WorldWideScience

Sample records for char oil energy development process

  1. Development of measures to improve technologies of energy recovery from gaseous wastes of oil shale processing

    Science.gov (United States)

    Tugov, A. N.; Ots, A.; Siirde, A.; Sidorkin, V. T.; Ryabov, G. A.

    2016-06-01

    Prospects of the use of oil shale are associated with its thermal processing for the production of liquid fuel, shale oil. Gaseous by-products, such as low-calorie generator gas with a calorific value up to 4.3MJ/m3 or semicoke gas with a calorific value up to 56.57 MJ/m3, are generated depending on the oil shale processing method. The main methods of energy recovery from these gases are either their cofiring with oil shale in power boilers or firing only under gaseous conditions in reconstructed or specially designed for this fuel boilers. The possible use of gaseous products of oil shale processing in gas-turbine or gas-piston units is also considered. Experiments on the cofiring of oil shale gas and its gaseous processing products have been carried out on boilers BKZ-75-39FSl in Kohtla-Järve and on the boiler TP-101 of the Estonian power plant. The test results have shown that, in the case of cofiring, the concentration of sulfur oxides in exhaust gases does not exceed the level of existing values in the case of oil shale firing. The low-temperature corrosion rate does not change as compared to the firing of only oil shale, and, therefore, operation conditions of boiler back-end surfaces do not worsen. When implementing measures to reduce the generation of NO x , especially of flue gas recirculation, it has been possible to reduce the emissions of nitrogen oxides in the whole boiler. The operation experience of the reconstructed boilers BKZ-75-39FSl after their transfer to the firing of only gaseous products of oil shale processing is summarized. Concentrations of nitrogen and sulfur oxides in the combustion products of semicoke and generator gases are measured. Technical solutions that made it possible to minimize the damage to air heater pipes associated with the low-temperature sulfur corrosion are proposed and implemented. The technological measures for burners of new boilers that made it possible to burn gaseous products of oil shale processing with low

  2. Bio-char from treated and untreated oil palm fronds

    Science.gov (United States)

    Sulaiman, Fauziah; Abdullah, Nurhayati; Rahman, Aizuddin Abdul

    2013-05-01

    The palm oil industry generates almost 94% of biomass in Malaysia, while other agricultural and forestry by-products contribute the remaining of 6%. Oil palm fronds (OPF) are estimated to be the highest available biomass amounting to 44.84 million tonnes in Malaysia. However, studies on OPF for thermochemical conversion technology which has good potential for energy conversion are still lacking. In this work, pyrolysis of OPF is conducted by using a fixed bed reactor. Samples were carbonized at slow pyrolysis temperature of around 300 to 500°C with heating rate of 10°C min-1. In addition, samples were treated for 20 min with distilled water at ambient temperature to reduce the ash content. Effectiveness of pre-treatment can be determined by observing the percentage of ash content reduction of each sample after undergoing washing pre-treatment. At 300°C, the char yields of the untreated OPF were slightly higher at 50.95% compared to the treated sample at 49.77%. Approximately all bio-char from the treated samples have better high heating value (HHV) of around 18-20 MJ kg-1 compared to the untreated samples. Besides that, all treated OPF char is more carbon rich and considered to be environmental friendly due to its low nitrogen content compared to the untreated OPF char. In this work, microscopic analysis of OPF bio-char were also studied by observing and evaluating their structure surface and morphology.

  3. Properties of slurries made of fast pyrolysis oil and char or beech wood

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2014-01-01

    The properties of slurries made of pyrolysis oil mixed with wood, char or ground char were investigated with respect to phase transitions, rheological properties, elemental compositions, and energy density. Also the pumping properties of the slurries were investigated at temperatures of 25, 40...... and 60 C and solid loadings from 0 to 20 wt%. The phase transitions of the wood slurry samples were observed at lower solid loadings compared to the char slurry samples. The apparent viscosity of the slurry samples was found to be considerably impacted by solid loading (0e20 wt%) and temperature (25e60 C......), especially in the phase transition region. The slurry viscosities with 20 wt% char loading, 20 wt% ground char loading and 15 wt% wood loading (at a shear rate of 100 s1) are 0.7, 1.0 and 1.7 Pa.s, respectively at 60 C and these values increases 1.2e1.4 times at 40 C and 3e4 times at 25 C. The wood, char...

