WorldWideScience

Sample records for char yield morphology

  1. Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology, and Reactivity

    DEFF Research Database (Denmark)

    Dall'Ora, Michelangelo; Jensen, Peter Arendt; Jensen, Anker Degn

    2008-01-01

    Chars from pine and beech wood were produced by fast pyrolysis in an entrained flow reactor and by slow pyrolysis in a thermogravimetric analyzer. The influence of pyrolysis temperature, heating rate and particle size on char yield and morphology was investigated. The applied pyrolysis temperatur...

  2. Beneficiated coals' char morphology

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2012-09-01

    Full Text Available This work evaluated the char morphology of beneficiated and original coal (without beneficiation from four Colombian coalmines: Cerrejón (La Guajira, La Jagua (Cesar, Guachinte (Valle del Cauca and Nechí (Antioquia. Column flotation was used to obtain beneficiated coal, whereas a drop tube reactor at 1,000°C, 104 °C/s heating rate and 100 ms residence time was used to obtain char. The chars were analysed by image analysis which determined their shape, size, porosity and wall thickness. It was found that char morphology depended on coal rank and maceral composition. Morphological characteristics like high porosity, thinner walls and network-like morphology which are beneficial in improving combustion were present in vitrinite- and liptinite-rich lowest-ranking coals. Beneficiated coals showed that their chars had better performance regarding their morphological characteristics than their original coal chars.

  3. Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    The char yield as well as physical and chemical structure of chars generated from different types of biomass divided into five different particle size fractions from 50μm to 1mm were studied to better understand the influences of holding time, final temperatures and heating rates on the pyrolysis...... characteristics of biomass chars. An additional study of the char phase-organic transformation was conducted on the biomass organic matter. Char samples were generated in a wire-mesh reactor up to 1400°C, and with the heating rates between 10 K/s and 3000 K/s. The results were compared with the data gained from...... slow (10 K/min) and fast heating (600 K/min) by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM/EDS), elementary analysis and Fourier transform infrared spectroscopy (FTIR) were conducted to determine the effect of operating conditions and the biomass composition on the char...

  4. Combustion char morphology related to combustion temperature and coal petrography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Petersen, H.I.; Thomsen, E. [Geological Survey of Denmark, Copenhagen (Denmark)

    1996-07-01

    Chars produced from different reactors were found to lack consistency of morphological charactersitics. Therefore, the morphology of chars sampled from various laboratory-scale reactors operating at temperatures from 800 to {gt} 1400{degree}C, together with chars collected directly in the flame zone in a full-scale pulverised fuel combustion experiment, was examined. A coal and coal blend dominated by vitrinite-rich microlithotypes together with four coals dominated by inertinite-rich microlithotypes were used to produce the combustion chars. Char samples produced at temperatures above {approximately} 1300{degree}C have a morphotype composition very similar to the composition of the full-scale char samples, whereas the morphotype compositions of those produced at {approximately} 1550{degree}C or lower are significantly different. Correlation between coal petrography and char morphology and determination of char reactivity should thus be attempted only using chars produced at temperatures comparable with those for the intended use of the coal. A clear distinction between the high-temperature char samples (burnout 50-60wt% daf) emerges which is related mainly to the parent coal petrography and probably secondarily to the rank. Vitrite, clarite and vitrinertie V may be correlated with the porous tenuisphere and crassisphere morphotypes, whereas inertite, durite, vitrinertite I, duroclarite and charodurite may be correlated with the crassinetwork-mixed-network-mixed morphotype group. 29 refs., 7 figs., 7 tabs.

  5. A burnout prediction model based around char morphology

    Energy Technology Data Exchange (ETDEWEB)

    T. Wu; E. Lester; M. Cloke [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy and Fuel Centre

    2005-07-01

    Poor burnout in a coal-fired power plant has marked penalties in the form of reduced energy efficiency and elevated waste material that can not be utilized. The prediction of coal combustion behaviour in a furnace is of great significance in providing valuable information not only for process optimization but also for coal buyers in the international market. Coal combustion models have been developed that can make predictions about burnout behaviour and burnout potential. Most of these kinetic models require standard parameters such as volatile content, particle size and assumed char porosity in order to make a burnout prediction. This paper presents a new model called the Char Burnout Model (ChB) that also uses detailed information about char morphology in its prediction. The model can use data input from one of two sources. Both sources are derived from image analysis techniques. The first from individual analysis and characterization of real char types using an automated program. The second from predicted char types based on data collected during the automated image analysis of coal particles. Modelling results were compared with a different carbon burnout kinetic model and burnout data from re-firing the chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen across several residence times. An improved agreement between ChB model and DTF experimental data proved that the inclusion of char morphology in combustion models can improve model predictions. 27 refs., 4 figs., 4 tabs.

  6. A burnout prediction model based around char morphology

    Energy Technology Data Exchange (ETDEWEB)

    Tao Wu; Edward Lester; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2006-05-15

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coal particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.

  7. Morphological changes during oxidation of a single char particle

    Energy Technology Data Exchange (ETDEWEB)

    d' Amore, M. (Salerno Univ. (Italy). Dept. of Chemical and Food Engineering); Tognotti, L. (Pisa Univ. (Italy). Dept. of Chemical Engineering); Sarofim, A.F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering)

    1992-01-01

    In this study, the changes with conversion in morphology of a carbon char in the temperature range 500--1200 K are followed by using an electrodynamic balance (EDB) (Spjut et al., 1985; Dudek, 1988; Bar-ziv et al., 1989). This device allows one to measure in situ, over temperature range wider than in other apparatuses, mass, diameter, density, surface area, rate of reaction and temperature for a single, suspended submillimeter particle. By following with the EDB the changes in the char as it reacts, it is possible to study the influence of the porous texture on the reaction behavior and shed some light on the contribution by micropores to the reaction in the chemical kinetic controlled regime.

  8. Influence of fast pyrolysis conditions on yield and structural transformation of biomass chars

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2015-01-01

    this value a similar biomass char yield was obtained. The potassium content affected the char yield stronger than other minerals, while the distribution of the three major biomass constituents (cellulose, hemicellulose, lignin) affected the char yield only to a minor degree. Moreover, it was found...... that the heat treatment temperature had a larger influence on the char yield than the heating rate. Scanning electron microscopy indicated different types of biomass char plasticization influenced by the applied temperatures, heating rates, particle sizes and holding times, except for the rice husk char......Fast pyrolysis of biomass (wood, straw, rice husk) and its major components (cellulose, hemicellulose, lignin) was conducted in a wire mesh reactor. The aim of this study was to understand the influence of temperature (350-1400 ° C), heating rate (10-3000 ° C/s), particle size (0.05-2 mm...

  9. Effect of the heating rate on the morphology of the pyrolytic char from hazelnut shell

    Energy Technology Data Exchange (ETDEWEB)

    Hanzade, H.A.; Serdar, Y. [Istanbul Technical Univ., Istanbul (Turkey). Faculty of Chemical and Metallurgical Engineering

    2008-07-01

    Although biomass chars have a high potential for use in various applications, their performance is directly related to the chemical and the physical properties of the chars. The surface area, porosity, pore size distribution, and density are the physical properties that determine the suitability of the chars to be used. Hazelnut shells are touted as being an extremely appropriate feedstock for high quality pyrolytic char, but the working conditions under which char is obtained have significant influence on the char structure and its properties, such as the thermal reactivity. Therefore, effects of the various parameters on the char structure must be considered. In this context, the present study focused on the physical changes that occur in char as a result of different heating rates during the pyrolysis of hazelnut shells. The effects of the heating rate on the structure of the pyrolytic char obtained from ground hazelnut shells under six different heating rate conditions were investigated. The hazelnut shell was burned in a thermogravimetric analyzer (TGA) under nitrogen flow. Non-isothermal heating was performed from ambient to 900 degrees C and held at this temperature until no further mass loss occurred. The changes in char morphology were studied with respect to the heating rate during charring. Scanning electron microscopy (SEM) was used with each char sample to determine the effect of heating rate. The dominant inorganic phases found in hazelnut shells were found to survive in the char. It was concluded that the high lignin content found in the char played a critical role in the decomposition mechanism. 3 refs., 2 tabs., 2 figs.

  10. Study on product distributions and char morphology during rapid co-pyrolysis of platanus wood and lignite in a drop tube fixed-bed reactor.

    Science.gov (United States)

    Meng, Haiyu; Wang, Shuzhong; Chen, Lin; Wu, Zhiqiang; Zhao, Jun

    2016-06-01

    The rapid co-pyrolytic behavior of platanus wood and Pingzhuang lignite was explored in a drop tube fixed-bed reactor under nitrogen atmosphere. Synergistic effects were evaluated using the deviations between experimental and predicted values of product yields and gas components. Surface morphology of residual chars were also investigated applying the scanning electron microscopy technique (SEM). This study found that the experimental values of gas volume yields were greater than the predicted, and the maximum gas volume yield exhibited with 50% biomass blending ratio at 1000°C. Positive or negative synergistic effects happened in gas components at different blending ratios and temperatures. The SEM results indicated that the differences of char surface morphology were evident. The fractal dimensions of residual chars increased with increasing biomass blending ratio, which may improve their gasification or combustion reactivity. The change in product yields and gas components was attributed to the secondary reactions and tar cracking.

  11. Effects of Hybrid Fibre Reinforcement on Fire Resistance Performance and Char Morphology of Intumescent Coating

    Directory of Open Access Journals (Sweden)

    Amir N.

    2016-01-01

    Full Text Available Recent researches of fire retardant intumescent coatings reinforced by single Rockwool and single glass wool fibre at various weight percentages and lengths showed some improvements to the mechanical properties of the coatings and the char produced. Therefore, in this research the fibres were combined together in intumescent coating formulation at several weight percentages and fibre lengths to study their effects towards fire resistance performance and char morphology. The hybrid fibre reinforced intumescent coatings were subjected to two types of fire tests; Bunsen burner at 1000°C and the electric furnace at 800°C for 1 hour, respectively. Steel temperature of the coated samples during Bunsen burner test was recorded to determine the fire resistance performance. Thermal stability of the intumescent coatings and chars was determined by Thermogravimetric Analysis (TGA. The morphology of the coatings and char was then examined by using Scanning Electron Microscopy (SEM and Energy Dispersive Spectrometry (EDS was conducted to obtain elemental composition of the samples. This research concluded that long-hybrid fibre at 12-mm length and 0.6% fibre-weight produced the top performing hybrid fibre intumescent formulation. The hybrid fibres form survived at elevated temperature, hence helped to provide structure and strengthen the char with the highest fire resistance was recorded at steel temperature of 197°C.

  12. Characterization of chars form biomass-derived materials: pectin chars

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.K.; Wooten, J.B.; Baliga, V.L.; Hajaligol, M.R. [Philip Morris USA, Richmond, VA (United States). Research Center

    2001-10-09

    The effect of pyrolysis conditions on the yield and composition of char from pectin was studied. The volatile product was analyzed by gas chromatography/mass spectrometry (GC/MS). The solid product, i.e. char, was characterised by solid-state {sup 13}C nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectrsocopy. The char was also analysed for its elemental composition and surface area. The surface morphology of the char was studied by scanning electron microscopy (SEM). The results were compared to those from chlorogenic acid (CA). For both pectin and CA, the char yield decreased with increasing temperature before levelling-off at ca.20% of the starting substrate in non-oxidative runs. In oxidative runs, the char yields from both substrates became negligible at 550{degree}C. NMR analysis indicated that the aromatic character of char increased as the pyrolysis temperature increased. The oxygen functionality was progressively lost and the resonance bands corresponding to carbonyl groups mostly disappeared above 350{degree}C. FTIR analysis also suggested the loss of hydroxyl and carbonyl groups from chars at high temperatures. The H/C and O/C ratios of chars decreased continuously with increasing temperature. The oxidative chars showed characteristics essentially similar to those of the non-oxidative chars. The surface area of char was negligible at low temperatures, but increased dramatically to a maximum of 70 m{sup 2}g{sup -1} at 450{degree}C before decreasing at 500{degree}C. SEM analysis indicated that the pyrolysis of pectin occurred via softening and melting of the substrate followed by bubble formation. At high temperatures, surface etching followed by the appearance of crystal

  13. Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.; Thambimuthu, K.; Valix, M. [University of Sydney (Australia). Dept. of Chemical Engineering

    2003-04-01

    Carbonisation experiments on samples of sugar cane bagasse were conducted in a static fixed bed reactor to determine the effect of process variables such as temperature, heating rate, inert sweep gas flow rate and particle size on the yield and composition of solid product char. Experiments were performed to the final temperatures of 250-700{sup o}C with heating rates from 5 to 30{sup o}C/min with nitrogen sweep gas flow rate of 350 cc/min. Additional tests were aimed at studying the effect of different flow rates of nitrogen sweep gas from 0 to 700 cc/min during carbonization and different particle size fractions of bagasse. The results showed that as the carbonisation temperature was increased, the yield of char decreased. The reduction in yield was rapid up to a final temperature of 500{sup o}C and was slower thereafter. The yield of char was relatively insensitive to the changes in heating rate and particle size. Increasing the sweep gas flow rate to 350 cc/min reduced the yield of char. It appears the presence of inert sweep gas reduced secondary reactions which promoted char formation. The proximate analysis of the char suggests that fixed carbon and ash content increased with temperature. The char obtained at temperatures higher than 500{sup o}C have high carbon content and is suitable as renewable fuel and for other applications. The carbonization of bagasse has the potential to produce environmental friendly fuels and can assist in reducing deforestation for the production of charcoal. (Author)

  14. Morphological changes during oxidation of a single char particle. Quarterly progress report, April 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    d`Amore, M. [Salerno Univ. (Italy). Dept. of Chemical and Food Engineering; Tognotti, L. [Pisa Univ. (Italy). Dept. of Chemical Engineering; Sarofim, A.F. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Chemical Engineering

    1992-12-31

    In this study, the changes with conversion in morphology of a carbon char in the temperature range 500--1200 K are followed by using an electrodynamic balance (EDB) (Spjut et al., 1985; Dudek, 1988; Bar-ziv et al., 1989). This device allows one to measure in situ, over temperature range wider than in other apparatuses, mass, diameter, density, surface area, rate of reaction and temperature for a single, suspended submillimeter particle. By following with the EDB the changes in the char as it reacts, it is possible to study the influence of the porous texture on the reaction behavior and shed some light on the contribution by micropores to the reaction in the chemical kinetic controlled regime.

  15. Comparison of high temperature chars of wheat straw and rice husk with respect to chemistry, morphology and reactivity

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn

    2016-01-01

    Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid-statenucle......Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid......-statenuclear magnetic resonance spectroscopy and thermogravimetric analysis to investigate the effect ofinorganic matter on the char morphology and oxygen reactivity. The silicon compounds were dispersedthroughout the turbostratic structure of rice husk char in an amorphous phase with a low meltingtemperature (z730 C......), which led to the formation of a glassy char shell, resulting in a preserved particlesize and shape of chars. The high alkali content in the wheat straw resulted in higher char reactivity,whereas the lower silicon content caused variations in the char shape from cylindrical to near...

  16. Effect of Kaolin Clay and Alumina on Thermal Performance and Char Morphology of Intumescent fire retardant coating

    Directory of Open Access Journals (Sweden)

    aziz Hammad

    2014-07-01

    Full Text Available Intumescent fire retardant coating (IFRC have been developed by using ammonium polyphosphate, expandable graphite, melamine, boric acid, kaolin clay and alumina as fillers bound together with epoxy resin and cured with the help of curing agent. Five different formulations were developed with and without using fillers. Cured samples were burned in furnace at 500°C for 2h for char expansion. Bunsen burner test was performed for 1h using UL-94 vertical burning test to investigate the thermal performance of IFRC. The resultant char obtained after burning of coated samples were characterized by using field emission scanning electron microscopy for char morphology. Char composition was analyzed by using fourier transform infrared spectroscopy. Thermogravimetric analysis was carried out to investigate the residual weight of coating. Results showed that formulation with 0.5 weight % of kaolin clay and 0.5 weight % of alumina provide best thermal performance, uniform and multi-porous char structure with high anti-oxidation property.

  17. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Ingermann Petersen, H.; Sund Soerensen, H.; Thomsen, E.; Guvad, C.

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  18. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition.

    Science.gov (United States)

    Yan, Feng; Luo, Si-yi; Hu, Zhi-quan; Xiao, Bo; Cheng, Gong

    2010-07-01

    Steam gasification experiments of biomass char were carried out in a fixed-bed reactor. The experiments were completed at bed temperature of 600-850 degrees C, a steam flow rate of 0-0.357 g/min/g of biomass char, and a reaction time of 15min. The aim of this study is to determine the effects of bed temperature and steam flow rate on syngas yield and its compositions. The results showed that both high gasification temperature and introduction of proper steam led to higher yield of dry gas and higher carbon conversion efficiency. However, excessive steam reduced gas yield and carbon conversion efficiency. The maximum dry gas yield was obtained at the gasification temperature of 850 degrees C and steam flow rate of 0.165 g/min/g biomass char.

  19. Char characterisation and its application in a coal burnout mode

    Energy Technology Data Exchange (ETDEWEB)

    Michael Cloke; Tao Wu; Richelieu Barranco; Ed Lester [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering, Coal Technology Research Group

    2003-10-01

    In this study, char image analysis techniques have been employed to investigate the morphology of chars obtained from a Drop-Tube furnace. Char image analysis results have been incorporated as inputs to a char burnout model based on Hurt's CBK model. It has been observed that the char combustion rate was strongly affected by char structural parameters and the inclusion of char morphology has led to a better prediction of char burnout. It has also been suggested by the model that the inclusion of ash inhibition overestimates the resistance attributed by ash film and the consideration of ash film resistance should be undertaken in a different way to give a better prediction at the later stages of char combustion. 12 refs., 13 figs., 5 tabs.

  20. Bio-char from treated and untreated oil palm fronds

    Science.gov (United States)

    Sulaiman, Fauziah; Abdullah, Nurhayati; Rahman, Aizuddin Abdul

    2013-05-01

    The palm oil industry generates almost 94% of biomass in Malaysia, while other agricultural and forestry by-products contribute the remaining of 6%. Oil palm fronds (OPF) are estimated to be the highest available biomass amounting to 44.84 million tonnes in Malaysia. However, studies on OPF for thermochemical conversion technology which has good potential for energy conversion are still lacking. In this work, pyrolysis of OPF is conducted by using a fixed bed reactor. Samples were carbonized at slow pyrolysis temperature of around 300 to 500°C with heating rate of 10°C min-1. In addition, samples were treated for 20 min with distilled water at ambient temperature to reduce the ash content. Effectiveness of pre-treatment can be determined by observing the percentage of ash content reduction of each sample after undergoing washing pre-treatment. At 300°C, the char yields of the untreated OPF were slightly higher at 50.95% compared to the treated sample at 49.77%. Approximately all bio-char from the treated samples have better high heating value (HHV) of around 18-20 MJ kg-1 compared to the untreated samples. Besides that, all treated OPF char is more carbon rich and considered to be environmental friendly due to its low nitrogen content compared to the untreated OPF char. In this work, microscopic analysis of OPF bio-char were also studied by observing and evaluating their structure surface and morphology.

  1. Morphological effects in the quantum yield of cesium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Barbo, F. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Bertolo, M. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Bianco, A. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Braem, A. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Cerasari, S. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Coluzza, C. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Dell`Orto, T. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Fontana, S. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Margaritondo, G. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Nappi, E. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Paic, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Piuz, F. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Sanjines, R. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Scognetti, T. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Sgobba, S. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments

    1995-07-15

    We demonstrated that polycrystalline cesium iodide (CsI) on large area Ni/Au coated printed board provides a quantum efficiency (QE) higher by a factor of 2 than the films deposited on the standard Cu/Au printed circuits. This is the most important result of the present systematic study of the QE lateral inhomogeneity for CsI on different substrates. We found a strong correlation between the QE lateral variation and the morphological homogeneity of the films. The QE was measured by UV photoelectron emission microscopy and spatially resolved X-ray photoemission, and the morphology studies were performed by secondary electron microscopy, X-ray diffraction and scanning tunneling microscopy. (orig.).

  2. Effects of evolving surface morphology on yield during focused ion beam milling of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)]. E-mail: dpadams@sandia.gov; Mayer, T.M. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Vasile, M.J. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Archuleta, K. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)

    2006-01-15

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  3. Char characterization and DTF assays as tools to predict burnout of coal blends in power plants

    Energy Technology Data Exchange (ETDEWEB)

    C. Ulloa; A.G. Borrego; S. Helle; A.L. Gordon; X. Garcia [Universidad de Concepcion, Concepcion (Chile). Departamento de Ingenieria Quimica

    2005-02-01

    The aim of this study is to predict efficiency deviations in the combustion of coal blends in power plants. Combustion of blends, as compared to its single coals, shows that for some blends the behavior is non-additive in nature. Samples of coal feed and fly ashes from combustion of blends at two power plants, plus chars of the parent coals generated in a drop-tube furnace (DTF) at temperatures and heating rates similar to those found in the industrial boilers were used. Intrinsic kinetic parameters, burning profiles and petrographic characteristics of these chars correlated well with the burnout in power plants and DTF experiments. The blend combustion in a DTF reproduces both positive and negative burnout deviations from the expected weighted average. These burnout deviations have been previously attributed to parallel or parallel-series pathways of competition for oxygen. No deviations were found for blends of low rank coals of similar characteristics yielding chars close in morphology, optical texture and reactivity. Negative deviations were found for blends of coals differing moderately in rank and were interpreted as associated with long periods of competition. In this case, fly-ashes were enriched in material derived from the least reactive char, but also unburnt material attributed to the most reactive char was identified. Improved burnout compared to the weighted average was observed for blends of coals very different in rank, and interpreted as the result of a short interaction period, followed by a period where the less reactive char burns under conditions that are more favorable to its combustion. In this case, only unburned material from the least reactive char was identified in the fly-ashes. 20 refs., 9 figs., 5 tabs.

  4. Formation of hydrothermal biochar and char stability in soils

    Science.gov (United States)

    Baumert, Julia; Gleixner, Gerd

    2010-05-01

    The use of charcoal as an artificial soil additive is suggested to beneficially modify degraded soil, reduce greenhouse gas emission and improve crop yields. So far research has been mainly done using pyrolysis chars which are produced by dry pyrolysis of biomass. Here we used hydrothermal carbonisation (HTC). In this process wet biomass is converted to char at moderate temperatures (~200°C). Due to the exothermal carbonisation reaction this process is almost energy neutral, i.e. the energy needed to start the carbonisation equals the energy released during carbonisation. Different process parameters have been used to modify the properties of the produced chars. We examined the chemical and morphological properties of hydrothermally synthesized biochar. Cellulose, yeast and sucrose were used as model substances for a range of parent material types like organic and garden waste as well as residues from biogas production. By modifying the process conditions of hydrothermal carbonisation concerning temperature (180°C to 220°C) and duration (6 hours to 24 hours) we produced a variety of different biochars. Our findings suggest that the elemental composition and the thermal stability of resulting chars depend on the feedstock and production conditions. Functional group chemistry determined by NMR shows that the aromaticity of the product increases as a function of temperature whereas the amount of O-alkylic compounds declines, concurrently. Our results show that the properties of the biochar can be manipulated by the modification of process conditions. This opens the opportunity to adjust the charcoal to a given soil type.

  5. Genetic association among root morphology, root quality and root yield in ashwagandha (Withania somnifera

    Directory of Open Access Journals (Sweden)

    Kumar Ramesh R.

    2011-01-01

    Full Text Available Ashwagandha (Withania somnifera is a dryland medicinal crop and roots are used as valuable drug in traditional systems of medicine. Morphological variants (morphotypes and the parental populations were evaluated for root - morphometric, quality and yield traits to study genetic association among them. Root morphometric traits (root length, root diameter, number of secondary roots/ plant and crude fiber content exhibited strong association among them and showed significant positive genotypic correlation with yield. Starch-fiber ratio (SFR, determinant of brittle root texture showed strong negative association with root yield. The total alkaloid content had positive genotypic correlation with root yield. So genetic upgradation should aim at optimum balance between two divergent groups of traits i.e. root yield traits (root morphometric traits and crude fiber content and root textural quality traits (starch content and SFR to develop superior genotypes with better yield and quality.

  6. Clean, premium-quality chars: Demineralized and carbon enriched

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  7. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.

    Science.gov (United States)

    Al-Rahbi, Amal S; Onwudili, Jude A; Williams, Paul T

    2016-03-01

    Chars produced from the pyrolysis of different waste materials have been investigated in terms of their use as a catalyst for the catalytic cracking of biomass pyrolysis gases during the two-stage pyrolysis-gasification of biomass. The chars were produced from the pyrolysis of waste tyres, refused derived fuel and biomass in the form of date stones. The results showed that the hydrocarbon tar yields decreased significantly with all the char materials used in comparison to the non-char catalytic experiments. For example, at a cracking temperature of 800°C, the total product hydrocarbon tar yield decreased by 70% with tyre char, 50% with RDF char and 9% with biomass date stones char compared to that without char. There was a consequent increase in total gas yield. Analysis of the tar composition showed that the content of phenolic compounds decreased and polycyclic aromatic hydrocarbons increased in the product tar at higher char temperatures.

  8. Impacts of Improved Switchgrass and Big Bluestem Selections on Yield, Morphological Characteristics, and Biomass Quality

    Directory of Open Access Journals (Sweden)

    Erik Delaquis

    2014-01-01

    Full Text Available Switchgrass (Panicum virgatum L. and big bluestem (Andropogon gerardii V. are promising warm-season grasses for biomass production. Understanding the morphological and quality-related traits of these grasses can guide breeders in developing strategies to improve yield and quality for bioindustrial applications. Elite selections were made in Southern Quebec from four promising varieties of switchgrass and one of big bluestem. Biomass yield, morphological characteristics, and selected quality traits were evaluated at two sites in 2011 and 2012. Significant variation was detected for all measured characteristics, with differences varying by site and year. In some cases the selection process modified characteristics including increasing height and reducing tiller mortality. Switchgrasses reached a similar tiller equilibrium density in both years of 690 m−2 and 379 m−2 at a productive and marginal site, respectively. Differences in yield were pronounced at the marginal site, with some advanced selections having a higher yield than their parent varieties. Switchgrass yields were generally greater than those of big bluestem. A delayed spring harvest date greatly reduced yield but reduced moisture content and slightly increased cellulose concentration. Big bluestem had a higher cellulose content than switchgrass, likely due to greater stem content.

  9. Formation, Structure and Properties of Amorphous Carbon Char from Polymer Materials in Extreme Atmospheric Reentry Environments

    Science.gov (United States)

    Lawson, John W.

    2010-01-01

    Amorphous carbonaceous char produced from the pyrolysis of polymer solids has many desirable properties for ablative heat shields for space vehicles. Molecular dynamics simulations are presented to study the transformation of the local atomic structure from virgin polymer to a dense, disordered char [1]. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated char structure. Mechanisms of the char formation process and the morphology of the resulting structures are elucidated. Thermal conductivity and mechanical response of the resulting char are evaluated [2]. During reenty, the optical response and oxidative reactivity of char are also important properties. Results of ab initio computations of char optical functions [3] and char reactivity [4] are also presented.

  10. Time resolved pyrolysis of char

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    In laboratory experiments, biomass char was produced under controlled conditions using wood chips from French pinewood. Different char qualities were obtained by pyrolysing the biomass at similar heating rates with end-temperatures ranging from 250 to 1000 o C. The char was analysed by flash...

  11. Compilation of Sandia coal char combustion data and kinetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.E.; Hurt, R.H.; Baxter, L.L.; Hardesty, D.R.

    1992-06-01

    An experimental project was undertaken to characterize the physical and chemical processes that govern the combustion of pulverized coal chars. The experimental endeavor establishes a database on the reactivities of coal chars as a function of coal type, particle size, particle temperature, gas temperature, and gas and composition. The project also provides a better understanding of the mechanism of char oxidation, and yields quantitative information on the release rates of nitrogen- and sulfur-containing species during char combustion. An accurate predictive engineering model of the overall char combustion process under technologically relevant conditions in a primary product of this experimental effort. This document summarizes the experimental effort, the approach used to analyze the data, and individual compilations of data and kinetic analyses for each of the parent coals investigates.

  12. How do mineral fertilization and plant growth regulators affect yield and morphology of naked oat?

    Directory of Open Access Journals (Sweden)

    Robert Witkowicz

    2010-09-01

    Full Text Available Oat (Avena sativa var. nuda is of an increasing interest in many parts of the world. This is why plant breeders have developed forms that are morphologically different from the current ones, such as naked, dwarf or with an increased 1000-grain-weight. In three experiments conducted at two sites, the influence of phosphorus (P and potassium (K fertilizers, spray application of urea and spray application of plant growth regulators (PGRs Promalin (gibberellins + cytokinin and Moddus (cimectacarps on the yield and morphological traits of different oat forms were studied. At a better site, only genotype statistically influenced oat grain yield. At a poorer site, apart from genotype there were statistically significant responses to P and K fertilizers and to the application of Moddus (especially in the experiment with a dwarf cultivar. The internode and panicle length were modified mostly by cimectacarps, which shortened specific internodes, but not the panicle. The PGR Promalin had no significant effect on oat stem morphology.

  13. Low-energy and chemical-free activation of pyrolytic tire char and its adsorption characteristics.

    Science.gov (United States)

    Quek, Augustine; Balasubramanian, Rajasekhar

    2009-06-01

    It is generally known that the solid char obtained from pyrolysis of scrap rubber tires can be used as an adsorbent for several applications such as wastewater treatment. In this study, scrap tires were first pyrolyzed under nitrogen (N2) or carbon dioxide (CO2) gas under various temperatures to produce char. The char was activated in situ by post-pyrolysis oxygenation (PPO) at different temperature ranges as soon as the pyrolysis process was completed. Elemental and spectroscopic analyses showed significant zinc content in the char after PPO. Batch-mode removal of aqueous copper (Cu) using the chars revealed that, for N2 and CO2, the optimum condition for pyrolysis was at 550 degrees C and for activation was from 550 to 250 degrees C. Although CO2-pyrolyzed char had lower Cu and lead (Pb) removal than N2-pyrolyzed char, it had higher char yields. For both N2- and CO2-pyrolyzed char, activation with PPO improved their heavy metal removal efficiencies significantly compared with unactivated char. PPO chars had much faster removal rates and higher Cu removal compared with both pyrolyzed, unactivated char and commercial activated carbons.

  14. Morphological, yield, cytological and molecular characterization of a bread wheat × tritordeum F1 hybrid

    Indian Academy of Sciences (India)

    J. Lima-Brito; A. Carvalho; A. Martin; J. S. Heslop-Harrison; H. Guedes-Pinto

    2006-08-01

    The morphological, yield, cytological and molecular characteristics of bread wheat × tritordeum F1 hybrids ($2n = 6x = 42$; AABBDHch) and their parents were analysed. Morphologically, these hybrids resembled the wheat parent. They were slightly bigger than both parents, had more spikelets per spike, and tillered more profusely. The hybrids are self-fertile but a reduction of average values of yield parameters was observed. For the cytological approach we used a double-target fluorescence in situ hybridization performed with total genomic DNA from Hordeum chilense L. and the ribosomal sequence pTa71. This technique allowed us to confirm the hybrid nature and to analyse chromosome pairing in this material. Our results showed that the expected complete homologous pairing (14 bivalents plus 14 univalents) was only observed in 9.59% of the pollen mother cells (PMCs) analysed. Some PMCs presented autosyndetic pairing of Hch and A, B or D chromosomes. The average number of univalents was higher in the wheat genome (6.8) than in the Hch genome (5.4). The maximum number of univalents per PMC was 20. We only observed wheat multivalents (one per PMC) but the frequency of trivalents (0.08) was higher than that of quadrivalents (0.058). We amplified 50 RAPD bands polymorphic between the F1 hybrid and one of its parents, and 31 ISSR polymorphic bands. Both sets of markers proved to be reliable for DNA fingerprinting. The complementary use of morphological and yield analysis, molecular cytogenetic techniques and molecular markers allowed a more accurate evaluation and characterization of the hybrids analysed here.

  15. Study on Plant Morphological Traits and Production Characteristics of Super High-Yielding Soybean

    Institute of Scientific and Technical Information of China (English)

    AO Xue; XIE Fu-ti; HAN Xiao-ri; ZHAO Ming-hui; ZHU Qian; LI Jie; ZHANG Hui-jun; WANG Hai-ying; YU Cui-mei; LI Chun-hong; YAO Xing-dong

    2013-01-01

    Super high-yielding soybean cultivar Liaodou 14, soybean cultivars from Ohio in the United States, and the common soybean cultivars from Liaoning Province, China, with similar geographic latitudes and identical pod-bearing habits were used as the study materials for a comparison of morphological traits and production characteristics to provide a theoretical basis for the breeding of improved super high-yielding soybean cultivars. Using a randomized block design, different soybean cultivars from the same latitude were compared under conventional and unconventional treatments for their production characteristics, including morphological traits, leaf area index (LAI), net photosynthesis rate, and dry matter accumulation. The specific characteristics of the super high-yielding soybean cultivar Liaodou 14 were analyzed. The results showed that the plant height of Liaodou 14 was significantly lower than that of the common cultivars from Liaoning, whereas the number of its main-stem nodes was higher than that of the cultivars from Ohio or Liaoning. A high pod density was observed in Liaodou 14 under conventional treatments. Under both conventional and unconventional treatments, the branch number of Liaodou 14 was markedly higher than that of the common cultivars from Liaoning, and its branch length and leaf inclination angle were significantly higher than those of common cultivars from Liaoning or Ohio. Only small changes in the leaf inclination angle were observed in Liaodou 14 treated with conventional or unconventional methods. Under each treatment, Liaodou 14 exhibited the lowest amplitude of reduction in SPAD values and net photosynthesis rates from the grain-filling to ripening stages;the cultivars from Ohio and the common cultivars from Liaoning exhibited more significant reductions. Liaodou 14 reached its peak LAI later than the other cultivars but maintained its LAI at a higher level for a longer duration. Under both conventional and unconventional treatments

  16. Effect of temperature and pressure on characteristics and reactivity of biomass-derived chars.

    Science.gov (United States)

    Recari, J; Berrueco, C; Abelló, S; Montané, D; Farriol, X

    2014-10-01

    This study evaluates the influence of pyrolysis temperature (350-450°C) and pressure (0.1-2.0MPa) on product yields and char properties. Spruce chars were produced under slow pyrolysis conditions in a fixed bed reactor. Special attention was devoted to the study of the oxidation reactivity of the produced chars, and its relationship with the evaluated char properties. The obtained results showed that the effect of the pyrolysis condition on char production and in particular on the mechanism of secondary char formation strongly influenced the char reactivity. Additionally it has been observed that the interval of temperature between 350 and 450°C may be key in the mechanism of tar repolymerization. The information provided in this study is of great interest for the determination of optimal operation conditions and the design of new gasification concepts or the development of bioenergy carriers via pyrolysis technologies.

  17. Morphological traits and yield of red clover (Trifolium pratense L. genotypes with varying inflorescence length

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2013-12-01

    Full Text Available Two red clover breeding strains with elongated flower heads, developed by one of the authors (H.Góral, were studied for forage and seed yield and compared to the standard cultivar 'Nike'. In addition, six morphological shoot traits were measured and their interrelations were computed. The leaf area index (LAI of successive cuts in two harvest years was determined on the basis of shoot density and leaf area of individual shoots. All three genotypes exhibited a high leaf area on shoots and a very high forage productivity. Among the morphological traits only shoot height could be a good selective criterion because it is easily measured, is significantly associated with shoot weight and shoot leaf area and its variation is low. Both strains, particularly the one with longer inflorescences belong to short-lived red clover forms giving satis factory forage and seed yields in the first harvest year. Depending on the strain the number of seeds per elongated inflorescence in the first harvest year was higher by 92 and 42% compared to that of a standard cultivar.

  18. A COMPARATIVE STUDY OF PLANT GROWTH REGULATORS ON MORPHOLOGICAL, SEED YIELD AND QUALITY PARAMETERS OF GREENGRAM

    Directory of Open Access Journals (Sweden)

    K Rajesh

    2014-09-01

    Full Text Available A field experiment was conducted to study the different growth regulating compounds on morphological, quality and yield parameters in greengram at Acharya N.G Ranga Agricultural University, Hyderabad during rabi 2009- 10. The basic material for the present investigation consists of Greengram cv WGG-37 and two growth promoting (NAA and Brassinosteroid and growth retarding substances (Chlormequat chloride and Mepiquat chloride. These growth regulators were sprayed at flower initiation stage. The morphological traits viz., plant height, number of branches per plant, number of trifoliates per plant and days to 50% flowering and maturity were significantly increased by NAA @ 20 ppm, whereas total dry matter production (TDM over growth regulator treatments at all stages NAA (20 ppm and brassinosteroid (20ppm recorded significantly higher values. Among the quality parameters highest seed protein content (% and highest nitrogen harvest index values were recorded with growth retarding substance chlormequat chloride (187.5 g a.i ha-1 in greengram. The seed yield increased significantly with NAA (20 ppm followed by mepiquat chloride 5% AS, brassinosteroid (20 ppm, chlormequat chloride (137.5.5 a.i/ha.

  19. Gasification of biomass chars in steam-nitrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: hanzade@itu.edu.tr; Yaman, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kucukbayrak, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2006-05-15

    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm{sup 3} min{sup -1}. The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm{sup 3} min{sup -1} of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock.

  20. Screening for eri silkworm (Samia ricini Donovan ecoraces using morphological characters, growth, yields, and ISSR marker

    Directory of Open Access Journals (Sweden)

    Duanpen Wongsorn

    2015-10-01

    Full Text Available The selection of eri silkworm ecoraces with high yield and distinct morphological characters is necessary for variety improvement. The five ecoraces SaKKU1, SaKKU2, SaKKU3, SaKKU4 and SaKKU5 were derived mostly by international academic cooperation. They were cultured using castor leaves of TCO 101 cultivar as food plant at 25±2°C, 80±5% R.H. Based on morphological characters, they are similar, except the body of the 5th instar larva of SaKKU1 is clearly covered with more creamy white powder and the mature larva has a shiny dominant yellow color. The duration of the life cycle among ecoraces was also similar; 46-53 days (SaKKU1, 42-53 days (SaKKU2, 42-52 days (SaKKU3, 40-56 days (SaKKU4 and 41-52 days (SaKKU5. SaKKU1 had the highest survival rate at larval stage (1st – 5th instar (100.00% and larva (1st – 5th instar - adult (88.89%, including the predominant heaviest average larva weight of all instars, 0.0317 g (2nd instar, 0.2206 g (3rd instar, 1.0788 g (4th instar, 4.0102 g (5th instar, and 8.9940 g (5 days of 5th instar, which was significantly different (P<0.05 to other ecoraces. Moreover, this ecorace gave the highest average yields: fresh cocoon weight (3.8016 g, pupa weight (3.2532 g, shell weight (0.5287 g, shell ratio (14.01%, fresh cocoon weight/10,000 larvae (38.01 kg, eggs/moth (531.13 eggs, total eggs (6,375.27 eggs and total hatching eggs (6,006.13 eggs, which was also significantly different (P<0.05 than other ecoraces. Of those properties, especially survival rates and yields, this ecorace (SaKKU1 is favored for further varietal improvement program. In parallel, genetic relationship analysis of eri silkworm ecoraces using inter-simple sequence repeat (ISSR technique was also carried out. The result revealed from dendrogram analysis that SaKKU1 was the farthest distance than other ecoraces, especially against SaKKU3. Based on all above results, the SaKKU1 ecorace was considered to be the most suitable for heat tolerant

  1. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.

    Science.gov (United States)

    Leng, L Y; Husni, M H A; Samsuri, A W

    2011-11-01

    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field.

  2. Trade-off between reservoir yield and evaporation losses as a function of lake morphology in semi-arid Brazil.

    Science.gov (United States)

    Campos, José N B; Lima, Iran E; Studart, Ticiana M C; Nascimento, Luiz S V

    2016-05-31

    This study investigates the relationships between yield and evaporation as a function of lake morphology in semi-arid Brazil. First, a new methodology was proposed to classify the morphology of 40 reservoirs in the Ceará State, with storage capacities ranging from approximately 5 to 4500 hm3. Then, Monte Carlo simulations were conducted to study the effect of reservoir morphology (including real and simplified conical forms) on the water storage process at different reliability levels. The reservoirs were categorized as convex (60.0%), slightly convex (27.5%) or linear (12.5%). When the conical approximation was used instead of the real lake form, a trade-off occurred between reservoir yield and evaporation losses, with different trends for the convex, slightly convex and linear reservoirs. Using the conical approximation, the water yield prediction errors reached approximately 5% of the mean annual inflow, which is negligible for large reservoirs. However, for smaller reservoirs, this error became important. Therefore, this paper presents a new procedure for correcting the yield-evaporation relationships that were obtained by assuming a conical approximation rather than the real reservoir morphology. The combination of this correction with the Regulation Triangle Diagram is useful for rapidly and objectively predicting reservoir yield and evaporation losses in semi-arid environments.

  3. Genetics Home Reference: Char syndrome

    Science.gov (United States)

    ... a distinctive facial appearance, a heart defect called patent ductus arteriosus, and hand abnormalities. Most people with Char syndrome ... a triangular-shaped mouth, and thick, prominent lips. Patent ductus arteriosus is a common heart defect in newborns, and ...

  4. Production and Characterization of Bio-Char from the Pyrolysis of Empty Fruit Bunches

    Directory of Open Access Journals (Sweden)

    Mohamad A. Sukiran

    2011-01-01

    Full Text Available Problem statement: The palm oil industry generates an abundance of oil palm biomass such as the Empty Fruit Bunch (EFB, shell, frond, trunk and Palm Oil Mill Effluent (POME. For 88 million tones of Fresh Fruit Bunch (FFB processed in 2008, the amount of oil palm biomass was more than 26 million tones. Studies about production of bio-char from oil palm biomass are still lacking in Malaysia. So, this study was aimed to: (i determine the effect of pyrolysis temperatures on bio-char yield (ii characterize the bio-char obtained under different pyrolysed temperatures. Approach: In this study, pyrolysis of EFB was conducted using a fluidized fixed bed reactor. The effect of pyrolysis temperatures on bio-char yield was investigated. The pyrolysis temperature used ranged from 300-700°C. The elemental analysis, calorific value, surface area and total pore volume of the bio-char were determined. Results: The highest bio char yield of 41.56% was obtained at an optimum pyrolysis temperature of 300°C with particle size of 91-106 μm and the heating rate of 30°C min-1. The calorific values of bio-char ranged from 23-26 MJ kg-1. Conclusion: It was found that the bio-char products can be characterized as carbon rich, high calorific value and potential solid biofuels.

  5. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; R. Gupta; B. Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2005-07-01

    The knowledge of biomass char gasification kinetics has considerable importance in the design of advanced biomass gasifiers, some of which operate at high pressure. The char gasification kinetics themselves are influenced by char structure. In this study, the effects of pyrolysis pressure and heating rate on the char structure were investigated using scanning electron microscopy (SEM) analysis, digital cinematography, and surface area analysis. Char samples were prepared at pressures between 1 and 20 bar, temperatures ranging from 800 to 1000{degree}C, and heating rates between 20 and 500{degree}C/s. Our results indicate that pyrolysis conditions have a notable impact on the biomass char morphology. Pyrolysis pressure, in particular, was found to influence the size and the shape of char particles while high heating rates led to plastic deformation of particles (i.e. melting) resulting in smooth surfaces and large cavities. The global gasification reactivities of char samples were also determined using thermogravimetric analysis (TGA) technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. 22 refs., 8 figs., 2 tabs.

  6. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion......The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments...... indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char...

  7. The effect of 150μm expandable graphite on char expansion of intumescent fire retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Sami, E-mail: samichemist1@gmail.com; Shariff, A. M., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my; Bustam, M. A., E-mail: azmish@petronas.com.my, E-mail: azmibustam@petronas.com.my [Research Center for Carbon Dioxide Capture, Department of Chemical Engineering, Universiti Techologi PETRONAS, Bandar Sri Iskandar, Tronoh 31750 Perak (Malaysia); Ahmad, Faiz, E-mail: faizahmadster@gmail.com [Department of Mechanical Engineering, Universiti Techologi PETRONAS, Bandar Sri Iskandar, Tronoh 31750 Perak (Malaysia)

    2014-10-24

    Intumescent is defined as the swelling of certain substances to insulate the underlying substrate when they are heated. In this research work the effect of 150μm expandable graphite (EG) was studied on char expansion, char morphology and char composition of intumescent coating formulations (ICFs). To study the expansion and thermal properties of the coating, nine different formulations were prepared. The coatings were tested at 500 °C for one hour and physically were found very stable and well bound with the steel substrate. The morphology was studied by Scanning Electron Microscopy (SEM). The char composition was analysed by X-ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) techniques. EG above than 10.8wt% expands the char abruptly with uniform network structure and affect the outer surface of the char.

  8. Study on pore structure properties of steam activated biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Tong; Lu, Fei; Wang, Qinchao; Lu, Ping [Nanjing Normal Univ. (China). School of Energy and Mechanical Engineering

    2013-07-01

    Wheat straw and rice husk chars were prepared in a fixed bed reactor at different pyrolysis temperatures (673, 873 and 1,073K) and different pyrolysis procedure. The steam activated chars were also prepared in a fixed bed reactor at the following conditions: activation temperature is 1,073K, the flow rate of N{sub 2} is 5L/min, and N{sub 2} and H{sub 2}O molar ratio is 1:1. The specific surface area, pore structure and micro-morphology of different kinds of prepared biomass chars were measured by NOVA1000e analysis instrument and JSM-5610LV scanning electron microscopy (SEM), respectively. Results indicated that the internal structure was improved significantly by steam activation through enlarging the specific surface area and enriching the porosity. The wheat straw char prepared by both rapid pyrolysis at 873K and activation by steam is better than others, whose DR surface area increases from 3.10 to 1099.99m{sup 2}/g. The N{sub 2} adsorption volume of steam activated biomass chars has been significant promoted.

  9. Effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame (Sesamum indicum

    Directory of Open Access Journals (Sweden)

    parviz rezvani moghadam

    2009-06-01

    Full Text Available In order to study the effects of different irrigation intervals and plant density on morphological characteristics, grain and oil yields of sesame, an experiment was conducted at experimental station, college of agriculture, Ferdowsi University of Mashhad. Four different irrigation intervals (one, two, three and four weeks with four plant densities (20, 30, 40 and 50 plants/m2 were compared in a spilt plot arrangement based on randomized complete block design with four replications. Irrigation intervals and plant densities allocated in main plots and subplots, respectively. Different characteristics such as plant height, distance of first capsule from soil surface, number of branches per plant, number of grains per capsule, number of capsules per plant, grain yield, 1000-seed weight, harvest index and oil yield were recorded. The results showed that there were no significant difference between different irrigation intervals in terms of distance of first capsule from soil surface, number of grains per capsule, 1000-seed weight and harvest index. Different irrigation intervals had significant effects on plant height, number of branches per plant, number of capsules per plant, grain yield and oil yield. There were significant differences between different plant densities in terms of distance of first capsule from soil surface, number of branches per plant, number of graines per capsule, number of capsules per plant, grain yield, harvest index and oil yield. The highest grain yield (798/7 kg/ha and oil yield (412/8 kg/ha were obtained at one week and four weeks irrigation intervals, respectively. Between all treatments, 50 plants/m2 and one week irrigation interval produced the highest grain yield (914/7 kg/ha and oil yield (478/6 kg/ha. Because of shortage of water in Mashhad condition, the results recommended that, 50 plants/m2 and two weeks irrigation interval produced rather acceptable grain yield, with less water consumption.

  10. Physiological and morphological indicators of yield in selected forage grasses - a few case studies and a confession

    Energy Technology Data Exchange (ETDEWEB)

    Wullschleger, S.D.

    1995-04-01

    Crop scientists have long sought to identify traits associated with superior plant-growth performance and dependable productivity. This search has been founded upon the belief that once identified, these physiological or morphological traits could then be used as indicators in the selection of higher yielding genotypes through plant breeding. Such an incorporation of indicator traits into a crop-improvement program would presumably help focus more conventional breeding activities where the emphasis has often been placed on eliminating yield reductions due to insects or disease, or on selecting for increased yield without fully understanding why productivity increased. For indicators to be used effectively in a crop-improvement program, however, there must be a strong dialogue between crop physiologists and breeders, and the unique needs of each discipline must be recognized. Only then will it be possible to gain a better understanding for how process-level traits affect yield and how these traits can be used to improve crop yields. As a prelude to introducing the use of indicators in crop-improvement programs, we first briefly review the concept of a model plant (i.e., the crop ideotype) and discuss how such a framework has influenced the use of indicators in breeding warm- and cool-season grasses for increased yields. Several case studies are then presented to illustrate how forage yields have been affected through incorporating physiological and morphological indicators of yield into the selection process. The interaction between the crop physiologist and the breeder is emphasized, and the authors speculate how each of these two disciplines might view the outcome of specific research efforts.

  11. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  12. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Science.gov (United States)

    Choi, Jong-il; Kim, Jae-Kyung; Srinivasan, Periasamy; Kim, Jae-Hun; Park, Hyun-Jin; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Tamarind ( Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  13. Comparison of gamma ray and electron beam irradiation on extraction yield, morphological and antioxidant properties of polysaccharides from tamarind seed

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Jae-Kyung [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Srinivasan, Periasamy; Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [Graduate school of Food and Biotechnology, Korea University, Seoul 146-701 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Tamarind (Tamarindus indica L) seed polysaccharide (TSP) is of great important due to its various biological activities. The present investigation was carried out to compare extraction yield, morphological characteristics, average molecular weights and antioxidant activities of TSP from gamma- and electron beam (EB)-irradiated tamarind kernel powder. The tamarind kernel powder was irradiated with 0, 5 and 10 kGy by gamma ray (GR) and electron beam, respectively. The extraction yield of TSP was increased significantly by EB and GR irradiation, but there was no significant difference between irradiation types. Morphological studies by scanning electron microscope showed that TSP from GR-irradiated tamarind seed had a fibrous structure, different from that of EB irradiated with a particle structures. The average molecular weight of TSP was decreased by the irradiation, and EB treatment degraded more severely than GR. Superoxide radical scavenging ability and total antioxidant capacity of EB-treated TSP showed higher than those of GR-treated TSP.

  14. Assessing the Effect of Organic Compounds, Biofertilizers and Chemical Fertilizers on Morphological Properties,yield and Yield Components of Forage Sorghum (Sorghum bicolor

    Directory of Open Access Journals (Sweden)

    A.H Saeidnejad

    2012-12-01

    Full Text Available Recently, using the source of organic fertilizers and biofertilizers in sustainable crop production is growing. In order to evaluate the effect of organic compounds, biofertilizers and chemical fertilizer on morphological properties, yield and yield components of forage Sorghum (sorghum bicolor a field experiment was conducted in the Research Farm, College of Agriculture, Ferdowsi University of Mashhad in 2008.The treatments were seed inoculation with the combination of Azotobacter chroococcum and Azospirillum brasilense, Compost (15 t/ha, Vermicompost (10 t/ha, seed inoculation with Azotobacter and Azospirillum and compost (10t/ha, seed inoculation with Azotobacter chroococcum and Azospirillum brasilense and Vermicompost (7t/ha, seed inoculation with Pseudomonas flurescence, seed inoculation with Pseudomonas flurescence and Azotobacter chroococcum and Azospirillum brasilense combination, seed inoculation with Pseudomonas flurescence and compost (15t/ha, chemical fertilizer (80 kg/h urea fertilizer and 50 kg/h super phosphate fertilizer and control. Harvesting was performed in 2 cuts in flowering stage. Plant height, number of tiller per plant and SPAD reading was significantly affected by the treatments. Stem diameter was not affected by any treatments. There was a significant difference among all treatments in terms of fresh and dry forage yield. There were no significant differences among all treatments in terms of stem and leaf dry matter. In general, result of this experiment indicated that organic amendments and biofertilizers could be acceptable alternatives for chemical fertilizers.

  15. Effects of Intercropping on Biological Yield, Percentage of Nitrogen and Morphological Characteristics of Coriander and Fenugreek

    Directory of Open Access Journals (Sweden)

    R. Bigonah

    2014-12-01

    Full Text Available In order to study the intercropping arrangements of coriander (Coriandrum sativum L. and fenugreek (Trigonella foenum-graecum L., a field experiment was conducted during growing season of 2010 at Agriculture Research Station, College of Agriculture, Ferdowsi University of Mashhad, Iran. A randomized complete block design with three replications was used. Treatments included: mono-crop of fenugreek (A, %25 of optimum density of coriander + %175 of optimum density of fenugreek (B, %50 of optimum density of coriander + %150 of optimum density of fenugreek (C, %75 of optimum density of coriander + %125 of optimum density of fenugreek (D, %100 of optimum density of coriander + %100 of optimum density of fenugreek (E, mono-crop of coriander (F, %125 of optimum density of coriander + %75 of optimum density of fenugreek (G, %150 of optimum density of coriander + %50 of optimum density of fenugreek (H, %175 of optimum density of coriander + %25 of optimum density of fenugreek (I. Biological yield harvested in coriander at %5 flowering stage and in fenugreek at %20 flowering stage. The result showed that B treatment had highest plant height and biological yield of fenugreek, highest total land equivalent ratio and also B treatment had lowest essential oil contents of leaf, essential oil yield and biological yield of coriander. I treatment had lowest biological yield of fenugreek and it had highest essential oil contents of leaf, essential oil yield and plant height in coriander. Also A and E treatments had highest percent of nitrogen of biomass in fenugreek and coriander, respectively.

  16. Ash liberation from included minerals during combustion of pulverized coal: the relationship with char structure and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Wall, T.; Liu, G.; Bryant, G. [University of Newcastle, Callaghan, NSW (Australia). CRC for Black Coal Utilization and Dept. of Chemical Engineering

    1999-12-01

    In this study, the float fraction ({lt} specific gravity of 2.0) of a size cut (63-90 {mu}m) bituminous coal was combusted in a drop tube furnace (DTF) at a gas temperature of 1300{degree}C under an atmosphere of air, to investigate the ash liberation at five coal burnoff levels (35.5%, 54.3%, 70.1%, 87.1% and 95.6%). The data indicated that char structure determines the ash liberation at different burnoff levels. Fragmentation of porous char was found to be the determinative mechanism for formation of fine ash during the early and middle stages of char combustion, while coalescence of included mineral matter determines the coarse ash formed in the later stages of combustion. The investigation confirmed that the char morphology and structure play a key role in determining char fragmentation, char burnout history, and the ash liberation during combustion. 35 refs., 5 figs., 2 tabs.

  17. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Lijian [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Huang, Huajun [School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045 (China); Shao, Jianguang; Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • SS liquefaction bio-chars were effective on MG and MB removal from aqueous. • MG adsorption capacity depended strongly on carboxylic and phenolic groups. • Metal release accounted for nearly 30% of the total MG adsorbed on bio-chars. • Acetone and low temperature favor effective adsorbent production by liquefaction. - Abstract: Bio-chars produced by liquefaction of sewage sludge with methanol, ethanol, or acetone as the solvent at 260–380 °C were characterized in terms of their elemental composition, thermogravimetric characteristics, surface area and pore size distribution, and oxygen-containing functional groups composition. The surface area and total volume of the bio-chars were low, but the contents of oxygen-containing functional groups were high. The bio-chars were effective on Malachite green (MG) and Methylene blue (MB) removal from aqueous solution. The MG adsorption equilibrium data showed excellent fit to the Langmuir model and the kinetic data fitted well to the Pseudo-second-order model. Thermodynamic investigations indicated that MG adsorption on bio-char was spontaneous and endothermic. The MG adsorption mechanism appears to be associated with cation release and functional group participation. Additionally, liquefaction of SS with acetone as the solvent at low temperature (280 °C) would favor the production of bio-char adsorbent in terms of bio-char yield and MG and MB adsorption capacity.

  18. Quantitative trait loci for yield and morphological traits in maize under drought stress

    Directory of Open Access Journals (Sweden)

    Nikolić Ana

    2011-01-01

    Full Text Available Drought is one of the most important factors contributing to crop yield loss. In order to develop maize varieties with drought tolerance, it is necessary to explore the genetic basis. Mapping quantitative trait loci (QTL that control the yield and associate agronomic traits is one way of understanding drought genetics. QTLs associated with grain yield (GY, leaf width (LW3, LW4 plant height (PH, ear height (EH, leaf number (NL, tassel branch number (TBN and tassel length (TL were studied with composite interval mapping. A total of 43 QTLs were detected, distributed on all chromosomes, except chromosome 9. Phenotypic variability determined for the identified QTLs for all the traits was in the range from 20.99 to 87.24%. Mapping analysis identified genomic regions associated with two traits in a manner that was consistent with phenotypic correlation among traits, supporting either pleiotropy or tight linkage among QTLs.

  19. Evolution of udder morphology, alveolar and cisternal milk compartment during lactation and their relationship with milk yield in Najdi sheep

    Directory of Open Access Journals (Sweden)

    Moez Ayadi

    2014-09-01

    Full Text Available A total of 30 multiparous Najdi ewes were used to study the evolution of udder morphology traits and milk fractions in the udder during suckling (3rd, 6th, 9thwk and milking (10th, 11th, 12thwk periods. During suckling period, daily milk yield was estimated by using the double oxytocin injections method 4-h after milking. During milking period, ewes were hand-milked once daily. Udder and teat morphology traits for all ewes were measured 4-h after milking. Udder compartments were evaluated 8-h after milking by using atosiban and oxytocin; milk samples of each fraction were collected. Najdi ewes had a medium and healthy udders (CMT<1, with medium sized teats (length, 3.2±0.1 cm and width, 1.7±0.1 cm attached at 35.7 ± 11º angle. Milk yield averaged 1.88±0.18 and 0.44±0.12 L d-1 during suckling and milking periods, respectively. A drop in milk yield (-75%, p<0.01 was found in the transition from suckling to milking. Udder traits, teats angle and width, and distance between teats declined (p<0.05 throughout lactation, whereas teat lengths did not show any change. Positive correlations (p<0.05 were observed between milk yield and udder depth (r=0.47-0.49, width (r=0.31-0.39 and distance between teats (r=0.26-0.39. The cisternal milk volumes decreased (p<0.05 after weaning, whilst the corresponding percentages increased (p<0.05. Cisternal milk accounted for 55% and 67% of the total udder milk during suckling and milking periods, respectively. Cisternal milk was positively correlated (r=0.93, p<0.05 with total milk yield. The percentages of protein and total solids in alveolar and cisternal milk increased significantly (p<0.05 after weaning, whilst fat percentages in cisternal milk did not change. In conclusion, the evaluated Najdi ewes showed medium sized cisterns and teats, which considered adequate for machine milking. Udder morphology traits had positive correlations with milk yield and hence, can be utilized in breeding programs.

