the churches and adjoining courtyards.

  11. Geology, geochemistry, age and tectonic setting of the Gore-Gambella plutonic rocks, western Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Alemayehu, T.A.

    1989-01-01

    In transect across the Birbir and Baro domains of western Ethiopia, distinct granitoid suites are recognized on the basis of their field relations, petrology, chemical features and age. The Baro Domain consists of migmatitic, upper amphibolite facies gneisses and metaleucogranites. The Birbir Domain consists of lower amphibolite facies rocks with abundant intrusive and meta-intrusive rocks of mafic and intermediate composition. A ductile, transcurrent fault system, the Birbir Shear Zone, traverses the Birbir Domain. Kinematic indicators such as disrupted dykes and sills within the shear zone suggest major dextral movement which was succeeded by sinistral movement during its final stage. The pre- to syn-kinematic intrusives within the Birbir Domain are metamorphosed and mylonitized to variable degrees. Geochemical and isotopic data from early plutonic units in the Birbir Domain reflect arc-type igneous activity; late- to post-kinematic plutons are more alkalic and of intraplate character. U-Pb zircon and Rb-Sr whole-rock isochron dates show plutonic activity between 830 and 540 Ma. A whole-rock Rb-Sr date of 760 Ma from a pre- to syn-kinematic pluton coincides with the age of low-grade metamorphism of arc-related rocks of the Red Sea Hills of NE Africa and the Jeddah terrane of Arabia. The Birbir Domain is a southward extension of the Pan-African crust of NE Africa and Arabia. The Birbir shear zone indicates a tectonically active continental margin along which magmatic arc rocks were accreted. The Baro Domain is interpreted as a reactivated pre-Pan-African continental margin linked to the Mozambique Belt of east Africa. A subduction model, involving closure of an ocean basin, is proposed for the evolution of rocks of the Birbir Domain.

  12. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 18. Facility construction feasibility and costs by rock type

    International Nuclear Information System (INIS)

    1978-04-01

    The results of a study that compared the general engineering feasibility and unit costs associated with sinking shafts and mining storage rooms in the four rock types (salt, granite, shale, basalt) are presented in this volume. The report includes a discussion of the general effects of rock characteristics on shaft and mine design, the application of these design considerations to the specific designs developed for the Draft GEIS, shaft and mine construction techniques, and the unit cost comparison. The repository designs upon which this comparison was based are presented in other volumes of this series

  13. Geological disposal of high-level radioactive waste. Conceptual repository design in hard rock

    International Nuclear Information System (INIS)

    Beale, H.; Griffin, J.R.; Davies, J.W.; Burton, W.R.

    1980-01-01

    The paper gives an interim report on UK studies on possible designs for a repository for vitrified high-level radioactive waste in crystalline rock. The properties of the waste are described and general technical considerations of consequences of disposal in the rock. As an illustration, two basic designs are described associated with pre-cooling in an intermediate store. Firstly, a 'wet repository' is outlined wherein canisters are sealed up closely in boreholes in the rock in regions of low groundwater movement. Secondly, a 'dry repository' above sea level is described where emplacement in tunnels is followed by a loose backfill containing activity absorbers. A connection to deep permeable strata maintains water levels below emplacement positions. Variants on the two basic schemes (tunnel emplacement in a wet repository and in situ cooling) are also assessed. It is concluded that all designs discussed produce a size of repository feasible for construction in the UK. Further, (1) a working figure of 100 0 C per maximum rock temperature is not exceeded, (2) no insuperable engineering problems have so far been found, though rock mechanics studies are at an early stage; (3) it is not possible to discount the escape of a few long-lived 'man-made' isotopes. A minute increment to natural activity in the biosphere may occur from traces of uranium and its decay chains; (4) at this stage, all the designs are still possible candidates for the construction of a UK repository. (author)

  14. Extraction of microseismic waveforms characteristics prior to rock burst using Hilbert-Huang transform

    Science.gov (United States)

    Li, Xuelong; Li, Zhonghui; Wang, Enyuan; Feng, Junjun; Chen, Liang; Li, Nan; Kong, Xiangguo

    2016-09-01

    This study provides a new research idea concerning rock burst prediction. The characteristics of microseismic (MS) waveforms prior to and during the rock burst were studied through the Hilbert-Huang transform (HHT). In order to demonstrate the advantage of the MS features extraction based on HHT, the conventional analysis method (Fourier transform) was also used to make a comparison. The results show that HHT is simple and reliable, and could extract in-depth information about the characteristics of MS waveforms. About 10 days prior to the rock burst, the main frequency of MS waveforms transforms from the high-frequency to low-frequency. What's more, the waveforms energy also presents accumulation characteristic. Based on our study results, it can be concluded that the MS signals analysis through HHT could provide valuable information about the coal or rock deformation and fracture.

  15. Experimental studies on the effects of bolt parameters on the bearing characteristics of reinforced rock.

    Science.gov (United States)

    Cheng, Liang; Zhang, Yidong; Ji, Ming; Zhang, Kai; Zhang, Minglei

    2016-01-01

    Roadways supported by bolts contain support structures that are built into the rock surrounding the roadway, referred to as reinforced rocks in this paper. Using physical model simulation, the paper investigates the bearing characteristics of the reinforced rock under different bolt parameters with incrementally increased load. The experimental results show that the stress at the measurement point inside the structure varies with the kinetic pressure. The stress increases slowly as the load is initially applied, displays accelerated growth in the middle of the loading application, and decreases or remains constant in the later stage of the loading application. The change in displacement of the surrounding rock exhibits the following characteristics: a slow increase when the load is first applied, accelerated growth in the middle stage, and violent growth in the later stage. There is a good correlation between the change in the measured stress and the change in the surrounding rock displacement. Increasing the density of the bolt support and the length and diameter of the bolt improves the load-bearing performance of the reinforced rock, including its strength, internal peak stress, and residual stress. Bolting improves the internal structure of the surrounding rocks, and the deterioration of the surrounding rock decreases with the distance between the bolt supports.

  16. Release consequence analysis for a hypothetical geologic radioactive waste repository in hard rock

    International Nuclear Information System (INIS)

    1979-12-01

    This report makes an evaluation of the long-term behaviour of the wastes placed in a hard rock repository. Impacts were analyzed for the seven reference fuel cycles of WG 7. The reference repository for this study is for granitic rock or gneiss as the host rock. The descriptions of waste packages and repository facilities used in this study represent only one of many possible designs based on the multiple barriers concept. The repository's size is based on a nuclear economy producing 100 gigawatts of electricity per year for 1 year. The objective of the modeling efforts presented in this study is to predict the rate of transport of radioactive contaminants from the repository through the geosphere to the biosphere and thus determine an estimate of the potential dose to humans so that the release consequence impacts of the various fuel cycles can be compared. Currently available hydrologic, leach, transport, and dose models were used in this study

  17. Rock fracture dynamics research at AECL's Underground Research Laboratory: applications to geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.P. [Univ. of Toronto, Toronto, ON (Canada); Haycox, J.R. [Applied Seismology Consultants Limited, Shrewsbury, Shropshire (United Kingdom); Martino, J. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    Studies of rock fracture dynamics at AECL's Underground Research Laboratory (URL) have helped to provide a fundamental understanding of how crystalline rock responds to stresses induced from excavation, pressurization and temperature changes. The data acquired continue to provide insights into how a facility for the future geological disposal of radioactive waste could be engineered. Research into microseismic (MS), acoustic emission (AE), and ultrasonic velocity measurements has been performed on the full-scale sealed, pressurized, and heated horizontal elliptical tunnel at the Tunnel Sealing Experiment (TSX). The continuous monitoring of the experiment for 8 years provides a unique dataset for the understanding of the medium-term performance of an engineered disposal facility. This paper summarizes the results, interpretations and key findings of the experiment paying particular focus to the heating and cooling/depressurization of the chamber. Initial drilling of the tunnel and bulkheads causes microfracturing around the tunnel, mapped by MS and AEs, and is used as a benchmark for fracturing representing the excavated damaged zone (EDZ). There is no further extension to the volume during pressurization or heating of the tunnel suggesting an increase in crack density and coalescence of cracks rather than extension into unfractured rock. The dominant structure within the seismic cloud has been investigated using a statistical approach applying the three-point method. MS events in the roof exhibit a dominant pattern of sub-horizontal and shallow-dipping well defined planar features, but during cooling and depressurization a 45 degree dip normal to the tunnel axis is observed, which may be caused by movement in the rock-concrete interface due to differential cooling of the bulkhead and host rock. Cooling and depressurization of the TSX have not led to a significant increase in the number of MS or AE events. Ultrasonic results suggest the rock gets even stiffer

  18. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step...... to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection...

  19. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  20. The United States Polar Rock Repository: A geological resource for the Earth science community

    Science.gov (United States)

    Grunow, Annie M.; Elliot, David H.; Codispoti, Julie E.

    2007-01-01

    The United States Polar Rock Repository (USPRR) is a U. S. national facility designed for the permanent curatorial preservation of rock samples, along with associated materials such as field notes, annotated air photos and maps, raw analytic data, paleomagnetic cores, ground rock and mineral residues, thin sections, and microfossil mounts, microslides and residues from Polar areas. This facility was established by the Office of Polar Programs at the U. S. National Science Foundation (NSF) to minimize redundant sample collecting, and also because the extreme cold and hazardous field conditions make fieldwork costly and difficult. The repository provides, along with an on-line database of sample information, an essential resource for proposal preparation, pilot studies and other sample based research that should make fieldwork more efficient and effective. This latter aspect should reduce the environmental impact of conducting research in sensitive Polar Regions. The USPRR also provides samples for educational outreach. Rock samples may be borrowed for research or educational purposes as well as for museum exhibits.

  1. Study of an optimization approach for a disposal tunnel layout, taking into account the geological environment with spatially heterogeneous characteristics

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Toida, Masaru; Yanagizawa, Koichi

    2009-01-01

    The geological environment has spatially heterogeneous characteristics with varied host rock types, fractures and so on. In this case the generic disposal tunnel layout, which has been designed by JNC, is not the most suitable for HLW disposal in Japan. The existence of spatially heterogeneous characteristics means that in the repository region there exist sub-regions that are more favourable from the perspective of long-term safety and ones that are less favourable. In order that the spatially heterogeneous environment itself may be utilized most effectively as a natural barrier system, an alternative design of disposal tunnel layout is required. Focusing on the geological environment with spatially heterogeneous characteristics, the authors have developed an alternative design of disposal tunnel layout. The alternative design adopts an optimization approach using a variable disposal tunnel layout. The optimization approach minimizes the number of locations where major water-conducting fractures are intersected, and maximizes the number of emplacement locations for waste packages. This paper will outline the variable disposal tunnel layout and its applicability.

  2. Advances in Geologic Disposal System Modeling and Application to Crystalline Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stein, Emily R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hammond, Glenn Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fascitelli, D. G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-22

    The Used Fuel Disposition Campaign (UFDC) of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of used nuclear fuel (UNF) and high-level nuclear waste (HLW). Two of the high priorities for UFDC disposal R&D are design concept development and disposal system modeling (DOE 2011). These priorities are directly addressed in the UFDC Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, clay, and deep borehole disposal). This report describes specific GDSA activities in fiscal year 2016 (FY 2016) toward the development of the enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. The GDSA framework employs the PFLOTRAN thermal-hydrologic-chemical multi-physics code and the Dakota uncertainty sampling and propagation code. Each code is designed for massively-parallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

  3. Abundances of chemical elements in granitoids of different geological ages and their characteristics in China

    Directory of Open Access Journals (Sweden)

    Changyi Shi

    2011-04-01

    Full Text Available Actual granitoid analytical data of 767 composited samples are presented here. The data source is 6080 samples collected mainly from 750 large- to middle-sized granitoid bodies across China. Data from the composited samples, which includes that of 70 elements, is analyzed according to geological age — Archeozoic (Ar, Proterozoic (Pt, Eopaleozoic (Pz1, Neopaleozoic (Pz2, Mesozoic (Mz, and Cenozoic (Cz — and three major compositional varieties, e.g. alkali-feldspar granite, syenogranite and adamellite. Petrochemical parameters, trace-element content and rare-earth element (REE distributions of the different rock types and geological ages are characterized, and change tendencies through Archean to Cenozoic time are recorded. The comprehensive analytical data presented here has not been previously published. This significant data set can be used as fundamental information in studies of basic China geology, magma petrogenesis, ore exploration and geochemistry.

  4. Characteristics of ornamental rocks waste: application of mechanochemical concepts

    International Nuclear Information System (INIS)

    Santos, J. dos; Galembeck, F.

    2016-01-01

    Processing of ornamental rocks produces up to 80% weight residues which become an environmental problem. In this work, we analyzed residual powders from cutting and crushing granite Cinza Corumba, to study the influence of mechanical processes in the properties of the residues. The powders were characterized by X-ray diffraction and fluorescence, infrared spectroscopy, scanning electron microscopy, surface area determination and adsorption of methylene blue. The same elements and minerals are found in both powders but the powders formed during crushing contain lubricating oil residues, from the crusher. Particle shapes of the crushed powder (surface area 2.85 m2/g) are more irregular than cut powder (surface area 1.98 m2/g). Adsorption of methylene blue is lighter in the crushed powder than in the cutting powder. Thus, the powders analyzed have different surface properties. (author)

  5. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage.

    Science.gov (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu

    2018-03-20

    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.

  6. Regional geologic characteristics of uranium ores and assessment of metallogenetic potentials in the central part of Eastern Liaoning Province

    International Nuclear Information System (INIS)

    Wang Wenguang; Tao Quan; Zhang Shouben

    1997-10-01

    Regional geologic characteristics, metallogenetic conditions and prospects of uranium ores in the central part of the Eastern Liaoning Province of North China is studied systematically. It demonstrates that the Archaean basement of the study area consists of a special type of granite-greenstone belts in China. It is called the granite-greenstone belts of the Liaoning-model, in which the granitic rocks are mainly migmatitic granite and granite-gneiss of migmatitic genesis. The greenstone belts in this area have undergone strong metamorphism. Large amounts of Precambrian geochronological studies have been made with U-Pb isotopic method on zircon; and a new Precambrian geologic time scale has been established. It is also proved that multistage activation of the Early Precambrian basement and the proto-platform took place in Early Proterozoic. Emphases are laid on uranium and thorium abundances and their variations as well as primary uranium contents of rocks in the granite-greenstone terrain and those of the Lower Proterozoic. At the same time, uraninite as accessory mineral in granitic rocks is found to exist more or less. Early Precambrian strata and many kinds of mineral deposits occurring in the strata are in origin chiefly of syngenetic hot brine sedimentation and of submarine extrusive gas-hydrothermal sedimentation superimposed by metamorphism. Metallogenetic features and models of various types of uranium deposits are studied emphatically and compared with similar large deposits abroad. In addition, overall synthetical appraisals are made for this area; and on this basis, prospecting directions and favourable sections of uranium metallization are suggested. (4 refs., 4 tabs.)

  7. Evaluation of structural behavior, geological and hydrogeological characteristics

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kim, Sun Hoon; Kim, Dae Hong; Choi, Kyu Sup

    1992-02-01

    In order to understand the behavior of an underground structure properly, this report includes the study on the structural behavior of rock masses surrounding underground openings considering the effect of excavation. Before analyzing the underground structure, the followings are studied: initial stress distribution before excavation, stress release and redistribution due to the sequential excavation, comparison of analysis methods, discussions on numerical simulation techniques for the sequential excavation and an numerical analysis modeling. The underground structure in then analyzed using the finite element and distinct element methods of analysis considering the effect of sequential excavation, Based on the results of the analysis, the followings are discussed: shape of the opening, distance between openings, method and sequence of excavation, and structural reinforcement. (Author)

  8. Geology of the plutonic basement rocks of Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.

    2004-01-01

    Exposures of basement rocks on Stewart Island provide a c. 70 km long by 50 km wide map of part of the Median Batholith that spans the margin of the Western Province. Because of their distance from the present plate boundary, these rocks are relatively unaffected by Cenozoic tectonism, allowing examination of unmodified Carboniferous-Cretaceous relationships within the Median Batholith. Thirty individual plutons (>c.20 km 2 ) have been mapped along with numerous relatively small intrusions ( 2 ). The large plutons form 85-90% of the Median Batholith on Stewart Island while the many smaller intrusions comprise 10-15%, mostly in the north. Lithologies include: biotite ± minor hornblende granodiorite, granite and leucogranite with accessory titanite - magmatic epidote and allanite (c. 50%); biotite ± muscovite ± garnet granite with S-type affinities (c. 10%); alkaline quartz monzonite, granite, and alkali feldspar granite with rare aegirine and blue-green amphibole (c. 3%); quartz monzodiorite and diorite with hornblende > biotite (c. 23%); gabbro and anorthosite (c. 12%) and ultramafic rocks (c. 2%). U-Pb zircon and monazite dating indicates that c. 12% of these plutonic rocks were emplaced during the Carboniferous between 345 and 290 Ma, c. 20% in the Early-Middle Jurassic at c. 170-165 Ma, c. 30% in the latest Jurassic to earliest Cretaceous between 152 and 128 Ma, and c. 38% in the Early Cretaceous between 128 and 100 Ma. The distribution of Pegasus Group schists and peraluminous granitoid rocks indicates that the northern limit of extensive early Paleozoic Western Province basement is located either within the Gutter Shear Zone or at the Escarpment Fault, 10-15 km south of the Freshwater Fault System previously thought to mark this boundary. Carboniferous and Middle Jurassic magmatism extended plutonic basement northwards as far as the Freshwater Fault System, while further magmatism during the latest Jurassic and earliest Cretaceous produced the basement

  9. Research on base rock mechanic characteristics of caverns for radioactive waste disposal

    International Nuclear Information System (INIS)

    Isei, Takehiro; Katsuyama, Kunihisa; Seto, Masahiro; Ogata, Yuji; Utagawa, Manabu

    1997-01-01

    It has been considered that underground space is mechanically stable as compared with on the ground, and superior for storing radioactive waste for long period. However, in order to utilize underground space for the place of radioactive waste disposal, its long term stability such as the aseismatic ability of base rocks must be ensured, and for this purpose, it is necessary to grasp the mechanical characteristics of the base rocks around caverns, and to advance the technology for measuring and evaluating minute deformation and earth pressure change. In this research, the study on the fracture mechanics characteristics of base rocks and the development of the technology for measuring long terms stress change of base rocks were carried out. In this research, what degree the memory of past stress is maintained by rocks was presumed by measuring AE and strain when stress was applied to rock test pieces. The rocks tested were tuff, sandstone and granite. The experimental method and the experimental results of the prestress by AE method and DRA are reported. (K.I.)

  10. Research on Acoustic Emission and Electromagnetic Emission Characteristics of Rock Fragmentation at Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Fujun Zhao

    2018-01-01

    Full Text Available The relationships among the generation of acoustic emission, electromagnetic emission, and the fracture stress of rock grain are investigated, which are based on the mechanism of acoustic emission and electromagnetic emission produced in the process of indenting rock. Based on the relationships, the influence of loading rate on the characteristics of acoustic emission and electromagnetic emission of rock fragmentation is further discussed. Experiment on rock braking was carried out with three loading rates of 0.001 mm/s, 0.01 mm/s, and 0.1 mm/s. The results show that the phenomenon of acoustic emission and electromagnetic emission is produced during the process of loading and breaking rock. The wave forms of the two signals and the curve of the cutter indenting load show jumping characteristics. Both curves have good agreement with each other. With the increase of loading rate, the acoustic emission and electromagnetic emission signals are enhanced. Through analysis, it is found that the peak count rate, the energy rate of acoustic emission, the peak intensity, the number of pulses of the electromagnetic emission, and the loading rate have a positive correlation with each other. The experimental results agree with the theoretical analysis. The proposed studies can lead to an in-depth understanding of the rock fragmentation mechanism and help to prevent rock dynamic disasters.

  11. The geological characteristics during the quaternary period around Japan island

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Shigeru [Chuo Kaihatsu Corp., Enterprises Promotion Bureau, Tokyo (Japan); Sakamoto, Yoshiaki; Ogawa, Hiromichi; Nakayama, Shinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    Radioactive wastes arising from radioisotope facilities and nuclear research facilities should be disposed of in the surface of the earth, the shallow underground, the adequate depth and the deep underground according to radioactivity concentrations, and should be managed during several hundreds years. The earth scientific phenomena observed in Japan island at present occurred continuously from the past, and the same phenomena at the future should occur in the similar factor. Therefore, for the purpose to get the fundamental data for the selection of disposal site, this report reviewed on the genesis and classification of the sediments, earth scientific phenomena observed in Japan island and the feature of each place (10 districts) concerning to the Quaternary period in the newest geological time unit. (author)

  12. Mineralogy, geologic and physico-chemical characteristics of uranotitanate formation

    International Nuclear Information System (INIS)

    Korolev, K.G.; Miguta, A.K.; Polyakova, V.M.; Rumyantseva, G.V.

    1979-01-01

    Results of experimental and field study of varieties of brannerite and davidite are described. Special attention is paid to medium-low temperature variety of brannerite, which is the component of the majority of known uranotitanate ores. Natural concentrations of uranium are characterized: geologic peculiarities of their localization, mineral paragenesis, periore alterations. Syntheses of brannerite and davidite have been realized for the first time under hydrothermal conditions. Complex multiphase products of uranium titanate transformation, decomposition reactions of brannerite into constituent oxides in particular. Peculiarities of uranium and titanium migration in aqueous solutions at high temperatures and pressures are discussed. The processes of brannerite and davidite formation in hydrothermal conditions and from the melts are considered. Application of thermodynamic calculations of equilibria to the reactions of solid phase formation out of diluted ( -6 M) solutions and to the solid dispersoids in general is found to be erroneous as the formation of the latters is connected with kinetic phenomena

  13. Rock face stability analysis and 3D geological mapping in Yosemite Valley (California): new remote sensing methods

    Science.gov (United States)

    Matasci, Battista; Carrea, Dario; Jaboyedoff, Michel; Metzger, Richard; Stock, Greg; Putnam, Roger

    2013-04-01

    In Yosemite Valley rockfall hazard and risk are high due to the presence of tall, steep granitic cliffs and to the large number of visitors. The main information needed to assess rockfall hazard is the location of the most probable rockfall source areas and the establishment of the frequency of activity from these areas. Terrestrial Laser Scanning (TLS) has been widely deployed to collect very accurate point clouds, with point-to-point spacing smaller than 0.1 m. We conducted two series of TLS acquisitions of the main cliffs of Yosemite Valley in October 2010 and June 2012, using an Optech Ilris-LR scanner. This provided the necessary data to identify the main joint sets, perform spacing and trace length measurements, and calculate past rockfall volumes. Subsequently, we developed a methodology to carry out kinematic tests on the TLS point clouds, taking into account for each joint set the orientation, spacing and persistence measurements directly measured from the TLS data. The areas with the highest density of potential failure mechanisms are shown to be the most susceptible to rockfalls, demonstrating a link between high fracture density and rockfall susceptibility. The presence of surface parallel sheeting or exfoliation joints is widespread in the granitic faces of Yosemite Valley, contributing significantly to the occurrence of rockfalls. Thus, through TLS, sheeting joints have been mapped in 3D over wide areas to get valuable information about the depth, spacing, persistence and orientation of these joints. Several exfoliation sets can be identified and evaluated for their relevance in the development of rockslope instabilities and rockslab failures. Another important parameter that must be constrained to identify potential rockfall sources is rock type, as the fracturing pattern of a rock face varies according to rock type. Therefore, we have focused on the precise mapping of geologic limits on the basis of the intensity value associated with each point of

  14. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection....... The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales...... of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk....

  15. Geology of uranium vein deposits (including Schwartzwalder Mine) in Proterozoic metamorphic rocks, Front Range, Colorado

    International Nuclear Information System (INIS)

    Voto, R.H. de; Paschis, J.A.

    1980-01-01

    The Schwartzwalder uranium deposit is one of many uranium vein occurrences in the Lower Proterozoic metamorphic rocks of the Front Range, Colorado. The principal veins of significant uranium content occur marginal to the Colorado Mineral Belt; are localized by structural dilation zones, vein junctions, fault deflections or branching; and occur dominantly within or at the contact of certain preferred metamorphic-stratigraphic units, particularly the siliceous, garnetiferous gneisses, where these rock units are broken by faults and fractures associated with the north-northwest-trending throughgoing faults. Uranium at the Schwartzwalder mine occurs primarily as open-space brecciated vein filling along the steeply west-dipping Illinois vein and numerous east-dipping subsidiary veins where they cut preferred metamorphic host rocks that are tightly folded. Uraninite occurs with molybdenite, adularia, jordisite, ankerite, pyrite, base-metal sulphides, and calcite in vein-filling paragenetic sequence. Minor wall-rock alteration is mainly hematite alteration and bleaching. Vertical relief on the developed ore deposit is 900 metres and still open-ended at depth. No vertical zonation of alteration, vein mineralogy, density of the subsidiary veins, or ore grade has been detected. The Schwartzwalder uranium deposit is of substantial tonnage (greater than 10,000 metric tons of U 3 O 8 ) and grade (averaging 0.57% U 3 O 8 ). Structural mapping shows that the Illinois vein-fault is a Proterozoic structure. Discordant Proterozoic (suggested) and Laramide dates have been obtained from Schwartzwalder ore. The data suggest, therefore, a Proterozoic ancestry of this heretofore presumed Laramide (Late Cretaceous-Early Tertiary) hydrothermal uranium deposit. The authors suggest a polygenetic model for the origin of the Schwartzwalder uranium deposit

  16. Geological assessment of crystalline rock formations with a view to radioactive waste disposal

    International Nuclear Information System (INIS)

    Mather, J.D.

    1984-01-01

    Field work has been concentrated at the Altnabreac Research Site on north-east Scotland, where three deep boreholes to approximately 300 m and 24 shallow boreholes to approximately 40 m were drilled. The movement of groundwater within 300 m of the surface was investigated using a specially developed straddle packer system. Geochemical studies have demonstrated that most groundwater is dominated by recent recharge but one borehole yielded water with an age of around 10 4 years. Geophysical borehole logging has shown that the full wave train sonic logs and the acoustic logs show most promise for the assessment of crystalline rocks. In the laboratory the interaction of rocks and groundwater at the temperature/pressure conditions to be expected in a repository has established the geochemical environment to which waste canisters and backfill materials would be subjected. Other generic studies reported include the characterization of geotechnical properties of rocks at elevated temperatures and pressures, the development of a new cross-hole sinusoidal pressure test for the measurement of hydraulic properties and the use of thermal infra-red imagery to detect groundwater discharge zones

  17. Demonstration of nuclide migration phenomena in rock on high level irradiation waste geological disposal

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Okuyama, Yasuko; Takahashi, Manabu

    1997-01-01

    We have studied on main three theme. From study of material movement in rock-groundwater system in the area of high concentration of irradiative elements, the results proved that minerals with Fe 3+ and clay mineral were very important as mineral held nuclide, the existence of pyrite suggested uranium nuclei enrichment and the latter reduced circumstances, and nuclei movement and accumulation could be estimated from oxidation-reduction potential, kinds of dissolved ions and activity ratio. By study of evaluation of permeability in deep rock fissure system, each measurement method of transmissivity in the Transient Pulse method, the Oscillation test and the Flow Pump method was established. The effect of principle stress, confining pressure, pore water pressure and axial pressure on transmissivity could be determined in the limited level of stress. By study of nuclide migration phenomena and change of rock depend on fissure system, the relation between the degree of change and fissure system was investigated and alternation mineral was identified and it's formation conditions estimated. (S.Y.)

  18. Method and device for measuring formation characteristics of geological formations

    International Nuclear Information System (INIS)

    Antkiw, S.; Murphy, R.D.

    1981-01-01

    A well-logging system is described which uses a pulsed neutron source and which by combining measurements of gamma spectra and neutron characteristics enables such parameters as salinity, porosity, water saturation, lithology and schistosity to be registered directly. (JIW)

  19. Seismic and geological characteristics of the Gioia Tauro site

    International Nuclear Information System (INIS)

    Capocecera, P.; Carillo, A.; Fels, A.; Gorelli, V.; Iacurto, O.; Marzi, C.; Musmeci, F.; Paciello, A.; Vitiello, F.

    1990-01-01

    ENEA is developing some important projects for the design and installation of local seismic arrays. This research project, named 'the Gioia Tauro Project', covers design and installation of a local accelerometric network having special characteristics in the area where some earthquakes might occur in the next future. Aim of the network is to collect information on the variability of the ground motion characteristics both on the ground surface and at different depths of soft soil deposits. (author)

  20. Boom, Doom and Rocks - The Intersection of Physics, Video Games and Geology

    Science.gov (United States)

    McBride, J. H.; Keach, R. W.

    2008-12-01

    Geophysics is a field that incorporates the rigor of physics with the field methods of geology. The onset and rapid development of the computer games that students play bring new hardware and software technologies that significantly improve our understanding and research capabilities. Together they provide unique insights to the subsurface of the earth in ways only imagined just a few short years ago. 3D geological visualization has become an integral part of many petroleum industry exploration efforts. This technology is now being extended to increasing numbers of universities through grants from software vendors. This talk will explore 3D visualization techniques and how they can be used for both teaching and research. Come see examples of 3D geophysical techniques used to: image the geology of ancient river systems off the coast of Brazil and in the Uinta Basin of Utah, guide archaeological excavations on the side of Mt. Vesuvius, Italy, and to study how volcanoes were formed off the coast of New Zealand.

  1. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    Directory of Open Access Journals (Sweden)

    Lin Li

    2013-08-01

    Full Text Available Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  2. Experimental simulation of the geological storage of CO2: particular study of the interfaces between well cement, cap-rock and reservoir rock

    International Nuclear Information System (INIS)

    Jobard, Emmanuel

    2013-01-01

    The geological storage of the CO 2 is envisaged to mitigate the anthropogenic greenhouse gas emissions in the short term. CO 2 is trapped from big emitters and is directly injected into a reservoir rock (mainly in deep salty aquifers, depleted hydrocarbon oil fields or unexploited charcoal lodes) located at more than 800 m deep. In the framework of the CO 2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO 2 leakage from the injection well. The experimental simulations are performed under pressure and temperature conditions of the geological storage (100 bar and from 80 to 100 deg. C). The first experimental model, called COTAGES (for 'Colonne Thermoregulee A Grains pour Gaz a Effet de Serre') allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25 deg. C in a hotter reservoir (submitted to the geothermal gradient). This device composed of an aqueous saline solution (4 g.L -1 of NaCl), crushed rock (Lavoux limestone or Callovo-Oxfordian argillite) and gas (N 2 or CO 2 ) allows demonstrating an important matter transfer from the cold area (30 deg. C) toward the hot area (100 deg. C). The observed dissolution/precipitation phenomena leading to changes of the petro-physical rocks properties occur in presence of N 2 or CO 2 but are significantly amplified by the presence of CO 2 . Concerning the experiments carried out with Lavoux limestone, the dissolution in the cold zone causes a raise of porosity of about 2% (initial porosity of 8%) due to the formation of about 500 pores/mm 2 with a size ranging between 10 and 100 μm 2 . The precipitation in the hot zone forms a micro-calcite fringe on the external part of the grains and fills the intergrain porosity

  3. Geologic framework and hydrogeologic characteristics of the Glen Rose limestone, Camp Stanley Storage Activity, Bexar County, Texas

    Science.gov (United States)

    Clark, Allan K.

    2004-01-01

    The Trinity aquifer is a regional water source in the Hill Country of south-central Texas that supplies water for agriculture, commercial, domestic, and stock purposes. Rocks of the Glen Rose Limestone, which compose the upper zone and upper part of the middle zone of the Trinity aquifer, crop out at the Camp Stanley Storage Activity (CSSA), a U.S. Army weapons and munitions supply, maintenance, and storage facility in northern Bexar County (San Antonio area) (fig. 1). On its northeastern, eastern, and southern boundaries, the CSSA abuts the Camp Bullis Training Site, a U.S. Army field training site for military and Federal government agencies. During 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army, studied the outcropping Glen Rose Limestone at the CSSA and immediately adjacent area (Camp Stanley study area, fig. 1) to identify and map the hydrogeologic subdivisions and faults of the Glen Rose Limestone at the facility. The results of the study are intended to help resource managers improve their understanding of the distribution of porosity and permeability of the outcropping rocks, and thus the conditions for recharge and the potential for contaminants to enter the Glen Rose Limestone. This study followed a similar study done by the USGS at Camp Bullis (Clark, 2003). The purpose of this report is to present the geologic framework and hydrogeologic characteristics of the Glen Rose Limestone in the study area. The hydrogeologic nomenclature follows that introduced by Clark (2003) for the outcropping Glen Rose Limestone at Camp Bullis in which the upper member of the Glen Rose Limestone (hereinafter, upper Glen Rose Limestone), which is coincident with the upper zone of the Trinity aquifer, is divided into five intervals on the basis of observed lithologic and hydrogeologic properties. An outcrop map, two generalized sections, related illustrations, and a table summarize the description of the framework and distribution of characteristics.

  4. Subsurface geology, geochemistry, and water flow at a Rock Characterisation Facility (RCF) at Longlands Farm. Proof of evidence

    International Nuclear Information System (INIS)

    Haszeldine, R.S.

    1996-01-01

    Proof of Evidence is given by an expert witness on behalf of Greenpeace Ltd as part of their submission to a Planning Inquiry in 1995 hearing the application of UK Nirex Ltd for permission to construct an underground Rock Characterisation Facility (RCF) at a site near Sellafield. The RCF is part of an investigation by Nirex into a suitable site for the disposal of radioactive waste. The evidence covers: a description of the general physical geology of the site; the contrast between Nirex's approach to this site investigation and those of hydrocarbon exploration; the possibility of tectonic movements in the region which are likely to affect subsurface water flows within the repository lifetime and could produce additional permeable water flow pathways through the RCF; an interpretation of Nirex data which indicates that the RCF site is on an axis of maximum flow in the subsurface; regional permeability between boreholes in the underlying fractured rock; recharge of subsurface waters during glaciation; doubts about the age-dating of subsurface water; the complex and sensitive hydrogeological setting of the site in which water flow directions are upwards and could be rapid; expert dissent relating to Nirex's assessment of regional geochemical processes affecting radionuclide release; disagreement in Nirex's assessment of the present groundwater chemistry which may influence the durability of a repository. The construction of the RCF could actually impede the resolution of some of these issues and it is concluded that, although the principle of a rock laboratory might be supported, the Nirex approach is fundamentally flawed. (18 figures; 20 references). (UK)

  5. Characteristics of mesozoic magmatic rocks in western Zhejiang and their relation with uranium mineralization

    International Nuclear Information System (INIS)

    Zhou Jiazhi

    2000-01-01

    The author summarizes characteristics of Mesozoic (Yangshanian Period) acid-intermediate volcanics, sub-volcanics and basic intrusive from aspects of formation time of rock series, petrogenic sequence, chemical composition, rock -controlling factors and petrogenic environments. It is suggested that these rocks were originated from different source areas of crust and mantle. Based on the time-space relation between different types uranium deposits and magmatic rocks, the author proposes that: the earlier stage (Earlier Cretaceous) U-hematite ores were originated from acid volcanic magmatism of crustal source, but the later stage (Late Cretaceous) pitchblende-polymetallic sulfide and pitchblende-purple fluorite rich ores were derived from basic magmatism of mantle source. Finally, the author proposes prospecting criteria of the above two types of uranium deposits

  6. U.S. Geological Survey research in Handcart Gulch, Colorado—An alpine watershed with natural acid-rock drainage

    Science.gov (United States)

    Manning, Andrew H.; Caine, Jonathan S.; Verplanck, Philip L.; Bove, Dana J.; Kahn, Katherine G.