  4. DEVELOPMENT OF DIRECT UPGRADING PROCESS FOR HEAVY CRUDE OIL

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The direct upgrading process from heavy crude oil to sweet and light oil (IKC process) has been deve-loped for about 10 years in Idemitsu Kosan. Compared with conventional refinery scheme consisting of YR-HDS, VGOHYC and so on, the new refinery scheme combined with IKC process and Topper was always economically feasible with lower cost and smaller energy consumption. In the existing refinery of no middle distillate HDS and residue HDS of HYC plants to supplement IKC process is expected to be one of the efficient methods to cope with the environmental regulations.

  5. Energy and the oil-importing developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Dunkerly, J.; Ramsay, W.

    1982-05-07

    The article discussed the problems those countries have in securing adequate and reliable quantities of energy to meet minimal economic needs and still maintain development rates. A number of alternatives are available; if possible, each country might use a mix appropriate to its own resource base and level of development. An increase in export earnings might be achieved in many countries (and may be the only answer for countries poorly endowed with energy resources). The countries with fossil fuel reserves and hydroelectric resources need to press ahead with their development. Many countries should pay more attention to biomass, particularly those in which it is their most plentiful fuel resource. Attention should be paid to conservation by increasing the efficiency with which energy is used by the reorientation of development strategy because of higher energy prices. The World Bank has estimated that by 1990, savings in the cost of oil imports from an aggressive conservation and fuel switching policy might be as great as a maximum effort to increase oil production. By 1990, oil bills might be reduced by as much as $30 x 10/sup 9/. The international community can help this process by technical assistance, better money management, and by expansion of capital assistance to oil-importing developing countries.

  6. Energy Efficient Pump Control for an Offshore Oil Processing System

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Soleiman, Kian; Løhndorf, Bo

    2012-01-01

    The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps in parallel, and the lifted seawater is used to cool down the crude oil flowing out of a threephase...... separator on one of the Danish north-sea platform. A hierarchical pump-speed control strategy is developed for the considered system by minimizing the pump power consumption subject to keeping a satisfactory system performance. The proposed control strategy consists of online estimation of some system...... operating parameters, optimization of pump configurations, and a real-time feedback control. Comparing with the current control strategy at the considered system, where the pump system is on/off controlled, and the seawater flows are controlled by a number of control valves, the proposed control strategy...

  7. Development, Verification and Validation of Enclosure Radiation Capabilities in the CHarring Ablator Response (CHAR) Code

    Science.gov (United States)

    Salazar, Giovanni; Droba, Justin C.; Oliver, Brandon; Amar, Adam J.

    2016-01-01

    With the recent development of multi-dimensional thermal protection system (TPS) material response codes including the capabilities to account for radiative heating is a requirement. This paper presents the recent efforts to implement such capabilities in the CHarring Ablator Response (CHAR) code developed at NASA's Johnson Space Center. This work also describes the different numerical methods implemented in the code to compute view factors for radiation problems involving multiple surfaces. Furthermore, verification and validation of the code's radiation capabilities are demonstrated by comparing solutions to analytical results, to other codes, and to radiant test data.

  8. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively.