  20. Reactivity to CO{sub 2} of chars prepared in O{sub 2}/N{sub 2} and O{sub 2}/CO{sub 2} mixtures for pulverized coal injection (PCI) in blast furnace in relation to char petrographic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann, Juliana G.; Osorio, Eduardo; Vilela, Antonio C.F. [Iron and Steelmaking Laboratory, UFRGS, Porto Alegre (Brazil); Borrego, Angeles G. [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2010-12-01

    Pulverized coal injection (PCI) is employed in blast furnace tuyeres in order to increase the injection rate without increasing the amount of unburned char inside the stack. When coal is injected with air in the region of tuyeres, the resolidified char will burn in an atmosphere with progressively lower oxygen content and higher CO{sub 2} concentration. In this study, an experimental approach comprising refiring has been followed to separate the combustion process into two distinct devolatilization and combustion steps. A drop tube furnace (DTF) operating at 1300 C in an atmosphere with low oxygen concentration was used to simulate devolatilization and then the char was refired into DTF at the same temperature under two different atmospheres O{sub 2}/N{sub 2} (typical combustion) and O{sub 2}/CO{sub 2} (oxy-combustion) with the same oxygen concentration. Coal injection was also performed under a higher oxygen concentration in both typical combustion and oxy-combustion atmospheres. The fuels tested comprised a petroleum coke and coals ranging in rank from high to low volatile bituminous, currently used for PCI injection. Specific surface areas, reactivity to CO{sub 2} and char petrography have been used to chars characterization. The morphology and appearance of the chars generated under oxy-fuel (O{sub 2}/CO{sub 2}) and conventional combustion (O{sub 2}/N{sub 2}) conditions with similar amount of oxygen were similar for each parent coal. Vitrinite-rich particles generated cenospheres with anisotropic optical texture increasing in size with increasing coal rank, whereas inertinite yielded a variety of morphologies and optical textures. The apparent reactivity to CO{sub 2} measured at high temperature (1000 C) tended to increase with burnout reflecting the operation under a regime controlled by internal diffusion in which surface area also increased. This may have a significant effect in the reactivity to CO{sub 2} of the chars inside the stack of the blast furnace

  1. Clean, premium-quality chars: Demineralized and carbon enriched. Quarterly report, September 1, 1991--Novemer 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  2. Genetic variation for seed yield and some of agro-morphological traits in faba bean (Vicia faba L. genotypes

    Directory of Open Access Journals (Sweden)

    Peyman SHARIFI

    2015-11-01

    Full Text Available  An investigation was carried out to select the most successful faba bean genotype(s and to estimate the heritability for seed yield and some of agro-morphological traits. The results of analysis of variance indicated that the studied genotypes differed significantly for all of the traits. For 100-seed weight, two north's of Iran landraces (G1 and G2 and two improved breeding cultivars containing France (G4 and Barrakat (G10 possessed the heaviest seed weight, 161.33, 139, 119.67 and 166 g, respectively. G1 and G10 presented the highest values for dry seed weight (473.98 and 495.44 g m-2, respectively. G1 and G10 showed significantly higher magnitude values of the other traits. Broad sense heritability (h2 estimates were generally high to moderate for all of the studied traits. The highest estimates of broad sense heritability was inscribed as 98 % for pod length, dry seed length and dry seed width and 0.95 for hundred seed weight. The estimated broad-sense heritability was 0.80 for dry seed yield per m2. These results suggested that the environmental factors had a small effect on the inheritance of traits with high heritability. High estimates of heritability indicated that selection based on mean would be successful in improving of these traits. High heritability indicate an additive gene action for the traits, and hence, possible trait improvement through selection. Path coefficient analysis indicated that the traits containing day to harvesting, pod length, hundred seed weight and number of stems per plant play major role in seed yield determination of faba bean. Attention should be paid to these characters for augmentation of seed yield and these traits could be used as selection criteria in faba bean breeding programs. These findings indicate that selection for each or full of the above traits would be accompanied by high yielding ability under such conditions. 

  3. NO formation during oxy-fuel combustion of coal and biomass chars

    DEFF Research Database (Denmark)

    Zhao, Ke; Jensen, Anker Degn; Glarborg, Peter

    2014-01-01

    The yields of NO from combustion of bituminous coal, lignite, and biomass chars were investigated in O2/N2 and O2/CO 2 atmospheres. The experiments were performed in a laboratory-scale fixed-bed reactor in the temperature range of 850-1150 °C. To minimize thermal deactivation during char...... preparation, the chars were generated by in situ pyrolysis at the reaction temperature. The NO yield clearly decreased and the CO yield increased when the atmosphere was altered from O2/N 2 to O2/CO2 at 850 °C, but only small differences in NO and CO yields were observed between the two atmospheres at 1050......-1150 °C. To examine how CO influences the NO yield, the effect of CO on NO reduction over char as well as NO reduction by CO over ash was investigated in the fixed-bed reactor. Furthermore, the influence of CO on the homogeneous oxidation of HCN, possibly a product of the char-N oxidation, was evaluated...

  4. Genetic analysis of sympatric char populations in western Alaska: Arctic char (Salvelinus alpinus) and Dolly Varden (Salvelinus malma) are not two sides of the same coin.

    Science.gov (United States)

    Taylor, E B; Lowery, E; Lilliestråle, A; Elz, A; Quinn, T P

    2008-11-01

    The North Pacific Ocean has been of great significance to understanding biogeography and speciation in temperate faunas, including for two species of char (Salmonidae: Salvelinus) whose evolutionary relationship has been controversial. We examined the morphology and genetics (microsatellite and mitochondrial DNA) of Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) in lake systems in western Alaska, the eastern and western Arctic, and south of the Alaskan Peninsula. Morphologically, each lake system contained two forms: one (Arctic char) largely confined to lake habitats and characterized by greater numbers of pyloric caeca, gill rakers, and shallower bodies, and another (Dolly Varden) predominated in adjacent stream habitats and was characterized by fewer pyloric caeca, gill rakers, and deeper bodies. MtDNA partial (550 bp) d-loop sequences of both taxa were interspersed with each other within a single 'Bering' clade and demographic inferences suggested historical gene flow from Dolly Varden to Arctic char had occurred. By contrast, the taxa were strongly differentiated in sympatry across nine microsatellite loci in both lakes. Our data show that the two taxa are highly genetically distinct in sympatry, supporting their status as valid biological species, despite occasional hybridization. The interaction between these species highlights the importance of the North Pacific, and Beringia in particular, as an evolutionary wellspring of biodiversity.

  5. The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution

    Science.gov (United States)

    Tsui, L.; Roy, W.R.

    2008-01-01

    One commercial compost sample was pyrolyzed to produce chars as a sorbent for removing the herbicide atrazine from solution. The sorption behavior of compost-based char was compared with that of an activated carbon derived from corn stillage. When compost was pyrolyzed, the char yield was greater than 45% when heated under air, and 52% when heated under N2. In contrast, when the corn stillage was pyrolyzed under N2, the yield was only 22%. The N2-BET surface area of corn stillage activated carbon was 439 m2/g, which was much greater than the maximum compost char surface area of 72 m2/g. However, the sorption affinity of the compost char for dissolved atrazine was comparable to that of the corn stillage activated carbon. This similarity could have resulted from the initial organic waste being subjected to a relatively long period of thermal processes during composting, and thus, the compost was more thermally stable when compared with the raw materials. In addition, microorganisms transformed the organic wastes into amorphous humic substances, and thus, it was likely that the microporisity was enhanced. Although this micropore structure could not be detected by the N2-BET method, it was apparent in the atrazine sorption experiment. Overall, the experimental results suggested that the compost sample in current study was a relatively stable material thermally for producing char, and that it has the potential as a feed stock for making high-quality activated carbon. ?? 2007 Elsevier Ltd. All rights reserved.

  6. Evolution of increased competitiveness in cows trades off with reduced milk yield, fertility and more masculine morphology.

    Science.gov (United States)

    Sartori, Cristina; Mazza, Serena; Guzzo, Nadia; Mantovani, Roberto

    2015-08-01

    In some species females compete for food, foraging territories, mating, and nesting sites. Competing females can exhibit morphological, physiological, and behavioral adaptations typical of males, which are commonly considered as secondary sexual traits. Competition and the development of traits increasing competitiveness require much energy and may exert adverse effects on fecundity and survival. From an evolutionary perspective, positive selection for increased competitiveness would then result in evolution of reduced values for traits related to fitness such as fecundity and survival. There is recent evidence for such evolutionary trade-offs involving male competition, but no study has considered competing females so far. Using data from competitions for dominance in cows (Bos taurus), we found negative genetic correlations between traits providing success in competition, that is, fighting ability and fitness traits related to milk production and with fertility (the inverse of parity-conception interval). Fighting ability also showed low but positive genetic correlations with "masculine" morphological traits, and negative correlations with "feminine" traits. A genetic change in traits over time has occurred due to selection on competitiveness, corresponding to an evolutionary process of "masculinization" counteracting the official selection for milk yield. Similar evolutionary trade-off between success in competition and fitness components may be present in various species experiencing female competition.

  7. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    Science.gov (United States)

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.

  8. Effects of nitrogen nutritional stress on the morphological and yield parameters of tomato (Solanum lycopersicumL.)

    Institute of Scientific and Technical Information of China (English)

    Gideon O. Okunlola; Olusanya A. Olatunji; Akinjide M. Afolabi; Kolade K. Gbadegesin

    2015-01-01

    This investigation was carried out to better understand the effects of nitrogen stress on the growth and yield of tomato (Solanum lycopersiconL.). Seeds ofS. lycopersicon (Ife No. 1 variety) were collected from the Osun–State Ministry of Agriculture, Oshogbo, Nigeria and planted in analyzed top soil. The plants were grown for a period of five weeks within which they were supplied with water and kept under optimum environmental conditions that enhanced normal growth. After this period, the plants were subjected to different levels of nitrogen stress which include: plants supplied with dis-tilled water only (n), plants supplied with complete nutrient solution (N), plants supplied with nutrient solution in which nitrogen concentration sources was increased by a factor of 5 (N5), and plants supplied with nutrient solution in which nitrogen concentration sources was increased by a factor of 10 (N10). Analysis of Variance (ANOVA) results shows that there is no significant effect of stress on the growth and morphological parameters of tomato plants. However, there was a significant effect of nitrogen stress on the yield parameters. Nitrogen stress also caused an increase in the number and size of fruits produced in plants subjected with high nitrogen concentration.

  9. 煤焦与生物质焦共气化反应特性研究%Co-gasification properties of coal char and biomass char

    Institute of Scientific and Technical Information of China (English)

    任海君; 张永奇; 房倚天; 王洋

    2012-01-01

    以晋城无烟煤和生物质(肉骨粉Meat and Bone Meal∶MBM)为原料,在固定床上采用快速热解法制备了煤和生物质焦样.采用扫描电子显微镜结合X射线能谱分析仪(SEM-EDX)分析了煤焦和MBM焦的表面形态和组成;在热天平上采用等温热重法进行了煤焦/MBM焦混合物的水蒸气气化研究.实验结果表明,煤/MBM焦混合物的共气化实验碳转化率高于两者不存在协同作用时的计算值,这是由于MBM焦含有较多的Na、Ca等元素,这些物质对煤焦气化起到了催化作用.当对MBM焦进行脱灰处理后,其气化反应性显著下降.混合物中MBM焦的质量分数在20%~80%时,随着MBM焦含量的增加,混合物中的煤焦反应性相应提高.%An experimental study on the co-gasification property of coal char and biomass char with steam was performed in a thermogravimetric analyzer (TGA). The coal tested was Jincheng anthracite (JC) , and the biomass was meat and bone meal ( MBM). The chars were prepared by fast pyrolysis of coal and MBM individually. The morphology and composition of chars were analyzed by scanning electron microscope (SEM) equipped with an energy-dispersive X-ray analyzer (EDX). The results show that the co-gasification rate of JC/ MBM chars mixture is higher than that of results expected from independent behavior. The high content of Ca and Na in MBM char plays a catalytic effect during co-gasification. After washing with acid, the reactivity of MBM char declines markedly. The gasification rate of coal char in JC/MBM chars mixture increases with increasing MBM char content in rang of 20% ~ 80%.

  10. Combustion of char from plastic wastes pyrolysis

    Science.gov (United States)

    Saptoadi, Harwin; Rohmat, Tri Agung; Sutoyo

    2016-06-01

    A popular method to recycle plastic wastes is pyrolysis, where oil, gas and char can be produced. These products can be utilized as fuels because they are basically hydrocarbons. The research investigates char properties, including their performance as fuel briquettes. There are 13 char samples from PE (Polyethylene) pyrolyzed at temperatures of around 450 °C, with and without a catalyst. Some of the samples were obtained from PE mixed with other types, such as Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Others. Char properties, such as moisture, ash, volatile matter, and fixed carbon contents, are revealed from the proximate analysis, whereas calorific values were measured with a bomb calorimeter. Briquettes are made by mixing 4 g of char with 0.5 - 1 g binder. Briquettes are hollow cylinders with an outer and inner diameter of around 1.75 cm and 0.25 cm, respectively. Combustion is carried out in a furnace with wall temperatures of about 230°C and a constant air velocity of 0.7 m/s. Five out of 13 char briquettes are not feasible because they melt during combustion. Briquettes made from 100% PE wastes burn in substantially shorter duration than those from mixed plastic wastes. Char #1 and #5 are excellent due to their highest energy release, whereas #10 show the worst performance.

  11. Effective Diffusion Coefficients in Coal Chars

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker

    2001-01-01

    Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... The experimental results were compared with theoretical values calculated from the mean pore radius and the cross-linked pore model. The method of mean pore radius underestimated the effective diffusion coefficient more than an order of magnitude. Using the cross-linked pore model, the bimodal pore size...

  12. Reactivities of Shenfu Chars Toward Gasification with Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-wei; WEI Xian-yong; ZONG Zhi-min; WANG Tao-xia; XIE Rui-lun; DING Ming-jie; CAI Ke-ying; HUANG Yao-guo; GAO Jin-sheng; WU You-qing

    2007-01-01

    Five Shenfu char samples were prepared from Shenfu raw coal at different temperatures (950, 1100, 1200, 1300 and 1400 ℃) using a muffle furnace. Demineralization of the char samples was performed by treating them with 10% nitric acid for 10 min in a CEM Discover microwave reactor. The gasification of the chars, and corresponding demineralized chars, in a carbon dioxide (CO2) atmosphere was conducted in a Netzsch STA 409C131F temperature-programmed thermogravimetry apparatus. The effects of charring temperature and demineralization on the gasification reactivity of chars were systematically investigated. The results show that a char formed at a lower temperature is more reactive except for demineralized char formed at 1100 ℃, which is less reactive than char formed at 1200 ℃. Demineralization decreases the char reactivities toward gasification with CO2 to a small extent.

  13. Shape-controlled Synthesis of Activated Bio-chars by Surfactant-templated Ionothermal Carbonization in Acidic Ionic Liquid and Activation with Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Feng Guo

    2014-04-01

    Full Text Available Shape-controlled bio-chars were synthesized in two steps: (i ionothermal carbonization of biomass (e.g., glucose, cellulose, lignin, and bamboo at low temperatures (150 to 180 °C in an acidic ionic liquid (IL, and (ii subsequent activation with carbon dioxide at higher temperature (500 °C. Acidic IL was used as both the medium and catalyst for advanced carbon materials production. During the first step the primary structures of spherical particles were obtained. The surfactants sodium dodecyl sulfonate (SDS, ethylene glycol (EG, and sodium oleate (SO were also used to modify the surface morphology of bio-chars and activated bio-chars. After the second step, the primary structures of bio-chars were still preserved or improved. The Brunauer-Emmett-Teller surface area and the pore diameter of activated bio-chars were 289 to 469 m2/g and 3.5 to 3.6 nm, respectively. Scanning electron microscope and transmission electron microscope images show that after modification of bio-chars with SDS, EG, and SO, activated bio-char particles agglomerated into rod-like (~200 nm diameter, nano-membrane (~70 nm thickness, and spherical (~200 nm morphologies, respectively. The morphology of activated bio-chars was easily controlled during the synthesis, which is important for the exploitation of their peculiar properties and unique applications.

  14. Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khongkrapan, Parin; Thanompongchart, Patipat; Tippayawong, Nakorn; Kiatsiriroat, Tanongkiat [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-01

    In this study, a microwave plasma reactor was used for pyrolysis of waste papers. The effects of different argon flow rates on char and gas generation were investigated. Changes in carbon and oxygen contents from those in paper to char were significant. Char yield of over 25 % was obtained with the heating value of about 38 MJ/kg. Average gas yield and total content of combustible fraction (CO, CH4 and H2) in the gas product were 2.56 m3/kg and 36 %, respectively. The heating value of gas product and carbon conversion efficiency of the process were maximum at 6.0 MJ/m3 and 73 %, respectively.

  15. Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor

    Directory of Open Access Journals (Sweden)

    Parin Khongkrapan, Patipat Thanompongchart, Nakorn Tippayawong, Tanongkiat Kiatsiriroat

    2013-01-01

    Full Text Available In this study, a microwave plasma reactor was used for pyrolysis of waste papers. The effects of different argon flow rates on char and gas generation were investigated. Changes in carbon and oxygen contents from those in paper to char were significant. Char yield of over 25 % was obtained with the heating value of about 38 MJ/kg. Average gas yield and total content of combustible fraction (CO, CH4 and H2 in the gas product were 2.56 m3/kg and 36 %, respectively. The heating value of gas product and carbon conversion efficiency of the process were maximum at 6.0 MJ/m3 and 73 %, respectively.

  16. Gasification of the char derived from distillation of granulated scrap tyres.

    Science.gov (United States)

    López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén; López-Delgado, Aurora; Fermoso, Javier

    2012-04-01

    This work reports the effect of pressure on the steam/oxygen gasification at 1000°C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank. In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34MJkg(-1). The combustion properties of the char (E(A)≈50 kJ mol(-1)), its temperature of self-heating (≈264°C), ignition temperature (≈459°C) and burn-out temperature (≈676°C) were found to be similar to those of a semi-anthracite. It is observed that the yield, H(2) and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm(3)kg(char)(-1) of syngas was produced, containing 28%v/v of H(2) and CO and with a HHV around 3.7 MJ Nm(-3). At 1.5 MPa, the syngas yield achieved 4.9N m(3)kg(char)(-1) with 30%v/v of H(2)-CO and HHV of 4.1 MJ Nm(-3). Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa. It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure.

  17. Modeling pyrolysis of charring material in fire

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.

  18. 操作参数对生物质热解液化及焦炭特征的影响%Impact of Operation Factors on Biomass Pyrolysis and the Characteristics of Bio-Char

    Institute of Scientific and Technical Information of China (English)

    周雷宇; 王萌; 吴昊; 张海茹; 杨宏旻

    2011-01-01

    The experiments of the rice husk pyrolysis were performed in a fixed-bed reactor to produce bio-oil. The effects of the different operation factors such as pyrolysis temperature, sweeping gas ( N2 ) flow rates and heating rates on the yields of three products and the characteristics of bio-char were investigated. The maximum bio-oil yield of 49.91% was obtained at 550~C pyrolysis temperature with a heating rate of 25~C/min and nitrogen flow rate of 150 mL/min. As the heating rate increased, it favored the yields of liquid product, yet the bio-char yields decreased. Thermogravimetric analysis (TGA) was introduced to study the thermal decomposition of the feedstock. Crystals and morphology of bio-char with different pyrolysis temperatures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The results showed that pyrolysis temperatures played an important role on the surface morphology and crystal phase of bio-char and the prominent porosity with the bio-char which was generated under 550%; pyrolysis temper- ature was observed.%以稻壳为研究对象,在固定床中热解制取液体生物油.实验研究了热解温度、氮气流速和升温速率对热解3种产物分布的影响.在25℃/min的升温速率达到热解终温550℃,氮气流速为150 mL/min工况下液体产率达到最大值49.91%.随着升温速率的增加液体产率升高,焦炭的产率降低.利用热重分析考察了原料的热分解特性.通过X射线衍射方法和SEM对热解焦炭的晶相和形态进行分析.研究表明热解温度对焦炭的晶相和表面形态的影响很大,在550℃的热解温度下得到的焦炭有较突出孔状结构.

  19. Changes in char reactivity due to char-oxygen and char-steam reactions using Victorian brown coal in a fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Shu Zhang; Yonggang Luo; Chunzhu Li; Yonggang Wang

    2015-01-01

    This study was to examine the influence of reactions of char–O2 and char–steam on the char reactivity evolution. A newly-designed fixed-bed reactor was used to conduct gasification experiments using Victorian brown coal at 800 °C. The chars prepared from the gasification experiments were then collected and subjected to reactivity characterisation (ex-situ reactivity) using TGA (thermogravimetric analyser) in air. The results indicate that the char reactivity from TGA was generally high when the char experienced intensive gasification reactions in 0.3%O2 in the fixed-bed reactor. The addition of steam into the gasification not only enhanced the char conversion sig-nificantly but also reduced the char reactivity dramatical y. The curve shapes of the char reactivity with involve-ment of steam were very different from that with O2 gasification, implying the importance of gasifying agents to char properties.

  20. Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment

    Energy Technology Data Exchange (ETDEWEB)

    Jezowski, S.; Glowacka, K.; Kaczmarek, Z. [Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszynska 34, 60-479 Poznan (Poland)

    2011-02-15

    This study presents the results of investigations of variation, genotype x year interactions and genotype x year x location interactions for the yield and morphological traits of several selected clones of energy grasses of the genus Miscanthus. The analyses were performed on the best clones of selected hybrid plants, which were obtained within the species M. sinensis or are the result of interspecific hybridization of M. sinensis and M. sacchariflorus. Analyses were conducted on the basis of three-year field trials at two locations. The young plants produced from in vitro cultures were planted at a density of one plant per m{sup 2}. The early stages of plant development, from planting until peak yield in the third year of cultivation, were analysed. Statistical analyses performed on the yield and morphological traits as well as changes in these characteristics over the successive years of the study showed considerable genotypic variation for traits under study. Moreover, significant genotype x year interactions as well as genotype x year x location interactions were observed in terms of yield and morphological traits. Based on the collective results of the study, we suggest that apart from M. x giganteus particularly hybrids of M. sinensis x M. sacchariflorus, should be taken into consideration in genetic and breeding studies on the improvement of yield from energy grasses of the genus Miscanthus. (author)

  1. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char

    Science.gov (United States)

    Zuo, Hai-bin; Geng, Wei-wei; Zhang, Jian-liang; Wang, Guang-wei

    2015-04-01

    This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimetric analysis (TGA) at 900, 950, and 1000°C under CO2. With an increase in BC blending ratio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activation energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, respectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.

  2. NO Reduction over Biomass and Coal Char during Simultaneous Combustion

    DEFF Research Database (Denmark)

    Zhao, Ke; Glarborg, Peter; Jensen, Anker Degn

    2013-01-01

    . The straw and bark chars showed higher reactivity, about a factor of 4–5, than bituminous char at 850 °C. The difference in reactivity between biomass char and bituminous char decreased with increasing reaction temperature. The reaction rate expressions for NO reduction during simultaneous combustion......This paper reports an experimental study of NO reduction over chars of straw, bark, bituminous coal, and lignite. The experiments were performed in a fixed bed reactor in the temperature range 850–1150 °C. The chars were generated by in situ pyrolysis at the reaction temperature to minimize further...... thermal deactivation. The rates of NO reduction over char were studied by char combustion experiments and O2-free experiments respectively. Two simple models were applied to interpret the data from the char combustion experiments. One model assumed that combustion and NO release take place uniformly...

  3. A Brief Discussion on the Morphological Structure Char-acteristics of Cellphone Short Messages in German%浅谈德语手机短信的词法结构特点

    Institute of Scientific and Technical Information of China (English)

    阮贞

    2014-01-01

    With the development of contemporary science and technology, the methods of human communication are diversified, but cellphone communication occupies an important position in the variety of communication methods. Short messages, as a bridge and medium for human communication, have formed a new style of language in specific contexts when conveying infor-mation and emotions. This paper mainly analyzed cellphone short messages in German from the perspective of morphology, aiming to reveal the characteristics of German short messages in mor-phological structure.%随着当代科技的发展,人类通讯方式呈现出多样化趋势。然而手机通讯在人们众多交流方式中占有重要地位。短信作为人类交流的一座桥梁和一种媒介不仅能够传递信息和情感,同时在具体语境中形成了一种新兴语体。本文着重从词法角度对德语手机短信用语进行分析,意在揭示德语短信在构词上的特点。

  4. Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation

    DEFF Research Database (Denmark)

    Brix, Jacob; Navascués, Leyre Gómez; Nielsen, Joachim Bachmann;

    2013-01-01

    In this work, differences in particle temperature and NO yield during char oxidation in O2/N2 and O2/CO2 atmospheres, respectively, have been examined. A laboratory scale fixed bed reactor, operated isothermally at 1073 K, was used for combustion of millimeter-sized lignite and bituminous coal ch...

  5. Computational investigations of low-emission burner facilities for char gas burning in a power boiler

    Science.gov (United States)

    Roslyakov, P. V.; Morozov, I. V.; Zaychenko, M. N.; Sidorkin, V. T.

    2016-04-01

    Various variants for the structure of low-emission burner facilities, which are meant for char gas burning in an operating TP-101 boiler of the Estonia power plant, are considered. The planned increase in volumes of shale reprocessing and, correspondingly, a rise in char gas volumes cause the necessity in their cocombustion. In this connection, there was a need to develop a burner facility with a given capacity, which yields effective char gas burning with the fulfillment of reliability and environmental requirements. For this purpose, the burner structure base was based on the staging burning of fuel with the gas recirculation. As a result of the preliminary analysis of possible structure variants, three types of early well-operated burner facilities were chosen: vortex burner with the supply of recirculation gases into the secondary air, vortex burner with the baffle supply of recirculation gases between flows of the primary and secondary air, and burner facility with the vortex pilot burner. Optimum structural characteristics and operation parameters were determined using numerical experiments. These experiments using ANSYS CFX bundled software of computational hydrodynamics were carried out with simulation of mixing, ignition, and burning of char gas. Numerical experiments determined the structural and operation parameters, which gave effective char gas burning and corresponded to required environmental standard on nitrogen oxide emission, for every type of the burner facility. The burner facility for char gas burning with the pilot diffusion burner in the central part was developed and made subject to computation results. Preliminary verification nature tests on the TP-101 boiler showed that the actual content of nitrogen oxides in burner flames of char gas did not exceed a claimed concentration of 150 ppm (200 mg/m3).

  6. Adsorption characteristics of SO{sub 2}, NO by steam activated biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Fei; Shu, Tong; Wang, Kuan; Lu, Ping [Nanjing Normal Univ. (China). School of Energy and Mechanical Engineering

    2013-07-01

    Wheat straw and rice husk collected from the suburb of Nanjing, China, were prepared to different kinds of steam activated biomass-based chars, and the adsorption characteristics of the biomass-based chars was carried out in a fixed bed reactor. The specific surface area and pore structure of different biomass chars were measured by nitrogen adsorption-desorption analysis instrument at 77K. The effects of biomass type, pyrolysis temperature, heating rate, activation temperature and concentration of SO{sub 2}, NO on the adsorption efficiency of SO{sub 2}, NO were analyzed. The results indicated that the steam activation has significant effects on the specific surface area, total pore volume and micro-morphology of biomass chars by improving the internal structure. The adsorption efficiency of SO{sub 2}, NO increased with the decreasing of SO{sub 2}, NO concentration in the experimental range. The optimal condition of char preparation (873K, fast pyrolysis) and steam activation (1,073K) was proposed based on the adsorption efficiency and adsorption volume of SO{sub 2}, NO. It builds a theoretical basis for industrial applications of biomass.

  7. Microwave Assisted Hydrolysis of Holocellulose Catalyzed with Sulfonated Char Derived from Lignin-Rich Residue

    Directory of Open Access Journals (Sweden)

    Kui Wang

    2015-01-01

    Full Text Available A microwave assisted green process has been developed for production of sugars through liquefying holocellulose catalyzed with sulfonated char derived from the lignin-rich residue produced during pretreatment of lignocellulose. Various reaction parameters including the hydrolysis temperature, hydrolysis time, catalyst content, and the ratio of water to feedstock were evaluated. The maximum sugars yield of 82.6% (based on the dry mass of holocellulose was obtained under the optimum reaction conditions. The sulfonated char showed superior catalytic performance to that of dilute sulfuric acid in converting holocellulose into sugars under microwave irradiation.

  8. Tar reduction in pyrolysis vapours from biomass over a hot char bed.

    Science.gov (United States)

    Gilbert, P; Ryu, C; Sharifi, V; Swithenbank, J

    2009-12-01

    The behaviour of pyrolysis vapours over char was investigated in order to maximise tar conversion for the development of a new fixed bed gasifier. Wood samples were decomposed at a typical pyrolysis temperature (500 degrees C) and the pyrolysis vapours were then passed directly through a tar cracking zone in a tubular reactor. The product yields and properties of the condensable phases and non-condensable gases were studied for different bed lengths of char (0-450 mm), temperatures (500-800 degrees C), particle sizes (10 and 15 mm) and nitrogen purge rates (1.84-14.70 mm/s). The carbon in the condensable phases showed about 66% reduction by a 300 mm long char section at 800 degrees C, compared to that for pyrolysis at 500 degrees C. The amount of heavy condensable phase decreased with increasing temperature from about 18.4 wt% of the biomass input at 500 degrees C to 8.0 wt% at 800 degrees C, forming CO, H(2) and other light molecules. The main mode of tar conversion was found to be in the vapour phase when compared to the results without the presence of char. The composition of the heavy condensable phase was simplified into much fewer secondary and tertiary tar components at 800 degrees C. Additional measures were required to maximise the heterogeneous effect of char for tar reduction.

  9. A Study on Recycling of Spent Mushroom Substrate to Prepare Chars and Activated Carbon

    Directory of Open Access Journals (Sweden)

    Yuhui Ma

    2014-05-01

    Full Text Available Chars were obtained from spent mushroom substrate (SMS via pyrolysis. It was found that as the pyrolysis temperature increased from 400 to 700 °C, the char yield decreased from 45.10 to 33.79 wt.% and the higher heating value increased from 17.32 to 22.72 MJ/kg. The largest BET surface area (13 m2/g was created at 500 °C. Hydrogen atoms were continuously lost during pyrolysis, whereas oxygen atoms were difficult to eliminate. Whewellite, calcite, lime, and quartz were the minerals in the chars, and their forms and crystallinity changed with changing pyrolysis temperature. Activated carbon with a BET surface area of 1023 m2/g and a total pore volume of 0.595 cm3/g was obtained from the char prepared at 500 °C. Its characteristics were studied by N2-adsorption, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The pyrolysis and KOH-activation processes were investigated by thermogravimetric analysis (TGA. The results showed that the pyrolysis of SMS occurred primarily between 217 and 375 °C and that the energies needed for the pyrolysis reactions were relatively low due to the prior mushroom cultivation. Furthermore, lignin was incompletely decomposed in the char prepared at 500 °C, and KOH suppressed tar evolution and reduced the energy needed to decompose the residual lignin during activation.

  10. Evaluation of char combustion models: measurement and analysis of variability in char particle size and density

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Maloney; Esmail R. Monazam; Kent H. Casleton; Christopher R. Shaddix

    2008-08-01

    Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion. Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.

  11. Kinetic Analysis of Char Thermal Deactivation

    DEFF Research Database (Denmark)

    Zolin, Alfredo; Jensen, Anker; Dam-Johansen, Kim

    2001-01-01

    The thermal deactivation of several fuels was investigated by measuring the reactivity, of chars prepared in a thermogravimetric analyzer (TGA) apparatus at well-defined conditions in the temperature range 973-1673 K. Four coals, Blair Athol from Australia, Cerrejon from Colombia. Illinois no. 6....... Leached straw deactivates significantly, but maintains at any heat-treatment temperature a higher reactivity than the other chars. The inertinite-rich coal Blair Athol is more resistant to deactivation than two vitrinite-rich coals of the same ASTM rank, Cerrejon and Illinois no. 6. Cerrejon and Illinois...

  12. Evaluation the effects of organic, biological and chemical fertilizers on morphological traits, yield and yield components of Basil (Ocimum basilicum L.

    Directory of Open Access Journals (Sweden)

    S. M.K Tahhami Zarandi

    2015-04-01

    Full Text Available The use of organic manure and biofertilizers containing beneficial microorganisms instead of chemical fertilizers are known to improve plant growth through supply of plant nutrients and can help sustain environmental health and soil productivity. Because of special priority of the medicinal plants production in sustainable agricultural systems and lack of studies on assessment of different sources of fertilizer on basil plants, an experiment was conducted at Research Station, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran, in 2009. A complete randomize block design with ten treatments, and three replications was used. The treatments were: 1cow manure, 2sheep manure, 3hen manure, 4compost 5vermicompost, 6biological fertilizer nitroxin (consisting of Azotobacter and Azospirillum, 7biological fertilizer consisting of Phosphate Solubilizing Bacteria (Pseudomonas and Bacillus, 8mixture of biological fertilizer nitroxin and Phosphate Solubilizing Bacteria 9NPK fertilizers, and 10control (no fertilizer. Results showed plant height in sheep manure was higher than other treatments. Number of branches in vermicompost and number of inflorescence in cow manure were significantly higher than other treatments. The number of whorled flowers in compost, sheep and cow manure were more than other treatments. Highest leaf and green area index was observed in nitroxin treatment and biological yield in sheep manure have significant difference with other treatments (except cow manure. The highest seed yield were obtained from plants treated with compost (1945 kg/h and the lowest of that observed in NPK fertilizer and control treatments. In all measured traits (except number of inflorescence NPK fertilizer and control treatment did not have any significant difference.

  13. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  14. The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and several Morphological Traits of Sunflower under Greenhouse Condition

    OpenAIRE

    Hossein NAZARLI; Mohammad Reza ZARDASHTI; Reza DARVISHZADEH; Solmaz NAJAFI

    2010-01-01

    In many part of Iran, the reproductive growth stages of sunflower (Helianthus annuus L.) are exposed to water deficit stress. Therefore, the investigation of irrigation management in the farm conditions is a necessary element for increasing irrigation efficiency and decreasing water losses. The objective of present study was to investigate the effect of different rates of super absorbent polymer and levels of water stress on water use efficiency (WUE), yield and some morphological traits of s...

  15. Active sites in char gasification: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  16. Coal char oxidation kinetics in air medium

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander G.

    2017-01-01

    Full Text Available Study of oxidation kinetics for three types of coal char with different carbon content in air is presented. The coal char powders of anthracite, bituminous T-grade coal and 2B-grade lignite with particle size less than 80 μm were tested. The coal char oxidation was researched by isothermal method via simultaneous TG-DSC analyzer Netzsch STA 449 Jupiter F3 in the temperature range of 1000–1200 °C. Measurements were carried out at ambient pressure. Volumetric flow rate of oxidizing medium into analyser chamber was 250 ml/min. Flow consisted of air and argon with volumetric ratio 24/1. Carbon average rate of oxidation reaction at each temperature were defined based on experimental results. Kinetic constants (the frequency factor and activation energy were defined for Arrhenius equation modified with three submodels: volumetric model, shrinking core model and random pore model. The activation energy values for anthracite are 1,6-1,7 times higher than for chars of bituminous coal and lignite.

  17. Modeling sublimation of a charring ablator

    Science.gov (United States)

    Balhoff, J. F.; Pike, R. W.

    1973-01-01

    The Hertz-Knudsen analysis is shown to accurately predict the sublimation rate from a charring ablator. Porosity is shown to have a significant effect on the surface temperature. The predominant carbon species found in the vapor is C3, which agrees well with the results of previous investigations.

  18. Phosphorus recovery from sewage sludge char ash

    NARCIS (Netherlands)

    Atienza-Martinez, M.; Gea, G.; Arauzo, J.; Kersten, S.R.A.; Kootstra, A.M.J.

    2014-01-01

    Phosphorus was recovered from the ash obtained after combustion at different temperatures (600 °C, 750 °C and 900 °C) and after gasification (at 820 °C using a mixture of air and steam as fluidising agent) of char from sewage sludge fast pyrolysis carried out at 530 °C. Depending on the leaching con

  19. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Institute of Scientific and Technical Information of China (English)

    Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

    2011-01-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method.The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass.The product gas was a mixed gas containing 72%H2,26%CO2,1.9%CO,and a trace amount of CH4.It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%).The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O.In addition,the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  20. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Science.gov (United States)

    Li, Xing-long; Ning, Shen; Yuan, Li-xia; Li, Quan-xin

    2011-08-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  1. Chemical characterization of chars developed from thermochemical treatment of Kentucky bluegrass seed screenings.

    Science.gov (United States)

    Griffith, Stephen M; Banowetz, Gary M; Gady, David

    2013-08-01

    Seed mill screenings would be a considerable biofeedstock source for bioenergy and char production. Char produced from the gasification of residues resulting from cleaning of grass seed and small grains could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might harm the environment, crop growth or yield. Previous reports have shown that char derived from the pyrolysis of a variety of biomass feedstocks has potential to enhance soil quality by pH adjustment, mineral amendment, and improved soil porosity. The objective of this research was to characterize char produced from Kentucky bluegrass seed mill screenings (KBss) by a small-scale gasification unit, operated at temperatures between 600 and 650°C, with respect to polycyclic aromatic hydrocarbons, selected heavy metals, as well as other physical and chemical characteristics, and determine its suitability for agricultural application as a soil amendment. We utilized KBss as a model for seed and grain-cleaning residues with the understanding that chemical and physical characteristics of char produced by gasification or other cleaning residues may differ based on soil and environmental conditions under which the crops were produced. Our results support the hypothesis that KBss char could be applied in a cropping system without toxic environmental consequences and serve multiple purposes, such as; recycling critical plant macro- and micro-nutrients back to existing cropland, enhancing soil carbon sequestration, managing soil pH, and improving water holding capacity. Crop field trails need to be implemented to further test these hypotheses.

  2. Agro-morphological, Physiological and Yield related Performances of Finger Millet [Eleusine coracana (l. Gaertn.] Accessions Evaluated for Drought Resistance under Field Condition

    Directory of Open Access Journals (Sweden)

    Awol Assefa

    2013-10-01

    Full Text Available The study was conducted at Dhera Sub-center of Kulumsa Agricultural Research Center, Oromia Regional State, Ethiopia from July - December 2011; to screen drought tolerance of 96 finger millet accessions (Eleusine coracana L. Gaertn. collected from different agro-ecological zones of the country. Data were collected for plant height (PH, green leaf number (GLN, green leaf area (GLA, ear number (EN, ear length (EL and relative water content (RWC. Significant difference (P<0.05 were obtained between accessions for most selected physiological, morphological and yield related traits such as Chlorophyll Content Index (CCI, RWC, and yield related parameters, such as tiller number (TN, productive tillers (PT, seed weight per head and per plant. Based on high RWC, CCI, GLN, PT, EL, and EN, Grain Yield per head and per plant, a total of 23 accessions were categorized as drought stress tolerance and promoted to the next intensive physiological and yield related evaluation. Moreover, AAUFM-7, AAUFM-2, AAUFM-44 were the first top three accessions with the highest grain yield of 77.5, 72g/plant and 65.4g/plant, respectively. Overall, the higher genetic variability observed among accession in this study should be further utilized for finger millet improvement targeting semi-arid areas of Ethiopia.

  3. Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: Growth yields and morphological characterization

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Lettier, G.; Mcintyre, Mhairi;

    2003-01-01

    The growth stoichiometry of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus was determined in glucose-limited chemostat cultivations using a chemically defined medium. This strain produces adipoyl-7-aminocleacetoxycephalosporanic acid (ad-7-ADCA) when...... it is fed with adipic acid. The biomass yield and maintenance coefficients for the strain were similar to those found for penicillin-producing strains of Penicillium chrysogenum. The maximum specific growth rate in the chemostat was found to be 0.11 h(-1). Metabolic degradation of adipate was found to take...

  4. Plant physiological, morphological and yield-related responses to night temperature changes across different species and plant functional types

    Directory of Open Access Journals (Sweden)

    Panpan Jing

    2016-11-01

    Full Text Available Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT and low night temperature (LNT on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4 and CAM, growth forms (herbaceous, woody, and economic purposes (crop, non-crop. We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are

  5. Investigation on the catalytic effects of AAEM during steam gasification and the resultant char reactivity in oxygen using Shengli lignite at different forms

    Institute of Scientific and Technical Information of China (English)

    Jianxin Mi; Ningbo Wang; Mingfeng Wang; Pengju Huo; Dan Liu

    2015-01-01

    The purpose of this study is to investigate the catalytic effects of alkali and alkaline earth metallic species (AAEM) on char conversion during the gasification in steam and the changes in ex-situ char reactivity in oxygen after the gasification in steam using different forms (i.e. H-form, Na-form) of Shengli brown coal. The surface area, AAEM concentration and carbon crystallite of chars were obtained to understand the change in char reactivity. It was found that not only Na concentration and carbon structure were the main factors governing the char reactivity in the atmosphere of steam and oxygen, but also they interacted each other. The presence of Na could facilitate the formation of disordering carbon structure in char, and the amorphous carbon structure would in turn affect the distribution of Na and thus its catalytic performance. The surface area and pore volume had very little relationship with the char’s reactivity. Addi-tionally, the morphology of chars from different forms of coals were observed using scanning electron microscope (SEM).

  6. Development, Verification and Validation of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    Science.gov (United States)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.

  7. Kinetics and Mechanisms of NO(x) - Char Reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Suurerg, E.M.; Lilly, W.D.; Aarna, I.

    1997-12-31

    Most industrially important carbons are produced from naturally occurring materials such as coal, oil, peat or wood by some form of thermal process. Chars are obtained from those natural materials as a residue after removal of the volatile matter. Chars (prepared from coal or other organic precursors) are non-graphitizable carbons, meaning that they cannot be transformed into graphitic carbon. Chars are comprised of elementary crystallites in parallel layers which are randomly oriented with respect to each other and are crosslinked together through weak bonds. Voids between crystallites determine the porosity of the char, and this plays an important role in char gasification behavior. Chars usually contain a pore size distribution, in which the larger macro- and mesopores play an important role in transport of reactants into the much smaller micropores, in which most gasification and combustion take place. Therefore, the effectiveness of micropores in gasification depends heavily on the numbers of meso- and macropores.

  8. Structural and Compositional Transformations of Biomass Chars during Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    In this work the physical and chemical transformations of biomass chars during fast pyrolysis, considered as a 2nd stage of combustion, has been investigated. Seven biomasses containing different amount of ash and organic components were reacted at up to 1673 K with high heating rates in a wire......-mesh reactor and the resulting chars were retrieved. In order to obtain information on the structural and compositional transformations of the biomass chars, samples were subjected to elemental analysis, scanning electron microcopy with EDX and Raman spectrometry. The results show that there are significant...... changes in both the organic and inorganic constituents of the chars.Under high heating rates (> 100 K/s) char particles underwent different types of melting and pores of different size were developed in dependency on the temperature and biomass composition. The Si-rich rice husks char did not show any...

  9. Coal and char studies by advanced EMR techniques

    Energy Technology Data Exchange (ETDEWEB)

    Belford, R.L.; Clarkson, R.B.; Odintsov, B.M.

    1999-03-31

    Advanced magnetic resonance (EMR) methods are used to examine properties of coals, chars, and molecular species related to constituents of coal. During this grant period, further progress was made on proton NMR and low-frequency dynamic nuclear polarization (DNP) to examine the interaction between fluids such as water and the surface of suspended char particles. Effects of char particle size and type on water nuclear spin relaxation, T2, were measured and modeled.

  10. Char porosity characterisation by scanning electron microscopy and image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, H.S.; Rosenberg, P.; Petersen, H.I.; Soerensen, L.H. [Danfoss A/S, Nordborg (Denmark)

    2000-09-01

    No significant change in either the morphotype composition or the macroporosity (pores {gt}5 {mu}m) in the 0-30 wt.% char burnout interval were revealed by reflected light microscopy or image analysis. Two high temperature char series from a Tertiary South American coal (C1) and a Permian Gondwana coal (C2) were therefore examined by scanning electron microscopy to provide information on the combustion process up to {approximately} 60 wt% char burnout. This study documents a significant mesopore ({approximately} 0.1-5 {mu}m) development on the fused chars in the burnout interval studied. A method to quantify the size and amount of the mesopores is described and both the parameters increased with increasing char burnout. Above a char burnout of {approximately} 30 wt% an increase in macroporosity was detected and ascribed to coalescence of mesopores to form large pores. Although the measurement of mesoporosity is restricted to fused chars, i.e. pores in fragments and the char morphotypes inertoid, fusinoid and solid could not be measured, the consideration of mesoporosity seems to be fundamental in understanding, evaluating and modelling combustion processes in the char burnout interval studied. 7 refs., 9 figs., 4 tabs.

  11. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  12. Comparison of steam-gasification characteristics of coal char and petroleum coke char in drop tube furnace

    Institute of Scientific and Technical Information of China (English)

    Lu Ding; Zhijie Zhou; Wei Huo; Guangsuo Yu

    2015-01-01

    The steam-gasification reaction characteristics of coal and petroleum coke (PC) were studied in the drop tube fur-nace (DTF). The effects of various factors such as types of carbonaceous material, gasification temperature (1100–1400 °C) and mass ratio of steam to char (0.4:1, 0.6:1 and 1:1 separately) on gasification gas or solid products were investigated. The results showed that for al carbonaceous materials studied, H2 content exhibited the larg-est part of gasification gaseous products and CH4 had the smal est part. For the two petroleum cokes, CO2 content was higher than CO, which was similar to Zun-yi char. When the steam/char ratio was constant, the carbon con-version of both Shen-fu and PC chars increased with increasing temperature. When the gasification temperature was constant, the carbon conversions of al char samples increased with increasing steam/char ratio. For al the steam/char ratios, compared to water gas shift reaction, char-H2O and char-CO2 reaction were further from the thermodynamic equilibrium due to a much lower char gasification rate than that of water gas shift reaction rate. Therefore, kinetic effects may play a more important role in a char gasification step than thermodynamic ef-fects when the gasification reaction of char was held in DTF. The calculating method for the equilibrium shift in this study wil be a worth reference for analysis of the gaseous components in industrial gasifier. The reactivity of residual cokes decreased and the crystal layer (L002/d002) numbers of residual cokes increased with increasing gasification temperature. Therefore, L002/d002, the carbon crystallite structure parameter, can be used to evaluate the reactivity of residual cokes.

  13. Effect of the Date of Planting on Morphological Characteristics, Yield and Essential Oil Content of Achillea millefolium sub sp millefolium.L in Mashhad Climatic Conditions

    Directory of Open Access Journals (Sweden)

    A. Ghani

    2012-04-01

    Full Text Available To study the effect of planting date on morphological characteristic, yield and essential oil content of Achillea millefolium sub sp millefolium.L., an experiment in a randomized complete blocks design (RCBD with four treatments including four planting date (6 July, 1 August, 7 September and 7 October in four replications was conducted. During the growing stage and at the end of experiment period, following factors were measured: time and growth degree day (GDD to bolting and flowering, plant height, shoot number, lateral inflorescence numbers, inflorescence diameter and height, inflorescence yield, essential oil percentage and yield and total biomass. Our results indicated that planting date affects all of the measured factors. In the first planting date, the plants were tall (116 cm and had big inflorescence (9.97 and 8.72 cm for inflorescence diameter and height respectively. Most measured traits (shoot and lateral inflorescence number, inflorescence dry weight and total biomass had highest value in the August 1st planting date and lowest value in forth planting date (7 October 7th. Essential oil percentage was affected by planting date and the highest essential oil percentage (0.17 was produced in 7 October and the lowest (0.13 was obtained in August 1st planting date but the maximum and minimum essential oil yield (1.77 and 0.87 ml relation with 1 August and 7 September planting date respectively. In conclusion, 1 August is the best date for sowing of the plant. In general, The first of August was the best planting date for this Achillea species in Mashhad climate.

  14. Corrosive components of nutshells and their chars

    Directory of Open Access Journals (Sweden)

    Karczewski Mateusz

    2016-01-01

    Full Text Available Biomass combustion stands among various technologies pointed at fossil fuels consumption decrease. Biomass can be found in very diversified sources spread more evenly across the globe, can be burned with use of traditional combustion solutions and is more CO2 neutral in combustion than their fossil fuel counterparts. On the other hand biomass has several problems with composition that despite its potential diversity. Problem of excess moisture can be already solved by material selection or by preliminary pyrolysis. The main problem concerns however biomass ash composition. Biomass ashes are more prone to have higher quantities of potentially corrosive components than their coal counterparts. The example of such constituents are alkali metals, sulphur and chlorine. Ash basic composition is also important due to various ash properties like its melting temperature and slagging or fouling tendencies. To address the problem, several indices for fast properties prediction and earlier problem identification can be appointed. This work concentrates on ash quality evaluation for potentially attractive biomass fuel from nutshell materials and their corresponding char obtained by pyrolysis in 300, 450 and 550 °C. Pistachio and hazelnut shells with their chars will be analysed for corrosive compounds and their potential influence on combustion process.

  15. STUDY OF ACTIVATION OF COAL CHAR

    Energy Technology Data Exchange (ETDEWEB)

    E.M. Suuberg; I. Kulaots; I Aarna; M. Callejo; A. Hsu

    2003-12-31

    This is the final report on a project whose aim is to explore in a fundamental manner the factors that influence the development of porosity in coal chars during the process of activation. It is known that choices of starting coal, activating agent and conditions can strongly influence the nature of an activated carbon produced from a coal. This project has been concerned mainly with the process of physical activation, which in fact involves the gasification of a char produced from a coal by oxidizing gases. This is of interest for two reasons. One is that there is commercial interest in production of activated carbons from coal, and therefore, in the conditions that can best be used in producing these materials. Much is already known about this, but there is a great deal that is in the realm of ''trade secret'' or just ''industry lore''. The second reason for interest in these processes is that they shed light on how porosity develops during any gasification process involving oxidizing gases. This has implications for understanding the kinetics and the role that ''surface area'' may play in determining kinetics. In earlier reports from this project, several conclusions had been reached upon which the present results rest. There is an often-cited difference in use of nitrogen and carbon dioxide as molecular probes of carbon porosity when using vapor adsorption techniques. Carbon dioxide is often ''preferred'' since it is argued that it offers greater access to fine microporosity, due to the higher temperature of carbon dioxide as opposed to nitrogen measurements. The early phases of this work revealed that the extreme differences are observed only in chars which are not much activated, and that by a few weight percent burnoff, the difference was negligible, provided a consistent theoretical equation was used in calculating uptake or ''surface area''. In another phase

  16. Stable carbon isotope changes during artificial charring of propagules

    NARCIS (Netherlands)

    Poole, I.J.; Braadbaart, F.; Boon, J.J.; Bergen, P.F. van

    2002-01-01

    Charred organic remains are ubiquitous in the archaeological and fossil record and are often used to interpret past environments and climate. This study focuses on the physical and chemical alteration that takes place during heating (i.e. charring). Modifications to the internal and external morphol

  17. Gas cleaning with hot char beds studied by stable isotopes

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Ambus, Per;

    2014-01-01

    with 2H (deuterium) were used to support proposed reaction mechanisms. It was found that at 700-800 °C the aromatic tar compounds bind irreversibly to the char by a radical reaction and, hence, become an integrated part of the char. Thermally induced reactions may occur prior to the binding reaction...

  18. Evaluation of solid fuel char briquettes from human waste.

    Science.gov (United States)

    Ward, Barbara J; Yacob, Tesfayohanes W; Montoya, Lupita D

    2014-08-19

    The developing world faces dual crises of escalating energy demand and lack of urban sanitation infrastructure that pose significant burdens on the environment. This article presents results of a study evaluating the feasibility of using human feces-derived char as a solid fuel for heating and cooking and a potential way to address both crises. The study determined the energy content and the elemental composition of chars pyrolyzed at 300, 450, and 750 °C. Fecal chars made at 300 °C were found to be similar in energy content to wood chars and bituminous coal, having a heating value of 25.6 ± 0.08 MJ/kg, while fecal chars made at 750 °C had an energy content of 13.8 ± 0.48 MJ/kg. The higher heating values of the studied chars were evaluated using their elemental composition and a published predictive model; results found good agreement between the measured and predicted values. Fecal chars made at low temperatures were briquetted with molasses/lime and starch binders. Briquettes made with 10% starch had an average impact resistance index of 79 and a higher heating value of 25 MJ/kg. These values are comparable to those of commercial charcoal briquettes, making fecal char briquettes a potential substitute that also contributes to the preservation of the environment.

  19. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 k...

  20. The effects of the conditions of char formation on the physical properties of charred phenolic-nylon

    Science.gov (United States)

    Smyly, E. D.; Pears, C. D.

    1972-01-01

    A study was made of the effects of the conditions of char formation on the physical properties of charred phenolic nylon of 0.577 gm/cu cm density. It was found that the thermal conductivity and several of the monitors correlate well with degradation conditions. The monitors included electrical resistivity, sonic velocity, porosity, lattice spacing and crystallite size.

  1. Chemical Constituents in Charred Sanguisorbae Radix

    Institute of Scientific and Technical Information of China (English)

    SUN Li-li; ZHONG Ying; XIA Hong-min; ZHOU Qian; LV Jia

    2013-01-01

    Objective To study the chemical constituents in the effective fractions of charred Sanguisorbae Radix.Methods The compounds were isolated and purified by column chromatography and their structures were identified on the basis of physicochemical properties and spectral analysis.Results Five compounds were isolated and identified as 3 β-hydroxy-28-norurs-17,19,21-trien (1),3 β-hydroxy-28-norurs-12,17-dien (2),3 β,19α-dihydroxyurs-13 (18)-en-28-oic acid (3),3β-[(α-L-arabin-opyranosyl) oxy]-28-norurs-12,17-dien (4),and pomolic acid (5).Conclusion Compounds 1,3,and 4 are novel compounds belong to triterpenoids and triterpenoid saponins,named as sanguisorbigenins Z,Y1,and Y2,respectively.

  2. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    Energy Technology Data Exchange (ETDEWEB)

    Assari, Mohamad javad [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rangkooy, Hossinali [Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of)

    2015-07-01

    Highlights: • A novel nanocomposite including bone char and gold nanoparticle was developed for capture of Hg{sup 0} vapor. • EDS and XRD results confirm the presence of nano-gold on the surface of the bone char support. • The majority of the pores were found to be in the mesoporous range. • The dynamic capacity of 586 μg/g was obtained for Hg{sup 0} vapor. - Abstract: The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg{sup 0}) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV–VIS–NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg{sup 0} determination. Dynamic capacity of nanocomposite for Hg{sup 0} was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg{sup 0}. It could be applied for the laboratory and field studies.

  3. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.

    Science.gov (United States)

    Moralı, Uğur; Yavuzel, Nazan; Şensöz, Sevgi

    2016-12-01

    Slow pyrolysis of hornbeam (Carpinus betulus L.) sawdust was performed to produce bio-oil and bio-char. The operational variables were as follows: pyrolysis temperature (400-600°C), heating rate (10-50°Cmin(-1)) and nitrogen flow rate (50-150cm(3)min(-1)). Physicochemical and thermogravimetric characterizations of hornbeam sawdust were performed. The characteristics of bio-oil and bio-char were analyzed on the basis of various spectroscopic and chromatographic techniques such as FTIR, GC-MS, 1H NMR, SEM, BET. Higher heating value, density and kinematic viscosity of the bio-oil with maximum yield of 35.28% were 23.22MJkg(-1), 1289kgm(-3) and 0.6mm(2)s(-1), respectively. The bio-oil with relatively high fuel potential can be obtained from the pyrolysis of the hornbeam sawdust and the bio-char with a calorific value of 32.88MJkg(-1) is a promising candidate for solid fuel applications that also contributes to the preservation of the environment.

  4. Disintegration of beech wood char during thermal conversion

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    In the present work the processes occurring in the structures of slowly pyrolysed beech wood char during thermal gasification have been investigated. Emphasis was put on physical changes and gas transport properties during conversion. The highly anisotropic structure of wood was preserved in its...... differences of 3—4 orders of magnitude between the longitudinal and other directions in freshly pyrolysed beech wood char. Diffusion in the longitudinal direction of the beech wood char before gasification corresponded to direct, unobstructed diffusion through its vessel cells. Radial and tangential diffusion...

  5. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    2002-07-01

    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  6. The Effect of Water Stress and Polymer on Water Use Efficiency, Yield and several Morphological Traits of Sunflower under Greenhouse Condition

    Directory of Open Access Journals (Sweden)

    Hossein NAZARLI

    2010-12-01

    Full Text Available In many part of Iran, the reproductive growth stages of sunflower (Helianthus annuus L. are exposed to water deficit stress. Therefore, the investigation of irrigation management in the farm conditions is a necessary element for increasing irrigation efficiency and decreasing water losses. The objective of present study was to investigate the effect of different rates of super absorbent polymer and levels of water stress on water use efficiency (WUE, yield and some morphological traits of sunflower (cultivar Master. Factorial experiment was carried out in completely randomized design with 3 replications. Factors were water stress in three levels (irrigation in 0.75; 0.50 and 0.25% of field capacity and super absorbent polymer in five levels (0; 0.75; 0.150; 2.25; 3 g/kg of soil. Super absorbent polymer was added in eight leaves stage of sunflower to pots in deepness of roots development. Water stress treatment was also applied in this growth stage of sunflower. For stress application, pots were weighted every day and irrigated when soil water received to 0.75; 0.50 and 0.25 of field capacity, respectively. The results of ANOVA indicated that the effect of different rates of super absorbent polymer and different rates of consumed water in all traits were significant. ANOVA also revealed that the interactive effects of two mentioned factors were significant except for seed yield trait. Polynomial model based on the ANOVA results was fitted for each trait. The results indicated that water stress significantly convert in decreasing the number of leaves per plant, chlorophyll content, 100 weight of seeds, seed yield and WUE in sunflower, whereas the application of super absorbent polymer moderated the negative effect of deficit irrigation, especially in high rates of polymer (2.25 and 3 g/kg of soil. The above mentioned rates of polymer have the best effect to all characteristics of sunflower in all levels of water stress treatment. The findings

  7. Visualizing the Stability of Char: Molecular- to Micron-scale Observations of Char Incubated in a Tropical Soil

    Science.gov (United States)

    Heckman, K. A.; Ramon, C.; Weber, P. K.; Torn, M. S.; Pett-Ridge, J.; Nico, P. S.

    2014-12-01

    The persistence of pyrogenic materials (hereafter referred to as char) in terrestrial ecosystems is of interest both from a carbon cycle modelling perspective and a climate change mitigation standpoint. However, the fate of newly introduced char in soils remains unclear. Recent reviews attempting to summarize trends in char decomposition have come to differing conclusions, further stressing the complexity of factors dictating char stability in soils. The current dataset specifically addresses the stability of char additions to a tropical clay-rich soil, possible priming effects, and interactions among char, microbial communities and the mineral matrix. 13C- and 15N-labeled Acer rubrum(red maple) wood was combusted at 400°C and added to surface (0-10 cm) and subsurface (20-30 cm) soils from the Luquillo Experimental Forest, Puerto Rico. Soils were incubated for 13 and 345 days at 26°C. Following incubation, intact microaggregates were frozen and cryosectioned into thin sections of approximately 5 μm thickness and mounted on gold-coated quartz slides. Thin sections were examined by synchrotron-based Fourier transform infrared spectroscopy (SR-FTIR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), and high resolution secondary ion mass spectrometry (nanoSIMS). The combination of these μm to nm scale techniques allowed us to create corresponding spatial maps of native organic matter, char, and mineral phase distribution, track spatial variability in organic matter molecular structure, and dispersion of 13C and 15N isotopic labels. We present preliminary results indicating a high degree of stability of char in these wet tropical soils throughout the incubation period, suggesting that applied char may persist for long periods of time in similar soils.

  8. Structural features of resorcinol-formaldehyde resin chars and interfacial behavior of water co-adsorbed with low-molecular weight organics

    Science.gov (United States)

    Gun'ko, Vladimir M.; Bogatyrov, Viktor M.; Turov, Vladimir V.; Leboda, Roman; Skubiszewska-Zięba, Jadwiga; Urubkov, Iliya V.

    2013-10-01

    Products of resorcinol-formaldehyde resin carbonization (chars) are characterized by different morphology (particle shape and sizes) and texture (specific surface area, pore volume and pore size distribution) depending on water content during resin polymerization. At a low amount of water (Cw = 37.8 wt.%) during synthesis resulting in strongly cross-linked polymers, carbonization gives nonporous particles. An increase in the water content to 62.7 wt.% results in a nano/mesoporous char, but if Cw = 73.3 wt.%, a char is purely nanoporous. Despite these textural differences, the Raman spectra of all the chars are similar because of the similarity in the structure of their carbon sheets with a significant contribution of sp3 C atoms. However, the difference in the spatial organization of the carbon sheet stacks in the particles results in the significant differences in the textural and morphological characteristics and in the adsorption properties of chars with respect to water, methane, benzene, hydrogen, methylene chloride, and dimethylsulfoxide.