    2009-01-01

    Handcart Gulch is an alpine watershed along the Continental Divide in the Colorado Rocky Mountain Front Range. It contains an unmined mineral deposit typical of many hydrothermal mineral deposits in the intermountain west, composed primarily of pyrite with trace metals including copper and molybdenum. Springs and the trunk stream have a natural pH value of 3 to 4. The U.S. Geological Survey began integrated research activities at the site in 2003 with the objective of better understanding geologic, geochemical, and hydrologic controls on naturally occurring acid-rock drainage in alpine watersheds. Characterizing the role of groundwater was of particular interest because mountain watersheds containing metallic mineral deposits are often underlain by complexly deformed crystalline rocks in which groundwater flow is poorly understood. Site infrastructure currently includes 4 deep monitoring wells high in the watershed (300– 1,200 ft deep), 4 bedrock (100–170 ft deep) and 5 shallow (10–30 ft deep) monitoring wells along the trunk stream, a stream gage, and a meteorological station. Work to date at the site includes: geologic mapping and structural analysis; surface sample and drill core mineralogic characterization; geophysical borehole logging; aquifer testing; monitoring of groundwater hydraulic heads and streamflows; a stream tracer dilution study; repeated sampling of surface and groundwater for geochemical analyses, including major and trace elements, several isotopes, and groundwater age dating; and construction of groundwater flow models. The unique dataset collected at Handcart Gulch has yielded several important findings about bedrock groundwater flow at the site. Most importantly, we find that bedrock bulk permeability is nontrivial and that bedrock groundwater apparently constitutes a substantial fraction of the hydrologic budget. This means that bedrock groundwater commonly may be an underappreciated component of the hydrologic system in studies of

  7. Creation and Plan of an Underground Geologic Radioactive Waste Isolation Facility at the Nizhnekansky Rock Massif in Russia

    International Nuclear Information System (INIS)

    Gupalo, T A; Kudinov, K G; Jardine, L J; Williams, J

    2004-01-01

    This joint geologic repository project in Russia was initiated in May 2002 between the United States (U.S.) International Science and Technology Center (ISTC) and the Federal State Unitary Enterprise ''All-Russian Research and Design Institute of Production Engineering'' (VNIPIPT). The project (ISTC Partner Project 2377) is funded by the U.S. Department of Energy Office of Civilian Radioactive Waste Management (DOE-RW) for a period of 2-1/2 years. ISTC project activities were integrated into other ongoing geologic repository site characterization activities near the Mining and Chemical Combine (MCC K-26) site. This allowed the more rapid development of a plan for an underground research laboratory, including underground design and layouts. It will not be possible to make a final choice between the extensively studied Verkhne-Itatski site or the Yeniseiski site for construction of the underground laboratory during the project time frame because additional data are needed. Several new sources of data will become available in the next few years to help select a final site. Studies will be conducted at the 1-km deep borehole at the Yeniseisky site where drilling started in 2004. And in 2007, after the scheduled shutdown of the last operating reactor at the MCC K-26 site, data will be collected from the rock massif as the gneiss rock cools, and the cool-down responses modeled. After the underground laboratory is constructed, the data collected and analyzed, this will provide the definitive evidence regarding the safety of the proposed geologic isolation facilities for radioactive wastes (RW). This data will be especially valuable because they will be collected at the same site where the wastes will be subsequently placed, rather than on hypothetical input data only. Including the operating costs for 10 to 15 years after construction, the cost estimate for the laboratory is $50M. With additional funding from non-ISTC sources, it will be possible to complete this

  8. Geologic environmental study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ({sup 1}8O, {sup 2}H, {sup 1}3C, {sup 3}4S, {sup 8}7Sr, {sup 1}5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  9. Geologic environmental study

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yoon; Koh, Young Kown; Chun, Kwan Sik; Kim, Jhin Wung

    2000-05-01

    The geoscience research works are focused on the production of geologic basic data accompanying with the technical development of geology and hydrogeologic characterization. The lithology of the Korean peninsula consists of a complex structure of 29 rock types from Archean to Quaternary. The wide distribution of Mesozoic plutonic rock is an important consideration as a potential host rock allowing flexibility of siting. The recent tectonic activities are limited to localized particular area, which can be avoided by excluding in the early stage of siting. Three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the further study on HLW disposal system. This report contains grouping of regional faults, and on the distributional characteristics of faults and fractures(zones) in terms of lithological domain and tectonical provinces. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitute. Groundwaters can be grouped by their chemistry and host rocks. The origin of groundwater was proposed by isotope ( 1 8O, 2 H, 1 3C, 3 4S, 8 7Sr, 1 5N) studies and the residence time of groundwater was inferred from their tritium contents. Based on the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  10. Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province, New Mexico and Colorado. Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995. There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  11. Chaotic characteristic of electromagnetic radiation time series of coal or rock under different scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhen-Tang Liu; En-Lai Zhao; En-Yuan Wang; Jing Wang [China University of Mining and Technology, Xuzhou (China). School of Safety Engineering

    2009-02-15

    Based on chaos theory, the chaotic characteristics of electromagnetic radiation time series of coal or rock under different loads was studied. The results show that the correlation of electromagnetic radiation time series of small-scale coal or rock and coal mine converges to a stable saturation value, which shows that these electromagnetic radiation time series have chaos characteristics. When there is danger of coal seam burst, the value of the saturation correlation dimension D{sub 2} of the electromagnetic radiation time series is bigger and it changes greatly; when there is no danger, its value is smaller and changes smoothly. The change of saturation correlation of electromagnetic radiation time series can be used to forecast coal or rock dynamic disasters. 11 refs., 4 figs.

  12. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  13. Multivariate Analysis Of Ground Water Characteristics Of Geological Formations Of Enugu State Of Nigeria

    Directory of Open Access Journals (Sweden)

    Orakwe

    2015-08-01

    Full Text Available Abstract The chemometric data mining techniques using principal factor analysis PFA and hierarchical cluster analysis CA was employed to evaluate and to examine the borehole characteristics of geological formations of Enugu State of Nigeria to determine the latent structure of the borehole characteristics and to classify 9 borehole parameters from 49 locations into borehole groups of similar characteristics. PFA extracted three factors which accounted for a large proportion of the variation in the data 77.305 of the variance. Out of nine parameters examined the first PFA had the highest number of variables loading on a single factor where four borehole parameters borehole depth borehole casing static water level and dynamic water level loaded on it with positive coefficient as the most significant parameters responsible for variation in borehole characteristics in the study. The CA employed in this study to identified three clusters. The first cluster delineated stations that characterise Awgu sandstone geological formation while the second cluster delineated Agbani sandstone geological formation. The third cluster delineated Ajali sandstone formation. The CA grouping of the borehole parameters showed similar trend with PFA hence validating the efficiency of chemometric data mining techniques in grouping of variations in the borehole characteristics in the geological zone of the study area.

  14. Assessment of characteristic failure envelopes for intact rock using results from triaxial tests

    OpenAIRE

    Muralha, J.; Lamas, L.

    2014-01-01

    The paper presents contributions to the statistical study of the parameters of the Mohr-Coulomb and Hoek-Brown strength criteria, in order to assess the characteristic failure envelopes for intact rock, based on the results of several sets of triaxial tests performed by LNEC. 10p DBB/NMMR

  15. Geochemical characteristics of Lower Jurassic source rocks in the Zhongkouzi Basin

    Science.gov (United States)

    Niu, Haiqing; Han, Xiaofeng; Wei, Jianshe; Zhang, Huiyuan; Wang, Baowen

    2018-01-01

    Zhongkouzi basin is formed in Mesozoic and Cenozoic and developed on the Hercynian folded belt, the degree of exploration for oil and gas is relatively low hitherto. In order to find out the geochemical characteristics of the source rocks and the potentials for hydrocarbon generation. The research result shows that by analysis the geochemical characteristics of outcrop samples and new core samples in Longfengshan Group, Longfengshan Group are most developed intervals of favorable source rocks. They are formed in depression period of the basin when the sedimentary environments is salt water lacustrine and the water is keeping stable; The organic matter abundance is middle-higher, the main kerogen type is II1-II2 and few samples act as III type, The organic matter maturity is low maturity to medium maturity. The organic matter maturity of the source rock from eastern part of the basin is higher than in the western region. The source rock of Longfengshan Group are in the hydrocarbon generation threshold. The great mass of source rocks are matured and in the peak stage of oil generation.

  16. Measurement and modeling of flow through unsaturated heterogeneous rock in the context of geologic disposal of nuclear waste

    International Nuclear Information System (INIS)

    Sagar, B.; Bagtzoglou, A.C.; Green, R.T.; Stothoff, S.A.

    1995-01-01

    Deep geologic disposal of high-level and transuranic waste is currently being pursued vigorously. Assessing long-term performance of such repositories involves laboratory and field measurements, and numerical modeling. There exist two primary characteristics, associated with assessing repository performance, that define problems of modeling and measurement of non-isothermal flow through geologic media exposed to variable boundary conditions (e.g., climatic changes). These are: (1) the large time scale (tens of thousands of years) and highly variable space scale (from one meter to 10 5 meters); and (2) the hierarchy of heterogeneities and discontinuities characterizing the medium. This paper provides an overview of recent work, conducted at the Center for Nuclear Waste Regulatory Analyses (CNWRA), related to laboratory experiments, consideration of similitude, and numerical modeling of flow through heterogeneous media under non-homogeneous boundary conditions. As discussed, there exist neither good methods of measuring flows at these scales nor are there adequate similitude analyses that would allow reasonable scaling up of laboratory-scale experiments. Reliable assessment of long-term geologic repositories will require sophisticated geostatistical models capable of addressing variables scales of heterogeneities conditioned with observed results from adequately sized field-scale experiments conducted for sufficiently long durations

  17. Structural geology and geophysics as a support to build a hydrogeologic model of granite rock

    Science.gov (United States)

    Martinez-Landa, Lurdes; Carrera, Jesús; Pérez-Estaún, Andrés; Gómez, Paloma; Bajos, Carmen

    2016-06-01

    A method developed for low-permeability fractured media was applied to understand the hydrogeology of a mine excavated in a granitic pluton. This method includes (1) identifying the main groundwater-conducting features of the medium, such as the mine, dykes, and large fractures, (2) implementing this factors as discrete elements into a three-dimensional numerical model, and (3) calibrating these factors against hydraulic data . A key question is how to identify preferential flow paths in the first step. Here, we propose a combination of several techniques. Structural geology, together with borehole sampling, geophysics, hydrogeochemistry, and local hydraulic tests aided in locating all structures. Integration of these data yielded a conceptual model of the site. A preliminary calibration of the model was performed against short-term (Model validity was tested by blind prediction of a long-term (4 months) large-scale (1 km) pumping test from the mine, which yielded excellent agreement with the observations. Model results confirmed the sparsely fractured nature of the pluton, which has not been subjected to glacial loading-unloading cycles and whose waters are of Na-HCO3 type.

  18. Experimental research on rock fracture failure characteristics under liquid nitrogen cooling conditions

    Science.gov (United States)

    Gao, Feng; Cai, Chengzheng; Yang, Yugui

    2018-06-01

    As liquid nitrogen is injected into a wellbore as fracturing fluid, it can rapidly absorb heat from warmer rock and generate cryogenic condition in downhole region. This will alter the physical conditions of reservoir rocks and further affect rock failure characteristics. To investigate rock fracture failure characteristics under liquid nitrogen cooling conditions, the fracture features of four types of sandstones and one type of marble were tested on original samples (the sample without any treatment) and cryogenic samples (the samples just taken out from the liquid nitrogen), respectively. The differences between original samples and cryogenic samples in load-displacement curves, fracture toughness, energy evolution and the crack density of ruptured samples were compared and analyzed. The results showed that at elastic deformation stage, cryogenic samples presented less plastic deformation and more obvious brittle failure characteristics than original ones. The average fracture toughness of cryogenic samples was 10.47%-158.33% greater than that of original ones, indicating that the mechanical strength of rocks used were enhanced under cooling conditions. When the samples ruptured, the cryogenic ones were required to absorb more energy and reserve more elastic energy. In general, the fracture degree of cryogenic samples was higher than that of original ones. As the samples were entirely fractured, the crack density of cryogenic samples was about 536.67% at most larger than that of original ones. This indicated that under liquid nitrogen cooling conditions, the stimulation reservoir volume is expected to be improved during fracturing. This work could provide a reference to the research on the mechanical properties and fracture failure of rock during liquid nitrogen fracturing.

  19. Main geologic characteristics and metallogenic models of uranium deposits in Zhejiang

    International Nuclear Information System (INIS)

    Tang Qitao

    2000-01-01

    Uranium resources in Zhejiang is abundant with numerous mineralization types. According to the genesis they can be classified into: sedimentary-reworking type, hydrothermal type and infiltration type. The author briefly describes main geologic characteristics and metallogenic models of different type uranium deposits

  20. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  1. Research on petrologic, geochemical characteristics and genesis of volcanic rocks in Dachangsha basin

    International Nuclear Information System (INIS)

    Wei Sanyuan

    1999-01-01

    On the basis of research on petrologic, geochemical characteristics and isotope composition of volcanic rocks in Dachangsha basin, the author concludes that the volcanic rocks formed from magma of different genesis and depth are double-cycle effusive. It is proposed that the magma forming the intermediate-basic volcanics of the first cycle comes from the mixing of the partial melting of the deep crust and mantle, and the intermediate-acidic volcanics of the secondary cycle are derived from the remelting of the upper crust

  2. Geological mapping and analysis in determining resource recitivity limestone rocks in the village of Mersip and surrounding areas, district Limun, Sorolangun Regency, Jambi Province

    Science.gov (United States)

    Dona, Obie Mario; Ibrahim, Eddy; Susilo, Budhi Kuswan

    2017-11-01

    The research objective is to describe potential, to analyze the quality and quantity of limestone, and to know the limit distribution of rocks based on the value of resistivity, the pattern of distribution of rocks by drilling, the influence mineral growing on rock against resistivity values, the model deposition of limestone based on the value resistivity of rock and drilling, and the comparison between the interpretation resistivity values based on petrographic studies by drilling. Geologic Formations study area consists of assays consisting of altered sandstone, phyllite, slate, siltstone, grewake, and inset limestone. Local quartz sandstone, schist, genealogy, which is Member of Mersip Stylists Formation, consists of limestone that formed in shallow seas. Stylists Formation consists of slate, shale, siltstone and sandstone. This research methodology is quantitative using experimental observation by survey. This type of research methodology by its nature is descriptive analysis.

  3. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    Science.gov (United States)

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  4. Modeling of irradiated graphite {sup 14}C transfer through engineered barriers of a generic geological repository in crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Poskas, Povilas; Grigaliuniene, Dalia, E-mail: Dalia.Grigaliuniene@lei.lt; Narkuniene, Asta; Kilda, Raimondas; Justinavicius, Darius

    2016-11-01

    There are two RBMK-1500 type graphite moderated reactors at the Ignalina nuclear power plant in Lithuania, and they are under decommissioning now. The graphite cannot be disposed of in a near surface repository, because of large amounts of {sup 14}C. Therefore, disposal of the graphite in a geological repository is a reasonable solution. This study presents evaluation of the {sup 14}C transfer by the groundwater pathway into the geosphere from the irradiated graphite in a generic geological repository in crystalline rocks and demonstration of the role of the different components of the engineered barrier system by performing local sensitivity analysis. The speciation of the released {sup 14}C into organic and inorganic compounds as well as the most recent information on {sup 14}C source term was taken into account. Two alternatives were considered in the analysis: disposal of graphite in containers with encapsulant and without it. It was evaluated that the maximal fractional flux of inorganic {sup 14}C into the geosphere can vary from 10{sup −} {sup 11} y{sup −} {sup 1} (for non-encapsulated graphite) to 10{sup −} {sup 12} y{sup −} {sup 1} (for encapsulated graphite) while of organic {sup 14}C it was about 10{sup −} {sup 3} y{sup −} {sup 1} of its inventory. Such difference demonstrates that investigations on the {sup 14}C inventory and chemical form in which it is released are especially important. The parameter with the highest influence on the maximal flux into the geosphere for inorganic {sup 14}C transfer was the sorption coefficient in the backfill and for organic {sup 14}C transfer – the backfill hydraulic conductivity. - Highlights: • Graphite moderated nuclear reactors are being decommissioned. • We studied interaction of disposed material with surrounding environment. • Specifically {sup 14}C transfer through engineered barriers of a geological repository. • Organic {sup 14}C flux to geosphere is considerably higher than inorganic

  5. Plugs for deposition tunnels in a deep geologic repository in granitic rock. Concepts and experience

    International Nuclear Information System (INIS)

    Dixon, D. A.; Boergesson, L.; Gunnarsson, D.; Hansen, J.

    2009-11-01

    Regardless of the emplacement geometry selected in a geological repository for spent nuclear fuel, there will be a requirement for the access tunnels to remain open while repository operations are ongoing. The period of repository operation will stretch for many years (decades to more than a century depending on disposal concept and number of canisters to be installed). Requirements for extended monitoring of the repository before final closure may further extend the period over which the tunnels must remain open. The intersection of the emplacement rooms/drifts and the access tunnels needs to be physically closed in order to ensure that the canisters remain undisturbed and that no undesirable hydraulic conditions are allowed to develop within the backfilled volume. As a result of these requirements, generic guidelines and design concepts have been developed for 'Plugs' that are intended to provide mechanical restraint, physical security and hydraulic control functions over the short-term (repository operational and pre-closure monitoring periods). This report focuses on the role and requirements of plugs to be installed at emplacement room/ tunnel/drift entrances or in other locations within the repository that may require installation of temporary mechanical or hydraulic control structures. These plugs are not necessarily a permanent feature of the repository and may, if required, be removed for later installation of a permanent seal. Room/Drift plugs are also by their defined function, physically accessible during repository operation so their performance can be monitored and remedial actions taken if necessary (e.g. increased seepage past the plug). A considerable number of sealing demonstrations have been undertaken at several research laboratories that are focussed on development of technologies and materials for use in isolation of spent nuclear fuel and these are briefly reviewed in this report. Additionally, technologies developed for non

  6. Plugs for deposition tunnels in a deep geologic repository in granitic rock. Concepts and experience

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A. (AECL, Chalk River (Canada)); Boergesson, L. (Clay Technology, Lund (Sweden)); Gunnarsson, D. (Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden)); Hansen, J. (Posiva Oy, Eurajoki (Finland))

    2009-11-15

    Regardless of the emplacement geometry selected in a geological repository for spent nuclear fuel, there will be a requirement for the access tunnels to remain open while repository operations are ongoing. The period of repository operation will stretch for many years (decades to more than a century depending on disposal concept and number of canisters to be installed). Requirements for extended monitoring of the repository before final closure may further extend the period over which the tunnels must remain open. The intersection of the emplacement rooms/drifts and the access tunnels needs to be physically closed in order to ensure that the canisters remain undisturbed and that no undesirable hydraulic conditions are allowed to develop within the backfilled volume. As a result of these requirements, generic guidelines and design concepts have been developed for 'Plugs' that are intended to provide mechanical restraint, physical security and hydraulic control functions over the short-term (repository operational and pre-closure monitoring periods). This report focuses on the role and requirements of plugs to be installed at emplacement room/ tunnel/drift entrances or in other locations within the repository that may require installation of temporary mechanical or hydraulic control structures. These plugs are not necessarily a permanent feature of the repository and may, if required, be removed for later installation of a permanent seal. Room/Drift plugs are also by their defined function, physically accessible during repository operation so their performance can be monitored and remedial actions taken if necessary (e.g. increased seepage past the plug). A considerable number of sealing demonstrations have been undertaken at several research laboratories that are focussed on development of technologies and materials for use in isolation of spent nuclear fuel and these are briefly reviewed in this report. Additionally, technologies developed for non

  7. Acceleration Characteristics of a Rock Slide Using the Particle Image Velocimetry Technique

    Directory of Open Access Journals (Sweden)

    Guoqing Chen

    2016-01-01

    Full Text Available The Particle Image Velocimetry (PIV technique with high precision and spatial resolution is a suitable sensor for flow field experiments. In this paper, the PIV technology was used to monitor the development of a displacement field, velocity field and acceleration field of a rock slide. It was found that the peak acceleration of the sliding surface appeared earlier than the peak acceleration of the sliding body. The characteristics of the rock slide including the short failure time, high velocities, and large accelerations indicate that the sliding forces and energy release rate of the slope are high. The deformation field showed that the sliding body was sliding outwards along the sliding surface while the sliding bed moved in an opposite direction. Moving upwards at the top of the sliding bed can be one of the warning signs for rock slide failure.

  8. Retardation characteristics of radionuclides in geologic media through batch and packed column experiments

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Han, Kyung Won; Han, Pil Soo; Lee, Jae Owan; Park, Chung Kyun; Yang, Ho Yeon

    1988-03-01

    Batch and packed column experiments are performed to investigate the retardation characteristics of radionuclide,i.e, Cs-137 in geologic media. In batch experiment, the effects of important parameters on the sorption of radionuclide in geologic media, such as nuclide concentration, pH, and particle size are examined. The Kd value obtained from breakthrough curve was compared with that from the batch sorption experiment to investigate the applicability of the Kd value from batch experiment to prediction of radionuclide migration in dynamic flow through porous media. The proposed model of radionuclide migration in porous media is also verified using the experimental results. (Author)

  9. Mid–Late Neoproterozoic rift-related volcanic rocks in China: Geological records of rifting and break-up of Rodinia

    Directory of Open Access Journals (Sweden)

    Linqi Xia

    2012-07-01

    Full Text Available Early Cambrian and Mid–Late Neoproterozoic volcanic rocks in China are widespread on several Precambrian continental blocks, which had aggregated to form part of the Rodinia supercontinent by ca. 900 Ma. On the basis of petrogeochemical data, the basic lavas can be classified into two major magma types: HT (Ti/Y > 500 and LT (Ti/Y  0.85 and HT2 (Nb/La ≤ 0.85, and LT1 (Nb/La > 0.85 and LT2 (Nb/La ≤ 0.85 subtypes, respectively. The geochemical variation of the HT2 and LT2 lavas can be accounted for by lithospheric contamination of asthenosphere- (or plume- derived magmas, whereas the parental magmas of the HT1 and LT1 lavas did not undergo, during their ascent, pronounced lithospheric contamination. These volcanics exhibit at least three characteristics: (1 most have a compositional bimodality; (2 they were formed in an intracontinental rift setting; and (3 they are genetically linked with mantle plumes or a mantle surperplume. This rift-related volcanism at end of the Mid–Neoproterozoic and Early Cambrian coincided temporally with the separation between Australia–East Antarctica, South China and Laurentia and between Australia and Tarim, respectively. The Mid–Late Neoproterozoic volcanism in China is the geologic record of the rifting and break-up of the supercontinent Rodinia.

  10. Characteristics of waterflooding of oil pools with clay-containing reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Stupochenko, V E; Khavkin, A Ya; Martos, V N

    1981-01-01

    When planning the development of oil fields with reservoir pressure maintenance by the injection of water or activated solutions (surfactants, alkali, etc.), it is necessary to take into account the consequences of phenomena related to clay swelling. For this purpose, it is necessary to measure on a core the parameters characterizing the change and hysteresis of the filtration and storage properties of the reservoir rocks. Swelling of the clay component of the rock along with reducing these properties in the sweep zone can promote an increase of the efficiency of displacing oil by water. Theoretical investigations showed that the maximum displacement efficiency in homogeneous clay-containing rocks does not depend on the time of starting stimulation by demineralized waters. The efficiency from changing the mineralization of the stimulating agent increases with increase of viscosity of the oil. Under certain physical and geologic conditions, a purposeful change of the filtration and storage properties by increasing or decreasing clay swelling can increase the efficiency of developing the field and can increase oil recovery.

  11. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  12. A guide for rock identification. 4. ed.

    International Nuclear Information System (INIS)

    Pape, H.

    1981-01-01

    The book is based on a practical course for students of geology, mineralogy, geography, and constructional engineering. It will also help interested laymen to identify rocks. Tables are presented which guide the reader in his analysis, so that he will quickly arrive at the name of a rock, the group to which it belongs, and some information on its characteristics and origin. (orig.) [de

  13. Geologic history of Grecian Rocks, Key Largo Coral Reef Marine Sanctuary.

    Science.gov (United States)

    Shinn, E.A.

    1980-01-01

    Two transects were drilled across the major ecologic zones of the c. 750 by 200 m reef, whose accumulation was controlled by a local Pleistocene topographic feature. The Reef is composed of 5 major ecologic zones: 1) a deep seaward rubble zone, 6-8 m depth; 2) a poorly developed spur and groove zone composed of massive head corals and Millepora (4-6 m water depth); 3) a characteristic high-energy oriented Acropora palmata zone extending from the surface down to 4 m; 4) a distinct broad reef flat composed of in situ A. palmata and coral rubble, followed by 5) a narrow low- energy back-reef zone of unoriented A. palmata, thickets of A. cervicornis, and various massive head corals in water 0-3 m deep. An extensive grass-covered carbonate sand flat 3-4 m deep extends in a landward direction from zone 5. - from Author

  14. Geological characteristics of the main deposits in the world. Geological characteristics of French uranium deposits; their consequences on the different stages of valorisation. The uranium market

    International Nuclear Information System (INIS)

    Gangloff, A.; Lenoble, A.; Mabile, J.

    1958-07-01

    This document gathers three contributions. In the first one, after having recalled data regarding uranium ore and metal reserves in Canada, USA, South Africa and France, the author describes and discusses the geological and mineral characteristics of the main deposits in Canada (Great Bear Lake, Ace-Verna and other deposits of the Beaverlodge district, Gunnar, Blind River and Bancroft), in the USA (New Mexico, Colorado and Arizona), and in South Africa (similar structure as observed in Blind River). The second contribution addresses the French uranium deposits by firstly presenting, describing and classifying vein deposits (five types are distinguished) and sedimentary deposits in different geological formations, and by secondly discussing the impacts of these characteristics on exploration, surface exploration works, and mining works. The third contribution proposes an overview of the uranium market: comments of world productions (conventional extraction processes and technical peculiarities, costs and prices, reserves and production in Canada, USA, South Africa, France, Australia and others), presentation of the French program (location and production capacity of uranium production plants, locations of ore extraction), overview of the current situation of the world market (price levels, possible prices after 1962), discussion of the comparison between demands and supplies, overview of the French uranium policy

  15. Geology and MER target site characteristics along the southern rim of Isidis Planitia, Mars

    Science.gov (United States)

    Crumpler, L.S.; Tanaka, K.L.

    2003-01-01

    The southern rim of the Isidis basin contains one of the highest densities of valley networks, several restricted paleolake basins, and the stratigraphically lowest (oldest) terrain on Mars. Geologic mapping in Viking, MGS/MOC, and MOLA data, Odyssey/ THEMIS data, and other multispectral data products supports the presence of extensive fans of debris and sediments deposited along the inner rim of the Isidis basin where large valleys enter the lowlands. Additional processes subsequent to the period of intense fluvial activity, including mass flow analogous to some glacial processes, have contributed to the materials accumulated on the margins of the Isidis basin. These have occurred along preexisting channels and valleys at the termini of major channels where they enter the plains along the highland-lowland boundary. If the abundant valley networks in highland terrains are the result of runoff accompanied by saturated groundwater flow, as has been suggested in previous studies of ancient fluvial highland terrains, then the extreme age and abundance of early valley networks in the Libya Montes highland rocks should have resulted in deposition of materials that record evidence for the long-term presence of water in the form of aqueous alteration of polycrystalline constituents. The material deposited along the basin margin is likely to consist of ancient altered highland rocks in several physical states (weathered, rounded, and angular) exposing both weathered and altered surfaces, and exposures of alteration profiles in fractured faces and unweathered material from rock interiors. Debris fans shed off the southern rim of Isidis Planitia should contain materials that have experienced possible saturated groundwater flow, residence within paleolake basins, and derivative materials deposited during the most fluvially intensive part of Martian geologic history. Many of these materials have also been reworked by ice-related processes. In situ measurements of the ancient

  16. Preliminary description of hydrologic characteristics and contaminant transport potential of rocks in the Pasco Basin, south-central Washington

    International Nuclear Information System (INIS)

    Deju, R.A.; Fecht, K.R.

    1979-03-01

    This report aims at consolidating existing data useful in defining the hydrologic characteristics of the Pasco Basin within south-central Washington. It also aims at compiling the properties required to evaluate contaminant transport potential within individual subsurface strata in this basin. The Pasco Basin itself is a tract of semi-arid land covering about 2,000 square miles in south-central Washington. The regional geology of this basin is dominated by tholeiitic flood basalts of the Columbia Plateau. The surface hydrology of the basin is dominated by the Yakima, Snake, and Columbia rivers. Short-lived ephemeral streams may flow for a short period of time after a heavy rainfall or snowmelt. The subsurface hydrology of the Pasco Basin is characterized by an unconfined aquifer carrying the bulk of the water discharged within the basin. This aquifer overlies a series of confined aquifers carrying progressively smaller amounts of groundwater as a function of depth. The hydraulic properties of the various aquifers and non-water-bearing strata are characterized and reported. A summary of the basic properties is tabulated. The hydrochemical data obtained are summarized. The contaminant transport properties of the rocks in the Pasco Basin are analyzed with emphasis on the dispersion and sorption coefficients and the characteristics of the potential reactions between emplaced waste and the surrounding medium. Some basic modeling considerations of the hydrogeologic systems in the basin with a brief discussion of model input requirements and their relationship to available data are presented

  17. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh

    2014-10-01

    . Acknowledgements The authors appreciate Shiraz University Research Council that supported this work. The Director General of the Esfordi Mine Company is acknowledged for his assistance in the fieldwork. References Hitzman, M.W., Oreskes ,N. and Einaudi, M.T., 1992. Geological characteristics and tectonic setting of Proterozoic Iron oxide (Cu-U-Au-LREE deposits. Precambrian Research, 58(1-4: 241-287. Förster, H. and Jafarzadeh, A., 1994. The Bafq mining district in Central Iran a highlymineralized Infracambrian volcanic field. Economic Geology, 89(8:1697-1721. Daliran, F., 1999. REE geochemistry of Kiruna –type iron ores. In: C. J. Stanley (Editor, Mineral Deposite, processes to processing. Balkema, Rotterdam, pp. 631-634. Belousova, E.A., Griffin, W.L., O Reilly, S.Y. and Fisher, N.I., 2002. Apatites as indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. Journal of Geochemical Exploration, 76(1: 45-69. Hsieh, P.S., Chen, C.H., Yang, H.J. and Lee, C.Y. 2008. Petrogenesis of the Nanling Mountains granites from South China: Constraints from systematic apatite geochemistry and whole-rock geochemical and Sr–Nd isotope compositions. Journal of Asian Earth Sciences, 33(5-6: 428–451. Jami, M., 2005. Geology, Geochemistry and Evolution of theEsfordi Phosphate – Iron Deposit, Bafq Area, Central Iran. Ph.D. thesis, The University of New South Wales, Australia, 220 pp. Alves, P.R., 2008. The carbonatite-hosted deposit of Jacupiranga, SE Brazil: styles of mineralization, ore characterization, and association with mineral processing. M.Sc. thesis, Missori University of Sciences and Technology, USA, 140 pp.

  18. Geological characteristics of granite type uranium deposits in middle of Inner Mongolia in comparison with south China

    International Nuclear Information System (INIS)

    Wang Gui

    2012-01-01

    Granites extensively distributed in middle of Inner Mongolia and South China, namely Caledonian, Hercynian and Yanshanian. Some of the intrusive are composed of granites which belong to different ages. Some of the uranium deposits were found inside the granite bodies or in sedimentary rocks and meta sedimentary rocks along the exocontact zone. Granite rock was comparing in middle Inner Mongolia and South China, including Uranium ore-forming geological conditions. ore-forming process and Ore-controlling factors. Think the Uranium ore-forming geological conditions is similar; ore-forming process is mainly for low-mid temperature hot liquid; Uranium ore bodies (uranium mineralization) was controlled by fracture. Explain granite type uranium mineralization potential is tremendous in middle of Inner Mongolia. (author)

  19. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

    1981-01-01

    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  20. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO2 geological sequestration

    International Nuclear Information System (INIS)

    Le Guen, Y.

    2006-10-01

    CO 2 injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO 2 . Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10 -12 s -1 on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO 2 -rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO 2 which increases rock solubility and reaction kinetics. On the opposite, small effect of CO 2 on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  1. Geologic field notes and geochemical analyses of outcrop and drill core from Mesoproterozoic rocks and iron-oxide deposits and prospects of southeast Missouri

    Science.gov (United States)

    Day, Warren C.; Granitto, Matthew

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources/Missouri Geological Survey, undertook a study from 1988 to 1994 on the iron-oxide deposits and their host Mesoproterozoic igneous rocks in southeastern Missouri. The project resulted in an improvement of our understanding of the geologic setting, mode of formation, and the composition of many of the known deposits and prospects and the associated rocks of the St. Francois terrane in Missouri. The goal for this earlier work was to allow the comparison of Missouri iron-oxide deposits in context with other iron oxide-copper ± uranium (IOCG) types of mineral deposits observed globally. The raw geochemical analyses were released originally through the USGS National Geochemical Database (NGDB, http://mrdata.usgs.gov). The data presented herein offers all of the field notes, locations, rock descriptions, and geochemical analyses in a coherent package to facilitate new research efforts in IOCG deposit types. The data are provided in both Microsoft Excel (Version Office 2010) spreadsheet format (*.xlsx) and MS-DOS text formats (*.txt) for ease of use by numerous computer programs.

  2. Climax Granite, Nevada Test Site, as a host for a rock mechanics test facility related to the geologic disposal of high level nuclear wastes

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-02-01

    This document discusses the potential of the Climax pluton, at the Nevada Test Site, as the host for a granite mechanics test facility related to the geologic disposal of high-level nuclear waste. The Climax granitic pluton has been the site of three nuclear weapons effects tests: Hard Hat, Tiny Tot, and Piledriver. Geologic exploration and mapping of the granite body were performed at the occasion of these tests. Currently, it is the site Spent Fuel Test (SFT-C) conducted in the vicinity of and at the same depth as that of the Piledriver drifts. Significant exploration, mapping, and rock mechanics work have been performed and continue at this Piledriver level - the 1400 (ft) level - in the context of SFT-C. Based on our technical discussions, and on the review of the significant geological and rock mechanics work already achieved in the Climax pluton, based also on the ongoing work and the existing access and support, it is concluded that the Climax site offers great opportunities for a rock mechanics test facility. It is not claimed, however, that Climax is the only possible site or the best possible site, since no case has been made for another granite test facility in the United States. 12 figures, 3 tables

  3. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    International Nuclear Information System (INIS)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs

  4. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs.

  5. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Yoshida, H.; Metcalfe, R.; Yamamoto, K.; Murakami, Y.; Hoshii, D.; Kanekiyo, A.; Naganuma, T.; Hayashi, T.

    2008-01-01

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure

  6. Redox front formation in an uplifting sedimentary rock sequence: An analogue for redox-controlling processes in the geosphere around deep geological repositories for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, H. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan)], E-mail: dora@num.nagoya-u.ac.jp; Metcalfe, R. [Quintessa Japan, Queen' s Tower A7-707, Minatomirai, Yokohama 220-6007 (Japan); Yamamoto, K. [Nagoya University Museum, Material Research Section, Furocho, Nagoya 464-8602 (Japan); Murakami, Y. [Japan Atomic Energy Agency (JAEA), Tono Geoscience Centre (Japan); Hoshii, D.; Kanekiyo, A.; Naganuma, T. [Hiroshima University, Higashi Hiroshima, Kagamiyama 1-4-4 (Japan); Hayashi, T. [Asahi University, Department of Dental Pharmacology, Hozumi, Gifu (Japan)

    2008-08-15

    Subsurface redox fronts control the mobilization and fixation of many trace elements, including potential pollutants such as certain radionuclides. Any safety assessment for a deep geological repository for radioactive wastes needs to take into account adequately the long-term redox processes in the geosphere surrounding the repository. To build confidence in understanding these processes, a redox front in a reduced siliceous sedimentary rock distributed in an uplifting area in Japan has been studied in detail. Geochemical analyses show increased concentrations of Fe and trace elements, including rare earth elements (REEs), at the redox front, even though concentrations of reduced rock matrix constituents show little change. Detailed SEM observations revealed that fossilized microorganisms composed of amorphous granules made exclusively of Fe and Si occur in the rock's pore space. Microbial 16S rDNA analysis suggests that there is presently a zonation of different bacterial groups within the redox band, and bacterial zonation played an important role in the concentration of Fe-oxyhydroxides at the redox front. These water-rock-microbe interactions can be considered analogous to the processes occurring in the redox fronts that would develop around geological repositories for radioactive waste. Once formed, the Fe-oxyhydroxides within such a front would be preserved even after reducing conditions resume following repository closure.