  9. Demand for oil and energy in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, C. Jr.; Relles, D.A.; Navarro, J.

    1980-05-01

    How much of the world's oil and energy supply will the non-OPEC less-developed countries (NOLDCs) demand in the next decade. Will their requirements be small and thus fairly insignificant compared with world demand, or large and relatively important. How will world demand be affected by the economic growth of the NOLDCs. In this report, we try to develop some reasonable forecasts of NOLDC energy demands in the next 10 years. Our focus is mainly on the demand for oil, but we also give some attention to the total commercial energy requirements of these countries. We have tried to be explicit about the uncertainties associated with our forecasts, and with the income and price elasticities on which they are based. Finally, we consider the forecasts in terms of their implications for US policies concerning the NOLDCs and suggest areas of future research on NOLDC energy issues.

  10. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  11. Calendula oil processing : seed classification, oil extraction, refining process development and oil quality aspects

    NARCIS (Netherlands)

    Janssens, R.J.J.

    2000-01-01

    The difference in Calendula oil quality from fractions obtained after seed classification is enormous. The oil quality varies from excellent to very poor, according to important aspects such as in the hulls and dust fraction, high free fatty acid values (13% vs. 0.6%) are found. This can be explaine

  12. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.

    Science.gov (United States)

    Thangalazhy-Gopakumar, Suchithra; Al-Nadheri, Wail Mohammed Ahmed; Jegarajan, Dinesh; Sahu, J N; Mubarak, N M; Nizamuddin, S

    2015-02-01

    In this study, pyrolysis technique was utilized for converting palm oil sludge to value added materials: bio-oil (liquid fuel) and bio-char (soil amendment). The bio-oil yield obtained was 27.4±1.7 wt.% having a heating value of 22.2±3.7 MJ/kg and a negligible ash content of 0.23±0.01 wt.%. The pH of bio-oil was in alkaline region. The bio-char yielded 49.9±0.3 wt.%, which was further investigated for sorption efficiency by adsorbing metal (Cd(2+) ions) from water. The removal efficiency of Cd(2+) was 89.4±2%, which was almost similar to the removal efficiency of a commercial activated carbon. The adsorption isotherm was well described by Langmuir model. Therefore, pyrolysis is proved as an efficient tool for palm oil sludge management, where the waste was converted into valuable products.

  13. Low-energy and chemical-free activation of pyrolytic tire char and its adsorption characteristics.

    Science.gov (United States)

    Quek, Augustine; Balasubramanian, Rajasekhar

    2009-06-01

    It is generally known that the solid char obtained from pyrolysis of scrap rubber tires can be used as an adsorbent for several applications such as wastewater treatment. In this study, scrap tires were first pyrolyzed under nitrogen (N2) or carbon dioxide (CO2) gas under various temperatures to produce char. The char was activated in situ by post-pyrolysis oxygenation (PPO) at different temperature ranges as soon as the pyrolysis process was completed. Elemental and spectroscopic analyses showed significant zinc content in the char after PPO. Batch-mode removal of aqueous copper (Cu) using the chars revealed that, for N2 and CO2, the optimum condition for pyrolysis was at 550 degrees C and for activation was from 550 to 250 degrees C. Although CO2-pyrolyzed char had lower Cu and lead (Pb) removal than N2-pyrolyzed char, it had higher char yields. For both N2- and CO2-pyrolyzed char, activation with PPO improved their heavy metal removal efficiencies significantly compared with unactivated char. PPO chars had much faster removal rates and higher Cu removal compared with both pyrolyzed, unactivated char and commercial activated carbons.

  14. Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char.

    Science.gov (United States)

    Leng, Lijian; Yuan, Xingzhong; Shao, Jianguang; Huang, Huajun; Wang, Hou; Li, Hui; Chen, Xiaohong; Zeng, Guangming

    2016-01-01

    Demetalization of sewage sludge (SS) by sequential extraction before liquefaction was implemented to produce cleaner bio-char and bio-oil. Demetalization steps 1 and 2 did not cause much organic matter loss on SS, and thus the bio-oil and bio-char yields and the compositions of bio-oils were also not affected significantly. However, the demetalization procedures resulted in the production of cleaner bio-chars and bio-oils. The total concentrations and the acid soluble/exchangeable fraction (F1 fraction, the most toxic heavy metal fraction) of heavy metals (Cu, Cr, Pb, Zn, and Cd) in these products were significantly reduced and the environmental risks of these products were also relived considerably compared with those produced from raw SS, respectively. Additionally, these bio-oils had less heavy fractions. Demetalization processes with removal of F1 and F2 fractions of heavy metals would benefit the production of cleaner bio-char and bio-oil by liquefaction of heavy metal abundant biomass like SS.