  9. Structural features of resorcinol–formaldehyde resin chars and interfacial behavior of water co-adsorbed with low-molecular weight organics

    Energy Technology Data Exchange (ETDEWEB)

    Gun’ko, Vladimir M., E-mail: vlad_gunko@ukr.net [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Bogatyrov, Viktor M.; Turov, Vladimir V. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Leboda, Roman; Skubiszewska-Zięba, Jadwiga [Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin (Poland); Urubkov, Iliya V. [Kurdyumov Institute of Metal Physics, 36 Vernadsky Boulevard, 03142 Kyiv (Ukraine)

    2013-10-15

    Products of resorcinol–formaldehyde resin carbonization (chars) are characterized by different morphology (particle shape and sizes) and texture (specific surface area, pore volume and pore size distribution) depending on water content during resin polymerization. At a low amount of water (C{sub w} = 37.8 wt.%) during synthesis resulting in strongly cross-linked polymers, carbonization gives nonporous particles. An increase in the water content to 62.7 wt.% results in a nano/mesoporous char, but if C{sub w} = 73.3 wt.%, a char is purely nanoporous. Despite these textural differences, the Raman spectra of all the chars are similar because of the similarity in the structure of their carbon sheets with a significant contribution of sp{sup 3} C atoms. However, the difference in the spatial organization of the carbon sheet stacks in the particles results in the significant differences in the textural and morphological characteristics and in the adsorption properties of chars with respect to water, methane, benzene, hydrogen, methylene chloride, and dimethylsulfoxide.

  10. Thermal analysis of charring materials based on pyrolysis interface model

    Directory of Open Access Journals (Sweden)

    Huang Hai-Ming

    2014-01-01

    Full Text Available Charring thermal protection systems have been used to protect hypersonic vehicles from high heat loads. The pyrolysis of charring materials is a complicated physical and chemical phenomenon. Based on the pyrolysis interface model, a simulating approach for charring ablation has been designed in order to obtain one dimensional transient thermal behavior of homogeneous charring materials in reentry capsules. As the numerical results indicate, the pyrolysis rate and the surface temperature under a given heat flux rise abruptly in the beginning, then reach a plateau, but the temperature at the bottom rises very slowly to prevent the structural materials from being heated seriously. Pyrolysis mechanism can play an important role in thermal protection systems subjected to serious aerodynamic heat.

  11. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars

    Directory of Open Access Journals (Sweden)

    Stanisław Gil

    2015-01-01

    Full Text Available The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K.

  12. Direct reduction of iron ore by biomass char

    Science.gov (United States)

    Zuo, Hai-bin; Hu, Zheng-wen; Zhang, Jian-liang; Li, Jing; Liu, Zheng-jian

    2013-06-01

    By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivity. The increase of carbon-to-oxygen mole ratio (C/O) can lead to the enhancement of reaction rate and reduction fraction, but cannot change the temperature and trend of each reaction. The reaction temperature of hematite reduced by biomass char is at least 100 K lower than that reduced by coal and coke, the maximum reaction rate is 1.57 times as high as that of coal, and the final reaction fraction is much higher. Model calculation indicates that the use of burden composed of biomass char and iron ore for blast furnaces can probably decrease the temperature of the thermal reserve zone and reduce the CO equilibrium concentration.

  13. Clean, premium-quality chars: Demineralized and carbon enriched. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T. [Southern Illinois Univ., Carbondale, IL (United States)

    1992-12-31

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Minois Basin coal. There are two processing steps: physical cleaning of the coal and devolatilization of coal under different environments (He, H{sub 2}, He/O{sub 2}, CH{sub 4}, and CH{sub 4}/O{sub 2}) to form chars. Also, as-received and clean coal samples were mixed with hectorite, Ca-montmorillonite, and kaolinite to evaluate the potential effects of these clays on chars yield and agglomeration during devolatilization processes. Three different techniques were used: thermogravimetric analysis, differential thermogravimetric analysis, differential scanning calorimetry (DSC), and in-situ diffuse reflectance FTIR (ISDR-FTIR). Thermogravimetric measurements showed that reactive gases (except He) dissolve in the softened coal. Also, these gases convert some of the coal mineral matter into catalyst by chemical reduction and oxidation. Coal reactivity increases by adding clays because they may be catalyst for methane activation, may prevent coal agglomeration, and may modify the geometric structure of the coal surface. DSC measurements show that clean coal devolatilizes at a lower temperature than as-received sample and preoxidation lowers the devolatilization temperature. Additionally, kaolinite addition increase yields of chars from IBC-102 coal in He. In-situ diffuse reflectance FTIR experiments show that thermal decomposition of coal either increases -CH{sub 3}, content in char or alters the physical structure of -CH{sub 3}. Also, phenol groups of the coal play an important role in cross-linkage the coal structure when coal is thermally treated.

  14. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass.

    Science.gov (United States)

    González-Vila, F J; Tinoco, P; Almendros, G; Martin, F

    2001-03-01

    The structural transformations undergone by lignocellulosic biomass (freeze-dried rye grass, Lolium rigidum) subjected to progressive isothermal heating (burning at 350 degrees C under oxidizing conditions for 30, 45, 60, 75, and 90 s) have been monitored by Curie-point pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). The pyrograms suggest that even charred residues after severe heating (carbon loss ca. 50%) still contain substantial concentrations of some resistant plant structural components. Several trends were observed when monitoring the relative concentrations of the different groups of pyrolysis compounds released during successive charring stages: (i) the tetrapyrrole moiety of chlorophylls is rapidly destroyed as indicated by the decreasing yields of pyrroles and pyrrolines, whereas the phytol backbone is comparatively more resistant, leading to phytadienes after dehydration and reduction; (ii) the increasing yields of imidazoles from progressively heated samples (maximum at 45 s stage) suggest accumulation of newly formed nitrogen-containing compounds that may survive natural fires; (iii) the lignin backbone shows a relative resistance, the yields of aromatic products pointing to progressive demethoxylation; and, (iv) a selective accumulation of recalcitrant alkyl material occurred, which is interpreted as the result of thermal condensation of hydrocarbons and fatty acids into macromolecular materials in the charred residue. In terms of the intensity of the isothermal heating, the yields of the different classes of alkyl compounds follow the order phytadienes < fatty acids < alkanes < wax esters < sterols.

  15. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    Science.gov (United States)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  16. Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.

    Science.gov (United States)

    Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

    2014-11-01

    The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons.

  17. Utilization of CO2 and biomass char derived from pyrolysis of Dunaliella salina: the effects of steam and catalyst on CO and H2 gas production.

    Science.gov (United States)

    Yang, Chao; Jia, Lishan; Su, Shuai; Tian, Zhongbiao; Song, Qianqian; Fang, Weiping; Chen, Changping; Liu, Guangfa

    2012-04-01

    Biomass char, by-product of Dunaliella salina pyrolysis at a final pyrolysis temperature of 500°C, was used as feedstock material in this study. The reactions of biomass char with CO(2) were performed in a fixed-bed reactor to evaluate the effect of temperature and steam on the CO(2) conversion, CO yield and gas composition. The CO(2) conversion and CO yield without steam and catalyst reached about 61.84% and 0.99mol/(mol CO(2)) at 800°C, respectively. Steam and high temperature led to high CO(2) conversion. A new approach for improving H(2) was carried out by using biomass char and Au/Al(2)O(3) catalyst, which combined steam gasification of biomass char and water gas shift reaction, and the H(2) concentration was 1.8 times higher than without catalyst. The process not only mitigated CO(2) emission and made use of residual biomass char, but also created renewable source.

  18. The Effects of Drought Stress on Morphological Traits and Yield of Three Medicinal Plants ( Coriandrum sativum, Foeniculum vulgare and Anethum graveolens in Greenhouse Conditions.

    Directory of Open Access Journals (Sweden)

    S. R Amiri Deh Ahmadi

    2012-07-01

    Full Text Available Drought stress is one of the important problems in arid and semi_arid regions. drought stress take place in plants when available water is lesser than evapotranspiration. In order to evaluate the effect of drought stress on morphological traits and yield of three medicinal plants an experiment was carried out during the 2010 year in research greenhouse of faculity of Agriculture, Ferdowsi University of Mashhad, in a factoriel arrengement based on a Completely Randomized Block Design with four replications. factors include 4 drought stress levels: Field capacity (100%, 75%, 50% and FC25% and 3 medicinal plants include: Coriandrum sativum, Foeniculum vulgare and Aniethum graveolens. The traits such as plant height, leaf number per plant, number of lateral branches per plant, umbrellas per plant, umbels per umbrellas, seed number per plant, seed weight per plant, 1000 seeds weight and harvest index were measured. Results showed that decreasing content of water in soil lesser than field capacity had significant effects on all of these traits. Coriandrum sativum in FC25% had maximum seed number in umbrellas(14 number, seed number per plant(27 number, Umbrellas per plant(4 number, umbels per umbrellas(10 number and 1000 seeds weight (6.5 gr. also Foeniculum vulgare in FC25% had minimum seed number in umbrellas(2 number, seed number per plant(2 number. Umbrellas per plant(0.25number, umbels per umbrellas(0.5 number and 1000 seeds weight (0.15 gr. Harvest index positive correlation with seed weight per plant and 1000 seeds weight.

  19. Produtividade e morfologia de acessos de caupi, em Mossoró, RN Yield and morphology of cowpea accessions in Mossoró, Rio Grande do Norte State, Brazil

    Directory of Open Access Journals (Sweden)

    Salvador B Torres

    2008-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a produtividade e caracterizar a morfologia de dez acessos de caupi [Vigna unguiculata (L. Walp.], nas condições edafoclimáticas do município de Mossoró, RN. Dez acessos (Amapá, BRS Potiguar, Canapu, Casca-de-seda, Coruja, Costela-de-vaca, João-vieira, Pingo-de-ouro, Rabo-de-peba e Sempre-verde foram avaliados em experimento de campo, de agosto/2006 a junho/2007, em Mossoró. Verificou-se que todos os genótipos de caupi apresentaram hábito de crescimento indeterminado e semi-enramador volúvel, exceto o "BRS Potiguar" que revelou comportamento semi-enramador. O número de sementes variou de 12 a 16 por vagem. Para a região de Mossoró, pode ser indicado como melhor alternativa ao produtor, o acesso Amapá, por ser mais precoce, possuir maior número de vagens por planta e maior produtividade, seguido de BRS Potiguar e Casca-de-seda.The objective of this work was to evaluate the productivity and to describe the morphology of ten cowpea [Vigna unguiculata (L. Walp.] accessions in the edaphoclimatic conditions of Mossoró, Brazil. The accessions Amapá, BRS Potiguar, Canapu, Casca-de-seda, Coruja, Costela-de-vaca, João-vieira, Pingo-de-ouro, Rabo-de-peba and Sempre-verde were evaluated in a field experiment from August 2006 to June 2007. The majority of accessions was of indeterminate and semi-branched voluble growth habit; only BRS Potiguar was semibranched. The number of seeds per pod varied from 12 to 16. For the Mossoró region, the accession Amapá is considered be the best alternative for small farmers. This accession is earlier maturing, presents a high number of pods per plant and high yield. Other promising genotypes are BRS Potiguar and Casca-de-seda.

  20. Caracterização morfológica, produtividade e rendimento comercial de cultivares de alho Morphological characterization, commercial yield and productivity of garlic cultivars

    Directory of Open Access Journals (Sweden)

    Juliano Tadeu V de Resende

    2013-03-01

    bulbs of 20 garlic cultivars in Center-South Paraná state, Brazil. The experiment was carried out between March and September 2009, in Guarapuava, Paraná state. Experimental design was randomized blocks with three replications. The treatments consisted of twelve seminoble and eight noble garlic cultivars. We evaluated the total production (TP, commercial production (CP and commercial classification of bulbs; secondary bulb growth; and six characteristics related to the plant morphology: pseudostem diameter, length and leaf width, length, width and number of cloves. Noble group cultivars have presented TP superior to seminoble cultivars. However, there was no difference in relation to CP. Among cultivars of noble group, San Valentim presented greater CP bulbs, with 8,9 t ha-1. Noble group cultivars have presented higher percentual of bulbs in classes 6 and 7, especially the cultivars Chonan, with 40.3% of the bulbs in the class 7 and cultivar Ito, with 75% of the bulbs in classes 6 and 7. The opposite was observed in the seminoble group, since most bulbs of this group were found in classes 3, 4 and 5. Among the evaluated cultivars, San Valentin showed to be better adapted to the edafoclimatic conditions of the region, presenting a great yielding potential.

  1. Suprasubduction volcanic rocks of the Char ophiolite belt, East Kazakhstan: new geochemical and first geochronological data

    Science.gov (United States)

    Safonova, Inna; Simonov, Vladimir; Seltmann, Reimar; Yamamoto, Shinji; Xiao, Wenjiao

    2016-04-01

    -1530°C and 14-26 kbar and crystallized at 1150-1190°C (Simonov et al., 2010). All these features are indicative of a supra-subduction origin of rocks. The age of gabbro, dolerite, andesite and tonalite was determined by LA ICP MS U-Pb zircon dating performed in the University of Kyoto, Japan. The andesites and tonalites yielded Carboniferous ages of ca. 322-336 Ma and the gabbro and dolerite appeared Devonian (387-395 Ma). Thus, the Char volcanic rocks possess geochemical signatures of supra-subduction magmas and could be derived at high degree melting of relatively shallow mantle sources. The volcanic units probably formed at one or two island-arcs or at an intra-oceanic arc and continental margin arc during the Middle Devonian - Mississippian. Later, the island-arc units were probably accreted to the active margin of the Kazakhstan continent. The work was supported by RFBR Project no. 16-05-00313. Contribution to IGCP#592 of UNESCO-IUGS. Safonova, I.Yu., Simonov V.A., Kurganskaya E.V., Obut O.T., Romer R.L., Seltmann R., 2012. Late Paleozoic oceanic basalts hosted by the Char suture-shear zone, East Kazakhstan: geological position, geochemistry, petrogenesis and tectonic setting. Journal of Asian Earth Sciences 49, 20-39. Simonov V.A., Safonova I.Yu., Kovyazin S.V., 2010. Petrogenesis of island-arc complexes of the Char zone, East Kazakhstan. Petrology 18, 59-72.

  2. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  3. Gasification reactivity of biomass chars with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Lee, Sun Ki; Kang, Min Woong; Hwang, Jungho [Department of Mechanical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul (Korea, Republic of); Yu, Tae-U. [High Temperature Processing R and D Department of Korea Institute of Industrial Technology, 35-3, Hongchon-Ri, Ipchang-Myun, Seobuk-Gu, Chonan-Si (Korea, Republic of)

    2010-12-15

    In this study, carbon conversion was calculated from the data obtained with a real-time gas analyzer. In a lab-scale furnace, each biomass sample was pyrolyzed in a nitrogen environment and became biomass char. For preparation of the char, the furnace was electrically heated over 40 min up to the wall temperature of 850 C, and maintained at the same temperature over 17 min. The furnace was again heated over 3 min to a temperature higher than 850 C and then CO{sub 2} was injected. The biomass char was then gasified with CO{sub 2} under isothermal conditions. The reactivity of biomass char was investigated at various temperatures and CO{sub 2} concentrations. The VRM (volume reaction model), SCM (shrinking core model), and RPM (random pore model) were used to interpret the experimental data. For each model, the activation energy (E) and pre-exponential factor (A) of the biomass char-CO{sub 2} reaction were determined from gas-analysis data by using the Arrhenius equation. For the RPM, the apparent reaction order was determined. According to this study, it was found that the experimental data agreed better with the RPM than with the other two models. Through BET analyses, it was found that the structural parameter ({psi}) of the surface area for the RPM was obtained as 4.22. (author)

  4. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    Science.gov (United States)

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.

  5. Estimating thermodynamic properties of coal, char, tar and ash

    Energy Technology Data Exchange (ETDEWEB)

    Eisermann, W.; Johnson, P. Conger, W.L.

    1980-01-01

    Methods of predicting the specific heat, enthalpy, and entropy of coal, char, tar and ash as a function of temperature and material composition are presented. The standard entropy of coal is approximated by comparing the behaviour of the standard entropies of a number of aliphatic and aromatic hydrocarbons as a function of the variables H/(C + N), O/(C + N), N/(C + N), and S/(C + N), where the variables are the atomic fractions of the respective elements. The standard entropy of a bituminous coal was found to be about 20 kJ/kmol carbon K and of the char to be about 10 kJ/kmol carbon K. Estimates of the enthalpy difference between 273 K and temperatures above 273 K deviated from published data by about 8.49% for chars and 8.55% for coals on the average. Maximum deviations of 18.3% and 17.6% respectively were found.

  6. Mechanical Characterization of Bio-Char Made Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Amit pandey

    2016-08-01

    Full Text Available Material discoveries and development have always been the cause of the growth and development of a nation and the need of naturally made materials is the need of hours. Thus this paper takes you to the development of a hybrid composite made of sisal fiber with epoxy as the matrix intertwined with softwood bio-char. Softwood chip bio-char, produced by slow pyrolysis, has a porous structure improving its nutrient absorbing capacity, surface area and thus a potential substituent. Bio-char has an appreciable carbon sequestration value i.e. a carbon absorbing product. The orientation of sisal fiber are changed and studied in longitudinal and orthogonal direction indicating superiority of longitudinal fiber orientation .It also addresses the variation in mechanical characteristic (tensile flexural and impact with different constituent of the new composite and its position in material selection charts with a direction for further work.

  7. [Genetic divergence of mitochondrial DNA in white char Salvelinus albus and northern Dolly Varden char Salvelinus malma malma].

    Science.gov (United States)

    Oleĭnik, A G; Skurikhina, L A; Brykov, Vl A

    2010-03-01

    Comparative analysis of mitochondrial DNA variation was performed in white char Salvelinus albus and in its putative ancestor species, northern Dolly Varden char Salvelinus malma malma. Highly statistically significant differentiation of S. albus and S. m. malma in the areas of sympatric (Kamchatka River basin) and allopatric (Kronotskoe Lake and Kronotskaya River) residence was demonstrated. The mtDNA divergence between S. albus and S. m. malma did not exceed the range ofintraspecific variation in the populations of northern Dolly Varden char. At the same time, clusterization pattern of the Salvelinus chars provides hypothesis on the common origin of two allopatric populations of white char. Genealogical analysis of haplotypes indicates that S. albus and S. m. malma currently demonstrate incomplete radiation of mitochondrial lineages. The low nucleotide divergence estimates between S. albus and S. m. malma reflect the short time period since the beginning of the radiation of ancestral lineages. These estimates are determined by ancestral polymorphism and haplotype exchange between the diverged phylogenetic groups as a result of introgressive hybridization.

  8. Studying the specific features pertinent to combustion of chars obtained from coals having different degrees of metamorphism and biomass chars

    Science.gov (United States)

    Bestsennyi, I. V.; Shchudlo, T. S.; Dunaevskaya, N. I.; Topal, A. I.

    2013-12-01

    Better conditions for igniting low-reaction coal (anthracite) can be obtained, higher fuel burnout ratio can be achieved, and the problem of shortage of a certain grade of coal can be solved by firing coal mixtures and by combusting coal jointly with solid biomass in coal-fired boilers. Results from studying the synergetic effect that had been revealed previously during the combustion of coal mixtures in flames are presented. A similar effect was also obtained during joint combustion of coal and wood in a flame. The kinetics pertinent to combustion of char mixtures obtained from coals characterized by different degrees of metamorphism and the kinetics pertinent to combustion of wood chars were studied on the RSK-1D laboratory setup. It was found from the experiments that the combustion rate of char mixtures obtained from coals having close degrees of metamorphism is equal to the value determined as a weighted mean rate with respect to the content of carbon. The combustion rate of char mixtures obtained from coals having essentially different degrees of metamorphism is close to the combustion rate of more reactive coal initially in the process and to the combustion rate of less reactive coal at the end of the process. A dependence of the specific burnout rate of carbon contained in the char of two wood fractions on reciprocal temperature in the range 663—833 K is obtained. The combustion mode of an experimental sample is determined together with the reaction rate constant and activation energy.

  9. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....

  10. Heat Transfer in a Fixed Biomass Char Bed

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Glarborg, P.

    2002-01-01

    A thermal conductivity model based on the Yagi and Kunii model together with a bed model was developed to describe the thermal conductivity of a straw char bed. The bed model describes the relationship between the distance between particles and the external porosity. To verify the model, thermal...... conductivity experiments were performed on a wheat straw sample, which were cut in a shredder with two different sieves, 4 and 8 mm, and packed loosely in the thermal conductivity apparatus. The model, using external porosity and char diameter, compared reasonable well with experiments. The two straw samples...

  11. Clean, premium-quality chars: Demineralized and carbon enriched. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E. [Southern Illinois Univ., Carbondale, IL (United States)

    1993-09-01

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two differents techniques were used, in-situ Diffuse Reflectance FTIR measurements and BTU measurements. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis. Drying coal causes hydrogen bonds between water and coal to be broken. Liquids produced above 500{degrees}C are much higher in aromatic content, thus, effectively reducing the concentration of aliphatic groups in the overall liquid yield. BTU values of coals after methane treatment are higher than after helium treatment.

  12. [Genetic Connectivity Between Sympatric Populations of Closely Related Char Species, Dolly Varden Salvelinus malma and White Char Salvelinus albus].

    Science.gov (United States)

    Salmenkova, E A

    2016-01-01

    The closely related chars Salvelinus malma and Salvelinus albus, which sympatrically inhabit the Kamchatka River basin and Kronotsky Lake (Kamchatka), attract the attention of the researchers because of their debated origin and taxonomic status. Previous studies of sympatric populations of these chars revealed small but statistically significant genetic differences between these species at a number of molecular markers, suggesting the presence of the genetic exchange and hybridization. In this study, based on genotypic characterization of nine microsatellite loci, a considerable level of historical and contemporary genetic migration between sympatric populations of these chars was demonstrated. At the individual level a high degree of hybridization was observed, mainly among the Dolly Varden individuals from the studied populations. The obtained evidence on the genetic connectivity between sympatric S. malma and S. albus do not support the separate species status of S. albus.

  13. Study on the submicron and micron morphology and the properties of poor bituminous coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Pei-Fang Fu; Huai-Chun Zhou; Qing-Yan Fang; Hai Yao; Jianrong Qiu; Minghou Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2007-05-15

    Carbon burnout and its reaction mechanism have been widely focused on in the past decades. The properties of burnout, submicron and micron morphology and the reaction mechanism of poor bituminous coal/char (PBC) in a W-shaped power plant boiler was studied and was compared with those in DTF and in TGA, which showed that the degree of PBC burnout in TGA at 1450{sup o}C was greater than or approximately equal to that in a W-shaped boiler, and that the complexity of the reactions among residual char, oxygen and SiO{sub 2} did not seem to result in mass loss in TGA, although the weight percentage of the residual char in ash decreased from 33% ad (air dry basis) at 900{sup o}C to 9% and at 1450{sup o}C. According to the distribution of pores and the properties of the char burnout, the char can be simply categorized into three classes: char burnout easy, char burnout difficult and char burnout very difficult. The differences of the reaction mechanism must be considered while predicting the burning rate and degree of char burnout in a full-scale boiler by making use of experimental results from TGA and DTF. A different char particle contains markedly different amount of carbons, but for a special char particle, the ratio of carbon to ash is generally constant, and an ash shell does not exist on the char surface. The fusion mineral matter composing of C-O-Si-Al is amorphous, not in the form of Al{sub 2}O{sub 3} and SiO{sub 2} above 1450{sup o}C.

  14. Experimental comparison of biomass chars with other catalysts for tar reduction

    NARCIS (Netherlands)

    Abu El-Rub, Z.; Bramer, E.A.; Brem, G.

    2008-01-01

    In this paper the potential of using biomass char as a catalyst for tar reduction is discussed. Biomass char is compared with other known catalysts used for tar conversion. Model tar compounds, phenol and naphthalene, were used to test char and other catalysts. Tests were carried out in a fixed bed

  15. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  16. Bone char quality and defluoridation capacity in contact precipitation

    DEFF Research Database (Denmark)

    Albertus, J.; Bregnhøj, Henrik; Kongpun, M.

    2002-01-01

    Samples from six different brands of bone char are tested for their capacity to remove fluoride from water in batch. Initial concentrations of 10 mg/L and contact times of 6 hours are used. The removal capacities observed are 0.6-1.1 mg/g on an average, s.d. being 0.16. Addition of calcium and ph...

  17. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process.

    Directory of Open Access Journals (Sweden)

    Mariano Ucchesu

    Full Text Available The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC, allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.

  18. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process

    Science.gov (United States)

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  19. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    Science.gov (United States)

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h.

  20. Evaluation of wheat growth, morphological characteristics, biomass yield and quality in Lunar Palace-1, plant factory, green house and field systems

    Science.gov (United States)

    Dong, Chen; Shao, Lingzhi; Fu, Yuming; Wang, Minjuan; Xie, Beizhen; Yu, Juan; Liu, Hong

    2015-06-01

    Wheat (Triticum aestivum L.) is one of the most important agricultural crops in both space such as Bioregenerative Life Support Systems (BLSS) and urban agriculture fields, and its cultivation is affected by several environmental factors. The objective of this study was to investigate the influences of different environmental conditions (BLSS, plant factory, green house and field) on the wheat growth, thousand kernel weight (TKW), harvest index (HI), biomass yield and quality during their life cycle. The results showed that plant height partially influenced by the interaction effects with environment, and this influence decreased gradually with the plant development. It was found that there was no significant difference between the BLSS and plant factory treatments on yields per square, but the yield of green house and field treatments were both lower. TKW and HI in BLSS and plant factory were larger than those in the green house and field. However, grain protein concentration can be inversely correlated with grain yield. Grain protein concentrations decreased under elevate CO2 condition and the magnitude of the reductions depended on the prevailing environmental condition. Conditional interaction effects with environment also influenced the components of straw during the mature stage. It indicated that CO2 enriched environment to some extent was better for inedible biomass degradation and had a significant effect on "source-sink flow" at grain filling stage, which was more beneficial to recycle substances in the processes of the environment regeneration.

  1. Structure Based Predictive Model for Coal Char Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Robert Essenhigh; Christopher Hadad

    2000-12-30

    This unique collaborative project has taken a very fundamental look at the origin of structure, and combustion reactivity of coal chars. It was a combined experimental and theoretical effort involving three universities and collaborators from universities outside the U.S. and from U.S. National Laboratories and contract research companies. The project goal was to improve our understanding of char structure and behavior by examining the fundamental chemistry of its polyaromatic building blocks. The project team investigated the elementary oxidative attack on polyaromatic systems, and coupled with a study of the assembly processes that convert these polyaromatic clusters to mature carbon materials (or chars). We believe that the work done in this project has defined a powerful new science-based approach to the understanding of char behavior. The work on aromatic oxidation pathways made extensive use of computational chemistry, and was led by Professor Christopher Hadad in the Department of Chemistry at Ohio State University. Laboratory experiments on char structure, properties, and combustion reactivity were carried out at both OSU and Brown, led by Principle Investigators Joseph Calo, Robert Essenhigh, and Robert Hurt. Modeling activities were divided into two parts: first unique models of crystal structure development were formulated by the team at Brown (PI'S Hurt and Calo) with input from Boston University and significant collaboration with Dr. Alan Kerstein at Sandia and with Dr. Zhong-Ying chen at SAIC. Secondly, new combustion models were developed and tested, led by Professor Essenhigh at OSU, Dieter Foertsch (a collaborator at the University of Stuttgart), and Professor Hurt at Brown. One product of this work is the CBK8 model of carbon burnout, which has already found practical use in CFD codes and in other numerical models of pulverized fuel combustion processes, such as EPRI's NOxLOI Predictor. The remainder of the report consists of detailed

  2. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.

    Science.gov (United States)

    Hu, Qiang; Yang, Haiping; Yao, Dingding; Zhu, Danchen; Wang, Xianhua; Shao, Jingai; Chen, Hanping

    2016-01-01

    The densification of bio-chars pyrolyzed at different temperatures were investigated to elucidate the effect of temperature on the properties of bio-char pellets and determine the bonding mechanism of pellets. Optimized process conditions were obtained with 128MPa compressive pressure and 35% water addition content. Results showed that both the volume density and compressive strength of bio-char pellets initially decreased and subsequently increased, while the energy consumption increased first and then decreased, with the increase of pyrolysis temperature. The moisture adsorption of bio-char pellets was noticeably lower than raw woody shavings but had elevated than the corresponding char particles. Hydrophilic functional groups, particle size and binder were the main factors that contributed to the cementation of bio-char particles at different temperatures. The result indicated that pyrolysis of woody shavings at 550-650°C and followed by densification was suitable to form bio-char pellets for application as renewable biofuels.

  3. A study on the char burnout characteristics of coal and biomass blends

    Energy Technology Data Exchange (ETDEWEB)

    Behdad Moghtaderi [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, School of Engineering, Faculty of Engineering and Built Environment

    2007-10-15

    The char burnout characteristics of coal/biomass blends under conditions pertinent to pulverised fuel combustors were investigated by a combined modelling and experimental approach. Results indicate that blending of coal with biomass increases the likelihood of char extinction (i.e. extinction potential of the char particle in the blend), in turn, decreasing the char burnout level. Our modelling results attribute this to a reduction in the char particle size to levels below a critical dimension which appears to be a strong function of the fuel blending ratio (the weight percentage of biomass in the blend), fuel reactivity, char cloud shape and particle density number. It is demonstrated here that the drop in the char burnout level during co-firing can be effectively resolved when a more reactive secondary coal is added to the blend to minimise its extinction potential. 22 refs., 8 figs., 2 tabs.

  4. Combustion Characteristics of Lignite Char in a Laboratory-scale Pressurized Fluidized Bed Combustor

    Science.gov (United States)

    Murakami, Takahiro; Suzuki, Yoshizo

    In a dual fluidized bed gasifier, the residual char after steam gasification is burnt in riser. The objectives of this work are to clarify the effect of parameters (temperature, pressure, and particle size of lignite char) of char combustion using a laboratory-scale pressurized fluidized bed combustor (PFBC). As a result, the burnout time of lignite char can be improved with increasing operating pressure, and temperature. In addition, the decrease in the particle size of char enhanced the effect on burnout time. The initial combustion rate of the char can be increased with increasing operating pressure. The effect was decreased with increasing operating temperature. However, the effect of operating pressure was slightly changed in small particle size, such as 0.5-1.0 mm. It takes about 20 sec to burn 50% of char in the operating pressure of 0.5 MPa and the particle size of 0.5-1.0 mm.

  5. Life Cycle Assessment of Biochar - EuroChar Project

    Science.gov (United States)

    Rack, M.; Woods, J.

    2012-04-01

    One of the most significant challenges faced by modern-day society is that of global warming. An exclusive focus on reducing the greenhouse gas (GHG) emissions will not suffice and therefore technologies capable of removing CO2 directly from the atmosphere at low or minimal cost are gaining increased attention. The production and use of biochar is an example of such an emerging mitigation strategy. However, as with any novel product, process and technology it is vital to conduct an assessment of the entire life cycle in order to determine the environmental impacts of the new concept in addition to analysing the other sustainability criteria. Life Cycle Assessment (LCA), standardized by ISO (2006a), is an example of a tool used to calculate the environmental impacts of a product or process. Imperial College London will follow the guidelines and recommendations of the ISO 14040 series (ISO 2002, ISO 2006a-b) and the International Life Cycle Data System (ILCD) Handbook (EC JRC IES, 2010a-e), and will use the SimaPro software to conduct a LCA of the biochar supply chains for the EuroChar project. EuroChar ('biochar for Carbon sequestration and large-scale removal of GHG from the atmosphere') is a project funded by the European Commission under its Seventh Framework Programme (FP7). EuroChar aims to investigate and reduce uncertainties around the impacts of, and opportunities for, biochar and, in particular, explore a possible introduction into modern agricultural systems in Europe, thereby moving closer to the determination of the true potential of biochar. EuroChar will use various feedstocks, ranging from wheat straw to olive residues and poplar, as feedstocks for biochar production and will focus on two conversion technologies, Hydrothermal Carbonization (HTC) and Thermochemical Carbonization (TC), followed by the application of the biochar in crop-growth field trials in England, France and Italy. In April 2012, the EuroChar project will be at its halfway mark and

  6. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata.

    Science.gov (United States)

    Wei, Likun; Huang, Xuxiong

    2017-01-01

    Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS) on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation) on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole) and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance.

  7. Thermogravimetric characteristics of char obtained at high heat rate

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2010-05-01

    700°C, 800°C and 900°C to obtain their combustion profiles. Characteristic temperatures (ignition, peak and final tempe- ratures were determined by non-isothermal thermogravimetry; it was found that chars from La Yolanda coal gave the highest figures for the characteristic temperatures. Isothermal thermogravimetry revealed that the combustion rate for the three coals decreased with increased devolatilisation time and combustion temperature.

  8. Efficacy of Locust Beans Husk Char in Heavy Metal Sequestration

    OpenAIRE

    Ademola Ayodeji Ajayi-Banji; Temitayo Ewemoje; Adeniyi Ajimo

    2016-01-01

    Most solid waste management schemes minimally consider low concentration biodegradable agricultural waste management, though the environmental impact of this waste category is significant over a time frame. The column-mode study seeks to address the issue by suggesting potential utilisation of post-harvest waste for heavy metal sequestering. Locust beans husk char of 100 and 200 g was employed to inspect removal efficiency, isotherm and kinetic models of some heavy metals at 30, 60, 90, 120 a...

  9. Phosphorus Availability in Soils Amended with Wheat Residue Char

    OpenAIRE

    Parvage, Md. Masud; Ulén, Barbro; Eriksson, Jan; Strock, Jeffery; Kirchmann, Holger

    2013-01-01

    Plant availability and risk for leaching and/or runoff losses of phosphorus (P) from soils depends among others on P concentration in the soil solution. Water soluble P in soil measures soil solution P concentration. The aim of this study was to understand the effect of wheat residue char (biochar) addition on water soluble P concentration in a wide range of biochar amended soils. Eleven agricultural fields representing dominant soil texture classes of Swedish agricultural lands were chosen. ...

  10. Investigation of growth responses in saprophytic fungi to charred biomass

    OpenAIRE

    Ascough, P.L.; Sturrock, C. J.; Bird, M. I.

    2010-01-01

    We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry (13C and 15N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same speci...

  11. BONE CHAR BASED BUCKET DEFLUORIDATOR IN TANZANIAN HOUSEHOLDS

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A household defluoridator, made of a 20 L plastic bucket and 10 kg of bone char, is tested and found efficient to remove fluoride at a capacity of 1.1 mg/g. On an average, the defluoridator reduced the original contents of 8.5 mgF/L to 0.37 mgF/L, i.e. 95.6 %, for a period of 2 months, where 32.5...

  12. Estimating thermodynamic properties of coal, char, tar and ash

    Energy Technology Data Exchange (ETDEWEB)

    Eisermann, W.; Johnson, P.; Conger, W.L.

    1980-01-01

    Methods for predicting the specific heat, enthalpy, and entropy of coal, char, tar and ash as a function of temperature and material composition are presented. The standard entropy of coal is approximated by comparing the behavior of the standard entropies of a number of aliphatic and aromatic hydrocarbons as a function of the variables H/(C + N), O/(C + N), N/(C + N), and S/(C + N), where the variables are the atomic fractions of the respective elements. The standard entropy of a bituminous coal was found to be about 20 kJ/kmol carbon K and of the char to be about 10 kJ/kmol carbon K. Estimates of the enthalpy difference between 273 K and temperatures above 273 K deviated from published data by about 8.49% for chars and 8.55% for coals on the average. Maximum deviations of 18.3% and 17.6% respectively were found. 10 figures, 4 tables.

  13. Structure-Based Predictive model for Coal Char Combustion.

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.; Colo, J [Brown Univ., Providence, RI (United States). Div. of Engineering; Essenhigh, R.; Hadad, C [Ohio State Univ., Columbus, OH (United States). Dept. of Chemistry; Stanley, E. [Boston Univ., MA (United States). Dept. of Physics

    1997-09-24

    During the third quarter of this project, progress was made on both major technical tasks. Progress was made in the chemistry department at OSU on the calculation of thermodynamic properties for a number of model organic compounds. Modelling work was carried out at Brown to adapt a thermodynamic model of carbonaceous mesophase formation, originally applied to pitch carbonization, to the prediction of coke texture in coal combustion. This latter work makes use of the FG-DVC model of coal pyrolysis developed by Advanced Fuel Research to specify the pool of aromatic clusters that participate in the order/disorder transition. This modelling approach shows promise for the mechanistic prediction of the rank dependence of char structure and will therefore be pursued further. Crystalline ordering phenomena were also observed in a model char prepared from phenol-formaldehyde carbonized at 900{degrees}C and 1300{degrees}C using high-resolution TEM fringe imaging. Dramatic changes occur in the structure between 900 and 1300{degrees}C, making this char a suitable candidate for upcoming in situ work on the hot stage TEM. Work also proceeded on molecular dynamics simulations at Boston University and on equipment modification and testing for the combustion experiments with widely varying flame types at Ohio State.

  14. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  15. The effect of char structure on burnout during pulverized coal combustion at pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  16. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS.

  17. Adding the combination of CNTs and MoS{sub 2} into halogen-free flame retarding TPEE with enhanced the anti-dripping behavior and char forming properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yuhua; Li, Maolin; Zhang, Luchong; Zhang, Xuewei; Zhu, Songwei; Wu, Wei, E-mail: wuwei@ecust.edu.cn

    2015-08-10

    Highlights: • Introduction the combination of the CNTs and MoS{sub 2} into P–N flame retarding TPEE. • Binary synergists for P–N flame retardants in TPEE. • Increase of char yield and form the stable carbonaceous char. - Abstract: In this paper, the nanocomposites thermoplastic polyester-ether elastomer (TPEE) with phosphorus–nitrogen (P–N) flame retardants, carbon nanotubes (CNTs) and molybdenum disulfide (MoS{sub 2}) was prepared by melt blending. TPEE containing P–N flame retardant, CNTs and MoS{sub 2} achieved UL94 V-0 rating due to the better barrier effect of the special structure. The structure was supported by the result of rheological properties. The thermal stability was studied by thermal gravimetric analysis (TGA) and char residue characterization was investigated by SEM–EDX measurements. The results demonstrated that the combination of CNTs and MoS{sub 2} results in the increase of char yield and the formation of the thermally stable char which can effectively prevent in the dripping behavior during the burning process.

  18. Effect of sewage sledge and their bio-char on some soil qualities in Second year cropping

    Science.gov (United States)

    fathi dokht, hamed; Movahedi Naeini, Seyed Alireza; Dordipor, Esmaeil; mirzanejad, moujan

    2016-04-01

    Bio char (BC) application as a soil amendment has achieved much interest and has been found that considerably improves soil nutrient status and crop yields on poor soils. However, information on the effect of BC on illitic soils in temperate climates is still insufficient. The primary objective in this study was to assess the influence of sewage sledge and their bio-char on the soil physical properties, nutrient status and plant production in Second year cropping. The result may also provide a reference for the use of biochars as a solution in agricultural waste management when sludge with considerable load of pathogens are involved. Soybean was already grown one year and will be repeated one more year with same treatments. The investigated soil properties included soil water content and mechanical resistance, pH, electrical conductivity (EC), calcium- acetate-lactate (CAL)-extractable P (PCAL) and K (KCAL), C, N, and nitrogen-supplying potential (NSP). The results show soil water content, potassium uptake and plant yield were increased. Heating sludge removed all pathogens and soybean yield was increased by 7%.

  19. Mixed Compound of DCPTA and CCC Increases Maize Yield by Improving Plant Morphology and Up-Regulating Photosynthetic Capacity and Antioxidants.

    Directory of Open Access Journals (Sweden)

    Yongchao Wang

    Full Text Available DCPTA (2-diethylaminoethyl-3, 4-dichlorophenylether and CCC (2-chloroethyltrimethyl- ammonium chloride have a great effect on maize growth, but applying DCPTA individually can promote the increase of plant height, resulting in the rise of lodging percent. Plant height and lodging percent decrease in CCC-treated plants, but the accumulation of biomass reduce, resulting in yield decrease. Based on the former experiments, the performance of a mixture which contained 40 mg DCPTA and 20 mg CCC as active ingredients per liter of solution, called PCH was tested with applying 40mg/L DCPTA and 20mg/L CCC individually. Grain yield, yield components, internode characters, leaf area per plant, plant height and lodging percent as well as chlorophyll content, chlorophyll fluorescence, enzymatic antioxidants, membranous peroxide and organic osmolyte were analyzed in two years (2011 and 2012, using maize hybrid, Zhengdan 958 (ZD 958 at density of 6.75 plants m-2. CCC, DCPTA and PCH were sprayed on the whole plant leaves at 7 expanded leaves stage and water was used as control. Compared to control, PCH significantly increased grain yield (by 9.53% and 6.68% from 2011 to 2012. CCC significantly decreased kernel number per ear (by 6.78% and 5.69% and thousand kernel weight (TKW (by 8.57% and 6.55% from 2011 to 2012. Kernel number per ear and TKW increased in DCPTA-treated and PCH-treated plants, but showed no significant difference between them. In CCC-treated and PCH-treated plants, internode length and plant height decreased, internode diameter increased, resulting in the significant decline of lodging percent. With DCPTA application, internode diameter increased, but internode length and plant height increased at the same time, resulting in the augment of lodging percent. Bending strength and puncture strength were increased by applying different plant growth regulators (PGRs. In PCH-treated plants, bending strength and puncture strength were greater than other

  20. Effects of heat treatment conditions on reactivity of chars in air

    Energy Technology Data Exchange (ETDEWEB)

    Ashu, J. T.; Walker, Jr., P. L.

    1977-09-01

    Reactivities of chars are maximized by keeping heat treatment temperatures as low as possible, minimizing soak time at maximum HTT and maximizing heating rates. It is feasible to use reactivity parameters as a tool for the study of thermal history of carbonaceous materials. Maximum HTT as well as the heating rate used for char preparation seem to be more important parameters in influencing char reactivity than the atmosphere used during preparation. Aging of chars in air following heat treatment at 800/sup 0/C has little or no effect on subsequent char reactivity. The most significant conclusion of this investigation is that rapid heating results in significant increase in char reactivity to air. Surface areas of rapidly heated samples are significantly higher than those prepared at the same temperature using slower heating rates.

  1. Níveis de adubação nitrogenada nas características morfológicas e produtividade do jiló Levels of nitrogen fertilizer, morphologic characteristics of fruits and yield of jiló

    Directory of Open Access Journals (Sweden)

    José Luiz R. Torres

    2003-06-01

    Full Text Available O experimento foi conduzido na UFRRJ, de julho a dezembro de 1993. Avaliaram-se os efeitos de diferentes níveis de nitrogênio (0; 24; 48; 72 e 96 kg.ha-1 de N em algumas características morfológicas do fruto e na produtividade da cultura do jiló, cultivar Tinguá. As colheitas tiveram início a partir dos 105 dias após o plantio. Foram observados o diâmetro, comprimento, peso médio e produção total dos frutos nas colheitas realizadas num intervalo de dez dias, totalizando nove colheitas. Observou-se que o jiló responde positivamente à adubação nitrogenada aumentando sua produtividade em até 35,7%, quando comparado à testemunha, apesar de não ter ocorrido diferença estatística entre as doses testadas. As características morfológicas avaliadas não foram influenciadas pelo nível de N.The experiment was conducted at the Rural Federal University of Rio de Janeiro, Brazil, fron July to December, 1993. The effects of different levels of nitrogen (0; 24; 48; 72 and 96 kg.ha-1 of N was evaluated over some morphological characteristics of the fruit and over yield of the jiló, cultivar Tinguá. Harvest began 105 days after sowing date, in 10-day intervals. The diameter, length, medium weight and total yield of fruits were evaluated. The jiló plant responds positively to the nitrogen fertilizer application, increasing the yield up to 35,7%, in relation to the control plot, in spite of non statistical differences among nitrogen levels; the morphologic characteristics suffered no influence from N levels.

  2. [Variability of nucleotide sequences of the mitochondrial DNA cytochrome c gene in dolly varden and taranetz char].

    Science.gov (United States)

    Radchenko, O A; Derenko, M V; Maliarchuk, B A

    2000-07-01

    Nucleotide sequence of the 307-bp fragment of the mitochondrial DNA cytochrome b gene was determined in representatives of the three species of the Salvelinus genus, specifically, dolly varden char (S. malma), taranetz char (S. taranetzi), and white-spotted char (S. leucomaenis). These results pointed to a high level of mitochondrial DNA (mtDNA) divergence between white-spotted char and dolly varden char, on the one hand, and taranetz char, on the other (the mean d value was 5.45%). However, the divergence between the dolly varden char and taranetz char was only 0.81%, which is comparable with the level of intraspecific divergence in the dolly varden char (d = 0.87%). It was shown that the dolly varden char mitochondrial gene pool contained DNA lineages differing from the main mtDNA pool at least in the taranetz char-specific mitochondrial lineages. One of these dolly varden char mtDNA lineages was characterized by the presence of the restriction endonuclease MspI-D variant of the cytochrome b gene. This lineage was widely distributed in the Chukotka populations but it was not detected in the Yana River (Okhotsk sea) populations. These findings suggest that dolly varden char has a more ancient evolutionary lineage, diverging from the common ancestor earlier than did taranetz char.

  3. Supercritical water gasification of Eucalyptus grandis and related pyrolysis char: Effect of feedstock composition.

    Science.gov (United States)

    Louw, Jeanne; Schwarz, Cara E; Burger, Andries J

    2016-09-01

    Eucalyptus grandis (E. grandis) wood and char products derived from pyrolysis of E. grandis wood, were gasified in supercritical water at 450°C - with and without the use of a homogeneous (K2CO3) and heterogeneous (Ni/Al2O3-SiO2) catalyst. Gas yields and gasification efficiencies were measured experimentally and compared to calculated thermodynamic equilibrium values, specifically considering the effects of the O/C ratio and volatile matter content of the feed material. Thermodynamically, feed material with lower O/C ratios (0.22) typically resulted in higher CH4 yields (30mol/kgfeed,dry) and gasification efficiencies (188%). However, experimentally, feed material with lower O/C ratios and lower volatile matter resulted in the lowest CH4 yields and gasification efficiencies. Furthermore, a linear relationship between the carbon efficiency (CE) and both the volatile matter content and O/C ratio of the feed material was found to hold true in both catalytic and non-catalytic experiments.

  4. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  5. [Configuration of pyrolytic chars from waste tires in fluidized bed reactor].

    Science.gov (United States)

    Jin, Yu-qi; Yan, Jian-hua; Gu, Jie-yuan; Cen, Ke-fa

    2004-11-01

    With the fluidized bed as main reactor, the configuration of chars of waste tire was investigated. The change of specific surface area, porosity and specific pore volume of chars received at various temperature, diameter of bed materials and superficial fluidization number was mainly researched. The specific surface area and porosity of chars had the peak value at 650 degrees C or 750 degrees C, which showed there exists the best pyrolysis temperature from the angle of char quality and it will decrease with smaller diameter of bed materials, 0.135-0.304mm. The porosity of chars decreases with the fluidization number increasing. The change tendency of the specific surface area of chars with the fluidization number is correlated with the pyrolysis temperature. At 550 degrees C the specific surface area of chars decreases with the fluidization number increasing, while at 650 degrees C the other way round. The change tendency of the specific pore volume of chars with the temperature is correlated with the diameter of bed materials. With larger bed materials (0.304-0.4mm), the specific pore volume of chars rises at fisrt, then decreases with the temperature increasing, and with smaller bed materials, it decreases with the temperature increasing.

  6. The thermal history of char as disclosed by carbon isotope ratios

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ambus, Per; Ahrenfeldt, Jesper

    In laboratory experiments, biomass char was produced under controlled conditions using wood chips from French pinewood. Different char qualities were obtained by pyrolysing the biomass at similar heating rates with end-temperatures ranging from 250 to 1000 o C. The char was analysed by flash...... pyrolysis and isotope ratio mass spectrometry. The results demonstrate that the temperature history of the char is reflected in the fine variation of carbon isotopes. The compound classes responsible for the variation were identified. Key words: Isotope ratio, flash pyrolysis, hot gas cleaning...

  7. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.

    Science.gov (United States)

    Ismadji, S; Sudaryanto, Y; Hartono, S B; Setiawan, L E K; Ayucitra, A

    2005-08-01

    The preparation of activated carbon from vacuum pyrolysis char of teak sawdust was studied and the results are presented in this paper. The effects of process variables such as temperature and activation time on the pore structure of activated carbons were studied. The activated carbon prepared from char obtained by vacuum pyrolysis has higher surface area and pore volume than that from atmospheric pyrolysis char. The BET surface area and pore volume of activated carbon prepared from vacuum pyrolysis char were 1150 m2/g and 0.43 cm3/g, respectively.

  8. Research on the evolvement of morphology of coking coal during the coking process.

    Science.gov (United States)

    Zhong, Xiangyun; Wu, Shiyong; Liu, Yang; Zhao, Zhenning; Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Xi, Bai

    2013-12-01

    The evolvement of morphology and structure of the coal with different metamorphic degrees during coking process in the vertical furnace was investigated by infrared Image detector. Moreover, the temperature distribution in the radial direction and the crack formation were also studied in heating process. The results show that the amount of crack and the shrinkage level of char decrease with the coal rank rising. In addition, the initial temperature of crack formation for char increases with the coal rank rising.

  9. Corn stalks char from fast pyrolysis as precursor material for preparation of activated carbon in fluidized bed reactor.

    Science.gov (United States)

    Wang, Zhiqi; Wu, Jingli; He, Tao; Wu, Jinhu

    2014-09-01

    Corn stalks char from fast pyrolysis was activated by physical and chemical activation process in a fluidized bed reactor. The structure and morphology of the carbons were characterized by N2 adsorption and SEM. Effects of activation time and activation agents on the structure of activation carbon were investigated. The physically activated carbons with CO2 have BET specific surface area up to 880 m(2)/g, and exhibit microporous structure. The chemically activated carbons with H3PO4 have BET specific surface area up to 600 m(2)/g, and exhibit mesoporous structure. The surface morphology shows that physically activated carbons exhibit fibrous like structure in nature with long ridges, resembling parallel lines. Whereas chemically activated carbons have cross-interconnected smooth open pores without the fibrous like structure.

  10. One kind of technology on producing char without pollution

    Energy Technology Data Exchange (ETDEWEB)

    Yin Chengxu [Kunming Inst. of Coal Science (China). Dept. of Coal Chemical Engineering

    1997-12-31

    This paper introduces one kind of technology on continually producing char without pollution. The capacity of each furnace is treating 5000 tons of brown coal annually. The production has been kept running for one year. Its products are high quality reducing agent for the iron alloy, calcium carbide and yellow phosphorus etc. This technology has the advantages of less investment, easy to manage, low energy consumption and environmental-friendly. The abundant heat could be utilized to produce steam for thermal supply and power generation. (orig.)

  11. Effects of Slow-Released Fertilizer on Morphological Indexes, Yield and Economic Benefit of Yam Tubers%缓释肥对山药块茎形态指标、产量和经济效益的影响

    Institute of Scientific and Technical Information of China (English)

    许念芳; 兰成云; 焦健; 舒锐; 付在秋; 刘少军

    2014-01-01

    The effects of slow-released fertilizer on morphological indexes , yield and economic benefit of yam tubers were studied using Japanese yam as test material .With the treatment without fertilizer as con-trol, two treatments were set as slow -released fertilizer and fast -released fertilizer with the same nutrient content .The results showed that there were significant differences between fast -released fertilizer and slow -released fertilizer in morphological indexes and yield of yam tubers .The slow -released fertilizer treatment could significantly increase the tuber length , tuber diameter , rate of marketable tuber and yield;the effect was the best when using 200 kg of slow -released fertilizer per 666.7m2; the yield increased by 44.95% and 25.80%compared with the control and fast -release fertilizer;the net income was 16 604.81yuan per 666.7m2 , which was 87 .82%higher than that of control and 57 .39%higher than that of fast -released fertilizer .%以大和长芋为试材,分别设两组等养分含量的缓释肥与速效肥处理,以不施化肥为对照,研究缓释肥对山药块茎形态指标、产量和经济效益的影响。结果表明:等养分含量的缓释肥与速效肥处理对山药块茎形态指标和产量的影响存在显著差异,缓释肥处理比速效肥处理能显著增加山药块茎长、块茎粗、商品薯率和产量,其中以每666.7m2施用缓释肥200 kg的处理效果最好,产量比对照增加44.95%,比等养分的速效肥处理高25.80%;纯收益为16604.81元,比对照高87.82%,比等养分含量速效肥处理高57.39%。

  12. Effects of pyrolysis pressure on the properties and gasification reactivities of biomass chars%热解压力对生物质焦结构及气化反应性能的影响

    Institute of Scientific and Technical Information of China (English)

    丁亮; 张永奇; 黄戒介; 王志青; 房倚天

    2014-01-01

    Biomass chars were prepaer d under different pyrolysis pressurse in a pressurized fixed bed reactor. The evolution of chemical composition and physical structure of the biomass chars with the change of pyrolysis pressure were observed by BET, XRD, CHNS elemental analyzer and ICP-AES.The reactivit se of biomass c hars were evaluated by a thermgo ravimetric analyzer.The results show tah t the yields of biomsa s chars increase w ith ni creasing pyrlo ysis pressure, but reach a plateau above 1.0 MPa.With increasing pyrolysis pres ure C content in biomass chars icn reases, whiel H content and BET surface aread ecrease.The degree of graphitization of corn stalk char and sawdust char increases with increasing pyrolysis pressure, while thta of rice huks char shows almost no dependence on pyrolysis pressure.The average gasification rates of corn stalk char and sawdust char all decrease with increasing pyrolysis pressure, while pyrolysis pressure has little influence on the gasification rate of rice husk char.Compared the evolution of BETs urface area and carbon crystallti e structure of biomass chars with biomass char gasification rate, it shows that the difference of carbon crystallite structure of biomass chars, which was brought out by the change of pyrolysis pressure, mainly contributes to the difference of gasification rate of biomass chars prepared under different pyrolysis pressures.%利用加压固定床反应器、吸附仪、X射线衍射仪、元素分析仪、电感耦合等离子原子发射光谱仪等考察了热解压力对生物质半焦(以下简称半焦)产率、物化结构、元素组成的影响规律。同时,利用热天平对不同热解压力下所制半焦的气化行为进行了考察。结果表明,随热解压力升高,半焦产率增大,当压力升至1.0 MPa后,半焦产率基本不变;半焦中C元素含量随热解压力的升高而增加,而H元素含量和BET比表面积则减小;此外,随热解压力升高,

  13. Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.

    Science.gov (United States)

    Ahiduzzaman, Md; Sadrul Islam, A K M

    2016-01-01

    Preparation porous bio-char and activated carbon from rice husk char study has been conducted in this study. Rice husk char contains high amount silica that retards the porousness of bio-char. Porousness of rice husk char could be enhanced by removing the silica from char and applying heat at high temperature. Furthermore, the char is activated by using chemical activation under high temperature. In this study no inert media is used. The study is conducted at low oxygen environment by applying biomass for consuming oxygen inside reactor and double crucible method (one crucible inside another) is applied to prevent intrusion of oxygen into the char. The study results shows that porous carbon is prepared successfully without using any inert media. The adsorption capacity of material increased due to removal of silica and due to the activation with zinc chloride compared to using raw rice husk char. The surface area of porous carbon and activated carbon are found to be 28, 331 and 645 m(2) g(-1) for raw rice husk char, silica removed rice husk char and zinc chloride activated rice husk char, respectively. It is concluded from this study that porous bio-char and activated carbon could be prepared in normal environmental conditions instead of inert media. This study shows a method and possibility of activated carbon from agro-waste, and it could be scaled up for commercial production.

  14. 生物质新生半焦与冷态半焦CO2气化活性差异分析%Comparative Investigation of the CO2 Gasification Characteristics of Biomass In-situ Char and Ex-situ Char

    Institute of Scientific and Technical Information of China (English)

    易秋明; 刘华财; 阴秀丽; 吴创之

    2015-01-01

    以稻秆和松木为原料,采用恒温热重法对生物质新生半焦与冷态半焦的 CO2气化特性进行了对比研究。通过酸洗脱灰和对脱灰原料添加金属催化剂,分别从半焦结构和催化剂的角度探讨两种半焦气化反应性差异的成因,并采用混合模型进行了动力学分析。结果表明:新生半焦气化反应性明显大于冷态半焦。在冷却再升温过程中,半焦残留的有机官能团发生了进一步的断裂和重组,析出挥发分并生成更稳定的芳香结构;另一方面,半焦中金属催化剂晶型发生变化,金属元素与碳基质形成了更稳定的联接,使其催化活性减弱。新生半焦与冷态半焦气化反应活化能相差不大,但指前因子相差较大,这与两种半焦表面气化活性位点的数目有关。%The CO2 gasification characteristics of in-situ char and ex-situ char of biomass were comparatively investigated by using rice straw and pine as samples. Effects of char structure and metal catalyst on difference of the char gasification reactivity were explored by acid-washing and catalyst loading, respectively. Kinetic analysis was conducted with a hybrid model. The results show that, gasification reactivity of in-situ char is significantly higher than that of ex-situ char. During the process of cooling and reheating, the organic functional groups in char undergo further breakage and recombination, leading to volatilization and more stable aromatic structures. Besides, the morphology of metal catalyst is changed and more stable linkage may be formed between metal and char matrix, which deactivate the catalyst. Activation energy of the in-situ char and the ex-situ char are slightly different from each other, while the pre-exponential factors differ widely, which can be attributed to the numbers of active spot on char surface.

  15. Influence of modified biomass char on releases characteristics of volatiles during pyrolysis of cotton stalk%改性生物质炭对棉秆热解挥发分析出特性的影响

    Institute of Scientific and Technical Information of China (English)

    刘慧慧; 邹俊; 邓勇; 杨海平; 王贤华; 陈汉平

    2016-01-01

    The biomass char has an important influence on the release of volatile during the fast pyrolysis processes due to its complex structure features and the presence of inorganic minerals. Furthermore, as inherent catalysts, the large content of salts in biomass promotes the char to react with volatile. Thus this study aims to investigate the influence of char and inorganic salts on the volatile-char interactions. Experiments were conducted on a two-stage system with the same temperature of 500℃. Char pretreatments i.e. acid washing and salts (NaCl, KCl, MgCl2 and FeCl3) impregnating were introduced. Volatile derived from cotton stalk pyrolysis got reaction under the presence of fresh char with different mass. The condensed bio-oil obtained from the pyrolysis with and without the catalysts (cotton stalk char) was characterized by the GC-MS (gas chromatograph - mass spectrometer) analyses. The non-condensed pyrolysis gas via the filter and drier was characterized by the GC. The results indicated that: with the increasing of the mass of cotton stalk char, its ability of promoting the secondary cracking of pyrolysis volatile became stronger. As a result, the liquid bio-oil yield decreased from 56.70% to 51.32%, while the yield of small molecular gases continued to increase from 17.88% to 22.13%. When the dosage of the cotton stalk char was 2.0 g, the highest gas yield of 22.1% was obtained. When the cotton stalk char was added in the pyrolysis, the acids, aldehydes and lipid content declined sharply. It is deduced that the cotton stalk char plays an inhibiting effect in the formation of them. At the same time, this inhibiting effect is conducive to the formation of more phenols. After deliming, semi-coke group structure will weaken the inhibition of the formation of acids in the volatile. Likewise, the capacity of phenolic enrichment is also reduced. The cotton stalk loaded with metal chloride enhanced the semi-coke’s effects on the volatile catalytic cracking and

  16. An integrated process for hydrogen-rich gas production from cotton stalks: The simultaneous gasification of pyrolysis gases and char in an entrained flow bed reactor.

    Science.gov (United States)

    Chen, Zhiyuan; Zhang, Suping; Chen, Zhenqi; Ding, Ding

    2015-12-01

    An integrated process (pyrolysis, gas-solid simultaneous gasification and catalytic steam reforming) was utilized to produce hydrogen-rich gas from cotton stalks. The simultaneous conversion of the pyrolysis products (char and pyrolysis gases) was emphatically investigated using an entrained flow bed reactor. More carbon of char is converted into hydrogen-rich gas in the simultaneous conversion process and the carbon conversion is increased from 78.84% to 92.06% compared with the two stages process (pyrolysis and catalytic steam reforming). The distribution of tar components is also changed in this process. The polycyclic aromatic compounds (PACs) of tar are converted into low-ring compounds or even chain compounds due to the catalysis of char. In addition, the carbon deposition yield over NiO/MgO catalyst in the steam reforming process is approximately 4 times higher without the simultaneous process. The potential H2 yield increases from 47.71 to 78.19g/kg cotton stalks due to the simultaneous conversion process.

  17. Reaction Kinetic Equation for Char Combustion of Underground Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YANG Lan-he; FENG Wei-min; LIU Shu-qin; SONG Zhen-qi

    2006-01-01

    Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis, 2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively.