  7. Corrosion of carbon steel in clay environments relevant to radioactive waste geological disposals, Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Necib, S. [Agence Nationale pour la Gestion des Déchets Radioactifs ANDRA, Meuse Haute-Marne, Center RD 960, Bure (France); Diomidis, N. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Keech, P. [Nuclear Waste Management Organisation NWMO, Toronto (Canada); Nakayama, M. [Japan Atomic Energy Agency JAEA, Horonobe-Cho (Japan)

    2017-04-15

    Carbon steel is widely considered as a candidate material for the construction of spent fuel and high-level waste disposal canisters. In order to investigate corrosion processes representative of the long term evolution of deep geological repositories, two in situ experiments are being conducted in the Mont Terri rock laboratory. The iron corrosion (IC) experiment, aims to measure the evolution of the instantaneous corrosion rate of carbon steel in contact with Opalinus Clay as a function of time, by using electrochemical impedance spectroscopy measurements. The Iron Corrosion in Bentonite (IC-A) experiment intends to determine the evolution of the average corrosion rate of carbon steel in contact with bentonite of different densities, by using gravimetric and surface analysis measurements, post exposure. Both experiments investigate the effect of microbial activity on corrosion. In the IC experiment, carbon steel showed a gradual decrease of the corrosion rate over a period of 7 years, which is consistent with the ongoing formation of protective corrosion products. Corrosion product layers composed of magnetite, mackinawite, hydroxychloride and siderite with some traces of oxidising species such as goethite were identified on the steel surface. Microbial investigations revealed thermophilic bacteria (sulphate and thiosulphate reducing bacteria) at the metal surface in low concentrations. In the IC-A experiment, carbon steel samples in direct contact with bentonite exhibited corrosion rates in the range of 2 µm/year after 20 months of exposure, in agreement with measurements in absence of microbes. Microstructural and chemical characterisation of the samples identified a complex corrosion product consisting mainly of magnetite. Microbial investigations confirmed the limited viability of microbes in highly compacted bentonite. (authors)

  8. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves

    International Nuclear Information System (INIS)

    Doughty, Christine

    2007-01-01

    Numerical models of geologic storage of carbon dioxide (CO 2 ) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO 2 and wetting-phase brine. When a problem includes both injection of CO 2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO 2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a non-hysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO 2 storage are simulated with TOUGH2, a multiphase, multicomponent code for flow and transport through geological media. Both non-hysteretic and hysteretic formulations are used, to illustrate the applicability and limitations of non-hysteretic methods. The first application considers leakage of CO 2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation

  9. Geology of Paleozoic Rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, Excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The geology of the Paleozoic rocks in the Upper Colorado River Basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis Program to provide support for hydrogeological interpretations. The study area is segmented by numerous uplifts and basins caused by folding and faulting that have recurred repeatedly from Precambrian to Cenozoic time. Paleozoic rocks in the study area are 0-18,000 feet thick. They are underlain by Precambrian igneous, metamorphic, and sedimentary rocks and are overlain in most of the area by Triassic formations composed mostly of shale. The overlying Mesozoic and Tertiary rocks are 0-27,000 feet thick. All Paleozoic systems except the Silurian are represented in the region. The Paleozoic rocks are divisible into 11 hydrogeologic units. The basal hydrogeologic unit consisting of Paleozoic rocks, the Flathead aquifer, predominantly is composed of Lower to Upper Cambrian sandstone and quartzite. The aquifer is 0-800 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Gros Ventre confining unit consists of Middle to Upper Cambrian shale with subordinate carbonate rocks and sandstone. The confining unit is 0-1,100 feet thick and is overlain gradationally to unconformably by formations of Cambrian to Mississippian age. The Bighom aquifer consists of Middle Cambrian to Upper Ordovician limestone and dolomite with subordinate shale and sandstone. The aquifer is 0-3,000 feet thick and is overlain unconformably by Devonian and Mississipplan rocks. The Elbert-Parting confining unit consists of Lower Devonian to Lower Mississippian limestone, dolomite, sandstone, quartzite, shale, and anhydrite. It is 0-700 feet thick and is overlain conformably to unconformably by Upper Devonian and Mississippian rocks. The Madison aquifer consists of two zones of distinctly different lithology. The lower (Redwall-Leadville) zone

  10. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication

    Science.gov (United States)

    Yasmin, Sabina; Barua, Bijoy Sonker; Uddin Khandaker, Mayeen; Kamal, Masud; Abdur Rashid, Md.; Abdul Sani, S. F.; Ahmed, H.; Nikouravan, Bijan; Bradley, D. A.

    2018-03-01

    Accurate quantification of naturally occurring radioactive materials in soil provides information on geological characteristics, possibility of petroleum and mineral exploration, radiation hazards to the dwelling populace etc. Of practical significance, the earth surface media (soil, sand and sediment) collected from the densely populated coastal area of Chittagong city, Bangladesh were analysed using a high purity germanium γ-ray spectrometer with low background radiation environment. The mean activities of 226Ra (238U), 232Th and 40K in the studied materials show higher values than the respective world average of 33, 36 and 474 Bq/kg reported by the UNSCEAR (2000). The deduced mass concentrations of the primordial radionuclides 238U, 232Th and 40K in the investigated samples are corresponding to the granite rocks, crustal minerals and typical rocks respectively. The estimated mean value of 232Th/238U for soil (3.98) and sediment (3.94) are in-line with the continental crustal average concentration of 3.82 for typical rock range reported by the National Council on Radiation Protection and Measurements (NCRP). But the tonalites and more silicic rocks elevate the mean value of 232Th/238U for sand samples amounting to 4.69. This indicates a significant fractionation during weathering or associated with the metasomatic activity in the investigated area of sand collection.

  11. Characteristics and origin of rock varnish from the hyperarid coastal deserts of northern Peru

    Science.gov (United States)

    Jones, Charles E.

    1991-01-01

    The characteristics of a new type of rock varnish from the hyperarid coastal deserts of northern Peru, combined with laboratory experiments on associated soil materials, provide new insights into the formation of rock varnish. The Peruvian varnish consists of an Fe-rich, Mn-poor component covering up to 95% of a varnished surface and a Fe-rich, Mn-rich component found only in pits and along cracks and ridges. The alkaline soils plus the catalytic Fe oxyhydroxides that coat much of the varnish surfaces make the Peruvian situation ideal for physicochemical precipitation of Mn. However, the low Mn content of the dominant Fe-rich, Mn-poor component suggests that such precipitation is minor. This, plus the presence of abundant bacteria in the Mn-rich varnish and the recorded presence of Mn-precipitating bacteria in varnish elsewhere, suggests that bacteria are almost solely responsible for Mn-precipitation in rock varnish. A set of experiments involving Peruvian soil samples in contact with water-CO 2 solutions indicates that natural fogs or dews release Mn but not Fe when they come in contact with eolian materials on rock surfaces. This mechanism may efficiently provide Mn to bacteria on varnishing surfaces. The lack of Fe in solution suggests that a large but unknown proportion of Fe in varnish may be in the form of insoluble Fe oxyhydroxides sorbed onto the clay minerals that form the bulk of rock varnish. The results of this study do not substantively change R. I. Dorn's paleoenvironmental interpretations of varnish Mn:Fe ratios, but they do suggest areas for further inquiry.

  12. Geology and Characteristics of Pb-Zn-Cu-Ag Skarn Deposit at Ruwai, Lamandau Regency, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.126This study is dealing with geology and characteristics of mineralogy, geochemistry, and physicochemical conditions of hydrothermal fluid responsible for the formation of skarn Pb-Zn-Cu-Ag deposit at Ruwai, Lamandau Regency, Central Kalimantan. The formation of Ruwai skarn is genetically associated with calcareous rocks consisting of limestone and siltstone (derived from marl? controlled by NNE-SSW-trending strike slip faults. It is localized along N 70° E-trending thrust fault, which also acts as the contact zone between sedimentary and volcanic rocks in the area. The Ruwai skarn is mineralogically characterized by prograde alteration comprising garnet (andradite and clino-pyroxene (wollastonite, and retrograde alteration composed of epidote, chlorite, calcite, and sericite. Ore mineralization is typified by sphalerite, galena, and chalcopyrite, formed at early retrograde stage. Galena is typically enriched in silver up to 0.45 wt % and bismuth of about 1 wt %. No Ag-sulphides are identified within the ore body. Geochemically, SiO is enriched and CaO is depleted in limestone, consistent with silicic alteration (quartz and calc-silicate and decarbonatization of the wallrock. The measured resources of the deposit are 2,297,185 tonnes at average grades of 14.98 % Zn, 6.44% Pb, 2.49 % Cu, and 370.87 g/t Ag. Ruwai skarn orebody was originated at moderate temperatures of 250 - 266 °C and low salinity of 0.3 - 0.5 wt.% NaCl eq. The late retrograde stage was formed at low temperature of 190 - 220 °C and low salinity of ~0.35 wt.% NaCl eq., which was influenced by meteoric water incursion at the late stage of the Ruwai Pb-Zn-Cu-Ag skarn formation.

  13. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    International Nuclear Information System (INIS)

    Bossart, P.; Bernier, F.; Birkholzer, J.

    2017-01-01

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  14. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); Bernier, F. [Federal Agency for Nuclear Control FANC, Brussels (Belgium); Birkholzer, J. [Lawrence Berkeley National Laboratory, Berkeley (United States); and others

    2017-04-15

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  15. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  16. Geologic framework and hydrogeologic characteristics in the southern part of the Rancho Diana Natural Area, northern Bexar County, Texas, 2008-10

    Science.gov (United States)

    Clark, Allan K.; Morris, Robert R.

    2011-01-01

    The area designated by the city of San Antonio as the Rancho Diana Natural Area is in northern Bexar County, near San Antonio, Texas. During 2008-10, the U.S. Geological Survey, in cooperation with the city of San Antonio, documented the geologic framework and mapped the hydrogeologic characteristics for the southern part of the Rancho Diana Natural Area. The geologic framework of the study area and its hydrogeologic characteristics were documented using field observations and information from previously published reports. Many of the geologic and hydrogeologic features were found by making field observations through the dense vegetation along gridlines spaced approximately 25 feet apart and documenting the features as they were located. Surface geologic features were identified and hydrogeologic features such as caves, sinkholes, and areas of solutionally enlarged porosity were located using hand-held Global Positioning System units. The location data were used to create a map of the hydrogeologic subdivisions and the location of karst features. The outcrops of the Edwards and Trinity aquifer recharge zones were mapped by using hydrogeologic subdivisions modified from previous reports. All rocks exposed within the study area are of sedimentary origin and Lower Cretaceous in age. The valley floor is formed in the cavernous member of the upper Glen Rose Limestone of the Trinity Group. The hills are composed of the basal nodular member, dolomitic member, Kirschberg evaporite member, and grainstone member of the Kainer Formation of the Edwards Group. Field observations made during this study of the exposed formations and members indicate that the formations and members typically are composed of mudstones, wackestones, packstones, grainstones, and argillaceous limestones, along with marls. The upper Glen Rose Limestone is approximately 410 to 450 feet thick but only the upper 70 feet is exposed in the study area. The Kainer Formation is approximately 255 feet thick in

  17. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    Science.gov (United States)

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  18. The geological characteristics and forming conditions of granite type uranium-rich ore deposits

    International Nuclear Information System (INIS)

    Li Tiangang; Tong Hangshou; Feng Mingyue; Li Yuexiang; Xu Zhan

    1993-03-01

    The forming conditions and concentration mechanism of rich ore, criteria of ore prospecting and selection of uranium-rich ore target area are introduced in the article that is based on the studying of geological characteristics and conditions of granite type uranium-rich ore deposits of No 201 and 361 and on the comparisons of rich and poor ore deposits in geological conditions. Some new view points are also presented as the separate deposition of uranium minerals and gangue minerals is the main mechanism to form rich ore, for rich ore formation the ore enrichment by superimposition is not a universal regularity and most uranium-rich ore deposits are formed within one mineralization stage or mainly in one mineralization stage

  19. The geological characteristics and forming conditions of granite type uranium-rich ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Tiangang, Li; Hangshou, Tong; Mingyue, Feng; Yuexiang, Li; Zhan, Xu [Beijing Research Inst. of Uranium Geology (China)

    1993-03-01

    The forming conditions and concentration mechanism of rich ore, criteria of ore prospecting and selection of uranium-rich ore target area are introduced in the article that is based on the studying of geological characteristics and conditions of granite type uranium-rich ore deposits of No 201 and 361 and on the comparisons of rich and poor ore deposits in geological conditions. Some new view points are also presented as the separate deposition of uranium minerals and gangue minerals is the main mechanism to form rich ore, for rich ore formation the ore enrichment by superimposition is not a universal regularity and most uranium-rich ore deposits are formed within one mineralization stage or mainly in one mineralization stage.

  20. Geological and technological characteristics of the Ball Clay of the Sao Paulo state

    International Nuclear Information System (INIS)

    Tanno, L.C.; Motta, J.F.M.; Cabral Junior, M.; Saka, S.; Souza, D.D.D.

    1990-01-01

    This paper shows preliminary geological and technological results of studies about ball clay in Sao Paulo State. The works had been carried out by the Institute of Research and technology (IPT) and sponsored by Prominerio, during 88. Ball clay is a special clay utilised in the whiteware industry, mainly in the body preparation of sanitaryware products. This raw material come from two sites in Brazil: Sao Simao and Oeiras. Samples from these two deposits had been studied and classified acording to their adequately in the ceramic process. On the other hand, more than 100 samples from several geological sites of the Sao Paulo State were studied in laboratories. Acording to preliminary tests some of them revealed similar characteristics as brazilian ball clays. These clays were characterized by granulometry analysis, X-ray diffraction and chemical analysis. (author) [pt

  1. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  2. Radioactivity of rocks from the geological formations belonging to the Tibagi River hydrographic basin; Radioatividade de rochas provenientes das formacoes geologicas pertencentes a bacia hidrografica do Rio Tibagi

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Rodrigo Oliveira

    2008-07-01

    This work is a study of the {sup 40}K and the {sup 238}U and {sup 232}Th series radioactivity in rocks measured with high resolution gamma ray spectrometry. The rocks were taken from the geologic formations in the region of the Tibagi river hydrographic basin. The course of this river cuts through the Paleozoic and Mesozoic stratigraphic sequences of the Parana sedimentary basin. In order to take into account the background radiation attenuation by the samples, a technique was developed that eliminated the need to measure a blank sample. The effects of the radiation's self-attenuation in the sample matrix were taken into account by using a gamma ray direct transmission method. The results for 87 rock samples, taken from 14 distinct formations, and their corresponding radioactivity variations are presented and discussed according to the possible geological processes from which they originated. Among the most discussed results are: an outcrop that profiles shale, limestone and rhythmite in the Irati Formation; a sandstone and siltstone sequence from the Rio do Rasto Formation; and a profile sampled in a coal mine located in the Rio Bonito Formation. The calculations of the rocks' contributions to the outdoor gamma radiation dose rate agree with the values presented by other authors for similar rocks. The highest dose values were obtained from felsic rocks (rhyolite of the Castro group, 129.8 {+-} 3.7 nGy.h{sup -1}, and Cunhaporanga granite, 167 {+-} 37 nGy.h{sup -1}). The other highest values correspond to the shale rocks from the Irati Formation (109 {+-} 16 nGy.h{sup -1}) and the siltic shale rocks from the Ponta Grossa Formation (107.9 {+-} 0.7 nGy.h{sup -1}). The most recent geological formations presented the lowest dose values (e.g. the Botucatu sandstone, 3.3 {+-} 0.6 nGy.h{sup -1}). The average value for sedimentary rocks from seven other formations is equal to 59 {+-} 26 nGy.h{sup -1}. The Rio Bonito Formation presented the highest dose value (334

  3. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    Science.gov (United States)

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This geospatial database for a geologic map of the Cascades Range in Washington state is one of a series of maps that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of lithostratigraphic units. Geologic maps of the Eocene to Holocene Cascade Range in California and Oregon complete the series, providing a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanantion. The complete series will be useful for regional studies of volcanic hazards, volcanology, and tectonics.

  4. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  5. Characteristics of algal succession following rock scraping at Imwon area in the east coast of Korea

    Science.gov (United States)

    Kim, Young Dae; Ahn, Jung Kwan; Nam, Myung Mo; Lee, Chu; Yoo, Hyun Il; Yeon, Su Yeoung; Kim, Young Hwan; Kim, Jang Kyun; Choi, Jae Suk

    2016-12-01

    This study was conducted to clarify the characteristics of algal succession following rock scraping using hoe or high-pressure water sprayer in the period from June 2010 to April 2011. We divided the research area off the eastern coast of Korean near Imwon into 3 categories depending upon the severity of the barren ground, i.e., the urchin barren-affected, urchin barren-ongoing and urchin barren-free areas. In April 2011, in the urchin barren-affected area with 25 seaweed species, the cover percentage and importance value (IV) of crustose coralline algae were higher than those of other species. In the urchin barren-ongoing area with 33 seaweed species, crustose coralline algae (mean IV = 62%) as well as Sargassum sp. (mean IV = 28%), and Gelidium amansii (mean IV = 19%) were observed following rock scraping. In the urchin barren-free area where seaweed communities were relatively abundant with 42 species, a variety of algal species including G. amansii (mean IV = 32%) underwent algal succession. Overall, it was observed that, as an aspect of algal succession, the weaker the barren ground severity was, the more frequent and diverse the seaweeds were, and the more complex the succession pattern was in the study. As an aspect of recovering algal community, rock scraping using hoe was shown to be superior to the method using high-pressure water spraying. Therefore, we conclude that rock scraping using hoe is a very effective strategy for recovering the algal community in urchin barren-ongoing area.

  6. Correlation of basement rocks from Waka Nui-1 and Awhitu-1, and the Jurassic regional geology of Zealandia

    International Nuclear Information System (INIS)

    Mortimer, N.; Raine, J.I.; Cook, R.A.

    2009-01-01

    Core and cuttings of sandstone and mudstone from Waka Nui-1, an offshore oil exploration well west of Northland, and from Awhitu-1, a water bore in western Auckland, add to the growing number of samples retrieved from otherwise inaccessible basement of the Zealandia continent. On the basis of pollen and spores, the sedimentary rocks at the bottom of Waka Nui-1 are dated as Early-Middle Jurassic, and rocks from Awhitu-1 are Late Jurassic. On the basis of age, sandstone petrology, and geographic position, a correlation of rocks in both wells with Murihiku Terrane is probable. In New Zealand, Jurassic sedimentary rocks have usually been interpreted in a tectonostratigraphic terrane context. An alternative way to look at the New Zealand Late Jurassic to Early Cretaceous sedimentary rocks is as potentially interconnected forearc, intra-arc, back-arc, and intracontinental basins that evolved adjacent to an active margin. (author). 47 refs., 6 figs., 3 tabs

  7. Combined geophysical, geochemical and geological investigations of geothermal reservoir characteristics in Lower Saxony, Germany

    Science.gov (United States)

    Hahne, B.; Thomas, R.

    2012-04-01

    The North German basin provides a significant geothermal potential, although temperature gradients are moderate. However, deep drilling up to several thousand meters is required to reach temperatures high enough for efficient generation of geothermal heat and electric power. In these depths we have not much information yet about relevant physical properties like porosity or permeability of the rock formations. Therefore the costs of developing a geothermal reservoir and the risk of missing the optimum drilling location are high. The collaborative research association "Geothermal Energy and High Performance Drilling" (gebo) unites several universities and research institutes in Lower Saxony, Germany. It aims at a significant increase of economic efficiency by introducing innovative technology and high tech materials resisting temperatures up to 200 °C in the drilling process. Furthermore, a better understanding of the geothermal reservoir is essential. gebo is structured into four main fields: Drilling Technology, Materials, Technical Systems and Geosystem. Here, we show the combined work of the Geosystem group, which focuses on the exploration of geological fault zones as a potential geothermal reservoir as well as on modeling the stress field, heat transport, coupled thermo-hydro-mechanical processes, geochemical interactions and prediction of the long-term behavior of the reservoir. First results include combined seismic and geoelectric images of the Leinetalgraben fault system, a comparison of seismic images from P- and S-wave measurements, mechanical properties of North German rocks from field and laboratory measurements as well as from drill cores, seismological characterization of stimulated reservoirs, a thermodynamic "gebo" database for modeling hydrogeochemical processes in North German formation waters with high salinity and at high temperatures, stress models for specific sites in northern Germany, and modeling results of permeability and heat transport

  8. Chemical and physical characteristics of phosphate rock materials of varying reactivity

    International Nuclear Information System (INIS)

    Syers, J.K.; Currie, L.D.

    1986-01-01

    Several chemical and physical properties of 10 phosphate rock (PR) materials of varying reactivity were evaluated. The highest concentrations of As and Cd were noted. Because Cd and U can accumulate in biological systems, it may be necessary to direct more attention towards the likely implications of Cd and U concentrations when evaluating a PR for direct application. Three sequential extractions with 2% citric acid may be more useful for comparing the chemical solubility of PR materials, particularly for those containing appreciable CaC0 3 . The poor relationship obtained between surface area and the solubility of the PR materials suggests that surface area plays a secondary role to chemical reactivity in controlling the solubility of a PR in a chemical extractant. A Promesh plot provided an effective method for describing the particle-size characteristics of those PR materials which occurred as sands. Fundamental characteristics, such as mean particle size and uniformity, can readily be determined from a Promesh plot. (author)

  9. Attenuation-difference radar tomography: results of a multiple-plane experiment at the U.S. Geological Survey Fractured-Rock Research Site, Mirror Lake, New Hampshire

    Science.gov (United States)

    Lane, J.W.; Day-Lewis, F. D.; Harris, J.M.; Haeni, F.P.; Gorelick, S.M.

    2000-01-01

    Attenuation-difference, borehole-radar tomography was used to monitor a series of sodium chloride tracer injection tests conducted within the FSE, wellfield at the U.S. Geological Survey Fractured-Rock Hydrology Research Site in Grafton County, New Hampshire, USA. Borehole-radar tomography surveys were conducted using the sequential-scanning and injection method in three boreholes that form a triangular prism of adjoining tomographic image planes. Results indicate that time-lapse tomography methods provide high-resolution images of tracer distribution in permeable zones.

  10. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  11. Experiment and simulation study on the effects of cement minerals on the water-rock-CO2 interaction during CO2 geological storage

    Science.gov (United States)

    Liu, N.; Cheng, J.

    2016-12-01

    The CO2 geological storage is one of the most promising technology to mitigate CO2 emission. The fate of CO2 underground is dramatically affected by the CO2-water-rock interaction, which are mainly dependent on the initial aquifer mineralogy and brine components. The cement minerals are common materials in sandstone reservoir but few attention has been paid for its effects on CO2-water-rock interaction. Five batch reactions, in which 5% cement minerals were assigned to be quartz, calcite, dolomite, chlorite and Ca-montmorillonite, respectively, were conducted to understanding the cement minerals behaviors and its corresponding effects on the matrix minerals alterations during CO2 geological storage. Pure mineral powders were selected to mix and assemble the 'sandstone rock' with different cement components meanwhile keeping the matrix minerals same for each group as 70% quartz, 20% K-feldspar and 5% albite. These `rock' reacted with 750ml deionized water and CO2 under 180° and 18MPa for 15 days, during which the water chemistry evolution and minerals surface micromorphology changes has been monitored. The minerals saturation indexes calculation and phase diagram as well as the kinetic models were made by PHREEQC to uncover the minerals reaction paths. The experiment results indicated that the quartz got less eroded, on the contrary, K-feldspar and albite continuously dissolved to favor the gibbsite and kaolinite precipitations. The carbonates cement minerals quickly dissolved to reach equilibrium with the pH buffered and in turn suppressed the alkali feldspar dissolutions. No carbonates minerals precipitations occurred until the end of reactions for all groups. The simulation results were basically consistent with the experiment record but failed to simulate the non-stoichiometric reactions and the minerals kinetic rates seemed underestimated at the early stage of reactions. The cement minerals significantly dominated the reaction paths during CO2 geological

  12. The Aespoe Hard Rock Laboratory: Final evaluation of the hydrogeochemical pre-investigations in relation to existing geologic and hydraulic conditions

    International Nuclear Information System (INIS)

    Smellie, J.; Laaksoharju, M.

    1992-11-01

    The Swedish Nuclear Fuel and Management Company (SKB) is currently excavating the access tunnel to an underground experimental laboratory, the Aespoe Hard Rock Laboratory, planned to be located some 500 m below the island of Aespoe which is located in the Simpevarp area, southeast Sweden. The construction of an underground laboratory forms part of the overall SKB strategy to test, not only the construction techniques for deep excavation, but also the various methods and protocols required to obtain a three-dimensional model of the geology and groundwater flow and chemistry, within a fractured crystalline bedrock similar to that envisaged for the final disposal of spent fuel. Aespoe was chosen because it geologically represents a variety of typical crystalline bedrock environments. The hydrogeochemical activities described and interpreted in this report form part of the initial pre-investigation phase (from the surface to around 1000 metres depth) aimed at siting the laboratory, describing the natural hydrogeological and hydrogeochemical conditions in the bedrock and predicting the changes that will occur during excavation and construction of the laboratory. Hydrogeochemical interpretation has therefore been closely integrated with the hydrogeological investigations and other disciplines of major influence, in particular, bedrock geology and geochemistry and fracture mineralogy and chemistry. A large section of this report has been devoted to the detailed investigation of each individual zone hydraulically selected, tested and sampled for hydrogeochemical characterization. The data have been used to describe the chemistry and origin of the Aespoe groundwaters, models have been developed to illustrate groundwater mixing and standard geochemical modelling approaches have been employed to understand rock/water interaction processes. An attempt has been made to integrate the hydrogeochemical information with known geological and hydrogeological parameters to construct a

  13. Geologic columns for the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure: Impactites and crystalline rocks, 1766 to 1096 m depth

    Science.gov (United States)

    Horton, J. Wright; Gibson, R.L.; Reimold, W.U.; Wittmann, A.; Gohn, G.S.; Edwards, L.E.

    2009-01-01

    The International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) Eyreville drill cores from the Chesapeake Bay impact structure provide one of the most complete geologic sections ever obtained from an impact structure. This paper presents a series of geologic columns and descriptive lithologic information for the lower impactite and crystalline-rock sections in the cores. The lowermost cored section (1766-1551 m depth) is a complex assemblage of mica schists that commonly contain graphite and fibrolitic sillimanite, intrusive granite pegmatites that grade into coarse granite, and local zones of mylonitic deformation. This basement-derived section is variably overprinted by brittle cataclastic fabrics and locally cut by dikes of polymict impact breccia, including several suevite dikes. An overlying succession of suevites and lithic impact breccias (1551-1397 m) includes a lower section dominated by polymict lithic impact breccia with blocks (up to 17 m) and boulders of cataclastic gneiss and an upper section (above 1474 m) of suevites and clast-rich impact melt rocks. The uppermost suevite is overlain by 26 m (1397-1371 m) of gravelly quartz sand that contains an amphibolite block and boulders of cataclasite and suevite. Above the sand, a 275-m-thick allochthonous granite slab (1371-1096 m) includes gneissic biotite granite, fine- and medium-to-coarse-grained biotite granites, and red altered granite near the base. The granite slab is overlain by more gravelly sand, and both are attributed to debris-avalanche and/or rockslide deposition that slightly preceded or accompanied seawater-resurge into the collapsing transient crater. ?? 2009 The Geological Society of America.

  14. Spot testing on mechanical characteristics of surrounding rock in gates of fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang; Yang Ke; Chang Ju-cai [Anhui University of Science and Technology, Anhui (China). Department of Resource Exploration and Management Engineering

    2006-07-01

    The distribution patterns of mechanical characteristics for surrounding rock in the gateways of fully mechanized top-coal caving (FMTC) face were put forward by analyzing deep displacement, surface displacement, stress distribution and supports loading. The results show that the surrounding rock of the gateways lies in abutment pressure decrease zone near the working face, so that the support load decreases. But the deformations of supports and surrounding rock are very acute. The deformation of surrounding rock appears mainly in abutment pressure influence zone. Reasonable roadway supporting should control the deformation of surrounding rock in intense stage of mining influence. Supporting design ideas of tailentry and head entry should be changed from loading control to deformation control. 8 refs., 10 figs., 1 tab.

  15. Joint simulation of stationary grade and non-stationary rock type for quantifying geological uncertainty in a copper deposit

    Science.gov (United States)

    Maleki, Mohammad; Emery, Xavier

    2017-12-01

    In mineral resources evaluation, the joint simulation of a quantitative variable, such as a metal grade, and a categorical variable, such as a rock type, is challenging when one wants to reproduce spatial trends of the rock type domains, a feature that makes a stationarity assumption questionable. To address this problem, this work presents methodological and practical proposals for jointly simulating a grade and a rock type, when the former is represented by the transform of a stationary Gaussian random field and the latter is obtained by truncating an intrinsic random field of order k with Gaussian generalized increments. The proposals concern both the inference of the model parameters and the construction of realizations conditioned to existing data. The main difficulty is the identification of the spatial correlation structure, for which a semi-automated algorithm is designed, based on a least squares fitting of the data-to-data indicator covariances and grade-indicator cross-covariances. The proposed models and algorithms are applied to jointly simulate the copper grade and the rock type in a Chilean porphyry copper deposit. The results show their ability to reproduce the gradual transitions of the grade when crossing a rock type boundary, as well as the spatial zonation of the rock type.

  16. Geological, geochemical and isotopic characteristics of the Archaean Kaap Valley pluton, Barberton mountain land, South Africa

    International Nuclear Information System (INIS)

    Robb, L.J.; Barton, J.M. Jr.; Kable, E.J.D.; Wallace, R.C.

    1984-01-01

    The Kaap Valley pluton consists predominantly of a homogeneous weakly foliated, hornblende-bearing tonalite. It is among the oldest granitoid bodies yet recognized in the environs of the Barberton greenstone belt, yielding 207 Pb/ 206 Pb mineral ages of about 3300 Ma and a Rb-Sr whole rock isochron age of about 3500 Ma. The Kaap Valley pluton is distinctive in many respects. Whereas all other gneiss plutons in the area are characterized by a trondhjemitic bulk composition with mafic mineralogies dominated by biotite, the Kaap Valley pluton is tonalitic in bulk composition with hornblende (plus minus minor biotite) as its major mafic phase. In this paper, the results of a detailed geological, geochemical and Pb-isotopic study of the Kaap Valley pluton are presented. Questions relating to the origin of the body are considered, with an emphasis on the formation of a tonalitic magma which is more mafic than those typically encountered in the region. Although exposure does not permit a detailed structural study of the gneiss pluton consideration is given to its mode of emplacement

  17. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  18. Field geology, geochronology and geochemistry of mafic-ultramafic rocks from Alxa, China: Implications for Late Permian accretionary tectonics in the southern Altaids

    Science.gov (United States)

    Feng, Jianyun; Xiao, Wenjiao; Windley, Brian; Han, Chunming; Wan, Bo; Zhang, Ji'en; Ao, Songjian; Zhang, Zhiyong; Lin, Lina

    2013-12-01

    The time of termination of orogenesis for the southern Altaids has been controversial. Systematic investigations of field geology, geochronology and geochemistry on newly discriminated mafic-ultramafic rocks from northern Alxa in the southern Altaids were conducted to address the termination problem. The mafic-ultramafic rocks are located in the Bijiertai, Honggueryulin, and Qinggele areas, stretching from west to east for about 100 km. All rocks occur high-grade gneisses as tectonic lenses that are composed of peridotite, pyroxenite, gabbro, and serpentinite, most of which have undergone pronounced alteration, i.e., serpentinization and chloritization. Geochemically, the rocks are characterized by uniform compositional trends, i.e., with low SiO2-contents (42.51-52.21 wt.%) and alkalinity (Na2O + K2O) (0.01-5.45 wt.%, mostly less than 0.8 wt.%), and enrichments in MgO (7.37-43.36 wt.%), with Mg# = 52.75-91.87. As the rocks have been strongly altered and have a wide range of loss-on-ignition (LOI: 0.44-14.07 wt.%) values, they may have been subjected to considerable alteration by either seawater or metamorphic fluids. The REE and trace element patterns show a relatively fractionated trend with LILE enrichment and HFSE depletion, similar to that of T-MORB between N-MORB and E-MORB, indicating that the parental melt resulted from the partial melting of oceanic lithospheric mantle overprinted by fluid alteration of island-arc origin. The ultramafic rocks are relics derived from the magma after a large degree of partial melting of oceanic lithospheric mantle with superposed island arc processes under the influence of mid-ocean-ridge magmatism. LA-ICP MS U-Pb zircon ages of gabbros from three spots are 274 ± 3 Ma (MSWD = 0.35), 306 ± 3 Ma (MSWD = 0.49), 262 ± 5 Ma (MSWD = 1.2), respectively, representing the formation ages of the mafic-ultramafic rocks. Therefore, considering other previously published data, we suggest that the mafic-ultramafic rocks were products of

  19. The SHRIMP zircon U-Pb dating of felsic volcanic rocks and its geological significance from yutian group in southern jiangxi

    International Nuclear Information System (INIS)

    Ji Chunyu; Wu Jianhua

    2010-01-01

    Past researches have showed that the Rb-Sr isochron ages of felsic end member for r hyolite-basalt b imodal volcanic rocks of Yutian Group in the Changpu and Longnan Basin in Southern Jiangxi Province are 175 ∼ 148 Ma, not only does its amplitude change more significantly, but it does not match with the Rb-Sr isochron ages (179 ∼ 173 Ma) of basic end member. As a result, I choose a method of zircon U-Pb dating with a higher accuracy, to obtain the rhyolite in the bottom of bimodal volcanic rocks in the Changpu Basin and the dacite in the top of of bimodal volcanic rocks in the Longnan Basin, whose zircon SHIRMP U-Pb age are respectively (195.2 ± 2.8) Ma and (191 ± 1.7) Ma. What's more, they are both almost the same in the error limit. It shows that the bimodal volcanic rocks in these both two basins are the product of the same session of magma movement. Simultaneously, it explains they form in a flash during the eruption intervals. According to the the newest International Stratigraphic Chart (Gradsrein et al. , 2004), in terms of geological age, the bimodal volcanic rocks in Changpu Basin and Longnan Basin, belonging to the early Early Jurassic. The zircon SHIRMP U-Pb age are distinctly older than the whole-rock Rb-Sr isochron age, it is probably because of the deviation of the dating method for the wholerock Rb-Sr isochron age. The zircon SHIRMP U-Pb age of bimodal volcanic rocks are 191 ∼ 195 Ma in Southern Jiangxi Province, which indicates that there had been an extensional environment. And after the bimodal volcanic activity, The zircon SHIRMP U-Pb age of felsic volcanic rocks are 145 ∼ 130 Ma. Both of the ages shows a as long as 45 Ma quiet period between 190 Ma and 145 Ma. It is unreasonable possible to interpreted by the single pattern of pacific plate subducting to eurasian plate. (authors)

  20. Characteristics of source rocks of the Datangpo Fm, Nanhua System, at the southeastern margin of Sichuan Basin and their significance to oil and gas exploration

    Directory of Open Access Journals (Sweden)

    Zengye Xie

    2017-11-01

    Full Text Available In recent years, much attention has been paid to the development environment, biogenetic compositions and hydrocarbon generation characteristics of ancient source rocks in the deep strata of the Sichuan Basin because oil and gas exploration extends continuously to the deep and ultra-deep strata and a giant gas field with the explored reserves of more than 1 × 1012 m3 was discovered in the Middle and Upper Proterozoic–Lower Paleozoic strata in the stable inherited paleo-uplift of the central Sichuan Basin. Based on the previous geological research results, outcrop section of the Datangpo Fm, Nanhua System, at the southeastern margin of the Sichuan Basin was observed and the samples taken from the source rocks were tested and analyzed in terms of their organic geochemistry and organic petrology. It is shown that high-quality black shale source rocks of the Datangpo Fm are developed in the tensional background at the southeastern margin of the Sichuan Basin between two glacial ages, i.e., Gucheng and Nantuo ages in the Nanhua Period. Their thickness is 16–180 m and mineral compositions are mainly clay minerals and clastic quartz. Besides, shale in the Datangpo Fm is of high-quality sapropel type source rock with high abundance at an over-mature stage, and it is characterized by low pristane/phytane ratios (0.32–0.83, low gammacerane abundance, high-abundance tricyclic terpane and higher-content C27 and C29 gonane, indicating that biogenetic compositions are mainly algae and microbes in a strong reducing environment with low salinity. It is concluded that the Datangpo Fm source rocks may be developed in the rift of Nanhua System in central Sichuan Basin. Paleo-uplifts and paleo-slopes before the Caledonian are the favorable locations for the accumulation of dispersed liquid hydrocarbons and paleo-reservoirs derived from the Datangpo Fm source rocks. In addition, scale accumulation zones of dispersed organic matter cracking gas and paleo

  1. Characterization of Geologic Structures and Host Rock Properties Relevant to the Hydrogeology of the Standard Mine in Elk Basin, Gunnison County, Colorado

    Science.gov (United States)

    Caine, Jonathan S.; Manning, Andrew H.; Berger, Byron R.; Kremer, Yannick; Guzman, Mario A.; Eberl, Dennis D.; Schuller, Kathryn

    2010-01-01

    The Standard Mine Superfund Site is a source of mine drainage and associated heavy metal contamination of surface and groundwaters. The site contains Tertiary polymetallic quartz veins and fault zones that host precious and base metal sulfide mineralization common in Colorado. To assist the U.S. Environmental Protection Agency in its effort to remediate mine-related contamination, we characterized geologic structures, host rocks, and their potential hydraulic properties to better understand the sources of contaminants and the local hydrogeology. Real time kinematic and handheld global positioning systems were used to locate and map precisely the geometry of the surface traces of structures and mine-related features, such as portals. New reconnaissance geologic mapping, field and x-ray diffraction mineralogy, rock sample collection, thin-section analysis, and elemental geochemical analysis were completed to characterize hydrothermal alteration, mineralization, and subsequent leaching of metallic phases. Surface and subsurface observations, fault vein and fracture network characterization, borehole geophysical logging, and mercury injection capillary entry pressure data were used to document potential controls on the hydrologic system.

  2. Mechanical characteristics of fully mechanized top-coal caving face and surrounding rock stress shell

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang [Anhui University of Science and Technology, Huainan (China)

    2005-06-15

    The distribution of surrounding rock stress in fully mechanized top-coal caving (FMTC) face was fully researched by large-scale and non-linear three-dimensional numerical simulation and equivalent laboratory. The results show that, there is the structure that is made of macroscopical stress shell composed of high stress binds in overlying strata of FMTC face. Stress shell, which bears and pass load of overlying strata, is primary supporting body. The stress in skewback of stress shell forms abutment pressure of surrounding rock in vicinity of working face. Bond-beam structure lies in reducing zone under stress shell. It only bear partial burden of strata under stress shell. The uppermost mechanical characteristic of FMTC face is lying in the low stress area under stress shell. It is the essential cause of strata behaviors of FMTC face relaxation. On the basis of analyzing stress shell, the mechanical essence that top coal performs a function of bedding is demonstrated. 4 refs., 7 figs.