  15. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char.

    Science.gov (United States)

    Moralı, Uğur; Yavuzel, Nazan; Şensöz, Sevgi

    2016-12-01

    Slow pyrolysis of hornbeam (Carpinus betulus L.) sawdust was performed to produce bio-oil and bio-char. The operational variables were as follows: pyrolysis temperature (400-600°C), heating rate (10-50°Cmin(-1)) and nitrogen flow rate (50-150cm(3)min(-1)). Physicochemical and thermogravimetric characterizations of hornbeam sawdust were performed. The characteristics of bio-oil and bio-char were analyzed on the basis of various spectroscopic and chromatographic techniques such as FTIR, GC-MS, 1H NMR, SEM, BET. Higher heating value, density and kinematic viscosity of the bio-oil with maximum yield of 35.28% were 23.22MJkg(-1), 1289kgm(-3) and 0.6mm(2)s(-1), respectively. The bio-oil with relatively high fuel potential can be obtained from the pyrolysis of the hornbeam sawdust and the bio-char with a calorific value of 32.88MJkg(-1) is a promising candidate for solid fuel applications that also contributes to the preservation of the environment.

  16. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Institute of Scientific and Technical Information of China (English)

    Xing-long Li; Shen Ning; Li-xia Yuan; Quan-xin Li

    2011-01-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method.The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass.The product gas was a mixed gas containing 72%H2,26%CO2,1.9%CO,and a trace amount of CH4.It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%).The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O.In addition,the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  17. Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming

    Science.gov (United States)

    Li, Xing-long; Ning, Shen; Yuan, Li-xia; Li, Quan-xin

    2011-08-01

    We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H2O. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.

  18. Development and Prospects for Energy Saving Technology in Oil & Gas Fields, China

    Institute of Scientific and Technical Information of China (English)

    Chen Youwang; Yu Jiqing; Lin Ran; Zhu Yingru; Liu Feijun

    2010-01-01

    @@ Current state of energy saving technology in China's oil and gas fields System optimization To optimize the oil-gas field surface engineering system is critical to improve the efficiency of oil and gas field system.To adapt to the changes in development of old oil and gas fields, all oilfields are adjusted and reconstructed;a set of optimized and simplified modes and technical measures are developed.

  19. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process

    Institute of Scientific and Technical Information of China (English)

    Zheng-cheng WEN; Zhi-hua WANG; Jun-hu ZHOU; Ke-fa CEN

    2009-01-01

    Quantum chemical simulation was used to investigate the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process. Both NO-char and NO-NaYK reactions were considered as three-step processes in this calculation. Based on geometry optimizations made using the UB3LYP/6-31 G(d) method, the activation energies of NO-char and NO-Na/K reactions were calculated using the QC1SD(T)/6-3 i 1G(d, p) method; Results showed that the activation energy of the NO-Na/K reaction (107.9/82.0 kJ/mol) was much lower than that of the NO-char reaction (245.1 kJ/mol). The reactions of NaO/KO and Na2P/K2O reduced by char were also studied, and their thermodynamics were calculated using the UB3LYP/6-31G(d) method; Results showed that both Na and K can be refreshed easily and rapidly by char at high temperature during the coal rebuming process. Based on the calculations and analyses, the catalytic mechanism of Na/K on NO-char het-erogeneous reactions during the coal reburning process was clarified.

  20. Activated carbon from char obtained from vacuum pyrolysis of teak sawdust: pore structure development and characterization.