  18. Mercury adsorption of modified mulberry twig chars in a simulated flue gas.

    Science.gov (United States)

    Shu, Tong; Lu, Ping; He, Nan

    2013-05-01

    Mulberry twig chars were prepared by pyrolysis, steam activation and impregnation with H2O2, ZnCl2 and NaCl. Textural characteristics and surface functional groups were performed using nitrogen adsorption and FTIR, respectively. Mercury adsorption of different modified MT chars was investigated in a quartz fixed-bed absorber. The results indicated that steam activation and H2O2-impregnation can improve pore structure significantly and H2O2-impregnation and chloride-impregnation promote surface functional groups. However, chloride-impregnation has adverse effect on pore structure. Mercury adsorption capacities of impregnated MT chars with 10% or 30% H2O2 are 2.02 and 1.77 times of steam activated MT char, respectively. Mercury adsorption capacity of ZnCl2-impregnated MT char increase with increasing ZnCl2 content and is better than that of NaCl-impregnated MT char at the same chloride content. The modified MT char (MT873-A-Z5) prepared by steam activation following impregnation with 5% ZnCl2 exhibits a higher mercury adsorption capacity (29.55 μg g(-1)) than any other MT chars.

  19. Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis.

    Science.gov (United States)

    Bernardo, Maria; Mendes, Sandra; Lapa, Nuno; Gonçalves, Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena; Fonseca, Isabel

    2013-11-01

    The effectiveness of chars from the co-pyrolysis of pine, used tires and plastic wastes for the removal of lead (Pb(2+)) from aqueous medium, was investigated. The chars were predominantly of macroporous nature, but the introduction of tires in the pyrolysis feedstock enhanced their mesoporous content as well as surface area. Pb(2+) sorption with the chars was a slow and unstable process in which sorption-desorption seems to be competing. The highest Pb(2+) removal (88%) was attained by the char resulting from the pyrolysis of a mixture composed by equal mass ratios of used tires and plastics, at 48 h of contact time. This char was also the one with the overall better performance for Pb(2+) sorption, achieving almost 100% of Pb(2+) removal on the study of the effect of adsorbent dose. Mixing the three raw materials for pyrolysis had no advantage for the resulting char concerning the removal efficiency of Pb(2+). The sorption mechanisms varied according to the pyrolysis feedstock: in chars from feedstock with pine, chemisorption involving complexation with oxygenated surface functional groups followed by cation exchange was the presumable mechanism. In tire rubber derived chars, cation exchange with Ca(2+), K(+), and Zn(2+) played the major role on Pb(2+) sorption.

  20. Electron paramagnetic resonance and dynamic nuclear polarization of char suspensions: surface science and oximetry

    DEFF Research Database (Denmark)

    Clarkson, R B; Odintsov, B M; Ceroke, P J

    1998-01-01

    ; they can be calibrated and used for oximetry. Biological stability and low toxicity make chars good sensors for in vivo measurements. Scalar and dipolar interactions of water protons at the surfaces of chars may be utilized to produce dynamic nuclear polarization (DNP) of the nuclear spin population...

  1. Thermogravimetric Analysis of Char Waste from the Air Gasification of Empty Fruit Bunch Briquette.

    Directory of Open Access Journals (Sweden)

    Nyakuma Bemgba Bevan

    2014-07-01

    Full Text Available The thermal decomposition behavior of char waste produced from the air gasification of Empty Fruit Bunch (EFB briquette was examined using thermogravimetric analysis (TGA. A comparison between the thermal decomposition behavior of char waste and EFB briquette is also presented. The results indicate that the char waste produced decreased from 22 % to 18 % with increasing temperature from 600 °C to 700 °C during gasification. This is due to the effect of high temperatures on the primary char decomposition reactions. It was observed that char degradation occurs in two steps; char degradation I & II with weight losses of 17 % and 32 % respectively. This showed that only ~ 50 % char was decomposed during thermal analysis, hence higher temperatures are required to ensure complete decomposition. The TGA curve for EFB briquette showed that complete thermal decomposition of EFB briquette occurs in four stages namely; drying, devolatization, reduction and char degradation. The most significant weight loss 2.51 mg or 49.31 % occurred during devolatization.

  2. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    Science.gov (United States)

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of circulating fluidized bed technology with fractional combustion.

  3. PROPERTIES OF GAS AND CHAR FROM MICROWAVE PYROLYSIS OF PINE SAWDUST

    Directory of Open Access Journals (Sweden)

    Xian-Hua Wang

    2009-08-01

    Full Text Available Pine sawdust pyrolysis was carried out respectively using microwave and conventional electrical heating at different temperatures in order to understand the properties of pyrolytic products from microwave pyrolysis of biomass. Less char material was obtained by microwave pyrolysis compared to conventional heating at the same temperature. While comparing the components of the pyrolytic gases, it was revealed that the microwave pyrolysis gas usually had higher H2 and CO contents and lower CH4 and CO2 contents than those obtained by conventional pyrolysis at the same temperature. The texture analysis results of the microwave pyrolysis chars showed that the chars would melt and the pores would shrink at high temperatures, and hence, the specific surface areas of the chars decreased with increasing temperature. Similarly, the reactivity of the char was remarkably reduced when the microwave pyrolysis temperature exceeded 600°C.

  4. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2013-01-01

    An efficient and space saving method for passive fire protection is the use of intumescent coatings, which swell when exposed to heat, forming an insulating char layer on top of the virgin coating. Although the temperature curves related to so-called cellulosic fires are often referred to as slow...... heating curves, special cases where the protective char is mechanically damaged and partly removed can cause extremely fast heating of the coating. This situation, for a solvent based intumescent coating, is simulated using direct insertion of free films into a muffle oven. The char formed is evaluated......, char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...

  5. Preparation and characterisation of raw chars and physically activated carbons derived from marine Posidonia oceanica (L.) fibres

    Energy Technology Data Exchange (ETDEWEB)

    Ncibi, M.C., E-mail: ncibi_mc@yahoo.com [Laboratoire de chimie, Institut Superieur Agronomique, Chott Meriem 4042, Sousse (Tunisia); Unite de Recherche ' Chimie Appliquee et Environnement' , EPAM Sousse 4000 (Tunisia); Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Jeanne-Rose, V. [Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Mahjoub, B. [Laboratoire de chimie, Institut Superieur Agronomique, Chott Meriem 4042, Sousse (Tunisia); Unite de Recherche ' Chimie Appliquee et Environnement' , EPAM Sousse 4000 (Tunisia); Jean-Marius, C. [Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Lambert, J.; Ehrhardt, J.J. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement, UMR 7564 CNRS, Universites de Nancy, 405, rue de Vandoeuvre, F 56600 Villers-les-Nancy cedex (France); Bercion, Y. [Groupe de Technologie des Surfaces et Interfaces (GTSI), EA 2432, Faculte des Sciences Exactes et Naturelles, Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France); Seffen, M. [Laboratoire de chimie, Institut Superieur Agronomique, Chott Meriem 4042, Sousse (Tunisia); Unite de Recherche ' Chimie Appliquee et Environnement' , EPAM Sousse 4000 (Tunisia); Gaspard, S. [Laboratoire COVACHIMM, EA 3592 Universite des Antilles et de la Guyane, BP 250, 97157 Pointe a Pitre Cedex, Guadeloupe (France)

    2009-06-15

    Industrial valorisation of low cost and renewable biomass as raw precursor of activated carbon for environmental applications is an interesting alternative to costly commercial activated carbons. In this study, the possible use of Mediterranean, Posidonia oceanica fibrous biomass, as a precursor for chars and physically activated carbons, is investigated. Firstly, the raw marine material was chemically and biochemically characterised throughout dry-basis elemental, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) analysis. Then, several P. oceanica chars were prepared and characterised under different pyrolysis times and temperatures. In addition, physically activated carbons (PACs) were produced via water steam flow under various activation periods. The results showed that the pyrolysis induces the creation of pores at different levels with respect to the involved temperature. Thereafter, the physical activation tends to enhance the development of the porous structure. In that issue, the performed Brunauer-Emmett-Teller (BET) and Barrett-Joiner-Halenda (BJH) analysis revealed that the prepared PACs have a mainly mesoporous inner morphology with a varying fraction of micropores.

  6. Effect of CO2 gasification reaction on oxycombustion of pulverized coal char.

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Alejandro (Universidad Nacional de Colombia, Medellin, Colombia); Hecht, Ethan S.; Shaddix, Christopher R.; Haynes, Brian S. (University of Sydney, New South Wales, Australia)

    2010-07-01

    For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO{sub 2} levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO{sub 2} gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO{sub 2} reaction rates for a high-volatile bituminous coal char particle (130 {micro}m diameter) reacting in several O{sub 2} concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO{sub 2}, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O{sub 2} concentration at the particle surface. The CO{sub 2} gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO{sub 2} gasification reaction increases the char conversion rate for combustion at low O{sub 2} concentrations, but decreases char conversion for combustion at high O{sub 2} concentrations. These calculations give new insight into the complexity of the effects from the CO{sub 2} gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.

  7. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  8. Properties of gasification-derived char and its utilization for catalytic tar reforming

    Science.gov (United States)

    Qian, Kezhen

    Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst

  9. Clean, premium-quality chars: Demineralized and carbon enriched. Final technical report, 1 September, 1992--31 August, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T. [Southern Illinois Univ., Carbondale, IL (United States)

    1993-12-31

    The overall objective of this two-year project was to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. The two processing steps, physical cleaning and devolatilization under different environments, led to the following results. Cleaning coal incompletely removes mineral matter which decreases catalytic activity and increases micropore structure. Water forms hydrogen bonds to oxygen functional groups in coal, and during drying, coals undergo structural changes which affect mild gasification. When methane reacts wit coal, devolatilization and carbon deposition occur, the rates of which depend on temperature and amount of ash. Thermal decomposition of IBC-101 coal starts at 300 C, which is much lower than previously believed, but maximum yields of liquids occur at 500 C for IBC-101 coal and at 550 C for IBC-102 coal. Aliphatic-to-aromatic ratios increase with increasing pyrolysis temperatures to 300 C and then decrease; therefore, liquids formed during gasification of 550 C or higher contain mainly aromatic compounds. Btu values of chars are higher after methane treatment than after helium treatment.

  10. The removal of reactive dyes using high-ash char

    Directory of Open Access Journals (Sweden)

    Moreira R.F.P.M.

    2001-01-01

    Full Text Available The thermodynamics and kinetics of adsorption of reactive dyes on high-ash char was studied. Equilibrium data were obtained using the static method with controlled agitation at temperatures in the range of 30 to 60ºC. The Langmuir isotherm model was used to describe the equilibrium of adsorption, and the equilibrium parameters, R L, in the range of 0 to 1 indicate favorable adsorption. The amount of dye adsorbed increased as temperature increased from 30 to 40ºC, but above 40ºC the increase in temperature resulted in a decrease in the amount of dye adsorbed. The kinetic data presented are for controlled agitation at 50 rpm and constant temperature with dye concentrations in the range of 10 ppm to50 ppm. The film mass transfer coefficient, Kf, and the effective diffusivity inside the particle, De, were fitted to the experimental data. The results indicate that internal diffusion governs the adsorption rate.

  11. Developmental toxicity of selenium to Dolly Varden char (Salvelinus malma).

    Science.gov (United States)

    McDonald, Blair G; deBruyn, Adrian M H; Elphick, James R F; Davies, Martin; Bustard, David; Chapman, Peter M

    2010-12-01

    Gametes were collected from Dolly Varden char (Salvelinus malma) from waterbodies in a region exposed to mining-related selenium (Se) releases in British Columbia, Canada. Fertilized eggs were incubated in a laboratory and deformities were assessed on newly-hatched alevins using a graduated severity index. No effects were observed on egg or alevin survival or larval weight across the studied exposure range of 5.4 to 66 mg/kg dry weight in egg. Length of some larvae was reduced at the highest egg Se concentrations and a clear residue-response relationship was observed for larval deformity. The egg concentration corresponding to a 10% increase in the frequency of deformity (EC10) was 54 mg/kg dry weight, which is substantially higher than reported for other cold-water fish species.

  12. Effect of pressure on combustion of char in fluidised beds

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, E.; Blackshaw, H.W.; Davidson, J.F.; Goodyer, P.T.Y.; Hopes, R.B.; Kossakowski, E.R.

    1984-07-01

    Measurements of burn-out time are reported, for 0.25-1.7 mm carbon particles in an air-fluidised 100 mm dia bed of sand at pressures up to 17 bar absolute and bed temperatures of 1023-1173 K. A variety of carbons was used including (i) coke (ii) chars formed from coals of different ranks: thus the carbons had various porosities and surface areas. The effect of increased pressure is to increase the combustion rate, because of the higher oxygen concentration which accelerates the chemical reactions of combustion. On the other hand, pressure has virtually no influence on diffusion of oxygen towards a burning particle, because the higher oxygen concentration is offset by a proportionately lower diffusion coefficient. The overall effect is that as pressure increases, the chemical rate controlling steps become less important, so at very high pressure, combustion is diffusion controlled.

  13. Co-pyrolysis behaviour and kinetic of two typical solid wastes in China and characterisation of activated carbon prepared from pyrolytic char.

    Science.gov (United States)

    Ma, Yuhui; Niu, Ruxuan; Wang, Xiaona; Wang, Qunhui; Wang, Xiaoqiang; Sun, Xiaohong

    2014-11-01

    This is the first study on the co-pyrolysis of spent substrate of Pleurotus ostreatus and coal tar pitch, and the activated carbon prepared from the pyrolytic char. Thermogravimetry (TG) analysis was carried out taking spent substrate, coal tar pitch and spent substrate-coal tar pitch mixture. The activation energies of pyrolysis reactions were obtained via the Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose methods. The kinetic models were determined by the master-plots method. The activated carbons were characterised by N2-adsorption, Fourier transform infrared spectroscopy and X-ray diffraction. Experimental results demonstrated a synergistic effect happened during co-pyrolysis, which was characterised by a decreased maximum decomposition rate and an enhanced char yield. The average activation energies of the pyrolysis reactions of spent substrate, coal tar pitch and the mixture were 115.94, 72.92 and 94.38 kJ mol(-1) for the Flynn-Wall-Ozawa method, and 112.17, 65.62 and 89.91 kJ mol(-1) for the Kissinger-Akahira-Sunose method. The reaction model functions were f(α) = (1-α)(3.42), (1-α)(1.72) and (1-α)(3.07) for spent substrate, coal tar pitch and the mixture, respectively. The mixture char-derived activated carbon had a Brunauer-Emmett-Teller surface area up to 1337 m(2) g(-1) and a total pore volume of 0.680 cm(3) g(-1). Mixing spent substrate with coal tar pitch led to the creation of more micropores and a higher surface area compared with the single spent substrate and coal tar pitch char. Also, the mixture char-derived activated carbon had a higher proportion of aromatic stacking. This study provides a reference for the utilisation of spent substrate and coal tar pitch via co-pyrolysis, and their pyrolytic char as a promising precursor of activated carbon.

  14. Organic structure and possible origin of ancient charred paddies at Chuodun Site in southern China

    Institute of Scientific and Technical Information of China (English)

    HU LinChao; LI Xia; LIU BenDing; GU Min; DAI JingYu

    2009-01-01

    A number of ancient charred paddies with a 14C dating of about 5900 a BP were recovered in the sixthexcavation at Chuodun Site and are assigned to the Majiabang culture (7-6 ka BP). To understand their formation mechanism, the ancient charred paddies were compared to modern paddies using FT-IR spectrum and thermaogravimetric analysis. At the same time, modern charred paddies were made in helium by the laboratory method, and the structural characteristics of them and the ancient ones were revealed using CP/MAS-13C-NMR. Our results show there are more aromatic moieties in ancient charred paddies compared to modern paddies. The aliphatic components of modern charred paddies decreasecontinuously, accompanied by the accumulation of aromatic components, when the duration and temperature of oxidation increase, and the structure buildings of modern charred paddies are more similar to ancient ones. Given the planting manner of paddies during Majiabang culture period, these ancient charred paddies might be a result of the original farming mode involving fire.

  15. Organic structure and possible origin of ancient charred paddies at Chuodun Site in southern China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A number of ancient charred paddies with a 14C dating of about 5900 a BP were recovered in the sixth excavation at Chuodun Site and are assigned to the Majiabang culture(7-6 ka BP).To understand their formation mechanism,the ancient charred paddies were compared to modern paddies using FT-IR spectrum and thermaogravimetric analysis.At the same time,modern charred paddies were made in helium by the laboratory method,and the structural characteristics of them and the ancient ones were revealed using CP/MAS-13C-NMR.Our results show there are more aromatic moieties in ancient charred paddies compared to modern paddies.The aliphatic components of modern charred paddies decrease continuously,accompanied by the accumulation of aromatic components,when the duration and temperature of oxidation increase,and the structure buildings of modern charred paddies are more similar to ancient ones.Given the planting manner of paddies during Majiabang culture period,these ancient charred paddies might be a result of the original farming mode involving fire.

  16. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures.

    Science.gov (United States)

    Bernardo, M; Lapa, N; Gonçalves, M; Mendes, B; Pinto, F; Fonseca, I; Lopes, H

    2012-06-15

    The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents' precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63-81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64-86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59-22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon.

  17. Leaching behaviour and ecotoxicity evaluation of chars from the pyrolysis of forestry biomass and polymeric materials.

    Science.gov (United States)

    Bernardo, M; Mendes, S; Lapa, N; Gonçalves, M; Mendes, B; Pinto, F; Lopes, H

    2014-09-01

    The main objective of this study was to assess the environmental risk of chars derived from the pyrolysis of mixtures of pine, plastics, and scrap tires, by studying their leaching potential and ecotoxicity. Relationships between chemical composition and ecotoxicity were established to identify contaminants responsible for toxicity. Since metallic contaminants were the focus of the present study, an EDTA washing step was applied to the chars to selectively remove metals that can be responsible for the observed toxicity. The results indicated that the introduction of biomass to the pyrolysis feedstock enhanced the acidity of chars and promote the mobilisation of inorganic compounds. Chars resulting from the pyrolysis of blends of pine and plastics did not produce ecotoxic eluates. A relationship between zinc concentrations in eluates and their ecotoxicity was found for chars obtained from mixtures with tires. A significant reduction in ecotoxicity was found when the chars were treated with EDTA, which was due to a significant reduction in zinc in chars after EDTA washing.

  18. Properties of pyrolytic chars and activated carbons derived from pilot-scale pyrolysis of used tires.

    Science.gov (United States)

    Li, S Q; Yao, Q; Wen, S E; Chi, Y; Yan, J H

    2005-09-01

    Used tires were pyrolyzed in a pilot-scale quasi-inert rotary kiln. Influences of variables, such as time, temperature, and agent flow, on the activation of obtained char were subsequently investigated in a laboratory-scale fixed bed. Mesoporous pores are found to be dominant in the pore structures of raw char. Brunauer-Emmett-Teller (BET) surfaces of activated chars increased linearly with carbon burnoff. The carbon burnoff of tire char achieved by carbon dioxide (CO2) under otherwise identical conditions was on average 75% of that achieved by steam, but their BET surfaces are almost the same. The proper activation greatly improved the aqueous adsorption of raw char, especially for small molecular adsorbates, for example, phenol from 6 to 51 mg/g. With increasing burnoff, phenol adsorption exhibited a first-stage linear increase followed by a rapid drop after 30% burnoff. Similarly, iodine adsorption first increased linearly, but it held as the burnoff exceeded 40%, which implied that the reduction of iodine adsorption due to decreasing micropores was partially made up by increasing mesopores. Both raw chars and activated chars showed appreciable adsorption capacity of methylene-blue comparable with that of commercial carbons. Thus, tire-derived activated carbons can be used as an excellent mesoporous adsorbent for larger molecular species.

  19. Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char

    Directory of Open Access Journals (Sweden)

    Raymond L. Huhnke

    2013-08-01

    Full Text Available Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon and carbon-based catalysts. Considering these high-value applications, char could provide economic benefits to a biorefinery utilizing gasification or pyrolysis technologies. However, the properties of char depend heavily on biomass feedstock, gasifier design and operating conditions. This paper reports the effects of biomass type (switchgrass, sorghum straw and red cedar and equivalence ratio (0.20, 0.25 and 0.28, i.e., the ratio of air supply relative to the air that is required for stoichiometric combustion of biomass, on the physiochemical properties of char derived from gasification. Results show that the Brunauer-Emmett-Teller (BET surface areas of most of the char were 1–10 m2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The corresponding Fourier Transform Infrared spectra showed that the surface functional groups of char differed between biomass types but remained similar with change in equivalence ratio.

  20. Combustion and gasification characteristics of chars from raw and torrefied biomass.

    Science.gov (United States)

    Fisher, E M; Dupont, C; Darvell, L I; Commandré, J-M; Saddawi, A; Jones, J M; Grateau, M; Nocquet, T; Salvador, S

    2012-09-01

    Torrefaction is a mild thermal pretreatment (Tbiomass milling and storage properties. The impact of torrefaction on the gasification and oxidation reactivity of chars from torrefied and raw biomass was investigated. Thermogravimetric analysis was used to study the differences in O(2) and steam reactivity, between chars prepared from torrefied and raw willow, under both high- and low-heating-rate conditions. High-heating-rate chars were prepared at 900°C with a residence time of 2s. Low-heating-rate chars were prepared with a heating rate of 33°C/min, a maximum temperature of 850 or 1000°C, and a residence time of 30 min or 1h, respectively, at the maximum temperature. Pretreatment by torrefaction consistently reduced char reactivity. Torrefaction's impact was greatest for high-heating-rate chars, reducing reactivity by a factor of two to three. The effect of torrefaction on a residence time requirements for char burnout and gasification was estimated.

  1. Subcellular distribution of trace elements and liver histology of landlocked Arctic char (Salvelinus alpinus) sampled along a mercury contamination gradient.

    Science.gov (United States)

    Barst, Benjamin D; Rosabal, Maikel; Campbell, Peter G C; Muir, Derek G C; Wang, Xioawa; Köck, Günter; Drevnick, Paul E

    2016-05-01

    We sampled landlocked Arctic char (Salvelinus alpinus) from four lakes (Small, 9-Mile, North, Amituk) in the Canadian High Arctic that span a gradient of mercury contamination. Metals (Hg, Se, Tl, and Fe) were measured in char tissues to determine their relationships with health indices (relative condition factor and hepatosomatic index), stable nitrogen isotope ratios, and liver histology. A subcellular partitioning procedure was employed to determine how metals were distributed between potentially sensitive and detoxified compartments of Arctic char livers from a low- and high-mercury lake (Small Lake and Amituk Lake, respectively). Differences in health indices and metal concentrations among char populations were likely related to differences in feeding ecology. Concentrations of Hg, Se, and Tl were highest in the livers of Amituk char, whereas concentrations of Fe were highest in Small and 9-Mile char. At the subcellular level we found that although Amituk char had higher concentrations of Tl in whole liver than Small Lake char, they maintained a greater proportion of this metal in detoxified fractions, suggesting an attempt at detoxification. Mercury was found mainly in potentially sensitive fractions of both Small and Amituk Lake char, indicating that Arctic char are not effectively detoxifying this metal. Histological changes in char livers, mainly in the form of melano-macrophage aggregates and hepatic fibrosis, could be linked to the concentrations and subcellular distributions of essential or non-essential metals.

  2. A Model-based Phenomenological Investigation of Char Combustion Kinetics through Thermogravimetry

    Institute of Scientific and Technical Information of China (English)

    Qun CHEN; Rong HE; Zhan Gang LIANG; Xu Chang XU; Chang He CHEN

    2005-01-01

    Five coal char samples were burnt in thermobalance with ramp heating rate of 30 K/min.The pore structure of these char samples was studied through mercury intrusion method.Combined with the kinetic theory of gases, the data of surface area was used in fitting the results.As a result, the kinetic triplet was given. The analysis showed that five char samples share almost the same intrinsic activation energy of the overall reaction. The phenomenological implication of the derived combustion rate equation was given.

  3. Investigation of wetting behavior of coal-chars with liquid iron by sessile drop method.

    OpenAIRE

    Veena Sahajwalla; Fiona McCarthy; Rita Khanna

    2008-01-01

    Using the sessile drop approach, the wettability of four non-graphitic coal-chars with electrolytic iron and Fe-2 % C-0.01 % S alloy has been determined at 1550°C, in a horizontal tube resistance furnace with an argon atmosphere. The ash concentration in chars ranged between 9.04 to 12.61 wt %, with alumina and silica as predominant ash components. The contact angles of these chars with liquid Fe-2 % C-0.01 % S alloy showed lesser variations with time as compared to corresponding angles with ...

  4. Effect of burn-off on physical and chemical properties of coal char; Gas ka shinko ni tomonau sekitan char no tokusei henka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T.; Tamura, K.; Hashimoto, H.; Funaki, M.; Suzuki, T. [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-28

    For high-efficiency coal gasification, investigations were given on effect of coal chars with different conversion rates on coal gasification reactivity. In coal gasification, reactivity of char after pyrolysis governs the efficiency. The reference char conversion in CO2 gasification of coal (weight loss) changes linearly in the initial stage of the reaction, but the reactivity declines as the end point is approached. Char surface area is as large as 400 m{sup 2}/g in the initial stage with the conversion at 20%, but it decreases in the final stage. This phenomenon relates closely with changes in pore size and crystalline structure. Change in the Raman value R which shows incompleteness of char graphite structure and amorphous carbon ratio suggests that an active portion with high reactivity is oxidized preferentially, and a portion with low reactivity remains finally. Minerals in coal are known to accelerate the gasification. However, their catalytic effect is related with chemical forms, and complex as they may change into inactive sulfides and silicates under severe reaction conditions. Change in forms of calcium compounds may also be involved in decline of the reactivity in the latter stage. 8 refs., 4 figs.

  5. Sorption of diuron, atrazine, and copper ion on chars with long-term natural oxidation in soils

    Science.gov (United States)

    Cheng, C.; Lin, T.; Lai, C.

    2011-12-01

    Biochar has been proposed as a measure to sequestrate carbon (C) and to increase soil fertility in sustainable agriculture. However, its sorption characteristics to herbicides, such as lowing herbicides efficacy, may constrain its agricultural application. This assertion may be arguable because most studies so far were conducted with the newly produced char and barely considered the "ageing effect" of old char since it could be oxidized over long time. In this study, historical char samples were collected and compared with the newly produced char. Batch sorption studies of diuron, atrazine, and copper ion onto chars was performed. Greater sorption of Cu was observed on the historical char samples and reached a saturated sorption at 30 mg g-1 for Cu, much higher adsorption value than newly produced char at 4 mg g-1. In contrast, sorption of diuron and atrazine on newly produced char had the highest sorption capacity than the historical char samples. The historical chars also had much higher negative charge than the newly produced char, but its surface area were lower than the new char. The results indicated that change in surface functional groups through natural oxidation rather than the change of surface area may have more pronounced influences on sorption characteristics, in which the negative charge on the historical chars' surface could hinder the adsorption of diuron and atrazine while enhance the sorption to copper ion. Biological assay to test the toxicity of diuron and copper ion for both historical and new chars on rye seed were conducted and will be presented in our poster.

  6. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar

    Science.gov (United States)

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm3 at a gasification temperature of 1500 K and equivalence ratio of 0.15. PMID:27433487

  7. Analysis of Hydrogen Generation through Thermochemical Gasification of Coconut Shell Using Thermodynamic Equilibrium Model Considering Char and Tar.

    Science.gov (United States)

    Rupesh, Shanmughom; Muraleedharan, Chandrasekharan; Arun, Palatel

    2014-01-01

    This work investigates the potential of coconut shell for air-steam gasification using thermodynamic equilibrium model. A thermodynamic equilibrium model considering tar and realistic char conversion was developed using MATLAB software to predict the product gas composition. After comparing it with experimental results the prediction capability of the model is enhanced by multiplying equilibrium constants with suitable coefficients. The modified model is used to study the effect of key process parameters like temperature, steam to biomass ratio, and equivalence ratio on product gas yield, composition, and heating value of syngas along with gasification efficiency. For a steam to biomass ratio of unity, the maximum mole fraction of hydrogen in the product gas is found to be 36.14% with a lower heating value of 7.49 MJ/Nm(3) at a gasification temperature of 1500 K and equivalence ratio of 0.15.

  8. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.

    Science.gov (United States)

    Maiti, S; Dey, S; Purakayastha, S; Ghosh, B

    2006-11-01

    The fixed bed pyrolysis of rice husk was studied under conventional conditions with the aim of determining the characteristics of the charcoal formed for its applicability as a solid fuel. Thermoanalytic methods were used to determine the kinetic parameters of its combustion. Palletisation using different binders and techniques to improve the time of sustained combustion of the char pallets were investigated. The optimum temperature for carbonization to obtain a char having moderately high heating value was found as 400 degrees C. For the active char combustion zone, the order of reaction was nearly 1, the activation energy 73.403 kJ/mol and the pre-exponential factor 4.97 x 10(4)min(-1). Addition of starch as a binder and 10% ferrous sulphate heptahydrate or sodium hypophosphite as an additive enhanced the ignitibility of the char pallets.

  9. The different effects of applying fresh, composted or charred manure on soil N2O emissions

    DEFF Research Database (Denmark)

    Zhu, Kun; Christel, Wibke; Bruun, Sander;

    2014-01-01

    New manure management strategies and technologies are currently being developed in order to reduce manure volume and odorous emissions, utilise energy potential and produce improved manure-derived fertilisers. This has accentuated the need to determine their effects on greenhouse gas emissions...... to higher N2O and CO2 emissions than heterogeneous distribution. However, the effect of different distribution modes was not significant in treatments with charred manure, since N turnover in the immature compost was much more active than that in the charred manure. By combining charred manure...... with composted manure, N2O emissions were significantly reduced by 41% at pF 2.0, but the mitigation effect of charred manure was not observed at lower soil water potentials. © 2014 Elsevier Ltd....

  10. Modeling and Countermeasures of Combustion Characteristics of Char Particles in CFBC

    Institute of Scientific and Technical Information of China (English)

    YanJin; QiayuZheng; 等

    1999-01-01

    A mathematical model of single char particle combustion in circulating fluidized bed combustor(CFBC) is developed in this paper in this paper,its numerical solution in operating conditions of CFBC verifies the nature of a phenomenon that the distribution of carbon content of char particles has a peak value versus their diameters.The results show that the temperature of smaller char particle is close to the bed temperature,and there also exits a peak value for the burn-out time of char particles versus their diameters.The countermeasures are presented to improve combustion of fine particles,such as use of the fly-ash recirculation,the hot cyclone,and so on.

  11. Influence of Pyrolysis Temperature on Rice Husk Char Characteristics and Its Tar Adsorption Capability

    Directory of Open Access Journals (Sweden)

    Anchan Paethanom

    2012-11-01

    Full Text Available A biomass waste, rice husk, was inspected by thermoanalytical investigation to evaluate its capability as an adsorbent medium for tar removal. The pyrolysis process has been applied to the rice husk material at different temperatures 600, 800 and 1000 °C with 20 °C/min heating rate, to investigate two topics: (1 influence of temperature on characterization of rice husk char and; (2 adsorption capability of rice husk char for tar removal. The results showed that subsequent to high temperature pyrolysis, rice husk char became a highly porous material, which was suitable as tar removal adsorbent with the ability to remove tar effectively. In addition, char characteristics and tar removal ability were significantly influenced by the pyrolysis temperature.

  12. Prediction of the burnout behaviour of chars derived from coal-biomass blends

    Energy Technology Data Exchange (ETDEWEB)

    Tao Wu; Mei Gong; Edward Lester [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2007-07-01

    Nowadays, biomass has been considered an alternative fuel to coal and is being used in power plants to replace part of coal used. This study is to investigate the potential of burning biomass with coal and its impacts on burnout levels. Daw Mill coal was selected for burnout modelling together with three biomasses, Cereal, PKE and Olive Cake. Chars were prepared (75-106 micron) and characterised using image analysis methods as in input data into the char burnout model (ChB) which was adapted to allow the prediction of char burnout of biomass-coal blends under typical pf combustion conditions. The burnout performance of four blend compositions for each biomass were modelled (5%, 10%, 20% and 30%). In practice, the low heating-value of biomass produces a lower flame temperature which can lead to lower levels of char burn-out. The effect is closely linked with the type of biomass used. 36 refs., 4 figs., 1 tab.

  13. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    Science.gov (United States)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  14. STRUCTURE-BASED PREDICTIVE MODEL FOR COAL CHAR COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    CHRISTOPHER M. HADAD; JOSEPH M. CALO; ROBERT H. ESSENHIGH; ROBERT H. HURT

    1998-06-04

    During the past quarter of this project, significant progress continued was made on both major technical tasks. Progress was made at OSU on advancing the application of computational chemistry to oxidative attack on model polyaromatic hydrocarbons (PAHs) and graphitic structures. This work is directed at the application of quantitative ab initio molecular orbital theory to address the decomposition products and mechanisms of coal char reactivity. Previously, it was shown that the �hybrid� B3LYP method can be used to provide quantitative information concerning the stability of the corresponding radicals that arise by hydrogen atom abstraction from monocyclic aromatic rings. In the most recent quarter, these approaches have been extended to larger carbocyclic ring systems, such as coronene, in order to compare the properties of a large carbonaceous PAH to that of the smaller, monocyclic aromatic systems. It was concluded that, at least for bond dissociation energy considerations, the properties of the large PAHs can be modeled reasonably well by smaller systems. In addition to the preceding work, investigations were initiated on the interaction of selected radicals in the �radical pool� with the different types of aromatic structures. In particular, the different pathways for addition vs. abstraction to benzene and furan by H and OH radicals were examined. Thus far, the addition channel appears to be significantly favored over abstraction on both kinetic and thermochemical grounds. Experimental work at Brown University in support of the development of predictive structural models of coal char combustion was focused on elucidating the role of coal mineral matter impurities on reactivity. An �inverse� approach was used where a carbon material was doped with coal mineral matter. The carbon material was derived from a high carbon content fly ash (Fly Ash 23 from the Salem Basin Power Plant. The ash was obtained from Pittsburgh #8 coal (PSOC 1451). Doped

  15. Characterization, leachability and valorization through combustion of residual chars from gasification of coals with pine.

    Science.gov (United States)

    Galhetas, Margarida; Lopes, Helena; Freire, Márcia; Abelha, Pedro; Pinto, Filomena; Gulyurtlu, Ibrahim

    2012-04-01

    This paper presents the study of the combustion of char residues produced during co-gasification of coal with pine with the aim of characterizing them for their potential use for energy. These residues are generally rich in carbon with the presence of other elements, with particular concern for heavy metals and pollutant precursors, depending on the original fuel used. The evaluation of environmental toxicity of the char residues was performed through application of different leaching tests (EN12457-2, US EPA-1311 TCLP and EA NEN 7371:2004). The results showed that the residues present quite low toxicity for some of pollutants. However, depending on the fuel used, possible presence of other pollutants may bring environmental risks. The utilization of these char residues for energy was in this study evaluated, by burning them as a first step pre-treatment prior to landfilling. The thermo-gravimetric analysis and ash fusibility studies revealed an adequate thermochemical behavior, without presenting any major operational risks. Fluidized bed combustion was applied to char residues. Above 700°C, very high carbon conversion ratios were obtained and it seemed that the thermal oxidation of char residues was easier than that of the coals. It was found that the char tendency for releasing SO(2) during its oxidation was lower than for the parent coal, while for NO(X) emissions, the trend was observed to increase NO(X) formation. However, for both pollutants the same control techniques might be applied during char combustion, as for coal. Furthermore, the leachability of ashes resulting from the combustion of char residues appeared to be lower than those produced from direct coal combustion.

  16. Influence of post-treatment strategies on the properties of activated chars from broiler manure.

    Science.gov (United States)

    Lima, Isabel M; Boykin, Debbie L; Thomas Klasson, K; Uchimiya, Minori

    2014-01-01

    There are a myriad of carbonaceous precursors that can be used advantageously to produce activated carbons or chars, due to their low cost, availability and intrinsic properties. Because of the nature of the raw material, production of granular activated chars from broiler manure results in a significant ash fraction. This study was conducted to determine the influence of several pre- and post-treatment strategies in various physicochemical and adsorptive properties of the resulting activated chars. Pelletized samples of broiler litter and cake were pyrolyzed at 700 °C for 1h followed by a 45 min steam activation at 800 °C at different water flow rates from 1 to 5 mL min(-1). For each activation strategy, samples were either water-rinsed or acid-washed and rinsed or used as is (no acid wash/rinse). Activated char's physicochemical and adsorptive properties towards copper ions were selectively affected by both pre- and post-treatments. Percent ash reduction after either rinsing or acid washing ranged from 1.1 to 15.1% but washed activated chars were still alkaline with pH ranging from 8.4 to 9.1. Acid washing or water rinsing had no significant effect in the ability of the activated char to adsorb copper ions, however it significantly affected surface area, pH, ash content and carbon content. Instead, manure type (litter versus cake) and the activation water flow rate were determining factors in copper ion adsorption which ranged from 38 mg g(-1) to 104 mg g(-1) of activated char. Moreover, strong positive correlations were found between copper uptake and concentration of certain elements in the activated char such as phosphorous, sulfur, calcium and sodium. Rinsing could suffice as a post treatment strategy for ash reduction since no significant differences in the carbon properties were observed between rinsed and acid wash treatments.

  17. Experimental Study and Modelling of Char Combustion under Fluidized Bed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZhangYongzhe; ManfredC.Wirsum; 等

    1998-01-01

    The combustion behavior of chars from two Chinese coals has been investigated in a laboratory scale bubbling fludized bed system in Siegen University,Germany,Experimental equipment and method are introduced.The shrinking-core model and the “shrinking-particl” model were employed to evaluate the kinetic parameters.The results indicated that the char conversion process of these two coals can be well described by the two models.

  18. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  19. ENHANCING ASPHALT RHEOLOGICAL BEHAVIOR AND AGING SUSCEPTIBILITY USING BIO-CHAR AND NANO-CLAY

    Directory of Open Access Journals (Sweden)

    Renaldo C. Walters

    2014-01-01

    Full Text Available The life expectancy of Asphalt Binder (AB has been negatively impacted by the harsh bombardment of UV rays. UV rays cause asphalt to oxidize faster, which results in deterioration of asphalt rheological characteristics that can lead to pavement distresses. This study investigates the impact of bio-char and nano-clay of asphalt rheological properties. Two nano scale materials were used for this study were nano-clay and bio-char. Nano-clay (Cloisite 30B is a naturally occurring inorganic mineral. Bio-char is the waste product from bio-binder production. Bio-binder is produced from swine manure using a thermochemical conversion process. This process is then followed by a filtration procedure where the bio-char is produced. Chemical and physical properties of bio-char showed a significant presence of carbon which could in turn enhance asphalt flow properties and reduce the rate of asphalt oxidation. In this study several mixtures are designed and evaluated using Rotational Viscometer testing (RV and X-Ray Diffraction (XRD. Nano-clay is blended at 2 and 4% by weight, with and without bio-binder (5% by weight of dry mass. Bio-char is grinded to nano scale and added to the virgin asphalt binder (PG 64-22 at 2, 5 and 10% by weight. The study results showed that introduction of nano-clay could be effective in reducing temperature susceptibility of asphalt binder.

  20. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  1. Investigation of wetting behavior of coal-chars with liquid iron by sessile drop method.

    Directory of Open Access Journals (Sweden)

    Veena Sahajwalla

    2008-06-01

    Full Text Available Using the sessile drop approach, the wettability of four non-graphitic coal-chars with electrolytic iron and Fe-2 % C-0.01 % S alloy has been determined at 1550°C, in a horizontal tube resistance furnace with an argon atmosphere. The ash concentration in chars ranged between 9.04 to 12.61 wt %, with alumina and silica as predominant ash components. The contact angles of these chars with liquid Fe-2 % C-0.01 % S alloy showed lesser variations with time as compared to corresponding angles with electrolytic iron. While the initial contact angles ranged between 106° and 137°, the contact angles for all coal-chars were quite similar after 60 minutes of contact (105 - 110°. While no well defined correlations could be observed between the initial char structure (Lc values and ash concentration / composition and contact angles in the initial stages of contact, the contact angles over extended periods were significantly affected by the presence of reaction products and impurity deposits in the interfacial region. With coal-chars generally showing a non-wetting behavior with liquid iron, these results are discussed in terms of the transfer of carbon and sulphur by mass transport across the interface, the formation of an enriched interfacial layer containing calcium, sulphur and alumina, reduction of reducible oxides such as silica and iron oxides, and possible transfer of these elements into the liquid iron.

  2. Properties of slurries made of fast pyrolysis oil and char or beech wood

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2014-01-01

    The properties of slurries made of pyrolysis oil mixed with wood, char or ground char were investigated with respect to phase transitions, rheological properties, elemental compositions, and energy density. Also the pumping properties of the slurries were investigated at temperatures of 25, 40...... and 60 C and solid loadings from 0 to 20 wt%. The phase transitions of the wood slurry samples were observed at lower solid loadings compared to the char slurry samples. The apparent viscosity of the slurry samples was found to be considerably impacted by solid loading (0e20 wt%) and temperature (25e60 C......), especially in the phase transition region. The slurry viscosities with 20 wt% char loading, 20 wt% ground char loading and 15 wt% wood loading (at a shear rate of 100 s1) are 0.7, 1.0 and 1.7 Pa.s, respectively at 60 C and these values increases 1.2e1.4 times at 40 C and 3e4 times at 25 C. The wood, char...

  3. Effects of Charred Fructus Crataegi on the contractilily of isolated rat gastric and intestine muscle strips

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hou-li; DIAO Yun-peng; LIU Zhi-hao; HUANG Shan-shan; MA Xiao-chi; LIN Yuan

    2008-01-01

    Objective The purpose of the study is to investigate the effects of Charred Fructus Crataegi Alcohol Extract on contractililty of isolated rat gastric and intesting smooth muscle strips. Methods Isolated rat intestine was selected in the assay to test the effects of Charred Fructus Crataegi Alcohol Extract on contractilty of isolated rat gastric and intestine smooth muscle strips using Krebs' solution, to observe the effects of in the presence of acetylcholine or atropine. Results Charred Fructus Crataegi Alcohol Extract in the range of 2-8 rag crude drugs/mL could significantly reduce the contractility of rat gastric and intestine smooth muscle strips in a dose-dependent manner, and Charred Fructus Crataegi Alcohol Extract 8 mg·mL-1(crude drugs) could inhibit the stimulation induced by acetylcholine. Charred Fructus Crataegi Alcohol Extract 8 mg·mL-1(crude drugs) was found to have a inhibiton of the relaxtion concurrently used with atropin. Conclusions The results suggest that Charred Fructus Crataegi Alcohol Extract has prominent inhibitory effects on the contractile activity of isolated rat gastric and intestine smooth muscle strips.

  4. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.

  5. Reactivity and characterisation of various rank Turkish bituminous coal chars

    Energy Technology Data Exchange (ETDEWEB)

    Kizgut, S.; Baran, Y.; Cuhadaroglu, D. [Karaelmas University, Zonguldak (Turkey). Faculty of Engineering

    2003-07-01

    A set of seven bituminous coal chars has been characterised by IR spectroscopy (FTIR), thermogravimetry (TG) and elemental analysis. FTIR study provided suitable information to establish differences between coal samples according to their chemical compositions. The reactivity of these samples was also studied and correlated with the coal parameters of mean vitrinite reflectance, fuel ratio and H/C ratio. The data suggest that reactivity as determined can be correlated with the mean vitrinite reflectance, fuel ratio and H/C ratio (0.90). The order of reactivity of samples were; Amasra (S1) (R-m=0.65) > Azdavay (S4) (R-m=0.99) {approx_equal} Armutcuk (S2) (R-m=0.81) {approx_equal} Acenta (S3) (R-m=0.92) > Ac2l2k (S6) (R-m=1.11) Cay (S5) (R-m=1.03) > Sogutozu (S7) (R-m=2.14).

  6. Study on denitration technology of coal char reduction method

    Directory of Open Access Journals (Sweden)

    Wenjie FU

    2016-06-01

    Full Text Available In order to more effectively control NO emissions in coal-fired flue gas, the denitration reaction is carried out with simulated industrial boiler flue gas in a fixed bed reactor. The influence of char types, reaction conditions, the composition of flue gas and other factors on the conversion rate of NO are discussed. The result shows that the industrial semi-coke is the most suitable experimental coal in the three coals studied, and the industrial semi-coke particle size of 0.6 ~ 10 mm is relatively suitable; The conversion rate of NO increases gradually with the increase of temperature, and when the reaction temperature is 700 ℃ and the space velocity is 10 000 h-1, the conversion rate of NO can reach 99%; the conversion rate of NO decreases gradually as airspeed increases, but the airspeed change has no effect on the conversion rate of NO at 700 ℃; under anaerobic conditions,the change of NO concentration has no effect on the conversion rate of NO; at the same temperature, NO conversion rate is higher at the presence of oxygen compared with that at anaerobic situation, and the conversion rate of NO is the highest when O2 concentration is 4%; under aerobic conditions, the concentration change of SO2 and CO2 has no effect on the conversion rate of NO.

  7. Efficacy of Locust Beans Husk Char in Heavy Metal Sequestration

    Directory of Open Access Journals (Sweden)

    Ademola Ayodeji Ajayi-Banji

    2016-03-01

    Full Text Available Most solid waste management schemes minimally consider low concentration biodegradable agricultural waste management, though the environmental impact of this waste category is significant over a time frame. The column-mode study seeks to address the issue by suggesting potential utilisation of post-harvest waste for heavy metal sequestering. Locust beans husk char of 100 and 200 g was employed to inspect removal efficiency, isotherm and kinetic models of some heavy metals at 30, 60, 90, 120 and 150 min contact time. Elemental composition of the biosorbent was investigated using the SEM-EDX machine. The results obtained depict that over 85% aluminium and nickel removal was achieved at 150 min detention time. The Freundlich isotherm well described most of the sorbates sorption (R2 ≥ 0.91. The sorption rate equally fitted into the second-order pseudo kinetic model (R2 ≥ 0.88. Ion exchange took place during the sorption. Locust beans husk has promising adsorption potential in heavy metal ions removal from fouled surface water. DOI: http://dx.doi.org/10.5755/j01.erem.71.4.13081

  8. Investigation of growth responses in saprophytic fungi to charred biomass.

    Science.gov (United States)

    Ascough, Philippa L; Sturrock, Craig J; Bird, Michael I

    2010-03-01

    We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry ((13)C and (15)N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same species produced at 300 degrees C and 400 degrees C. Both species of fungi colonise the surface and interior of wood and charcoals over time periods of less than 70 days; however, distinctly different growth forms are evident between the exterior and interior of the charcoal substrate, with hyphal penetration concentrated along lines of structural weakness. Although the fungi were able to degrade and metabolise the pine wood, charcoal does not form a readily available source of fungal nutrients at least for these species under the conditions used in this study.

  9. Effects of different catalysts on steam gasification of biomass char at low temperature%不同催化剂对生物质半焦低温气化效果的影响

    Institute of Scientific and Technical Information of China (English)

    俞元元; 肖军; 沈来宏; 杜玉照

    2013-01-01

      生物质气化技术是将低品位的生物质能转换成高品位能源的有效途径.该文以稻壳和麦秸半焦为试验对象,进行了低温下生物质半焦的水蒸气气化试验,研究了浸渍法制备的碱金属催化剂和气化温度对生物质半焦气化行为的影响.结果显示,对于稻壳半焦气化而言,相同负载量的 K 基催化剂的催化效果明显优于 Na 基催化剂,相比非催化时稻壳半焦的碳转化率分别提高了18.2%和13.5%,差异明显.增加 K2CO3负载量有利于半焦气化反应的进行,但负载量不宜超过30%.不同的煅烧温度,催化剂的活性组分存在形式有较大差别,负载量为30%的K 基催化剂在800℃煅烧后具有最佳的催化效果.相同条件下,麦秸半焦的气体产率和碳转化率均较高,在700℃下添加该催化剂时分别达到130.0 mol/kg 和95.9%,相比非催化时分别提高了57.0%和34.1%.随着温度的降低,气体产率和碳转化率均明显下降,该文催化条件下的半焦气化温度不宜低于700℃.研究结果可为生物质低温气化高效催化剂的选择提供理论依据.%The low-temperature catalytic gasification of biomass is a promising technology for hydrogen production from the energy point of view due to its relatively low heat input. And it has attracted the worldwide interests. However, the lower char conversion efficiency and higher tar yield at low-temperature are unsolved problems to the technical application of low-temperature catalytic gasification. In order to overcome these issues, numerous researches are being focused on the catalyst development. As the studies concerning catalytic gasification of biomass char under relatively low temperature (T≤750℃) are fairly limited, catalytic gasification of two biomass char samples, rice husk and wheat straw, were investigated at relatively low temperature in this paper. The impregnated alkali metal catalysts were prepared in this

  10. Preparation and properties of biomass char for ironmaking%炼铁用生物质焦的制备及其性能

    Institute of Scientific and Technical Information of China (English)

    胡正文; 张建良; 左海滨; 李净; 刘征建; 杨天钧

    2012-01-01

    采用两种不同的升温制度对生物质进行碳化,碳化温度选为300、400、500、600和700℃,保温时间分别为30、60和90min.利用扫描电镜及热重分析仪对所得生物质焦的成分、微观结构及燃烧性能等进行分析,并研究了制备条件对生物质焦的产率及与CO2反应性的影响.结果表明,生物质焦具有与煤不同的典型管状或片状结构,其N、S、灰分、碱金属含量及燃烧性能优于煤炭,适合用作炼铁过程的还原剂和发热剂,以替代部分煤粉和焦炭.综合考虑,炼铁用生物质焦的最佳制备条件是,采用恒温加热模式将生物质加热至500℃进行碳化,并保温30min.%Raw biomass was carbonized by two different heating patterns to produce biomass char at 400, 500, 600 and 700 ℃ for 30, 60 and 90 min. The composition, microstructure, and combustibility of the derived biomass char were investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TG-DTG). The effects of preparing conditions on the biomass cbar's yield and reactivity for reacting with CO2 were studied. It is shown that the biomass char has typical duct structure or sheet structure, which is different from coal. The contents of N, S, ash and alkali metals in the biomass char are much lower, but its combustibility is better than coal samples, suitable for using as a reducing agent and a heating agent in ironmaking to partially replace coal and coke. The opti- mum preparing condition of biomass char for ironmaking is to carbonize raw biomass by a constant temperature heating pattern at 500 ℃ for 30 min.

  11. Conversion of char nitrogen to N2 under incomplete combustion conditions; Fukanzen nensho jokenka ni okeru char chuchisso no N2 eno tenka

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Q.; Yamauchi, A.; Oshima, Y.; Wu, Z.; Otsuka, Y. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    The effect of combustion conditions on conversion of char nitrogen to N2 was studied in the combustion experiment of char obtained by pyrolysis of coal. Char specimen was prepared by holding ZN coal of Chinese lignite in Ar atmosphere at 1123K for one hour. A batch scale quartz-made fluidized bed reactor was used for combustion experiment. After the specimen was fluidized in reaction gas, it was rapidly heated to start combustion reaction. CO, CO2 and N2 in produced gases were online measured by gas chromatography (GC). As the experimental result, under the incomplete combustion condition where a large amount of CO was produced by consuming almost all of O2, no NOx and N2O produced from char were found, and almost all of N-containing gas was N2. At the final stage of combustion, pyridinic-N disappeared completely, and pyrrolic-N decreased, while O-containing nitrogen complexes became a main component. It was thus suggested that O-containing nitrogen complexes are playing the role of intermediate product in combustion reaction. 7 refs., 4 figs., 1 tab.

  12. Low levels of hybridization between sympatric Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) highlights their genetic distinctiveness and ecological segregation.

    Science.gov (United States)

    May-McNally, Shannan L; Quinn, Thomas P; Taylor, Eric B

    2015-08-01

    Understanding the extent of interspecific hybridization and how ecological segregation may influence hybridization requires comprehensively sampling different habitats over a range of life history stages. Arctic char (Salvelinus alpinus) and Dolly Varden (S. malma) are recently diverged salmonid fishes that come into contact in several areas of the North Pacific where they occasionally hybridize. To better quantify the degree of hybridization and ecological segregation between these taxa, we sampled over 700 fish from multiple lake (littoral and profundal) and stream sites in two large, interconnected southwestern Alaskan lakes. Individuals were genotyped at 12 microsatellite markers, and genetic admixture (Q) values generated through Bayesian-based clustering revealed hybridization levels generally lower than reported in a previous study (Dolly Varden and Arctic char tended to make different use of stream habitats with the latter apparently abandoning streams for lake habitats after 2-3 years of age. Our results support the distinct biological species status of Dolly Varden and Arctic char and suggest that ecological segregation may be an important factor limiting opportunities for hybridization and/or the ecological performance of hybrid char.

  13. Structural ordering of coal char during heat treatment and its impact on reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Bhatia, S.K.; Barry, J.C.

    2002-07-01

    The effect of heat treatment on the structure of an Australian semi-anthracite char was studied between 850-1150{sup o}C using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change during heat treatment, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained unchanged. This suggests the occurrence of catalytic ordering during heat treatment. Electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary. High resolution transmission electron micrographs depicted well-organized carbon layers surrounding iron particles. The fraction of organized carbon attains an apparent equilibrium value that increases with increase in temperature. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is structure sensitive. These results suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. It is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be low, which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron.

  14. Combinations of synergistic interactions and additive behavior during the co-oxidation of chars from lignite and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul (Turkey)

    2008-02-15

    The aim of this study is to investigate the co-combustion behavior of two different pyrolytic chars. For this purpose, Elbistan lignite and woody shells of hazelnut were pyrolysed in a tube furnace by heating to 900 C with a heating rate of 40 C min{sup -} {sup 1} under dynamic nitrogen flow of 400 mL min{sup -} {sup 1} to obtain pyrolytic char. These chars were mixed to obtain blends having the biomass char in the ratios of 5, 10, and 20 wt.%. Non-isothermal DTA and TGA profiles of the chars were obtained from ambient to 900 C with a heating rate of 40 C min{sup -} {sup 1} under the static ambient atmosphere. DTA and TGA profiles of the blend chars were interpreted considering the thermal characteristics such as ignition point, burnout at a given temperature, maximum burning rate, the end of combustion etc. Relations between the fraction of the biomass char in the blends and the thermal behavior of the blends were evaluated according to the synergistic approach. It was found that addition of biomass char led to important variations in some thermal properties which can not be explained by the additive behavior. However it can be concluded in general that the combinations of synergistic interactions and additive behavior govern the thermal properties of the blend chars during co-oxidation. (author)

  15. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-03-01

    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification.

  16. Udder Morphological Traits and Milk Yield of Chilota and Suffolk Down Sheep Breeds Morfología Mamaria y Producción Lechera de las Razas Ovinas Chilota y Suffolk Down

    Directory of Open Access Journals (Sweden)

    María E Martínez

    2011-03-01

    Full Text Available Morphological traits of the whole udder (circumference, width, height, and length, teats (angle, length and width, udder cistern (teat opening and cistern height, and milk yield were measured over one lactation in a total of 18 ewes (nine Chilota and nine Suffolk Down sheep belonging to the same experimental flock (Centro Experimental INIA Butalcura, Chiloé, Chile. Analysis of variance showed significant effects for breed, sheep within breed, and stage of lactation. Chilota ewes evidenced greater udder circumference (433 mm, udder length (86 mm, teat opening (96º, and milk yield (947 mL d-1 than Suffolk Down ewes (410 mm, 77 mm, 93º, and 559 mL d-1, respectively. Udder circumference, udder width, udder length, cistern height and teat size significantly decreased throughout lactation. Repeatabilities of all traits were between 0.17 and 0.60; the highest repeatability was for udder circumference. This trait is easy to measure and had a discriminatory value for breed differentiation. In conclusion, Chilota sheep had a dairy aptitude greater than Suffolk Down sheep and similar to Spanish and Mediterranean dairy sheep breeds at beginning of their breeding programs.Los caracteres morfológicos de la ubre (perímetro, anchura, longitud y altura, de los pezones (ángulo de inclinación, longitud y anchura, de las cisternas mamarias (apertura de los pezones y altura de la cisterna y la producción lechera fueron medidos a lo largo de una lactación en un total de 18 ovejas del mismo rebaño (Centro Experimental INIA Butalcura, Chiloé, Chile, nueve de raza Chilota y nueve de raza Suffolk Down. El análisis de varianza mostró efectos significativos de la raza, la oveja dentro de la raza y del estado de lactación sobre las variables estudiadas. La raza Chilota evidenció un mayor perímetro de la ubre (433 mm, longitud de la ubre (86 mm, abertura de los pezones (96º, y producción lechera (947 mL d-1 que la Suffolk Down ( 410 mm, 77 mm, 93º, y 559 m

  17. Effect of Pyrolysis Temperature on Characteristics of Biomass Char and Coal Char%热解温度对生物质和煤成焦特性的影响

    Institute of Scientific and Technical Information of China (English)

    米翠丽; 樊孝华; 魏刚; 马登卿; 张利孟; 王学斌

    2014-01-01

    以麦秆、橡树木屑和华亭烟煤为原料,研究热解产物的理化特性并讨论燃料种类和热解温度对其的影响。采用BET、SEM-EDS、XRD和TGA对其进行分析表征。结果表明:在600~1000℃的温度范围内,煤焦的比表面积和孔隙容积随热解温度增加而增大,而木屑焦的变化不明显,麦秆焦在800℃时比表面积和孔隙容积最大,更高温度则发生烧结;焦样中C元素含量随热解温度升高而增加,而H元素和O元素随之降低,麦秆焦的着火特性优于木屑焦和煤焦。木屑焦和煤焦的着火特性随热解温度升高而变差,而麦秆焦在800℃具有最佳的着火特性。%The effects of fuel type and pyrolysis temperature on the physicochemical properties of coal char( C-char)and biomass char were investigated with straw,oak sawdust,and Huating bituminous coal as raw materials. BET,SEM-EDS,XRD,and TGA were used to analyze the coke specimens. Results show that the BET surface area and porous volume of C-char increase as the pyrolysis temperature increases,whereas those of wood char( W-char)insignificantly change,from 600 to 1 000 ℃. Straw char ( S-char)has the largest surface area and pore volume at 800 ℃ as sintering occurs at higher temperatures. As the pyrolysis temperature increases,the C content of char increases and its H and O contents decrease. The ignition characteristic of S-char is superior to those of W-char and C-char. The ignition characteristics of Wood-char and C-char decrease with the increase of pyrolysis temperature. Straw-char exhibits the best ignition characteristic at 800℃.

  18. CFD Simulation of Entrained Flow Gasification With Improved Devolatilization and Char Consumption Submodels

    KAUST Repository

    Kumar, Mayank

    2009-01-01

    In this work, we use a CFD package to model the operation of a coal gasifier with the objective of assessing the impact of devolatilization and char consumption models on the accuracy of the results. Devolatilization is modeled using the Chemical Percolation Devolitilization (CPD) model. The traditional CPD models predict the rate and the amount of volatiles released but not their species composition. We show that the knowledge of devolatilization rates is not sufficient for the accurate prediction of char consumption and a quantitative description of the devolatilization products, including the chemical composition of the tar, is needed. We incorporate experimental data on devolatilization products combined with modeling of the tar composition and reactions to improve the prediction of syngas compositions and carbon conversion. We also apply the shrinking core model and the random pore model to describe char consumption in the CFD simulations. Analysis of the results indicates distinct regimes of kinetic and diffusion control depending on the particle radius and injection conditions for both char oxidation and gasification reactions. The random pore model with Langmuir-Hinshelwood reaction kinetics are found to be better at predicting carbon conversion and exit syngas composition than the shrinking core model with Arrhenius kinetics. In addition, we gain qualitative and quantitative insights into the impact of the ash layer surrounding the char particle on the reaction rate. Copyright © 2010 by ASME.