  3. Study on Mechanical Characteristics of Fully Grouted Rock Bolts for Underground Caverns under Seismic Loads

    Directory of Open Access Journals (Sweden)

    Guoqing Liu

    2017-01-01

    Full Text Available This study establishes an analytical model for the interaction between the bolt and surrounding rock based on the bearing mechanism of fully grouted rock bolts. The corresponding controlled differential equation for load transfer is deduced. The stress distributions of the anchorage body are obtained by solving the equations. A dynamic algorithm for the bolt considering shear damage on the anchoring interface is proposed based on the dynamic finite element method. The rationality of the algorithm is verified by a pull-out test and excavation simulation of a rounded tunnel. Then, a case study on the mechanical characteristics of the bolts in underground caverns under seismic loads is conducted. The results indicate that the seismic load may lead to stress originating from the bolts and damage on the anchoring interface. The key positions of the antiseismic support can be determined using the numerical simulation. The calculated results can serve as a reference for the antiseismic optimal design of bolts in underground caverns.

  4. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    Science.gov (United States)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  5. Geological and production characteristics of strandplain/barrier island reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

    1994-12-01

    The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

  6. Rationale for geological isolation of high-level radioactive waste, and assessment of the suitability of crystalline rocks

    International Nuclear Information System (INIS)

    Smedes, H.W.

    1980-01-01

    This report summarizes the disposal objective to be met and the requisite geotechnical criteria to meet that objective; evaluates our present ability to determine whether certain criteria can be met and to predict whether they will continue to be met; discusses the consequences of failure to meet certain criteria; assesses what is known about how crystalline rocks meet those criteria; lists important gaps in our knowledge that presently preclude final assessment of suitability; and suggests priority research to fill those gaps. The report presents an elaboration of the above-stated behavior and suitability of crystalline rocks, and a rationale of site-selection in support of the recommended prompt and intensive study of granite and other crystalline rocks as potentially highly suitable candidate media for radioactive waste disposal. An overview is presented on what the rocks are, where they are, and what the critical attributes are of various crystalline-rock terranes in the conterminous United States. This is intended to provide a basis to aid in selecting, first regions, and then sites within those regions, as candidate repository sites

  7. Geology and zircon fission track ages of volcanic rocks in the western part of Hoshino gold area, Fukuoka Prefecture, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Belhadi, Ahmed; Himeno, Osamu; Watanabe, Koichiro; Izawa, Eiji [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1999-12-01

    The Hoshino gold area is located in the western part of the Hohi volcanic zone, northern Kyushu. Volcanic rocks in this area vary from andesitic rocks in the north to dacite and rhyolite in the South. The basement is constituted by metamorphic rocks of pre-Cretaceous age. The volcanic rocks of Pliocene age were subdivided into eight volcanic units. Seven fission track ages of zircons from five volcanic units have been determined, using the external detector method. The age data obtained, combined with some previously reported ages, show that two main volcanic activities have occurred in the area. The first volcanic activity took place around 4.3 Ma, and resulted into the deposition of the Hoshino Andesite and the Ikenoyama Conglomerate. The second main volcanism started around 3.5 Ma, and was characterized by the eruption of the Shakadake Andesite and the Reiganji Andesite at the early stage, then, by more acidic rocks of the Takeyama Andesite, the Hyugami Dacite and the Kuroki Rhyolite at the later stage. The main volcanism in the area ceased around 2.6 Ma. (author)

  8. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    OpenAIRE

    Wen, Zhijie; Wang, Xiao; Chen, Lianjun; Lin, Guan; Zhang, Hualei

    2017-01-01

    Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE), which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the i...

  9. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  10. Structural Characteristics of Paleozoic and Geological Significance of Oil and Gas of Dongpu Depression

    Institute of Scientific and Technical Information of China (English)

    杨世刚

    2003-01-01

    The Dongpu depression has experienced a complicated evolution of structure since Mesozoic. The Paleozoic carbonate rock has been strongly reformed and the buried hills with different characteristics of structure are developed in the depression. There exist lots of groups of fault structures with strikes of NNE(or NE),NW, near NS and EW etc., of which the faults with strikes of NNE and NW play an important controlling role on present-day structural framework of the depression. The faults with near NS-striking and EW-striking deeply affect the establishment of structural framework of basement of the depression. Although most of the fractures are filled by calcite and other minerals, under the action of later structural stress, the earlier fractures could change their features into tensional ones. Therefore, much attention should be paid to the exploration and exploitation of Paleozoic oil and gas in Dongpu depression.

  11. Characteristics of isotope geology of sandstone-type uranium deposit in Turpan-Hami Basin

    International Nuclear Information System (INIS)

    Liu Hanbin; Xia Yuliang; Lin Jinrong; Fan Guang

    2003-01-01

    This paper expounds the isotope characteristics of in-situ leachable sandstone-type uranium deposit of Shihongtan in the southwestern part of Turpan-Hami basin. The results suggest that uranium mineralization age of 48 ± 2 Ma and 28 ± 4 Ma are obtained. The ages of the porphyritic granite and gneissic granite from the southwestern area are 422 ± 5 Ma and 268 ± 23 Ma. The U-Pb age of clastic zircons from ore-bearing sandstone is 283 ± 67 Ma, which is corresponding to the age of gneissic granite of the provenance area indicating the material source of uraniferous sandstone.Based. The sources are uraniferous sandstone accumulated during the deposition and the uranium leached from provenance area rocks by weathering. (authors)

  12. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  13. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  14. Geological characteristics and genesis of Niangnianggong gold-silver deposit in Liaoning Province, China

    International Nuclear Information System (INIS)

    Hou Zhenyuan

    2013-01-01

    Based on the analysis of geological characteristics and genesis of Niangnianggong deposit, this paper suggested that the deposit is controlled by the EW direction faults and belongs to quartz vein type. Average value of δ 34 S of the ore is 2.19‰, and the variation ranges from 1.6‰ to 4.9‰, which shows the feature of hydrothermal sulfur. The result of lead isotope is fall into original lead zone, which shows the feature of primeval lead system. The result of H-O isotope is close to meteoric line, which means the participation of precipitations. Rb-Sr age of ore is 186.6 Ma, which is similar to the age of diorite dike. Multi-disciplinary analysis concludes that the deposit is a quartz vein type deposit with composite hydrothermal origin. (author)

  15. Rollerjaw Rock Crusher

    Science.gov (United States)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  16. Sr, Nd isotope geochemistry of volcanic rock series and its geological significance in the middle Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    There exists extensive basic-acidic volcanic rock series in the middle section of the Okinawa Trough. Different types of these volcanic rocks have their own average strontium ratios of 0.704 749, 0.705 062, 0.708 771, 0.704 840 and 0.720 301 with average 143Nd/144Nd ratios of 0.512 820, 0.512 673, 0.512 413, 0.512 729 and 0.512 034. These ratios of Sr and Nd isotopes all fall on a theoretic hyperbolic curve of mixing between two end-members of MORB and rhyolitic magma. So we infer that these different kinds of volcanic rocks in the middle Okinawa Trough are the erupted product in different stages of formation and evolution of the trough crust. MORB magma, which had suffered assimilation, mixed with the early-formed crust-derived rhyolitic partial melt mass at different ratios; then, these mixed magma erupted and formed volcanic rock types of the trough. This study indicates that the Okinawa Trough is coming into a stage of submarine spreading from the stage of continental rift.

  17. Sr, Nd isotope geochemistry of volcanic rock series and its geological significance in the middle Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    孟宪伟; 陈志华; 杜德文; 吴金龙

    2000-01-01

    There exists extensive basic-acidic volcanic rock series in the middle section of the Okinawa Trough. Different types of these volcanic rocks have their own average strontium ratios of 0.704749, 0.705062, 0.708771, 0.704840 and 0.720301 with average 143Nd/144Nd ratios of 0.512 820, 0.512 673, 0.512 413, 0.512 729 and 0.512 034. These ratios of Sr and Nd isotopes all fall on a theoretic hyperbolic curve of mixing between two end-members of MORE and rhyolitic magma. So we infer that these different kinds of volcanic rocks in the middle Okinawa Trough are the erupted product in different stages of formation and evolution of the trough crust. MORE magma, which had suffered assimilation, mixed with the early-formed crust-derived rhyolitic partial melt mass at different ratios; then, these mixed magma erupted and formed volcanic rock types of the trough. This study indicates that the Okinawa Trough is coming into a stage of submarine spreading from the stage of continental rift.

  18. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    Science.gov (United States)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with

  19. Research on isotope geology. Assessment of heat production potential of granitic rocks and development of geothermal exploration techniques using radioactive/stable isotopes and fission track 2

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seong Cheon; Chi, Se Jung [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Radioelements and heat production rates of granitic rocks and stable isotopes of groundwaters were analyzed to investigate the geothermal potential of Wolchulsan granite complex in the southern Yeongam area. Wolchulsan granite complex is composed mainly by Cretaceous pink alkali-feldspar granite and partly Jurassic biotite granite. The main target for the geothermal exploration is the alkali-feldspar granite that is known in general to be favorable geothermal reservoir(e.g., Shap granite in UK). To develop exploration techniques for geothermal anomalies, all geochemical data were compared to those from the Jeonju granite complex. Heat production rates(HPR) of the alkali-feldspar granite is 1.8 - 10.6 {mu}Wm{sup -3}. High radio-thermal anomalies were revealed from the central western and northern parts of the granite body. These are relatively higher than the Caledonian hot dry granites in the UK. The integrated assessment of Wolchulsan granite complex suggests potential of the Cretaceous alkali-feldspar granite as a geothermal targets. Groundwater geochemistry of the Yeongam area reflects simple evaporation process and higher oxidation environment. Stable isotope data of groundwaters are plotted on or close to the Meteoric Water Line(MWL). These isotopic data indicate a significant meteoric water dominance and do not show oxygen isotope fractionation between groundwater and wall rocks. In despite of high HPR values of the Yeongam alkali-feldspar granite, groundwater samples do not show the same geochemical properties as a thermal water in the Jeonju area. This reason can be well explained by the comparison with geological settings of the Jeonju area. The Yeongam alkali-feldspar granite does not possess any adjacent heat source rocks despite its high radio-thermal HPR. While the Jeonju granite batholith has later heat source intrusive and suitable deep fracture system for water circulation with sedimentary cap rocks. (Abstract Truncated)

  20. Rheological Characteristics of Cement Grout and its Effect on Mechanical Properties of a Rock Fracture

    Science.gov (United States)

    Liu, Quansheng; Lei, Guangfeng; Peng, Xingxin; Lu, Chaobo; Wei, Lai

    2018-02-01

    Grouting reinforcement, which has an obvious strengthening effect on fractured rock mass, has been widely used in various fields in geotechnical engineering. The rheological properties of grout will greatly affect its diffusion radius in rock fractures, and the water-cement ratio is an important factor in determining the grouting flow patterns. The relationship between shear stress and shear rate which could reflect the grout rheological properties, the effects of water-cement ratio, and temperature on the rheological properties of grouting was studied in the laboratory. Besides, a new method for producing fractured rock specimens was proposed and solved the problem of producing natural fractured rock specimens. To investigate the influences of grouting on mechanical properties of a rock fracture, the fractured rock specimens made using the new method were reinforced by grouting on the independent designed grouting platform, and then normal and tangential mechanical tests were carried out on fractured rock specimens. The results showed that the mechanical properties of fractured rock mass are significantly improved by grouting, the peak shear strength and residual strength of rock fractures are greatly improved, and the resistance to deformation is enhanced after grouting. Normal forces affect the tangential behavior of the rock fracture, and the tangential stress strength increases with normal forces. The strength and stability of fractured rock mass are increased by grouting reinforcement.

  1. Engineering Geological Conditions of the Ignalina NPP Region

    International Nuclear Information System (INIS)

    Buceviciute, S.

    1996-01-01

    During engineering geological mapping, the upper part (to 15-20 m depths) of the lithosphere was investigated at the Ignalina Nuclear Power Plant (INPP) for physical rock characteristics and recent exogenic geological processes and phenomena. The final result of engineering geological mapping was the division of the area into engineering geological regions. In this case five engineering geological regions have been distinguished. The Fig. shows a scheme of engineering geological regionalization of the area and the typical sections of the engineering geological regions. The sections show genesis, age, soil type, thickness of stratigraphic genetical complex for the rocks occurring in the zone of active effect of engineering buildings, as well as the conical strength and density of the distinguished soils. 1 fig., 1 tab

  2. Study on characteristics of sedimentary rock at the Horonobe site. Report of collaboration research between CRIEPI and JAEA

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Oyama, Takahiro; Suzuki, Koichi; Nakata, Eiji; Tanaka, Shiro; Miyakawa, Kimio; Ishii, Eiichi; Takahashi, Kazuharu; Kunimaru, Takanori; Tsukui, Rota; Fukushima, Tatsuo; Seya, Masami; Hama, Katsuhiro; Aoki, Kazuhiro

    2006-01-01

    CRIEPI (Central Research Institute of Electric Power Industry) and JAEA (Japan Atomic Energy Agency) have been conducting a collaboration research to develop methodology for the characterization of geological environment since FY 2002. This report describes the results of the collaboration research in mainly FY 2003. As the collaboration research, the following research results were obtained. (1) Study on the diagenesis of the sedimentary rock of the Noegene Tertiary. The maximum burial depth of the formation can be estimated. (2) Study on the chemical weathering of the soft sedimentary rock. The acidic water can be caused by the chemical weathering of the rock in the Koetoi formation. (3) Study on the pore water extraction. The hydrochemical condition at the Horonobe site can be estimated by the results of the chemical analyses of extracted pore water, and the different pressure of the extraction results the different chloride contents of the pore water. (4) Study on exploration method considering the physical property of the rock. The depth profile of the mechanical properties can be estimated by the results of physical logging in the borehole. (5) Study on the applicability of the controlled drilling system to the Horonobe site. The controlled drilling system can be applicable to drill the directional borehole. (author)

  3. Geochemical characteristics of the Permian sedimentary rocks from Qiangtang Basin: Constraints for paleoenvironment and paleoclimate

    Directory of Open Access Journals (Sweden)

    Junjie Hu

    2017-01-01

    Full Text Available Qiangtang Basin is expected to become important strategic petroleum exploitation area in China. However, little research has been done on the Permian strata in this area. This paper presents Lower Permian Zhanjin Formation geochemical data from the Jiaomuri area, reconstructing the paleo-depositional environment and providing information for further petroleum exploration. The geochemical characteristics of 19 samples were investigated. These geochemical samples show a developed mud flat characteristic with light rich clay content. The geological data were used to constrain the paleoredox environment, which proved that these sediments were deposited mainly beneath a slightly oxic water column with relatively low paleoproductivity as evidenced by the P/Ti (mean of 0.07 and Ba/Al (mean of 20.5. Palaeoclimate indexes such as the C-value (0.24-1.75 and Sr/Cu (1.28-11.58 reveal a humid climatic condition during Zhanjin Formation sediment deposition. The ω(LaN/ω(YbN ratio values indicate a fast sedimentary rate during the deposition period.

  4. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  5. United States National Waste Terminal Storage argillaceous rock studies

    International Nuclear Information System (INIS)

    Brunton, G.D.

    1979-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in-situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock

  6. Geological characteristics and prospecting potential of sandstone-type uranium deposits in the north margin of Qaidam basin

    International Nuclear Information System (INIS)

    Liu Lin; Song Xiansheng; Feng Wei

    2012-01-01

    The north margin of Qaidam Basin is composed with rift trough and Oulongbuluke landmass which is clamped by Qilian Mountain and Qaidam block Suture zone. The two activities provide a rich source of uranium for the basin area. The coal-bearing rocks as stratums of medium and lower Jurassic, is the main exploration target zones of sandstone-type uranium ore. Through geological survey and drilling, we think that the interlayer oxidation zone. being primary factors of sandstone-type uranium, can be divided into ancient type and modern type. The ancient interlayer oxidation zone type uranium deposit is the main prospecting types in the north margin of Qaidam Basin. Combined with analysis on geological conditions of sandstone-type uranium mineralization, we propose that eastern edge of Yuqia, southern edge of Lucao Mountain, Beidatan and northwest edge of Ulan depression are good prospects. (authors)

  7. Pop Rocks! Engaging first-year geology students by deconstructing and correcting scientific misconceptions in popular culture. A Practice Report

    OpenAIRE

    Leslie Almberg

    2011-01-01

    Popular culture abounds with ill-conceived notions about Earth’s processes.  Movies, books, music, television and even video games frequently misrepresent fundamental scientific principles, warping viewers’ perceptions of the world around them.  First year geoscience students are not immune to pop culture’s portrayal of earth science and the misconceptions they bring to Geology 101 cloud their ability to differentiate between fact and fiction.  Working within ...

  8. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-10-02

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  9. Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada

    International Nuclear Information System (INIS)

    Cole, J.C.; Harris, A.G.; Wahl, R.R.

    1997-01-01

    This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications

  10. Geology of drill hole UE25p No. 1: A test hole into pre-Tertiary rocks near Yucca Mountain, southern Nevada

    International Nuclear Information System (INIS)

    Carr, M.D.; Waddell, S.J.; Vick, G.S.; Stock, J.M.; Monsen, S.A.; Harris, A.G.; Cork, B.W.; Byers, F.M. Jr.

    1986-01-01

    Yucca Mountain in southern Nye County, Nevada, has been proposed as a potential site for the underground disposal of high-level nuclear waste. An exploratory drill hole designated UE25p No. 1 was drilled 3 km east of the proposed repository site to investigate the geology and hydrology of the rocks that underlie the Tertiary volcanic and sedimentary rock sequence forming Yucca Mountain. Silurian dolomite assigned to the Roberts Mountain and Lone Mountain Formations was intersected below the Tertiary section between a depth of approximately 1244 m (4080 ft) and the bottom of the drill hole at 1807 m (5923 ft). These formations are part of an important regional carbonate aquifer in the deep ground-water system. Tertiary units deeper than 1139 m (3733 ft) in drill hole UE25p No. 1 are stratigraphically older than any units previously penetrated by drill holes at Yucca Mountain. These units are, in ascending order, the tuff of Yucca Flat, an unnamed calcified ash-flow tuff, and a sequence of clastic deposits. The upper part of the Tertiary sequence in drill hole UE25p No. 1 is similar to that found in other drill holes at Yucca Mountain. The Tertiary sequence is in fault contact with the Silurian rocks. This fault between Tertiary and Paleozoic rocks may correlate with the Fran Ridge fault, a steeply westward-dipping fault exposed approximately 0.5 km east of the drill hole. Another fault intersects UE25p No. 1 at 873 m (2863 ft), but its surface trace is concealed beneath the valley west of the Fran Ridge fault. The Paintbrush Canyon fault, the trace of which passes less than 100 m (330 ft) east of the drilling site, intersects drill hole UE25p No. 1 at a depth of approximately 78 m (255 ft). The drill hole apparently intersected the west flank of a structural high of pre-Tertiary rocks, near the eastern edge of the Crater Flat structural depression

  11. Energy resources of the Denver and Cheyenne Basins, Colorado - resource characteristics, development potential, and environmental problems. Environmental Geology 12

    International Nuclear Information System (INIS)

    Kirkham, R.M.; Ladwig, L.R.

    1980-01-01

    The geological characteristics, development potential, and environmental problems related to the exploration for and development of energy resources in the Denver and Cheyenne Basins of Colorado were investigated. Coal, lignite, uranium, oil and natural gas were evaluated. Emphasis is placed on environmental problems that may develop from the exploration for an extraction of these energy resources

  12. Experimental study of dielectric characteristics of rocks in a high-frequency field

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, S.

    1982-01-01

    Dielectric permeability (epsilon) as an electrical property of rocks has been used in recent years as the new parameter of well logging. Consequently a study was made of the dependence of epsilon of rocks on different factors. It was found that epsilon of rocks depends not only on minerals contained in them, their properties and distribution, but also on the frequency of the field, temperature and content of the mineralized water in the bed. It was indicated that for sedimentary rocks with low content of clay, their epsilon depends mainly on the content of water, and between epsilon and water saturation there is an approximately rectilinear relationship. The epsilon of dry and wet rocks differs 3-5-fold, so that with the help of epsilon one can determine flooding of the bed. Since epsilon increases with a rise in the content of clay in the rocks, with dielectric logging of the flooded bed it is necessary to make the corresponding correction. Under conditions of frequency of the field 60 Mz, epsilon in the NaCl solution decreases with an increase in mineralization, but the epsilon of the soda-containing rocks increases with an increase in mineralization. However, with mineralization less than 1 x 10/sup -2/, its influence on epsilon does not exceed 10%. The epsilon of water containing rocks diminishes with a rise in temperature. In addition, the epsilon of rocks drops with an increase in field frequency. With an increase in frequency, there is a decrease in influence of different factors (mineralization, distribution of minerals, content of clay, etc.) on the epsilon of rocks. At high frequencies, a distinct relationship is observed only between the epsilon and the water content of the rocks. Consequently it is expedient to improve the frequency of measurement to reveal the flooded beds. According to the data of dispersion of epsilon with different frequencies, one can determine the content of quality of the bed using electromagnetic logging.

  13. Main geologic characteristics of paleochannel-type sandstone-hosted uranium deposits and relevant prospecting and exploration policy

    International Nuclear Information System (INIS)

    Chen Zuyi

    1999-01-01

    The author summarizes main prospecting and exploration-related geologic characteristics of paleochannel-type sandstone-hosted uranium deposits such as the structural control over the spatial emplacement of the deposit, the near-source occurrence, the phreatic oxidation origin, the occurrence of the uranium mineralization mostly in one horizon etc. On the basis of analyzing the above characteristics the prospecting and exploration policy of such uranium deposits is proposed

  14. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    Science.gov (United States)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  15. Geological and geotechnical characteristics of Metro Manila volcanic soils and their suitability for landfill soil liner

    Science.gov (United States)

    Mendoza, Edna Patricia; Catane, Sandra; Pascua, Chelo; Zarco, Mark Albert

    2010-05-01

    Due to the Philippines's island-arc setting, andesitic tuff and volcanic ash constitute two-thirds of the country's agricultural land. In situ weathering of these volcanic sediments produces volcanic soils. Metro Manila volcanic soils were studied to determine their suitability for landfill soil liner. The soils were analyzed using XRD and XRF, and were tested for geotechnical properties. The results show the presence of the smectite group, a swelling variety of clay. The smectite-type clays are weathering products of volcanic glasses which are dominant components of the parental rocks. The high amounts of Al2O3 indicate an Al-rich type of soil. The clay species is either di- or tri-octahedral type, which points to montmorillonite as the main clay species. Swelling clay lowers the permeability of soils and reduces the infiltration and lateral movement of leachates in the ground. Also, geotechnical tests revealed moderate to high plasticity indices and low hydraulic conductivity values. The study shows that the physicochemical characteristics of volcanic soils meet the criteria for a soil liner for future sanitary landfill projects as mandated by RA 9003, a recently ratified solid waste management act of the Philippines. Being widespread, volcanic soils can be viewed as an important resource of the country.

  16. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  17. The distribution of radon in tunnels with different geological characteristics in China

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaoyan, E-mail: lxyan421@hotmail.co [School of Geographic and Biologic Sciences, Guizhou Normal University, GuiYang 550001 (China); Song Bo [College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004 (China); Zheng Baoshan [Institute of Geochemistry, Chinese Academy of Sciences, GuiYang 550002 (China); Wang Yan [Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071 (China); Wang Xue [Institute of Geochemistry, Chinese Academy of Sciences, GuiYang 550002 (China)

    2010-05-15

    In China, as the economy is developing and the population is expanding, some underground buildings have been used as supermarkets, restaurants and entertainment places. Tunnels in mountains are one type of underground building, and the radon ({sup 222}Rn) level in tunnels is an important issue. Radon levels in different type tunnels appear to differ, and relatively higher levels of {sup 222}Rn are associated with particular types of bedrock. The {sup 222}Rn levels in tunnels in five different geological characteristics were analyzed. Those built in granite had the highest {sup 222}Rn levels with a geometric mean (GM) of 280 Bq m{sup -3}, while those built in limestone (GM: 100 Bq m{sup -3}) and andesitic porphyry (GM: 96 Bq m{sup -3}) were lower. The sequence of {sup 222}Rn concentrations was: granite > tuff > quartz sandstone > limestone > andesitic porphyry, and the {sup 222}Rn in granite was statistically significantly higher than in limestone and andesitic porphyry. Tunnels built in granite, tuff, quartz sandstone, limestone tended to have higher {sup 222}Rn concentrations in summer than in winter, while the reverse tendency was true in andesitic porphyry tunnels. Only the difference in limestone was statistically significant.

  18. The distribution of radon in tunnels with different geological characteristics in China

    International Nuclear Information System (INIS)

    Li Xiaoyan; Song Bo; Zheng Baoshan; Wang Yan; Wang Xue

    2010-01-01

    In China, as the economy is developing and the population is expanding, some underground buildings have been used as supermarkets, restaurants and entertainment places. Tunnels in mountains are one type of underground building, and the radon ( 222 Rn) level in tunnels is an important issue. Radon levels in different type tunnels appear to differ, and relatively higher levels of 222 Rn are associated with particular types of bedrock. The 222 Rn levels in tunnels in five different geological characteristics were analyzed. Those built in granite had the highest 222 Rn levels with a geometric mean (GM) of 280 Bq m -3 , while those built in limestone (GM: 100 Bq m -3 ) and andesitic porphyry (GM: 96 Bq m -3 ) were lower. The sequence of 222 Rn concentrations was: granite > tuff > quartz sandstone > limestone > andesitic porphyry, and the 222 Rn in granite was statistically significantly higher than in limestone and andesitic porphyry. Tunnels built in granite, tuff, quartz sandstone, limestone tended to have higher 222 Rn concentrations in summer than in winter, while the reverse tendency was true in andesitic porphyry tunnels. Only the difference in limestone was statistically significant.

  19. Site geological and geotechnical studies, determination of soil characteristics and soil response studies

    International Nuclear Information System (INIS)

    1985-08-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the soil characteristics to be determined and the soil response studies to be performed as part of site geological and geotechnical studies

  20. The Australian national reactive phosphate rock project - Aims, experimental approach, and site characteristics

    International Nuclear Information System (INIS)

    McLaughlin, M.J.

    2002-01-01

    Field-based cutting trials were established across Australia in a range of environments to evaluate the agronomic effectiveness of 5 phosphate rocks, and 1 partially acidulated phosphate rock, relative to either single super-phosphate or triple superphosphate. The phosphate rocks differed in reactivity, as determined by the degree of carbonate substitution for phosphate in the apatite structure and solubility of phosphorus present in the fertilizers in 2% formic acid, 2% citric acid and neutral ammonium citrate. Sechura (Bayovar) and North Carolina phosphate rocks were highly reactive (>70% solubility in 2% formic acid), whilst Khouribja (Moroccan) and Hamrawein (Egypt) phosphate rock were moderately reactive. Duchess phosphate rock from Queensland was relatively unreactive ( 2 , from 4.0 to 5.1, and Colwell extractable phosphorus ranged from 3 to 47 μg/g prior to fertilizer application. Two core experiments were established at each site. The first measured the effects of phosphate rock reactivity on agronomic effectiveness, while the second core experiment measured the effects of the degree of water solubility of the phosphorus source on agronomic effectiveness. The National Reactive Phosphate Rock Project trials provided the opportunity to confirm the suitability of accepted procedures to model fertilizer response and to develop new approaches for comparing different fertilizer responses. The Project also provided the framework for subsidiary studies such as the effect of fertilizer source on soil phosphorus extractability; cadmium and fluorine concentrations in herbage; evaluation of soil phosphorus tests; and the influence of particle size on phosphate rock effectiveness. The National Reactive Phosphate Rock Project presents a valuable model for a large, Australia-wide, collaborative team approach to an important agricultural issue. The use of standard and consistent experimental methodologies at every site ensured that maximum benefit was obtained from data

  1. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  2. Subsurface geology, geochemistry, and water flow at a Rock Characterisation Facility (RCF) at Sellafield. Supplementary proof of evidence

    International Nuclear Information System (INIS)

    Haszeldine, R.S.

    1996-01-01

    Detailed comments are made on behalf of Greenpeace Ltd in a Supplementary Proof of Evidence presented to a Planning Inquiry in 1995 in support of their objections to an application by UK Nirex Ltd for permission to construct an underground Rock Characterisation Facility (RCF) at a site near Sellafield. The RCF is part of an investigation by Nirex into a suitable site for the disposal of radioactive waste. The principal points of disagreement with Nirex concern: the promise of the site; the oxidation state of the natural groundwater and uranium solubility; effects of possible future earthquakes; the interpretation of flow potential; the application of fluid flow modelling and the parameters used in it. (1 figure; 21 references). (UK)

  3. Summary of United States Geological Survey investigations of fluid-rock-waste reactions in evaporite environments under repository conditions

    International Nuclear Information System (INIS)

    Stewart, D.B.; Jones, B.F.; Roedder, E.; Potter, R.W. II

    1980-01-01

    The interstitial and inclusion fluids contained in rock salt and anhydrite, though present in amounts less than 1 weight per cent, are chemically aggressive and may react with canisters or wastes. The three basic types of fluids are: (1) bitterns residual from saline mineral precipitation including later recrystallization reactions; (2) brines containing residual solutes from the formation of evaporite that have been extensively modified by reactions with contiguous carbonate of clastic rocks; and (3) re-solution brines resulting from secondary dehydration of evaporite minerals or solution of saline minerals by undersaturated infiltrating waters. Fluid composition can indicate that meteoric flow systems have contacted evaporites or that fluids from evaporites have migrated into other formations. The movement of fluids trapped in fluid inclusions in salt from southeast New Mexico is most sensitive to ambient temperature and to inclusion size, although several other factors such as thermal gradient and vapour/liquid ratio are also important. There is no evidence of a threshold temperature for movement of inclusions. Empirical data are given for determining the amount of brine reaching the heat source if the temperature, approximate amount of total dissolved solids, and Ca:Mg ratio in the brine are known. SrCl 2 and CsCl can reach high concentrations in saturated NaCl solutions and greatly depress the liquidus. The possibility that such fluids, if generated, could migrate from a high-level waste repository must be minimized because the fluid would contain its own radiogenic energy source in the first decades after repository closure, thus changing the thermal evolution of the repository from designed values. (author)

  4. Pop Rocks! Engaging first-year geology students by deconstructing and correcting scientific misconceptions in popular culture. A Practice Report

    Directory of Open Access Journals (Sweden)

    Leslie Almberg

    2011-07-01

    Full Text Available Popular culture abounds with ill-conceived notions about Earth’s processes.  Movies, books, music, television and even video games frequently misrepresent fundamental scientific principles, warping viewers’ perceptions of the world around them.  First year geoscience students are not immune to pop culture’s portrayal of earth science and the misconceptions they bring to Geology 101 cloud their ability to differentiate between fact and fiction.  Working within an action research context, a semester-long assessment was designed with the intent to highlight and subsequently challenge students’ misconceptions using examples of “bad geoscience” from pop culture.  Students were required to practice and refine generic skills within this context.  This project succeeded in engaging students, but requires refinement to become more effective in enhancing their geoscience literacy. 

  5. Survey of the geological characteristics on the Japanese Islands for disposal of RI and research institute waste

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Shigeru [Chuo Kaihatsu Co., Ltd., Tokyo (Japan); Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Nakayama, Shinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    In the disposal of radioactive wastes arising from radioisotope utilization facilities and nuclear research facilities, it is necessary to establish the disposal system in proportion to half-lives of radionuclides and radioactivity concentrations in the wastes. According to this disposal system, the radioactive waste should be buried in the underground near the surface, shallow position and deep position. Therefore, it is important to grasp the features of the earth scientific phenomena and geological structure for the disposal system of radioactive waste. Then, for the purpose of the survey of the geological characteristics around the Japanese Islands whole neighborhood, the earth scientific phenomena at present, the geological structure and geotectonic history were summarized on the basis of the existing literatures. (author)

  6. Integrating GIS-based geologic mapping, LiDAR-based lineament analysis and site specific rock slope data to delineate a zone of existing and potential rock slope instability located along the grandfather mountain window-Linville Falls shear zone contact, Southern Appalachian Mountains, Watauga County, North Carolina

    Science.gov (United States)

    Gillon, K.A.; Wooten, R.M.; Latham, R.L.; Witt, A.W.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.

    2009-01-01

    Landslide hazard maps of Watauga County identify >2200 landslides, model debris flow susceptibility, and evaluate a 14km x 0.5km zone of existing and potential rock slope instability (ZEPRSI) near the Town of Boone. The ZEPRSI encompasses west-northwest trending (WNWT) topographic ridges where 14 active/past-active rock/weathered rock slides occur mainly in rocks of the Grandfather Mountain Window (GMW). The north side of this ridgeline is the GMW / Linville Falls Fault (LFF) contact. Sheared rocks of the Linville Falls Shear Zone (LFSZ) occur along the ridge and locally in the valley north of the contact. The valley is underlain principally by layered granitic gneiss comprising the Linville Falls/Beech Mountain/Stone Mountain Thrust Sheet. The integration of ArcGIS??? - format digital geologic and lineament mapping on a 6m LiDAR (Light Detecting and Ranging) digital elevation model (DEM) base, and kinematic analyses of site specific rock slope data (e.g., presence and degree of ductile and brittle deformation fabrics, rock type, rock weathering state) indicate: WNWT lineaments are expressions of a regionally extensive zone of fractures and faults; and ZEPRSI rock slope failures concentrate along excavated, north-facing LFF/LFSZ slopes where brittle fabrics overprint older metamorphic foliations, and other fractures create side and back release surfaces. Copyright 2009 ARMA, American Rock Mechanics Association.

  7. Dynamic processes during monorail locomotive rocking and their impact on draw gear characteristics

    Directory of Open Access Journals (Sweden)

    Viktor GUTAREVICH

    2011-01-01

    Full Text Available The article discusses the motion of the suspended monorail locomotive, interrelation between the parameters of irregularities false path and lateral rocking monorail locomotive, the values of lateral deviation for the different speeds on the monorail.

  8. Dynamic processes during monorail locomotive rocking and their impact on draw gear characteristics

    OpenAIRE

    Viktor GUTAREVICH

    2011-01-01

    The article discusses the motion of the suspended monorail locomotive, interrelation between the parameters of irregularities false path and lateral rocking monorail locomotive, the values of lateral deviation for the different speeds on the monorail.

  9. Inclusion of inhomogeneous deformation and strength characteristics in the problem on zonal disintegration of rocks

    Science.gov (United States)

    Chanyshev, AI; Belousova, OE

    2018-03-01

    The authors determine stress and deformation in a heterogeneous rock mass at the preset displacement and Cauchy stress vector at the boundary of an underground excavation. The influence of coordinates on Young’s modulus, shear modulus and ultimate strength is shown. It is found that regions of tension and compression alternate at the excavation boundary—i.e. zonal rock disintegration phenomenon is observed.

  10. Safety evaluation of geological disposal concepts for low and medium-level wastes in rock-salt (Pacoma project)

    International Nuclear Information System (INIS)

    Prij, J.; Van Dalen, A.; Roodbergen, H.A.; Slagter, W.; Van Weers, A.W.; Zanstra, D.A.; Glasbergen, P.; Koester, H.W.; Lembrechts, J.F.; Nijhof-Pan, I.; Slot, A.F.M.

    1991-01-01

    In the framework of the Performance Assessment of Confinements for MLW and Alpha Waste (PACOMA) the disposal options dealing with rock-salt are studied by GSF and ECN (with subcontract to RIVM). The overall objectives of these studies are to develop and demonstrate procedures for the radiological safety assessment of a deep repository in salt formations. An essential objective is to show how far appropriate choices of the repository design parameters can improve the performances of the whole system. The research covers two waste inventories (the Dutch OPLA and the PACOMA reference inventory), two disposal techniques (conventional and solution mining) and three types of formations (salt dome, pillow and bedded salt). An important part of the research has been carried out in the socalled VEOS project within the framework of the Dutch OPLA study. The methodology used in the consequence analysis is a deterministic one. The models and calculation tools used to perform the consequence analysis are the codes: EMOS, METROPOL and BIOS. The results are expressed in terms of dose rates and doses to individuals as well as to groups. Detailed information with respect to the input data and the results obtained with the three codes is given in three annexes to this final report

  11. Survey of in situ testing at underground laboratories with application to geologic disposal of spent fuel waste in crystalline rock

    International Nuclear Information System (INIS)

    Hardin, E.

    1992-04-01

    This report is intended for use in designing testing programs, or as backup material for the review of 'R and D 92' which will be the next three-year plan for spent fuel repository siting and characterization activities in Sweden. There are eight major topics, each of which is addressed in a chapter of around 2000 to 10000 words. The major topics are defined to capture the reasons for testing, in a way that limits overlap between chapters. Other goals of this report are to provide current information on recent or ongoing tests in crystalline rock, and to describe insights which are important but not obvious from the literature. No data are presented, but the conclusions of testing programs are summarized. The principal sources were reports (in English) produced by the laboratory projects particularly the Stripa Project (SKB), the Underground Research Laboratory in Canada (AECL), and the Grimsel Test Site in Switzerland (Nagra). Articles from refereed journals have been used in lieu of project literature where possible and appropriate. (au)

  12. An Attempt to automate the lithological classification of rocks using geological, gamma-spectrometric and satellite image datasets

    International Nuclear Information System (INIS)

    Fouad, M. K.; Mielik, M. L.; Gharieb, A. N.