    Science.gov (United States)

    Ismadji, S; Sudaryanto, Y; Hartono, S B; Setiawan, L E K; Ayucitra, A

    2005-08-01

    The preparation of activated carbon from vacuum pyrolysis char of teak sawdust was studied and the results are presented in this paper. The effects of process variables such as temperature and activation time on the pore structure of activated carbons were studied. The activated carbon prepared from char obtained by vacuum pyrolysis has higher surface area and pore volume than that from atmospheric pyrolysis char. The BET surface area and pore volume of activated carbon prepared from vacuum pyrolysis char were 1150 m2/g and 0.43 cm3/g, respectively.

  1. Pyrolysis of waste animal fats in a fixed-bed reactor: production and characterization of bio-oil and bio-char.

    Science.gov (United States)

    Ben Hassen-Trabelsi, A; Kraiem, T; Naoui, S; Belayouni, H

    2014-01-01

    Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC-MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds...etc.), carboxylic acids, aldehydes, ketones, esters,...etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  2. Development of a Gas-Promoted Oil Agglomeration Process

    Energy Technology Data Exchange (ETDEWEB)

    C. Nelson; F. Zhang; J. Drzymala; M. Shen; R. Abbott; T. D. Wheelock

    1997-11-01

    The preliminary laboratory-scale development of a gas-promoted, oil agglomeration process for cleaning coal was carried out with scale model mixing systems in which aqueous suspensions of ultrafine coal particles were treated with a liquid hydrocarbon and a small amount of air. The resulting agglomerates were recovered by screening. During a batch agglomeration test the progress of agglomeration was monitored by observing changes in agitator torque in the case of concentrated suspensions or by observing changes in turbidity in the case of dilute suspensions. Dilute suspensions were employed for investigating the kinetics of agglomeration, whereas concentrated suspensions were used for determining parameters that characterize the process of agglomeration. A key parameter turned out to be the minimum time te required to produce compact spherical agglomerates. Other important parameters included the projected area mean particle diameter of the agglomerates recovered at the end of a test as well as the ash content and yield of agglomerates. Batch agglomeration tests were conducted with geometrically similar mixing tanks which ranged in volume from 0.346 to 11.07 liters. Each tank was enclosed to control the amount of air present. A variable speed agitator fitted with a six blade turbine impeller was used for agitation. Tests were conducted with moderately hydrophobic Pittsburgh No. 8 coal and with more hydrophobic Upper Freeport coal using either n-heptane, i-octane, or hexadecane as an agglomerant.

  3. Physical and thermochemical characterization of rice husk char as a potential biomass energy source.

    Science.gov (United States)

    Maiti, S; Dey, S; Purakayastha, S; Ghosh, B

    2006-11-01

    The fixed bed pyrolysis of rice husk was studied under conventional conditions with the aim of determining the characteristics of the charcoal formed for its applicability as a solid fuel. Thermoanalytic methods were used to determine the kinetic parameters of its combustion. Palletisation using different binders and techniques to improve the time of sustained combustion of the char pallets were investigated. The optimum temperature for carbonization to obtain a char having moderately high heating value was found as 400 degrees C. For the active char combustion zone, the order of reaction was nearly 1, the activation energy 73.403 kJ/mol and the pre-exponential factor 4.97 x 10(4)min(-1). Addition of starch as a binder and 10% ferrous sulphate heptahydrate or sodium hypophosphite as an additive enhanced the ignitibility of the char pallets.