  19. Evaluación de la reducibilidad de un mineral de hierro usando char como reductor

    Directory of Open Access Journals (Sweden)

    Yenny Rubiela Hernández, Carlos Alberto Sandoval Fonseca, Claudia Inés Sánchez Buitrago

    2011-05-01

    Full Text Available Muestra los ensayos de  reduciblidad  realizados en un hornotipo Linder a un mineral de hierro del municipio de Ubalá(departamento de Cundinamarca, Colombia, usando comoreductor un char. Se  indican las características del mineralde  hierro  de Ubalá, de  los  carbones  empleados para  laproducción del char y de la caliza, así como los ensayos dereducibilidad. Para la caracterización de  las materias primasy del char, como producto  final, se aplicaron normas ASTM.En  la producción de  los char se utilizaron  los hornos decoquización  tipo Cerchar  y  tipo  colmena  de  la Uptc  enSamacá  (Boyacá. Los ensayos de reducibilidad se hicieronbajo  los mismos parámetros de operación utilizados concarbón como reductor, y los resultados obtenidos dejan verque el mineral de hierro de Ubalá es reducible en menorporcentaje con char. Sin embargo, por  los grandes beneficiospara el medioambiente que se obtienen trabajando con elchar, no se descarta  la posibilidad de utilizarlo como posiblesustituto del carbón en el proceso de reducción directa.

  20. Abundant and stable char residues in soils: implications for soil fertility and carbon sequestration.

    Science.gov (United States)

    Mao, J-D; Johnson, R L; Lehmann, J; Olk, D C; Neves, E G; Thompson, M L; Schmidt-Rohr, K

    2012-09-04

    Large-scale soil application of biochar may enhance soil fertility, increasing crop production for the growing human population, while also sequestering atmospheric carbon. But reaching these beneficial outcomes requires an understanding of the relationships among biochar's structure, stability, and contribution to soil fertility. Using quantitative (13)C nuclear magnetic resonance (NMR) spectroscopy, we show that Terra Preta soils (fertile anthropogenic dark earths in Amazonia that were enriched with char >800 years ago) consist predominantly of char residues composed of ~6 fused aromatic rings substituted by COO(-) groups that significantly increase the soils' cation-exchange capacity and thus the retention of plant nutrients. We also show that highly productive, grassland-derived soils in the U.S. (Mollisols) contain char (generated by presettlement fires) that is structurally comparable to char in the Terra Preta soils and much more abundant than previously thought (~40-50% of organic C). Our findings indicate that these oxidized char residues represent a particularly stable, abundant, and fertility-enhancing form of soil organic matter.

  1. Competitive biodegradation of dichlobenil and atrazine coexisting in soil amended with a char and citrate

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Yuping; Pang Hui; Zhou Zunlong [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang Ping [Department of Civil Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Feng Yucheng [Department of Agronomy and Soils, Auburn University, Auburn, AL 36849 (United States); Sheng, G. Daniel, E-mail: dansheng@zjut.edu.c [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2009-11-15

    The role of char nutrients in the biodegradation of coexisting dichlobenil and atrazine in a soil by their respective bacterial degraders, DDN and ADP, was evaluated. Under growing conditions, their degradation in soil extract was slow with <40% and <20% degraded within 64 h, respectively. The degradation in extracts and slurries of char-amended solids increased with increasing char content, due to nutritional stimulation on microbial activities. By supplementing soil extract with various major nutrients, the measured degradation demonstrated that P was the exclusive limiting nutrient. The reduction in the degradation of coexisting dichlobenil and atrazine resulted apparently from the competitive utilization of P by DDN and ADP. With a shorter lag phase, ADP commenced growing earlier than DDN with the advantage of utilizing P first in insufficient supply. This resulted in an inhibition on the growth of DDN and thus suppression on dichlobenil degradation. - Competitive utilization of char nutrients by bacterial degraders resulted in the preferential biodegradation of atrazine over dichlobenil in a soil containing a wheat-straw-derived char.

  2. Bitumen on Water: Charred Hay as a PFD (Petroleum Flotation Device

    Directory of Open Access Journals (Sweden)

    Nusrat Jahan

    2015-10-01

    Full Text Available Global demand for petroleum keeps increasing while traditional supplies decline. One alternative to the use of conventional crude oils is the utilization of Canadian bitumen. Raw bitumen is a dense, viscous, semi-liquid that is diluted with lighter crude oil to permit its transport through pipelines to terminals where it can then be shipped to global markets. When spilled, it naturally weathers to its original form and becomes dense enough to sink in aquatic systems. This severely limits oil spill recovery and remediation options. Here we report on the application of charred hay as a method for modifying the surface behavior of bitumen in aquatic environments. Waste or surplus hay is abundant in North America. Its surface can easily be modified through charring and/or chemical treatment. We have characterized the modified and charred hay using solid-state NMR, contact angle measurements and infrared spectroscopy. Tests of these materials to treat spilled bitumen in model aquatic systems have been undertaken. Our results indicate that bitumen spills on water will retain their buoyancy for longer periods after treatment with charred hay, or charred hay coated with calcium oxide, improving recovery options.

  3. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ju; Park, Young-Kwon; Kim, Joo Sik [Faculty of Environmental Engineering, University of Seoul, 90 Jeonnong-Dong, Dondaemun-Gu, Seoul 130-743 (Korea)

    2008-08-15

    Radiata pine sawdust was pyrolyzed in a bubbling fluidized bed equipped with a char separation system. The influence of the reaction conditions on the production of bio-oil was investigated through the establishment of mass balance, and the examination of the products' chemical and physical characteristics. The optimal reaction temperature for the production of bio-oil was between 673 and 723 K, and the yield was above 50 wt.% of the product. An optimal feed size also existed. In a particle with a size that was less than 0.3 mm, the bio-oil yield decreased due to overheating, which led to gas formation. A higher flow rate and feeding rate were found to be more effective for the production of bio-oil, but did not significantly affect it. The main compounds of bio-oil were phenolics, including cresol, guaiacol, eugenol, benzendiol and their derivatives, ketones, and aldehydes. In addition, high-quality bio-oils, which contained less than 0.005 wt.% of solid, no ash and low concentrations of alkali and alkaline earth metals, were produced due to the char removal system. (author)

  4. Development of carbon dioxide adsorbent from rice husk char

    Science.gov (United States)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  5. Adsorption of Pb(II by Activated Pyrolytic Char from Used Tire

    Directory of Open Access Journals (Sweden)

    Lu Ping

    2016-01-01

    Full Text Available As a renewable resource, the pyrolytic char derived from used tire has promising adsorption capacities owing to its similar structure and properties with active carbon. The purification and activation of the pyrolytic char from used tire, as well as the application of this material in the adsorption of Pb(II in water is conducted. The influences on the adsorption capacity by temperature and pH value are investigated and discussed; the adsorption thermodynamics and kinetics are also studied. The results show that the pyrolytic char from used tire has remarkable adsorption capacity for Pb(II, and the adsorption is an endothermic process complying with the Langmuir isotherm. The adsorption kinetics is a pseudo second-order reaction.

  6. A simple expression for the apparent reaction rate of large wood char gasification with steam.

    Science.gov (United States)

    Umeki, Kentaro; Roh, Seon-Ah; Min, Tai-Jin; Namioka, Tomoaki; Yoshikawa, Kunio

    2010-06-01

    A simple expression for the apparent reaction rate of large wood char gasification with steam is proposed. Large char samples were gasified under steam atmosphere using a thermo-balance reactor. The apparent reaction rate was expressed as the product of the intrinsic rate and the effective factor. The effective factor was modified to include the effect of change in char diameter and intrinsic reaction rate during the reaction. Assuming uniform conversion ratio throughout a particle, the simplified reaction scheme was divided into three stages. In the initial stage, the local conversion ratio increases without particle shrinkage. In the middle stage, the particle shrinks following the shrinking core model without change in the local conversion ratio. In the final stage, the local conversion ratio increases without particle shrinkage. The validity of the modified effective value was confirmed by comparison with experimental results.

  7. Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2014-08-01

    Full Text Available Few-layer graphene films were synthesized through chemical vapor deposition technique using coal char as solid carbon source. Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and selected area electron diffraction were used to characterize the graphene films. The electrochemical performance of the coal char derived few layer graphene anodes for lithium ion batteries was investigated by charge/discharge curves  and  discharge  capacity  at  different  current  densities.  The  graphene  anode maintained the reversible capacity at ~0.025, 0.013, and 0.007 mAh/cm2  at a current density of 10, 30, and 50 µA/cm2, respectively. The coal char derived graphene anodes show potential applications in thin film batteries for nanoelectronics.

  8. Structural evolution of biomass char and its effect on the gasification rate

    DEFF Research Database (Denmark)

    Fatehi, Hesameddin; Bai, Xue Song

    2017-01-01

    with different radii. The model is valid for biomass chars produced under relatively low heating rates, when the original beehive structure of the biomass is not destroyed during the pyrolysis stage. The contribution of different pores with different radius is taken into account using an effectiveness factor...... during the entire conversion process. This model is used to analyze the steam gasification process of biomass char of centimeter sizes. The results from the present multi-pore model are in better agreement with experimental data than those from a corresponding single pore model. Since the multi......-pore model accommodates the detailed intra-particle transport, it is a useful basis toward developing a more predictive model for biomass char gasification....

  9. Gasification as an alternative method for the destruction of sulfur containing waste (ChemChar process)

    Energy Technology Data Exchange (ETDEWEB)

    Medcalf, B.D.; Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry; Larsen, D.W. [Univ. of Missouri, St. Louis, MO (United States). Dept. of Chemistry

    1998-12-31

    The behavior of a non-incinerative reductive thermal cocurrent flow gasification process (ChemChar Process) when used to treat representative sulfur compounds is reported. Gasification of 2,3-benzenedisulfonic acid, thiomorpholine, and sulfuric acid converts the sulfur in these compounds to H{sub 2}S, OCS, and elemental sulfur. The H{sub 2}S and OCS are released in the synthesis with the gas product from which they can be scrubbed, with the elemental sulfur being deposited on the char matrix. No production of sulfur dioxide was detected. Gasified sulfur products recovered amounted to 89--114% of the total sulfur present in the sulfur compounds gasified, although exact mass balances could not be obtained due to the sulfur present in the char.

  10. A solid state NMR investigation of char forming processes in polymer degradation

    CERN Document Server

    Dick, C M

    2002-01-01

    A detailed knowledge of the condensed phase chemistry occurring in polymers exposed to elevated temperatures is crucial to understanding the behaviour of polymers exposed to fire. This is particularly true when trying to reduce polymer flammability by means of promoting char-forming reactions. Until recently, however, structural information on highly crosslinked chars and their precursors has been difficult to obtain, and as a consequence many degradation workers have merely labelled degradation residues as 'intractable'. However, the application of solid state NMR techniques developed in our laboratories for the structural characterisation of coals has provided a considerable insight into the structure and chemistry of polymer chars formed under both oxidative and non-oxidative conditions. A series of polymers including poly(vinyl chloride), poly(vinyl acetate), polyurethanes, polychloropene, cis and trans polyisoprene have been studied. These polymers have been used to describe the application of quantitati...

  11. Effect of char from municipal solid waste on pyrolysis oil%城市生活垃圾热解焦对热解焦油的影响

    Institute of Scientific and Technical Information of China (English)

    任善普; 宋强; 张蒙蒙; 舒新前

    2016-01-01

    The effect of char from Municipal Soild Waste (MSW) on pyrolysis oil was explored by means of a fixed bed reactor and gas charomatography-mass spectrometer (GC-MS).The products distribution and compounds of pyrolysis oil were investigated and analyzed.The result shown that when the temperature increased to 600 ℃,the yield of pyrolysis oil was 38.38%.When the char added up to 30%,the yield of pyrolysis oil reduced to 31.79%,the oxygen-carbon ratio of pyrolysis oil fallen from 0.20 to 0.10 and calorific value increased from 30.24 MJ/kg to 35.81 MJ/kg.The catalytic effect of char on pyrolysis oil was reduced when the ratios of char above 30%.When the char added up to 30%,the contact of the alcohols and carboxylic acids of pyrolysis oil were decreased by 19.18% and 13.73% respectively and the content of the esters and fatty hydrocarbons were increased by 27.69% and 5.63% respectively.The quality of pyrolysis oil improved by adding 30% char and the pyrolysis oil achieve heavy oil lightening.%为研究城市生活垃圾热解焦对城市生活垃圾热解焦油的影响,采用固定床对添加不同比例的城市生活垃圾热解焦的城市生活垃圾进行热解实验.实验结果表明:未添加热解焦时,城市生活垃圾热解焦油产率为38.38%;当热解焦添加比例为30%时,焦油产率为31.79%,焦油中的O/C由0.20下降到0.10,焦油热值由30.24 MJ/kg升高到35.81 MJ/kg;当热解焦添加量超过30%时,热解焦对热解焦油品质的改善作用减弱.利用GC-MS对热解焦油分析发现,热解焦添加比例为30%时,热解焦油中醇类和羧酸类分别下降了19.18%和13.73%,酯类和脂肪烃类分别增加了27.69%和5.63%.热解焦明显改善了热解焦油的品质,实现了一定程度的轻质化.

  12. Charring temperatures are driven by the fuel types burned in a peatland wildfire

    Directory of Open Access Journals (Sweden)

    Victoria A. Hudspith

    2014-12-01

    Full Text Available Peatlands represent a globally important carbon store; however, the human exploitation of this ecosystem is increasing both the frequency and severity of fires on drained peatlands. Yet, the interactions between the hydrological conditions (ecotopes, the fuel types being burned, the burn severity, and the charring temperatures (pyrolysis intensity remain poorly understood. Here we present a post-burn assessment of a fire on a lowland raised bog in Co. Offaly, Ireland (All Saints Bog. Three burn severities were identified in the field (light, moderate, and deeply burned, and surface charcoals were taken from 17 sites across all burn severities. Charcoals were classified into two fuel type categories (either ground or aboveground fuel and the reflectance of each charcoal particle was measured under oil using reflectance microscopy. Charcoal reflectance shows a positive relationship with charring temperature and as such can be used as a temperature proxy to reconstruct minimum charring temperatures after a fire event. Resulting median reflectance values for ground fuels are 1.09 ± 0.32%Romedian, corresponding to estimated minimum charring temperatures of 447°C ± 49°C. In contrast, the median charring temperatures of aboveground fuels were found to be considerably higher, 646°C ± 73°C (3.58 ± 0.77%Romedian. A mixed-effects modelling approach was used to demonstrate that the interaction effects of burn severity, as well as ecotope classes, on the charcoal reflectance is small compared to the main effect of fuel type. Our findings reveal that the different fuel types on raised bogs are capable of charring at different temperatures within the same fire, and that the pyrolysis intensity of the fire on All Saints Bog was primarily driven by the fuel types burning, with only a weak association to the burn severity or ecotope classes.

  13. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    Science.gov (United States)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  14. The CharXive Challenge. Regulation of global carbon cycles by vegetation fires

    CERN Document Server

    Ball, R

    2010-01-01

    It is an open, but not unanswerable, question as to how much atmospheric CO2 is sequestered globally by vegetation fires. In this work I conceptualise the question in terms of the general CharXive Challenge, discuss a mechanism by which thermoconversion of biomass may regulate the global distribution of carbon between reservoirs, show how suppression of vegetation fires by human activities may increase the fraction of carbon in the atmospheric pool, and pose three specific CharXive Challenges of crucial strategic significance to our management of global carbon cycles.

  15. ENHANCING ASPHALT RHEOLOGICAL BEHAVIOR AND AGING SUSCEPTIBILITY USING BIO-CHAR AND NANO-CLAY

    OpenAIRE

    2014-01-01

    The life expectancy of Asphalt Binder (AB) has been negatively impacted by the harsh bombardment of UV rays. UV rays cause asphalt to oxidize faster, which results in deterioration of asphalt rheological characteristics that can lead to pavement distresses. This study investigates the impact of bio-char and nano-clay of asphalt rheological properties. Two nano scale materials were used for this study were nano-clay and bio-char. Nano-clay (Cloisite 30B) is a naturally occurring inorganic mine...

  16. Reactivity of chars prepared from the pyrolysis of a Victorian lignite under a wide range of conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, H.; Mody, D.; Li, C.; Hayashi, J.; Chiba, T. [Monash University, Vic. (Australia). CRC for Clean Power from Lignite, Dept. of Chemical Engineering

    2000-07-01

    A Loy Yang lignite sample was pyrolysed under a wide range of experimental conditions using a wire-mesh reactor, a fluidised-bed reactor, a drop-tube reformer and a thermogravimetric analyser (TGA). The reactivity of these char samples in CO{sub 2} and air was measured in the TGA as well as in the fluidised-bed reactor. A sample prepared by the physical impregnation of NaCl into the lignite was also used in order to investigate the effect of NaCl in the lignite on the reactivity of the resulting char. Our experimental results indicate that, due to the volatilisation of a substantial fraction of Na in the lignite substrate during pyrolysis, the true catalytic activity of the Na in the lignite substrate should be evaluated by measuring the sodium content in the char after pyrolysis. The char reactivity measured in situ in the fluidised-bed reactor was compared with that of the same char measured separately in the TGA after re-heating the char sample to the same temperature as that in the fluidised-bed. It was found that the re-heating of the char in the TGA reduced the char reactivity.

  17. The influence of fine char particles burnout on bed agglomeration during the fluidized bed combustion of a biomass fuel

    Energy Technology Data Exchange (ETDEWEB)

    Scala, Fabrizio; Chirone, Riccardo [Istituto di Ricerche sulla Combustione, CNR, P.le V. Tecchio, 80-80125 Naples (Italy); Salatino, Piero [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, P.le V. Tecchio, 80-80125 Naples (Italy)

    2003-11-15

    The combustion of biomass char in a bubbling fluidized bed is hereby addressed, with specific reference to the influence that the combustion of fine char particles may exert on ash deposition and bed agglomeration phenomena. Experiments of steady fluidized bed combustion (FBC) of powdered biomass were carried out with the aim of mimicking the postcombustion of attrited char fines generated in the fluidized bed combustion of coarse char. Experimental results showed that the char elutriation rate is much smaller than expected on the basis of the average size of the biomass powder and of the carbon loading in the combustor. Samples of bed material collected after prolonged operation of the combustor were characterized by scanning electron microscopy (SEM)-EDX analysis and revealed the formation of relatively coarse sand-ash-carbon aggregates. The phenomenology is consistent with the establishment of a char phase attached to the bed material as a consequence of adhesion of char fines onto the sand particles. Combustion under sound-assisted fluidization conditions was also tested. As expected, enhancement of fines adhesion on bed material and further reduction of the elutriation rate were observed. Experimental results are interpreted in the light of a simple model which accounts for elutriation of free fines, adhesion of free fines onto bed material and detachment of attached fines by attrition of char-sand aggregates. Combustion of both free and attached char fines is considered. The parameters of the model are assessed on the basis of the measured carbon loadings and elutriation rates. Model computations are directed to estimate the effective size and the peak temperature of char-sand aggregates. The theoretical estimates of the effective aggregate size match fairly well those observed in the experiments.

  18. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts

    NARCIS (Netherlands)

    Braadbaart, F.; Poole, I.J.

    2008-01-01

    Wood exposed to a heat source can be transformed into charcoal if subject to conditions of carbonisation (in the absence of air) or charring (in restricted air). Charcoal recovered from archaeological sites can yield fundamental information to our understanding of human economic and cultural develop

  19. Aspects of Mathematical Morphology

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, H. De; Hosson, J.Th.M. De

    2002-01-01

    In this paper we review the basic concepts of integral-geometry-based morphological image analysis. This approach yields an objective, numerical characterization of two- and three-dimensional patterns in terms of geometrical and topological descriptors called Minkowski functionals. We review its mat

  20. Tonalites and plagiogranites of the Char suture-shear zone in East Kazakhstan:Implications for the Kazakhstan-Siberia collision

    Institute of Scientific and Technical Information of China (English)

    M.L. Kuibida; I.Yu. Safonova; P.V. Yermolov; A.G. Vladimirov; N.N. Kruk; S. Yamamoto

    2016-01-01

    The paper presents first UePb zircon ages and geochemical data from Carboniferous granitoids (tonalites and plagiogranites) of the Char sutureeshear zone in East Kazakhstan, which is located in the north-western Central Asian Orogenic Belt (CAOB). The study included analysis of geological setting, major and trace elements, and rock petrogenesis. The Char tonalites and plagiogranites occur as NW-striking linear chains inside Visean serpentinite mélange. Petrographycally, the tonalites show signs of syntec-tonic deformation, and the plagiogranites are less deformed suggesting their later intrusion. The tonalites yielded a LA-ICP-MS zircon age of ca. 323 Ma, i.e. exactly at the boundary between the early and late Carboniferous. Compositionally, the tonalites and plagiogranites are characterized, respectively, by high SiO2 (67e70 and 73e74 wt.%) and Al2O3 (17e19 and 14e15 wt.%), Sr/Y>40 and low Yb ¼ 0.2e0.5 ppm. Their multi-element patterns show clear Nb-Ta negative anomalies. The low Nb/Ta ratios (7e15) and Zr (114e191 ppm) suggest a MORB-type protolith (amphibolite) with subchondritic Nb/Ta (8e17) and low Zr (1e72 ppm). The low contents of K and Rb suggest weak assimilation of the melts by island arc felsic crust. The subchondritic Nb/Ta ratios exclude their derivation by the melting of subducted/dehydrated MORB. We argue that the Char high-Al tonalites and plagiogranites formed by the melting of hydrated MORB at the base of the mafic lower crust at pressures of 10e15 kbar. The occurrences of the Char tonalites and plagiogranites inside the Visean serpentinite mélange overlapped by Serpukhovian con-glomerates, their alignment parallel to deformation zones, and their geochemical features suggest their origin by the melting of mafic lower crust in relation to the collision of the Siberian and Kazakhstan continents.

  1. Derivation of heat value of coke/char from proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.R.P. (and others)

    From experimental data on high-, medium- and low-temperature cokes or chars, the following formulae were derived: gross CV (kcal/kg) 80(FC) + 76(VM); hydrogen content 0.224(VM). All values are on the air-dried basis.

  2. Modeling the temperature in coal char particle during fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Mirko Komatina; Simeon Oka [University of Belgrade, Belgrade (Serbia)

    2008-05-15

    The temperatures of a coal char particle in hot bubbling fluidized bed (FB) were analyzed by a model of combustion. The unsteady model includes phenomena of heat and mass transfer through a porous char particle, as well as heterogeneous reaction at the interior char surface and homogeneous reaction in the pores. The parametric analysis of the model has shown that above 550{sup o}C combustion occurs under the regime limited by diffusion. The experimental results of temperature measurements by thermocouple in the particle center during FB combustion at temperatures in the range 590-710{sup o}C were compared with the model predictions. Two coals of different rank were used: lignite and brown coal, with particle size in the range 5-10 mm. The comparisons have shown that the model can adequately predict the histories of temperatures in char particles during combustion in FB. In the first order, the model predicts the influence of the particle size, coal rank (via porosity), and oxygen concentration in its surroundings. 53 refs., 6 figs., 2 tabs.

  3. Quantitative Analysis of Graphene Sheet Content in Wood Char Powders during Catalytic Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    Yan-Jia Liou; Wu-Jang Huang

    2013-01-01

    The quantitative characterization of the graphene sheet content in carbon-containing materials is arguable and has not yet been developed.The authors report on a feasible method to characterize graphene sheet content quantitatively in pyrolized carbon materials using an X-ray diffraction (XRD) spectrometer.A direct carbonation at 300 ℃ followed by catalytic pyrolysis (heat-treatment temperature was set at 700-1400 ℃)under a vacuum condition was used for turning wood waste into pyrolized wood char powders.The graphene content in the samples was calculated through an analysis of full width at half maximum (FWHM) of the carbon (100) crystal plane at around 42°-43° in XRD.Results showed that the FWHM and the calculated graphene sheet content of pyrolized wood char powders depended on the heat-treatment temperature,and the FWHM of wood char powder with well-developed graphene sheets (100%) was determined to be 5.0.In addition,the trend to 100% graphene sheet-contained pyrolized carbon powder was obtained at a heattreatment temperature of 2700 ℃.The resistivity of the wood char powder with 100% graphene sheets was predicted to be 0.01 Ω cm,close to our experimental data of 0.012 and 0.006 Ω cm for commercial graphite and graphene products,respectively.

  4. Synthesis and characterization of resorcinol-formaldehyde resin chars doped by zinc oxide

    Science.gov (United States)

    Gun'ko, Vladimir M.; Bogatyrov, Viktor M.; Oranska, Olena I.; Urubkov, Iliya V.; Leboda, Roman; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga

    2014-06-01

    Polycondensation polymerization of resorcinol-formaldehyde (RF) mixtures in water with addition of different amounts of zinc acetate and then carbonization of dried gels are studied to prepare ZnO doped chars. Zinc acetate as a catalyst of resorcinol-formaldehyde polycondensation affects structural features of the RF resin (RFR) and, therefore, the texture of chars prepared from Zn-doped RFR. The ZnO doped chars are characterized using thermogravimetry, low temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). At a relatively high content of zinc acetate (1 mol per 10-40 mol of resorcinol) in the reaction mixture, the formation of crystallites of ZnO (zincite) occurs in a shape of straight nanorods of 20-130 nm in diameter and 1-3 μm in length. At a small content of zinc acetate (1 mol per 100-500 mol of resorcinol), ZnO in composites is XRD amorphous and does not form individual particles. The ZnO doped chars are pure nanoporous at a minimal ZnO content and nano-mesoporous or nano-meso-macroporous at a higher ZnO content.

  5. Synthesis and characterization of resorcinol–formaldehyde resin chars doped by zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gun’ko, Vladimir M., E-mail: vlad_gunko@ukr.net [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Bogatyrov, Viktor M.; Oranska, Olena I. [Chuiko Institute of Surface Chemistry, 17 General Naumov Street, 03164 Kyiv (Ukraine); Urubkov, Iliya V. [Kurdyumov Institute of Metal Physics, 36 Vernadsky Boulevard, 03142 Kyiv (Ukraine); Leboda, Roman; Charmas, Barbara; Skubiszewska-Zięba, Jadwiga [Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin (Poland)

    2014-06-01

    Polycondensation polymerization of resorcinol–formaldehyde (RF) mixtures in water with addition of different amounts of zinc acetate and then carbonization of dried gels are studied to prepare ZnO doped chars. Zinc acetate as a catalyst of resorcinol–formaldehyde polycondensation affects structural features of the RF resin (RFR) and, therefore, the texture of chars prepared from Zn-doped RFR. The ZnO doped chars are characterized using thermogravimetry, low temperature nitrogen adsorption/desorption, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM). At a relatively high content of zinc acetate (1 mol per 10–40 mol of resorcinol) in the reaction mixture, the formation of crystallites of ZnO (zincite) occurs in a shape of straight nanorods of 20–130 nm in diameter and 1–3 μm in length. At a small content of zinc acetate (1 mol per 100–500 mol of resorcinol), ZnO in composites is XRD amorphous and does not form individual particles. The ZnO doped chars are pure nanoporous at a minimal ZnO content and nano-mesoporous or nano-meso-macroporous at a higher ZnO content.

  6. Ultrasonic Characterisation of Epoxy Resin/Polyethylene Terephthalate (PET Char Powder Composites

    Directory of Open Access Journals (Sweden)

    Imran ORAL

    2016-11-01

    Full Text Available This study is carried out in order to determine the elastic properties of the Epoxy Resin (ER / Polyethylene terephthalate (PET Char Powder Composites by ultrasonic wave velocity measurement method. Plastic waste was recycled as raw material for the preparation of epoxy composite materials. The supplied chars were mixed with epoxy resin matrix at weight percentages of 10 %, 20 % and 30 % for preparing ER/PET Char Powder (PCP composites. The effect of PET char powder on the elastic properties of ER/PCP composites were investigated by ultrasonic pulse-echo method. According to the obtained results, the composition ratio of 80:20 is the most appropriate composition ratio, which gave the highest elastic constants values for ER/PCP composites. On the other hand, the best electrical conductivity value was obtained for 70:30 composition ratio. It was observed that ultrasonic shear wave velocity correlated more perfectly than any other parameters with hardness.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12190

  7. EFFECT OF CALCIUM ADDITION ON THE DEFLUORIDATION CAPACITY OF BONE CHAR

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    Dosage of small amounts of calcium chloride to fluoride water prior to contact with bone char which has already been saturated with fluoride is shown to provide an additional fluoride removal capacity. The additionally obtained removal capacity increases with slower filtration velocities and incr...

  8. Microanalysis of vitrous char and associated polymers: reference and ancient assemblages

    Science.gov (United States)

    Allue, E.; Bonnamy, S.; Courty, M. M.; Gispert I Guirado, F.

    2012-12-01

    Formation of vitrous char that occur in ancient charcoal assemblages have remained unsolved. Laboratory experiments refuted vitrification to resulting from high temperature charring of green or resinous wood. This puzzling problem has been refreshed by showing the association to the charcoal and vitrous char of plastics that were originally supposed to only be produced by petroleum industry. Extraction of similar polymers within geological glassy products from cosmic airbursts has suggested impact processes to possibly forming the carbonaceous polymorphs. The pulverisation at the ground in the Angles village (French Eastern Pyrenees) following the 2011 August 2nd high altitude meteor explosion of exotic debris with vitrous char and polymers, just alike the puzzling ones of the geological and archaeological records, has provided potential reference materials. We present here their microanalysis by Environmental SEM with EDS, Raman micro-spectrometry and FTIR, XRD, TEM, ICP-MS and isotope analyses. The characterization helps elucidating how the carbonaceous polymorphs formed by transient heating and transient high pressure of atmospheric aerosols. Under TEM the vesicular, dense, vitrous char show high structural organization with a dense pattern of nano-sized graphitized domains, metals and mineral inclusions. The coupled Raman-ESEM has allowed identifying a complex pattern at micro scales of ordered "D" peak at 1320-1350 cm-1 and the graphitic, ordered peak at 1576-1590 cm-1, in association to amorphous and poorly graphitic ordered carbon. The later occurs within plant cells that have been extracted from the dense vitrous char by performing controlled combustion under nitrogen up to 1000°C. In contrast, the brittle, vesicular vitrous char and the polymers encountered at the rear of the pulverised airburst debris reveal to be formed of agglutinated micro spherules of amorphous carbon with rare crystallized carbon nano-domains and scattered mineral inclusions. They

  9. The effect of chars and their water extractable organic carbon (WEOC) fractions on atrazine adsorption-desorption processes

    Science.gov (United States)

    Cavoski, I.; Jablonowski, N.; Burauel, P.; Miano, T.

    2012-04-01

    Chars are carbonaceous material produced from different type of biomass by pyrolysis. They are known as highly effective adsorbents for atrazine therefore limiting its degradation and its diffusion into the aqueous phase. The aim of the present work is to study the effects of different chars and char's derived WEOC on atrazine sorption-desorption processes. The five chars been used in this study derived from: 1) fast pyrolysis from hard wood (FP1); 2) flash pyrolysis from soft wood (FP2); 3) slow pyrolysis from deciduous wood (CC); 4) gasification from deciduous wood (GC) and 5) the market, purchased as activated charcoal standard (AC). Short-term batch equilibration tests were conducted to assess the sorption-desorption behavior of 14C-labeled atrazine on the chars, with a special focus on the desorption behavior using successive dilution method with six consecutive desorption step. Chars and their WEOC were physically and chemically characterized. Results demonstrate that biomass and pyrolysis process used to produce chars affect their physical and chemical properties, and atrazine adsorption-desorption behavior. Atrazine desorption resulted from the positive and competitive interactions between WEOC and chars surfaces. WEOC pool play important role in atrazine adsorption-desorption behavior. FP1 and FP2 with higher concentration of WEOC showed higher desorption rates, whereas GC, CC and AC with insignificant WEOC concentration strongly adsorb atrazine with low desorption rates. According to our results, when high WEOC pools chars are concerned, an increase in atrazine desorption can be observed but further studies would help in confirming the present results.

  10. Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars.

    Science.gov (United States)

    Lattao, Charisma; Cao, Xiaoyan; Mao, Jingdong; Schmidt-Rohr, Klaus; Pignatello, Joseph J

    2014-05-01

    Chars from wildfires and soil amendments (biochars) are strong adsorbents that can impact the fate of organic compounds in soil, yet the effects of solute and adsorbent properties on sorption are poorly understood. We studied sorption of benzene, naphthalene, and 1,4-dinitrobenzene from water to a series of wood chars made anaerobically at different heat treatment temperatures (HTT) from 300 to 700 °C, and to graphite as a nonporous, unfunctionalized reference adsorbent. Peak suppression in the NMR spectrum by sorption of the paramagnetic relaxation probe TEMPO indicated that only a small fraction of char C atoms lie near sorption sites. Sorption intensity for all solutes maximized with the 500 °C char, but failed to trend regularly with N2 or CO2 surface area, micropore volume, mesopore volume, H/C ratio, O/C ratio, aromatic fused ring size, or HTT. A model relating sorption intensity to a weighted sum of microporosity and mesoporosity was more successful. Sorption isotherm linearity declined progressively with carbonization of the char. Application of a thermodynamic model incorporating solvent-water and char-graphite partition coefficients permitted for the first time quantification of steric (size exclusion in pores) and π-π electron donor-acceptor (EDA) free energy contributions, relative to benzene. Steric hindrance for naphthalene increases exponentially from 9 to 16 kJ/mol (∼ 1.6-2.9 log units of sorption coefficient) with the fraction of porosity in small micropores. π-π EDA interactions of dinitrobenzene contribute -17 to -19 kJ/mol (3-3.4 log units of sorption coefficient) to sorption on graphite, but less on chars. π-π EDA interaction of naphthalene on graphite is small (-2 to 2 kJ/mol). The results show that sorption is a complex function of char properties and solute molecular structure, and not very predictable on the basis of readily determined char properties.

  11. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    Science.gov (United States)

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts.

  12. Thermoplastic Polyurethane Elastomer Nanocomposites: Morphology, Thermophysical, and Flammability Properties

    Directory of Open Access Journals (Sweden)

    Wai K. Ho

    2010-01-01

    Full Text Available Novel materials based on nanotechnology creating nontraditional ablators are rapidly changing the technology base for thermal protection systems. Formulations with the addition of nanoclays and carbon nanofibers in a neat thermoplastic polyurethane elastomer (TPU were melt-compounded using twin-screw extrusion. The TPU nanocomposites (TPUNs are proposed to replace Kevlar-filled ethylene-propylene-diene-monomer rubber, the current state-of-the-art solid rocket motor internal insulation. Scanning electron microscopy analysis was conducted to study the char characteristics of the TPUNs at elevated temperatures. Specimens were examined to analyze the morphological microstructure during the pyrolysis reaction and in fully charred states. Thermophysical properties of density, specific heat capacity, thermal diffusivity, and thermal conductivity of the different TPUN compositions were determined. To identify dual usage of these novel materials, cone calorimetry was employed to study the flammability properties of these TPUNs.

  13. CHAR CRYSTALLINE TRANSFORMATIONS DURING COAL COMBUSTION AND THEIR IMPLICATIONS FOR CARBON BURNOUT

    Energy Technology Data Exchange (ETDEWEB)

    ROBERT H. HURT

    1998-09-08

    Recent work at Sandia National Laboratories, Imperial College, and the U.K. utility PowerGen, has identified an important mechanism believed to have a large influence on unburned carbon levels from pulverized coal-fired boilers. That mechanism is char carbon crystalline rearrangements on subsecond times scales at temperatures of 1800 - 2500 K, which lead to char deactivation in the flame zones of furnaces. The so-called thermal annealing of carbons is a well known phenomenon, but its key role in carbon burnout has only recently been appreciated, and there is a lack of quantitative data in this time/temperature range. In addition, a new fundamental tool has recently become available to study crystalline transformations, namely high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars. Motivated by these new developments, this University Coal Research project has been initiated with the following two goals:  to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history.  to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis. Work is currently underway on the following three tasks: Task 1 Experimental technique development. The goal of this task is to develop and demonstrate an apparatus and procedure for measuring transient, high-temperature, thermal deactivation of coal chars. While peak gas temperatures in boilers are often in the range 1800 - 2000 K, peak particle temperatures can be much higher due to high rates of heat release at the particle surface due to exothermic carbon oxidation. The prototype transient heat treatment apparatus is based on an inert-gas purged graphite-rod sample holder that is subjected to rapid Joule heating to

  14. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina.

    Science.gov (United States)

    Sanna, Aimaro; Li, Sujing; Linforth, Rob; Smart, Katherine A; Andrésen, John M

    2011-11-01

    The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK.

  15. Morphological Snakes

    OpenAIRE

    Álvarez, Luis; Baumela Molina, Luis; Henríquez, Pedro; Márquez Neila, Pablo

    2010-01-01

    We introduce a morphological approach to curve evolution. The differential operators used in the standard PDE snake models can be approached using morphological operations on a binary level set. By combining the morphological operators associated to the PDE components we achieve a new snakes evolution algorithm. This new solution is based on numerical methods which are very simple, fast and stable. Moreover, since the level set is just a binary piecewise constant function, this approach does ...

  16. Structure-Based Predictive Model for Coal Char Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Hadad; Joseph Calo; Robert Essenhigh; Robert Hurt

    1998-04-08

    Progress was made this period on a number of separate experimental and modelling activities. At Brown, the models of carbon nanostructure evolution were expanded to consider high-rank materials with initial anisotropy. The report presents detailed results of Monte Carlo simulations with non-zero initial layer length and with statistically oriented initial states. The expanded simulations are now capable of describing the development of nanostructure during carbonization of most coals. Work next quarter will address the remaining challenge of isotropic coke-forming coals. Experiments at Brown yielded important data on the "memory loss" phenomenon in carbon annealing, and on the effect of mineral matter on high-temperature reactivity. The experimental aspects of the Brown work will be discussed in detail in the next report.

  17. EXPERIMENTAL RESEARCH ON TAR CATALYTIC CRACKING OVER BIOMASS CHAR%生物质炭催化裂解焦油的实验研究

    Institute of Scientific and Technical Information of China (English)

    尤占平; 由世俊; 李宪莉; 郝长生; 焦永刚

    2011-01-01

    通过实验方法研究了生物质炭对生物质热解焦油的催化特性.通过分析焦油裂解率在催化剂及其重量、蒸汽加入量和加入方式、氮气流量等条件下的变化可知:在蒸汽条件下,生物质炭对焦油有显著的催化裂解效果,最高焦油转化率可达96.1%.通过对实验条件下裂解产物、裂解气体积分数的分析可知,生物质炭和蒸汽可以促进热解产物里面的可凝结相转化为不可凝结的气体,并且导致气体组分体积分数的变化.裂解气中氢气产量增加较快,最高可达裂解气体积的50.2%.%The catalytic pyrolysis characteristics of biomass char on tar from biomass pyrolysis were studied by experiments. Through analyzing the change of tar conversion rate under conditions like catalyst and its weight, amount and adding methods of steam, nitrogen flow etc, conclusion can be drawn that biomass char has remarkable effects in tar catalytic cracking under steam conditions. The maximum tar conversion rate can be of 96.1%. Through the studies of pyrolysis yields and volume fraction of pyrolysis gas under experimental conditions, it can be known that biomass char and steam can promote condensable liquid changing into uncondensable gas and lead to volume fraction changes of pyrolysis gas composition. The yield of hydrogen increases rapidly with the maximum output up to 50.2% of pyrolysis gas volume.

  18. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.

    Science.gov (United States)

    Chen, Handing; Chen, Xueli; Qin, Yueqiang; Wei, Juntao; Liu, Haifeng

    2017-03-01

    The influence of torrefaction on the physicochemical characteristics of char during raw and water washed rice straw pyrolysis at 800-1200°C is investigated. Pore structure, aromaticity and gasification activity of pyrolysis chars are compared between raw and torrefied samples. For raw straw, BET specific surface area decreases with the increased torrefaction temperature at the same pyrolysis temperature and it approximately increases linearly with weight loss during pyrolysis. The different pore structure evolutions relate to the different volatile matters and pore structures between raw and torrefied straw. Torrefaction at higher temperature would bring about a lower graphitization degree of char during pyrolysis of raw straw. Pore structure and carbon crystalline structure evolutions of raw and torrefied water washed straw are different from these of raw straw during pyrolysis. For both raw and water washed straw, CO2 gasification activities of pyrolysis chars are different between raw and torrefied samples.

  19. Nitric oxide reduction over biomass and coal chars under fluidized bed combustion conditions: the role of thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Piero Salatino; Anna Di Somma; Roberto Solimene; Riccardo Chirone [Universita degli Studi di Napoli Federico II, Napoli (Italy). Dipartimento di Ingegneria Chimica

    2008-07-01

    The de-NOx potential of biomass-and waste-derived fuels candidate for cofiring with coal is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the extent of thermodeactivation of biogenous fuels, i.e. the loss of reactivity toward the NOx-char reaction as char is annealed for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char. Results are discussed in the light of the potential exploitation of synergistic effects on NOx emission associated with cofiring with coal. 21 refs., 8 figs., 1 tab.

  20. Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon.

    Science.gov (United States)

    Alvarez, Jon; Lopez, Gartzen; Amutio, Maider; Bilbao, Javier; Olazar, Martin

    2014-10-01

    The overall valorization of rice husk char obtained by flash pyrolysis in a conical spouted bed reactor (CSBR) has been studied in a two-step process. Thus, silica has been recovered in a first step and the remaining carbon material has been subjected to steam activation. The char samples used in this study have been obtained by continuous flash pyrolysis in a conical spouted bed reactor at 500°C. Extraction with Na2CO3 allows recovering 88% of the silica contained in the rice husk char. Activation of the silica-free rice husk char has been carried out in a fixed bed reactor at 800°C using steam as activating agent. The porous structure of the activated carbons produced includes a combination of micropores and mesopores, with a BET surface area of up to 1365m(2)g(-1) at the end of 15min.

  1. Synthesis and Application of a Novel Polyamide Charring Agent for Halogen-Free Flame Retardant Polypropylene

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2013-01-01

    Full Text Available A novel charring agent, poly(p-ethylene terephthalamide (PETA, for halogen-free flame retardant polypropylene was synthesized by using p-phthaloyl chloride (TPC and ethylenediamine through solution polycondensation at low temperature, and the effects of PETA on flame retardance of polypropylene (PP/IFR systems were studied. The experimental results showed that PETA could considerably enhance the fire retardant performance as proved by evidence of the increase of limiting oxygen index (LOI values, the results of UL-94 tests, and cone calorimeter tests (CCT. Fourier transform infrared spectroscopy (FTIR and scanning electron microscope (SEM demonstrated that an appropriate amount of PETA could react with PP/IFR system to form cross-link network; a more compact char layer could be formed which was responsible for the improved thermal and flame retardant properties of PP/IFR systems. However, the superfluous amount of PETA would play the negative role.

  2. Genetic structure of the Salvelinus genus chars from reservoirs of the Kuril Islands.

    Science.gov (United States)

    Shubina, E A; Ponomareva, E V; Gritsenko, O F

    2007-12-01

    Genetic resemblance of chars Salvelinus alpinus krasheninnikovi (Salvelinus malma krasheninnikovi) of 35 samples collected in five Kuril Islands--Shumshu, Paramushir, Onekotan, Iturup, and Kunashir--has been studied by the PCR-RAPD method. In the limits of each island, both resident isolates and anadromous forms give strictly supported clusters distinct from samples from the other islands. The samples from five islands form three superclusters: the first from Kunashir and Iturup Islands, the second from Paramushir and Onekotan Islands, and the third from Shumshu Island. The possible reasons for genetic similarity of resident and anadromous forms of Dolly Varden chars inhabiting reservoirs of a definite island are considered (the founder effect, homing, limited migration).

  3. Production of Low-Phosphorus Molten Iron from High-Phosphorus Oolitic Hematite Using Biomass Char

    Science.gov (United States)

    Tang, Huiqing; Qi, Tengfei; Qin, Yanqi

    2015-09-01

    In this study, an energy-saving and environmentally friendly method to produce low-phosphorus molten iron from high-phosphorus oolitic hematite was experimentally investigated and theoretically analyzed. The results indicate that biomass char is a suitable reducing agent for the proposed method. In the direct reduction stage, the ore-char briquette reached a metallization degree of 80-82% and a residual carbon content of 0.1-0.3 mass%. Under the optimized condition, phosphorus remained in the gangue as calcium phosphate. In the melting separation stage, phosphorus content ([%P]) in molten iron could be controlled by introducing a Na2CO3 additive, and the phosphorus behavior could be predicted using ion molecular coexistence theory. Molten iron with [%P] less than 0.3 mass% was obtained from the metallic briquettes with the aforementioned quality by introducing 2-4% Na2CO3 and the iron recovery rate was 75-78%.

  4. Time resolved quantitative imaging of charring in materials at temperatures above 1000 K

    Science.gov (United States)

    Böhrk, Hannah; Jemmali, Raouf

    2016-07-01

    A device is presented allowing for in situ investigation of chemically changing materials by means of X-ray imaging. A representative cork ablator sample, additionally instrumented with thermocouples, is encapsulated in an evacuated cell heating a sample surface with a heat flux of 230 kW/m2. The images show the sample surface and the in-depth progression of the char front dividing the char layer from the virgin material. Correlating the images to thermocouple data allows for the deduction of a reaction temperature. For the representative cork ablator investigated at the present conditions, the progression rate of the pyrolysis layer is determined to 0.0285 mm/s and pyrolysis temperature is 770 or 737 K, depending on the pre-existing conditions. It is found that the novel device is ideally suited for volume process imaging.

  5. Characterization of adsorption of aqueous arsenite and arsenate onto charred dolomite in microcolumn systems.

    Science.gov (United States)

    Salameh, Yousef; Al-Muhtaseb, Ala'a H; Mousa, Hasan; Walker, Gavin M; Ahmad, Mohammad N M

    2014-01-01

    In this work, the removal of arsenite, As(III), and arsenate, As(V), from aqueous solutions onto thermally processed dolomite (charred dolomite) via microcolumn was evaluated. The effects of mass of adsorbent (0.5-2 g), initial arsenic concentration (50-2000 ppb) and particle size (dolomite in a microcolumn were investigated. It was found that the adsorption of As(V) and As(III) onto charred dolomite exhibited a characteristic 'S' shape. The adsorption capacity increased as the initial arsenic concentration increased. A slow decrease in the column adsorption capacity was noted as the particle size increased from>0.335 to 0.710-2.00 mm. For the binary system, the experimental data show that the adsorption of As(V) and As(III) was independent of both ions in solution. The experimental data obtained from the adsorption process were successfully correlated with the Thomas Model and Bed Depth Service Time Model.

  6. Effects of catalytic mineral matter on CO/CO sub 2 ratio, temperature and burning time for char combustion

    Energy Technology Data Exchange (ETDEWEB)

    Longwell, J.P.; Sarofim, A.F.; Lee, Chun-Hyuk.

    1990-01-01

    In this program we are measuring the CO{sub 2}/CO ratio for both catalyzed and uncatalyzed chars over a wide range of temperature. These results will then be used to develop predictive models for char temperature and burning rates. In this report progress on modeling particle temperature under conditions where ignition occurs is reported. A comparison of preliminary modeling results with experimental results is also reported. 11 refs., 4 figs.

  7. Modeling of single char combustion, including CO oxidation in its boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.H.; Longwell, J.P.; Sarofim, A.F.

    1994-10-25

    The combustion of a char particle can be divided into a transient phase where its temperature increases as it is heated by oxidation, and heat transfer from the surrounding gas to an approximately constant temperature stage where gas phase reaction is important and which consumes most of the carbon and an extinction stage caused by carbon burnout. In this work, separate models were developed for the transient heating where gas phase reactions were unimportant and for the steady temperature stage where gas phase reactions were treated in detail. The transient char combustion model incorporates intrinsic char surface production of CO and CO{sub 2}, internal pore diffusion and external mass and heat transfer. The model provides useful information for particle ignition, burning temperature profile, combustion time, and carbon consumption rate. A gas phase reaction model incorporating the full set of 28 elementary C/H/O reactions was developed. This model calculated the gas phase CO oxidation reaction in the boundary layer at particle temperatures of 1250 K and 2500 K by using the carbon consumption rate and the burning temperature at the pseudo-steady state calculated from the temperature profile model but the transient heating was not included. This gas phase model can predict the gas species, and the temperature distributions in the boundary layer, the CO{sub 2}/CO ratio, and the location of CO oxidation. A mechanistic heat and mass transfer model was added to the temperature profile model to predict combustion behavior in a fluidized bed. These models were applied to data from the fluidized combustion of Newlands coal char particles. 52 refs., 60 figs.

  8. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Matthew W.; Dallmeyer, Ian; Johnson, Timothy J.; Brauer, Carolyn S.; McEwen, Jean-Sabin; Espinal, Juan F.; Garcia-Perez, Manuel

    2016-04-01

    Raman spectroscopy is a powerful tool for the characterization of many carbon 27 species. The complex heterogeneous nature of chars and activated carbons has confounded 28 complete analysis due to the additional shoulders observed on the D-band and high intensity 29 valley between the D and G-bands. In this paper the effects of various vacancy and substitution 30 defects have been systematically analyzed via molecular modeling using density functional 31 theory (DFT) and how this is manifested in the calculated gas-phase Raman spectra. The 32 accuracy of these calculations was validated by comparison with (solid-phase) experimental 33 spectra, with a small correction factor being applied to improve the accuracy of frequency 34 predictions. The spectroscopic effects on the char species are best understood in terms of a 35 reduced symmetry as compared to a “parent” coronene molecule. Based upon the simulation 36 results, the shoulder observed in chars near 1200 cm-1 has been assigned to the totally symmetric 37 A1g vibrations of various small polyaromatic hydrocarbons (PAH) as well as those containing 38 rings of seven or more carbons. Intensity between 1400 cm-1 and 1450 cm-1 is assigned to A1g 39 type vibrations present in small PAHs and especially those containing cyclopentane rings. 40 Finally, band intensity between 1500 cm-1 and 1550 cm-1 is ascribed to predominately E2g 41 vibrational modes in strained PAH systems. A total of ten potential bands have been assigned 42 between 1000 cm-1 and 1800 cm-1. These fitting parameters have been used to deconvolute a 43 thermoseries of cellulose chars produced by pyrolysis at 300-700 °C. The results of the 44 deconvolution show consistent growth of PAH clusters with temperature, development of non-45 benzyl rings as temperature increases and loss of oxygenated features between 400 °C and 46 600 °C

  9. Fixed-bed adsorption study of methylene blue onto pyrolytic tire char

    Science.gov (United States)

    Makrigianni, Vassiliki; Giannakas, Aris; Papadaki, Maria; Albanis, Triantafyllos; Konstantinou, Ioannis

    2016-04-01

    In this work, the adsorption efficiency of acid treated pyrolytic tire char to cationic methylene blue (MB) dye adsorption from aqueous solutions was investigated by fixed-bed adsorption column experiments. The effects of the initial dye concentration (10 - 40 mg L-1) and feed flow rate (50 - 150 mL min -1) with a fixed bed height (15 cm) were studied in order to determine the breakthrough characteristics of the adsorption system. The Adams-Bohart, Yoon-Nelson and Thomas model were applied to the adsorption of MB onto char at different operational conditions to predict the breakthrough curves and to determine the characteristic parameters of the column. The results showed that the maximum adsorbed quantities decreased with increasing flow rate and increased with increasing initial MB concentration. Breakthrough time and exhaustion time increased with decreasing inlet dye concentration and flow rate. In contrast with Adams-Bohart model, Yoon-Nelson model followed by Thomas model were found more suitable to describe the fixed-bed adsorption of methylene blue by char. The correlation coefficient values R2 for both models at different operating conditions are higher than 0.9 and the low average relative error values provided very good fittings of experimental data at different operating conditions. Higher adsorption capacity of 3.85 mg g -1 was obtained at 15 cm of adsorbent bed height, flow rate of 100 mL min -1and initial MB concentration of 40 mg L-1. Although that activated carbons exhibited higher adsorption capacities in the literature, acid-treated pyrolytic tire char was found to be considerably efficient adsorbent for the removal of MB dye column taking into account the advantages of the simpler production process compared to activated carbons, as well as, the availability of waste tire feedstock and concurrent waste tire management.

  10. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

  11. Determination of reactivity parameters of model carbons, cokes and flame-chars

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst; Gjernes, Erik; Jessen, Thomas

    1996-01-01

    Reactivity profiles are defined and measured with thermogravimetry for a dense metallurgical Longyear coke, a polymer-derived porous active carbon, Carboxen 1000, and three flame-chars, Illinois #6, Pittsburgh #8 and New Mexico Blue #1. For each sample it is found that the reactivity profile can ...... reactivity measure is used to rank fuels with very different structural profiles, at varying levels of burnout, temperature and oxygen partial pressure. Keyword: TGA,Reactivity,Coal...

  12. Group morphology

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.

    2000-01-01

    In its original form, mathematical morphology is a theory of binary image transformations which are invariant under the group of Euclidean translations. This paper surveys and extends constructions of morphological operators which are invariant under a more general group TT, such as the motion group

  13. Temperature Trends in Coal Char Combustion under Oxy-fuel Conditions for the Determination of Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Samira [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hecht, Ethan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Oxy-fuel combustion technology with carbon capture and storage could significantly reduce global CO2 emissions, a greenhouse gas. Implementation can be aided by computational fluid dynamics (CFD) simulations, which require an accurate understanding of coal particle kinetics as they go through combustion in a range of environments. To understand the kinetics of pulverized coal char combustion, a heated flow reactor was operated under a wide range of experimental conditions. We varied the environment for combustion by modifying the diluent gas, oxygen concentration, gas flow rate, and temperature of the reactor/reacting gases. Measurements of reacting particle temperatures were made for a sub-bituminous and bituminous coal char, in environments with CO2 or N2 as the diluent gas, with 12, 24, and 36 vol-% oxygen concentration, at 50, 80, 100, and 200 standard liters per minute flowing through the reactor, reactor temperatures of 1200, 1400 K, at pressures slightly above atmospheric. The data shows consistent increasing particle temperature with increased oxygen concentration, reactor temperature and higher particle temperatures for N2 diluent than CO2. We also see the effects of CO2 gasification when different ranks of coal are used, and how the reduction in the temperature due to the CO2 diluent is greater for the coal char that has higher reactivity. Quantitative measurements for temperature are not yet complete due to ongoing calibration of detection systems.

  14. Preparation of Bamboo Chars and Bamboo Activated Carbons to Remove Color and COD from Ink Wastewater.

    Science.gov (United States)

    Hata, Motohide; Amano, Yoshimasa; Thiravetyan, Paitip; Machida, Motoi

    2016-01-01

    Bamboo chars and bamboo activated carbons prepared by steam activation were applied for ink wastewater treatment. Bamboo char at 800 °C was the best for the removal of color and chemical oxygen demand (COD) from ink wastewater compared to bamboo chars at 300 to 700 °C due to higher surface area and mesopore volume. Bamboo activated carbon at 600 °C (S600) was the best compared to bamboo activated carbon at 800 °C (S800), although S800 had larger surface area (1108 m(2)/g) than S600 (734 m(2)/g). S600 had higher mesopore volume (0.20 cm(3)/g) than S800 (0.16 cm(3)/g) and therefore achieved higher color and COD removal. All bamboo activated carbons showed higher color and COD removal efficiency than commercial activated carbon. In addition, S600 had the superior adsorption capacity for methylene blue (0.89 mmol/g). Therefore, bamboo is a suitable material to prepare adsorbents for removal of organic pollutants.

  15. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    Energy Technology Data Exchange (ETDEWEB)

    Arogundade, A. I., E-mail: ajiunolorioba@gmail.com; Megat-Yusoff, P. S. M., E-mail: puteris@petronas.com.my; Faiz, A. [Department of Mechanical Engineering, Universiti Tecknologi Petronas (Malaysia); Bhat, A. H. [Department of Fundamental and Applied Science, Universiti Tecknologi Petronas (Malaysia)

    2015-07-22

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  16. Characterization of red mud-epoxy intumescent char using surface imaging and micro analysis

    Science.gov (United States)

    Arogundade, A. I.; Megat-Yusoff, P. S. M.; Bhat, A. H.; Faiz, A.

    2015-07-01

    In this study, red mud (RM), an oxide waste was proposed as reinforcing, synergistic filler for the traditional epoxy intumescent coating (IC). 5.5 wt% of acid-modified and unmodified red mud were introduced into the basic intumescent formulation of ammonium polyphosphate (APP), pentaerythritol (PER) and melamine (MEL). In order to predict effect of modification on its suitability, Field emission electron scanning microscopy and Fourier transform infra red were used to obtain detailed characteristics such as the cell size, pore distribution, homogeneity and chemical composition of the red mud-epoxy carbonaceous char. Both acid-modified and unmodified RM-filled ICs produced chars with smaller and more closely packed cells compared to chars from the unfilled coating. Both coating types had hard carbonaceous metal phosphate coverings that could act as heat barriers. The unmodified red mud was found to be antagonistic to the intumescent action with an expansion of only 2 times the initial thickness. The leached, low iron-red mud produced an expansion of 15 times the initial thickness, but possessed a hollow interior. From these findings, it may be deduced that while acid leaching of red mud may improve intumescent expansion, it would be necessary to optimize the percent filler loading to improve residual mass.

  17. Holocene linkages between char, soot, biomass burning and climate from Lake Daihai, China

    Science.gov (United States)

    Han, Y. M.; Marlon, J. R.; Cao, J. J.; Jin, Z. D.; An, Z. S.

    2012-12-01

    Black or elemental carbon (EC), including soot and char, are byproducts of anthropogenic fossil-fuel and biomass burning, and also of wildfires. EC, and particularly soot, strongly affects atmospheric chemistry and physics and thus radiative forcing; it can also alter regional climate and precipitation. Pre-industrial variations in EC as well as its source areas and controls however, are poorly known. Here we use a lake-sediment EC record from China to reconstruct Holocene variations in soot (combustion emissions formed via gas-to-particle conversion processes) and char (combustion residues from pyrolysis) measured with a thermal/optical method. Comparisons with sedimentary charcoal records (i.e., particles measured microscopically), climate and population data are used to infer variations in biomass burning and its controls. During the Holocene, positive correlations are observed between EC and an independent index of regional biomass burning. Negative correlations are observed between EC and monsoon intensity, and tree cover inferred from arboreal pollen percentages. Abrupt declines in temperature are also linked with widespread declines in fire. Our results 1) confirm the robustness of a relatively new method for reconstructing variations in EC; 2) document variations in regional biomass burning; 3) support a strong climatic control of biomass burning throughout the Holocene; and 4) indicate that char levels are higher today than at any time during the Holocene.

  18. Effects of Bio-char on Soil Microbes in Herbicide Residual Soils

    Directory of Open Access Journals (Sweden)

    WANG Gen-lin

    2015-10-01

    Full Text Available Effects of biological carbon (bio-char on soil microbial community were studied by pot experiments simulating long residual herbicide residues in soil environment, which clarifed the improvement of biochar and its structural properties on soil microenvironment. The results showed that fungi and actinomycetes had the same effect tendency within 0~0.72 mg·kg-1 in clomazone residue which increased the role of stimulation with crop growth process prolonged, especially in high residue treatment, but strong inhibitory effect on bacteria community was occured early which returned to normal until sugar beet growth to fiftieth day. Soil fungi community decreased with bio-char adding, but had no significant difference with the control. When clomazone residue in soil was below 0.24 mg·kg-1, soil actinomycetes community was higher than control without bio-char, bacteria increased first and then reduced after adding carbon as below 0.12 mg·kg-1. Biochar was ‘deep hole’ structure containing C, O, S and other elements. The results showed that a certain concentration clomazone residue in soil would stimulate soil fungi and actinomycetes to grow. After adding the biochar, the inhibition effect of high herbicides residual on bacterial would be alleviated.

  19. [Population genetic structure of the char species of the Northern Kuril Islands and the rank of the Dolly Varden Char in the system of the genus Salvelinus (Salmonidae: Teleostei)].