    2004-01-01

    The present study aims essentially at proving that the application of the integrated airborne gamma spectrometric and satellite image data is capable of refining the mapped surface geology, and identification of anomalous zones of radioelement content that could provide favorable exploration targets for radioactive mineralizations.The application of the appropriate statistical technique to correlate between satellite image data and gamma-spectrometric data is of great significance in this respect. Experience shows that Landsat T M data in 7 spectral bands are successfully used in such studies rather than MSS. Multivariate statistical analysis techniques are applied to airborne spectrometric and different spectral Landsat T M data. Reduction of the data from n-dimensionality, both qualitatively as color composite image, and quantitatively, as principal component analysis, is performed using some statistical control parameters. This technique shows distinct efficiency in defining areas where different lit ho facies occur. An area located at the north of the Eastern Desert of Egypt, north of Hurgada town, was chosen to test the proposed technique of integrated interpretation of data of different physical nature. The reduced data are represented and interpreted both qualitatively and quantitatively. The advantages and limitations of applying such technique to the different airborne spectrometric, and Landsat T M data are identified. (authors)

  13. Geologic setting and chemical characteristics of hot springs in central and western Alaska

    Science.gov (United States)

    Miller, Thomas P.; Barnes, Ivan; Pattan, William Wallace

    1973-01-01

    Numerous hot springs occur in a variety of geologic provinces in central and western Alaska. Granitic plutons are common to all the provinces and the hot springs are spatially associated with the contacts of these plutons. Of 23 hot springs whose bedrock geology is known, all occur within 3 miles of a granitic pluton. The occurrence of hot springs, however, appears to be independent of the age, composition, or magmatic history of the pluton.

  14. Metallogeny of Mesoproterozoic Sedimentary Rocks in Idaho and Montana - Studies by the Mineral Resources Program, U.S. Geological Survey, 2004-2007

    Science.gov (United States)

    O'Neill, J. Michael

    2007-01-01

    Preface By J.Michael O'Neill The major emphasis of this project was to extend and refine the known Mesoproterozoic geologic and metallogenic framework of the region along and adjacent to the Idaho-Montana boundary north of the Snake River Plain. The Mesoproterozoic metasedimentary rocks in this part of east-central Idaho host important Cu-Co-Au stratabound mineral resources as well as younger, epigenetic hydrothermal, sulfide base-metal mineral deposits. Two tasks of this study were to more accurately understand and portray the character and origin of cobalt-copper-gold deposits that compose the Idaho cobalt belt and specifically to analyze ore mineralogy and metallogenesis within the Blackbird mining district in the central part of the belt. Inasmuch as the cobalt belt is confined to the Mesoproterozoic Lemhi Group strata of east-central Idaho, geologic investigations were also undertaken to determine the relationship between strata of the Lemhi Group and the more extensive, noncobalt-bearing, Belt-Purcell Supergroup strata to the north and northwest. Abrupt lateral differences in the character and thickness of stratigraphic units in the Mesoproterozoic Lemhi Basin may indicate differential sedimentation in contemporaneous fault-bounded subbasins. It is suggested that northeast-trending basement faults of the Great Falls tectonic zone controlled development of the subbasins. O'Neill and others (chapter A, this volume) document a second major basement fault in this area, the newly recognized northwest-striking Great Divide megashear, a zone 1-2 km wide of left-lateral strike-slip faults active during Mesoproterozoic sedimentation and bounding the Cu-Co belt on the northwest. The megashear is a crustal-scale tectonic feature that separates Lemhi Group strata from roughly coeval Belt-Purcell strata to the north and northwest in Montana and northern Idaho. The results of numerous geologic investigations of the Cu- and Co-bearing Mesoproterozoic rocks of east

  15. Comparative geology and geochemistry of sedimentary-rock-hosted (Carlin Type) gold deposits in the People's Republic of China and in Nevada, USA

    Science.gov (United States)

    Li, Zhiping; Peters, Stephen G.

    1998-01-01

    Sedimentary-rock-hosted (Carlin-type) gold deposits have been considered economically significant and geologically distinct since the early 1960's. This report consists of a nine-part text and an interactive database. This small database is to help Western companies get more information about these gold deposits in China, and to help geologists who are interested in world Carlin-type deposits conduct research on them. Because of their economic significance and geological distinctiveness, these deposits have caught the interest of economic geologists all over the world since the early 1960's. Similar deposits have been discovered in China, Australia, Dominican Republic, Spain, and Russia besides Nevada. Perhaps most significant are the 165 Carlin-type gold deposits that were found in southwest China during the past 15 years. Of these, at least 19 deposits have proven to be of substantial tonnage, making China the second leading country to exploit such deposits. With the increasing interest in Chinese Carlin-type gold deposits, some western companies and geologists desire to get more information about these Chinese deposits. This seems to have been very difficult because the literature was in Chinese. It is estimated that several hundred scientific publications (including papers, books, and technical reports) have been published. This database of Chinese Carlin-type Gold deposits is built on the documentation published during the most recent 10 years and includes six subjects, which consist of 165 records and 30 fields. A new Proterozoic-age sedimentary-rock-hosted gold deposit in northeastern P.R. China also is described. Note that for the old version 1.1 on the CD-ROM, the latitude and longitude locations of the mineral occurrences have been estimated from sketch maps and journal articles and are not intended for digital analysis. One of the improvements in this version 1.2 is the accuracy of geographic data. Version 1.3 updates to the database and includes maps

  16. Rock mechanical conditions at the Aespoe HRL. A study of the correlation between geology, tunnel maintenance and tunnel shape

    International Nuclear Information System (INIS)

    Andersson, Christer; Soederhaell, Joergen

    2001-12-01

    Maintenance records including scaling, shotcreting and bolting have been kept since the excavation start of Aespoe HRL 1990 together with records of groundwater flow and all other activities taking place in the tunnels. When the facility was constructed one objective was to limit the rock support as much as possible. The reason for this was that it should be possible to go back and easily study the exposed rock surface. Support during the operational phase has only been carried out where and when necessary. This type of maintenance and its location is documented in the digital database each time. The maintenance records have been compiled and areas requiring more maintenance than average noted. An interview has also been held with one of the miners conducting scaling and bolting in the tunnel. His experiences together with the study of the database maintenance records led to the selection of certain areas in the tunnel to be studied by numerical modelling. The probable reason for the need of additional maintenance in all areas, not only these numerically modelled, has been investigated. Almost all maintenance in the main tunnel both during construction and the operational phase has been located in the widened curves of the access tunnel. The maintenance is also located in areas containing veins or intrusions of Smaaland granite or fine-grained granite. These areas are often located in fracture zones of different sizes or show an increasing fracture frequency. The areas numerically modelled indicate stress concentrations or unloaded stress conditions. The stress concentrations are created by the geometry of the niches and side-tunnels in relation to the in situ stress field. The angle between the tunnel and the major principal stress has an impact on the need for maintenance. The areas with the largest angles towards the principal stress direction need more maintenance than the areas almost parallel to the major principal stress direction. The maintenance work in

  17. Geological Development of the Izu-Bonin Forearc Since the Eocene Based on Biostratigraphic, Rock Magnetic, and Sediment Provenance Observations from IODP Expedition 352 Drill Cores

    Science.gov (United States)

    Petronotis, K. E.; Robertson, A.; Kutterolf, S.; Avery, A.; Baxter, A.; Schindlbeck, J. C.; Wang, K. L.; Acton, G.

    2016-12-01

    International Ocean Discovery Program (IODP) Expedition 352 recovered early Oligocene to recent sediments above Eocene igneous basement at 4 sites in the Izu-Bonin Forearc. The sites were selected to investigate the forearc region since subduction initiation in the Eocene, with Sites U1439 and U1442 being cored into the upper trench slope and Sites U1440 and U1441 into the lower trench slope. Postcruise studies of biostratigraphy, sediment chemistry, tephra composition and chronology and magnetic properties, along with observations from prior coring help constrain the regional geological development. Volcanic activity in the area, as inferred from its influence on sediment composition, has varied between long periods of activity and quiescence. Combined whole-rock sediment chemistry and tephra compositions suggest that during the Oligocene to earliest Miocene ( 30-22 Ma) tuffaceous input of predominantly dacitic composition was mainly derived from the intra-oceanic Izu-Bonin Arc. The early Miocene interval ( 22-15 Ma) lacks tuffaceous input, as supported by rock magnetic data. During this period, the forearc subsided beneath the carbonate compensation depth (CCD), as evidenced by radiolarian-bearing mud and metal-rich silty clay. This was followed by input of tephra with bimodal felsic and mafic compositions from the Izu-Bonin Arc from 15 to 5 Ma. Middle Miocene to Quaternary time was characterized by increased carbonate preservation, coupled with abundant, predominantly felsic tephra input, which is chemically indicative of a Japan continental arc source (Honshu), with additional chemically distinctive input from the Izu-Bonin Arc. Extending back to 32 Ma, tephra layers can be correlated between the upper-slope sites, extrapolated to the less well-dated lower-slope sites, and further correlated with onland Japanese tephra (Kutterolf et al., 2016; Goldschmidt Conference). Overall, the new results provide an improved understanding of the regional tectonic evolution.

  18. Hydrogen solubility in pore water of partially saturated argillites: Application to Callovo-Oxfordian clay-rock in the context of a nuclear waste geological disposal

    International Nuclear Information System (INIS)

    Lassin, A.; Dymitrowska, M.; Azaroual, M.

    2011-01-01

    In nuclear waste geological disposals, large amounts of hydrogen (H 2 ) are expected to be produced by different (bio-)geochemical processes. Depending on the pressure generated by such a process, H 2 could be produced as a gas phase and displace the neighbouring pore water. As a consequence, a water-unsaturated zone could be created around the waste and possibly affect the physical and physic-chemical properties of the disposal and the excavation disturbed zone around it. The present study is the first part of an ongoing research program aimed at evaluating the possible chemical evolution of the pore water-minerals-gas system in such a context. The goal of this study was to evaluate, in terms of thermodynamic equilibrium conditions, the geochemical disturbance of the pore water due to variations in hydrogen pressure, temperature and relative humidity. No heterogeneous reactions involving mineral phases of the clay-rock or reactive surface sites were taken into account in the thermodynamic analysis. In the case sulphate reduction reaction is allowed, geochemical modelling results indicate that the main disturbance is the increase in pH (from around 7 up to more than 10) and an important decrease in the redox potential (Eh) related to hydrogen dissolution. This occurs from relatively low H 2 partial pressures (∼1 bar and above). Then, temperature and relative humidity (expressed in terms of capillary pressure) further displace the thermodynamic equilibrium conditions, namely the pH and the aqueous speciation as well as saturation indices of mineral phases. Finally, the results suggest that the generation of hydrogen, combined with an increase in temperature (between 30 deg. C and 80 deg. C) and a decrease in relative humidity (from 100% to 30%), should increase the chemical reactivity of the pore water-rock-gas system. (authors)

  19. Water - rock interaction in different rock environments

    International Nuclear Information System (INIS)

    Lamminen, S.

    1995-01-01

    The study assesses the groundwater geochemistry and geological environment of 44 study sites for radioactive waste disposal. Initially, the study sites were divided by rock type into 5 groups: (1) acid - intermediate rocks, (2) mafic - ultramafic rocks, (3) gabbros, amphibolites and gneisses that contain calc-silicate (skarn) rocks, (4) carbonates and (5) sandstones. Separate assessments are made of acid - intermediate plutonic rocks and of a subgroup that comprises migmatites, granite and mica gneiss. These all belong to the group of acid - intermediate rocks. Within the mafic -ultramafic rock group, a subgroup that comprises mafic - ultramafic plutonic rocks, serpentinites, mafic - ultramafic volcanic rocks and volcanic - sedimentary schists is also evaluated separately. Bedrock groundwaters are classified by their concentration of total dissolved solids as fresh, brackish, saline, strongly saline and brine-class groundwaters. (75 refs., 24 figs., 3 tabs.)

  20. Upper Devonian (Frasnian) non-calcified, algae, Alberta: Geological relevance to Leduc platforms and petroleum source rocks

    Energy Technology Data Exchange (ETDEWEB)

    Dix, G.R. (Univ. of British Columbia, Vancouver, BC (Canada))

    1990-12-01

    Several types of non-calcified fossil algae comparable to extant brown and green benithic macrophytes occur abundantly on two bedding planes in drill core from argillaceous slope carbonates of the Ireton Formation in northern Alberta. Fossiliferous strata abruptly overlie part of a stepped-back margin of the Sturgeon Lake carbonate platform (Leduc Formation), southeast of the Peace River Arch. Fossils are flattened organic fragments, some representing nearly complete specimens. Tentative comparisons are made with some Paleozoic algae; some of the Sturgeon Lake flora may be new species or genera. Preliminary examination of selected cores from the Ireton Formation and organic-rich Duvernay Formation in central Alberta indicates a widespread distribution of algal-derived organic matter within Upper Devonian basinal strata. The geological relevance of non-calcified algae to Devonian carbonate platforms and basins is postulated in three cases. Their presence in slope sediments may indicate that algal lawns flourished in muddy, upper slope environments. Fossils accumulated either in situ, or were ripped up and quickly buried within downshope resedimented deposits. All or some algal fragments may have been swept from the adjacent carbonate platform during storms. Prolific shallow water algal growth may have occurred simultaneously with oceanic crises when shallow water carbonate production either decreased or was shut down. The present position of fossil algae, therefore, would mark a bedding surface that is stratigraphically equivalent to an intraplatform disconformity. Regardless of the original environment, a sufficient accumulation of non-calcified algae in slope strata represents a viable petroleum source proximal to carbonate platforms. 46 refs., 9 figs.

  1. Microseismic Precursory Characteristics of Rock Burst Hazard in Mining Areas Near a Large Residual Coal Pillar: A Case Study from Xuzhuang Coal Mine, Xuzhou, China

    Science.gov (United States)

    Cao, An-ye; Dou, Lin-ming; Wang, Chang-bin; Yao, Xiao-xiao; Dong, Jing-yuan; Gu, Yu

    2016-11-01

    Identification of precursory characteristics is a key issue for rock burst prevention. The aim of this research is to provide a reference for assessing rock burst risk and determining potential rock burst risk areas in coal mining. In this work, the microseismic multidimensional information for the identification of rock bursts and spatial-temporal pre-warning was investigated in a specific coalface which suffered high rock burst risk in a mining area near a large residual coal pillar. Firstly, microseismicity evolution prior to a disastrous rock burst was qualitatively analysed, and the abnormal clustering of seismic sources, abnormal variations in daily total energy release, and event counts can be regarded as precursors to rock burst. Secondly, passive tomographic imaging has been used to locate high seismic activity zones and assess rock burst hazard when the coalface passes through residual pillar areas. The results show that high-velocity or velocity anomaly regions correlated well with strong seismic activities in future mining periods and that passive tomography has the potential to describe, both quantitatively and periodically, hazardous regions and assess rock burst risk. Finally, the bursting strain energy index was further used for short-term spatial-temporal pre-warning of rock bursts. The temporal sequence curve and spatial contour nephograms indicate that the status of the danger and the specific hazardous zones, and levels of rock burst risk can be quantitatively and rapidly analysed in short time and in space. The multidimensional precursory characteristic identification of rock bursts, including qualitative analysis, intermediate and short-time quantitative predictions, can guide the choice of measures implemented to control rock bursts in the field, and provides a new approach to monitor and forecast rock bursts in space and time.

  2. Investigations into stress shell characteristics of surrounding rock in fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.X.; Chang, J.C.; Yang, K. [Anhui University of Science and Technology, Huainan (China)

    2009-01-15

    A key issue in underground mining is to understand and master the evolving patterns of stress induced by mining, and to control and utilize the action of rock pressure. Numerical and physical modeling tests have been carried out to investigate the distribution patterns of stress in the rock surrounding a fully mechanized top-coal caving (FMTC) face. The results showed that a macro-stress shell composed of high stress exists in the rock surrounding an FMTC face. The stress of the shell is higher than its internal and external stress and the stresses at its skewback producing abutment pressure for the surrounding rock. The stress shell lies in the virgin coal and rock mass in the vicinity of the face and its sagging zone. The stress shell, which bears and transfers the loads of overlying strata, acts as the primary supporting system of forces, and is the corpus of characterizing three-dimensional and macro-rock pressure distribution of mining face. Its external and internal shape changes with the variations in the working face structure as the face advances. Within the low-stress zone inside the stress shell, another structure, i.e. voussoir beam, which only bears parts of the load from the lower-lying strata, will produce periodic pressures on the face instead of great dynamic pressure even if the beam ruptures and loses stability. The results show that the FMTC face is situated within the lower-stress zone, which is protected by the stress shell of the overlying surrounding rock. We give an explanation of lower occurrence of rock pressure on FMTC faces, and reveal the mechanical nature of the top coal of an FMTC face acting as a 'cushion'. The strata behaviors of the face and its neighboring gates are under control of the stress shell. Drastic rock pressure in mine may occur when the balance of the stress shell is destruction or the forces system of the stress shell transfers. Crown Copyright

  3. Characteristics of the Triassic Source Rocks of the Aitutu Formation in the (West Timor Basin

    Directory of Open Access Journals (Sweden)

    Asep Kurnia Permana

    2014-12-01

    Full Text Available DOI:10.17014/ijog.v1i3.192The Triassic rocks of the (West Timor Basin have been identified that was mainly deposited in the  marine environment. The fine grained clastics and carbonate  rocks of this Triassic marine  facies are considered to be the most promising source rocks potential in this basin. In this paper we present geochemical and petrographic data from outcrop samples of the Triassic carbonate Aitutu Formation, due to emphasized the organic maturation, kerogen type of the organic matter and the origin of the organic matter.  A representative of selected sample were subjected to the Rock-Eval Pyrolisis, vitrinite reflectance and thermal alteration index, bitumen extraction, were analyzed on the GC-MS. The samples were collected from marine deposit of the Triassic Sequence. The TOC values of the analyzed sample range between rich and rich organic richness (0.51% - 9.16%, wt.%, TOC, which consists mainly of type II and III kerogen and the organic matter consider to be predominantly oil/gas prone and gas prone potential. The thermal maturity assessed from Tmax, TAI, and vitrinite reflectance shows an immature to early peak mature stage of the organic matter. The GC-MS analyses of the biomarkers indicate mainly the organic matter derived from mixed source rocks facies containing alga debris and higher plant terrestrial origin.

  4. The disposal of high level radioactive waste in argillaceous host rocks identification of parameters, constraints and geological assessment priorities

    International Nuclear Information System (INIS)

    Horseman, S.T.

    1994-01-01

    The purpose of this report, commissioned by ENRESA, is to examine the characteristics, properties and responses of argillaceous media (clays and more indurated mudrocks) in some detail in order to identify the main parameters that will influence the radiological safety of a deep underground facility for the disposal of high-level radioactive wastes (HLW) and to highlight possible constraints and other important issues relating to the construction, operation and performance of such a facility

  5. Uranium in alkaline rocks

    International Nuclear Information System (INIS)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential

  6. Uranium in alkaline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M.; Wollenberg, H.; Strisower, B.; Bowman, H.; Flexser, S.; Carmichael, I.

    1978-04-01

    Geologic and geochemical criteria were developed for the occurrence of economic uranium deposits in alkaline igneous rocks. A literature search, a limited chemical analytical program, and visits to three prominent alkaline-rock localities (Ilimaussaq, Greenland; Pocos de Caldas, Brazil; and Powderhorn, Colorado) were made to establish criteria to determine if a site had some uranium resource potential. From the literature, four alkaline-intrusive occurrences of differing character were identified as type-localities for uranium mineralization, and the important aspects of these localities were described. These characteristics were used to categorize and evaluate U.S. occurrences. The literature search disclosed 69 U.S. sites, encompassing nepheline syenite, alkaline granite, and carbonatite. It was possible to compare two-thirds of these sites to the type localities. A ranking system identified ten of the sites as most likely to have uranium resource potential.

  7. Magmatism during the accretion of the late Archaean Dharwar Craton (South India): sanukitoids and related rocks in their geological context.

    Science.gov (United States)

    Moyen, J.-F.; Martin, H.; Jayananda, M.; Peucat, J.-J.

    2003-04-01

    The South Indian Dharwar Craton assembled during the late-Archaean (ca. 2.5 Ga). This event was associated with intense granite genesis and emplacement. Based on petrography and geochemistry, 4 main types of late Archaean granitoids were distinguished: (1) Anatectic granites (and diatexites), formed by partial melting of TTG gneisses; (2) Classical TTGs; (3) Sanukitoids, generated by interaction between slab melts (TTG) and mantle peridotite; (4) The high HFSE Closepet granite, interpreted as derived from partial melting of a mantle metasomatized by slab melts (TTG). While the 3 later groups all are interpreted as resulting from slab melt/mantle wedge interactions, their differences are related to decreasing felsic melt/peridotite ratios during the ascent “slab melts” in the mantle wedge above an active subduction zone. Field data together with geochronology and isotope geochemistry allow to subdivide the Dharwar craton into three main domains: (1) The Western Dharwar Craton (WDC) is an old (3.3 2.9 Ga ), stable continental block with limited amounts of 2.5 Ga old anatectic granites. (2) The Eastern Dharwar Craton (EDC) is subdivided into two parts: (2a) West of Kolar Schist Belt, a region of 3.0-2.7 Ga old basement intruded by 2.5 Ga old anatectic granites; (2b) East of Kolar, an area featuring mainly 2.5 Ga old diatexites and granites, derived of partial melting of a newly accreted TTG crust. Anatectic granites are ubiquitous, and late in the cratonic evolution; they witnessed generalized melting of a juvenile crust. In contrast, deep-originated granites emplaced before this melting and are restricted to the boundaries between the blocks. This structure of distinct terranes separated by narrow bands operating as channels for deep-originated magmas provides independent evidences for a two-stage evolution: an arc accretion context for the TTG, sanukitoids and related rocks, immediately followed by high temperature reworking of the newly accreted craton

  8. Geologic-tectonic evolutional characteristics and prospecting potential for ISL-amenable sandstone-type uranium deposits; in Sichuan basin

    International Nuclear Information System (INIS)

    Liu Jianhua; Zhu Xiyang; Wang Sili; Wei Jisheng

    2005-01-01

    Through the analysis on geologic-tectonic evolution of Sichuan basin, authors of this paper suggest: because of the heterogeneity of the basin basement and cover structures resulting from the lateral dividing, those segments in the basin that experienced only weak tectonic activation, and those that were uplifted and eroded earlier have not been intensely deformed, and have not experienced long-period burying. Rocks in those segments are poorly consolidated and there exist conditions for the formation of large-area artesian slope at the transitional sites between uplifted and subsided areas, possessing favourable hydrogeologic conditions for long-term infiltration of groundwater. These areas must be the targets for prospecting for ISL-amenable sandstone-type uranium deposits. Correspondingly, the Triassic and Jurassic where loose sand bodies are hosted are prospecting target horizons for uranium. (authors)

  9. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    Science.gov (United States)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  10. Rock Fragmentation Characteristics by TBM Cutting and Efficiency under Bi-Lateral Confinement

    Directory of Open Access Journals (Sweden)

    Yulong Chen

    2018-03-01

    Full Text Available In this study, the mechanisms of rock breakage are assessed using tunnel boring machine (TBM disc cutters under bi-axial pressure. Sequential indentation tests were conducted on granite specimens using a tri-axial testing platform. The morphology and volume of the fractured surface were measured and analyzed using a three-dimensional surface profilometer. An analysis of rock breaking growth and efficiency was performed as well. When the minor confining pressure (σ1 is constant, the results show that a larger difference in confining pressure leads to a larger volume of fractured surface, thereafter improving the rock-breaking efficiency even though the penetration energy is enlarged. On the other hand, when the major confining pressure (σ2 is constant, the penetration energy increases proportionally with the σ1; however, the volume of fractured surface is decreased, and the breaking efficiency is attenuated as well.

  11. Executive summary--2002 assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado: Chapter 1 in Total petroleum systems and geologic assessment of undiscovered oil and gas resources in the San Juan Basin Province, exclusive of Paleozoic rocks, New Mexico and Colorado

    Science.gov (United States)

    ,

    2013-01-01

    In 2002, the U.S. Geological Survey (USGS) estimated undiscovered oil and gas resources that have the potential for additions to reserves in the San Juan Basin Province (5022), New Mexico and Colorado (fig. 1). Paleozoic rocks were not appraised. The last oil and gas assessment for the province was in 1995 (Gautier and others, 1996). There are several important differences between the 1995 and 2002 assessments. The area assessed is smaller than that in the 1995 assessment. This assessment of undiscovered hydrocarbon resources in the San Juan Basin Province also used a slightly different approach in the assessment, and hence a number of the plays defined in the 1995 assessment are addressed differently in this report. After 1995, the USGS has applied a total petroleum system (TPS) concept to oil and gas basin assessments. The TPS approach incorporates knowledge of the source rocks, reservoir rocks, migration pathways, and time of generation and expulsion of hydrocarbons; thus the assessments are geologically based. Each TPS is subdivided into one or more assessment units, usually defined by a unique set of reservoir rocks, but which have in common the same source rock. Four TPSs and 14 assessment units were geologically evaluated, and for 13 units, the undiscovered oil and gas resources were quantitatively assessed.

  12. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock. Final report

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J. M.; Campos, R.; Cuevas, A. M.; Fernandez, E.

    2000-01-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  13. Natural remanent magnetization and rock magnetic parameters from the North-East Atlantic continental margin : Insights from a new, automated cryogenic magnetometer at the Geological Survey of Norway

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Knies, Jochen; Sauer, Simone

    2017-04-01

    Natural remanent magnetization (NRM) and rock magnetic parameters from two locations, West Barents Sea ( 71.6°N,16.2°E) and Vestnesa Ridge, NW Svalbard ( 79.0°N, 6.9°E), were acquired using a new, automatically operating cryogenic magnetometer system at the Geological Survey of Norway. The magnetometer setup comprises an automated robot sample feeding, dynamic operation and measurement monitoring, and customised output-to-database data handling. The setup is designed to dynamically enable a variety of parallel measurements with several coupled devices (e.g. balance, MS2B) to effectively use dead-time in between the otherwise time-consuming measurements with the cryogen magnetometer. Web-based access allows remote quality control and interaction 24/7 and enables high sample throughput. The magnetic properties are combined with geophysical, geochemical measurements and optical imaging, both radiographic and colour images, from high-resolution core-logging. The multidisciplinary approach enables determination and interpretation of content and formation of the magnetic fraction, and its development during diagenetic processes. Besides palaeomagnetic age determination the results offer the opportunity to study sediment transformation processes that have implications for the burial and degradation of organic matter. The results also help to understand long and short-term variability of sediment accumulation. Chemical sediment stability is directly linked to environmental and climate variability in the polar marine environment during the recent past.

  14. FEBEX project: full-scale engineered barriers experiment for a deep geological repository for high level radioactive waste in crystalline host rock

    Energy Technology Data Exchange (ETDEWEB)

    Alberid, J; Barcala, J M; Campos, R; Cuevas, A M; Fernandez, E [Ciemat. Madrid (Spain)

    2000-07-01

    FEBEX has the multiple objective of demonstrating the feasibility of manufacturing, handling and constructing the engineered barriers and of developing codes for the thermo-hydro-mechanical and thermo-hydro-geochemical performance assessment of a deep geological repository for high level radioactive wastes. These objectives require integrated theoretical and experimental development work. The experimental work consists of three parts: an in situ test, a mock-up test and a series of laboratory tests. The experiments is based on the Spanish reference concept for crystalline rock, in which the waste capsules are placed horizontally in drifts surround by high density compacted bentonite blocks. In the two large-scale tests, the thermal effects of the wastes were simulated by means of heaters; hydration was natural in the in situ test and controlled in the mock-up test. The large-scale tests, with their monitoring systems, have been in operation for more than two years. the demonstration has been achieved in the in situ test and there are great expectation that numerical models sufficiently validated for the near-field performance assessment will be achieved. (Author)

  15. Improving the Monitoring, Verification, and Accounting of CO{sub 2} Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, Engin; DeAngelo, Michael; Hardage, Bob; Sava, Diana; Sullivan, Charlotte; Wagner, Donald

    2012-12-31

    Research done in this study showed that P-SV seismic data provide better spatial resolution of geologic targets at our Appalachian Basin study area than do P-P data. This finding is important because the latter data (P-P) are the principal seismic data used to evaluate rock systems considered for CO{sub 2} sequestration. The increase in P-SV{sub 1} resolution over P-P resolution was particularly significant, with P-SV{sub 1} wavelengths being approximately 40-percent shorter than P-P wavelengths. CO{sub 2} sequestration projects across the Appalachian Basin should take advantage of the increased resolution provided by converted-shear seismic modes relative to P-wave seismic data. In addition to S-wave data providing better resolution of geologic targets, we found S-wave images described reservoir heterogeneities that P-P data could not see. Specifically, a channel-like anomaly was imaged in a key porous sandstone interval by P-SV{sub 1} data, and no indication of the feature existed in P-P data. If any stratigraphic unit is considered for CO{sub 2} storage purposes, it is important to know all heterogeneities internal to the unit to understand reservoir compartmentalization. We conclude it is essential that multicomponent seismic data be used to evaluate all potential reservoir targets whenever a CO{sub 2} storage effort is considered, particularly when sequestration efforts are initiated in the Appalachian Basin. Significant differences were observed between P-wave sequences and S- wave sequences in data windows corresponding to the Oriskany Sandstone, a popular unit considered for CO{sub 2} sequestration. This example demonstrates that S-wave sequences and facies often differ from P-wave sequences and facies and is a principle we have observed in every multicomponent seismic interpretation our research laboratory has done. As a result, we now emphasis elastic wavefield seismic stratigraphy in our reservoir characterization studies, which is a science based on the

  16. A fast and sensitive method for evaluating nuclides migration characteristics in rock medium by using micro-channel reactor concept

    Science.gov (United States)

    Okuyama, Keita; Sasahira, Akira; Noshita, Kenji; Yoshida, Takuma; Kato, Kazuyuki; Nagasaki, Shinya; Ohe, Toshiaki

    Experimental effort to evaluate the barrier performance of geologic disposal requires relatively long testing periods and chemically stable conditions. We have developed a new technique, the micro mock-up method, to present a fast and sensitive method to measure both nuclide diffusivity and sorption coefficient within a day to overcome such disadvantage of the conventional method. In this method, a Teflon plate having a micro channel (10-200 μm depth, 2, 4 mm width) is placed just beneath the rock sample plate, radionuclide solution is injected into the channel with constant rate. The breakthrough curve is being measured until a steady state. The outlet flux in the steady state however does not meet the inlet flux because of the matrix diffusion into the rock body. This inlet-outlet difference is simply related to the effective diffusion coefficient ( De) and the distribution coefficient ( Kd) of rock sample. Then, we adopt a fitting procedure to speculate Kd and De values by comparing the observation to the theoretical curve of the two-dimensional diffusion-advection equation. In the present study, we measured De of 3H by using both the micro mock-up method and the conventional through-diffusion method for comparison. The obtained values of De by two different ways for granite sample (Inada area of Japan) were identical: 1.0 × 10 -11 and 9.0 × 10 -12 m 2/s but the testing period was much different: 10 h and 3 days, respectively. We also measured the breakthrough curve of 85Sr and the resulting Kd and De agreed well to the previous study obtained by the batch sorption experiments with crushed samples. The experimental evidence and the above advantages reveal that the micro mock-up method based on the microreactor concept is powerful and much advantageous when compared to the conventional method.

  17. Discussion on geological characteristics and types of uranium deposit of Mesozoic-cenozoic basin in Guangdong

    International Nuclear Information System (INIS)

    Wang Kesheng; Deng Shihua

    1992-01-01

    Systematic summary is briefly made of the distribution, classification, formation, regional geological setting, uranium deposit type, ore-controlling geological conditions of the Mesozoic-Cenozoic basin in Guangdong area, and on this basis it is proposed that there exist different ore-controlling conditions in different types of basin and different types of deposit can be formed in them, thus indicating the direction for exploration of the basin type uranium deposit from now on and expanding the prospect of ore-finding in the basins in Guangdong area

  18. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  19. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM study

    Directory of Open Access Journals (Sweden)

    I. Vazaios

    2018-06-01

    Full Text Available The main objective of this paper is to examine the influence of the applied confining stress on the rock mass modulus of moderately jointed rocks (well interlocked undisturbed rock mass with blocks formed by three or less intersecting joints. A synthetic rock mass modelling (SRM approach is employed to determine the mechanical properties of the rock mass. In this approach, the intact body of rock is represented by the discrete element method (DEM-Voronoi grains with the ability of simulating the initiation and propagation of microcracks within the intact part of the model. The geometry of the pre-existing joints is generated by employing discrete fracture network (DFN modelling based on field joint data collected from the Brockville Tunnel using LiDAR scanning. The geometrical characteristics of the simulated joints at a representative sample size are first validated against the field data, and then used to measure the rock quality designation (RQD, joint spacing, areal fracture intensity (P21, and block volumes. These geometrical quantities are used to quantitatively determine a representative range of the geological strength index (GSI. The results show that estimating the GSI using the RQD tends to make a closer estimate of the degree of blockiness that leads to GSI values corresponding to those obtained from direct visual observations of the rock mass conditions in the field. The use of joint spacing and block volume in order to quantify the GSI value range for the studied rock mass suggests a lower range compared to that evaluated in situ. Based on numerical modelling results and laboratory data of rock testing reported in the literature, a semi-empirical equation is proposed that relates the rock mass modulus to confinement as a function of the areal fracture intensity and joint stiffness. Keywords: Synthetic rock mass modelling (SRM, Discrete fracture network (DFN, Rock mass modulus, Geological strength index (GSI, Confinement

  20. Hydrogeologic characteristics of domains of sparsely fractured rock in the granitic Lac Du Bonnet Batholith, southeastern Manitoba, Canada

    International Nuclear Information System (INIS)

    Stevenson, D.R.; Kozak, E.T.; Davison, C.C.; Gascoyne, M.; Broadfoot, R.A.

    1996-06-01

    The hydrogeologic characteristics of the granitic Lac du Bonnet batholith in southeastern Manitoba have been studied since 1978, as part of AECL's program to assess the concept of disposing of Canada's nuclear fuel waste deep within plutonic rocks of the Canadian Shield (Davison et al. 1994a). These studies have included an extensive program of drilling, logging, testing, sampling and monitoring in 19 deep surface boreholes drilled at Grid areas located across the Lac du Bonnet batholith, at the Whiteshell Laboratory (WL), and in surface and underground boreholes at the Underground Research Laboratory (URL). Based on these investigations domains of low permeability, sparsely fractured rock (SFR) have been identified in the Lac du Bonnet batholith

  1. Geological map of Uruguay Esc 1,100,000. Carmelo Sheet P-24

    International Nuclear Information System (INIS)

    Ferrando, L; Eugui, W; Cabrera, Z; Elias, R

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Carmelo) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils of the precambrian period in the Mercedes , Fray Bentos, Libertad and Raigon formations. The Precambrian rocks are found in large quarries in Carmelo hill

  2. Geological map of Uruguay Esc 1,100,000. Melo Sheet D-15

    International Nuclear Information System (INIS)

    Ferrando, L.; Andreis, R.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Melo) and the explanatory memoranda which describes the geological , lithological and sedimentological characteristics soils belong to the pre devonian period in Melo, Buena Vista Yaguari and Tres islas formations. These metamorphic rocks would be compared with the orogenic cycle of the east and southeast groups

  3. Geological map of Uruguay Esc 1,100,000. Cuchilla del Ombu. Sheet H-12

    International Nuclear Information System (INIS)

    Montana, J.

    1990-01-01

    This work is about the geological map of Uruguay Esc.1.100.000 (Cuchilla del Ombu) and the explanatory memoranda which describes the geological, lithological and sedimentological characteristics soils. In crystalline rocks have been recognized four basic units: porphyritic granite, Cunapiru granite, Cunapiru subvolcanic microgranite and metamorfites

  4. Geologic characteristics of sediment- and volcanic-hosted disseminated gold deposits - Search for an occurrence model

    Science.gov (United States)

    White, Donald E.; Fournier, Robert O.; Rytuba, James J.; Rye, Robert O.; Cunningham, Charles G.; Berger, Byron R.; Silberman, Miles L.; Bonham, Harold F.; Strachan, Donald G.; Birak, Donald J.; Hawkins, Robert J.; Tooker, Edwin W.; Tooker, Edwin W.