  4. Development of other oil-alternative energy technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Development efforts are being given on a large wind power generation system which has high reliability and economy and suits the actual situations in Japan. Verification tests will be conducted to establish control systems to realize load leveling against the increase in maximum power demand and the differences in demands between seasons, days and nights. Development will also be made on technologies for systems to operate devices optimally using nighttime power for household use. Solar light and heat energies will be introduced and used widely in housing to achieve efficient comprehensive energy utilization. Wastes, waste heat and unused energies locally available will be utilized to promote forming environment harmonious type energy communities. Photovoltaic and fuel cell power generation facilities will be installed on a trial basis to promote building a groundwork for full-scale installations. Photovoltaic power generation systems will be installed on actual houses to establish technologies to assess and optimize the load leveling effect. Attempts will be made on practical application of high-efficiency regional heat supply systems which utilize such unutilized energies as those from sea water and river water. Assistance will be given through preparing manuals on introduction of wastes power generation systems by local governments, and introduction of regional energy systems by using new discrete type power generation technologies and consumer-use cogeneration systems. 1 fig., 1 tab.

  5. Development Process of Chinese New Energy Vehicles

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    "Major Sci-Tech Special Project of New Energy Vehicles in Project 863",with industrialization as the goal.actively carried out three main strategies of talents.patents and standards.Through resource integration.management optimization.technical and mechanism innovation.the Project has made prominent progress in the R&D of new energy vehicles.building of industrialization environment and organizing and management of large sci-tech projects.

  6. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process.Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed.Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3.Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  7. Development of alternative energies for oil and the problems facing industry

    Energy Technology Data Exchange (ETDEWEB)

    Idemura, H.

    1982-01-01

    According to a provisional long-term energy forecast, Japan's degree of dependence on oil will drop from its present 74% to 62.9% in 1985 and to 48.1% in 1995. This is an indication of the amount of alternative energy required. Explanations are given of the characteristics of the following alternative energy sources: coal, natural gas, atomic energy, geothermal, solar energy, biomass, chemical energy, and energy from wastes. There is an introduction to the role and function of the engineering industry, which is closely related to the development of these energies.

  8. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    Science.gov (United States)

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode.

  9. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina.

    Science.gov (United States)

    Sanna, Aimaro; Li, Sujing; Linforth, Rob; Smart, Katherine A; Andrésen, John M

    2011-11-01

    The pyrolysis of wheat and barley spent grains resulting from bio-ethanol and beer production respectively was investigated at temperatures between 460 and 540 °C using an activated alumina bed. The results showed that the bio-oil yield and quality depend principally on the applied temperature where pyrolysis at 460 °C leaves a bio-oil with lower nitrogen content in comparison with the original spent grains and low oxygen content. The viscosity profile of the spent grains indicated that activated alumina could promote liquefaction and prevent charring of the structure between 400 and 460 °C. The biochar contains about 10-12% of original carbon and 13-20% of starting nitrogen resulting very attractive as a soil amendment and for carbon sequestration. Overall, value can be added to the spent grains opening a new market in bio-fuel production without the needs of external energy. The bio-oil from spent grains could meet about 9% of the renewable obligation in the UK.

  10. A burnout prediction model based around char morphology

    Energy Technology Data Exchange (ETDEWEB)

    T. Wu; E. Lester; M. Cloke [University of Nottingham, Nottingham (United Kingdom). Nottingham Energy and Fuel Centre

    2005-07-01

    Poor burnout in a coal-fired power plant has marked penalties in the form of reduced energy efficiency and elevated waste material that can not be utilized. The prediction of coal combustion behaviour in a furnace is of great significance in providing valuable information not only for process optimization but also for coal buyers in the international market. Coal combustion models have been developed that can make predictions about burnout behaviour and burnout potential. Most of these kinetic models require standard parameters such as volatile content, particle size and assumed char porosity in order to make a burnout prediction. This paper presents a new model called the Char Burnout Model (ChB) that also uses detailed information about char morphology in its prediction. The model can use data input from one of two sources. Both sources are derived from image analysis techniques. The first from individual analysis and characterization of real char types using an automated program. The second from predicted char types based on data collected during the automated image analysis of coal particles. Modelling results were compared with a different carbon burnout kinetic model and burnout data from re-firing the chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen across several residence times. An improved agreement between ChB model and DTF experimental data proved that the inclusion of char morphology in combustion models can improve model predictions. 27 refs., 4 figs., 4 tabs.