    Science.gov (United States)

    Shubina, E A; Ponomareva, E V; Gritsenko, O F

    2006-01-01

    Analysis of the taxonomic position of most species and forms of the char (genus Salvelinus, Salmonidae: Teleostei) was made based on RAPD-PCR. The material was represented by samples from 29 populations from the Kuril Islands, coast of the Sea of Okhotsk, Kamchatka, Chukotka, Taymyr, Transbaikalia, the Kola Peninsula, Svalbard, Finland, and North America. It was shown that the genus Salvelinus splits into three well-justified clusters: (1) all the forms assigned to the Salvelinus alpinus--S. malma complex; (2) two samples of the White-Spotted Char from the Southern Kuril Islands and from Kamchatka; (3) two North American species, S. fontinalis and S. namaycush (samples of the North American species S. confluentis were absent from the collection). Analysis of the absolute values of genetic disctances of the S. alpinus--S. malma forms relative to S. leucomaenis, S. fontinalis, and S. namaycush revealed distances approaching the species rank between the following isolates: Frolikh Char, Mountain Char, Black Lake Char, Goggle-Eyed Char, and Neyva Char. Samples of Dolly Varden currently considered as "S. malma", do not constitute a separate cluster, falling within the group of the Arctic char S. alpinus. This conclusion is supported by the analysis of the results of three series of experiments by R. Phillips on ITS1 ribosome genes (Pleute et al., 1992; Phillips et al., 1995; Phillips et al., 1999). This indicates the infraspecific rank of malma within S. alpinus. Isolated populations of "Salvethymus svetovidovi" from the lake Elgygytgyn (Chukotka Peninsula) and of the char from the lake Chyornoye (Onekotan Island), recently described as S. gritzenkoi (Vasil'eva, Stygar, 2000), fell withing the S. alpinus--S. malma complex, the Onekotan char grouped together with another isolate from the same island. Comparison of genetic distances between the samples showed that the differences between the two isolated of Onekotan and migratory forms of the Kuril Islands are

  20. Stable Carbon Isotopic Fractionation in Smoke and Char Produced During Biomass Burning

    Science.gov (United States)

    Wang, Y.; Hsieh, Y.

    2006-12-01

    Stable isotopic ratio of carbon has been used extensively as a tracer of carbon sources in the environment. It has been documented that burning of C4 grasses resulted in significant depletion of C13 in the charcoal while burning of wood and C3 grass did not. This study was initiated to investigate the stable carbon isotopic fractionation of the smoke and char produced during biomass burnings. Samples of Juncus romerianus (C3 salt marsh grass) and Spartina alterniflora (C4 salt marsh grass), Eremochloa ophiuroides (centipede, a C4 lawn grass) and woody debris of a pine forest were colleted and burned in open air fire place. The particulate matter with diameters less than 2.5 micron (PM2.5) emitted from the burning was collected using a PM sampler. The original biomass, PM2.5, black C in PM2.5 and char (ash) were analyzed for their C, N and S thermograms using a multi-elemental scanning thermal analyzer and their stable C isotopic ratios were measured using an EA-IRMS. The results indicate that burning of wood and C3 grass did not produce significant C isotopic fractionation in PM2.5, black C in PM2.5 and char with respect to the original material. However, there was a significant C13-depletion in PM2.5 (-6.2 per mil), black C in PM2.5 (-4.6 per mil) and chars (-4.6 per mil) produced by burning of the C4 centipede grass; whereas the C4 Spartina salt marsh grass produced a C13-depletion in PM2.5 (-2.3 per mil) and black C in PM2.5 (-3.6 per mil), and a slight C13-enrichment in char (0.5 per mil). The isotope fractionation associated with burning of C4 vegetation is probably dependent on species and burning conditions and warrant further study.

  1. 共热解过程对褐煤焦和生物质焦氧化特性的影响%Effect of co-pyrolysis process on the oxidation reactivity of lignite char and biomass char

    Institute of Scientific and Technical Information of China (English)

    郭沛; 赵慧明; 贾挺豪; 王美君; 常丽萍

    2015-01-01

    Ximeng lignite and cornstalk were used as the feedstock to prepare lignite char, biomass char and co-pyrolysis char with different blending ratios in a fixed bed reactor with temperature-programmed pyrolysis. The pore and chemical structure of char samples were characterized and the ash composition was analyzed. The oxidation reactivity of the mixtures of lignite char/cornstalk char with different blending ratios and the co-pyrolysis char of lignite and cornstalk with corresponding blending ratios were investigated by the isothermal thermogravimetry at 450℃, aimed at the effect of co-pyrolysis process on the char reactivity. The results show that there are obvious influences on the char structures through secondary reactions during co-pyrolysis process, leading to the char reactivity decrease. Especially with the cornstalk proportion less than 50%, these influences are more significant due to a large number of volatiles from cornstalk during co-pyrolysis enhancing the secondary reactions between the volatile and nascent char, prompting parts of organic structure less than 5 rings turn into the larger organic structure. For the char samples with cornstalk proportion above 50%, the catalytic effect of alkaline and alkaline earth metal in biomass char plays a dominating role, especially the effect of potassium, resulting in the weaker effects of secondary reactions on the structure and oxidation reactivity of the char samples.%以锡盟褐煤和玉米秸秆为原料,利用固定床程序升温热解的方法制备了褐煤焦、生物质焦以及褐煤和生物质不同混合比例的共热解焦样,并进行了孔结构和化学结构的表征以及其灰成分分析。采用等温热重法在450℃下考察褐煤焦和生物质焦的混合样与其相同比例的共热解焦样的氧化活性,对比分析共热解过程对焦样反应活性的影响。实验结果表明,共热解过程中的二次反应对焦样结构有着明显的影响,进一步导

  2. Mathematical morphology

    CERN Document Server

    Najman, Laurent

    2013-01-01

    Mathematical Morphology allows for the analysis and processing of geometrical structures using techniques based on the fields of set theory, lattice theory, topology, and random functions. It is the basis of morphological image processing, and finds applications in fields including digital image processing (DSP), as well as areas for graphs, surface meshes, solids, and other spatial structures. This book presents an up-to-date treatment of mathematical morphology, based on the three pillars that made it an important field of theoretical work and practical application: a solid theoretical foun

  3. 生物质富氮热解联产高值含氮油炭的理化特性%Physicochemical properties of nitrogen rich in oil and char during biomass nitrogen-rich pyrolysis

    Institute of Scientific and Technical Information of China (English)

    闻明; 张世红; 邵敬爱; 陈应泉; 冯磊; 王贤华; 陈汉平

    2015-01-01

    Biomass is one of the most important renewable resources. Pyrolysis for producing high value added products provides additional value for biomass energy utilization. Through the introduction of exogenous nitrogen in biomass pyrolysis in nitrogen-rich conditions, it can get high value of nitrogen-containing products, i.e. nitrogen-rich char and oil. In this study, wood chips were used as raw materials. The experiment was carried out in a fixed bed reactor at 350 to 850℃, and the effect of temperature and impregnation ratio(5%, 10%, 15%, 20%) on products yields, compositions and characteristics were investigated. Firstly, wood chips were immersed in different mass fractions of urea solution, stirred for 12 hours with a magnetic mixer at room temperature. The woodchips was then separated from solution by filtration and was dried after for 24 hours in an oven. The dried woodchips was then gone through pyrolysis and the bio-oil obtained at different temperatures was analyzed by gas chromatography-mass spectrometry. Derived bio-oil and char were also analyzed for their compositions to trace nitrogen mass transfer. The surface physicochemical property of the char under nitrogen-rich conditions was characterized using a diffuse reflectance infrared spectroscopy and X-ray photoelectron spectroscopy. With the rise of impregnation ratio, the yield of char and bio-oil had little change. Temperature had a remarkable effect on the yield and nitrogen content of boichar and bio oil. Change of product yields was mainly due to the three components (cellulose, ligin and semicellulose) decomposing at different temperatures, and to the volatilization of the secondary cracking at high temperature. The GC-MS results indicated that after treated with urea solution, biomass pyrolysis oil contains large amounts of nitrogen-containing chemicals that can be used to refine high value-added chemical products. The nitrogen-containing chemicals in the bio-oil mainly include aromatic amine

  4. Optimization, Yield Studies and Morphology of WO3Nano-Wires Synthesized by Laser Pyrolysis in C2H2and O2Ambients—Validation of a New Growth Mechanism

    Directory of Open Access Journals (Sweden)

    Sideras-Haddad E

    2008-01-01

    Full Text Available Abstract Laser pyrolysis has been used to synthesize WO3nanostructures. Spherical nano-particles were obtained when acetylene was used to carry the precursor droplet, whereas thin films were obtained at high flow-rates of oxygen carrier gas. In both environments WO3nano-wires appear only after thermal annealing of the as-deposited powders and films. Samples produced under oxygen carrier gas in the laser pyrolysis system gave a higher yield of WO3nano-wires after annealing than the samples which were run under acetylene carrier gas. Alongside the targeted nano-wires, the acetylene-ran samples showed trace amounts of multi-walled carbon nano-tubes; such carbon nano-tubes are not seen in the oxygen-processed WO3nano-wires. The solid–vapour–solid (SVS mechanism [B. Mwakikunga et al., J. Nanosci. Nanotechnol., 2008] was found to be the possible mechanism that explains the manner of growth of the nano-wires. This model, based on the theory from basic statistical mechanics has herein been validated by length-diameter data for the produced WO3nano-wires.

  5. Low-Yield Cigarettes

    Science.gov (United States)

    ... Program Division of Reproductive Health More CDC Sites Low-Yield Cigarettes Recommend on Facebook Tweet Share Compartir ... they compensate when smoking them. Smokers Who Use Low-Yield Cigarettes Many smokers consider smoking low-yield ...

  6. Relação entre características morfológicas e produção de leite em vacas da raça Gir Relationship between morphological traits and milk yield in Gir breed cows

    Directory of Open Access Journals (Sweden)

    Marcos Rodrigues Lagrotta

    2010-04-01

    Full Text Available O objetivo deste trabalho foi determinar parâmetros genéticos relacionados a características morfológicas e suas correlações genéticas com a produção de leite, em vacas da raça Gir. Utilizaram-se 3.805 registros provenientes de 2.142 vacas. O modelo utilizado na análise de características morfológicas continha os efeitos fixos de rebanho, ano e estação de classificação, estádio da lactação e idade da vaca à classificação, além da identificação do classificador. Quanto à produção de leite, foram incluídos no modelo os efeitos fixos de rebanho, ano e estação de parição e idade da vaca ao parto. Os parâmetros genéticos foram obtidos por meio do aplicativo REMLF90. As estimativas de herdabilidade variaram de 0,09 a 0,54. A variabilidade genética aditiva da maioria das características é suficiente para que ganhos genéticos anuais significativos possam ser alcançados com o processo de seleção. As correlações genéticas entre as características morfológicas variaram de baixas a altas e, entre elas e a produção de leite, de baixas a moderadas. Altas correlações genéticas entre algumas características morfológicas implicam a possibilidade de exclusão de algumas delas do programa de melhoramento genético da raça Gir, no Brasil. As correlações genéticas entre produção de leite e algumas características morfológicas indicam que estas podem ser utilizadas na formação de índices de seleção.The objective of this work was to determine genetic parameters related to morphological traits and their genetic correlation with milk yield of Gir breed cows. A total of 3,805 records from 2,142 cows was used. For morphological trait analysis, the used model included the herd fixed effects, classification year and season, lactation phase and animal age at evaluation, besides the classifier identification. For milk yield, the fixed herd effects, year and season of calving and cow age at calving were

  7. 化学分析分馏过程对生物质焦炭物理化学结构的影响%Effects of chemical fractionation analysis on physical and chemical structures of biomass char

    Institute of Scientific and Technical Information of China (English)

    冯冬冬; 张宇; 刘鹏; 郭洋洲; 黄玉东; 孙绍增; 吴江全; 赵义军

    2015-01-01

    化学分析分馏过程广泛应用于碱金属及碱土金属对生物质焦炭活性影响的研究。针对化学分析分馏过程对生物质热解焦炭物理化学结构产生的影响展开深入研究。通过压汞仪、扫描电子显微镜(SEM)对化学分析分馏过程中焦炭的孔径分布、孔隙率、比表面积及颗粒表面形貌等物理结构的变化进行了分析,结果表明该过程对焦炭的孔隙率影响显著,对比表面积影响不大,对热解焦炭多孔状表面形貌影响较为突出。利用X射线光电子光谱法(XPS)和拉曼光谱法(Raman)对焦炭表面碳氧活性官能团结构及焦炭芳香环结构等化学结构特征展开了研究,结果表明化学分析分馏过程对生物质焦炭表面碳氧活性官能团结构的破坏作用较小,化学分析分馏对焦炭的芳香环结构影响不大,水洗过程对焦炭内部的交联结构影响不明显,醋酸铵溶液、盐酸对焦炭内部的交联结构破坏明显。%Chemical fractionation analysis is widely used to study the effect of alkali and alkaline earth metal (AAEM) species on the reactivity of biomass char. The influence of chemical fractionation analysis on the physical and chemical structures of biomass char was investigated in this study. The physical structures of biomass char were studied by the mercury porosimetry and scanning electron microscopy (SEM). The results showed that the influence of chemical fractionation analysis on the porosity and surface morphology of the biomass char was apparent. However, the effect of chemical fractionation analysis on the specific surface area of biomass char could be ignored. X-ray photoelectron spectroscopy (XPS) and Raman were used to identify the O-containing functional groups and the aromatic ring structures in the biomass char, respectively. The results indicated that the changes of the oxygen containing functional groups were little during the chemical fractionation

  8. 生物质半焦的催化气化动力学特性%Catalytic gasification kinetics of biomass semi-char

    Institute of Scientific and Technical Information of China (English)

    肖瑞瑞; 杨伟; 于广锁

    2013-01-01

    The reaction kinetics of straw catalytic gasification was investigated in a thermogravimetric analyzer. Also the catalytic gasification of char from co-gasification of petroleum coke and biomass was studied. A modified random pore model was used to correlate the relationship between gasification rate and carbon conversion rate. The apparent activation energy and pre-exponential factors of biomass with different catalysts were obtained. The results indicated that the gasification activity of biomass semi-char with catalysts was enhanced apparently. The catalytic activity order of different chars was found to be K-char>Ca-char> Mg-char>raw-char>acid washing-char. The increase of the gasification rate of petroleum coke blended with biomass indicated that the gasification reaction is enhanced by biomass char. The apparent activation energy order of different chars in gasification is K-charchar. The activation energy of petroleum coke gasification dropped if blended with biomass char.%采用恒温热重分析法对稻草的催化气化反应动力学进行了研究,同时研究了生物质对石油焦气化的催化作用.采用修正随机孔模型对气化反应转化速率与转化率的关系进行了拟合计算,得到生物质焦气化的活化能和指前因子.结果表明,加入催化剂后半焦的气化反应活性增大,活性顺序为:加入K+半焦>加入Ca2+半焦>加入Mg2+半焦>原半焦>酸洗后半焦,表明了生物质焦能明显提高石油焦的气化活性.不同半焦气化的活化能大小顺序为:加入K+半焦<加入Ca2+半焦<加入Mg2+半焦<原半焦<酸洗后半焦,表明了生物质半焦的加入能降低石油焦气化的活化能.

  9. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.

    Science.gov (United States)

    Gao, Xiaoyan; Zhang, Yaning; Li, Bingxi; Zhao, Yijun; Jiang, Baocheng

    2016-10-01

    Rice husk is abundantly available and environmentally friendly, and char-CO2 gasification is of great importance for the biomass gasification process. The intrinsic reaction rates of carbon dioxide gasification with rice husk chars derived from different pyrolysis temperatures were investigated in this study by conducting thermogravimetric analysis (TGA) measurements. The effects of gasification temperature and reactant partial pressure on the char-CO2 gasification were investigated and the random pore model (RPM) was used to determine the intrinsic kinetic parameters based on the experimental data. The results obtained from this study show that the activation energy, reaction order and pre-exponential factor varied in the ranges of 226.65-232.28kJ/mol, 0.288-0.346 and 2.38×10(5)-2.82×10(5)1/sPa(n) for the rice husk chars pyrolyzed at 700-900°C, respectively. All the determination coefficients between the RPM predictions and experimental results were higher than 0.906, indicating the RPM is reliable for determining and evaluating the intrinsic reactivities of rice husk chars.

  10. A Study on the Applicability of Kinetic Models for Shenfu Coal Char Gasification with CO2 at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Jinsheng Gao

    2009-07-01

    Full Text Available In this paper, measurements of the CO2 gasification kinetics for two types of Shenfu coal chars, which were respectively prepared by slow and rapid pyrolysis at temperatures of 950 °C and 1,400 °C, were performed by an isothermal thermo-gravimetric analysis under ambient pressure and elevated temperature conditions. Simultaneously, the applicability of the kinetic model for the CO2 gasification reaction of Shenfu coal chars was discussed. The results showed: (i the shrinking un-reacted core model was not appropriate to describe the gasification reaction process of Shenfu coal chars with CO2 in the whole experimental temperature range; (ii at the relatively low temperatures, the modified volumetric model was as good as the random pore model to simulate the CO2 gasification reaction of Shenfu coal chars, while at the elevated temperatures, the modified volumetric model was superior to the random pore model for this process; (iii the integral expression of the modified volumetric model was more favorable than the differential expression of that for fitting the experimental data. Moreover, by simply introducing a function: A = A★exp(ft, it was found that the extensive model of the modified volumetric model could make much better predictions than the modified volumetric model. It was recommended as a convenient empirical model for comprehensive simulation of Shenfu coal char gasification with under conditions close to those of entrained flow gasification.

  11. The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood.

    Science.gov (United States)

    Zeng, Kuo; Minh, Doan Pham; Gauthier, Daniel; Weiss-Hortala, Elsa; Nzihou, Ange; Flamant, Gilles

    2015-04-01

    Char samples were produced from pyrolysis in a lab-scale solar reactor. The pyrolysis of beech wood was carried out at temperatures ranging from 600 to 2000°C, with heating rates from 5 to 450°C/s. CHNS, scanning electron microscopy analysis, X-ray diffractometry, Brunauer-Emmett-Teller adsorption were employed to investigate the effect of temperature and heating rate on char composition and structure. The results indicated that char structure was more and more ordered with temperature increase and heating rate decrease (higher than 50°C/s). The surface area and pore volume firstly increased with temperature and reached maximum at 1200°C then reduced significantly at 2000°C. Besides, they firstly increased with heating rate and then decreased slightly at heating rate of 450°C/s when final temperature was no lower than 1200°C. Char reactivity measured by TGA analysis was found to correlate with the evolution of char surface area and pore volume with temperature and heating rate.

  12. Flat-flame burner studies of pulverized-coal combustion. Experimental results on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Peck, R.E.; Shi, L.

    1996-12-01

    Structure of laminar, premixed pulverized-coal flames in a 1-D reactor has been studied with emphasis on char reactivity. A 1.1-meter-long tube furnace accommodated high-temperature environments and long residence times for the laminar flames produced by a flat-flame, coal-dust burner. Experiments were conducted at different operating conditions (fuel type/size, fuel-air ratio). Measurements included solid sample composition, major gas species and hydrocarbon species concentrations, and gas- and particle-phase line-of-sight temperatures at different axial locations in flames. Degree of char burnout increased with coal volatiles content and decreased with coal particle size. Combustion in furnace was in oxidizer-deficient environment and higher burnout was achieved as the fuel-air ratio neared stoichiometric. For 0-45 {mu}m particles most of the fixed carbon mass loss occurred within 5 cm of the furnace inlet, and char reaction was slow downstream due to low oxidizer concentrations. Fixed carbon consumption of the 45-90 {mu}m particles generally was slower than for the small particles. About 40%-80% of the fixed carbon was oxidized in the furnace. Primary volatiles mass loss occurred within the first 4.5 cm, and more than 90% of the volatiles were consumed in the flames. The flames stabilized in the furnace produced less CH{sub 4} and H{sub 2} in the burnt gas than similar unconfined flames. NO concentrations were found to decrease along the furnace and to increase with decreasing fuel/air ratio. Temperature measurement results showed that gas-phase temperatures were higher than solid-phase temperatures. Temperatures generally decreased with decreasing volatiles content and increased as the equivalence ratio approached one. The results can be used to interpret thermochemical processes occurring in pulverized-coal combustion. (au) 15 refs.

  13. Inverse Heat Conduction Methods in the CHAR Code for Aerothermal Flight Data Reconstruction

    Science.gov (United States)

    Oliver, A. Brandon; Amar, Adam J.

    2016-01-01

    Reconstruction of flight aerothermal environments often requires the solution of an inverse heat transfer problem, which is an ill-posed problem of determining boundary conditions from discrete measurements in the interior of the domain. This paper will present the algorithms implemented in the CHAR code for use in reconstruction of EFT-1 flight data and future testing activities. Implementation details will be discussed, and alternative hybrid-methods that are permitted by the implementation will be described. Results will be presented for a number of problems.

  14. Measurements and modeling of pulverized fuel char in an entrained flow reactor

    Science.gov (United States)

    Kebria, Mazdak

    In recent years, the combustion zone of utility boilers were modified for NOx control and this made the task of maintaining low residual carbon levels in boiler fly ash much more difficult. To predict the relationships between boiler operating conditions and residual carbon-in-ash, there is a need for improvements in determining the appropriate char reactivity to use in simulating coal-fired combustors and in relating this reactivity to unburned coal characteristics. To aid in this effort, a tubular, downward-fired, refractory-lined, laminar entrained flow reactor (EFR) was built to provide a pilot scale environment with 2 seconds residence time for studying coal combustion. Using a commercial CFD code (FLUENT), a three dimensional numerical model of coal burning in the EFR was created to evaluate common char burnout kinetic modeling approaches. EFR experimental data was obtained for operating conditions adjusted to reproduce particle Lagrangian temperature and oxygen concentration time histories typically found in coal-fired utility boilers. The radial temperature profiles were measured at different axial locations in the EFR with a suction pyrometer and thermocouples. The temperature distribution in the reactor agreed well with the simulations. A gas analyzer with a quenching probe was used to measure the oxygen distribution to similarly confirm oxygen distribution in the EFR. A semi-isokinetic particulate sampling probe was used to extract ash samples at different heights in the reactor to measure the evolution of loss on ignition (LOI). Measured LOI values were used to validate the model against predicted values. Reaction kinetics rates in the model were adjusted to bring agreement between calculated LOI and the measured values from the experimental results. The LOI predictions by kinetic-diffusion and CBK model are very similar at the late stage of char burnout. The results indicate that we can achieve sufficient accuracy for the prediction of final carbon

  15. Char BC amendments for soil and sediment amelioration: BC quantification and field pilot trials

    Science.gov (United States)

    Cornelissen, G.; Braendli, R. C.; Eek, E.; Henriksen, T.; Hartnik, T.; Breedveld, G. D.

    2008-12-01

    Background Activated char BC binds organic contaminants and possibly mercury so strongly that their bioaccumulation and transport to other environmental compartments are reduced. The advantages of black carbon amendment over many other remediation methods include i) it can be used as an in situ risk reduction method, ii) the price is low, and iii) it overcomes significant controversies associated with disposal of dredged and excavated materials. In this study BC amendment is used in pilot trials in the field for soil and sediment amelioration. Quantification of amended char BC Two methods for char BC quantification were tested: i) chemothermal oxidation (CTO) at a range of temperatures and ii) wet chemical oxidation with a potassium dichromate/sulfuric acid solution. The amount of BC amended to three soils was accurately determined by CTO at 375°C. For two sediments, much of the BC disappeared during combustion at 375°C, which could probably be explained by catalytic effects caused by sediment constituents such as metals, mineral oxides and salts. Attempts to avoid these effects through rinsing with acid before combustion did not result in higher char BC recoveries. CTO at lower temperatures (325-350°C) was a feasible alternative for one of the sediments. Wet oxidation with potassium dichromate/sulfuric acid proved to effectively function for BC quantification in sediments, since almost complete BC recovery (81-92 %) was observed for both sediments, while the amount of organic carbon remaining was low (5-16 %). Field pilots Earlier, we showed the effectiveness of BC amendment in the laboratory. In the laboratory it was shown that BC amendments (2 %) reduced freely dissolved porewater concentrations (factor of 10-50) and bioaccumulation (factor of 5). This presentation will describe 50 × 50 m pilot field trials in Norway (2007-2008): Trondheim Harbor (sediment) and Drammen (soil). The presentation will focus on physical monitoring (distribution of BC in the

  16. Importance of fragmentation on the steady state combustion of wood char in a bubbling fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Pinho, Carlos [Universidade do Porto (CEFT/FEUP), Porto (Portugal). Faculdade de Engenharia. Centro de Estudos de Fenomenos de Transporte], E-mail: ctp@fe.up.pt

    2010-07-01

    A simple mathematical model for the analysis of the steady state behavior of a bubbling fluidized bed burner is presented, with the main intention of evaluating the importance of the primary fragmentation of fuel particles on the performance of this type of burners. This model has pedagogical advantages because of its simplicity and easiness of application to the analysis of realistic situations. The model is based upon the classical models used for the study of batch combustion processes in fluidized bed reactors. Experimental data from studies of fluidized bed combustion of portuguese vegetable chars are used to support the analysis of the performance of a 1 m diameter fluidized bed combustor. (author)

  17. Morfología de la planta y características de rendimiento y calidad de almidón de sagú Plant morphology, yield and quality of sagú starch

    Directory of Open Access Journals (Sweden)

    Magda Piedad Valdés Restrepo

    2010-07-01

    estabilidad en el tiempo. Los índices de solubilidad y absorción de agua fueron de 1.23 y 2.8%, respectivamente.For Colombian people the edible fruit of Sagú Maranta arundinacea are the rhizome. This is used in an informal way by their starch in different products elaboration for human feeding. However, their agronomy is unknown. Plant propagation, dais to rhizome harvest, native starch production and chemical and phytochemical of the integral plant was analyzed. The cultivation settled down to open sky with 0.5x1.0 m. inside furrow and among furrows respectively. Uses descriptive statistic for the quantitative data (central tendency measures, of variation and of deviation. He mature plant reached a height among 50 y 75 cm. and a yield of fresh rhizome among 1.46 to 1.94 kg.plant-1. The crop index oscillates among 0.06 to 0.60. The native starch surrendered by the fresh rhizome fluctuated among 7.2 y 8.1%. The composition of the rhizome was 22.3; 7.4; 3.62; 1.02; 6.98 y 80.9% for DM, CP, CF, FNE and Ash respectively. The available fresh forage was negative for phytochemical tests and it presented 41.3; 22.0; 22.5; 15.06; 57.13; 32.3; 9.2; 23.13 y 24.8% for DM, CP, CF, ash, NDF, ADF, lignin, cellulose y hemicellulose respectively. The Relative feed value (RFV was 103.0. The granulate was ellipsoidal of 8 µm of diameter and compound for 20.54% amylose and 79.46% amylopectin, that it generates an opaque and resistant pasta to the retro gradation. The final temperature of jellification was 73° C, the maximum viscosity of the pasta was of 220 Brabender units (B. U., presenting a defined pick of viscosity and later conservation of the trajectory with stability in the time. The index of solubility and absorption of water was 1.23 y 2.8% respectively.

  18. Prediction and validation of burnout curves for Goettelborn char using reaction kinetics determined in shock tube experiments

    Energy Technology Data Exchange (ETDEWEB)

    Moors, J.H.J.; Banin, V.E.; Haas, J.H.P.; Weber, R.; Veefkind, A. [Eindhoven University of Technology, Eindhoven (Netherlands). Dept. of Applied Physics

    1999-01-01

    Using a shock tube facility the combustion characteristics of pulverised char ({lt} 10 {mu}m) were measured. A prediction was made for the burnout behaviour of a commercial sized char particle (75-90 {mu}m) in different ambient conditions using a `pseudo kinetic` approach. In this approach the kinetic rate of a surface containing micro pores is determined and these `pseudo kinetics` are then applied to the larger particle not taking into account the micro pores. Comparison of the predictions with measurements done with an isothermal plug flow reactor showed this approach to be valid within experimental error for low burnout. A linear decrease of the kinetic reaction rate with burnout is shown to predict the burnout behaviour in the complete range of burnout. A possible explanation for this linear decrease could be a growing fraction of non-combustible material in the char particles during burnout. 11 refs., 6 figs., 2 tabs.

  19. A Generalized Yield Criterion

    Institute of Scientific and Technical Information of China (English)

    Shijian YUAN; Dazhi XIAO; Zhubin HE

    2004-01-01

    A generalized yield criterion is proposed based on the metal plastic deformation mechanics and the fundamental formula in theory of plasticity. Using the generalized yield criterion, the reason is explained that Mises yield criterion and Tresca yield criterion do not completely match with experimental data. It has been shown that the yield criteria of ductile metals depend not only on the quadratic invariant of the deviatoric stress tensor J2, but also on the cubic invariant of the deviatoric stress tensor J3 and the ratio of the yield stress in pure shear to the yield stress in uniaxial tension k/σs. The reason that Mises yield criterion and Tresca yield criterion are not in good agreement with the experimental data is that the effect of J3 and k/σs is neglected.

  20. Carbon Sequestration and Nitrogen Mineralization in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

    Science.gov (United States)

    Shin, Joung-Du; Lee, Sun-Ill; Park, Wu-Gyun; Choi, Yong-Su; Hong, Seong-Gil; Park, Sang-Won

    2014-05-01

    Objectives of this study were to estimate the carbon sequestration and to evaluate nitrogen mineralization and nitrification in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil used in this study was clay loam types, and application rates of chemical fertilizer and bio-char were recommended amount after soil test and 2 % to soil weight, respectively. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of non-application, cow manure compost, pig manure compost, swine digestate from aerobic digestion system, their bio-char cooperation. For the experimental results, residual amount of inorganic carbon was ranged from 51 to 208kg 10a-1 in soil only cooperated with different organic composts. However it was estimated to be highest at 208kg 10a-1 in the application plot of pig manure compost. In addition to bio-char application, it was ranged from 187.8 to 286kg 10a-1, but was greatest accumulated at 160.3kg 10a-1 in the application plot of cow manure compost. For nitrogen mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char compared to the only application plots of different organic composts except for 71 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For the loss of total inorganic carbon (TIC) by run-off water, it was ranged from 0.18 to 0.36 kg 10a-1 in the different treatment plots. Also, with application of bio-char, total nitrogen was estimated to be reduced at 0.42(15.1%) and 0.38(11.8%) kg 10a-1 in application plots of the pig manure compost and aerobic digestate, respectively.

  1. Arsenic(V) biosorption by charred orange peel in aqueous environments.

    Science.gov (United States)

    Abid, Muhammad; Niazi, Nabeel Khan; Bibi, Irshad; Farooqi, Abida; Ok, Yong Sik; Kunhikrishnan, Anitha; Ali, Fawad; Ali, Shafaqat; Igalavithana, Avanthi Deshani; Arshad, Muhammad

    2016-01-01

    Biosorption efficiency of natural orange peel (NOP) and charred orange peel (COP) was examined for the immobilization of arsenate (As(V)) in aqueous environments using batch sorption experiments. Sorption experiments were carried out as a function of pH, time, initial As(V) concentration and biosorbent dose, using NOP and COP (pretreated with sulfuric acid). Arsenate sorption was found to be maximum at pH 6.5, with higher As(V) removal percentage (98%) by COP than NOP (68%) at 4 g L(-1) optimum biosorbent dose. Sorption isotherm data exhibited a higher As(V) sorption (60.9 mg g(-1)) for COP than NOP (32.7 mg g(-1)). Langmuir model provided the best fit to describe As(V) sorption. Fourier transform infrared spectroscopy and scanning electron microscopy combined with energy dispersive X-ray spectroscopy analyses revealed that the -OH, -COOH, and -N-H surface functional groups were involved in As(V) biosorption and the meso- to micro-porous structure of COP sequestered significantly (2-times) higher As(V) than NOP, respectively. Arsenate desorption from COP was found to be lower (10%) than NOP (26%) up to the third regeneration cycle. The results highlight that this method has a great potential to produce unique 'charred' materials from the widely available biowastes, with enhanced As(V) sorption properties.

  2. Study of nonisothermal reduction of iron ore-coal/char composite pellet

    Science.gov (United States)

    Dutta, S. K.; Ghosh, A.

    1994-01-01

    Cold-bonded composite pellets, consisting of iron ore fines and fines of noncoking coal or char, were prepared by steam curing at high pressure in an autoclave employing inorganic binders. Dry compressive strength ranged from 200 to 1000 N for different pellets. The pellets were heated from room temperature to 1273 K under flowing argon at two heating rates. Rates of evolution of product gases were determined from gas Chromatographie analysis, and the temperature of the sample was monitored by thermocouple as a function of time during heating. Degree of reduction, volume change, and compressive strength of the pellets upon reduction were measured subsequently. Degree of reduction ranged from 46 to 99 pct. Nonisothermal devolatilization of coal by this procedure also was carried out for comparison. It has been shown that a significant quantity (10 to 20 pct of the pellet weight) of extraneous H2O and CO2 was retained by dried pellets. This accounted for the generation of additional quantities of H2 and CO during heating. Carbon was the major reductant, but reduction by H2 also was significant. Ore-coal and ore-char composites exhibited a comparable degree of reduction. However, the former showed superior postreduction strength due to a smaller amount of swelling upon reduction.

  3. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  4. Char crystalline transformations during coal combustion and their implications for carbon burnout

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.H.

    1999-03-11

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: to determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history; and to characterize the effect of this thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  5. Char crystalline transformations during coal combustion and their implications for carbon burnout

    Energy Technology Data Exchange (ETDEWEB)

    Hurt, R.H.

    1999-07-07

    Residual, or unburned carbon in fly ash affects many aspects of power plant performance and economy including boiler efficiency, electrostatic precipitator operation, and ash as a salable byproduct. There is a large concern in industry on the unburned carbon problem due to a variety of factors, including low-NOx combustion system and internationalization of the coal market. In recent work, it has been found that residual carbon extracted from fly ash is much less reactive than the laboratory chars on which the current kinetics are based. It has been suggested that thermal deactivation at the peak temperature in combustion is a likely phenomenon and that the structural ordering is one key mechanism. The general phenomenon of carbon thermal annealing is well known, but there is a critical need for more data on the temperature and time scale of interest to combustion. In addition, high resolution transmission electron microscopy (HRTEM) fringe imaging, which provides a wealth of information on the nature and degree of crystallinity in carbon materials such as coal chars, has become available. Motivated by these new developments, this University Coal Research project has been initiated with the following goals: (1) To determine transient, high-temperature, thermal deactivation kinetics as a function of parent coal and temperature history. (2) To characterize the effect of the thermal treatment on carbon crystalline structure through high-resolution transmission electron microscopy and specialized, quantitative image analysis.

  6. Key parameters influencing the NOx reduction process by low-cost char pellets: An overview

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Soriano-Mora; A. Bueno-Lopez; A. Garcia-Garcia; R. Perry; C.E. Snape [University of Alicante, Alicante (Spain). Dept. of Inorganic Chemistry

    2007-07-01

    High potassium content char briquettes prepared from a bituminous coal have shown to be remarkably selective towards NOx reduction by the carbon contained within them. For the present work, it was decided to pursue the preparation of a number of pelletised formulations as well as testing reaction temperatures and lifetime tests. Low-cost carbon feedstocks were selected for pellet preparation (a metallurgical coke breeze, petroleum coke fines and a medium temperature domestic coke), two coals (an anthracite and a high volatile bituminous coal), a scrap tyre pyrolysis char and a carbon concentrate from PFA. Pellets were prepared from a solid mixture containing 65% of air-dried carbon, 30% potassium hydroxide and 5% of cashew nut shell liquid as binder. The results show that good and constant values of NOx reduction are kept after 2 hours of reaction as well as satisfactory selectivity factors (up to 0.45). This parameter is highly dependent on potassium content of the samples and on reaction temperature. The most efficient pellets in terms of high selectivity and high amount of NOx reduced were analysed under lifetime tests at 400{sup o}C. Very encouraging results were obtained showing that high values of NOx conversions (well above O{sub 2} conversions), long lifetimes, no uncontrolled increase in sample temperature and very low CO emissions, (leading to an optimum sample efficiency) were observed throughout lifetime tests. 4 refs., 4 figs., 5 tabs.

  7. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production.

    Directory of Open Access Journals (Sweden)

    Gerard Cornelissen

    Full Text Available Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns, also avoiding use of external fuel for start-up.A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57, average surface areas (11 to 215 m2 g-1, low EPA16-PAHs (2.3 to 6.6 mg kg-1 and high CECs (43 to 217 cmolc/kg(average for all feedstocks, mainly woody shrubs were obtained, in compliance with the European Biochar Certificate (EBC.Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks; CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10 = 11 ± 15, total products of incomplete combustion (PIC = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05 lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2.With benefits such as high quality biochar, low emission, no need for start-up fuel, fast pyrolysis time and, importantly, easy and cheap

  8. Biochemical stability of sewage sludge chars and their impact on soil organic matter of a Mediterranean Cambisol

    Science.gov (United States)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Knicker, Heike

    2016-04-01

    Transformation of sewage sludge (SS) into char achieves sludge hygienisation, which is necessary prior its application into agricultural soils. The pyrolysis of SS increases its stability in a degree which depends on the thermal treatment used. Thus, chars produced by using hydrothermal carbonization are typically more stable than normal soil organic matter (SOM), but less stable than chars from dry pyrolysis (Libra et al., 2011). Addition of highly-recalcitrant SS-chars to soil will likely increase its carbon sequestration potential; however the fertilizing properties of SS may be compromised due to its alteration during the pyrolysis. The main goal of this work was to investigate the biochemical recalcitrance of two 13C-enriched SS-chars once applied in a Mediterranean Cambisol as well as to evaluate their impact on the SOM quality and carbon stability. Thus, we studied the distribution of 13C between plants and soil after the addition of the 13C-enriched chars (2 atm%) to the soil. Therefore, we performed a greenhouse incubation experiment, using a Mediterranean Cambisol as matrix and tested the following treatments: control (soil alone), raw SS, SS-hydrochar, SS-pyrochar. The SS was produced in a pilot-scale waste-water plant and enriched with 13C by the addition of 13C-glucose during the treatment. The amendment was only applied to the upper 2 cm of the soil matrix where it accounted for 5% of its dry weight. Per pot, 25 seeds of Lolium perenne were sowed and incubated under controlled conditions. The biomass production as well as the concentration of 13C in leaves and roots was determined after 1, 2 and 5 months. The partitioning of the 13C between soil and plant and its transformation into bioavailable forms were monitored by stable isotopic mass spectrometry. The 13C-enrichment of the chars allowed the use of solid-state 13C NMR spectroscopy as a means for the detection of chemical alterations of the chars during their aging. Libra J., Ro K., Kammann C

  9. Ignition Properties of Thermally Thin Plastics: The Effectiveness of Non-Competitive Char Formation in Reducing Flammability

    OpenAIRE

    Nelson, M. I.; Brindley, J.; McIntosh, A. C.

    2002-01-01

    The retardancy effect of char formation upon the flammability of thermally thin products is investigated. The char is formed in a single-step non-competitive scheme and is assumed to be thermally stable. The criterion for ignition is that of a critical mass flux of volatiles from the solid into the gas phase. Both steady-state and transient formulations of the model are considered. In the high activation energy limit the critical heat flux efficiency in the steady-state model is p...

  10. Mid-infrared diffuse reflectance spectroscopic examination of charred pine wood, bark, cellulose, and lignin: Implications for the quantitative determination of charcoal in soils

    Science.gov (United States)

    Reeves, J. B.; McCarty, G.W.; Rutherford, D.W.; Wershaw, R. L.

    2008-01-01

    Fires in terrestrial ecosystems produce large amounts of charcoal that persist in the environment and represent a substantial pool of sequestered carbon in soil. The objective of this research was to investigate the effect of charring on mid-infrared spectra of materials likely to be present in forest fires in order to determine the feasibility of determining charred organic matter in soils. Four materials (cellulose, lignin, pine bark, and pine wood) and char from these materials, created by charring for various durations (1 to 168 h) and at various temperatures (200 to 450 ??C), were studied. Mid-infrared spectra and measures of acidity (total acids, carboxylic acids, lactones, and phenols as determined by titration) were determined for 56 different samples (not all samples were charred at all temperatures/durations). Results showed spectral changes that varied with the material, temperature, and duration of charring. Despite the wide range of spectral changes seen with the differing materials and length/temperature of charring, partial least squares calibrations for total acids, carboxylic acids, lactones, and phenols were successfully created (coefficient of determination and root mean squared deviation of 0.970 and 0.380; 0.933 and 0.227; 0.976 and 0.120; and 0.982 and 0.101 meq/g, respectively), indicating that there is a sufficient commonality in the changes to develop calibrations without the need for unique calibrations for each specific material or condition of char formation. ?? 2008 Society for Applied Spectroscopy.

  11. Effects of Different Irrigation Treatment on Morphological Indexes,Yield and Water Use Efficiency of Maize in Qianzhong Areas%黔中地区不同水分处理对玉米形态指标、产量及水分利用效率的影响

    Institute of Scientific and Technical Information of China (English)

    刘战东; 肖俊夫; 张和喜

    2011-01-01

    Drought is the main influence factor which restricts high yield of maize.Taking the maize,which is cultivated in test-pit under the mobile rain-proof shelter,as test material,through setting different soil water content treatment,a systematic study on the influence of different soil water treatment on morphological indexes,yield and water use efficiency of maize during the growing period is conducted.The results indicate that water stress inhibits the growth and development of maize.The higher soil moisture treatment(T10) has a higher height and leaf area.Light stress has no obvious influence.As the stress aggravates,all of the morphological indexes show a downward trend.The ear length and ear diameter decrease with the reduction of soil moisture.The maize is very sensitive to water stress at tasseling-filling stage,in which drought will lead to the reduction of ear length,ear diameter and kernel weight,and the increase of bald,which will result in the significant decrease of the yield.%干旱是制约玉米产量提高的主要影响因素。以防雨棚桶栽玉米为试验材料,通过设置不同的土壤水分处理方案,研究不同土壤水分处理对玉米植株形态指标、耗水量和水分利用效率的影响。结果表明,水分胁迫抑制了玉米的生长发育。高水分处理(T10)均具有较高的株高、叶面积;轻度胁迫对各项指标影响不大;随着胁迫的进一步加深,各个形态指标均呈下降趋势。穗长、穗粗随着土壤水分的减少而降低;玉米抽雄灌浆期对水分亏缺非常敏感,此期受旱将导致穗长、穗粗、百粒重减少,秃尖加重,从而使产量大幅度下降。

  12. Current status, between-year comparisons and maternal transfer of organohalogenated compounds (OHCs) in Arctic char (Salvelinus alpinus) from Bjørnøya, Svalbard (Norway)

    Energy Technology Data Exchange (ETDEWEB)

    Bytingsvik, J., E-mail: jenny.bytingsvik@akvaplan.niva.no [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); Frantzen, M. [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); Götsch, A.; Heimstad, E.S. [NILU (Norwegian Institute for Air Research), The Fram Centre, N-9296 Tromsø Norway (Norway); Christensen, G. [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); Evenset, A. [Akvaplan-niva AS, The Fram Centre, N-9296 Tromsø Norway (Norway); University of Tromsø, The Arctic University of Norway, Pb 6050 Langnes, N-9037 Tromsø (Norway)

    2015-07-15

    High levels of organohalogenated compounds (OHCs) have been found in Arctic char from Lake Ellasjøen at Bjørnøya (Svalbard, Norway) compared to char from other arctic lakes. The first aim of the study was to investigate the OHC status, contaminant profile, and partitioning of OHCs between muscle and ovary tissue in spawning female char from the high-polluted Lake Ellasjøen and the low-polluted Lake Laksvatn. The second aim was to investigate if OHC levels in muscle tissue have changed over time. Between-lake comparisons show that the muscle levels (lipid weight) of hexachlorobenzene (HCB), chlordanes (∑ CHLs), mirex, dichlorodiphenyltrichloroethanes (∑ DDTs) and polychlorinated biphenyls (∑ PCBs) were up to 36 times higher in char from Ellasjøen than in Laksvatn, and confirm that the char from Ellasjøen are still heavily exposed compared to char from neighboring lake. A higher proportion of persistent OHCs were found in Ellasjøen compared to Laksvatn, while the proportion of the less persistent OHCs was highest in Laksvatn. A between-year comparison of OHC levels (i.e., HCB, DDTs, PCBs) in female and male char shows higher levels of HCB in female char from Ellasjøen in 2009/2012 compared to in 1999/2001. No other between-year differences in OHC levels were found. Due to small study groups, findings associated with between-year differences in OHC levels should be interpreted with caution. OHCs accumulate in the lipid rich ovaries of spawning females, resulting in up to six times higher levels of OHCs in ovaries compared to in muscle (wet weight). The toxic equivalent (TEQ)-value for the dioxin-like PCBs (PCB-105 and -118) in ovaries of the Ellasjøen char exceeded levels associated with increased egg mortality in rainbow trout (Oncorhynchus mykiss). Hence, we suggest that future studies should focus on the reproductive health and performance abilities of the high-exposed population of char inhabiting Lake Ellasjøen. - Highlights: • Examine levels

  13. 棉杆热解过程中焦孔隙结构演变及分形特征%Investigation of the Forming Property and Fractal Dimension of Cotton Char Pore Structure During Biomass Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    李开志; 杨海平; 陈应泉; 陈汉平; 王贤华

    2012-01-01

    The changes in pore structure characteristics of cotton stalk/char particles prepared by pyrolysis process were studied, the samples were characterized by N2 isothermal absorption method, and their data points were used to analyze the fractal properties of the obtained samples. The results indicate that pyrolysis temperature has a notable impact on the pore structure and morphology of biomass char. Pyrolysis temperature is found to influence the size and the shape of char particles. The Brunauer-Emmett Teller (BET) specific surface area SBET of cotton char undergoes a complex process during pyrolysis: firstly increase to a maximum value at 650 ℃, then decrease again. The change of fractal dimension D is similar to that of SBET, this shows there are some correlation between them. Fractal dimension D is better to describe pore structure characteristics.%为了解生物质热解过程中固体焦孔隙结构的演变行为,采用氮气等温吸附法研究了热解过程中棉杆颗粒孔隙结构的变化规律,并引入分形维数对其进行定量的描述.结果表明,热解过程中棉杆焦孔隙结构微孔与中孔先增多后减少,而大孔比例变化不大.棉杆热解焦的BET比表面积(SBET)随着热解温度的升高,经历了一个先增大后减小的过程,从450℃开始,SBET迅速增大,在650℃时达到最大值,而后逐渐减小.随着热解温度的升高,棉杆焦表面分形维数先增大后减小,表明棉杆焦在热解过程中孔隙表面经历了复杂的结构变化.分形维数与BET比表面积存在一定的关联性,且分形维数能更好地表征热解焦表面孔隙结构特征.

  14. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.

    Science.gov (United States)

    Aysu, Tevfik; Durak, Halil; Güner, Serkan; Bengü, Aydın Şükrü; Esim, Nevzat

    2016-04-01

    Pyrolysis of Anchusa azurea, a lignocellulosic gramineous plant, was carried out in a tubular, fixed-bed reactor in the presence of four catalysts (Ca(OH)2, Na2CO3, ZnCl2, Al2O3). The influences of pyrolysis parameters such as catalyst and temperature on the yields of products were studied. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts effected the yields of products differently and the composition of bio-oils. Liquid yields were increased in the presence of Na2CO3, ZnCl2 and Al2O3 and decreased with Ca(OH)2. The highest bio-oil yield (34.05%) by weight including aqueous phase was produced with Na2CO3 catalyst at 450°C. The yields of products (bio-char, bio-oil and gas) and the compositions of the resulting bio-oils were determined by GC-MS, FT-IR and elemental analysis. GC-MS identified 124 and 164 different compounds in the bio-oils obtained at 350 and 550°C respectively.

  15. Yield stress fluids slowly yield to analysis

    NARCIS (Netherlands)

    Bonn, D.; Denn, M.M.

    2009-01-01

    We are surrounded in everyday life by yield stress fluids: materials that behave as solids under small stresses but flow like liquids beyond a critical stress. For example, paint must flow under the brush, but remain fixed in a vertical film despite the force of gravity. Food products (such as mayon

  16. SiteChar - Workflow for fit-for-purpose characterisation of CO2 storage sites in Europe

    NARCIS (Netherlands)

    Delprat-Jannaud, F.; Pearce, J.; Neele, F.; Akhurst, M.; Nielsen, C.; Mazurowski, M.; Lothe, A.; Volpi, V.; Brunsting, S.

    2014-01-01

    The FP7 SiteChar project has examined the entire site characterization chain, from the initial feasibility studies through to the final stage of application for a storage permit, on the basis of criteria defined by the relevant European legislation, highlighting important issues and recommendations

  17. Fuel, fire and heat: an experimental approach to highlight the potential of studying ash and char remains from archaelological contexts

    NARCIS (Netherlands)

    Braadbaart, F.; Poole, I.; Huisman, H.D.J.; Os, B. van

    2012-01-01

    As in traditional societies today ancient societies probably selected different fuels to meet specific heat requirements. Char and ash, the end products of fire, are often found in abundance in archaeological contexts. These end products can provide information regarding (i) the original fuel resour

  18. Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?

    NARCIS (Netherlands)

    Reijnders, L.

    2009-01-01

    Forestation and landfilling purpose-grown biomass are not adequate offsets for the CO2 emission from burning fossil fuels. Their permanence is insufficiently guaranteed and landfilling purpose-grown biomass may even be counterproductive. As to permanence, bio-char may do better than forests or landf

  19. Adsorption of zinc ions on bone char using helical coil-packed bed columns and its mass transfer modeling

    DEFF Research Database (Denmark)

    Moreno-Pérez, J.; Bonilla-Petriciolet, A.; Rojas-Mayorga, C. K.

    2016-01-01

    char can be attributed to an ion-exchange mechanism. In summary, helical coil columns appear to be a feasible configuration for large-scale adsorption systems with high flow rates where a significant reduction on purification system size can be obtained without compromising the adsorbent performance....

  20. SYNERGISTIC EFFECTS OF NOVOLAC-BASED CHAR FORMER WITH A PHOSPHORUS/NITROGEN-CONTAINING FLAME RETARDANT IN POLYAMIDE 6

    Institute of Scientific and Technical Information of China (English)

    Wei-cheng Xiong; Li Chen; De-yi Wang; Fei Song; Yu-zhong Wang

    2012-01-01

    The synergistic effect of phosphorus oxynitride (PON) with a novolac-based char former modified by salification (NA-metal salt) on the flame retardance of polyamide 6 (PA6) was investigated.For this purpose,various flame-retardant PA6 systems were melt-compounded with PON,PON/NA,PON/NA-V2O5 and PON/NA-Fe2O3,and their flame retardance was evaluated by measuring the limiting oxygen index (LOI) values and UL-94 vertical burning ratings.The results showed that,compared with the PA6/PON/NA system,the combination of two char formers (NA-V2O5,NA-Fe2O3) with PON could obviously improve the char formation and flame retardance of PA6.The flame retardance and cone calorimetric analyses showed the stronger synergism as well as the better flame retardant performance of PON/NA-Fe2O3 flame retardant system.The effects of different char formers on the flame retardance and thermal stability of this system were also discussed.

  1. Determination of char combustion kinetics parameters: Comparison of point detector and imaging-based particle-sizing pyrometry

    Science.gov (United States)

    Schiemann, Martin; Geier, Manfred; Shaddix, Christopher R.; Vorobiev, Nikita; Scherer, Viktor

    2014-07-01

    In this study, the char burnout characteristics of two German coals (a lignite and a high-volatile bituminous coal) were investigated using two different experimental configurations and optical techniques in two distinct laboratories for measurement of temperature and size of burning particles. The optical diagnostic hardware is quite different in the two systems, but both perform two-color pyrometry and optical sizing measurements on individual particles burning in isolation from each other in high-temperature laminar flows to characterize the char consumption kinetics. The performance of the specialized systems is compared for two different combustion atmospheres (with 6.6 and 12 vol.% O2) and gas temperatures between 1700 and 1800 K. The measured particle temperatures and diameters are converted to char burning rate parameters for several residence times during the course of the particles' burnout. The results confirm that comparable results are obtained with the two configurations, although higher levels of variability in the measured data were observed in the imaging-based pyrometer setup. Corresponding uncertainties in kinetics parameters were larger, and appear to be more sensitive to systematic measurement errors when lower oxygen contents are used in the experiments. Consequently, burnout experiments in environments with sufficiently high O2 contents may be used to measure reliable char burning kinetics rates. Based on simulation results for the two coals, O2 concentrations in the range 10%-30% are recommended for kinetic rate measurements on 100 μm particles.

  2. Anadromous char as an alternate food choice to marine animals: A synthesis of Hg concentrations, population features and other influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Marlene S., E-mail: marlene.evans@ec.gc.ca [Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5 (Canada); Muir, Derek C.G. [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6 (Canada); Keating, Jonathan [Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5 (Canada); Wang, Xiaowa [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6 (Canada)

    2015-03-15

    This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004–2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically < 0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ{sup 15}N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ{sup 13}C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic

  3. Preparation and Photocatalytic Activity of TiO2/Fine Char for Removal of Rhodamine B

    Directory of Open Access Journals (Sweden)

    Mingjie Ma

    2015-01-01

    Full Text Available TiO2/fine char (FC photocatalyst was prepared via sol-gel method with tetrabutyl titanate as the precursor and FC as the carrier. The structural property of TiO2/FC photocatalyst was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM, and the photocatalytic activity of TiO2/FC was evaluated by photocatalytic degradation of rhodamine B (RhB aqueous solution under UV light irradiation. The results showed that TiO2 was successfully coated on the surface of FC, and the TiO2/FC photocatalyst had better photocatalytic efficiency and stability for degradation of RhB under UV light illumination as compared to that of the pure TiO2 and FC. The study provided a novel way for the application of FC to the photocatalytic degradation of organic wastes.

  4. Characteristics of flame spread over the surface of charring solid combustibles at high altitude

    Institute of Scientific and Technical Information of China (English)

    LI Jie; JI Jie; ZHANG Ying; SUN JinHua

    2009-01-01

    To explore the characteristics of flame spread over the surface of charring solid combustibles at high altitude, the whitewood with uniform texture was chosen to conduct a series of experiments in Lhasa and Hefei, with altitude of 3658 m and 50 m respectively. Several parameters, including the flame height, flame spread rate, flame temperature, surface temperature, were measured on samples with different width and inclinations. A quantitative analysis of flame spread characteristics over sample surface at high altitude was performed. Results showed that, in the environment of lower pressure and oxygen concentration at high altitude, the flame height and flame spread rate over sample surface decreased, but the flame temperature increased slightly. However, with increasing of sample width, the relative difference between the flame spread rates at different altitudes decreased.

  5. [Phylogeography of southern Asian Dolly Varden char Salvelinus malma krascheninnikovi: genealogical analysis of mitochondrial DNA].

    Science.gov (United States)

    Oleĭnik, A G; Skurikhina, L A; Chukova, E I

    2010-02-01

    Phylogeography of southern Asian Dolly Varden char was studied using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained using PCR-RFLP analysis. Analysis of contemporary population genetic structure showed that S. m. krascheninnikovi throughout the whole species range was characterized by high population differentiation in combination with rather small differences between the populations from remote regions. The genealogy of mtDNA haplotypes was reconstructed and nested clade analysis of geographical distances was performed. Geographical distribution of mtDNA haplotypes of S. m. krascheninnikovi was explained by population genetic processes (restricted gene flow), as well as by historical demographic events (range expansion and fragmentation). It was demonstrated that the main demographic events were associated with cyclic processes of the geological formation of the Sea of Japan and adjacent territories. Furthermore, genealogical tree of S. m. krascheninnikovi contained the traces of secondary contact between isolated phylogeographical lineages.

  6. Kinetic models comparison for steam gasification of coal/biomass blend chars.

    Science.gov (United States)

    Xu, Chaofen; Hu, Song; Xiang, Jun; Yang, Haiping; Sun, Lushi; Su, Sheng; Wang, Baowen; Chen, Qindong; He, Limo

    2014-11-01

    The non-isothermal thermogravimetric method (TGA) was applied to different chars produced from lignite (LN), sawdust (SD) and their blends at the different mass ratios in order to investigate their thermal reactivity under steam atmosphere. Through TGA analysis, it was determined that the most prominent interaction between sawdust and lignite occurred at the mass ratio of sawdust/lignite as 1:4, but with further dose of more sawdust into its blends with lignite, the positive interaction deteriorated due to the agglomeration and deactivation of the alkali mineral involved in sawdust at high steam gasification temperature. Through systematic comparison, it could be observed that the random pore model was the most suitable among the three gas-solid reaction models adopted in this research. Finally, rational kinetic parameters were reached from these gas-solid reaction models, which provided a basis for design and operation of the realistic system of co-gasification of lignite and sawdust in this research.

  7. Yield Improvement in Steel Casting (Yield II)

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to

  8. Towards user-friendly spelling with an auditory brain-computer interface: the CharStreamer paradigm.

    Directory of Open Access Journals (Sweden)

    Johannes Höhne

    Full Text Available Realizing the decoding of brain signals into control commands, brain-computer interfaces (BCI aim to establish an alternative communication pathway for locked-in patients. In contrast to most visual BCI approaches which use event-related potentials (ERP of the electroencephalogram, auditory BCI systems are challenged with ERP responses, which are less class-discriminant between attended and unattended stimuli. Furthermore, these auditory approaches have more complex interfaces which imposes a substantial workload on their users. Aiming for a maximally user-friendly spelling interface, this study introduces a novel auditory paradigm: "CharStreamer". The speller can be used with an instruction as simple as "please attend to what you want to spell". The stimuli of CharStreamer comprise 30 spoken sounds of letters and actions. As each of them is represented by the sound of itself and not by an artificial substitute, it can be selected in a one-step procedure. The mental mapping effort (sound stimuli to actions is thus minimized. Usability is further accounted for by an alphabetical stimulus presentation: contrary to random presentation orders, the user can foresee the presentation time of the target letter sound. Healthy, normal hearing users (n = 10 of the CharStreamer paradigm displayed ERP responses that systematically differed between target and non-target sounds. Class-discriminant features, however, varied individually from the typical N1-P2 complex and P3 ERP components found in control conditions with random sequences. To fully exploit the sequential presentation structure of CharStreamer, novel data analysis approaches and classification methods were introduced. The results of online spelling tests showed that a competitive spelling speed can be achieved with CharStreamer. With respect to user rating, it clearly outperforms a control setup with random presentation sequences.

  9. Population connectivity: dam migration mitigations and contemporary site fidelity in arctic char

    Directory of Open Access Journals (Sweden)

    Heggenes Jan

    2011-07-01

    Full Text Available Abstract Background Animal feeding and spawning migrations may be limited by physical barriers and behavioral interactions. Dam constructions (e.g. hydropower commonly include gateways for fish migrations to sustain ecological connectivity. Relative genetic impacts of fish passage devices versus natural processes (e.g. hybrid inferiority are, however, rarely studied. We examined genetic (i.e. microsatellite population connectivity of highly migrating lake-dwelling Arctic char (Salvelinus alpinus, introduced 20 generations ago, across and within two subalpine lakes separated by a dam with a subterranean tunnel and spill gates after 7 generations. Due to water flow regime, the time window for fish migration is highly restricted. Results Char populations, with similar genetic structuring and diversity observed across and within lakes, were admixed across the dam with fishways during feeding. For spawning, however, statistically significant, but very low population differentiation (θ; 0.002 - 0.013 was found in nine out of ten reproductive site comparisons, reflecting interactions between extensive migration (mean first generation (F0 = 10.8% and initial site fidelity. Simulations indicated that genetic drift among relatively small effective populations (mean Ne = 62 may have caused the observed contemporary differentiation. Novel Bayesian analyses indicated mean contributions of 71% F0 population hybrids in spawning populations, of which 76% had maternal or paternal native origin. Conclusions Ecological connectivity between lakes separated by a dam has been retained through construction of fishways for feeding migration. Considerable survival and homing to ancestral spawning sites in hybrid progeny was documented. Population differentiation despite preceding admixture is likely caused by contemporary reduced reproductive fitness of population hybrids. The study documents the beginning stages of population divergence among spatial aggregations with

  10. Coal combustion science quarterly progress report, October--December 1992. Task 1, Coal char combustion [and] Task 2, Fate of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.] [Sandia National Labs., Livermore, CA (United States); Hurt, R.H.; Baxter, L.L. [Sandia National Labs., Albuquerque, NM (United States)

    1993-06-01

    In the Coal Combustion Laboratory (CCL) this quarter, controlled laboratory experiments were carried out to better understand the late stages of coal combustion and its relation to unburned carbon levels in fly ash. Optical in situ measurements were made during char combustion at high carbon conversions and the optical data were related to particle morphologies revealed by optical microscopy on samples extracted under the same conditions. Results of this work are reported in detail below. In the data presented below, we compare the fraction of alkali metal loss to that of the alkaline earth metals as a function of coal rank to draw conclusions about the mechanism of release for the latter. Figure 2.1 illustrates the fractional release of the major alkali and alkaline earth metals (Na, K, Ca, Mg) as a function of coal rank for a series of coals and for several coal blends. All data are derived from combustion experiments in Sandia`s Multifuel Combustor (MFC) and represent the average of three to eight experiments under conditions where the mass loss on a dry, ash-free (daf) basis exceeds 95 %. There are no missing data in the figure. The several coals with no indicated result exhibited no mass loss of the alkali or alkaline earth metals in our experiments. There is a clear rank dependence indicated by the data in Fig. 2.1, reflecting the mode of occurrence of the material in the coal.