    1985-01-01

    The current expansion of resource information, particularly on "disseminated" gold, and the improved technologies now available for resource investigations should place us in an enhanced position for developing a better predictive methodology for meeting one of the important responsibilities of the U.S. Geological Survey-to examine and assess the mineral resources of the geologic terranes composing the public (and privately owned) lands of the United States. The first step is systematic organization of these data. Geologic-occurrence models are an effective systematic method by which to organize large amounts of resource information into a logical sequence facilitating its use more effectively in meeting several industry and Survey objectives, which include the exploration for resources and the assessment of resource potential for land-use decisions. Such models also provide a scientific basis for metallogenesis research, which considers the observable features or attributes of ore occurrence and their "fit" into the Earth's resource puzzle. The use of models in making resource assessments/appraisals was addressed by Shawe (1981), who reported the results of a workshop on methods for resource appraisal of Wilderness and Conterminous United States Mineral Appraisal Program (CUSMAP; 1:250,000-scale quadrangles) areas. The Survey's main objective in the 1982 workshop was to evaluate the status of knowledge about disseminated or very fine grained gold deposits and, if possible, to develop an occurrence model(s).This report on the workshop proceedings has three main objectives: (1) Education through the publication of a summary review and presentation of new thinking and observations about the scientific bases for those geologic processes and environments that foster disseminated gold-ore formation; (2) systematic organization of available geologic, geochemical, and geophysical information for a range of typical disseminated gold deposits (including recognition of gaps

  5. UTEX modeling of xenon signature sensitivity to geology and explosion cavity characteristics following an underground nuclear explosion

    Science.gov (United States)

    Lowrey, J. D.; Haas, D.

    2013-12-01

    Underground nuclear explosions (UNEs) produce anthropogenic isotopes that can potentially be used in the verification component of the Comprehensive Nuclear-Test-Ban Treaty. Several isotopes of radioactive xenon gas have been identified as radionuclides of interest within the International Monitoring System (IMS) and in an On-Site Inspection (OSI). Substantial research has been previously undertaken to characterize the geologic and atmospheric mechanisms that can drive the movement of radionuclide gas from a well-contained UNE, considering both sensitivities on gas arrival time and signature variability of xenon due to the nature of subsurface transport. This work further considers sensitivities of radioxenon gas arrival time and signatures to large variability in geologic stratification and generalized explosion cavity characteristics, as well as compares this influence to variability in the shallow surface.

  6. Asymmetric step-like characteristics in a tilted rocking ratchet potential

    International Nuclear Information System (INIS)

    Lee, A. Khangjune; Lee, Jong-Rim; Lee, K.H.

    2012-01-01

    The overdamped Langevin dynamics has been employed to study the directional transport of particles driven in a tilted rocking ratchet potential. The system subjected to a constant direct force undergoes an asymmetrical dynamic transition from a static state to a sliding state at two different critical forces that are consistent with the predicted values. When an additional alternating force is applied to the system, the time-averaged velocity shows several steps of equal height as the direct force increases. These steps are similar to the Shapiro steps in an rf-driven Josephson junction, and appear whenever the system's natural frequency given by the direct force matches an integer multiple of the applied frequency. When the alternating force exceeds a certain critical value which can be also estimated for a slow rocking, a directional motion known as the rectification effect occurs even at zero direct force.

  7. Rheological characteristics of waste rock materials in abandoned mine deposit and debris flow hazards

    Science.gov (United States)

    Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin

    2015-04-01

    In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.

  8. Fractal Characteristics of Rock Fracture Surface under Triaxial Compression after High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2016-01-01

    Full Text Available Scanning Electron Microscopy (SEM test on 30 pieces of fractured granite has been researched by using S250MK III SEM under triaxial compression of different temperature (25~1000°C and confining pressure (0~40 MPa. Research results show that (1 the change of fractal dimension (FD of rock fracture with temperature is closely related to confining pressure, which can be divided into two categories. In the first category, when confining pressure is in 0~30 MPa, FD fits cubic polynomial fitting curve with temperature, reaching the maximum at 600°C. In the second category, when confining pressure is in 30~40 MPa, FD has volatility with temperature. (2 The FD of rock fracture varies with confining pressure and is also closely related to the temperature, which can be divided into three categories. In the first category, FD has volatility with confining pressure at 25°C, 400°C, and 800°C. In the second category, it increases exponentially at 200°C and 1000°C. In the third category, it decreases exponentially at 600°C. (3 It is found that 600°C is the critical temperature and 30 MPa is the critical confining pressure of granite. The rock transfers from brittle to plastic phase transition when temperature exceeds 600°C and confining pressure exceeds 30 MPa.

  9. A petrological study of Paleoarchean rocks of the Onverwacht Group: New insights into the geologic evolution of the Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Grosch, E. G.; Mcloughlin, N.; Abu-Alam, T. S.; Vidal, O.

    2012-12-01

    This study presents a multi-disciplinary petrological approach applied to surface samples and a total of 800 m of scientific drill core that furthers our understanding of the geologic evolution of the ca. 3.5 to 3.2 Ga Onverwacht Group of the Barberton greenstone belt (BGB), South Africa. Detrital zircon grains in coarse (diamictite) to fine-grained clastic sedimentary rocks of the Noisy formation (drill core KD2a) that unconformably overlies the volcanic ca. 3472 Ma Hooggenoeg Formation, are investigated by laser ablation LA-ICP-MS to constrain their 207Pb/206Pb ages for depositional age and provenance. A wide range in 207Pb/206Pb ages between ca. 3600 and 3430 Ma is reported, corresponding to surrounding TTG plutons and the ca.3667-3223 Ma Ancient Gneiss Complex. The youngest detrital zircon grain identified has an age of 3432 ± 10 Ma. Given the short time interval for a major change in geologic environment between ca. 3472 Ma and ca. 3432 Ma, it is argued here, that the Noisy formation is the earliest tectonic basin in the BGB, which developed during major tectonic uplift at ca. 3432 Ma. In the overlying ca. 3334 Ma Kromberg type-section, application of a chlorite thermodynamic multi-equilibrium calculation, dioctahedral mica hydration-temperature curve and pseudosection modelling, indicates a wide range in metamorphic conditions from sub-greenschist to the uppermost greenschist facies across the Kromberg type-section. A central mylonitic fuchsite-bearing zone, referred to as the Kromberg Section Mylonites, records at least two metamorphic events: a high-T, low-P (420 ± 30oC, sedimentary sequence contains detrital and diagenetic pyrites with a significant variation in Δ33S of -0.62 to +1.4‰ and δ34SCDT between -7.00 and +12.6‰ in the upper turbidite unit, to more narrow isotopic ranges with magmatic-atmospheric values in the underlying polymictitic diamictite. A sedimentary quartz-pyrite vein in the diamictite records the largest range and most negative

  10. A non-Linear transport model for determining shale rock characteristics

    Science.gov (United States)

    Ali, Iftikhar; Malik, Nadeem

    2016-04-01

    Unconventional hydrocarbon reservoirs consist of tight porous rocks which are characterised by nano-scale size porous networks with ultra-low permeability [1,2]. Transport of gas through them is not well understood at the present time, and realistic transport models are needed in order to determine rock properties and for estimating future gas pressure distribution in the reservoirs. Here, we consider a recently developed non-linear gas transport equation [3], ∂p-+ U ∂p- = D ∂2p-, t > 0, (1) ∂t ∂x ∂x2 complimented with suitable initial and boundary conditions, in order to determine shale rock properties such as the permeability K, the porosity φ and the tortuosity, τ. In our new model, the apparent convection velocity, U = U(p,px), and the apparent diffusivity D = D(p), are both highly non-linear functions of the pressure. The model incorporate various flow regimes (slip, surface diffusion, transition, continuum) based upon the Knudsen number Kn, and also includes Forchchiemers turbulence correction terms. In application, the model parameters and associated compressibility factors are fully pressure dependent, giving the model more realism than previous models. See [4]. Rock properties are determined by solving an inverse problem, with model parameters adjustment to minimise the error between the model simulation and available data. It is has been found that the proposed model performs better than previous models. Results and details of the model will be presented at the conference. Corresponding author: namalik@kfupm.edu.sa and nadeem_malik@cantab.net References [1] Cui, X., Bustin, A.M. and Bustin, R., "Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications", Geofluids 9, 208-223 (2009). [2] Chiba R., Fomin S., Chugunov V., Niibori Y. and Hashida T., "Numerical Simulation of Non Fickian Diffusion and Advection in a Fractured Porous Aquifer", AIP Conference Proceedings 898, 75 (2007

  11. Long-term characteristics of geological conditions in Japan. Pt. 1. Fundamental concept for future's prediction of geological conditions and the subjects

    International Nuclear Information System (INIS)

    Tanaka, Kazuhiro; Chigira, Masahiro.

    1997-01-01

    It is very important to evaluate the long-term stability of geological conditions such as volcanic activity, uplift-subsidence, earthquakes, faulting and sea level change when the long-term safety performance of HLW geological disposal is investigated. We proposed the extrapolation method using the geological date obtained in the geologic time of the last 500 ka to predict the future's tectonic movements in Japan. Furthermore, we extract geological conditions that would affect the long-term safety of HLW geological disposal with regard to direct and indirect radionuclide release scenarios. As a result, it was concluded that volcanic activity and tectonic movements including faulting and uplift-subsidence, should be considered and their surveying system and evaluating method should be developed. (author)

  12. Unraveling the Geologic History of Antarctica Through the Study of Sediment and Rock Cores: The ANDRILL Education and Public Outreach Experience.

    Science.gov (United States)

    Rack, F. R.; Huffman, L.; Berg, M.; Levy, R.; Harwood, D.; Lacy, L.

    2007-12-01

    ANDRILL (ANtarctic geological DRILLing) is a multinational collaboration involving more than 250 scientists from Germany, Italy, New Zealand and the United States. The ANDRILL Program has mobilized scientists, technicians, drillers, engineers, students and educators from four member nations to bring world-class science into focus and provide in-depth immersive experiences to educators through the ARISE (ANDRILL Research Immersion for Science Educators) Program and Project Iceberg. During two seasons of scientific drilling, encompassing the McMurdo Ice Shelf (MIS) Project and the Southern McMurdo Sound (SMS) Project, 15 educators have been immersed in ANDRILL science and have participated in both learning and teaching experiences. Blogs, video journals, images and other resources were generated and distributed online to teachers, students and the general public through the ANDRILL website as part of Project Iceberg, which was used as a unifying theme for the outreach effort. The video journals chronicled the journey from Lincoln, Nebraska to Antarctica and introduced viewers to many aspects of the ANDRILL program in an engaging manner. An accompanying guide provided background information, discussion starters, and engaging activities for students and adults alike. Subtitles in German and Italian were used on each of the video journals in addition to the English narrative, and the resulting product was entitled, ANDRILL: A REAL WORLD GEOSCIENCE ADVENTURE. The primary objective was to introduce teachers, students, and the general public to Antarctica and the ANDRILL Program, and to provide preliminary insights into the following questions: How do scientists from around the world come together in the coldest, windiest, driest place on Earth to uncover the secrets that have been shrouded beneath the ice for millions of years? What secrets do the rocks record? How can I join the journey to learn more about Antarctica and ANDRILL?

  13. Application of nanoparticle of rock phosphate and biofertilizer in increasing some soil chemical characteristics of variable charge soil

    Science.gov (United States)

    Devnita, Rina; Joy, Benny; Arifin, Mahfud; Hudaya, Ridha; Oktaviani, Nurul

    2018-02-01

    Soils in Indonesia are dominated by variable charge soils where the technology like fertilization did not give the same result as the soils with permanent charge. The objectives of this research is to increase some chemical characteristic of variable charge soils by using the high negative charge ameliorations like rock phosphate in nanoparticle combined with biofertilizer. The research used a complete randomized experimental design in factorial with two factors. The first factor was nanoparticle of rock phosphate consists of four doses on soil weight percentage (0%, 2.5%, 5.0% and 7.5%). The second factor was biofertilizer consisted of two doses (without biofertilizer and 1 g.kg-1 soil biofertilizer). The combination treatments replicated three times. Variable charge soil used was Andisol. Andisol and the treatments were incubated for 4 months. Soil samples were taken after one and four months during incubation period to be analyzed for P-retention, available P and potential P. The result showed that all combinations of rock phosphate and biofertilizer decreased the P-retention to 75-77% after one month. Independently, application of 7.5% of rock phosphate decreased P-retention to 87.22% after four months, increased available P (245.37 and 19.12 mg.kg-1) and potential P (1354.78 and 3000.99 mg/100) after one and four months. Independently, biofertilizer increased the P-retention to 91.66% after four months, decreased available P to 121.55 mg.kg-1 after one month but increased to 12.55 mg.kg-1 after four months, decreased potential P to 635.30 after one month but increased to 1810.40 mg.100 g-1 after four months.

  14. Rock stresses (Grimsel rock laboratory)

    International Nuclear Information System (INIS)

    Pahl, A.; Heusermann, S.; Braeuer, V.; Gloeggler, W.

    1989-01-01

    On the research and development project 'Rock Stress Measurements' the BGR has developed and tested several test devices and methods at GTS for use in boreholes at a depth of 200 m and has carried out rock mechanical and engineering geological investigations for the evaluation and interpretation of the stress measurements. The first time a computer for data processing was installed in the borehole together with the BGR-probe. Laboratory tests on hollow cylinders were made to study the stress-deformation behavior. To validate and to interprete the measurement results some test methods were modelled using the finite-element method. The dilatometer-tests yielded high values of Young's modulus, whereas laboratory tests showed lower values with a distinct deformation anisotropy. Stress measurements with the BGR-probe yielded horizontal stresses being higher than the theoretical overburden pressure and vertical stresses which agree well with the theoretical overburden pressure. These results are comparable to the results of the hydraulic fracturing tests, whereas stresses obtained with CSIR-triaxial cells are generally lower. The detailed geological mapping of the borehole indicated relationships between stress and geology. With regard to borehole depth different zones of rock structure joint frequency, joint orientation, and orientation of microfissures as well as stress magnitude, stress direction, and degree of deformation anisotropy could be distinguished. (orig./HP) [de

  15. Moessbauer Study of Sedimentary Rocks from King George Island, Antarctica

    International Nuclear Information System (INIS)

    Kuzmann, E.; Souza, P. A. de; Schuch, L. A.; Oliveira, A. C. de; Garg, R.; Garg, V. K.

    2002-01-01

    The separation of continents at the periphery of Antarctica occurred about 180 ma ago due to volcanic activity. Geological faults can be very important in the study of geological occurrences. Such geological faults occur across the Admiralty Bay, King George Island, and have been studied in detail previously. Controversial statements were given in earlier works, based on conventional geological investigations, as to whether altered 'Jurassic' and unaltered Tertiary rocks were separated by a major fault which goes across the Admiralty Bay, or whether there is no difference in the alteration of the rocks located at either side of the fault. The aim of our work is to investigate rock samples from the Admiralty Bay of King George Island, Antarctica, from different locations on both sides of the geological fault. For these investigations 57 Fe Moessbauer spectroscopy and X-ray diffractometry were used. We have found that the phase composition, and the iron distribution among the crystallographic sites of iron-bearing minerals, are characteristic of the location of the rock samples from the Admiralty Bay of King George Island. There is a much higher amount of iron oxides in the rocks from the south part of the geological fault than in the north part. The differences in the mineral composition and iron distribution showed that the rocks in the southern part of the geological fault of King George Island are significantly altered compared to the rocks in the northern part. Our present results support and complement well the results obtained earlier on soils from King George Island.

  16. Retrogressive harmonic motion as structural and stylistic characteristic of pop-rock music

    Science.gov (United States)

    Carter, Paul S.

    The central issue addressed in this dissertation is that of progressive and retrogressive harmonic motion as it is utilized in the repertoire of pop-rock music. I believe that analysis in these terms may prove to be a valuable tool for the understanding of the structure, style and perception of this music. Throughout my study of this music, various patterns of progressive and retrogressive harmonic motions within a piece reveal a kind of musical character about it, a character on which much of a work's style, organization and extramusical nature often depends. Several influential theorists, especially Jean-Phillipe Rameau, Hugo Riemann, and Arnold Schoenberg, have addressed the issues of functional harmony and the nature of the motion between chords of a tonal harmonic space. After assessing these views, I have found that it is possible to differentiate between two fundamental types of harmonic motions. This difference, one that I believe is instrumental in characterizing pop-rock music, is the basis for the analytical perspective I wish to embrace. After establishing a method of evaluating tonal harmonic root motions in these terms, I wish to examine a corpus of this music in order to discover what a characterization of its harmonic motion may reveal about each piece. Determining this harmonic character may help to establish structural and stylistic traits for that piece, its genre, composer, period, or even its sociological purpose. Conclusions may then be drawn regarding the role these patterns play in defining musical style traits of pop-rock. Partly as a tool for serving the study mentioned above I develop a graphical method of accounting for root motion I name the tonal "Space-Plot"; This apparatus allows the analyst to measure several facets about the harmonic motion of the music, and to see a wide scope of relations in and around a diatonic key.

  17. Geochemical Characteristics of the Gyeongju LILW Repository II. Rock and Minera

    International Nuclear Information System (INIS)

    Kim, Geon Young; Koh, Yong Kwon; Choi, Byoung Young; Shin, Seon Ho; Kim, Doo Haeng

    2008-01-01

    Geochemical study on the rocks and minerals of the Gyeongju low and intermediate level waste repository was carried out in order to provide geochemical data for the safety assessment and geochemical modeling. Polarized microscopy, X-ray diffraction method, chemical analysis for the major and trace elements, scanning electron microscopy (SEM), and stable isotope analysis were applied. Fracture zones are locally developed with various degrees of alteration in the study area. The study area is mainly composed of granodiorite and diorite and their relation is gradational in the field. However, they could be easily distinguished by their chemical property. The granodiorite showed higher Sig 2 content and lower MgO and Fe 2 O 3 contents than the diorite. Variation trends of the major elements of the granodiorite and diorite were plotted on the same line according to the increase of Sig 2 content suggesting that they were differentiated from the same magma. Spatial distribution of the various elements showed that the diorite region had lower Sig 2 , Al 2 O 3 , Na 2 O and K 2 O contents, and higher CaO, Fe 2 O 3 contents than the granodiorite region. Especially, because the differences in the CaO and Na 2 O distribution were most distinct and their trends were reciprocal, the chemical variation of the plagioclase of the granitic rocks was the main parameter of the chemical variation of the host rocks in the study area. Identified fracture-filling minerals from the drill core were montmorillonite, zeolite minerals, chlorite, illite, calcite and pyrite. Especially pyrite and laumontite, which are known as indicating minerals of hydrothermal alteration, were widely distributed in the study area indicating that the study area was affected by mineralization and/or hydrothermal alteration. Sulfur isotope analysis for the pyrite and oxygen-hydrogen stable isotope analysis for the clay minerals indicated that they were originated from the magma. Therefore, it is considered that

  18. Study on the Distribution of Geological Hazards Based on Fractal Characteristics - a Case Study of Dachuan District

    Science.gov (United States)

    Wang, X.; Liu, H.; Yao, K.; Wei, Y.

    2018-04-01

    It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm-1250 mm and vegetation coverage is 30 %-60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.

  19. STUDY ON THE DISTRIBUTION OF GEOLOGICAL HAZARDS BASED ON FRACTAL CHARACTERISTICS – A CASE STUDY OF DACHUAN DISTRICT

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-04-01

    Full Text Available It is a complicated process to analyze the cause of geological hazard. Through the analysis function of GIS software, 250 landslides were randomly selected from 395 landslide hazards in the study area, superimposed with the types of landforms, annual rainfall and vegetation coverage respectively. It used box dimension method of fractal dimension theory to study the fractal characteristics of spatial distribution of landslide disasters in Dachuan district, and analyse the statistical results. Research findings showed that the The fractal dimension of the landslides in the Dachuan area is 0.9114, the correlation coefficient is 0.9627, and it has high autocorrelation. Zoning statistics according to various natural factors, the fractal dimension between landslide hazard points and deep hill, middle hill area is strong as well as the area whose average annual rainfall is 1050 mm–1250 mm and vegetation coverage is 30 %–60 %. Superposition of the potential hazard distribution map of single influence factors to get the potential hazard zoning of landslides in the area. Verifying the potential hazard zoning map of the potential landslides with 145 remaining disaster points, among them, there are 74 landslide hazard points in high risk area, accounting for 51.03 % of the total. There are 59 landslides in the middle risk area, accounting for 40.69 % of the total, and 12 in the low risk area, accounting for 8.28 % of the total. The matching degree of the verifying result and the potential hazard zoning is high. Therefore, the fractal dimension value divided the degree of geological disaster susceptibility can be described the influence degree of each influence factor to geological disaster point more intuitively, it also can divide potential disaster risk areas and provide visual data support for effective management of geological disasters.

  20. Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick; Houseworth, James

    2013-11-22

    The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

  1. A system of nomenclature for rocks in Olkiluoto

    International Nuclear Information System (INIS)

    Mattila, J.

    2006-06-01

    Due to international interest in the Finnish deep repository project at Olkiluoto (SW Finland) and the need for collaboration between scientists involved in site investigations for the disposal of spent nuclear fuel in other countries, a well-documented system of rock nomenclature is required, based on existing classification schemes and international recommendations. The BGS (British Geological Survey) rock classification scheme is the most comprehensive rock classification scheme and the basic principles behind it are utilised for the system of nomenclature for rocks in Olkiluoto. The BGS classification system is based on the use of descriptive names and a clear hierarchy, making it possible to classify rocks at different levels depending on the specific goals of the study, the level of available information, and the expertise of the user. Each rock type is assigned a root name, which is based on structural and textural characteristics or modal compositions of the rock and the root names are refined with qualifier terms as prefixes. Qualifier terms refer to the structure or modal composition of the rock. The bedrock at the Olkiluoto site consists of metamorphic and igneous rocks. The metamorphic rocks consist of migmatitic gneisses and (non-migmatitic) gneisses, which are further divided according to their structural characteristics and modal compositions, the former into stromatic, veined, diatexitic gneisses, the latter into mica, quartz, mafic and TGG gneisses. Igneous rocks consist of pegmatitic granites, K-feldspar porphyry and diabases. (orig.)

  2. Geochemical characteristics of mafic and ultramafic rocks from the Naga Hills Ophiolite, India: Implications for petrogenesis

    Directory of Open Access Journals (Sweden)

    Ajoy Dey

    2018-03-01

    Full Text Available The Naga Hills Ophiolite (NHO represents one of the fragments of Tethyan oceanic crust in the Himalayan Orogenic system which is exposed in the Phek and Kiphire districts of Nagaland, India. The NHO is composed of partially serpentinized dunite, peridotite, gabbro, basalt, minor plagiogranite, diorite dyke and marine sediments. The basalts are mainly composed of fine grained plagioclase feldspar, clinopyroxene and orthopyroxene and show quenching and variolitic textures. The gabbros are characterized by medium to coarse grained plagioclase, orthopyroxene and clinopyroxene with ophitic to sub-ophitic textures. The ultramafic cumulates are represented by olivine, Cpx and Opx. Geochemically, the basalts and gabbros are sub-alkaline to alkaline and show tholeiitic features. The basalts are characterized by 44.1–45.6 wt.% of SiO2 with 28–38 of Mg#, and the gabbros by 38.7–43.7 wt.% of SiO2, and 26–79 of Mg#. The ultramafic rocks are characterized by 37.4–52.2 wt.% of SiO2, and 80–88 of Mg#. In multi-element diagrams (spidergrams both basalts and gabbros show fractionated trends with strong negative anomalies of Zr, Nb, Sr and a gentle negative anomaly of P. However, the rare earth element (REE plots of the basalts and gabbros show two distinct patterns. The first pattern, represented by light REE (LREE depletion, suggests N-MORB features and can be interpreted as a signature of Paleo-Tethyan oceanic crust. The second pattern, represented by LREE enrichment with negligible negative Eu anomaly, conforms to E-MORB, and may be related to an arc tectonic setting. In V vs. Ti/1000, Cr vs. Y and AFM diagrams, the basalts and gabbros plot within Island Arc Tholeiite (IAT and MORB fields suggesting both ridge and arc related settings. The ultramafic rocks exhibit two distinct patterns both in spidergrams and in REE plots. In the spidergram, one group displays highly enriched pattern, whereas the other group shows near flat pattern compared

  3. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    Science.gov (United States)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  4. Plutonium rock-like fuel LWR nuclear characteristics and transient behavior in accidents

    Energy Technology Data Exchange (ETDEWEB)

    Akie, Hiroshi; Anoda, Yoshinari; Takano, Hideki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Yamaguchi, Chouichi; Sugo, Yukihiro

    1998-03-01

    For the disposition of excess plutonium, rock-like oxide (ROX) fuel systems based on zirconia (ZrO{sub 2}) or thoria (ThO{sub 2}) have been studied. Safety analysis of ROX fueled PWR showed it is necessary to increase Doppler reactivity coefficient and to reduce power peaking factor of zirconia type ROX (Zr-ROX) fueled core. For these improvements, Zr-ROX fuel composition was modified by considering additives of ThO{sub 2}, UO{sub 2} or Er{sub 2}O{sub 3}, and reducing Gd{sub 2}O{sub 3} content. As a result of the modification, comparable, transient behavior to UO{sub 2} fuel PWR was obtained with UO{sub 2}-Er{sub 2}O{sub 3} added Zr-ROX fuel, while the plutonium transmutation capability is slightly reduced. (author)

  5. New true-triaxial rock strength criteria considering intrinsic material characteristics

    Science.gov (United States)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian

  6. Igneous Rocks

    Science.gov (United States)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  7. The geological, geochemical, topographical and hydrogeological characteristics of the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Ball, T.K.; Milodowski, A.E.

    1991-01-01

    One of the four analogue sites chosen for investigation by the British Geological Survey is the uranium mineralization at Broubster, Caithness, Scotland. Naturally occurring uranium has been leached from a thin mineralized limestone horizon and has been carried by groundwater flow into a peat bog about 100 m away. This process has probably been going on for at least 5 000 years. Standard surveying, hydrogeological and geochemical methods have been applied in the investigation and analysis of the area. Selected samples of the mineralization, peat soils and associated groundwaters have been examined in detail. This report summarizes the main findings accumulated since 1968 when the site was first discovered, and provides a useful information base for further modelling work. 27 refs.; 12 plates; 40 figs.; 17 tabs

  8. The geological, geochemical, topographical and hydrogeological characteristics of the Broubster natural analogue site, Caithness

    International Nuclear Information System (INIS)

    Ball, T.K.; Milodowski, A.E.

    1989-06-01

    One of the four natural analogue sites chosen for investigation by the British Geological Survey is the uranium mineralisation at Broubster, Caithness, Scotland. Naturally occurring uranium has been leached from a thin mineralised limestone horizon and has been carried by groundwater flow into a peat bog about 100m away. This process has probably been going on for at least 5000 years. Standard surveying, hydrogeological and geochemical methods have been applied in the investigation and analysis of the area. Selected samples of the mineralisation, peat soils and associated groundwaters have been examined in detail. This report summarises the main findings accumulated since 1968 when the site was first discovered, and provides a useful information base for further modelling work. (author)

  9. Shallow subsurface geology and Vs characteristics of sedimentary units throughout Rasht City, Iran

    Directory of Open Access Journals (Sweden)

    Behzad Mehrabi

    2009-06-01

    Full Text Available The Manjil-Rudbar earthquake of June 1990 caused widespread damage to buildings in the city of Rasht located
    60 km from the epicenter. Seismic surveys, including refraction P-wave, S-wave and downhole tests, were
    carried out to study subsurface geology and classify materials in the city of Rasht. Rasht is built on Quaternary
    sediments consisting of old marine (Q1m, deltaic (Q2d, undivided deltaic sediments with gravel (Qdg and
    young marine (Q2m deposits. We used the variations of Vp in different materials to separate sedimentary
    boundaries. The National Earthquake Hazard Reduction Program (NEHRP scheme was used for site classification.
    Average S-wave velocity to a depth of 30 m was used to develop site categories, based on measured Vs values
    in 35 refraction seismic profiles and 4 downhole tests. For each geological unit histograms of S-wave velocity
    were calculated. This study reveals that the Vs(30 of most of the city falls into categories D and C of NEHRP
    site classification. Average horizontal spectral amplification (AHSA in Rasht was calculated using Vs(30 . The
    AHSA map clearly indicates that the amplification factor east and north of the city are higher than those of south
    and central parts. The results show that the lateral changes and heterogeneities in Q1m sediments are significant
    and most damaged buildings in 1990 Manjil earthquake were located in this unit.

  10. DEPOSITIONAL ENVIRONMENT AND ORGANIC GEOCHEMICAL CHARACTERISTICS OF LOWER EOCENE BITUMINOUS ROCKS, IN THE KÜRNÜÇ/GÖYNÜK-BOLU AREA

    Directory of Open Access Journals (Sweden)

    Ali SARI

    2016-12-01

    Full Text Available In this study, dark gray and dark brown colored, organic-carbon rich bituminous rocks (bituminous marl and bituminous shale exposing around the Kürnüç area (Göynük, Bolu are investigated by means of or- ganic geochemical characteristics. In this respect, rock lithologies, depositional environments, rock source potential, kerogen and organic maturity types and hydrocarbon generation potentials of bituminous rocks were determined. For this reason, pyrolysis (Rock Eval–VI analysis, gas chromatography (GC and gas chromatography-mass spectrometer (GC-MS analyses were carried out. In addition, spore color index (SCI was determined with organic petrographic method and stable carbon analysis (δ13C of the samples were also conducted. Lithology of the studied samples is of clastic source and the depositional environ- ment is a lagoon with a partial connection to the sea. In bituminous rocks with excellent source rock potential TOC values are in the range of 2.52-8.38 wt % (average 6.08 wt %. With the exception of two samples (Type II kerogen type of all samples is Type I. According to pyrolysis, GC and GC-MS organic maturity results, all the samples are in immature stage. Organic geochemical data indicate that bituminous rocks have an excellent oil generation potential and there is no organic contamination.

  11. 40Ar/39Ar ages of the post-collision volcanic rocks and their geological significance in Yangyingxiang area, south Tibet

    International Nuclear Information System (INIS)

    Zhou Su; Mo Xuanxue; Zhao Zhidan; Zhang Shuangquan; Guo Tieying; Qiu Ruizhao

    2003-01-01

    Ten new 40 Ar/ 39 Ar age determination of mineral separates have been carried out to date volcanic rocks of Yangyingxiang in the eastern part of the Gangdese, Tibet. The age range of Sanidine and biotite in the five volcanic rock samples from the Yangyingxiang is 10.68 ± 0.05 - 11.42 ± 0.09 Ma. These results, combining with the previously published data, confirmed that Neogene post-collision volcanic rocks in the Gangdese widely occurred and their ages were getting younger eastwards. These volcanic rocks are different from those in Pana Formation of Linzizhong group (52.9 ± 2 Ma) outside Yangyingxiang geothermal field. (authors)

  12. Geology of the Wilkes land sub-basin and stability of the East Antarctic Ice Sheet: Insights from rock magnetism at IODP Site U1361

    Science.gov (United States)

    Tauxe, L.; Sugisaki, S.; Jiménez-Espejo, F.; Escutia, C.; Cook, C. P.; van de Flierdt, T.; Iwai, M.

    2015-02-01

    IODP Expedition 318 drilled Site U1361 on the continental rise offshore of Adélie Land and the Wilkes subglacial basin. The objective was to reconstruct the stability of the East Antarctic Ice Sheet (EAIS) during Neogene warm periods, such as the late Miocene and the early Pliocene. The sedimentary record tells a complex story of compaction, and erosion (thus hiatuses). Teasing out the paleoenvironmental implications is essential for understanding the evolution of the EAIS. Anisotropy of magnetic susceptibility (AMS) is sensitive to differential compaction and other rock magnetic parameters like isothermal remanence and anhysteretic remanence are very sensitive to changes in the terrestrial source region. In general, highly anisotropic layers correspond with laminated clay-rich units, while more isotropic layers are bioturbated and have less clay. Layers enriched in diatoms are associated with the latter, which also have higher Ba/Al ratios consistent with higher productivity. Higher anisotropy layers have lower porosity and moisture contents and have fine grained magnetic mineralogy dominated by maghemite, the more oxidized form of iron oxide, while the lower anisotropy layers have magnetic mineralogies dominated by magnetite. The different magnetic mineralogies support the suggestion based on isotopic signatures by Cook et al. (2013) of different source regions during low productivity (cooler) and high productivity (warmer) times. These two facies were tied to the coastal outcrops of the Lower Paleozoic granitic terranes and the Ferrar Large Igneous Province in the more inland Wilkes Subglacial Basin respectively. Here we present evidence for a third geological unit, one eroded at the boundaries between the high and low clay zone with a "hard" (mostly hematite) dominated magnetic mineralogy. This unit likely outcrops in the Wilkes subglacial basin and could be hydrothermally altered Beacon sandstone similar to that detected by Craw and Findlay (1984) in Taylor

  13. Reduction of the greenhouse effect by geological mineral in-situ sequestration of CO{sub 2} in basic rocks: bibliographic synthesis and possibilities in France. Final report; Reduction de l'effet de serre par sequestration geologique minerale in-situ de CO{sub 2} au sein de roches basiques: synthese bibliographique et revue des potentialites en France. Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, J.C.; Lachassagne, P

    2004-07-01

    The report constitutes a first bibliographic study defining the environments the most adapted to the geological mineral in-situ sequestration of CO{sub 2}. For each environment the lithology and the rocks permeability and porosity are analyzed. Thus the possible rocks and deposits in France are presented. (A.L.B.)

  14. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  15. Petrographic characteristics of rocks with magnetite deposits of Vrbno (Jesieniki - Czech Republic

    Directory of Open Access Journals (Sweden)

    Miłosz A. Huber

    2011-11-01

    Full Text Available Introduction: The subject of this paper is a study the metamorphite shists from the old mines around the Mala Moravka-Karlova Studianka in which is magnetite ore, with ferrous chlorites present.Materials and methods: Samples were taken directly from the reservoir and the surrounding of the ore, then the samples were observed in the microscope in transmitted and reflected light, and were carried out X-ray analysis of XRD and SEM-EDS.Results: In the quartz-chlorite slates occur fibroblastic structure with numerous microfolds. X-ray analysis of rocks indicates the presence of calcite, quartz and ferrous chlorites of magnesium-ferrous group. The ore has a steel-gray color, granoblastic structure, layered, compact texture, sometimes with microfolds and deformations. The ore has a lenticular layers of quartz. Background of the ore are doubly and triply twinned magnetite and hematite idioblasts in some cases.Conclusions: The ore zone analysis indicates hydrothermal origin of the ore, which escaped to the earth surface by means of exhalations was deposited as sediment in clayey material. These deposits were metamorphosed in the chlorite facies.

  16. Geological and seismotectonic characteristics of the broader area of the October 15, 2016, earthquake (Ioannina, Greece)

    Science.gov (United States)

    Pavlides, Spyros; Ganas, Athanasios; Chatzipetros, Alexandros; Sboras, Sotiris; Valkaniotis, Sotiris; Papathanassiou, George; Thomaidou, Efi; Georgiadis, George

    2017-04-01

    This paper examines the seismotectonic setting of the moderate earthquake of October 15, 2016, Μw=5.3 (or 5.5), in the broader area of ​​Ioannina (Epirus, Greece). In this region the problem of reviewing the geological structure with new and modern methods and techniques, in relation to the geological-seismological evidence of the recent seismic sequence, is addressed. The seismic stimulation of landslides and other soil deformations is also examined. The earthquake is interpreted as indicative of a geotectonic environment of lithospheric compression, which comprises the backbone of Pindos mountain range. It starts from southern Albania and traverses western Greece, in an almost N-S direction. This is a seismically active region with a history of strong and moderate earthquakes, such as these of 1969 (Ms=5.8), 1960 (South Albania, M> 6.5, maximum intensity VIII+) and 1967 (Arta-Ioannina, M = 6.4, maximum intensity IX). The recent earthquake is associated with a known fault zone as recorded and identified in the Greek Database of Seismogenic Sources (GreDaSS, www.gredass.unife.it). Focal mechanism data indicate that the seismic fault is reverse or high-angle thrust, striking NNW-SSE and dipping to the E. The upper part of Epirus crust (brittle), which have an estimated maximum thickness of 10 km, do not show any significant seismicity. The deeper seismicity of 10-20 km, such as this of the recent earthquake, is caused by deep crustal processes with reverse - high-angle thrust faults. We suggest that the case of this earthquake is peculiar, complex and requires careful study and attention. The precise determination of the seismogenic fault and its dimensions, although not possible to be identified by direct field observations, can be assessed through the study of seismological and geodetic data (GPS, satellite images, stress transfer), as well as its seismic behavior. Field work in the broader area, in combination with instrumental data, can contribute to

  17. Geological structure of Osaka basin and characteristic distributions of structural damage caused by earthquake; Osaka bonchi kozo to shingai tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, K; Shiono, K; Inoue, N; Senda, S [Osaka City University, Osaka (JP. Faculty of Science); Ryoki, K [Osaka Polytechnic Collage, Osaka (Japan); Shichi, R [Nagoya University, Nagoya (Japan). Faculty of Science

    1996-05-01

    The paper investigates relations between the damage caused by the Hyogo-ken Nanbu earthquake and the deep underground structures. A characteristic of the earthquake damage distribution is that the damage concentrated near faults. Most of the damages were seen on the side of faults` relatively falling rather than right above the faults and of their slightly slanting to the seaside. Distribution like this seems to be closely related to underground structures. Therefore, a distribution map of the depth of basement granite in Osaka sedimentary basin was drawn, referring to the data on basement rock depth obtained from the distribution map of gravity anomaly and the result of the survey using the air gun reflection method. Moreover, cubic underground structures were determined by 3-D gravity analysis. The result was concluded as follows: when observing the M7 zone of the low land, in particular, where the damage was great from an aspect of gravity anomaly, the basement rock below the zone declined near the cliff toward the sea, which indicates a great possibility of its being a fault. There is a high possibility that the zone suffered mostly from the damage caused by focusing by refraction and total reflection of seismic wave rays. 3 refs., 8 figs.