  11. Slow pyrolysis for rural small biomass energy by joint project developments of Brazil and Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Kampegowda, Rajesh; Chandayot, Pongchan [Asian University, Chonburi (Thailand)], email: rkempegowda@asianust.ac.th; Pannirselvam, Pagandai V.; Humberto, Maricy; Santos, Joao Matias [Universidade Federal do Rio Grande do Norte (DEQ/UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos], email: pannirbr@gmail.com

    2008-07-01

    The efficiency for carbonization by slow pyrolysis is still low in the current method studied using rice straw in Thailand and cashewnut shell in Brazil, however direct heating process yields better char yield of 17% as compared to indirect heating with 15% process using horizontal metal drum kiln.where as vertical kiln were mainly used in Brazil. Higher yield is made possible from Brasilian cashew nut shell to make oil and char. Carbon and energy balance was also carried out and the results were compared for the direct and indirect process. Burning by indirect draft gives better results like more char, faster process. Direct draft gives less char, but higher quality (higher C and H2). Also a lot of straw is left unburnt in the direct draft kiln, because of bad temperature distribution and flow inside. The kiln design is found to be more suitable for indirect draft rather than direct draft. Both methods still give rice straw charcoal that has low calorific value with an output char LHV of 4337 kcal/kg as compared to fresh rice straw of 3412 kcal/kg. In the direct heating method output char is enriched to 45% with a still unburnt rice straw left out as compared to indirect heating method with carbon enrichment of 39%. There is a loss of 13% of carbon through the ash in the both the methods. The carbon content in the condensate is in the order of 18.5% for the indirect process as compared to 13.9% in the direct process due to less exhaust and carbon enrichment inside the kiln. There is a loss of 43% of carbon in the exhaust from indirect heating process as compared to direct heating process which is reduced to 26%. The energy balance predicts a heat loss of 14% in exhaust gases. A practical small scale slow pyrolysis project was developed to meet rural energy and heat requirements. to make the clean energy from waste resources possible by the joint project. (author)

  12. Fast Pyrolysis Process Development Unit for Validating Bench Scale Data

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Robert C. [Iowa State Univ., Ames, IA (United States). Biorenewables Research Lab.. Center for Sustainable Environmental Technologies. Bioeconomy Inst.; Jones, Samuel T. [Iowa State Univ., Ames, IA (United States). Biorenewables Research Lab.. Center for Sustainable Environmental Technologies. Bioeconomy Inst.

    2010-03-31

    The purpose of this project was to prepare and operate a fast pyrolysis process development unit (PDU) that can validate experimental data generated at the bench scale. In order to do this, a biomass preparation system, a modular fast pyrolysis fluidized bed reactor, modular gas clean-up systems, and modular bio-oil recovery systems were designed and constructed. Instrumentation for centralized data collection and process control were integrated. The bio-oil analysis laboratory was upgraded with the addition of analytical equipment needed to measure C, H, O, N, S, P, K, and Cl. To provide a consistent material for processing through the fluidized bed fast pyrolysis reactor, the existing biomass preparation capabilities of the ISU facility needed to be upgraded. A stationary grinder was installed to reduce biomass from bale form to 5-10 cm lengths. A 25 kg/hr rotary kiln drier was installed. It has the ability to lower moisture content to the desired level of less than 20% wt. An existing forage chopper was upgraded with new screens. It is used to reduce biomass to the desired particle size of 2-25 mm fiber length. To complete the material handling between these pieces of equipment, a bucket elevator and two belt conveyors must be installed. The bucket elevator has been installed. The conveyors are being procured using other funding sources. Fast pyrolysis bio-oil, char and non-condensable gases were produced from an 8 kg/hr fluidized bed reactor. The bio-oil was collected in a fractionating bio-oil collection system that produced multiple fractions of bio-oil. This bio-oil was fractionated through two separate, but equally important, mechanisms within the collection system. The aerosols and vapors were selectively collected by utilizing laminar flow conditions to prevent aerosol collection and electrostatic precipitators to collect the aerosols. The vapors were successfully collected through a selective condensation process. The combination of these two mechanisms