  11. Preparation of char from lotus seed biomass and the exploration of its dye removal capacity through batch and column adsorption studies.

    Science.gov (United States)

    Nethaji, S; Sivasamy, A; Kumar, R Vimal; Mandal, A B

    2013-06-01

    Char was obtained from lotus seed biomass by a simple single-step acid treatment process. It was used as an adsorbent for the removal of malachite green dye (MG) from simulated dye bath effluent. The adsorbent was characterized for its surface morphology, surface functionalities, and zero point charge. Batch studies were carried out by varying the parameters such as initial aqueous pH, adsorbent dosage, adsorbent particle size, and initial adsorbate concentration. Langmuir and Freundlich isotherms were used to test the isotherm data and the Freundlich isotherm best fitted the data. Thermodynamic studies were carried out and the thermodynamic parameters such as ∆G, ∆H, and ∆S were evaluated. Adsorption kinetics was carried out and the data were tested with pseudofirst-order model, pseudosecond-order model, and intraparticle diffusion model. Adsorption of MG was not solely by intraparticle diffusion but film diffusion also played a major role. Continuous column experiments were also conducted using microcolumn and the spent adsorbent was regenerated using ethanol and was repeatedly used for three cycles in the column to determine the reusability of the regenerated adsorbent. The column data were modeled with the modeling equations such as Adam-Bohart model, Bed Depth Service Time (BDST) model, and Yoon-Nelson model for all the three cycles.

  12. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process

    Institute of Scientific and Technical Information of China (English)

    Zheng-cheng WEN; Zhi-hua WANG; Jun-hu ZHOU; Ke-fa CEN

    2009-01-01

    Quantum chemical simulation was used to investigate the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process. Both NO-char and NO-NaYK reactions were considered as three-step processes in this calculation. Based on geometry optimizations made using the UB3LYP/6-31 G(d) method, the activation energies of NO-char and NO-Na/K reactions were calculated using the QC1SD(T)/6-3 i 1G(d, p) method; Results showed that the activation energy of the NO-Na/K reaction (107.9/82.0 kJ/mol) was much lower than that of the NO-char reaction (245.1 kJ/mol). The reactions of NaO/KO and Na2P/K2O reduced by char were also studied, and their thermodynamics were calculated using the UB3LYP/6-31G(d) method; Results showed that both Na and K can be refreshed easily and rapidly by char at high temperature during the coal rebuming process. Based on the calculations and analyses, the catalytic mechanism of Na/K on NO-char het-erogeneous reactions during the coal reburning process was clarified.

  13. [Karyological differences of the Northern Dolly Varden Salvelinus malma malma and the white char Salvelinus albus from the Kamchatka River basin].

    Science.gov (United States)

    Frolov, S V

    2001-03-01

    The karyotypes of northern Dolly Varden and white char, sympathrically inhabiting the Kamchatka River basin, were studied. The karyotype of Dolly Varden was stable: 2n = 78 and NF = 98 + 2, while in white char, polymorphism and mosaicism for the chromosome number were revealed: 2n = 76-79, NF = 98 + 2. Using a routine chromosome staining technique, the karyotype of white char (2n = 78) was shown to be identical to that of Dolly Varden. In both karyotypes, similar sets of marker chromosomes were present: two pairs of submetacentric (SM), one pair of submeta-subtelocentric (SM-ST), one pair of large acrocentric (A), and one pair of large sub-telocentric (ST) chromosomes. However, the karyotypes of Dolly Varden and white char differed in the number and location of nucleolus organizer regions (NORs). In Dolly Varden, single NORs located in the telomeric regions of the marker SM-ST chromosomes were observed. In white char, NORs were multiple and located both in the telomeric regions of the marker SM-ST chromosomes and on the short and long arms of large ST chromosomes. The identical marker chromosomes indicate considerable phylogenetic relatedness between Dolly Varden and white char from the Kamchatka River basin. Variation in NORs provides evidence for the reproductive isolation of these chars and their species status.

  14. The role of nano-sized manganese coatings on bone char in removing arsenic(V) from solution: Implications for permeable reactive barrier technologies.

    Science.gov (United States)

    Liu, Jing; He, Lile; Dong, Faqin; Hudson-Edwards, Karen A

    2016-06-01

    Although the removal of arsenic(V) (As(V)) from solution can be improved by forming metal-bearing coatings on solid media, there has been no research to date examining the relationship between the coating and As(V) sorption performance. Manganese-coated bone char samples with varying concentrations of Mn were created to investigate the adsorption and desorption of As(V) using batch and column experiments. Breakthrough curves were obtained by fitting the Convection-Diffusion Equation (CDE), and retardation factors were used to quantify the effects of the Mn coatings on the retention of As(V). Uncoated bone char has a higher retention factor (44.7) than bone char with 0.465 mg/g of Mn (22.0), but bone char samples with between 5.02 mg/g and 14.5 mg/g Mn have significantly higher retention factors (56.8-246). The relationship between retardation factor (Y) and Mn concentration (X) is Y = 15.1 X + 19.8. Between 0.2% and 0.6% of the sorbed As is desorbed from the Mn-coated bone char at an initial pH value of 4, compared to 30% from the uncoated bone char. The ability of the Mn-coated bone char to neutralize solutions increases with increased amounts of Mn on the char. The results suggest that using Mn-coated bone char in Permeable Reactive Barriers would be an effective method for remediating As(V)-bearing solutions such as acid mine drainage.

  15. 生物质焦表面形貌SEM研究%Study on surface of biomass chars by scanning electron microscopy

    Institute of Scientific and Technical Information of China (English)

    林晓芬; 张军; 尹艳山; 盛昌栋

    2011-01-01

    The surface of biomass chars was studied using Scanning Electron Microscopy. The study shows that, the surface coarseness of biomass char is enhanced after pyrolysis, and both the special surface area and the porosity of the char increase. The surface characteristics are determined by the kinds of the biomass chars. There are hackle protuberances on the rice shell char surface, but little pores opening to the surface. There are irregular pores on the leaf char surface. Many pores on the cornstalk char surface are like honeycomb, and many pores on the cotton stalk char surface are cottony. The pyrolysis temperature has little effect on the surface characteristics of biomass chars.%采用扫描电镜对生物质焦的表面形貌进行研究.扫描电镜实验结果表明,生物质在制焦后,表面粗糙度提高,比表面积增大,孔隙更加发达.焦样表面形貌的特征主要是由生物质种类决定的,在扫描电镜下,稻壳焦样表面有锯齿状不规则的突起,但是开口在表面的孔很少:树叶焦样表面有不规则的孔:玉米杆焦样有如同蜂窝状的表面结构,表面孔十分丰富;棉花杆焦样有着絮状的表面结构,表面孔也较明显.热解温度对焦样表面形貌的影响不大.

  16. 生物质焦分形维数计算%CALCULATION OF FRACTAL DIMENSIONS OF BIOMASS CHARS

    Institute of Scientific and Technical Information of China (English)

    林晓芬; 张军; 尹艳山; 盛昌栋

    2011-01-01

    Based on the porosity structure measured by mercury porosimeter.the fractal dimensions of biomass chars have been calculated by two fractal models. The fractal dimensions based on Menger sponge model and thermodynamics are 2.7-3.1 and 2.7-2.9, respectively. The results show that the model based on thermodynamics depicts the porosity of biomass char more appropriate than the Menger sponge model. The results also show that the kinds of the biomass chars have an effect on the fractal dimensions, and totally the leaf chars have bigger fractal dimensions than the rice shell chars. The average pore diameters have an effect on the fractal dimensions. And the fractal dimensions of one biomass char decrease while the average pore diameters increase generally.%采用压汞法的实验数据,计算两种分形模型下生物质焦样的分形维数.其中根据Menger海绵模型计算得到的分形维数Dm的值在2.7~3.1之间,基于热力学关系的分形模型计算得到的分形维数Dr的值在2.7~2.9之间.分析认为第二种模型更好的描述了焦样的孔隙结构,Dr的值比Dm的值更为合理.实验结果表明,分形维数与生物质种类有关,树叶焦样的分形维数整体上大于稻壳焦样的分形维数.生物质焦样的平均孔径与分形维数有关.总的来看,同一生物质焦样的分形维数随着平均孔径的增大而减小.

  17. Pyrolysis of agricultural residues. Part II. Yield and chemical composition of tars and oils produced from cotton stalks, and assessment of lignin structure

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, Y.; Mobarak, F.; Schweers, W.

    1982-01-01

    The pyrolysis of cotton stalks at 400-600 degrees resulted in the production of char and tar in highest yield, and the increase of temperature within this range decreased the yield of tar and phenolic compounds in the tar but increased the ratio of neutrals to acids in the tar. On decreasing the particle size of stalks, the total yield of tar remained almost constant regardless of pyrolysis temperature but that of phenols increased while that of neutrals and acids decreased. The distribution of syringol and guaiacol in phenolic products indicated that lignin in stalks belongs to the guaiacyl-syringyl type.

  18. Removal of Methylene Blue Dye from Synthetic Wastewater with Bone Char

    Directory of Open Access Journals (Sweden)

    Gh Ghanizadeh

    2009-09-01

    Full Text Available "n "n "nBackgrounds and Objectives: Dyes  are  organic  materials  with  complex structures, toxic,  carcinogenic, teratogenic,nonbiodegredable properties and!the most!important pollutants of textile industrial wastewaters. The goal of this study was to survey the feasibility application of bone char (BC as a sorbent for the  of methylene blue (MB from synthetic wastewater.The sub goals of the research!were to determine!the adsorption isotherm, !effects of primary concentration of dye, adsorbent!dose, contact!time, and pH for the adsorption of MB with BC."nMaterials and Methods: BC was prepared under laboratory conditions by using of electrical furnace at 400°C for 2h. The prepared BC was crushed and pulverized by standard ASTM sieves with range of 10-16mesh(1.18-2mm.The  chemical composition  and  solid  structure  of BC was  analyzed using X-ray diffraction(XRD and  scanning  electronic  microscopy (SEM. Measurement  of  the surface area was carried out by N2 gas via BET isotherm and Belsorb software. The concentration of dye was measured by photometric!method (663nm."nResults: Predominant!compositionof BC is calcium hydroxyl apatite (Ca5 (PO43OH with 14m2/g surface area. The results of this study showed that increasing of primary concentration of dye, adsorbent dose and pH (5 to12 would lead to increasing of adsorption/removal of MB dye.Equilibration of dye adsorption was reached at lapse of 2h andoptimum pH for adsorption of MB with BC found in the rage of 8.5-12.Adsorption of MB witht BC complies witht freundlich isotherm(R2:0.99."nConclusion: Bone char is a cheap component that can be used as an adsorbent in water and wastewater treatment. Based on optimum pH of 8.5-12 found for the removal of MB and the fact that many of textile!industrial wastewaters have an alkaline pH, this adsorbent can be!used for the removal of dyes from these wastewaters.

  19. How do the poor handle money? What do the financial diaries of char dwellers tell us about financial inclusion?

    Directory of Open Access Journals (Sweden)

    Kuntala Lahiri-Dutt

    2013-05-01

    Full Text Available Derived from livelihoods surveys and ethnographic material about people living on the chars, or river islands, in deltaic lower Bengal, this paper illustrates the complex, diverse and ingenious ways that the poor manage money. These islands constitute some of the most vulnerable housing locations of some of the poorest communities; state services and facilities do not reach the chars because they are not listed as land in revenue records. It demonstrates that the poor live in a diverse economy where community spirit, family assistance and trust play roles equally important to markets. In doing so, it puts forth a grounded-in-the-field, evidence-based, critique of the slogan ‘financial inclusion’ that has gained prominence in recent years.

  20. Clean, premium-quality chars: Demineralized and carbon enriched. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E. [Southern Illinois Univ., Carbondale, IL (United States); Banerjee, D. [Institute of Gas Technology, Chicago, IL (United States)

    1993-05-01

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two different techniques were used: BET surface area analyzer and in-situ Diffuse Reflectance FTIR. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. It was found that the cleaning not only removes the minerals but has changed also the porous structure of the coals. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis.

  1. Combustion of char-coal waste pellets for high efficiency and low NO{sub x}. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-12-31

    Illinois coals are prime candidates for use in Integrated Gasification Combined Cycle (IGCC) plants because of their high volatility and good char reactivity. In these plants, partial gasification of the coal in the presence of limestone eliminates the major portion of the sulfur species in the product gases, which are used as fuel for the topping cycle. The char produced is high in ash content, the major portion of which is calcium sulfide. It is also low in volatiles and of low density, compared to the parent coal. The economic success of the gasification route depends on the subsequent utilization of the residual char for raising steam for use in a Rankine cycle bottoming plant and/or preheating the air to the gasifier. Fluidized bed combustion of the char appears an attractive way of utilizing the char. Areas of concern in the fluidized bed combustion of the high ash, low volatility char are: attainment of high carbon conversion efficiencies; reduction of oxides of nitrogen emissions; reduction/elimination of corrosive chlorine species; reduction/elimination of sodium and other alkali species; and efficient usage of the calcium present in the ash to reduce sulfur compounds. The aim of the present project is to investigate ways of improving the carbon conversion efficiency, sulfur capture efficiency and NO{sub x} reduction during the fluidized bed combustion by pelletizing the low density char with coal and coal wastes using cornstarch or wood lignin as binder. During this first quarter, the parent coals and the chars to be tested have been analyzed. Particle size distributions have been measured. Sample pellets have been made evaluation of their properties.

  2. Complete mitochondrial genomes of the Northern (Salvelinus malma) and Southern (Salvelinus curilus) Dolly Varden chars (Salmoniformes, Salmonidae).

    Science.gov (United States)

    Balakirev, Evgeniy S; Romanov, Nikolai S; Ayala, Francisco J

    2016-01-01

    The complete mitochondrial genomes were sequenced from the Northern and Southern Dolly Varden chars, Salvelinus malma and S. curilus. The genome sequences are 16,654 bp in size in both species, and the gene arrangement, composition, and size are very similar to the salmonid fish genomes published previously. The level of sequence divergence between S. malma and S. curilus inferred from the complete mitochondrial genomes is relatively low (1.88%) indicating recent divergence of the species and/or historical hybridization.

  3. Pyrolysis-GC/MS of charred purified condensed tannin: towards identification of tannin-derived black carbon in environmental samples

    Science.gov (United States)

    Kaal, Joeri; Nierop, Klaas G. J.; Kraal, Peter; Preston, Caroline M.

    2010-05-01

    Tannins account for a significant proportion of plant biomass and are therefore a possible source of Black C in the charred remains from wildfires. Nonetheless, in contrast with other major biocomponents such as lignin and cellulose, the thermal degradation of tannins has not been investigated in laboratory charring experiments. We used pyrolysis-GC/MS to investigate the effects of furnace charring (30 min at fixed temperatures up to 600 °C under limited oxygen supply) on the degradation of pure condensed tannin (CT) isolated from Corsican pine (Pinus nigra) needles. The experiments showed a rapid loss (at 300 °C and higher) of the pyrogallol moieties of the B-ring of prodelphinidin-type CT, due to dehydroxylation. The relative abundance of catechols (from procyanidin-type CT) decreased at 350 °C and higher temperatures. This led to the formation of phenols that were strongly enriched between 300 and 400 °C. At higher temperatures, further dehydroxylation caused a decline in contributions of phenols producing a series of monocyclic aromatics ((alkyl)benzenes) and condensation of aromatics produced polycyclic aromatic hydrocarbons (PAHs), i.e. the typical pyrolysis fingerprint of strongly charred biomass. We conclude that (i) the thermal degradation of CT can be successfully monitored by pyrolysis-GC/MS, (ii) thermal degradation of CT is characterized by dehydroxylation of phenolic groups and condensation of aromatics that increase with temperature and (iii) CT-derived Black C may be recognized by catechol enrichments at low temperatures and possibly (relative) abundance of phenol and biphenyl at higher levels of thermal breakdown. Applying the same method to natural charcoal from gorse bushfires indicated that pyrolysis-GC/MS fingerprinting may allow for tannin identification in environmental Black C samples.

  4. Pyrolysis-GC-MS analysis of the formation and degradation stages of charred residues from lignocellulosic biomass

    OpenAIRE

    González-Vila, Francisco Javier; Tinoco, Pilar; Almendros Martín, Gonzalo; Martín Martínez, Francisco

    2001-01-01

    The structural transformations undergone by lignocellulosic biomass (freeze-dried rye grass, Lolium rigidum) subjected to progressive isothermal heating (burning at 350°C under oxidizing conditions for 30, 45, 60, 75, and 90 s) have been monitored by Curie-point pyrolysis-gas chromatographymass spectrometry (Py-GC-MS). The pyrograms suggest that even charred residues after severe heating (carbon loss ca. 50%) still contain substantial concentrations of some resistant plant structural componen...

  5. Assessing Two-Year-Olds' Knowledge of Number Agreement Morphology

    Science.gov (United States)

    Blossom, Megan

    2013-01-01

    Previous research in the area of children's knowledge of number agreement morphology has yielded mixed results. Some researchers have found evidence for sensitivity to agreement morphology at as early as 16 months, while others report that children do not comprehend number agreement morphology until as late as five or six years old. Studies of…

  6. Radiocarbon dating of charred human bone remains preserved in urns excavated from medieval Buddhist cemetery in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshio, E-mail: nakamura@nendai.nagoya-u.ac.j [Center for Chronological Research, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Sagawa, Shinichi; Yamada, Tetsuya [Gangoji Institute for Research of Cultural Properties, Nakain, Nara 630-8392 (Japan); Kanehara, Masaaki [School of Science Education, Nara University of Education, Takabatake, Nara 630-8528 (Japan); Tsuchimoto, Norio [Ichinomiya City Museum, Yamato, Ichinomiya 491-0922 (Japan); Minami, Masayo [Center for Chronological Research, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Omori, Takayuki [Graduate School of Environmental Studies, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Okuno, Mitsuru [Faculty of Science, Fukuoka University, Jonan, Fukuoka 814-0180 (Japan); Ohta, Tomoko [Center for Chronological Research, Nagoya University, Chikusa, Nagoya 464-8602 (Japan)

    2010-04-15

    For a preliminary test of {sup 14}C dating of cremated human remains, we have collected charred bone and wood-charcoal fragments from cremated remains contained in cinerary urns that had been excavated from medieval Buddhist cemetery at the Hoenji temple in Aichi prefecture, central Japan. More than 230 urn vessels were discovered from the excavated area of ca. 14 m wide and 14 m long. The identification of charred bone or charcoal fragments among the remains was performed by observation of surface appearance, inspection of fine structures by a microscope, bubble formation during the HCl treatments in preparing target material for AMS {sup 14}C dating, carbon and nitrogen contents, delta{sup 13}C and delta{sup 15}N values of the fragments. All {sup 14}C ages obtained for the samples that were identified as charred bone remains were almost consistent with the archeological age estimated based on typological analysis of respective urns. On the other hand, some {sup 14}C ages for the remains identified as wood charcoal, which had been produced from firewood or a wooden coffin during the cremation, were not consistent with archeological estimation, shifting toward older {sup 14}C ages, most probably as the result of old wood effect.

  7. Removal of elemental Mercury from flue gas using wheat straw chars modified by K2FeO4 reagent.

    Science.gov (United States)

    Zhou, Jianfei; Liu, Yangxian; Pan, Jianfeng

    2017-02-17

    In this article, wheat straw (WS) char, a common agricultural waste and renewable biomass, was pyrolyzed and then modified by K2FeO4 reagent to develop an efficient sorbent for removal of Hg(0) from flue gas. Brunauer-Emmett-Teller, scanning electron microscopy with energy spectrum and X-ray diffraction (XRD) were employed to characterize the sorbents. The effects of K2FeO4 loading, reaction temperature, Hg(0) inlet concentration and concentrations of gas mixtures O2, NO and SO2 in flue gas on Hg(0) removal were investigated in a fixed-bed reactor. The results show that K2FeO4-impregnation can improve pore structure of WS char and produce new active sites, which significantly enhance Hg(0) removal. Increasing Hg(0) inlet concentration significantly decreases Hg(0) removal efficiency. O2 in flue gas promotes Hg(0) oxidation by replenishing the oxygen groups on the surface of modified chars. The presence of NO obviously promotes Hg(0) removal since it can oxidize Hg(0) to Hg(NO3)2. SO2 in flue gas significantly decreases Hg(0) removal efficiency due to the competition adsorption between SO2 and Hg(0). The increase in reaction temperature has a dual impact on Hg(0) removal.

  8. Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems

    Energy Technology Data Exchange (ETDEWEB)

    Lian Fei; Huang Fang; Chen Wei [College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071 (China); Xing Baoshan [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Zhu Lingyan, E-mail: zhuly@nankai.edu.cn [College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Nankai University, Tianjin 300071 (China)

    2011-04-15

    Single- and bi-solute sorption of organic compounds [1,3-dichlorbenzene (DCB), 1,3-dinitrobenzene (DNB) and 2,4-dichlorophenol (DCP)] on ground tire rubber and its chars was studied. The chars were prepared by pyrolyzing tire rubber at different temperatures (200-800 deg. C). Their surface area, aromaticity and hydrophobicity increase greatly with pyrolytic temperature, and the polymeric phase is partly converted into a condensed phase. The sorption of DNB and DCP increases with pyrolytic temperature and is characterized by a transition from a partition dominant to an adsorption dominant process. However, the sorption of DCB linearly decreases with the pyrolytic temperature. The enhanced adsorption of DNB and DCP on carbonized phase is primarily attributed to nonhydrophobic interactions such as {pi}-{pi} electron-donor-acceptor interactions and/or H bonding. The higher partition of DCB to polymeric phase is attributed to its high hydrophobicity. Competitive sorption between DCB and DCP on the tire chars is highly dependent on dissociation of the latter. - Research highlights: > Tire chars consist of dual sorptive domains, i.e., partition and adsorption. > High hydrophobicity of apolar organic contaminant promotes its partition into polymeric phase. > Polar aromatic contaminants show high adsorption on carbonized phase with specific interactions. > Dissociation of ionzable organic chemical heavily influences its sorption on tire chars. - The partition and adsorption of organic contaminants on waste tire chars are highly dependent on the hydrophobicity, polarity and dissociation of solutes.

  9. Estimation of surface heat flux for ablation and charring of thermal protection material

    Science.gov (United States)

    Qian, Wei-qi; He, Kai-feng; Zhou, Yu

    2016-07-01

    Ablation of the thermal protection material of the reentry hypersonic flight vehicle is a complex physical and chemical process. To estimate the surface heat flux from internal temperature measurement is much more complex than the conventional inverse heat conduction problem case. In the paper, by utilizing a two-layer pyrogeneration-plane ablation model to model the ablation and charring of the material, modifying the finite control volume method to suit for the numerical simulation of the heat conduction equation with variable-geometry, the CGM along with the associated adjoint problem is developed to estimate the surface heat flux. This estimation method is verified with a numerical example at first, the results show that the estimation method is feasible and robust. The larger is the measurement noise, the greater is the deviation of the estimated result from the exact value, and the measurement noise of ablated surface position has a significant and more direct influence on the estimated result of surface heat flux. Furthermore, the estimation method is used to analyze the experimental data of ablation of blunt Carbon-phenolic material Narmco4028 in an arc-heater. It is shown that the estimated surface heat flux agrees with the heating power value of the arc-heater, and the estimation method is basically effective and potential to treat the engineering heat conduction problem with ablation.

  10. Surface modification of bone char for removal of formaldehyde from air

    Science.gov (United States)

    Rezaee, Abbas; Rangkooy, Hosseinali; Jonidi-Jafari, Ahmad; Khavanin, Ali

    2013-12-01

    The aim of this study was to evaluate the adsorption performance of bone char (BC) modified with acetic acid for formaldehyde removal from polluted air. The porous structure, surface characteristics and functional groups involved in formaldehyde adsorption were determined using the Brunauer-Emmett-Teller (BET) method, scanning electron microscope (SEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that the modified BC has a higher specific surface area than the original BC. The maximum surface area of the modified BC was 118.58 m2/g. The FTIR spectrum of modified BC indicated that the hydroxyl and carboxyl groups on the BC surface played a significant role in the adsorption of formaldehyde by modified BC. The breakthrough, equilibrium time and adsorption capacity of modified BC were greater than the original BC. Moreover, the results showed that at initial concentrations of 20, 50, 100 and 200 mg/L, the equilibrium times for BC and modified BC were 85, 75, 65 and 45 min and 95, 85, 70 and 50 min, respectively. It seems that the formaldehyde adsorption capacity of modified BC depends on both physical and chemical properties. These results showed that modified BC can be used as an efficient adsorbent for formaldehyde removal.

  11. Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysed sewage sludge char (PSSC).

    Science.gov (United States)

    Kleemann, Rosanna; Chenoweth, Jonathan; Clift, Roland; Morse, Stephen; Pearce, Pete; Saroj, Devendra

    2017-02-01

    This research compares and contrasts the physical and chemical characteristics of incinerator sewage sludge ash (ISSA) and pyrolysis sewage sludge char (PSSC) for the purposes of recovering phosphorus as a P-rich fertiliser. Interest in P recovery from PSSC is likely to increase as pyrolysis is becoming viewed as a more economical method of sewage sludge thermal treatment compared to incineration. The P contents of ISSA and PSSC are 7.2-7.5% and 5.6%, respectively. Relative to the sludge, P concentrations are increased about 8-fold in ISSA, compared to roughly 3-fold in PSSC. Both PSSC and ISSA contain whitlockite, an unusual form of calcium phosphate, with PSSC containing more whitlockite than ISSA. Acid leaching experiments indicate that a liquid/solid ratio of 10 with 30min contact time is optimal to release PO4-P into leachate for both ISSA and PSSC. The proportion of P extracted from PSSC is higher due to its higher whitlockite content. Heavy metals are less soluble from PSSC because they are more strongly incorporated in the particles. The results suggest there is potential for the development of a process to recover P from PSSC.

  12. Adsorption of SO2 on bituminous coal char and activated carbon fiber

    Science.gov (United States)

    DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.

    1997-01-01

    The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.

  13. The SiteChar approach to efficient and focused CO2 storage site characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Neele, F.; Nepveu, M.; Hofstee, C.; Wollenweber, J. [TNO, P.O. Box 80015, NL-3508 TA Utrecht (Netherlands); Delprat-Jannaud, F.; Vincke, O.; Battani, A.; Baroni, A.; Garcia, B. [IFPEN, Rueil-Malmaison (France); Volpi, V. [OGS, Trieste (Italy); Lothe, A. [SINTEF Petroleum Research, Trondheim (Norway); Brunsting, S. [Energy research Centre of the Netherlands, ECN Policy Studies, Amsterdam (Netherlands); Pearce, J. [BGS, Nottingham (United Kingdom)

    2013-05-01

    Carbon Capture and Storage (CCS) is one of the solutions that can significantly reduce CO2 during the transition from fossil fuel-based energy to an energy system based on renewable energy sources. Recent studies point out that sufficient storage capacity in saline aquifers and depleted gas fields is available to permanently store several decades worth of current CO2 emissions. Nevertheless, a significant hurdle for the post-demonstration phase of CCS development is the lack of proven and tested storage reservoirs. One of the goals of the EU FP7 SiteChar project is to develop an efficient site characterisation workflow, to support the development of the numerous storage sites that will be needed for large-scale deployment of CCS. The workflow is designed to address all aspects of safe and secure storage required by the EU Storage Directive. The links between the Storage Directive requirements and the site characterisation workflow are described in detail. The workflow is currently being applied to five sites suitable for CCS across Europe. A final version of the workflow will be published early 2014.

  14. Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?

    Science.gov (United States)

    Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P

    2014-06-01

    Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized.

  15. [Population genetic structure of northern Dolly Varden char Salvelinus malma malma in Asia and North America].

    Science.gov (United States)

    Oleĭnik, A G; Skurikhina, L A; Brykov, Vl A

    2011-12-01

    The level of genetic differentiation of northern Dolly Varden char Salvelinus malma malma from Asia and North America was evaluated using the data on mtDNA variation (regions ND1/ND2, ND5/ND6, and Cytb/D loop) obtained by means of PCR-RFLP analysis. For S. m. malma, the mean values of haplotype and nucleotide diversity were 0.5261 +/- 0.00388 and 0.001558, respectively. The mean estimate of the population nucleotide divergence constituted 0.055%. It was demonstrated that S. m. malma on the most part of the species range examined (drainages of the Beaufort Sea, Chukotka Sea, Bering Sea, and the Sea of Okhotsk) was characterized by the population genetic structure with the low level of genetic differentiation and divergence. At the same time, populations from the Pacific Ocean Gulf of Alaska demonstrated marked genetic differentiation, supported by the high pairwise phi(ST) values (from 0.4198 to 0.5211) and nucleotide divergence estimates (mean divergence, 0.129%), from Asian and North American populations. Nested analysis of molecular variance (AMOVA) showed that most of the mtDNA variation in S. m. malma fell in the intrapopulation component (72.5%). At the same time, the differences between the populations (21.1%) and between the regions (6.4%) made lower contribution to the total variation.

  16. Surface modification of bone char for removal of formaldehyde from air

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Rangkooy, Hosseinali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of); Jonidi-Jafari, Ahmad; Khavanin, Ali [Environmental Health Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2013-12-01

    The aim of this study was to evaluate the adsorption performance of bone char (BC) modified with acetic acid for formaldehyde removal from polluted air. The porous structure, surface characteristics and functional groups involved in formaldehyde adsorption were determined using the Brunauer–Emmett–Teller (BET) method, scanning electron microscope (SEM) equipped with energy dispersive X-ray (EDX) and Fourier transform infrared spectroscopy (FTIR), respectively. It was found that the modified BC has a higher specific surface area than the original BC. The maximum surface area of the modified BC was 118.58 m{sup 2}/g. The FTIR spectrum of modified BC indicated that the hydroxyl and carboxyl groups on the BC surface played a significant role in the adsorption of formaldehyde by modified BC. The breakthrough, equilibrium time and adsorption capacity of modified BC were greater than the original BC. Moreover, the results showed that at initial concentrations of 20, 50, 100 and 200 mg/L, the equilibrium times for BC and modified BC were 85, 75, 65 and 45 min and 95, 85, 70 and 50 min, respectively. It seems that the formaldehyde adsorption capacity of modified BC depends on both physical and chemical properties. These results showed that modified BC can be used as an efficient adsorbent for formaldehyde removal.

  17. Ecosystem Viable Yields

    CERN Document Server

    De Lara, Michel; Oliveros-Ramos, Ricardo; Tam, Jorge

    2011-01-01

    The World Summit on Sustainable Development (Johannesburg, 2002) encouraged the application of the ecosystem approach by 2010. However, at the same Summit, the signatory States undertook to restore and exploit their stocks at maximum sustainable yield (MSY), a concept and practice without ecosystemic dimension, since MSY is computed species by species, on the basis of a monospecific model. Acknowledging this gap, we propose a definition of "ecosystem viable yields" (EVY) as yields compatible i) with biological viability levels for all time and ii) with an ecosystem dynamics. To the difference of MSY, this notion is not based on equilibrium, but on viability theory, which offers advantages for robustness. For a generic class of multispecies models with harvesting, we provide explicit expressions for the EVY. We apply our approach to the anchovy--hake couple in the Peruvian upwelling ecosystem between the years 1971 and 1981.

  18. Modulus and yield stress of drawn LDPE

    Science.gov (United States)

    Thavarungkul, Nandh

    Modulus and yield stress were investigated in drawn low density polyethylene (LDPE) film. Uniaxially drawn polymeric films usually show high values of modulus and yield stress, however, studies have normally only been conducted to identify the structural features that determine modulus. In this study small-angle x-ray scattering (SAXS), thermal shrinkage, birefringence, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA) were used to examine, directly and indirectly, the structural features that determine both modulus and yield stress, which are often closely related in undrawn materials. Shish-kebab structures are proposed to account for the mechanical properties in drawn LDPE. The validity of this molecular/morphological model was tested using relationships between static mechanical data and structural and physical parameters. In addition, dynamic mechanical results are also in line with static data in supporting the model. In the machine direction (MD), "shish" and taut tie molecules (TTM) anchored in the crystalline phase account for E; whereas crystal lamellae with contributions from "shish" and TTM determine yield stress. In the transverse direction (TD), the crystalline phase plays an important roll in both modulus and yield stress. Modulus is determined by crystal lamellae functioning as platelet reinforcing elements in the amorphous matrix with an additional contributions from TTM and yield stress is determined by the crystal lamellae's resistance to deformation.

  19. Crop yields in intercropping

    NARCIS (Netherlands)

    Yu, Y.

    2016-01-01

    Abstract

    Intercropping, the cultivation of two or more crop species simultaneously in the same field, has been widely practiced by smallholder farmers in developing countries and is gaining increasing interest in developed countries. Intercropping can increase the yield per

  20. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China

    Directory of Open Access Journals (Sweden)

    Y. M. Han

    2010-01-01

    Full Text Available Numerous definitions and analytical techniques for elemental (or black carbon (EC have been published in the scientific literature, but still no generally accepted interdisciplinary definition exists. EC is not a single chemical compound, but is mainly composed of two parts of carbon contents: combustion residues from pyrolysis and combustion emissions formed via gas-to-particle conversion. Accordingly EC is subdivided into two classes: char and soot. Char is defined as carbonaceous materials obtained by heating organic substances and formed directly from pyrolysis, or as an impure form of graphitic carbon obtained as a residue when carbonaceous material is partially burned or heated with limited access of air. Soot is defined as only those carbon particles that form at high temperature via gas-phase processes. Since the different classes of EC have different chemical and physical properties, their optical light-absorbing properties differ, so that it is essential to differentiate them in the environment. The thermal optical reflectance (TOR method was used to differentiate between char-EC and soot-EC according to its stepwise thermal evolutional oxidation of different carbon fractions under different temperatures and atmosphere. Char-EC and soot-EC are operationally defined as EC1-OP and EC2+EC3 (EC1, EC2 and EC3 corresponding to carbon fractions evolved at 550, 700 and 800 °C in a 98% He/2% O2 atmosphere, respectively, respectively. One year of observations of the daily and seasonal variations of carbonaceous particles were conducted in Xi'an, China in 2004 to demonstrate the different characteristics of char and soot in the atmosphere. Total carbon (TC, organic carbon (OC, EC and char-EC showed similar seasonal trends, with high concentrations in winter and low concentrations in summer, while soot-EC revealed relatively small seasonal variations, with maximum concentration (1.85±0.72 μg m−3 in spring and minimum

  1. 生物质炭和富二氧化碳合成气制取二甲醚%Dimethyl Ether Production from Biomass Char and CO2-Rich Bio-Syngas

    Institute of Scientific and Technical Information of China (English)

    徐勇; 颜世志; 叶同奇; 张钊; 李全新

    2011-01-01

    We report on a novel approach toward dimethyl ether (DME) synthesis using crude CO2-rich bio-syngas and biomass char.The crude bio-syngas was derived from bio-oil reforming and was initially conditioned by catalytic conversion into CO-rich bio-syngas using biomass char over the Ni/Al203 catalyst.The molar ratio of CO2 to CO significantly decreased from 6.33 in the CO2-rich bio-syngas to 0.21 after bio-syngas conditioning at 800 C.The yield of dimethyl ether from the conditioned bio-syngas was about four times higher than that from the CO2-rich bio-syngas over the Cu-ZnO-Al2O3/HZSM-5 catalyst.This work potentially provides a useful approach toward producing biofuels and chemicals from bio-syngas and a novel utilization of biomass char.%研究了一种利用富二氧化碳合成气和生物质炭联合制取二甲醚的方法,其过程包括两个步骤:富二氧化碳合成气调整以及调整后合成气合成二甲醚.在合成气调整过程中,利用生物质炭为原料在Ni/Al2O3催化剂上将富二氧化碳合成气调整为富一氧化碳合成气.经过800℃合成气调整后,合成气中CO2含量大幅降低而CO含量大幅提高,CO2/CO的摩尔比从原始合成气的6.33降至0.21.然后,分别用调整前后的合成气合成二甲醚,结果表明,经过调整后,C转化率得到很大的提高,二甲醚产率比调整前高4倍.本工作提供了一种可利用富二氧化碳生物质合成气制取燃料的途径,并且提供了一种新的利用生物质炭的方法.

  2. Catalytic Gasification of Biomass Char Based on Response Surface Methodology%基于响应面法的生物质半焦催化气化试验

    Institute of Scientific and Technical Information of China (English)

    杜玉照; 肖军; 沈来宏; 俞元元; 周亚运; 吕潇

    2014-01-01

    以海泡石为载体制备生物质气化的碱金属催化剂,开展了低温水蒸气条件下的麦秸半焦催化气化试验。采用响应面设计法,进行3-level 中心组合设计试验,构建半焦气化性能指标(氢气产率RH2、碳转化率XC、反应速率YC)与催化剂制备参数(K2CO3负载量、催化剂煅烧温度)的响应曲面,对半焦气化性能进行效应分析和优化。研究结果表明:K2CO3负载量对半焦气化反应的影响极显著;催化剂煅烧温度对氢气产率、碳转化率影响显著;二者对氢气产率、碳转化率还存在一定的交互效应。利用Design Expert软件优化,得到最佳的催化剂制备参数为:煅烧温度728℃、K2CO3负载量25.8%,在此优化条件下的试验结果显示RH2=103.67 mol/kg、XC=96.48%、YC=1.28%/min,与模型预测值一致。气化温度对半焦气化有着重要的影响,低于700℃时,气化反应受到抑制,且试验表明海泡石是生物质低温气化制取富氢气体的一种合适的催化剂载体。%The alkali metal catalysts with the sepiolite as support were prepared for biomass gasification. The gasification experiments of wheat straw char with steam were performed at a lower temperature (650~750℃). Based on response surface methodology, the designed experiments using 3-level experiment center composite were carried out. In order to evaluate the gasification performance of char involving the hydrogen yield, carbon conversion efficiency and reaction rate, the response surface was set up based on two catalyst preparation parameters, i.e. the K2CO3 content as well as calcination temperature. Using the regression model of the response surface, char gasification performance with the catalysts were analyzed and optimized. Results show that the char gasification performance is significantly influenced by the K2CO3 content, whereas the hydrogen yield and carbon conversion efficiency are much related to the calcination

  3. Behavior of mineral matters in Chinese coal ash melting during char-CO{sub 2}/H{sub 2}O gasification reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojiang Wu; Zhongxiao Zhang; Guilin Piao; Xiang He; Yushuang Chen; Nobusuke Kobayashi; Shigekatsu Mori; Yoshinori Itaya [University of Shanghai for Science & Technology, Shanghai (China). Department of Power Engineering

    2009-05-15

    The typical Chinese coal ash melting behavior during char-CO{sub 2}/H{sub 2}O gasification reaction was studied by using TGA, XRD, and SEM-EDX analysis. It was found that ash melting behavior during char gasification reaction is quite different from that during coal combustion process. Far from the simultaneously ash melting behavior during coal combustion, the initial melting behavior of ash usually occurs at a middle or later stage of char-CO{sub 2}/H{sub 2}O reaction because of endothermic reaction and more reactivity of char gasification reaction as compared with that of mineral melting reactions in ash. In general, the initial melting temperature of ash is as low as 200-300 K below the deformation temperature (T{sub def}) of ash with ASTM test. The initial molten parts in ash are mainly caused by iron bearing minerals such as wustite and iron-rich ferrite phases under gasification condition. Along with the proceeding of ash melting, the melting behavior appears to be accelerated by the presence of calcium to form eutectic mixtures in the FeO-SiO{sub 2}-Al{sub 2}O{sub 3} and CaO-SiO{sub 2}-Al{sub 2}O{sub 3} system. The different states of iron are the dominant reason for different melting behaviors under gasification and combustion conditions. Even under both reducing conditions, the ash fusion temperature (AFT) of coal under char-CO{sub 2} reaction is about 50-100 K lower than that under char-H{sub 2}O reaction condition. The main reason of that is the higher content of CO under char-CO{sub 2} reaction, which can get a lower ratio of Fe{sup 3+}/{Sigma}Fe in NaO-Al{sub 2}O{sub 3}-SiO{sub 2}-FeO melts. 38 refs., 8 figs., 4 tabs.

  4. Performance prediction and validation of equilibrium modeling for gasification of cashew nut shell char

    Directory of Open Access Journals (Sweden)

    M. Venkata Ramanan

    2008-09-01

    Full Text Available Cashew nut shell, a waste product obtained during deshelling of cashew kernels, had in the past been deemed unfit as a fuel for gasification owing to its high occluded oil content. The oil, a source of natural phenol, oozes upon gasification, thereby clogging the gasifier throat, downstream equipment and associated utilities with oil, resulting in ineffective gasification and premature failure of utilities due to its corrosive characteristics. To overcome this drawback, the cashew shells were de-oiled by charring in closed chambers and were subsequently gasified in an autothermal downdraft gasifier. Equilibrium modeling was carried out to predict the producer gas composition under varying performance influencing parameters, viz., equivalence ratio (ER, reaction temperature (RT and moisture content (MC. The results were compared with the experimental output and are presented in this paper. The model is quite satisfactory with the experimental outcome at the ER applicable to gasification systems, i.e., 0.15 to 0.30. The results show that the mole fraction of (i H2, CO and CH4 decreases while (N2 + H2O and CO2 increases with ER, (ii H2 and CO increases while CH4, (N2 + H2O and CO2 decreases with reaction temperature, (iii H2, CH4, CO2 and (N2 + H2O increases while CO decreases with moisture content. However at an equivalence ratio less than 0.15, the model predicts an unrealistic composition and is observed to be non valid below this ER.

  5. Linking Pyrogenic Organic Matter Reactivity in Soil to its Charring Temperature and Wood Source

    Science.gov (United States)

    Filley, T. R.; Gibson, C. D.; Hatton, P. J.; Dastmalchi, K.; Chatterjee, S.; Nadelhoffer, K. J.; Stark, R. E.; Bird, J.

    2014-12-01

    Understanding the link between the chemical and structural properties of pyrogenic organic matter (PyOM) and its subsequent reactivity in soil is critical to predict how future increases in forest fire frequency and intensity will affect C and N cycling. Herein, we present results from a laboratory incubation that investigated the effects of wood species and charring temperature on the decomposition of PyOM and native soil organic carbon (SOC) dynamics in a sandy soil from a northern temperate forest (University of Michigan Biological Station, Pellston, MI, USA). PyOM was produced from highly 13C/15N-labeled red maple (RM; Acer rubrum) and jack pine (JP; Pinus banksania) at 0 (native wood), 200, 300, 450 and 600 °C. PyOM amendments to soil were at 11 % total soil C. After 3 months of this ongoing incubation, 13CO2 evolution indicates that both pyrolysis temperature and species played a significant role in PyOM and native SOC mineralization. For both species, PyOM-C mineralization decreased with increasing temperature and PyOM ≥200 °C additions decreased SOC mineralization relative to controls.. In addition, PyOM-C mineralization of RM-derived PyOM was enhanced relative to JP-derived PyOM at temperatures Soils with added RM-derived PyOM exhibited significantly lower SOC mineralization at 300 and 450 °C than from JP-derived PyOM additions. These results highlighting interactive temperature and species effects are consistent with our detailed spectroscopic, elemental and isotope analysis of the PyOM samples across this pyrolysis gradient, which shows significant physicochemical changes at 300 °C for JP and between 300 and 450 °C for RM. Efforts will be made in this paper to link PyOM structural and chemical properties to the PyOM and native SOC turnover rates.

  6. Effects of Planting Dates on Yield and Yield Components of Four Cumin (Cuminum cyminum L. Landraces

    Directory of Open Access Journals (Sweden)

    R Soheyli

    2011-02-01

    Full Text Available Abstract In order to investigate the effect of fall and winter planting dates on phenological and morphological traits, yield and yield components of four cumin (Cuminum cyminum L. landraces, an experiment was conducted at the Research Farm of Agricultural College of Ferdowsi University of Mashhad as a split plot based on randomized complete block design with three replications in 2005-06 growing season. Four planting dates (11th Nov., 11th Dec., 20th Feb. and 17th Mar. were allocated to main plots and four landraces (Ghayen, Torbat-e-heidariyeh, Sabzevar and Khaf were assigned to sub plots. The results indicated that the effects of planting date, landrace and interaction effect of these two factors on plant height, percent of plant survival after winter, yield components, seed yield, biological yield and harvest index were significant. With respect to plant height, there was no difference between fall (11th Nov. and 11th Dec. and winter (20th Feb. planting dates, while plant height in the fourth planting date (17th Mar. decreased severely. The lowest percent of plant survival was observed in the fall sowing dates, while the third and fourth plantings had no plant mortality, for not exposing to cold conditions. The maximum percent of plant survival belonged to Ghayen and Khaf landraces with 85% and 84% respectively, and Torbat-e-heidariyeh had the lowest percent of plant survival with 59%. The greatest number of umbels per plant, number of seeds per umbel, 1000 seeds weight and seeds weight per plant were achieved in the first planting date. Despite priority of the first planting date in yield components over other planting dates, the greatest seed yield and biological yield observed in the third planting date (20th Feb.. With regard to seed yield and biological yield, Ghayen in the third planting and Torbat-e-heidariyeh in the first planting had the greatest and the lowest yields, respectively. Since the fall and winter planting dates led to

  7. 氮营养配施稀效唑对马铃薯原种繁殖植株形态及产量和品质的影响%Effects of Nitrogen Fertilizer with Uniconazole on Plant Morphology,Yield and Quality of Potato

    Institute of Scientific and Technical Information of China (English)

    李崇秋; 郑顺林; 李方安; 李德林; 郭刚金; 袁继超

    2012-01-01

    采用盆栽及营养液培养方法,以脱毒原原种费乌瑞它为试验材料,研究了氮营养配施稀效唑对马铃薯植株形态、产量和品质的影响,为马铃薯原种高产高效繁殖提供技术支持.结果表明:①增施氮肥降低了根长、根鲜重,增加了叶面积、主茎鲜重、单薯重等指标,随着施氮量的增加,叶面积、主茎鲜重、单位叶面积重和单薯重都有较大幅度的增加.叶面喷施稀效唑对根长和根鲜重影响很小,对叶面积、主茎鲜重、单薯重、单位叶面积重有较大的影响.随着喷施浓度的提高,总叶面积重和单位叶面积重呈不断增高的趋势.②氮肥、稀效唑对马铃薯产量影响极显著,施氮与不施氮处理相比,产量增加了50.41%,喷施稀效唑产量增加了9.04%,随着施氮量及稀效唑喷施浓度的提高,产量呈先增加,后降低的变化趋势.增施氮肥和叶面喷施稀效唑,降低了块茎中淀粉的含量,增加了块茎可溶性糖和蛋白质的含量.随着施氮量和稀效唑喷施浓度的增大,淀粉含量呈下降的趋势,可溶性糖和蛋白质含量呈增长的趋势.%Taking the potato of Favorita as tested material, the experiments of pot and nutrient solution were conducted to study the effects of nitrogen fertilizer with uniconazole on the plant morphology, yield and quality for providing technical support in potato high efficient cultivation. The results showed that( I )Increasing nitrogen fertilizer decreased the potato root length and root heavy, but increased leaf areas, the main stem fresh ,the weight of per potato, with nitrogen increasing, the leaf areas, the main stem, leaf areas per unit had a large margin of increase. Spraying uniconazole on leaves had little effect on the root length and root heavy, but had great impact on the leaf areas, the main stem fresh, weight per potato, the leaves weight per unit. With the concentration of uniconazole increasing, the weight of total

  8. Study on Char Forming Properties of ABS Flame Retarded by EG%可膨胀石墨阻燃ABS分解成炭性能研究

    Institute of Scientific and Technical Information of China (English)

    王志伟; 李荣勋; 周兵; 刘光烨

    2011-01-01

    The char forming properties of EG were studied by observing its macrostructure and microstructure. The thermogravimetric processes of EG and ABS/EG were studied by TG. The microstructure of flame-retardant ABS/EG was studied by SEM. The results show that EG has special "worm" structure after expansion, which imparts size effect and load effect to char layer of EG; flame-retardant ABS/EG can form compact and high temperature resistant char layer,which has heat insulation effect and oxygen insulation effect; the porous char layer structure can improve the structure stability of flame-retardant ABS/EG; the load catalyzing effect of EG char layer accelerates thermo-oxidation degradation and char crosslinking formation of ABS,meanwhile the char layer of EG can protect the char products of ABS, so it can increase the practical amount of char residue.%通过观测可膨胀石墨(EG)的宏观和微观结构,探讨了EG的分解成炭性能,利用热失重分析仪研究了EG与EG阻燃ABS的热失重行为,并采用扫描电镜观察了EG阻燃ABS膨胀炭层的微观结构.结果表明:EG自身膨胀后具有独特的"蠕虫"状结构,使EG炭层具有尺寸效应和负载作用;EG阻燃ABS形成了致密,耐高温的膨胀炭层,发挥隔氧、隔热作用,并且炭层呈现多孔的发泡堆砌结构,结构稳定性提高;EG膨胀炭层的负载值化作用促进了ABS的热氧降解反应和交联成炭反应,同时EG炭层能够保护ABS成炭产物,提高实际残炭量.

  9. 褐煤原位气化半焦的反应性及微观结构的演化行为%Evolu tion behavior of reacti vity and micros tructure of lignite char during in-situ gasification with steam

    Institute of Scientific and Technical Information of China (English)

    许修强; 王永刚; 张书; 陈宗定; 陈绪军; 贺欣

    2015-01-01

    The pyrolysis of brown coala nd the in-situ gasificatio n of “hot” char were carried outi n a newly-designed two-stage fixed-bed reactor.Firstly, the brown coal was pyroly zed in ul trapure argo n for 5 s under the temperature of 400 ℃, 600 ℃, and 800 ℃ at the pyrolysis stage.Then the reactor was shifted to the“gasification stage” immediately andt he “hot char” obtained at the pyrolysis stage was gasified in-situ for 2 ~30 min at 900 ℃ with a 15%H2 O balanced with argon to obtain a so-called in -situg asification char.TGA and Raman spectroscope were used to characterize the reactivity and microstructure of char, respectively.Results show that the yields of in-situ gasification char decrease significantly within the initial 10 min, and then decrease slowly with prolonging the holding time further (10 ~30 min).Plenty of O-containing functional gro ups are released int he first 2 min during gasification.The ratio of small aromatic ring systems to big arom atic ring systems decreases dramatically within 2 min, and then decreases slowly from 2 min to 30 min.Microstructure of char has an effe ct on its rea ctivity.With the char gasifica tion, the amorphou s carbon as well as small aroma tic ring systems with high activity decreases, leading to the char reactivity decreaseing consequently.%在自制两段新型固定床反应器上进行了褐煤热解及“热”半焦的原位气化反应的研究。在高纯氩气、400/600/800℃的条件下,对褐煤热解5 s 后,立刻将反应器移到气化段,同时切换气氛为15%水蒸气对“热”半焦进行原位气化反应(900℃、2~30 min),制得原位气化半焦。利用 TGA 和 Raman 光谱仪,对原位气化半焦进行反应性和微观结构表征。结果表明,原位气化半焦产率及反应性在气化10 min 内降低幅度相对较大,10~30 min 降低相对缓慢。大部分的含氧官能团在气化2 min 内被释放,气化2 min 后含氧官能团变得

  10. Integrated production/use of ultra low-ash coal, premium liquids and clean char. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Illinois Univ., Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States)

    1993-09-01

    Tests this quarter showed the adsorption efficiency of an oxidized activated ChemCoal{trademark} (OACC) char for removing volatile organic compounds (VOCs) from spiked water is higher than for unoxidized activated char (ACC). OACC destroyed (or reacted with) a higher percentage of VOCs when loaded char was heated quickly to 850{degrees}C. This was expected based on the OACC`s superiority as an elimination catalyst. Aromatic VOCs appeared to be adsorbed on the chars more readily than the chlorinated ones but the multichlorinated VOCs appeared to be adsorbed more strongly. The performance of two oxidized carbons (OST3-9 and OACC chars) for the removal of the VOCs from two industrial waste waters spiked with VOCs appeared similar. The more active catalyst, OST3-9 appeared more effective than OACC in destroying the adsorbed materials. A series of carbons having differing levels of oxygen on the surface was prepared by desorbing oxygen from the surface placed there by nitric acid oxidation. Tests revealed that the capacity to adsorb 2-nitrophenol increased as the outgassing temperature was increased. This indicates that PNP adsorption is increased as surface oxygen is removed from the carbon.

  11. The Research Status on Preparation and Application of Biomass Activated Char%生物质活性半焦制备及应用研究现状

    Institute of Scientific and Technical Information of China (English)

    周卫红; 白斌; 李兰兰; 徐安壮

    2015-01-01

    该文分析了生物半焦制备过程中热解温度、热解速率等条件对生物半焦吸附性能的影响。结果表明随热解温度升高,比表面积及孔隙结构呈现先增大后减小趋势,快速热解获得比慢速热解更好孔隙结构。通过活化和脱灰方式对半焦进行改性,改性后的半焦具有更好的吸附性能,也称为活性半焦。生物质活性半焦用于处理染料废水和烟气脱汞等。%The effects of pyrolysis temperature, pyrolysis rate and other conditions on the activity of biomass char in the process of biomass char preparation were analyzed. The results showed that surface area and pore structure firstly increased and then decreased with the increase of the pyrolysis temperature. The pore structure was better under quickly pyrolysis than slowly pyrolysis. Biomass char can have the better adsorbability by modified and deashing that was called activated char. Biomass activated char were applied on dye wastewater treatment and flue gas demercuration.

  12. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  13. Intensification of adsorption process by using the pyrolytic char from waste tires to remove chromium(Ⅵ) from wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yong-rong

    2004-01-01

    Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char(PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr(Ⅵ) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution / concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon(CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(Ⅵ) ion are weaker than that of CAC, which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr(Ⅵ) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr(Ⅵ) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr(Ⅵ) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr(Ⅵ) removal. The adsorption of Cr(Ⅵ) has been identified as pseudo-second- order kinetics. The rate constants of adsorption have been evaluated.

  14. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting.

    Science.gov (United States)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-02-01

    Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition to composting hen manure and barley straw at low flow rates proved most effective in reducing cumulative NH3 and CH4 losses. Addition of bio-char in combination with barley straw to hen manure at both high and low flow rates reduced total GHG emissions (as CO2-equivalents) by 27-32% compared with barley straw addition alone. Comparisons of flow rates showed that low flow could be an alternative strategy for reducing NH3 losses without any significant change in N2O emissions, pointing to the need for well-controlled composting conditions if gaseous emissions are to be minimised.

  15. Cesium in Arctic char lakes - effects of the Chernobyl accident. Radioaktivt cesium i roedingsjoear - effekter av Tjernobylkatastrofen

    Energy Technology Data Exchange (ETDEWEB)

    Hammar, J. (Fiskeriverkets Soetvattenslaboratorium, Drottningholm (Sweden)); Notter, M.; Neumann, G. (Statens Naturvaardesverks Miljoekontrollaboratorium, Drottningholm (Sweden))

    1991-01-01

    Fallout radiocesium from the Chernobyl accident caused extensive contamination in a region of previously well studied alpine lake ecosystems in northern Sweden. Levels of Cs-137 in the barren catchment basins reached 20-50 kBq/m[sup 2] during 1986. The distribution, pathways and major transport mechanisms of radiocesium through the lake ecosystems were studied during 1986-1990. Levels of Cs-137, Cs-134 and K-40 in water, surface sediment, detritus (sediment traps) and different trophic levels of the food chains of Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) were monitored in a series of lakes forming a matrix of 4 natural lakes and 3 lake reservoirs, with or without the introduced new fish food organism, Mysis relicta. The reservoirs were found to act as sinks for radiocesium with extensive accumulation recorded in water, detritus, sediment, invertebrates and salmonids. Whereas concentrations in water and biota have declined from the extreme peak levels in 1986-1987, the levels in surface sediment increased extensively until fall of 1988. The concentration of Cs-137 in fish populations feeding on benthic invertebrates, i.e. mysids and amphipods, were significantly higher than in planktivorous fish. During the three first winters a significant increase in levels of Cs-137 in winter active Arctic char were recorded, whereas the levels declined during the succeeding summers. The introduced Mysis relicta were found to enhance the transport of Cs-137 from zooplankton and settling particles to Arctic char and brown trout. The results suggest a successive change in transport of radiocesium from water via zooplankton to planktivorous fish during the early summer of 1986 to post-depositional mobilization via benthic organisms to benthic fish in successive years. (213 refs.) (au).

  16. Intensification of adsorption process by using the pyrolytic char from waste tires to remove chromium (VI) from wastewater.

    Science.gov (United States)

    Zhou, Jie; Yang, Yong-Rong

    2004-01-01

    Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char (PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr(VI) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution/concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon (CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(VI) ion are weaker than that of CAC, which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr(VI) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr(VI) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr(VI) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr(VI) removal. The adsorption of Cr(VI) was identified as pseudo-second-order kinetics. The rate constants of adsorption were evaluated.

  17. [Phylogeography of mitochondrial DNA in South Asian Dolly Varden char Salvelinus curilus Pallas, 1814 (Salmoniformes, Salmonidae): mediated gene introgression?].

    Science.gov (United States)

    Shed'ko, S V; Ginatulina, L K; Miroshnichenko, I L; Nemkova, G A

    2007-02-01

    In 41 individuals of South Asian Dolly Varden char Salvelinus curilus, nucleotide sequences of tRNA-Pro gene fragment (27 bp) and mtDNA control region (483-484 bp) were analyzed. The fish were collected in 20 localities covering virtually the whole range of the species: Kuril Islands, Sakhalin Island. and Primorye. In addition, six individuals of three other char species (S. albus, S. malma, and S. leucomaenis), which are closely related to S. curilus and inhabit the Russian Far East, were examined. In all, we detected 12 different variants of mtDNA haplotypes that formed three distinct groups differing in 14--20 nucleotide positions. The first group consisted of six haplotypes found in S. curilus in Kuril Islands, Sakhalin, and Primorye (mtDNA phylogroup OKHOTSKIA). The second group comprised four haplotypes representing the mtDNA phylogroup BERING, which had been described earlier (Brunner et al, 2001); they were found in S. curilus in Kuril Islands and Sakhalin, as well as in S. albus and S. malma in Kamchatka and northern Kurils. The third group included two haplotypes detected in S. leucomaenis. The existence of two mtDNA lineages (OKHOTSKIA and BERING) in S. curilus from Kurils and Sakhalin was explained by hybridization and DNA transfer from S. malma to S. curilus. The absence of the BERING haplotypes in S. curilus from Primorye water reservoirs is related to the physical isolation of the Sea of Okhotsk and Sea of Japan basins in past epochs. On the basis of comparing phylogenetic trees, constructed from the data on allozyme and mtDNA variation, we suggest that in this case, an indirect transfer of mtDNA in Alpinoid chars--> S. malma-->S. curilus chain could occur.

  18. Impact of charring on cereal grain characteristics: linking prehistoric manuring practice to 15N signatures in archaeobotanical material

    DEFF Research Database (Denmark)

    Kanstrup, Marie; Thomsen, Ingrid Kaag; Mikkelsen, Peter Hambro;

    2012-01-01

    . However, despite attempts to deliberately tamper and distort the grain δ15N signature, the changes observed in this study were too small to be of any consequences for the archaeobotanical applicability of the method. Thus the isotope method offers unique evidence about prehistoric manuring practice....... in either a systematic or substantial way and conclude that manuring most likely will be detectable in archaeobotanical charred grains. As certain within-grain variability in δ15N existed, especially in the intensively manured grains, the resolution of this kind of information should be carefully considered...