  18. The transport characteristics of {sup 238}U, {sup 232}Th, {sup 226}Ra, and {sup 40}K in the production cycle of phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yoon Hee; Lim, Jong Myoung; Ji, Young Yong; Chung, Kun Ho; Kang, Mun Ja [Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    Phosphate rock and its by-product are widely used in various industries to produce phosphoric acid, gypsum, gypsum board, and fertilizer. Owing to its high level of natural radioactive nuclides (e.g., 238U and 226Ra), the radiological safety of workers who work with phosphate rock should be systematically managed. In this study, 238U, 232Th, 226Ra, and 40K levels were measured to analyze the transport characteristics of these radionuclides in the production cycle of phosphate rock. Energy dispersive X-ray fluorescence and gamma spectrometry were used to determine the activity of 238U, 232Th, 226Ra, and 40K. To evaluate the extent of secular disequilibrium, the analytical results were compared using statistical methods. Finally, the distribution of radioactivity across different stages of the phosphate rock production cycle was evaluated. The concentration ratios of 226Ra and 238U in phosphate rock were close to 1.0, while those found in gypsum and fertilizer were extremely different, reflecting disequilibrium after the chemical reaction process. The nuclide with the highest activity level in the production cycle of phosphate rock was 40K, and the median 40K activity was 8.972 Bq·g−1 and 1.496 Bq·g−1, respectively. For the 238U series, the activity of 238U and 226Ra was greatest in phosphate rock, and the distribution of activity values clearly showed the transport characteristics of the radionuclides, both for the byproducts of the decay sequences and for their final products. Although the activity of 40K in k-related fertilizer was relatively high, it made a relatively low contribution to the total radiological effect. However, the activity levels of 226Ra and 238U in phosphate rock were found to be relatively high, near the upper end of the acceptable limits. Therefore, it is necessary to systematically manage the radiological safety of workers engaged in phosphate rock processing.

  19. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    Energy Technology Data Exchange (ETDEWEB)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H. [Atomic Energy of Canada Ltd., Pinawa, MB (Canada). Whiteshell Labs

    1997-12-31

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs.

  20. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H.

    1997-01-01

    This paper covers the overview of the Canadian nuclear fuel waste management program, the general approach to the siting, design, construction, operation and closure of a geological disposal facility, the implementing disposal, and the public involvement in implementing geological disposal of nuclear fuel waste. And two appendices are included. 45 refs., 5 tabs., 10 figs

  1. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  2. Geology, mineralization, Rb-Sr & Sm-Nd geochemistry, and U–Pb zircon geochronology of Kalateh Ahani Cretaceous intrusive rocks, southeast Gonabad

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour

    2013-10-01

    Full Text Available Kalateh Ahani is located 27 km southeast of Gonabad within the Khorasan Razavi province. The area is part of Lut Block. Sub-volcanic monzonitic rocks intruded regional metamorphosed Shemshak Formation (Jurassic age. Magnetic susceptibility of less altered monzonitic rocks is 0.6%., As, Pb and Zn > 1%, Au up to 150 ppb and Sn = 133 ppm. The Sn content of vein in the northern part of Kalateh Ahani (Rud Gaz is > 1%. Based on mineralization, alteration and geochemistry, it seems that Sn mineralization is associated with the Cretaceous monzonitic rocks. Zircon U–Pb dating indicates that the age of the monzonitic rocks associated with mineralization is 109 Ma (Lower Cretaceous. Based on (87Sr/86Sri = 0.71089-0.710647 and (143Nd/144Ndi = 0.512113-0.51227 of the monzonitic rocks, the magma for these rocks were originated from the continental crust. This research has opened new window with respect to Sn-Cu mineralization and exploration within the Lut Block which is associated with Cretaceous granitoid rocks (reduced type, ilmenite series originated from the continental crust.

  3. Hydrochemical characteristic of surface and groundwater Lisichansk and Almazno-Marevske geological and industrial districts Nnorth-Eastern Donbas

    Directory of Open Access Journals (Sweden)

    Udalov Y.V.

    2014-12-01

    Full Text Available Incorporates a complex of problems accompanying the operation of coal deposits of Donbass. See hydrochemical characteristics of surface and groundwater Lisichansk and Almazno-Maryevskogo geological and industrial areas of the North-Eastern Donbass. Identified the main hydrochemical features of the waste mine waters of the enterprises of the coal industry on the territory of the studies. It is established that the surface waters of the study area exposed to intensive anthropogenic influence. Set content of basic elements-pollutants in surface waters. It is revealed that this pollution is of a complex nature. Identifies key elements contained in the effluent of industrial enterprises. Analyzed that a change of the chemical composition of groundwater has led to increased hardness and mineralization of water in the main water intakes of the research area. Identifies key elements-contaminants in groundwater. It was found that as a result of mine dewatering groundwater level fell over an area of 200km2, far exceeding the area of coal mining. This operational reserves fresh underground waters in the groundwater runoff module 1.2 dm3 / sec. km2 decreased by 200 - 300 m3 / day. Within funnel depression hydraulic connection is created not only a few confined aquifers, but also located near the mine fields. For example, in the area of Stakhanov the Luhansk region in general depression funnel width of about 25 km and a depth of 600-800m were 8 mine ("Central Irmino", "Maximovska" Ilyich, named after I.V. Chesnokov, "Krivoy Rog", 11-RAD "Brjankovsky" and "Dzerzhinsk". The purpose of research is general hydrochemical characteristics and identification of key elements polluting surface and groundwater Lisichanskiy and diamond-Marevskogo geological and industrial areas of the North-East Donbas.

  4. Analysis and Testing of Load Characteristics for Rotary-Percussive Drilling of Lunar Rock Simulant with a Lunar Regolith Coring Bit

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-01-01

    Full Text Available Based on an optimized lunar regolith coring bit (LRCB configuration, the load characteristics of rotary-percussive drilling of lunar rock simulant in a laboratory environment are analyzed to determine the effects of the drilling parameters (the rotational velocity, the penetration rate, and the percussion frequency on the drilling load. The process of rotary drilling into lunar rock using an LRCB is modeled as an interaction between an elemental blade and the rock. The rock’s fracture mechanism during different stages of the percussive mechanism is analyzed to create a load forecasting model for the cutting and percussive fracturing of rock using an elemental blade. Finally, a model of the load on the LRCB is obtained from the analytic equation for the bit’s cutting blade distribution; experimental verification of the rotary-impact load characteristics for lunar rock simulant with different parameters is performed. The results show that the penetrations per revolution (PPR are the primary parameter influencing the drilling load. When the PPR are fixed, increasing the percussion frequency reduces the drilling load on the rock. Additionally, the variation pattern of the drilling load of the bit is in agreement with that predicted by the theoretical model. This provides a research basis for subsequent optimization of the drilling procedure and online recognition of the drilling process.

  5. An review on geology study of carbonaceous-siliceous-pelitic rock type uranium deposit in China and the strategy for its development

    International Nuclear Information System (INIS)

    Zhao Fengmin

    2009-01-01

    Carbonaceous-siliceous-pelitic rock type uranium deposit was founded by Chinese uranium geologist, it refers to the uranium deposit hosted by non or light metamophosed carbonate,siliceous rock, pelitic rock and their intermediates. It is one of the important types uranium deposit in China. A lot of this type deposits have been discovered in China and their temporal-spatial distribution pattern and mineralization features have been basically identified, and the rich experience have layed a good foundation for the future exploration. Although the ore of this type is not favourable economically, it is still available. Because carbonaceous-siliceous-pelitic rock type uranium deposit has great resource potential, metallogenic study and exploration efforts should be projected differentially according to their economic profit so as to meet the uranium resource demand of nuclear power development in China. (authors)

  6. Archive of information about geological samples available for research from the Ohio State University Byrd Polar and Climate Research Center (BPCRC) Polar Rock Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Polar Rock Repository (PRR) operated by the Byrd Polar and Climate Research Center (BPCRC) at the Ohio State University is a partner in the Index to Marine and...

  7. First use of geological radar to assess the conservation condition of a South African rock art site: Game Pass Shelter (KwaZulu-Natal)

    OpenAIRE

    Huneau, F.; Hœrlé, S.; Denis, A.; Salomon, A.

    2008-01-01

    WE PRESENT THE RESULTS OF A SURVEY of the main panels of Game Pass Shelter, a major painted rock art site in the KwaZulu-Natal Drakensberg mountain range, using ground penetrating radar. The investigation depth in the Clarens Formation sandstones lies between four and 80 cm, adequate to determine whether the rock wall presents any potentially unstable discontinuities. By identifying such areas and determining the depth of alteration zones at the major discontinuities, the radar helps in the p...

  8. Advances and Applications of Rock Physics for Hydrocarbon Exploration

    Directory of Open Access Journals (Sweden)

    Valle-Molina C.

    2012-10-01

    Full Text Available Integration of the geological and geophysical information with different scale and features is the key point to establish relationships between petrophysical and elastic characteristics of the rocks in the reservoir. It is very important to present the fundamentals and current methodologies of the rock physics analyses applied to hydrocarbons exploration among engineers and Mexican students. This work represents an effort to capacitate personnel of oil exploration through the revision of the subjects of rock physics. The main aim is to show updated improvements and applications of rock physics into seismology for exploration. Most of the methodologies presented in this document are related to the study the physical and geological mechanisms that impact on the elastic properties of the rock reservoirs based on rock specimens characterization and geophysical borehole information. Predictions of the rock properties (litology, porosity, fluid in the voids can be performed using 3D seismic data that shall be properly calibrated with experimental measurements in rock cores and seismic well log data

  9. Evolution characteristic of gypsum-salt rocks of the upper member of Oligocene Lower Ganchaigou Fm in the Shizigou area, western Qaidam Basin

    Directory of Open Access Journals (Sweden)

    Dinghong Yi

    2017-09-01

    Full Text Available Over years of oil and gas exploration in the Qaidam Basin, reservoirs have been discovered in many layers. In the Shizigou area, western Qaidam Basin, the upper member of Oligocene Lower Ganchaigou Fm is an important target for oil and gas exploration, and gypsum-salt rocks are the high-quality caprocks for the preservation of oil and gas reservoirs in this area. For predicting oil and gas exploration direction and target in the western Qaidam Basin and providing guidance for its oil and gas exploration deployment, its depositional characteristics and environment of gypsum-salt rocks in this area were investigated based on the core observation, thin section identification, and analysis of grain size, sensitivity parameter ratios (Sr/Cu, Fe/Mn, (Fe + Al/(Ca + Mg, V/(V + Ni and Pr/Ph, pyrite content and inclusions. The following characteristics are identified. First, gypsum-salt rocks are mainly distributed in the depocenter of the lake basin and their thickness decreases towards the margin of the basin. They are laterally transformed into carbonate rocks or terrigenous clastic rocks. They are areally distributed in the shape of irregular ellipse. Second, gypsum-salt rocks are vertically developed mainly in the middle and upper parts of the upper member of Lower Ganchaigou Fm and they are interbedded with carbonate rocks or terrigenous clastic rocks. Their single layer thickness changes greatly, and there are many layers with good continuity. Third, Sand Group III to Group I in the upper member of Lower Ganchaigou Fm (inter-salt are of reductive water environment of semi-deep to deep lake facies due to their sedimentation in an arid and hot climate. It is concluded that gypsum-salt rocks of the upper member of Lower Ganchaigou Fm are distributed widely with great accumulative thickness in this area; and that they are originated from deep lake water by virtue of evaporation, concentration and crystallization in an arid and hot climate instead

  10. Igneous rocks formed by hypervelocity impact

    Science.gov (United States)

    Osinski, Gordon R.; Grieve, Richard A. F.; Bleacher, Jacob E.; Neish, Catherine D.; Pilles, Eric A.; Tornabene, Livio L.

    2018-03-01

    Igneous rocks are the primary building blocks of planetary crusts. Most igneous rocks originate via decompression melting and/or wet melting of protolith lithologies within planetary interiors and their classification and compositional, petrographic, and textural characteristics, are well-studied. As our exploration of the Solar System continues, so too does the inventory of intrusive and extrusive igneous rocks, settings, and processes. The results of planetary exploration have also clearly demonstrated that impact cratering is a ubiquitous geological process that has affected, and will continue to affect, all planetary objects with a solid surface, whether that be rock or ice. It is now recognized that the production of igneous rocks is a fundamental outcome of hypervelocity impact. The goal of this review is to provide an up-to-date synthesis of our knowledge and understanding of igneous rocks formed by hypervelocity impact. Following a brief overview of the basics of the impact process, we describe how and why melts are generated during impact events and how impact melting differs from endogenic igneous processes. While the process may differ, we show that the products of hypervelocity impact can share close similarities with volcanic and shallow intrusive igneous rocks of endogenic origin. Such impact melt rocks, as they are termed, can display lobate margins and cooling cracks, columnar joints and at the hand specimen and microscopic scale, such rocks can display mineral textures that are typical of volcanic rocks, such as quench crystallites, ophitic, porphyritic, as well as features such as vesicles, flow textures, and so on. Historically, these similarities led to the misidentification of some igneous rocks now known to be impact melt rocks as being of endogenic origin. This raises the question as to how to distinguish between an impact versus an endogenic origin for igneous-like rocks on other planetary bodies where fieldwork and sample analysis may not

  11. Assessment of Deep Geological Environmental Condition for HLW Disposal in Korea

    International Nuclear Information System (INIS)

    Koh, Yong Kweon; Bae, Dae Seok; Kim, Kyung Su

    2010-04-01

    The research developed methods to study and evaluate geological factors and items to select radioactive waste disposal site, which should meet the safety requirements for radioactive waste disposal repositories according to the guidelines recommended by IAEA. A basic concept of site evaluation and selection for high level radioactive waste disposal and develop systematic geological data management with geological data system which will be used for site selection in future are provided. We selected 36 volcanic rock sites and 26 gneissic sites as the alternative host rocks for high level radioactive waste disposal and the geochemical characteristics of groundwaters of the four representative sites were statistically analyzed. From the hydrogeological and geochemical investigation, the spatial distribution characteristics were provided for the disposal system development and preliminary safety assessment. Finally, the technology and scientific methods were developed to obtain accurate data on the hydrogeological and geochemical characteristics of the deep geological environments

  12. Numerical analysis on the crack propagation and failure characteristics of rocks with double fissures under the uniaxial compression

    Directory of Open Access Journals (Sweden)

    Leyong Chen

    2015-12-01

    Full Text Available The fissures and rock bridges with different dips had different contributions to crack's initiation, propagation, convergence and penetration. In this paper, based on the rock fracture theory, the crack's propagation and evolution process on rock specimen with double fissures under uniaxial compression was simulated. As a result, the crack propagation and evolution law of rocks with different fissure dips (α = 0°, 15°, 30°, 45°, 60°, 75°, 90°; β = 45° and different rock bridge dips (β = 0°, 30°, 45°, 60°, 90°; α = 45° was obtained by numerical tests. Meanwhile, the fissure and rock bridge dips influence on the macro mechanical properties of rock was analyzed. Besides, the paper investigated the influences of different fissure dips and different rock bridge dips on the bridge transfixion. The study is of great significance to reveal the impact of different dips on the mechanical mechanism of multiple-fissures rock under specific conditions, and it also has important theoretical significance for the research on multiple-fissure rock.

  13. Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.D.; Doherty, T.J.; Fossum, A.F.

    1982-04-01

    The results of a literature survey on the stability of excavated hard rock caverns are presented. The objective of the study was to develop geotechnical criteria for the design of compressed air energy storage (CAES) caverns in hard rock formations. These criteria involve geologic, hydrological, geochemical, geothermal, and in situ stress state characteristics of generic rock masses. Their relevance to CAES caverns, and the identification of required research areas, are identified throughout the text. This literature survey and analysis strongly suggests that the chief geotechnical issues for the development and operation of CAES caverns in hard rock are impermeability for containment, stability for sound openings, and hydrostatic balance.

  14. Geologic report of the Maquoketa Shale, New Albany Shale, and Borden Group rocks in the Illinois Basin as potential solid waste repository sites

    International Nuclear Information System (INIS)

    Droste, J.B.; Vitaliano, C.J.

    1976-06-01

    We have evaluated the Illinois Basin in order to select a ''target site'' for a possible solid nuclear waste repository. In the process we have been mindful of geology (particularly stratigraphy and lithology and structure), terrane, population density, land use, land ownership and accessibility. After taking these restrictions into account, we have singled out a strip of land in south central Indiana in which we have selected four potential sites worthy of further exploration. In three of the sites the geology, lithology, and depth below the surface are more than adequate for crypt purposes in two separate formations--the Maquoketa Shale of the Ordovician System and the New Albany Shale-Borden Group of the Upper Devonian-Mississippian Systems. The interval between the two is several hundred feet. The geology and associated features in the fourth site are undoubtedly similar to those in the first three. In all four selections a sizeable proportion of the land is in public ownership and the population density in the nonpublicly owned land is low. The geology, lithology, and position of the target formations have been projected into the sites in question from data provided by drill core records of the Indiana Geological Survey. Precise details would, of course, require exploratory drilling on the selected site

  15. Canadian geologic isolation program

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1976-01-01

    The Canadian geologic isolation program is directed at examining the potential of (1) salt deposits and (2) hard rock as repositories for radioactive wastes. It was felt essential from the inception that alternative host rocks be evaluated over a fairly large geographical area. The studies on salt deposits to date are based on existing geological information and have identified the areas that show some potential and merit further study. The factors considered include depth, thickness and purity of the deposit, overlying aquifers, and the potential for gas and oil exploration as well as potash recovery. The studies on hard rock are restricted to plutonic igneous rocks in the Ontario part of the Canadian Shield. Because geological information on their nature and extent is sparse, the study is limited to bodies that are well exposed and for which information is available.for which information is available. Field studies in the next two seasons are aimed at mapping the fault and joint patterns and defining the geologic controls on their development. In 1977 and 1978, two or three of the more favorable sites will be mapped in greater detail, and an exploratory drilling program will be established to determine the extent of fracturing at depth and the hydrology of these fractures. Conceptual designs of mined repositories in hard rock are also being made with the hope of identifying, at an early stage in this program, special problems in hard-rock repositories that may require development and study

  16. Effect of leachate of cementitious materials on the geological media. Experimental study of the influence of high pH plume on rock

    International Nuclear Information System (INIS)

    Kato, Hiroshige; Sato, Mitsuyoshi; Owada, Hitoshi; Mihara, Morihiro; Ohi, Takao

    2000-05-01

    Cementitious materials will be used in TRU waste disposal repository. In such cases, it is considered that the migration of alkaline leachates from cementitious materials, so called high pH plume, will cause dissolution of rock and precipitation of secondary minerals. In addition, the high pH plume will move along the flow of groundwater, so it is predicted that rock formation and components of high pH groundwater vary with time and space. However, time and spatial dependence of the variations of secondary minerals and groundwater components has not been clarified. In order to acquire the data of variations of secondary minerals and groundwater components, we carried out the rock alteration experiments with column method. The crushed granodiorite was filled into 4 meters length column (φ 3.7 cm) and artificial cement leachate (pH=13.3; Na=0.1mol/l, K=0.1mol/l, Ca=0.002mol/l) was streamed at flow rates of 0.1 ml/min for 7 months at 80degC. As the result, secondary minerals confirmed on the rock were calcite and C-S-H at upstream of column and C-S-H at mid-downstream. The pH value of the fluid dominated by Na and K did not be decreased by reaction with the rock. In this study, the data relating to the effect of high pH plume on rock over the long term was acquired. (author)

  17. Geologic characteristics of the Luna 17/Lunokhod 1 and Chang'E-3/Yutu landing sites, Northwest Mare Imbrium of the Moon

    Science.gov (United States)

    Basilevsky, A. T.; Abdrakhimov, A. M.; Head, J. W.; Pieters, C. M.; Wu, Yunzhao; Xiao, Long

    2015-11-01

    We compared and assessed the results of measurements and observations by the Lunokhod 1 and Yutu rovers, both of which explored the northwestern part of Mare Imbrium. Both sites are within the distinctive Eratosthenian-aged lava flow geologic unit and our comparisons showed that the geologies of these exploration sites are very similar. As in the majority of other areas of the Moon, the dominant landforms in these sites are small impact craters, having various degrees of morphologic prominence and states of preservation, and rock fragments, mostly associated with the rims and interiors of fresh craters. The shape and the degree of preservation of the observed rock fragments in these two sites are similar. In both sites sporadic rock fragments were observed whose morphologies suggest that their source rocks had columnar jointing. Localization of these specific rocks on the rims of 450-470 m in diameter craters implies that the source rocks are at depths of 40-50 m. Regolith in the study areas is typically a few meters thick, but locally can be much thicker. The ground penetrating radar of the Yutu rover revealed the multilayer regolith structure, which is determined by superposition of crater ejecta; with some local variations, this type of the regolith stratigraphy should be typical of the majority of lunar mare sites. The physico-mechanical properties of the regolith in these two sites appear to be rather similar: the bearing capacity ranges from 0.04 to 1.44 kg/cm2, with a modal value ∼0.45 kg/cm2, and the shear strength ranges from 0.02 to 0.1 kg/cm2, with a modal value ∼0.05 kg/cm2. Both these factors decrease by a factor of 3-4 with an increase of surface slope from ∼2 to 12°. The chemical composition of surface materials determined by the rover instruments at these two sites differ from those derived from the remote sensing data for the Eratosthenian-aged basalts on which the two sites are located. This could be partly due to low measurement accuracies

  18. Proceedings of the international information exchange meeting on diffusion phenomena in bentonite and rock. Aiming at the safety assessment of the geological disposal

    International Nuclear Information System (INIS)

    Sato, Haruo; Hatanaka, Koichiro

    2009-12-01

    The international information exchange meeting on diffusion phenomena in bentonite and rock was held at Horonobe Underground Research Center on 18th July, 2006. This meeting was hosted by Japan Atomic Energy Agency (JAEA) and supported by Hokkaido University and Radioactive Waste Management Funding and Research Center (RWMC). Totally 18 scientists who are specialists of diffusion participated from Finland (VTT) and Japan (7 research organizations) in the meeting. 6 presentations were made on recent research activities and outputs on diffusion phenomena in bentonite and rock. The 6 papers are indexed individually. (J.P.N.)

  19. Geological data summary for a borehole drilled between 1991 September 16 and 1991 October 1 for the Transport Properties in Highly Fractured Rock Experiment at the Underground Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Woodcock, D. R.; Everitt, R. A.

    1992-08-01

    Borehole 101-013-HG4 was drilled between 1991 September 16 and October 1 from the 130 Level station, as part of the Transport Properties in Highly Fractured Rock Experiment, to explore the geological, hydrogeological and geochemical conditions of the rock mass in an area northwest of the Underground Research Laboratory (URL) shaft. The borehole was drilled to provide information at an intersection with Fracture Zone 2.0, 100 m to the west of boreholes collared from Room 211 of the 240 Level for future solute transport experiments within Fracture Zone 2.0, and to further our understanding of the rock mass in the area. Fracture Zones 2.5, 2.0, 1.9 and a subvertical joint zone in the footwall were all intersected in the borehole. Preliminary results from detailed core logging show that the lithostructural domains intersected in the borehole correlate with those previously identified in the URL shaft, and in nearby exploration boreholes drilled from the 130 Level. The domains are shallow-dipping toward the southeast and are parallel to the three main fracture zones intersected in the borehole.

  20. Modeling of thermal evolution of near field area around single pit mode nuclear waste canister disposal in soft rocks

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Verma, A.K.; Maheshwar, Sachin

    2016-01-01

    Soft rocks like argillites/shales are under consideration worldwide as host rock for geological disposal of vitrified as well as spent fuel nuclear waste. The near field around disposed waste canister at 400-500m depth witnesses a complex heat field evolution due to varying thermal characteristics of rocks, coupling with hydraulic processes and varying intensity of heat flux from the canister. Smooth heat dissipation across the rock is desirable to avoid buildup of temperature beyond design limit (100 °C) and resultant micro fracturing due to thermal stresses in the rocks and intervening buffer clay layers. This also causes enhancement of hydraulic conductivity of the rocks, radionuclide transport and greater groundwater ingress towards the canister. Hence heat evolution modeling constitutes an important part of safety assessment of geological disposal facilities

  1. Geology and petrography in basaltic rocks (Arapey formation) cropping out in road 4 between Arapey river (92 km) and Artigas city (200 Km)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Pineiro, G.

    2007-01-01

    This contribution presents a geological map of the basaltic flows of Arapey formation (Mezosoic) cropping out in Road 4 between the Arapey river (92 Km) and Artigas city (200 Km) together with the description of the petrographic features of the different portions of the 13 recognized flow units. (author)

  2. Geology and petrography of the basaltic rocks (Arapey formation) cropping out in toad 4 between Arapey river (92 km) and Artigas (200 Km)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Pineiro, G.

    2007-01-01

    This contribution presents a geological map of the basaltic flows of Arapey formation (Mezosoic) cropping out in Road 4 between the Arapey river (92 Km) and Artigas city (200 Km) together with the description of the petrographic features of the different portions of the 13 recognized flow units. (author)

  3. Geology and petrography in basaltic rocks (Arapey formation) cropping out in road 30 between the Bella Union round point (27 km) and Penas cuesta (225 Km)

    International Nuclear Information System (INIS)

    Oyhantcabal, P.; Pineiro, G.

    2007-01-01

    This contribution presents a geological map of the basaltic flows of Arapey formation (Mezosoic) cropping out in Road 30 between the Bella Union round point (27 Km) and Pena s cuesta (225 Km) together with the description of the petrographic features of the different portions of the 20 recognized flow units

  4. Dating and differentiation of geological units in highly deformed and metamorphosed rocks - Can palynology help? Examples from the Ossa-Morena Zone (W Portugal)

    Czech Academy of Sciences Publication Activity Database

    Machado, G.; Vavrdová, Milada; Fonseca, P. E.; Chaminé, H. I.; Rocha, F. T.

    2010-01-01

    Roč. 30, - (2010), s. 23-27 ISSN 0474-9588 Institutional research plan: CEZ:AV0Z30130516 Keywords : palynomorphs * metasediments * Ossa-Morena Zone * organic matter preservation * deformation * mineralization Subject RIV: DB - Geology ; Mineralogy http://www.geol.uniovi.es/TDG/Volumen30/TG30-03.PDF

  5. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability

  6. Some new understanding on the characteristics of geological structure and uranium metallogenetic prospect on both sides of the Shandianhe down-faulted zone

    International Nuclear Information System (INIS)

    Zhang Xuequan

    1992-01-01

    On the basis of the systematic work in the field and at the laboratory, the metallogenetic prognosis map (1:100000) of geological structures and uranium metallogenetic prospect on both sides of the Shandianhe down-faulted zone is compiled. According to this, the regional setting of metallogenesis is emphatically expounded and some new understanding is presented. After the detailed study on the characteristics of geological structures on both sides of the Shangdianhe down-faulted zone, the metallogenetic prospective area are selected and the further prospecting targets in the area are suggested

  7. Geochronology of plutonic rocks and their tectonic terranes in Glacier Bay National Park and Preserve, southeast Alaska: Chapter E in Studies by the U.S. Geological Survey in Alaska, 2008-2009

    Science.gov (United States)

    Brew, David A.; Tellier, Kathleen E.; Lanphere, Marvin A.; Nielsen, Diane C.; Smith, James G.; Sonnevil, Ronald A.

    2014-01-01

    We have identified six major belts and two nonbelt occurrences of plutonic rocks in Glacier Bay National Park and Preserve and characterized them on the basis of geologic mapping, igneous petrology, geochemistry, and isotopic dating. The six plutonic belts and two other occurrences are, from oldest to youngest: (1) Jurassic (201.6–145.5 Ma) diorite and gabbro of the Lituya belt; (2) Late Jurassic (161.0–145.5 Ma) leucotonalite in Johns Hopkins Inlet; (3) Early Cretaceous (145.5–99.6 Ma) granodiorite and tonalite of the Muir-Chichagof belt; (4) Paleocene tonalite in Johns Hopkins Inlet (65.5–55.8 Ma); (5) Eocene granodiorite of the Sanak-Baranof belt; (6) Eocene and Oligocene (55.8–23.0 Ma) granodiorite, quartz diorite, and granite of the Muir-Fairweather felsic-intermediate belt; (7) Eocene and Oligocene (55.8–23.0 Ma) layered gabbros of the Crillon-La Perouse mafic belt; and (8) Oligocene (33.9–23.0 Ma) quartz monzonite and quartz syenite of the Tkope belt. The rocks are further classified into 17 different combination age-compositional units; some younger belts are superimposed on older ones. Almost all these plutonic rocks are related to Cretaceous and Tertiary subduction events. The six major plutonic belts intrude the three southeast Alaska geographic subregions in Glacier Bay National Park and Preserve, from west to east: (1) the Coastal Islands, (2) the Tarr Inlet Suture Zone (which contains the Border Ranges Fault Zone), and (3) the Central Alexander Archipelago. Each subregion includes rocks assigned to one or more tectonic terranes. The various plutonic belts intrude different terranes in different subregions. In general, the Early Cretaceous plutons intrude rocks of the Alexander and Wrangellia terranes in the Central Alexander Archipelago subregion, and the Paleogene plutons intrude rocks of the Chugach, Alexander, and Wrangellia terranes in the Coastal Islands, Tarr Inlet Suture Zone, and Central Alexander Archipelago subregions.

  8. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  9. Geodatabase design and characteristics of geologic information for a geodatabase of selected wells penetrating the Austin Group in central Bexar County, Texas, 2010

    Science.gov (United States)

    Pedraza, Diana E.; Shah, Sachin D.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, developed a geodatabase of geologic and hydrogeologic information for selected wells penetrating the Austin Group in central Bexar County, Texas. The Austin Group functions as an upper confining unit to the Edwards aquifer and is the thickest and most permeable of the Edwards aquifer confining units. The geologic and hydrogeologic information pertains to a 377-square-mile study area that encompasses central Bexar County. Data were compiled primarily from drillers' and borehole geophysical logs from federal, State, and local agencies and published reports. Austin Group characteristics compiled for 523 unique wells are documented (if known), including year drilled, well depth, altitude of top and base of the Austin Group, and thickness of the Austin Group.

  10. Issues related to the construction and operation of a geological disposal facility for nuclear fuel waste in crystalline rock - the Canadian experience

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.; Ohta, M.M.; Simmons, G.R.; Whitaker, S.H.

    1997-12-01

    The siting, design, construction, operation, decommissioning, and closure of a geological facility for the disposal of nuclear fuel waste is a complex undertaking that will span many decades. Both technical and social issues must be taken into account simultaneously and many factors must be considered. Based on studies carried out in Canada and elsewhere, it appears that these factors can be accommodated and that geological disposal is both technically and socially feasible. But throughout the different stages of implementing disposal, technical and social issues will continue to arise and these will have to be dealt with successfully if progress is to continue. This paper discusses these issues and a proposed approach for dealing with them. (author)

  11. A study on the regional geological setting of uranium metallogenesis in Lu-Zong region

    International Nuclear Information System (INIS)

    Chen Yifeng; Ma Changming; Fan Huanxin

    1996-01-01

    This paper presents a new understanding of features of main ore-bearing horizons and magmatic rocks, evolution regularities, regional tectonic characteristics and the compositions and formation of the Yangtze tectonic belt in Lu-Zong region. Favourable horizons, magmatic series of Yangtze-type crust-mantle mixed melting magmatic rocks, activities of regional gigantic deep-seated faults and their subsidiary structures provided good regional geological setting for the formation of uranium and polymetallic mineral resources in this region

  12. Migration of fluids as a tool to evaluate the feasibility of the implantation of geological radioactive wastes repositories (RARN) in granitoid rocks: tests on granites submitted to natural deformation vs. not deformed

    International Nuclear Information System (INIS)

    Lopes, Nilo Henrique Balzani; Barbosa, Pedro Henrique Silva; Santos, Alanna Leite dos; Amorim, Lucas Eustáquio Dias; Freitas, Mônica Elizetti de; Rios, Francisco Javier

    2017-01-01

    Fluid composition and migration studies in granitoid rocks subjected to deformation events are a factor that should be considered in the selection of geologically favorable areas for RANR construction, and may be an excellent complement to engineering barrier designs. The research objective was to develop an academic approach, comparing the behavior of deformed and non-deformed granites, not being related to any CNEN project of deploying repositories. It is concluded that in the choice of suitable sites for the construction of repositories, granite bodies that are submitted to metamorphic / deformation / hydrothermal events or that are very fractured should be disregarded. The domes of granite batholith that have undergone hydraulic billing should also be discarded. It has been found that, because of the warming caused by radioactive decay reactions, there is a real possibility that the release of potentially abrasive fluids contained in the minerals can reach and corrode the walls of the repositories and / or packaging

  13. Chemical and isotopic characteristics of the warm and cold waters of the Luigiane Spa near Guardia Piemontese (Calabria, Italy) in a complex faulted geological framework

    International Nuclear Information System (INIS)

    Vespasiano, Giovanni; Apollaro, Carmine; Muto, Francesco; Dotsika, Elissavet; De Rosa, Rosanna; Marini, Luigi

    2014-01-01

    Highlights: • Geo-structural and hydrogeological patterns: thermal waters discharge in a tectonic window. • Use of S isotopes to discriminate different evaporite sources, considering effects of BSR. • Use of the local approach instead of the regional approach to investigate the thermal site. • Use of geothermometric functions specifically calibrated for the thermal waters of interest. • Synthesis of geo-structural, hydrogeological and geochemical results in a conceptual model. - Abstract: Waters discharging at the Luigiane Spa come from two different hydrogeological circuits, which are chiefly hosted in the carbonate rocks and Upper Triassic evaporites of two distinct geological units, known as Verbicaro Unit and Cetraro Unit. The first unit contains a cold and relatively shallow aquifer behaving as a sort of piston-flow circuit with high flow rate, whereas the second unit encloses a warm and comparatively deep aquifer acting as a sort of well-mixed reservoir, where the circulation is slower and the rate is lower. Meteoric waters infiltrating along the Coastal Chain at similar elevations (615–670 m asl on average, in spite of considerable uncertainties) recharge both aquifers and, in the first case, acquire heat from rocks through conductive transfer as a consequence of deepening along a fault system and/or crossing between different systems, as suggested by local structural geology. In particular, the warm deeper reservoir has a temperature of ∼60 °C, as indicated by the chalcedony solubility and the Ca–Mg and SO 4 –F geothermometers, which were specifically calibrated for the peculiar water–rock-interaction (WRI) processes originating the Na–Cl–SO 4 high-salinity warm waters that discharge at the Luigiane Spa. The warm deeper reservoir is probably located at depths close to 1.4 km, assuming a geothermal gradient of 33 °C km −1 . The water leaving the deep reservoir discharges at the surface at 40.9 ± 3.3 °C after a relatively fast

  14. Net Acid Production, Acid Neutralizing Capacity, and Associated Mineralogical and Geochemical Characteristics of Animas River Watershed Igneous Rocks Near Silverton, Colorado

    Science.gov (United States)

    Yager, Douglas B.; Choate, LaDonna; Stanton, Mark R.

    2008-01-01

    This report presents results from laboratory and field studies involving the net acid production (NAP), acid neutralizing capacity (ANC), and magnetic mineralogy of 27 samples collected in altered volcanic terrain in the upper Animas River watershed near Silverton, Colo., during the summer of 2005. Sampling focused mainly on the volumetrically important, Tertiary-age volcanic and plutonic rocks that host base- and precious-metal mineralization in the study area. These rocks were analyzed to determine their potential for neutralization of acid-rock drainage. Rocks in the study area have been subjected to a regional propylitic alteration event, which introduced calcite, chlorite (clinochlore), and epidote that have varying amounts and rates of acid neutralizing capacity (ANC). Locally, hydrothermal alteration has consumed any ANC and introduced minerals, mainly pyrite, that have a high net acid production (NAP). Laboratory studies included hydrogen pyroxide (H2O2) acid digestion and subsequent sodium hydroxide (NaOH) titration to determine NAP, and sulfuric acid (H2SO4) acid titration experiments to determine ANC. In addition to these environmental rock-property determinations, mineralogical, chemical, and petrographic characteristics of each sample were determined through semiquantitative X-ray diffractometry (Rietveld method), optical mineralogy, wavelength dispersive X-ray fluorescence, total carbon-carbonate, and inductively coupled plasma?mass spectrometric analysis. An ANC ranking was assigned to rock samples based on calculated ANC quantity in kilograms/ton (kg/t) calcium carbonate equivalent and ratios of ANC to NAP. Results show that talus near the southeast Silverton caldera margin, composed of andesite clasts of the Burns Member of the Silverton Volcanics, has the highest ANC (>100 kg/t calcium carbonate equivalent) with little to no NAP. The other units found to have moderate to high ANC include (a) andesite lavas and volcaniclastic rocks of the San Juan

  15. Applicability of geomechanical classifications for estimation of strength properties in Brazilian rock masses.

    Science.gov (United States)

    Santos, Tatiana B; Lana, Milene S; Santos, Allan E M; Silveira, Larissa R C

    2017-01-01

    Many authors have been proposed several correlation equations between geomechanical classifications and strength parameters. However, these correlation equations have been based in rock masses with different characteristics when compared to Brazilian rock masses. This paper aims to study the applicability of the geomechanical classifications to obtain strength parameters of three Brazilian rock masses. Four classification systems have been used; the Rock Mass Rating (RMR), the Rock Mass Quality (Q), the Geological Strength Index (GSI) and the Rock Mass Index (RMi). A strong rock mass and two soft rock masses with different degrees of weathering located in the cities of Ouro Preto and Mariana, Brazil; were selected for the study. Correlation equations were used to estimate the strength properties of these rock masses. However, such correlations do not always provide compatible results with the rock mass behavior. For the calibration of the strength values obtained through the use of classification systems, ​​stability analyses of failures in these rock masses have been done. After calibration of these parameters, the applicability of the various correlation equations found in the literature have been discussed. According to the results presented in this paper, some of these equations are not suitable for the studied rock masses.