  19. Effect of coal rank and mineral matter on gasification reactivity of coal char treated at high temperature; Netsushorishita sekitan char no gas ka tokusei ni taisuru tanshu oyobi kobutsushitsu no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takei, H.; Harano, A.; Takarada, T. [Gunma University, Gunma (Japan). Faculty of Engineering

    1996-10-28

    In the wide range from brown coal to anthracite, an investigation was made of effects of heat treatment on physical/chemical properties and of coal rank dependence. For the experiment, 12 kinds of coal samples were used, and for heat treatment, the fluidized bed heated by the electric furnace and the infrared-ray gold image furnace were used. To examine characteristics of the heat-treated coal char, conducted were oxygen gasification, TPD measurement, XRD measurement, alkali metal measurement, and pore distribution measurement. The following were obtained from the experiment. The gasification reaction rate of the char heat-treated in the temperature range between 900{degree}C to 1700{degree}C decreases with a rise of the temperature of heat treatment, and the degree of decrease in the rate depends on coal rank. The order of gasification rate between coal ranks depends on the temperature of heat treatment, and the lower the heat treatment temperature is, the more largely the gasification rate is influenced by catalysis of mineral matters included in the coal. As causes of the decrease in gasification rate associated with the rise in temperature of heat treatment, indicated were release of alkali metal having catalysis and decrease of active sites by carbonaceous crystallinity. 6 figs.

  20. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  1. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    Science.gov (United States)

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  2. 生物质快速热裂解炭的分析及活化研究%Characterization and Activation of Pyrolytic Char from Fast Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    尹倩倩; 王树荣

    2013-01-01

    采用化学(KOH)方法对两种具有代表性的生物质原料(花梨木和稻壳)的快速热裂解固体产物-热解炭进行了活化,并采用氮吸附、X射线衍射(XRD)、傅里叶红外光谱分析(FTIR)和扫描电镜(SEM)技术测试了热解炭的结构特性、表面特性以及物理化学性质.结果表明,这两种热解炭经过活化后可以获得许多优良的性质,固定碳含量增加,灰分含量减少.同时,活化后BET比表面积迅速增大,超过1100m2/g,而且热解炭的石墨化程度都有所加深.热解炭通过活化过程可以实现其高品质利用,有利于生物质热裂解技术的工业化发展.%The pyrolytic chars from fast pyrolysis of rosewood and rice husk have been activated with KOH solvent. The texture and structure, surface properties and physico-chemical properties of the pyrolytic chars have been characterized by N2 physisorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy ( FTIR) and Scanning electron microscope ( SEM). Compared with the original pyrolytic chars, the activated chars had higher fixed carbon content and lower ash content. The BET surface area increased beyond 1100m /g after activation. Moreover,the activated chars had higher graphitization degree. Through this activation process, high grade utilization of pyrolytic char will be achieved, as will benefit the industrialization of biomass fast pyrolysis technology.

  3. Measurements of Gasification Characteristics of Coal and Char in CO2-Rich Gas Flow by TG-DTA

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2013-01-01

    Full Text Available Pyrolysis, combustion, and gasification properties of pulverized coal and char in CO2-rich gas flow were investigated by using gravimetric-differential thermal analysis (TG-DTA with changing O2%, heating temperature gradient, and flow rate of CO2-rich gases provided. Together with TG-DTA, flue gas generated from the heated coal, such as CO, CO2, and hydrocarbons (HCs, was analyzed simultaneously on the heating process. The optimum O2% in CO2-rich gas for combustion and gasification of coal or char was discussed by analyzing flue gas with changing O2 from 0 to 5%. The experimental results indicate that O2% has an especially large effect on carbon oxidation at temperature less than 1100°C, and lower O2 concentration promotes gasification reaction by producing CO gas over 1100°C in temperature. The TG-DTA results with gas analyses have presented basic reference data that show the effects of O2 concentration and heating rate on coal physical and chemical behaviors for the expected technologies on coal gasification in CO2-rich gas and oxygen combustion and underground coal gasification.

  4. Odor and VOC Emissions from Pan Frying of Mackerel at Three Stages: Raw, Well-Done, and Charred

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Ahn

    2014-11-01

    Full Text Available Many classes of odorants and volatile organic compounds that are deleterious to our wellbeing can be emitted from diverse cooking activities. Once emitted, they can persist in our living space for varying durations. In this study, various volatile organic compounds released prior to and during the pan frying of fish (mackerel were analyzed at three different cooking stages (stage 1 = raw (R, stage 2 = well-done (W, and stage 3 = overcooked/charred (O. Generally, most volatile organic compounds recorded their highest concentration levels at stage 3 (O, e.g., 465 (trimethylamine and 106 ppb (acetic acid. In contrast, at stage 2 (W, the lowest volatile organic compounds emissions were observed. The overall results of this study confirm that trimethylamine is identified as the strongest odorous compound, especially prior to cooking (stage 1 (R and during overcooking leading to charring (stage 3 (O. As there is a paucity of research effort to measure odor intensities from pan frying of mackerel, this study will provide valuable information regarding the management of indoor air quality.

  5. Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using “FiresCone”

    Directory of Open Access Journals (Sweden)

    Long Shi

    2015-10-01

    Full Text Available A mathematical model, named FiresCone, was developed to simulate the pyrolysis and combustion processes of different types of combustible materials, which also took into account both gas and solid phases. In the present study, some non-charring and intumescent-protected polymer samples were investigated regarding their combustion behaviors in response to pre-determined external heat fluxes. The modeling results were validated against the experimental outcomes obtained from a cone calorimeter. The predicted mass loss rates of the samples were found to fit reasonably well with the experimental data collected under various levels of external irradiation. Both the experimental and modeling results showed that the peak mass loss rate of the non-charring polymer material occurred near the end of burning, whereas for the intumescent-protected polymer it happed shortly after the start of the experiment. “FiresCone” is expected to act as a practical tool for the investigation of fire behavior of combustible materials. It is also expected to model fire scenarios under complicated conditions.

  6. Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Aeration is an important factor influencing CO2, CH4, N2O and NH3 emissions from the composting process. Both CH4 and N2O are potent greenhouse gases (GHG) of high importance. Here, we examined the effects of high and low aeration rates together with addition of barley straw with and without bio......-char on GHG and NH3 emissions from composting cattle slurry and hen manure in small-scale laboratory composters. Depending on treatment, cumulative C losses via CO2 and CH4 emissions accounted for 11.4-22.5% and 0.004-0.2% of initial total carbon, while N losses as N2O and NH3 emissions comprised 0.......05-0.1% and 0.8-26.5% of initial total nitrogen, respectively. Decreasing the flow rate reduced cumulative NH3 losses non-significantly (by 88%) but significantly increased CH4 losses (by 51%) from composting of cattle slurry with barley straw. Among the hen manure treatments evaluated, bio-char addition...

  7. Reconstruction of Biomass Combustion History Using Soot, Char, and Polycyclic Aromatic Hydrocarbons at Linsley Pond, Conn, USA

    Science.gov (United States)

    Yan, B.; Han, Y.; Peteet, D. M.

    2013-12-01

    Biomass burning has become recognized as one of key elements of climate change. The occurrence of fires is a complex function of climate, moisture, vegetation and landscape type. Fires impact environments in multiple ways, e.g., increase in soil erosion, change of vegetation type, and increase in nutrient levels in soils and lakes that receive runoff from burned areas. Sediment cores that contain an archive of deposition of combustion products can help reconstruct the history of past fires. In this study, alkylated PAHs and black carbon (char and soot) were used to explore the paleofire history reflected in a sediment core collected from Linsley Pond, Connecticut (41°18'N, 72 °45'W). Biomass type and combustion levels of these fires and whether they occurred locally or regionally can be derived from these indicators. Such details, together with other paleoenvironmental indicators recorded in sediment cores (e.g., pollen, macrofossils, and LOI) helped unravel the environmental conditions before and after fires. Alkanes, PAHs, alkylated PAHs, and the ratio of soot to char indicate that in the Younger Dryas, fire occurred at a relatively low temperature (i.e. smoldering), followed by an abrupt increase of flaming combustion of softwood (white pine) at the Holocene boundary. Our paleofire data supports the previous interpretations of a shift towards a warm and dry climate in the southern New England region at this time.

  8. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Interim final technical report, 1 September, 1992--31 August, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Univ. of Illinois, Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-31

    The ultimate objective of this project is to attain high-value, coal-derived products, especially varieties of char, from Illinois coal. The chars (carbons) made in this study, because of their special properties, could become the marketable materials having the highest value in the product set. Tests this quarter followed up on an unexpected correlation of surface properties of a variety of oxidized carbons with adsorption phenomena. Additional oxidized carbons were made at the ISGS and tests to establish the reproducibility of results were begun. Work will be continued through December on a no-cost extension.

  9. [The divergence of the dolly varden char Salvelinus malma in Asian Northern Pacific populations inferred from the PCR-RFLP analysis of the mitochondrial DNA].

    Science.gov (United States)

    Oleĭnik, A G; Skurikhina, L A; Brykov, V A

    2002-10-01

    Genetic differentiation of the dolly varden char Salvelinus malma Walbaum was studied in five populations from the western part of the Northern Pacific. Using restriction analysis (RFLP), we examined polymorphism of three mitochondrial DNA (mtDNA) fragments amplified in polymerase chain reaction (PCR). MtDNA haplotypes were shown to fall into two phylogenetic groups, which probably reflect the existence of two previously described subspecies of Asian dolly varden, S. malma malma and S. malma krascheninnikovi. The divergence of mtDNA nucleotide sequences in the dolly varden subspecies (about 4%) corresponds to the differences between the valid char species from the genus Salvelinus.

  10. Effects of Pressure on the Properties of Coal Char Under Gasification Conditions at High Initial Heating Rates

    Science.gov (United States)

    Shurtz, Randy Clark

    The effects of elevated pressure and high heating rates on coal pyrolysis and gasification were investigated. A high-pressure flat-flame burner (HPFFB) was designed and built to conduct these studies. The HPFFB was designed to provide an environment with laminar, dispersed entrained flow, with particle heating rates of ˜105 K/s, pressures of up to 15 atm, and gas temperatures of up to 2000 K. Residence times were varied from 30 to 700 ms in this study. Pyrolysis experiments were conducted at particle heating rates of ˜10 5 K/s and maximum gas temperatures of ˜1700 K at pressures of 1 to 15 atm. A new coal swelling correlation was developed that predicts the effects of heating rate, pressure, and coal rank on the swelling ratio at heating rates above ˜104 K/s. A coal swelling rank index system based on 13C-NMR chemical structural parameters was devised. The empirical swelling model requires user inputs of the coal ultimate and proximate analyses and the use of a transient particle energy balance to predict the maximum particle heating rate. The swelling model was used to explain differences in previously reported bituminous coal swelling ratios that were measured in facilities with different heating rates. Char gasification studies by CO2 were conducted on a subbituminous coal and 4 bituminous coals in the HPFFB. Pressures of 5, 10, and 15 atmospheres were used with gas compositions of 20, 40, and 90 mole % CO2. Gas conditions with peak temperatures of 1700 K to 2000 K were used, which resulted in char particle temperatures of 1000 K to 1800 K. Three gasification models were developed to fit and analyze the gasification data. A simple 1 st--order model was used to show that the measured gasification rates were far below the film-diffusion limit. The other two models, designated CCK and CCKN, were based on three versions of the CBK models. CCKN used an nth--order kinetic mechanism and CCK used a semi-global Langmuir-Hinshelwood kinetic mechanism. The two CCK

  11. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    @@ Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and ultrastructural levels.

  12. Steam gasification of waste tyre: Influence of process temperature on yield and product composition

    Energy Technology Data Exchange (ETDEWEB)

    Portofino, Sabrina, E-mail: sabrina.portofino@enea.it [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy); Donatelli, Antonio; Iovane, Pierpaolo; Innella, Carolina; Civita, Rocco; Martino, Maria; Matera, Domenico Antonio; Russo, Antonio; Cornacchia, Giacinto [UTTTRI RIF – C.R. ENEA Trisaia, SS Jonica 106, km 419.5, 75026 Rotondella (Italy); Galvagno, Sergio [UTTP NANO – C.R. ENEA Portici, P.le E. Fermi, 1 Loc. Granatello, 80055 Portici (Italy)

    2013-03-15

    Highlights: ► Steam gasification of waste tyre as matter and energy recovery treatment. ► Process temperature affects products yield and gas composition. ► High temperature promotes hydrogen production. ► Char exploitation as activated carbon or carbon source. - Abstract: An experimental survey of waste tyre gasification with steam as oxidizing agent has been conducted in a continuous bench scale reactor, with the aim of studying the influence of the process temperature on the yield and the composition of the products; the tests have been performed at three different temperatures, in the range of 850–1000 °C, holding all the other operational parameters (pressure, carrier gas flow, solid residence time). The experimental results show that the process seems promising in view of obtaining a good quality syngas, indicating that a higher temperature results in a higher syngas production (86 wt%) and a lower char yield, due to an enhancement of the solid–gas phase reactions with the temperature. Higher temperatures clearly result in higher hydrogen concentrations: the hydrogen content rapidly increases, attaining values higher than 65% v/v, while methane and ethylene gradually decrease over the range of the temperatures; carbon monoxide and dioxide instead, after an initial increase, show a nearly constant concentration at 1000 °C. Furthermore, in regards to the elemental composition of the synthesis gas, as the temperature increases, the carbon content continuously decreases, while the oxygen content increases; the hydrogen, being the main component of the gas fraction and having a small atomic weight, is responsible for the progressive reduction of the gas density at higher temperature.

  13. Advancement of Molecular Morphology

    Institute of Scientific and Technical Information of China (English)

    顾江

    2004-01-01

    Molecular morphology is a new discipline of medical science that studies morphology at the molecular level. This includes the investigation of occurrence and distribution of proteins, peptides, DNA and RNA sequences at the tissue, cellular, and uhrastructural levels. Morphology is defined as a field of science investigating the shape,

  14. Yield enhancement with DFM

    Science.gov (United States)

    Paek, Seung Weon; Kang, Jae Hyun; Ha, Naya; Kim, Byung-Moo; Jang, Dae-Hyun; Jeon, Junsu; Kim, DaeWook; Chung, Kun Young; Yu, Sung-eun; Park, Joo Hyun; Bae, SangMin; Song, DongSup; Noh, WooYoung; Kim, YoungDuck; Song, HyunSeok; Choi, HungBok; Kim, Kee Sup; Choi, Kyu-Myung; Choi, Woonhyuk; Jeon, JoongWon; Lee, JinWoo; Kim, Ki-Su; Park, SeongHo; Chung, No-Young; Lee, KangDuck; Hong, YoungKi; Kim, BongSeok

    2012-03-01

    A set of design for manufacturing (DFM) techniques have been developed and applied to 45nm, 32nm and 28nm logic process technologies. A noble technology combined a number of potential confliction of DFM techniques into a comprehensive solution. These techniques work in three phases for design optimization and one phase for silicon diagnostics. In the DFM prevention phase, foundation IP such as standard cells, IO, and memory and P&R tech file are optimized. In the DFM solution phase, which happens during ECO step, auto fixing of process weak patterns and advanced RC extraction are performed. In the DFM polishing phase, post-layout tuning is done to improve manufacturability. DFM analysis enables prioritization of random and systematic failures. The DFM technique presented in this paper has been silicon-proven with three successful tape-outs in Samsung 32nm processes; about 5% improvement in yield was achieved without any notable side effects. Visual inspection of silicon also confirmed the positive effect of the DFM techniques.

  15. Shortcomings in wheat yield predictions

    Science.gov (United States)

    Semenov, Mikhail A.; Mitchell, Rowan A. C.; Whitmore, Andrew P.; Hawkesford, Malcolm J.; Parry, Martin A. J.; Shewry, Peter R.

    2012-06-01

    Predictions of a 40-140% increase in wheat yield by 2050, reported in the UK Climate Change Risk Assessment, are based on a simplistic approach that ignores key factors affecting yields and hence are seriously misleading.

  16. Varied morphology carbon nanotubes and method for their manufacture

    Science.gov (United States)

    Li, Wenzhi; Wen, Jian Guo; Ren, Zhi Feng

    2007-01-02

    The present invention describes the preparation of carbon nanotubes of varied morphology, catalyst materials for their synthesis. The present invention also describes reactor apparatus and methods of optimizing and controlling process parameters for the manufacture carbon nanotubes with pre-determined morphologies in relatively high purity and in high yields. In particular, the present invention provides methods for the preparation of non-aligned carbon nanotubes with controllable morphologies, catalyst materials and methods for their manufacture.

  17. Astragalar Morphology of Selected Giraffidae.

    Directory of Open Access Journals (Sweden)

    Nikos Solounias

    Full Text Available The artiodactyl astragalus has been modified to exhibit two trochleae, creating a double pullied structure allowing for significant dorso-plantar motion, and limited mediolateral motion. The astragalus structure is partly influenced by environmental substrates, and correspondingly, morphometric studies can yield paleohabitat information. The present study establishes terminology and describes detailed morphological features on giraffid astragali. Each giraffid astragalus exhibits a unique combination of anatomical characteristics. The giraffid astragalar morphologies reinforce previously established phylogenetic relationships. We find that the enlargement of the navicular head is a feature shared by all giraffids, and that the primitive giraffids possess exceptionally tall astragalar heads in relation to the total astragalar height. The sivatheres and the okapi share a reduced notch on the lateral edge of the astragalus. We find that Samotherium is more primitive in astragalar morphologies than Palaeotragus, which is reinforced by tooth characteristics and ossicone position. Diagnostic anatomical characters on the astragalus allow for giraffid species identifications and a better understanding of Giraffidae.

  18. 煤焦与生物质焦CO2共气化特性及分布活化能研究%Investigation on the Co-gasification of Coal Char With Biomass Char and the Distributed Activation Energy

    Institute of Scientific and Technical Information of China (English)

    高正阳; 胡佳琪; 郭振; 王星久; 吴小芳

    2011-01-01

    对煤焦、秸秆焦、木屑焦3种焦样及其掺混焦样进行了CO2气氛的共气化热重试验,研究了各焦样在不同催化剂添加条件下的气化特性,并对各种样品在反应过程中的分布活化能进行了计算与分析.研究结果表明:煤焦、秸秆焦、木屑焦3种焦样中煤焦的反应性显然较差;对于煤焦和秸秆焦,Na盐的催化效果优于Ca盐;对于木屑焦,Ca盐的催化效果更显著.Na盐与Ca盐的添加均可使秸秆焦气化反应速率显著增加,但反应所需温度的下降却不显著.在木屑焦中添加Na盐与Ca盐后,气化反应所需温度的下降比秸秆焦显著.对于煤焦,添加催化剂首先使气化所需温度显著下降,反应速率并不显著增加;但进一步增加催化剂,则主要使反应速率提高,反应所需温度不再显著下降.在反应过程中,各样品的分布活化能均表现出先升后降的趋势.样品中灰分的存在有助于焦样在热天平内气化反应的充分进行.%Thermo gravimetric analyzer (TGA) experiments for gasification of sawdust char, wheat straw char and coal char and co-gasification of their mixtures in CO2 atmosphere were conducted. Characteristics of the gasification with and without catalysts were investigated. Kinetics of char gasification was studied employing distributed activation energy model (DAEM). Experimental data indicate that coal char is apparently less active among these three kinds of char. And catalytic effect of Na salts on the gasification of coal char or straw char is greater than Ca slats while Ca salts function as better catalysts to the gasification of sawdust char. Both Na salts and Ca salts have the ability to significantly accelerate the reaction rate of straw char gasification, but none of them would significantly reduce the onset temperatures of these reactions. When Na salts or Ca salts were added into sawdust char, drop of the onset temperature is larger than that can be observed in the

  19. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Technical report, December 1--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    en; Kruse, C.W.; Carlson, S.L. [Illinois Dept. of Energy and Natural Resources, Springfield, IL (United States). Geological Survey; Fatemi, M. [Amoco Research Center, Naperville, IL (United States); Snoeyink, V.L.; Feizoulof, C.A. [Illinois Univ., Urbana, IL (United States); Klavetter, E. [Sandia National Labs., Albuquerque, NM (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-05-01

    The objective of this research is to invert the conventional scale of values normally assigned to products of coal utilization processes and make special coal chars (carbons) that, because of their special properties, can be among the most marketable materials in the product slate. Reconstruction of a continuous feed charring oven of the type used at the ISGS in 1979 was completed and its operation has been tested on an Illinois No. 6 coal. Pounds of per hour can be processed with this device and it accepts coal of all particle sizes. Effects on char properties related to the depth of the bed charred can be studied in this oven. Attempts are continuing to develop and prove procedures for comparing the catalyst activity of oxidized activated carbons. In the new studies, dehydrochlorination reactions were carried out in the gas phase and they were applied to alkyl chlorides less reactive than the tertiary chlorides used previously. Adsorption studies show the capacity of carbons made in this study, as measured by the Freundlich equation, have significantly less capacity than that of AR000, a commercially available activated carbon manufactured from bituminous coal.

  20. 基于XPS的纤维素热解焦表面结构分析%Surface Structure of Pyrolytic Char of Cellulose Based on XPS Analysis

    Institute of Scientific and Technical Information of China (English)

    王鹏; 张坚; 陈振国; 张彪; 龚勋; 徐明厚

    2015-01-01

    以XPS为主要分析手段,以管式炉和金属网为反应器,在300,℃不同热解时间下制备焦,利用XPS表征两种反应器制备的焦及水洗后的焦样的表面结构差异,进而分析挥发分与焦的二次反应对纤维素热解焦结构的影响。研究结果表明,纤维素在一次反应过程中生成了C=O双键。%In this paper,XPS is taken as the main means of analysis,and char is prepared in metal mesh reactor and horizon tube furnace reactor by heating cellulose at 300,℃. The surface structure of char in two reactors and of the char-washed samples is analyzed by XPS and the differences are made clear. Further,the impact of secondary reac-tions between volatile and char on the surface structure of cellulose is analyzed. The bond of C=O may be produced at the condition of minimized secondary reactions.

  1. Investigation of biomasses and chars obtained from pyrolysis of different biomasses with solid-state 13C and 23Na nuclear magnetic resonance spectroscopy

    NARCIS (Netherlands)

    Link, S.; Arvelakis, S.; Spliethoff, H.; Waard, de P.; Samoson, A.

    2008-01-01

    A number of biomass samples (reed, pine pellets, Douglas fir wood chips, wheat straw, peach stones, and olive residue), pretreated biomass samples (leached wheat straw, leached peach stones, and leached olive residue), as well as their chars obtained by pyrolysis using different heating rates (5, 10

  2. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively.

  3. 黄土区坡耕地耕作对浅沟径流产沙及其形态发育特征的影响%Effect of tillage on runoff and sediment yields and morphology development characteristic of ephemeral gully in loessial region

    Institute of Scientific and Technical Information of China (English)

    郭明明; 王文龙; 李建明; 朱宝才; 史倩华; 康宏亮; 李艳富; 李垚林

    2015-01-01

    In the hill-gully area of the Loess Plateau, serious man-made soil and water loss occurs in disturbed soils of sloping farmlands formed in the process of tillage operation. Frequent farming activities cause ephemeral gullies to develop continuously on sloping farmlands. Although an ephemeral gully may be refilled and rehabilitated, new ephemeral gully may develop in the original position in next rainy season. An indoor flow scouring experiment under artificially simulated rainfall was carried out in the State Key Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, China in July 2014. The effects of tillage treatments on runoff and sediment yielding in ephemeral gully and its morphology were investigated at different rainfall intensities and slope degrees under the condition of upslope concentrated flow. Based on preliminary field investigations, 3 slope degrees of 15°, 20° and 25° were selected. Rainfall intensity was designed at 1.0, 1.5, and 2.0 mm/min. Flow discharges were 7.53 to 23.45 L/min. Plots of 8 m×1m were laid out for experiments and 3 flow sections were set up for runoff and sediment measurements. Before each test, rainfall intensity was calibrated repeatedly until the rainfall uniformity coefficient reached 85% or above. During each test, flow velocity was measured with dye tracing method and flow width and depth were measured with point gauge system. Runoff sample was taken once a minute within 3 minutes before runoff generation, and once 3 minutes after runoff generation. The results showed that: 1) Flow regimes for non-tilled and tilled ephemeral gullies were characterized by turbulent flow; Tillage could decrease Reynolds number and Froude number by 0.95%-30.77% and 3.41%-35.66%, and increase Darcy-Weisbachcoefficient and Manning roughness coefficient by 4.01%-58.82% and 0.88%-27.87%, respectively; and 2) Compared to non

  4. Reprodução do papagaio charão, Amazona pretrei (Aves: Psittacidae em cativeiro.

    Directory of Open Access Journals (Sweden)

    Dionisio Link

    2009-09-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 O papagaio charão, Amazona pretrei (Temminck, 1830 pode ser reproduzido em cativeiro. O viveiro deve ser amplo para que o comportamento de acasalamento e reprodução seja o mais semelhante ao ambiente natural. Os casais deve ficar isolados de outros exemplares da mesma espécie e de outras aves. A alimentação deve ser colocada a uma certa altura do solo. O ninho deve ter dimensões que permitam à fêmea boas condições de oviposição e choco e, aos filhotes, proteção durante o período que ficam no ninho. A fase imatura é de aproximadamente dois anos.

  5. Influence of reaction atmosphere and solvent on biochar yield and characteristics.

    Science.gov (United States)

    Marx, S; Chiyanzu, I; Piyo, N

    2014-07-01

    Sunflower husks were converted to biochar via thermochemical liquefaction in different solvents and reaction atmospheres. Highest biochar yields obtained was 574 g kg(-1) husks. Surface area of the produced chars and evolution of aromatic compounds in the biochar structure increased with an increase in temperature. Volatile matter and N-content decreased and S-content decreased significantly with an increase in temperature which is favourable should the biochars be used for combustion. The HHV of the biochars were significantly higher than that of the feedstock as was also indicated by the energy densification ratio. The biochars compared favourable with coal on a Van Krevelen diagram, showing the possibility of the biochars for application in co-gasification. CO2 performed better in retaining the energy of the feedstock in the biochar (up to 58%). It was shown that sunflower husks are a viable feedstock for the production of biochars for application in co-gasification or combustion.

  6. Morphology of galaxies

    CERN Document Server

    Wadadekar, Yogesh

    2012-01-01

    The study of the morphology of galaxies is important in order to understand the formation and evolution of galaxies and their sub-components as a function of luminosity, environment, and star-formation and galaxy assembly over cosmic time. Disentangling the many variables that affect galaxy evolution and morphology, requires large galaxy samples and automated ways to measure morphology. The advent of large digital sky surveys, with unprecedented depth and resolution, coupled with sophisticated quantitative methods for morphology measurement are providing new insights in this fast evolving field of astronomical research.

  7. Effect of density and planting pattern on yield and yield

    Directory of Open Access Journals (Sweden)

    alireza yadavi

    2009-06-01

    Full Text Available In order to evaluate competition ability of Grain maize (Zea mays L. against redroot pigweed (Amaranthus retroflexus L. a field experiment was conducted at Esfahan on 2003. In this research the effect of corn spatial arrangement on yield and yield components of corn (647 Three Way Cross hybrids under different levels of redroot pigweed infestation was investigated. Treatments were arranged in a factorial split experiment based on RCBD with three replications. Factorial arrangement of corn densities (74000 and 111000 plant ha-1 and planting patterns (single row, rectangular twin row and zigzag twin row formed the main plots. Split-plots referred to pigweed densities (0, 4, 8 and 12 plant m-1. Results showed that both grain and biological yield of corn increased as corn density rates increased but rows number per cob, number of grains per row of cob and 1000 grains weight decreased. The effects of planting arrangement on yield and yield components despite rows grain in cob, 1000 seeds weight and harvest index were statistically significant. Corn grain yield and yield components decreased significantly by increasing pigweed density. The effect of redroot pigweed density on corn grain and biological yield loss was predicted using Cousence hyperbolic yield equation. It showed that maximum grain yield loss and biological yield loss happened in single row arrangement and low corn density. Rows number per cob and grain numbers per row in higher corn density treatment showed lower reduction slopes under pigweed competition. In addition, grain rows numbers per cob and corn harvest index in twin arrangement treatments decreased lower than single row treatment under pigweed competition. The results of this research indicated that corn competition ability against redroot pigweed could be increased using dense population (1/5 fold of general density and zigzag twin row arrangement.

  8. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Dimple Mody Quyn; Hongwei Wu; Jun-ichiro Hayashi; Chun-Zhu Li, [Monash University, Monash, Vic. (Australia). CRC for Clean Power from Lignite, Department of Chemical Engineering

    2003-03-01

    The purpose of this study is to investigate the catalytic effects of Na as NaCl or as sodium carboxylates ( COONa) in Victorian brown coal on the char reactivity. A Na-exchanged coal and a set of NaCl-loaded coal samples prepared from a Loy Yang brown coal were pyrolysed in a fluidised-bed/fixed-bed reactor and in a thermogravimetric analyser (TGA). The reactivities of the chars were measured in air at 400{sup o}C using the TGA. The experimental data indicate that the Na in coal as NaCl and as sodium carboxylates ( COONa) had very different catalytic effects on the char reactivity. It is the chemical form and dispersion of Na in char, not in coal, that govern the catalytic effects of Na. For the Na-form (Na-exchanged) coal, the char reactivity increased with increasing pyrolysis temperature from 500 to 700{sup o}C and then decreased with pyrolysis temperature from 700 to 900{sup o}C. The increase in reactivity with pyrolysis temperature (500 700{sup o}C) is mainly due to the changes in the relative distribution of Na in the char matrix and on the pore surface. For the NaCl-loaded coals, when Cl was released during pyrolysis or gasification, the Na originally present in coal as NaCl showed good catalytic effects for the char gasification. Otherwise, Cl would combine with Na in the char to form NaCl during gasification, preventing Na from becoming an active catalyst. Controlling the pyrolysis conditions to favour the release of Cl can be a promising way to transform NaCl in coal into an active catalyst for char gasification. 38 refs., 5 figs.

  9. Fixed-bed pyrolysis and hydropyrolysis of sunflower bagasse: product yields and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Putun, A.E.; Kockar, O.M.; Yorgun, S.; Gercel, H.F.; Andresen, J.; Snape, C.E.; Putun, E. [Anadolu University, Eskisehir (Turkey). Dept. of Chemistry

    1996-01-01

    Pyrolysis and hydropyrolysis experiments at different temperatures, heating rates and pressures have been conducted on a sample of sunflower pressed bagasse to investigate the effect of particle size, sweep gas velocity, and hydrogen pressure on the product yields and characteristics. In contrast to coal and oil shales, char and oil yields from sunflower pressed bagasse were found to be largely independent of particle size and sweep gas velocity in a Heinze retort with the oil yield of {approx} 40% w/w being the same as that from a well-swept fixed-bed reactor in which a much smaller sample size was used. The use of high hydrogen pressure ({gt} 50 bar) increased the oil yields by up to {approx} 10% w/w but these increases are much greater when expressed on a carbon basis due to the reduced oxygen contents of the oils. Even at low pressure, it has been estimated that {approx} 40% of the carbon aromatized during pyrolysis. 25 refs., 12 figs., 5 tabs.

  10. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  11. Interdependence of yield and yield components of confectionary sunflower hybrids

    Directory of Open Access Journals (Sweden)

    Hladni Nada

    2011-01-01

    Full Text Available The two most important criteria for introducing new confectionary hybrids into production are high seed and protein yield. That is why it is important to find the traits that are measurable, and that at the same time show a strong correlation with seed and protein yield, so that they can be used as a criteria for confectionary hybrid breeding. Results achieved during 2008 at the locations Rimski Šančevi (Region of Vojvodina and Kula (Central Serbia show that the new confectionary hybrids are expressing higher seed yields in comparison to standards (Vranac and Cepko though with a lower seed oil content. A very strong positive correlation was determined between seed yield and seed protein content, kernel content and mass of 1000 seeds. A very strong positive correlation was determined between seed protein content, seed yield and mass of 1000 seeds, with protein yield. This indicates that seed yield, seed protein content and mass of 1000 seeds have a high influence on protein yield. The degree of interdependence between different traits is a sign of direction which is supposed to facilitate better planning of sunflower breeding program.

  12. Torrefaction of invasive alien plants: Influence of heating rate and other conversion parameters on mass yield and higher heating value.

    Science.gov (United States)

    Mundike, Jhonnah; Collard, François-Xavier; Görgens, Johann F

    2016-06-01

    With the aim of controlling their proliferation, two invasive alien plants, Lantana camara (LC) and Mimosa pigra (MP), both widespread in Africa, were considered for torrefaction for renewable energy applications. Using thermogravimetric analysis, the influence of heating rate (HR: 2.18-19.82°Cmin(-1)) together with variable temperature and hold time on char yield and HHV (in a bomb calorimeter) were determined. Statistically significant effects of HR on HHV with optima at 10.5°Cmin(-1) for LC and 20°Cmin(-1) for MP were obtained. Increases of HHV up to 0.8MJkg(-1) or energy yield greater than 10%, together with a 3-fold reduction in torrefaction conversion time could be achieved by optimisation of HR. Analysis of the torrefaction volatiles by TG-MS showed that not only hemicelluloses, but also lignin conversion, could influence the optimum HR value.

  13. Caracterização dos produtos líquidos e do carvão da pirólise de serragem de eucalipto Characterization of liquid products and char from the pyrolysis of eucalyptus sawdust

    Directory of Open Access Journals (Sweden)

    Ayrton F. Martins

    2007-08-01

    Full Text Available This study proposes the low temperature pyrolysis as an alternative conversion process for residual biomass and for obtaining gaseous, liquid and solid chemical feedstocks. Using a bench electrical pyrolysis oven, four product fractions from eucalyptus sawdust were obtained: a gaseous one, two liquid (aqueous and oily, and a solid residue (char. These products were characterized by different analytical methods. The liquid fractions showed themselves as potential sources for input chemicals. The residual char revealed appreciable adsorption capability. The process demonstrated good efficiency, generating at least two fractions of great industrial interest: bio oil and char.

  14. Morphological image analysis

    NARCIS (Netherlands)

    Michielsen, K.; Raedt, H. De; Kawakatsu, T.

    2000-01-01

    We describe a morphological image analysis method to characterize images in terms of geometry and topology. We present a method to compute the morphological properties of the objects building up the image and apply the method to triply periodic minimal surfaces and to images taken from polymer chemi

  15. Morphological image analysis

    NARCIS (Netherlands)

    Michielsen, K; De Raedt, H; Kawakatsu, T; Landau, DP; Lewis, SP; Schuttler, HB

    2001-01-01

    We describe a morphological image analysis method to characterize images in terms of geometry and topology. We present a method to compute the morphological properties of the objects building up the image and apply the method to triply periodic minimal surfaces and to images taken from polymer chemi

  16. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  17. Non-Porod behavior in systems with rough morphologies.

    Science.gov (United States)

    Shrivastav, Gaurav P; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Many experiments yield multi-scale morphologies which are smooth on some length scales and fractal on others. Accurate statements about morphological properties, e.g., roughness exponent, fractal dimension, domain size, interfacial width, etc. are obtained from the correlation function and structure factor. In this paper, we present structure factor data for two systems: (a) droplet-in-droplet morphologies of double-phase-separating mixtures; and (b) ground-state morphologies in dilute anti-ferromagnets. An important characteristic of the scattering data is a non-Porod tail, which is associated with scattering off rough domains and interfaces.

  18. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn

    2011-01-01

    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  19. Yield gaps in oil palm

    NARCIS (Netherlands)

    Woittiez, Lotte S.; Wijk, van Mark T.; Slingerland, Maja; Noordwijk, van Meine; Giller, Ken E.

    2017-01-01

    Oil palm, currently the world's main vegetable oil crop, is characterised by a large productivity and a long life span (≥25 years). Peak oil yields of 12 t ha−1 yr−1 have been achieved in small plantations, and maximum theoretical yields as calculated with simulation models are 18.5 t oil ha−1 yr−1,

  20. 热解过程中生物质半焦比热容的测定%Determination of specific heat capacity of biomass char during pyrolysis

    Institute of Scientific and Technical Information of China (English)

    陈群; 庞任重; 陈熙; 杨锐明; 禚玉群; 陈昌和

    2014-01-01

    The specific heat capacities of chars during primary pyrolysis of biomass with different conversion and the heat capacities of virgin biomass were determined.The ratio method was employed to measure the specific heat capacities of two biomass samples and their pyrolyzed chars through thermogravimetry and differential scanning calorimetry ( TG-DSC).A mathematical model was developed to calculate values of specific heat of chars.The results show that the specific heat capacitei s of the two biomass samples and their derived chars increase linearly within 60~200℃.The values oft he specific heat capacity fo the chars are lower than those fo the virgin biomass samples.The specific heat of chars decreases as the extent of pyrolysis increases.The calculated specific heat capacities from the developed mathematical model are quite close to those me asured by TG-DSC analyses eb twe n 150~200℃.%采用热重-差示量热扫描法( TG-DSC)测量了生物质和一次热解焦炭及不同转化率下半焦的比热容,建立了计算半焦比热容的数学模型并与实验测量结果进行了对比。结果表明,生物质样品和热解焦炭的比热容在60~200℃随温度升高而线性增大。生物质焦炭的比热容低于生物质样品的比热容,从60℃时的1.2 J/(g· K)增大到200℃附近的1.8~2.0 J/(g· K)。生物质半焦比热容随热解转化率的提高而降低。由半焦比热容数学模型计算得到的结果在接近150~200℃时与实验测定的半焦比热容数值基本一致。

  1. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  2. Yield estimation of metallic layers in integrated circuits

    Institute of Scientific and Technical Information of China (English)

    Wang Jun-Ping; Hao Yue; Zhang Jun-Ming

    2007-01-01

    In the existing models of estimating the yield and critical area, the defect outline is usually assumed to be circular, but the observed real defect outlines are irregular in shape. In this paper, estimation of the yield and critical area is made using the Monte Carlo technique and the relationship between the errors of yield estimated by circular defect and the rectangle degree of the defect is analysed. The rectangular model of a real defect is presented, and the yield model is provided correspondingly. The models take into account an outline similar to that of an original defect, the characteristics of two-dimensional distribution of defects, the feature of a layout routing, and the character of yield estimation. In order to make the models practicable, the critical area computations related to rectangular defect and regular (vertical or horizontal) routing are discussed. The critical areas associated with rectangular defect and non-regular routing are developed also, based on the mathematical morphology. The experimental results show that the new yield model may predict the yield caused by real defects more accurately than the circular model. It is significant that the yield is accurately estimated using the proposed model for 1C metals.

  3. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    centrifugel reactor (PCR) at 475, 525, 575, and 625 °C. Maxima of both organic oil yield of 41 wt % on a dry ash free feedstock basis (daf) and a sludge oil energy recovery of 50% were obtained at 575 °C. The water-insoluble fraction, molecular-weight distribution, higher heating value (HHV), and thermal...... behaviors of sludge oils were found to be considerably influenced by the applied pyrolysis temperatures. The sludge oil properties obtained at the optimal temperature of 575 °C were a HHV of 25.5 MJ/kg, a water-insoluble fraction of 18.7 wt %, a viscosity of 43.6 mPa s at 40 °C, a mean molecular weight...

  4. SiteChar. Characterisation of European CO2 storage. Deliverable 8.4. Quantitative social site characterisations

    Energy Technology Data Exchange (ETDEWEB)

    Brunsting, S.; Mastop, E.A. [ECN Policy Studies, Energy research Centre of the Netherlands ECN, Amsterdam (Netherlands); Kaiser, M.; Zimmer, R. [Unabhaengiges Institut fuer Umweltfragen UfU, Berlin (Germany)

    2013-06-15

    This report describes the results of the last stage of the in-depth social site characterisation activities at two prospective CCS sites as part of the SiteChar project: a CCS onshore site and a CCS offshore site. The onshore site is the Zalecze and Zuchlow site application (Poland - WP5) and the offshore site is the North Sea Moray Firth site (UK - WP3). This deliverable describes the results from a repeated quantitative measurement of local awareness, knowledge, and perceptions of CCS at both sites using representative surveys. For comparison and discussion of all SiteChar WP8 results we refer to the final summary report D8.5. The 2nd survey showed some interesting results. First of all, awareness of CCS was still very low. While in the UK around half of the respondents had at least heard of local plans for CCS, in Poland this was only 21%. It seems that awareness in the UK was mostly induced by specific plans in the area that were abandoned in the course of the SiteChar project. Second, it seems that on the whole the local publics were rather positive about CCS. Most respondents expected a positive impact of CCS on the region. In the UK, arguments for that were mainly economic, while in Poland arguments were mainly related to environmental concerns. Although there are some worries about risks of leakage, especially at the onshore site in Poland, people think that authorities will properly regulate CCS and monitor the safety of CCS. Expectations were mostly that it would be good for the country and that it will help reach international targets for CO2 reduction and buy time to develop renewable energy. Respondents seemed uncertain about the costs of using CCS and whether the technique is ready for widespread use. Especially in Poland people seemed to agree that CCS is essential for tackling climate change. Most differences between the two sites may be attributed to the proximity of the site to the local community. The Polish site is onshore and therefore much

  5. YIELD AND YIELD COMPONENTS OF INVESTIGATED RAPESEED HYBRIDS AND CULTIVARS

    Directory of Open Access Journals (Sweden)

    Milan Pospišil

    2014-06-01

    Full Text Available To evaluate new winter rapeseed hybrids and cultivars, investigations were conducted at the experimental field of the Faculty of Agriculture, University of Zagreb, in the period 2009/10 - 2011/12. The trial involved 11 hybrids and 5 cultivars rapeseed of 5 seed producers selling seed in Croatia. The studied rapeseed hybrids and cultivars differed significantly in seed and oil yields, oil content and yield components (seed number per silique and 1000 seed weight. However, a number of hybrids rendered identical results, since the differences in the investigated properties were within statistically allowable deviation. Hybrids Traviata and CWH 119 can be singled out based on the achieved seed and oil yields, and the cultivar Ricco and hybrids CWH 119 and PR46W15 for their high oil content in seed. Hybrids with a larger silique number per plant also achieved a higher seed yield.

  6. Interdependence of yield and yield components of confectionary sunflower hybrids

    OpenAIRE

    Hladni Nada; Jocić Siniša; Miklič Vladimir; Saftić-Panković Dejana; Kraljević-Balalić Marija

    2011-01-01

    The two most important criteria for introducing new confectionary hybrids into production are high seed and protein yield. That is why it is important to find the traits that are measurable, and that at the same time show a strong correlation with seed and protein yield, so that they can be used as a criteria for confectionary hybrid breeding. Results achieved during 2008 at the locations Rimski Sancevi (Region of Vojvodina) and Kula (Central Serbia) show t...

  7. Grapevine canopy reflectance and yield

    Science.gov (United States)

    Minden, K. A.; Philipson, W. R.

    1982-01-01

    Field spectroradiometric and airborne multispectral scanner data were applied in a study of Concord grapevines. Spectroradiometric measurements of 18 experimental vines were collected on three dates during one growing season. Spectral reflectance, determined at 30 intervals from 0.4 to 1.1 microns, was correlated with vine yield, pruning weight, clusters/vine, and nitrogen input. One date of airborne multispectral scanner data (11 channels) was collected over commercial vineyards, and the average radiance values for eight vineyard sections were correlated with the corresponding average yields. Although some correlations were significant, they were inadequate for developing a reliable yield prediction model.

  8. CO2 GASIFICATION REACTIVITY OF BROWN COAL CHAR%一种褐煤热解煤焦的CO2气化反应特性

    Institute of Scientific and Technical Information of China (English)

    范冬梅; 张海霞; 朱治平; 吕清刚

    2012-01-01

    Based on the step utilization of brown coal pyrolysis, partial gasification, and residual carbon combustion, a brown coal from Shigouyi Coal Mine in Ningxia was chosen as research object to produce the rapid and slow coal chars at temperature of 700 ℃-950 ℃ in a hori- zontal tube furnace. The effect of pyrolysis conditions on carbon microcrystal structure and BET surface area of chars was investigated. The carbon dioxide gasification reactivity was analyzed by thermogravimetric-mass spectrometric technology, and different evolution indexes were used to characterize the reactivity of chars. It is found that the gasification rate of Shigouyi chars increases by more than 50% with the temperature increasing by 50 ℃. When the pyrolysis temperature rises, the carbon microcrystal structure of coal chars becomes more orderly and the BET surface area decreases. However, the gasification reactivity is mainly controlled by gasification temperature. The gasification reactivity of rapid pyrolyzed coal char is better than that of slow pyrolyzed coal char, and the difference between them become greater as gasification temperature rises. Average specific reaction rates of both rapid and slow pyrolyzed chars have a linear relationship with reaction index.%针对褐煤的热解-部分气化-残炭燃烧梯级利用工艺,以宁夏石沟驿褐煤为原料,采用水平管式炉在700℃~950℃温度范围内分别制备快速和慢速热解煤焦,考察了煤焦微晶结构和比表面积随制焦条件的变化.利用热重-质谱联用技术研究煤焦CO2气化反应特性,并采用不同评价指标对煤焦气化活性进行了表征.结果表明:气化温度每升高50℃,煤焦CO2气化反应速率增加50%以上;热解温度升高,虽然煤焦微晶结构的有序化程度加深,比表面积减小,但煤焦CO2气化反应活性主要受气化温度影响;快速热解煤焦的CO2气化反应活性高于慢速热解煤焦,二者的差异随着气化温度升

  9. Morphological neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, G.X.; Sussner, P. [Univ. of Florida, Gainesville, FL (United States)

    1996-12-31

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. Thresholding usually follows the linear operation in order to provide for nonlinearity of the network. In this paper we introduce a novel class of neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before thresholding. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. In this paper we consider some of these differences and provide some particular examples of morphological neural network.

  10. Integrated production/use of ultra low-ash coal, premium liquids and clean char. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kruse, C.W.; Carlson, S.L. [Illinois State Geological Survey, Champaign, IL (United States); Snoeyink, V.L.; Feizoulof, C.; Assanis; Syrimis, M. [Illinois Univ., Urbana (United States); Fatemi, S.M. [Amoco, Naperville, IL (United States)

    1992-12-31

    The objective of this research is to invert the conventional scale of values for products of coal utilization processes by making coal chars (carbons) that, because of their unique properties, are the most valuable materials in the product slate. A unique type of coal-derived carbon studied in this project is oxidized activated coal char having both adsorptive and catalyst properties. Major program elements were (a) preparation and characterization of materials (b) characterization of carbons and catalyst testing (c) completion of diesel engine testing of low-ash coal and (d) initiation of a two-year adsorption study. Materials prepared were (a) two low-ash coal samples one via ChemCoal processing of IBC-109 and the other by acid dissolution of IBC-109`s mineral matter, (b) coal char (MG char), (c) activated low-ash carbon (AC), (d) oxidized activated carbon (OAC). Amoco continued its support with state-of-the art analytical capabilities and development of catalyst testing procedures. Diesel engine tests were made with low ash coal dispersed in diesel fuel at solid loadings of 20% and 35%. The slurry was successfully burned in cylinder 2 of a two-cylinder diesel engine, after modifications of the engine`s fuel injection system. The higher speed proved to be more favorable but the slurry burned with a slightly improved thermal and combustion efficiency at both speeds with respect to diesel fuel alone. Adsorption studies included preparation of seven base-line carbon samples and their characterization, including their N{sub 2} BET surface areas and apparent densities. Paranitrophenol (PNP) adsorption isotherms were determined for the six controls. Oxidation of carbon with nitric acid decreases activated carbon`s PNP adsorption capacity while air oxidation increases adsorption capacity.

  11. Searching for long-term trends in prehistoric manuring practice. δ15N analyses of charred cereal grains from the 4th to the 1st millennium BC

    DEFF Research Database (Denmark)

    Kanstrup, Marie; Holst, M.K.; Jensen, Peter Mose;

    2014-01-01

    -base-acid) induced an average δ15N offset of 0.7‰ (pre-treated sample > non pre-treated sample). This has not previously been reported. Methodological advancements are needed to remedy this issue and provide consensus about appropriate pre-treatment of grain samples from archaeological sites. We conclude that N......-isotope analysis of charred cereal grains constitutes a new and direct source of information about prehistoric manuring practice....

  12. Morphological associative memories.

    Science.gov (United States)

    Ritter, G X; Sussner, P; Diza-de-Leon, J L

    1998-01-01

    The theory of artificial neural networks has been successfully applied to a wide variety of pattern recognition problems. In this theory, the first step in computing the next state of a neuron or in performing the next layer neural network computation involves the linear operation of multiplying neural values by their synaptic strengths and adding the results. A nonlinear activation function usually follows the linear operation in order to provide for nonlinearity of the network and set the next state of the neuron. In this paper we introduce a novel class of artificial neural networks, called morphological neural networks, in which the operations of multiplication and addition are replaced by addition and maximum (or minimum), respectively. By taking the maximum (or minimum) of sums instead of the sum of products, morphological network computation is nonlinear before possible application of a nonlinear activation function. As a consequence, the properties of morphological neural networks are drastically different than those of traditional neural network models. The main emphasis of the research presented here is on morphological associative memories. We examine the computing and storage capabilities of morphological associative memories and discuss differences between morphological models and traditional semilinear models such as the Hopfield net.

  13. Multiaxial yield behaviour of polypropylene

    Directory of Open Access Journals (Sweden)

    Lang R.

    2010-06-01

    Full Text Available In order to characterize the yield behavior of polypropylene as a function of pressure and to verify the applicability of the Drucker-Prager yield function, various tests were conducted to cover a wide range of stress states from uniaxial tension and compression to multiaxial tension and confined compression. Tests were performed below and above the glass transition temperature, to study the combined effect of pressure and temperature. The pressure sensitivity coefficient as an intrinsic material parameter was determined as a function of temperature. Increasing pressure sensitivity values were found with increasing temperature, which can be related to the change in the free volume and thus, to the enhanced molecular mobility. A best-fit Drucker-Prager yield function was applied to the experimental yield stresses and an average error between the predictions and the measurements of 7 % was obtained.

  14. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  15. Mercury adsorption performance by modified mulberry twig chars%改性桑树枝焦对模拟烟气中汞的吸附性能

    Institute of Scientific and Technical Information of China (English)

    树童; 卢平; 何楠; 王秦超

    2013-01-01

    Several mulberry twig (MT) chars were prepared by conventional pyrolysis, steam activation, and impregnation with H2O2, ZnCl2 and NaCl. Adsorption performance of mercury in a simulated flue gas by MT chars were studied in a bench-scale fixed bed absorber, and the effects of steam activation, impregnation agent, adsorption temperature, and the composition of simulated flue gas, etc. on mercury adsorption performance were analyzed. The results indicated that steam activation could significantly increase surface areas of MT pyrolysis chars. Impregnation with H2O2 can further improve surface areas of steam activated MT chars and its pore structure. However, impregnation with ZnCl2 and NaCl led to decrease of surface areas, D-R micro-pore and total pore volume of MT chars in some extent. The mercury adsorption capacities of MT chars impregnated with 10% and 30% H2O2 were 2. 02 and 1. 77 times of that for steam activated MT char, respectively, and that of MT char impregnated with ZnCl2 was a little better than that impregnated with NaCl at the same impregnation concentration. The performance of mercury adsorption enhanced with increase of ZnCl2 concentration for modified MT char. The mercury adsorption for MT600-A-ZnCl2 (5 % ) was 29.55μg·g-1,3.37 times of that for steam activated MT char. At temperature of 60-120℃, the mercury adsorption efficiency and capacity of MT chars impregnated with H2O2 decreased with increase of adsorption temperature. However, the capacity of MT chars impregnated with ZnCl2 showed an increase trend at first and then decrease, and its optimum adsorption temperature was 90℃. SO2 and NO in the simulated flue gas showed adverse effect on mercury adsorption. Both mercury adsorption efficiency and capacity decreased slightly with increase of SO2 and NO concentration.%采用固定床热解、蒸汽活化和改性剂(H2O2、ZnCl2和NaCl)浸渍等方法制得不同的桑树枝焦.在固定床吸附实验台上,研究了蒸汽活化、改性剂

  16. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Ben Hassen-Trabelsi, A; Kraiem, T; Naoui, S; Belayouni, H

    2014-01-01

    Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC-MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds...etc.), carboxylic acids, aldehydes, ketones, esters,...etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  17. Effect of reduction roasting by using bio-char derived from empty fruit bunch on the magnetic properties of Malaysian iron ore

    Institute of Scientific and Technical Information of China (English)

    Nurul A. Yunus; Mohd H. Ani; Hamzah M. Salleh; Rusila Z. A. Rashid; Tomohiro Akiyama; Hadi Purwanto; Nur E. F. Othman

    2014-01-01

    Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the mag-netization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was par-tially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic proper-ties.

  18. Effect of reduction roasting by using bio-char derived from empty fruit bunch on the magnetic properties of Malaysian iron ore

    Science.gov (United States)

    Yunus, Nurul A.; Ani, Mohd H.; Salleh, Hamzah M.; Rashid, Rusila Z. A.; Akiyama, Tomohiro; Purwanto, Hadi; Othman, Nur E. F.

    2014-04-01

    Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the magnetization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was partially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic properties.

  19. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  20. Interaction of molten salts with a semi-anthracite char at 743 K. Influence on the gasification in air

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Serrano, V.; Alfaro-Dominguez, M.; Higes-Rolando, F.J. [Universidad de Extremadura, Badajoz (Spain). Dept. de Quimica Inorganica; Martin-Aranda, M.; Rojas-Cervantes, M.L.; Lopez-Peinado, A.J. [Universidad Nacional de Educacion a Distancia (UNED), Madrid (Spain). Dept. de Quimica Inorganica

    1997-12-31

    The treatments of a semi-anthracite char (AC) with molten salts followed by washing of the intermediate products with distilled water as a rule produce an increase in the surface area of micropores (S{sub mi}) and in the mean equivalent pore diameter (MEPD), which is greater for AC-MgO. The variation of MEPD is only slight for AC-CaO and AC-CoO. The reactivity of the carbon in air at 823 K enhances for a number of samples but especially for AC-CaO and AC-MgO. Washing with HCl generally results in a small increase in S{sub mi} and in a more uniform MEPD. The reactivity of the carbon decreases for most samples including AN and AC. This suggests that mineral components of the starting materials and chemical species present in distilled waterwashed samples (i.e. metal oxides in excess and reaction products of molten salts with the mineral fraction of AC) are catalytically active and that their removal from such samples occurs by washing with HCl. The presence of catalytic species seems to be greater for AC-MgO and AC-CaO than for the other samples. (orig.)

  1. Effect of Seed Sludge Quality using Oil Palm Empty Fruit Bunch (OPEFB Bio-Char for Composting

    Directory of Open Access Journals (Sweden)

    Wan Aizuddin Wan Razali

    2014-03-01

    Full Text Available In this study, a comparison between oil palm empty fruit bunch (OPEFB composting using palm oil mill effluent bio-char solution (POMEBS aerobic sludge and palm oil mill effluent (POME anaerobic sludge was reported. A set of experiments was designed by central composite design (CCD using response surface methodology (RSM to statistically evaluate the POMEBS aerobic sludge as microbial seeding. The bacteria count of POMEBS aerobic sludge (3.7×106 CFU/mL at the optimum point was higher than that of POME anaerobic sludge (2.5×105 CFU/mL. Denaturing gradient gel electrophoresis (DGGE and Fourier transform infrared spectroscopy (FTIR were also performed. A rotary drum composter was then used to compost OPEFB with POMEBS aerobic sludge and POME anaerobic sludge, separately. Thermogravimetric analysis (TGA showed that composting OPEFB with POMEBS aerobic sludge had a higher degradation rate compared to composting OPEFB with POME anaerobic sludge. In addition, the final N:P:K values for composting OPEFB with POMEBS aerobic and POME anaerobic sludge were 3.7:0.8:6.2 and 1.5:0.3:3.4, respectively. POMEBS aerobic sludge improved the composting process and compost quality.

  2. Nanoscale Morphology Evolution Under Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Michael J. [President & Fellows of Harvard College, Cambridge, MA (United States)

    2014-11-10

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, and upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.

  3. Effects of Pyrolysis Temperature on Characteristics of Biomass Char%热解温度对生物质半焦特征的影响

    Institute of Scientific and Technical Information of China (English)

    鲁许鳌; 冉旭; 郑小龙; 阎维平

    2012-01-01

    Mechanism-based pyrolysis experiments were carried out on rice husk and straw, during which physicochemical properties of the char were studied using TG, SEM, EDX and XDR, such as the pore structure, slagging characteristics, migration of chlorine and sulfur, and crystalline phase of the inorganic compound, etc. Results show that the pore structure of biomass char changes a lot at 500-800 ℃. When the pyrolysis temperature gets up to 1 000 ℃, the convex side of rice husk char will appear in melting state, while the straw char in melting and bounding condition. Most remaining of chlorine and sulfur will precipitate from the char at 800-1 000 ℃. The phase changes greatly and amorphous inorganic compound appears at a final pyrolysis temperature of 1 000 ℃ in the process of rice husk and straw pyrolysis.%对稻壳和稻秸进行了机理性热解试验,并采用TG、SEM、EDS和XDR方法研究和分析了半焦的孔隙结构、结渣特性、氯和硫元素迁移和无机化合物晶相等物化特性的变化规律.结果表明:在500~800℃,生物质热解半焦孔隙结构的变化较大.当热解温度为1000℃时,稻壳半焦的凸面呈现熔融现象,稻秸半焦呈现熔融黏结现象.在800~1000℃,半焦中剩余的氯和硫大部分会析出;在稻壳和稻秸热解过程中,当终温为1000℃时,物相发生较大变化并且出现非晶态的无机化合物.

  4. 不同温度热解残余生物质半焦对磷的吸附%Phosphate Adsorption of Residual Biomass Char by Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    彭峰; 何丕文

    2011-01-01

    [ Objective ] The aim was to study adsorption of phosphorus in water by residual biomass char. [ Method ] The adsorption kinetics and isotherm of phosphate by biomass char obtained at different temperatures were studied. The pseudo first-order, pseudo second-order, intra-particle diffusion models and Langmuir, Freundlich isotherm models were employed to fit experimental data. [ Result ] The results showed that the adsorption of phosphate followed the pseudo second-order kinetics model and the equilibrium adsorption capacity and adsorption rate increased with the increasing of pyrolysis temperature. The adsorption isotherm was described by Freundlich model, which suggested that multiple processes controlled the serption of phosphate by biomass char. The adsorption activation energy of biomass chars at different temperatures were 10.86, 11.27 and 10.95 kJ/mol, which indicated that it belonged to physics adsorption. [ Conlusion ] The biomass char was approved that it had a good effect on adsorbing phosphate .%[目的]研究生物质热解制备生物油的残余半焦对水中磷的吸附性能.[方法]研究了不同温度(550、650和750 ℃)热解半焦吸附磷的动力学和等温线,分别采用准一级、准二级和颗粒内扩散3种模型及Langmuir、Freundlich等温吸附方程对实验数据进行拟合.[结果]结果表明准二级动力学模型能较好描述磷在半焦表面的吸附行为,平衡吸附量和吸附速率随着热解温度的升高而增加.此外,等温吸附过程能较好地用Freundlich吸附等温线方程描述,表明磷在半焦表面的吸附受多种机制影响.3种温度下热解所得半焦对磷的吸附活化能分别为10.86、11.27和10.95 kJ/mol,说明该吸附过程主要为物理吸附.[结论]生物质热解半焦对水中磷具有良好的吸附去除效果.

  5. 松木焦CO2气氛催化气化特性研究%STUDY ON CATALYTIC GASIFICATION CHARACTERISTICS OF PINE CHAR WITH CO2

    Institute of Scientific and Technical Information of China (English)

    蒲舸; 原志文; 郝功涛

    2013-01-01

    生物质焦CO2气化主要是通过气化剂CO2和焦中的碳发生反应,从而制取得到高纯度可燃气CO.采用热重分析法研究不同过渡金属催化剂(Ni,Ce,Fe和Cr)以及不同气化温度下松木焦在30% CO2气氛下的气化特性,采用n级反应模型并利用ABSW微分法,计算出高温段710℃~990℃松木焦催化气化动力学参数.结果表明,随着气化温度的升高,反应完成的时间缩短,气化温度达到850℃以上,才能有较高的反应速率,添加4种过渡金属对气化均有明显的促进作用.其催化效果由高到低依次为:Ni,Ce,Fe和Cr.采用n级反应模型可以很好地拟合高温段的实验数据.%Biomass char gasification with CO2 can produce high purity CO through the reaction of gasification agent CO2 with carbon in char. The effects of four transition