  16. A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: Example of a quartz reef in granitic terrain in South India

    Science.gov (United States)

    Dewandel, Benoît; Lachassagne, Patrick; Zaidi, Faisal K.; Chandra, Subash

    2011-08-01

    SummaryThe structure and hydrodynamic properties of geological discontinuities and of a deeply weathered granite aquifer near these structures are described on the basis of geological, geophysical and hydrodynamic investigations in two sites of South India located along a 20-40-m-wide quartz reef intruding a weathered Archean biotite granite. One of the two sites also comprises a metre-wide dolerite dyke. Weathering processes appear to be at the origin of fissures development and of a related enhanced local hydraulic conductivity, both in the quartz reef and in the surrounding granite. The weathering profile in the granite (saprolite and fissured layer) is characterized by an abrupt deepening of the weathered layers in the granite near the contact and in the quartz reef itself. Therefore, the weathering profile shows a 'U'-shape geometry with, among others, the verticalization of the granite's fissured layer. The hydraulic conductivity of this verticalized layer is on average 5 × 10 -6 m/s and storativity about 10 -3 (-). The hydraulic conductivity of the fissured quartz is 4-6 × 10 -6 m/s and its storativity about 3-5 × 10 -4 (-). Both media are also characterized by a matrix hydraulic conductivity (10 -7-10 -9 m/s) and by a significant heterogeneity in hydrodynamic properties that generates preferential flow paths along the sub-vertical fissures parallel to the reef axis. A special attention has been paid for characterizing this heterogeneity. The weathering of the dolerite dyke, however, results in a local low hydraulic conductivity, which consequently does not enhance either the thickness of weathered granite layers or its hydraulic conductivity. The obtained results complete the conceptual hydrogeological model developed for weathered granite aquifers in characterizing the relationships between weathering processes and hydrodynamic properties near geological discontinuities.

  17. Rock mechanics for hard rock nuclear waste repositories

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1981-09-01

    The mined geologic burial of high level nuclear waste is now the favored option for disposal. The US National Waste Terminal Storage Program designed to achieve this disposal includes an extensive rock mechanics component related to the design of the wastes repositories. The plan currently considers five candidate rock types. This paper deals with the three hard rocks among them: basalt, granite, and tuff. Their behavior is governed by geological discontinuities. Salt and shale, which exhibit behavior closer to that of a continuum, are not considered here. This paper discusses both the generic rock mechanics R and D, which are required for repository design, as well as examples of projects related to hard rock waste storage. The examples include programs in basalt (Hanford/Washington), in granitic rocks (Climax/Nevada Test Site, Idaho Springs/Colorado, Pinawa/Canada, Oracle/Arizona, and Stripa/Sweden), and in tuff

  18. Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan (University of Arizona, Tucson, AZ); Stormont, John C. (University of New Mexico, Albuquerque, NM); Smith, Jody Lynn

    2003-09-01

    Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

  19. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  20. Hydrological and geochemical investigation on the volcanic rock and gneissic rock area

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kwon; Jeong, Chan Ho; Ryu, Kun Seok; Kim, Byoung Yeop; Park, Hyung Kun; Yu, Sang Woo; Jang, Hyu Kun; Lee, Suk Chi; Choi, Ki Young; Jeon, Hyu Woong; Kim, Do Hyoung [Daejong University, Daejeon (Korea, Republic of)

    2010-01-15

    The purpose of this study is to supply the basic data and optimum study site among volcanic rock area and gneissic rock area for high-level radioactive waste disposal. For this purpose, geological, hydrogeological and geochemical data from previously published literatures were collected and analyzed. In this study, we selected 36 volcanic rock sites and 26 gneissic sites as the candidate sites for high level radwaste disposal. Finally, for four sites(M-1, M-13, V-1 and V-13 sites) were selected as the study sites. The geochemical characteristics of groundwaters of each study site were statistically analyzed. The nitrate contamination and the sea water mixing will be important factors on the assessment of behaviour of radionuclides under groundwater environment. From the deep geothermal study, alkaline and sodium-bicarbonate chemical environment, and sea water mixing should be considered as the key factors for the deep disposal of high-level radioactive waste

  1. The earliest Paleoproterozoic supracrustal rocks in Koillismaa, northern Finland – their petrographic and geochemical characteristics and lithostratigraphy

    Directory of Open Access Journals (Sweden)

    Laura S. Lauri

    2003-01-01

    Full Text Available The 2.44 Ga Koillismaa layered igneous complex (KLIC in northern Finland is interpreted to have formed as a consequence of early Paleoproterozoic continental rifting. Associated with the mafic layered intrusions are felsic to intermediate volcanic and plutonic rocks of approximately the same age. The supracrustal rocks on top of the KLIC have been divided into three stratigraphic groups. The lowermost of these, the Sirniö Group, is thought to predate the KLIC and thus to represent the original roof. The overlying Kynsijärvi andHautavaara Groups are somewhat younger than the layered intrusions. The Sirniö Group comprises two formations of felsic and intermediate volcanic rocks. The Sirniövaara Formation, also called as the Koillismaa granophyre, consists of a thick rhyodacitic unit withgranophyric groundmass and some breccia interlayers. The Sirniövaara rhyodacite consists of plagioclase, quartz and biotite. Minor and accessory phases include ilmenite, magnetite, apatite, titanite, zircon and fluorite. Low-grade metamorphic minerals such as chlorite, epidote, carbonate and sericite are also commonly present. The granophyric texture is considered to have formed as a consequence of contact metamorphism and hydrothermal alteration associated with the emplacement of the KLIC. Above the Sirniövaara Formation is the Unijoki Formation, a heterogeneous group of felsic to intermediate volcanic rocks. The felsic rocks of the Unijoki Formation resemble the Sirniövaara rhyodacite whereas the intermediate rocks generally contain amphibole, instead of biotite, as the predominant mafic mineral. The rocks of the Sirniö Group show A-type geochemical character, e.g., high alkali content, Fe/Mg, 10000*Ga/Al, LREE, Y and Zr. In addition to primary compositional variation, metamorphic, and possibly hydrothermal, disturbance are recorded in the Sirniö Group lithologies. We consider them to be an example of early Paleoproterozoic rift-related volcanic rocks

  2. Geologic-geochemical characteristics of Guidong granitic massif and recognition of geo-tectonic environment at the time of its emplacement

    Energy Technology Data Exchange (ETDEWEB)

    Jianhong, Li; Shanyuan, Wei; Mingyue, Feng [Beijing Research Inst. of Uranium Geology, Beijing (China); Liang, Liang [East China Inst. of Technology, Fuzhou (China)

    2004-11-01

    Based on the study of geologic characteristics, such as mineralogic assemblage, structural and textural features of granite of Guidong granitic massif, and by using petrochemical, trace-element and isotopic data, and some petrochemical, trace-element and isotopic diagrams widely applied to the identification of geo-tectonic environments, authors recognize that Guidong granitic massif was emplaced in post-orogenic collision environment. (authors)

  3. Geologic assessment of undiscovered oil and gas resources—Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups, United States Gulf of Mexico Coastal Plain and State Waters

    Science.gov (United States)

    Swanson, Sharon M.; Enomoto, Catherine B.; Dennen, Kristin O.; Valentine, Brett J.; Cahan, Steven M.

    2017-02-10

    In 2010, the U.S. Geological Survey (USGS) assessed Lower Cretaceous Albian to Upper Cretaceous Cenomanian carbonate rocks of the Fredericksburg and Washita Groups and their equivalent units for technically recoverable, undiscovered hydrocarbon resources underlying onshore lands and State Waters of the Gulf Coast region of the United States. This assessment was based on a geologic model that incorporates the Upper Jurassic-Cretaceous-Tertiary Composite Total Petroleum System (TPS) of the Gulf of Mexico basin; the TPS was defined previously by the USGS assessment team in the assessment of undiscovered hydrocarbon resources in Tertiary strata of the Gulf Coast region in 2007. One conventional assessment unit (AU), which extends from south Texas to the Florida panhandle, was defined: the Fredericksburg-Buda Carbonate Platform-Reef Gas and Oil AU. The assessed stratigraphic interval includes the Edwards Limestone of the Fredericksburg Group and the Georgetown and Buda Limestones of the Washita Group. The following factors were evaluated to define the AU and estimate oil and gas resources: potential source rocks, hydrocarbon migration, reservoir porosity and permeability, traps and seals, structural features, paleoenvironments (back-reef lagoon, reef, and fore-reef environments), and the potential for water washing of hydrocarbons near outcrop areas.In Texas and Louisiana, the downdip boundary of the AU was defined as a line that extends 10 miles downdip of the Lower Cretaceous shelf margin to include potential reef-talus hydrocarbon reservoirs. In Mississippi, Alabama, and the panhandle area of Florida, where the Lower Cretaceous shelf margin extends offshore, the downdip boundary was defined by the offshore boundary of State Waters. Updip boundaries of the AU were drawn based on the updip extent of carbonate rocks within the assessed interval, the presence of basin-margin fault zones, and the presence of producing wells. Other factors evaluated were the middle

  4. Characteristics of PM10 Chemical Source Profiles for Geological Dust from the South-West Region of China

    Directory of Open Access Journals (Sweden)

    Yayong Liu

    2016-11-01

    Full Text Available Ninety-six particulate matter (PM10 chemical source profiles for geological sources in typical cities of southwest China were acquired from Source Profile Shared Service in China. Twenty-six elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Sr, Cd, Sn, Sb, Ba, Be, Tl and Pb, nine ions (F−, Cl−, SO42−, NO3−, Na+, NH4+, K+, Mg2+ and Ca2+, and carbon-containing species (organic carbon and elemental carbon were determined to construct these profiles. Individual source profiles were averaged and compared to quantify similarities and differences in chemical abundances using the profile-compositing method. Overall, the major components of PM10 in geological sources were crustal minerals and undefined fraction. Different chemical species could be used as tracers for various types of geological dust in the region that resulted from different anthropogenic influence. For example, elemental carbon, V and Zn could be used as tracers for urban paved road dust; Al, Si, K+ and NH4+ for agricultural soil; Al and Si for natural soil; and SO42− for urban resuspended dust. The enrichment factor analysis showed that Cu, Se, Sr and Ba were highly enriched by human activities in geological dust samples from south-west China. Elemental ratios were taken to highlight the features of geological dust from south-west China by comparing with northern urban fugitive dust, loess and desert samples. Low Si/Al and Fe/Al ratios can be used as markers to trace geological sources from southwestern China. High Pb/Al and Zn/Al ratios observed in urban areas demonstrated that urban geological dust was influenced seriously by non-crustal sources.

  5. Field Geology/Processes

    Science.gov (United States)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  6. Strong-motion characteristics and source process during the Suruga Bay earthquake in 2009 through observed records on rock sites

    International Nuclear Information System (INIS)

    Shiba, Yoshiaki; Sato, Hiroaki; Kuriyama, Masayuki

    2010-01-01

    On 11 August 2009, a moderate earthquake of M 6.5 occurred in the Suruga Bay region, south of Shizuoka prefecture. During this event, JMA Seismic Intensity reached 6 lower in several cities around the hypocenter, and at Hamaoka nuclear power plant of Chubu Electric Power reactors were automatically shutdown due to large ground motions. Though the epicenter is located at the eastern edge of source area for the assumed great Tokai earthquake of M 8, this event is classified into the intra-plate (intra-slab) earthquake, due to its focal depth lower than that of the plate boundary and fault geometry supposed from the moment tensor solution. Dense strong-motion observation network has been deployed mainly on the rock outcrops by our institute around the source area, and the waveform data of the main shock and several aftershocks were obtained at 13 stations within 100 km from the hypocenter. The observed peak ground motions and velocity response spectral amplitudes are both obviously larger than the empirical attenuation relations derived from the inland and plate-boundary earthquake data, which displays the characteristics of the intra-slab earthquake faulting. Estimated acceleration source spectra of the main shock also exhibit the short period level about 1.7 times larger than the average of those for past events, and it corresponds with the additional term in the attenuation curve of the peak ground acceleration for the intra-plate earthquake. Detailed source process of the main shock is inferred using the inversion technique. The initial source model is assumed to be composed of two distinct fault planes according to the minute aftershock distribution. Estimated source model shows that large slip occurred near the hypocenter and at the boundary region between two fault planes where the rupture transfers from primary to secondary fault. Furthermore the broadband source inversion using velocity motions in the frequency up to 5 Hz demonstrates the high effective

  7. Map showing the distribution and characteristics of plutonic rocks in the Tonopah 1 degree by 2 degrees Quadrangle, central Nevada

    Science.gov (United States)

    John, D.A.

    1987-01-01

    Plutonic rocks, mostly granite and granodiorite, are widely distributed in the west two-thirds of the Tonopah 1 degree by 2 degree quadrangle, Nevada. These rocks were systematically studied as part of the Tonopah CUSMAP project. Studies included field mapping, petrographic and modal analyses, geochemical studies of both fresh and altered plutonic rocks and altered wallrocks, and K-Ar and Rb-Sr radiometric dating. Data collected during this study were combined with previously published data to produce a 1:250,000-scale map of the Tonopah quadrangle showing the distribution of individual plutons and an accompanying table summarizing composition, texture, age, and any noted hydrothermal alteration and mineralization effects for each pluton.

  8. ENGINEERING GEOLOGY PROPERTIES OF 'KONJSKO' TUNNEL

    Directory of Open Access Journals (Sweden)

    Ivan Grabovac

    2004-12-01

    Full Text Available Investigation works for the design of the Konjsko Tunnel with two pipes, part of the Split-Zagreb Motorway, provided relevant data on rock mass and soil properties for construction of the prognose engineering-geological longitudinal sections. West tunnel portals are situated in tectonically deformed and partly dynamically metamorphosed Eocene flysch marls, while east ones are located in Senonian limestones. There is an overthrust contact between flysch marls and limestones. With the beginning of the excavations, rock mass characteristics were regularly registered after each blasting and actual longitudinal engineering-geological cross-sections were constructed as well as cross-sections of the excavation face. There were some differences between prognosticated and registered sections since it was infeasible to accurately determine the dip of the overthrust plane that was at shallow depth below the tunnel grade line and also due to the occurrence of transversal faults that intersected the overthrust. Data collected before and during the tunnel construction complemented the knowledge on geological structure of the surroundings and physical-mechanical characteristics of strata (the paper is published in Croatian.

  9. Geological history of uranium

    International Nuclear Information System (INIS)

    Niini, Heikki

    1989-01-01

    Uranium is widely distributed in continental geological environments. The order of magnitude of uranium abundance in felsitic igneous rocks is 2-15 ppm, whereas it is less than 1 ppm in mafic rocks. Sedimentary rocks show a large range: from less than 0.1 ppm U in certain evaporites to over 100 ppm in phosphate rocks and organogenic matter. The content of U in seawater varies from 0.0005 to 0.005 ppm. The isotopic ratio U-238/U-235 is presently 137.5+-0.5, having gradually increased during geological time. The third natural isotope is U-234. On the basis of three fundamental economic criteria for ore reserves assessment (geological assurance, technical feasibility, and the grade and quantity of the deposits), the author finally comes to the following conclusions: Although the global uranium ores are not geologically renewable but continuously mined, they still, due to exploration and technical development, will tend to progressively increase for centuries to come

  10. Geologic framework and hydrogeologic characteristics of the outcrops of the Edwards and Trinity aquifers, Medina Lake area, Texas

    Science.gov (United States)

    Small, Ted A.; Lambert, Rebecca B.

    1998-01-01

    The hydrogeologic subdivisions of the Edwards aquifer outcrop in the Medina Lake area in Medina and Bandera Counties generally are porous and permeable. The most porous and permeable appear to be hydrogeologic subdivision VI, the Kirschberg evaporite member of the Kainer Formation; and hydrogeologic subdivision III, the leached and collapsed members, undivided, of the Person Formation. The porosity of the rocks in the Edwards aquifer outcrop is related to depositional or diagenetic elements along specific stratigraphic horizons (fabric selective) and to dissolution and structural elements that can occur in any lithostratigraphic horizon (not fabric selective). Permeability depends on the physical properties of the rock such as size, shape, and distribution of pores.

  11. Relating rock avalanche morphology to emplacement processes

    Science.gov (United States)

    Dufresne, Anja; Prager, Christoph; Bösmeier, Annette

    2015-04-01

    The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite

  12. Impact of In Situ Stress Distribution Characteristics on Jointed Surrounding Rock Mass Stability of an Underground Cavern near a Hillslope Surface

    Directory of Open Access Journals (Sweden)

    Bangxiang Li

    2017-01-01

    Full Text Available In this paper, a series of numerical simulations are performed to analyze the in situ stress distribution characteristics of the rock mass near different slope angles hillslope surfaces, which are subjected to the vertical gravity stress and different horizontal lateral stresses and the influence which the in situ stress distribution characteristics of 45° hillslope to the integral stability of surrounding rock mass when an underground cavern is excavated considering three different horizontal distances from the underground cavern to the slope surface. It can be concluded from the numerical results that different slope angles and horizontal lateral stresses have a strong impact on the in situ stress distribution and the integral surrounding rock mass stability of the underground cavern when the horizontal distance from the underground cavern to the slope surface is approximately 100 m to 200 m. The relevant results would provide some important constructive suggestions to the engineering site selection and optimization of large-scale underground caverns in hydropower stations.

  13. Directions of the US Geological Survey Landslide Hazards Reduction Program

    Science.gov (United States)

    Wieczorek, G.F.

    1993-01-01

    The US Geological Survey (USGS) Landslide Hazards Reduction Program includes studies of landslide process and prediction, landslide susceptibility and risk mapping, landslide recurrence and slope evolution, and research application and technology transfer. Studies of landslide processes have been recently conducted in Virginia, Utah, California, Alaska, and Hawaii, Landslide susceptibility maps provide a very important tool for landslide hazard reduction. The effects of engineering-geologic characteristics of rocks, seismic activity, short and long-term climatic change on landslide recurrence are under study. Detailed measurement of movement and deformation has begun on some active landslides. -from Author

  14. Model to Assess the Quality of Magmatic Rocks for Reliable and Sustainable Constructions

    Directory of Open Access Journals (Sweden)

    Mihaela Toderaş

    2017-10-01

    Full Text Available Geomechanical assessment of rocks requires knowledge of phenomena that occur under the influence of internal and external factors at a macroscopic or microscopic scale, when rocks are submitted to different actions. To elucidate the quantitative and qualitative geomechanical behavior of rocks, knowing their geological and physical–mechanical characteristics becomes an imperative. Mineralogical, petrographical and chemical analyses provided an opportunity to identify 15 types of igneous rocks (gabbro, diabases, granites, diorites, rhyolites, andesites, and basalts, divided into plutonic and volcanic rocks. In turn, these have been grouped into acidic, neutral (intermediate and basic magmatites. A new ranking method is proposed, based on considering the rock characteristics as indicators of quantitative assessment, and the grading system, by given points, allowing the rocks framing in admissibility classes. The paper is structured into two parts, experimental and interpretation of experimental data, showing the methodology to assess the quality of igneous rocks analyzed, and the results of theoretical and experimental research carried out on the analyzed rock types. The proposed method constitutes an appropriate instrument for assessment and verification of the requirements regarding the quality of rocks used for sustainable construction.

  15. Performance characteristics of tunnel boring machine in basalt and pyroclastic rocks of Deccan traps – A case study

    Directory of Open Access Journals (Sweden)

    Prasnna Jain

    2014-02-01

    Full Text Available A 12.24 km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine (TBM to improve the water supply system of Greater Mumbai, India. In this paper, attempt has been made to establish the relationship between various litho-units of Deccan traps, stability of tunnel and TBM performances during the construction of 5.83 km long tunnel between Maroshi and Vakola. The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around 70 m. The tunneling work was carried out without disturbance to the ground. The rock types encountered during excavation are fine compacted basalt, porphyritic basalt, amygdaloidal basalt, pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales. Relations between rock mass properties, physico-mechanical properties, TBM specifications and the corresponding TBM performance were established. A number of support systems installed in the tunnel during excavation were also discussed. The aim of this paper is to establish, with appropriate accuracy, the nature of subsurface rock mass condition and to study how it will react to or behave during underground excavation by TBM. The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.

  16. Geology and petrology of Lages Alkaline District, Santa Catarina State

    International Nuclear Information System (INIS)

    Scheibe, L.F.

    1986-01-01

    A 1:100.000 geological map shows the main outcrops, covering about 50 Km 2 , of the leucocratic alkaline rocks, ultra basic alkaline rocks, carbonatites and volcanic breccias which intruded the Gondwanic sedimentary rocks within a short time interval and characterize the Alkaline District of Lages. Chemical analyses of 33 whole-rock samples confirm the petrographic classification, but the agpaitic indexes, mostly below 1.0, do not reflect the mineralogical variations of the leucocratic alkaline rocks adequately. Partial REE analyses indicate that the light as well as the heavy rare earth contents decrease from the basic to the more evolved rocks, the La/Y ratio remaining approximately constant. Eleven new K/Ar ages from porphyritic nepheline syenites porphyritic phonolites, ultra basic alkaline rocks and pipe-breccias, together with six already available ages, show a major concentration in the range 65 to 75 Ma, with a mode at ca. 70 Ma. But one Rb/Sr whole-rock reference isochron diagram gives an age of 82+-6 Ma for the agpaitic phonolites of the Serra Chapada, which are considered younger than the miaskitic porphyriric nepheline syenites. The 87 Sr/ 86 Sr ratios of 0.705-0.706 are compatible with a sub continental mantelic origin, devoid of crustal contamination. A petrogenetic model based on subtraction diagrams and taking into consideration the geologic, petrographic, mineralogic and petrochemical characteristics of the alkaline rocks of Lages consists of limited partial melting with CO 2 , contribution of the previously metasomatized upper mantle, in a region submitted to decompression. (author)

  17. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    International Nuclear Information System (INIS)

    Gómez, Javier B.; Gimeno, María J.; Auqué, Luis F.; Acero, Patricia

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  18. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Javier B., E-mail: jgomez@unizar.es; Gimeno, María J., E-mail: mjgimeno@unizar.es; Auqué, Luis F., E-mail: lauque@unizar.es; Acero, Patricia, E-mail: patriace@unizar.es

    2014-01-01

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water–rock interaction can be used to explain the remaining variability. In this way, the chemistry of each water sample can be obtained by using the mixing proportions for the conservative elements, only affected by mixing, or combining the mixing proportions and the chemical reactions for the non-conservative elements in the system, establishing the basis for predictive calculations. - Highlights: • Laxemar (Sweden) groundwater is the combined result

  19. Age determination and geological studies

    International Nuclear Information System (INIS)

    Stevens, R.D.; Delabio, R.N.; Lachance, G.R.

    1982-01-01

    Two hundred and eight potassium-argon age determinations carried out on Canadian rocks and minerals are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in brief outline and the constants used in the calculation of ages are listed. Two geological time-scales are reproduced in tabular form for ready reference and an index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference

  20. An analysis of fracture trace patterns in areas of flat-lying sedimentary rocks for the detection of buried geologic structure. [Kansas and Texas

    Science.gov (United States)

    Podwysocki, M. H.

    1974-01-01

    Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.

  1. Water and rock geochemistry, geologic cross sections, geochemical modeling, and groundwater flow modeling for identifying the source of groundwater to Montezuma Well, a natural spring in central Arizona

    Science.gov (United States)

    Johnson, Raymond H.; DeWitt, Ed; Wirt, Laurie; Arnold, L. Rick; Horton, John D.

    2011-01-01

    The National Park Service (NPS) seeks additional information to better understand the source(s) of groundwater and associated groundwater flow paths to Montezuma Well in Montezuma Castle National Monument, central Arizona. The source of water to Montezuma Well, a flowing sinkhole in a desert setting, is poorly understood. Water emerges from the middle limestone facies of the lacustrine Verde Formation, but the precise origin of the water and its travel path are largely unknown. Some have proposed artesian flow to Montezuma Well through the Supai Formation, which is exposed along the eastern margin of the Verde Valley and underlies the Verde Formation. The groundwater recharge zone likely lies above the floor of the Verde Valley somewhere to the north or east of Montezuma Well, where precipitation is more abundant. Additional data from groundwater, surface water, and bedrock geology are required for Montezuma Well and the surrounding region to test the current conceptual ideas, to provide new details on the groundwater flow in the area, and to assist in future management decisions. The results of this research will provide information for long-term water resource management and the protection of water rights.

  2. Effects of explosions in hard rocks

    International Nuclear Information System (INIS)

    Heuze, F.E.; Walton, O.R.; Maddix, D.M.; Shaffer, R.J.; Butkovich, T.R.

    1993-01-01

    This work relates to explosions in hard rocks (ex: basalt, granite, limestone...). Hard rock masses typically have a blocky structure created by the existence of geologic discontinuities such as bedding contacts, faults, and joints. At very high pressure - hundreds of kilobars and above - these discontinuities do not act separately, and the rock appears to be an equivalent continuous medium. At stress of a few tens of kilobars and below, the geologic discontinuities control the kinematics of the rock masses. Hence, the simulation of rock dynamics, anywhere but in the very-near source region, should account for those kinematics

  3. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  4. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  5. Characteristics of hydrothermal alteration mineralogy and geochemistry of igneous rocks from the epithermal Co-O mine and district, Eastern Mindanao (Philippines)

    Science.gov (United States)

    Sonntag, Iris; Hagemann, Steffen

    2010-05-01

    Detailed petrographic as well as hyperspectral analyses using PIMA (Portable Infrared Mineral Analyser) and geochemical (major, trace and rare earth elements) studies were conducted on samples of the epithermal, low sulfidation Co-O mine (47,869 ounces gold produced in 2009 with an average grade of 13.3 g/t gold) and district in Eastern Mindanao (Philippines). The aims of the study were to unravel the petrogenetic origin of the various volcanic (host rocks) and intrusive rocks (potential fluid driver) as well as their relationship and influence on the hydrothermal alteration zoning and fluid chemistry. The auriferous veins at the Co-O mine were formed during two hydrothermal stages associated with the district wide D1 and D2 deformation events. Gold in stage 1 quartz veins is in equilibrium with galena and sphalerite, whereas in stage 2 it is associated with pyrite. Auriferous quartz veins of stage 1 reflect temperatures below 250° C or strong variations in pH and fO2 at higher temperatures, due to potential involvement of acidic gas or meteoric water. Cathodoluminescense studies revealed strong zonation of quartz associated with Au, presumably related to changes in the Al content, which is influenced by the pH. Plumose textures indicate times of rapid deposition, whereas saccharoidal quartz grains are related to potential calcite replacement. The geology of the Co-O mine and district is dominated by Miocene volcanic rocks (basic to intermediate flows and pyroclastics units), which are partly covered by Pliocene volcanic rocks and late Oligocene to Miocene limestones. The Miocene units are intruded by diorite (presumably Miocene in age). The epithermal mineralization event may be related to diorite intrusions. The geochemistry of all igneous rocks in the district is defined by a sub-alkaline affinity and is low to medium K in composition. Most units are related to a Miocene subduction zone with westward subduction, whereas the younger Pliocene rocks are related to

  6. Great Basin geologic framework and uranium favorability

    International Nuclear Information System (INIS)

    Larson, L.T.; Beal, L.H.

    1978-01-01

    Work on this report has been done by a team of seven investigators assisted over the project span by twenty-three undergraduate and graduate students from May 18, 1976 to August 19, 1977. The report is presented in one volume of text, one volume or Folio of Maps, and two volumes of bibliography. The bibliography contains approximately 5300 references on geologic subjects pertinent to the search for uranium in the Great Basin. Volume I of the bibliography lists articles by author alphabetically and Volume II cross-indexes these articles by location and key word. Chapters I through IV of the Text volume and accompanying Folio Map Sets 1, 2, 3, 4, and 5, discuss the relationship of uranium to rock and structural environments which dominate the Great Basin. Chapter 5 and Map Sets 6 and 7 provide a geochemical association/metallogenic grouping of mineral occurrences in the Great Basin along with information on rock types hosting uranium. Chapter VI summarizes the results of a court house claim record search for 'new' claiming areas for uranium, and Chapter VII along with Folio Map Set 8 gives all published geochronological data available through April 1, 1977 on rocks of the Great Basin. Chapter VIII provides an introduction to a computer analysis of characteristics of certain major uranium deposits in crystalline rocks (worldwide) and is offered as a suggestion of what might be done with uranium in all geologic environments. We believe such analysis will assist materially in constructing exploration models. Chapter IX summarizes criteria used and conclusions reached as to the favorability of uranium environments which we believe to exist in the Great Basin and concludes with recommendations for both exploration and future research. A general summary conclusion is that there are several geologic environments within the Great Basin which have considerable potential and that few, if any, have been sufficiently tested

  7. Hard rock tunnel boring machine penetration test as an indicator of chipping process efficiency

    Directory of Open Access Journals (Sweden)

    M.C. Villeneuve

    2017-08-01

    Full Text Available The transition from grinding to chipping can be observed in tunnel boring machine (TBM penetration test data by plotting the penetration rate (distance/revolution against the net cutter thrust (force per cutter over the full range of penetration rates in the test. Correlating penetration test data to the geological and geomechanical characteristics of rock masses through which a penetration test is conducted provides the ability to reveal the efficiency of the chipping process in response to changing geological conditions. Penetration test data can also be used to identify stress-induced tunnel face instability. This research shows that the strength of the rock is an important parameter for controlling how much net cutter thrust is required to transition from grinding to chipping. It also shows that the geological characteristics of a rock will determine how efficient chipping occurs once it has begun. In particular, geological characteristics that lead to efficient fracture propagation, such as fabric and mica contents, will lead to efficient chipping. These findings will enable a better correlation between TBM performance and geological conditions for use in TBM design, as a basis for contractual payments where penetration rate dominates the excavation cycle and in further academic investigations into the TBM excavation process.

  8. Impact on the deep biosphere of CO2 geological sequestration in (ultra)mafic rocks and retroactive consequences on its fate

    Science.gov (United States)

    Ménez, Bénédicte; Gérard, Emmanuelle; Rommevaux-Jestin, Céline; Dupraz, Sébastien; Guyot, François; Arnar Alfreősson, Helgi; Reynir Gíslason, Sigurőur; Sigurőardóttir, Hólmfríiur

    2010-05-01

    Due to their reactivity and high potential of carbonation, mafic and ultramafic rocks constitute targets of great interest to safely and permanently sequestrate anthropogenic CO2 and thus, limit the potential major environmental consequences of its increasing atmospheric level. In addition, subsurface (ultra)mafic environments are recognized to harbor diverse and active microbial populations that may be stimulated or decimated following CO2 injection (± impurities) and subsequent acidification. However, the nature and amplitude of the involved biogeochemical pathways are still unknown. To avoid unforeseen consequences at all time scales (e.g. reservoir souring and clogging, bioproduction of H2S and CH4), the impact of CO2 injection on deep biota with unknown ecology, and their retroactive effects on the capacity and long-term stability of CO2 storage sites, have to be determined. We present here combined field and experimental investigations focused on the Icelandic pilot site, implemented in the Hengill area (SW Iceland) at the Hellisheidi geothermal power plant (thanks to the CarbFix program, a consortium between the University of Iceland, Reykjavik Energy, the French CNRS of Toulouse and Columbia University in N.Y., U.S.A. and to the companion French ANR-CO2FIX project). This field scale injection of CO2 charged water is here designed to study the feasibility of storing permanently CO2 in basaltic rocks and to optimize industrial methods. Prior to the injection, the microbiological initial state was characterized through regular sampling at various seasons (i.e., October '08, July '09, February '10). DNA was extracted and amplified from the deep and shallow observatory wells, after filtration of 20 to 30 liters of groundwater collected in the depth interval 400-980 m using a specifically developed sampling protocol aiming at reducing contamination risks. An inventory of living indigenous bacteria and archaea was then done using molecular methods based on the

  9. Strain analysis and microstructural evolution characteristic of neoproterozoic rocks associations of Wadi El Falek, centre Eastern Desert, Egypt

    Science.gov (United States)

    Kassem, Osama M. K.; Rahim, Said H. Abd El; Nashar, El Said R. El

    2012-09-01

    The estimation of finite strain in rocks is fundamental to a meaningful understanding of deformational processes and products on all scales from microscopic fabric development to regional structural analyses. The Rf/φ and Fry methods on feldspar porphyroclasts and mafic grains from 5 granite, 1 metavolcanic, 3 metasedimentary and 1 granodiorite samples were used in Wadi El Falek region. Finite-strain data shows that a high to moderate range of deformation of the granitic to metavolcano-sedimentary samples and axial ratios in the XZ section range from 1.60 to 4.10 for the Rf/φ method and from 2.80 to 4.90 for the Fry method. Furthermore, the short axes are subvertical associated with a subhorizontal foliation. We conclude that finite strain in the deformed granite rocks is of the same order of magnitude as that from metavolcano-sedimentary rocks. Furthermore, contacts formed during intrusion of plutons with some faults in the Wadi El Falek area under brittle to semi-ductile deformation conditions. In this case, finite strain accumulated during superimposed deformation on the already assembled nappe structure. It indicates that the nappe contacts formed during the accumulation of finite strain.

  10. Geology and U-Pb geochronology of the Kipawa Syenite Complex - a thrust related alkaline pluton - and adjacent rocks in the Grenville Province of western Quebec

    Energy Technology Data Exchange (ETDEWEB)

    Van Breemen, O.; Currie, K.L. [Geological Survey of Canada, Ottawa, Ontario (Canada)]. E-mail: ovanbree@nrcan.gc.ca

    2004-07-01

    The Kipawa Syenite Complex, a thin, folded sheet of amphibole syenite, quartz syenite and minor nepheline syenite, lies along a west-vergent thrust separating a lower slice comprising the Kikwissi granodiorite and biotite tonalite dated at 2717 {sub -11}{sup +15} Ma, and unconformably overlying metasedimentary rocks from an overlying slice containing the Red Pine Chute orthogneiss, an alkali granite gneiss, and the Mattawa Quartzite. The syenite complex, dated at 1033 {+-} 3 Ma, lies within the lower slice but has metasomatically altered the overlying slice. Texturally guided U-Pb spot analyses on partially metasomatised zircons from the alkali granite gneiss yield a cluster of {sup 207}G'Pb/{sup 206}Pb ages at 1389 {+-} 8 Ma, interpreted as the time of igneous crystallization and four ages overlapping the time of syenite emplacement, interpreted as in situ, metasomatic growth. The highest structural slice comprises garnet amphibolite separated from lower slices by the Allochthon Boundary Thrust. Metamorphic grade increases upward from greenschist grade in the biotite tonalite to amphibolite grade (690 {sup o}C, 9 kbar (1 kbar = 100 MPa)) at the lower boundary of the alkali granite. Emplacement of the Kipawa Syenite Complex took place after assembly of the thrust stack had begun and after emplacement of the allochthon or hot slab responsible for the inverted metamorphic gradient. Origin of the syenite is tentatively ascribed to anatexis of material metasomatized by flow of alkaline solutions along a major shear surface. Crystallization of new zircon in the margins of the syenite shows that metasomatism continued from ca. 1035 to 990 Ma, redistributing alkalies, fluorine, rare-earth elements and zirconium. (author)

  11. Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden.

    Science.gov (United States)

    Gómez, Javier B; Gimeno, María J; Auqué, Luis F; Acero, Patricia

    2014-01-15

    This paper presents the mixing modelling results for the hydrogeochemical characterisation of groundwaters in the Laxemar area (Sweden). This area is one of the two sites that have been investigated, under the financial patronage of the Swedish Nuclear Waste and Management Co. (SKB), as possible candidates for hosting the proposed repository for the long-term storage of spent nuclear fuel. The classical geochemical modelling, interpreted in the light of the palaeohydrogeological history of the system, has shown that the driving process in the geochemical evolution of this groundwater system is the mixing between four end-member waters: a deep and old saline water, a glacial meltwater, an old marine water, and a meteoric water. In this paper we put the focus on mixing and its effects on the final chemical composition of the groundwaters using a comprehensive methodology that combines principal component analysis with mass balance calculations. This methodology allows us to test several combinations of end member waters and several combinations of compositional variables in order to find optimal solutions in terms of mixing proportions. We have applied this methodology to a dataset of 287 groundwater samples from the Laxemar area collected and analysed by SKB. The best model found uses four conservative elements (Cl, Br, oxygen-18 and deuterium), and computes mixing proportions with respect to three end member waters (saline, glacial and meteoric). Once the first order effect of mixing has been taken into account, water-rock int