  13. Effect of Seed Sludge Quality using Oil Palm Empty Fruit Bunch (OPEFB Bio-Char for Composting

    Directory of Open Access Journals (Sweden)

    Wan Aizuddin Wan Razali

    2014-03-01

    Full Text Available In this study, a comparison between oil palm empty fruit bunch (OPEFB composting using palm oil mill effluent bio-char solution (POMEBS aerobic sludge and palm oil mill effluent (POME anaerobic sludge was reported. A set of experiments was designed by central composite design (CCD using response surface methodology (RSM to statistically evaluate the POMEBS aerobic sludge as microbial seeding. The bacteria count of POMEBS aerobic sludge (3.7×106 CFU/mL at the optimum point was higher than that of POME anaerobic sludge (2.5×105 CFU/mL. Denaturing gradient gel electrophoresis (DGGE and Fourier transform infrared spectroscopy (FTIR were also performed. A rotary drum composter was then used to compost OPEFB with POMEBS aerobic sludge and POME anaerobic sludge, separately. Thermogravimetric analysis (TGA showed that composting OPEFB with POMEBS aerobic sludge had a higher degradation rate compared to composting OPEFB with POME anaerobic sludge. In addition, the final N:P:K values for composting OPEFB with POMEBS aerobic and POME anaerobic sludge were 3.7:0.8:6.2 and 1.5:0.3:3.4, respectively. POMEBS aerobic sludge improved the composting process and compost quality.

  14. Gasification as an alternative method for the destruction of sulfur containing waste (ChemChar process)

    Energy Technology Data Exchange (ETDEWEB)

    Medcalf, B.D.; Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry; Larsen, D.W. [Univ. of Missouri, St. Louis, MO (United States). Dept. of Chemistry

    1998-12-31

    The behavior of a non-incinerative reductive thermal cocurrent flow gasification process (ChemChar Process) when used to treat representative sulfur compounds is reported. Gasification of 2,3-benzenedisulfonic acid, thiomorpholine, and sulfuric acid converts the sulfur in these compounds to H{sub 2}S, OCS, and elemental sulfur. The H{sub 2}S and OCS are released in the synthesis with the gas product from which they can be scrubbed, with the elemental sulfur being deposited on the char matrix. No production of sulfur dioxide was detected. Gasified sulfur products recovered amounted to 89--114% of the total sulfur present in the sulfur compounds gasified, although exact mass balances could not be obtained due to the sulfur present in the char.

  15. Development of process energy intensity formula under different state variables

    Institute of Scientific and Technical Information of China (English)

    陈光

    2004-01-01

    In a production process, the actual energy consumption is greatly affected by the production state.Certain processing operations are classified into six states, including normal production, abnormal production,planned overhaul, unplanned overhaul, transitional period from unplanned overhaul to normal production (referred for short as unplanned transition) and transitional period from planned overhaul to normal production (referred for short as planned transition). The article takes the analysis of relationship between different states of a certain processing operation and corresponding energy consumptions as a startup point to develop a process energy intensity formula with variables of operating rate, yielding rate and operating frequency, etc. This process energy intensity formula can be used to analyze effectively the pattern of impact exerted by different state variables on energy consumption.

  16. The role of recycle oil in direct coal liquefaction process development

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.

    1995-08-01

    It has long been recognized that use of a recycle oil is a convenient and perhaps necessary feature of a practical direct coal liquefaction process. The recycle oil performs a number of important functions. It serves as a vehicle to convey coal into the liquefaction reactor and products from the reactor. It is a medium for mass and heat transfer among the solid, liquid, and gaseous components of the reactor inventory. It can act as a reactant or intermediate in the liquefaction process. Therefore, the nature of the recycle oil can have a determining effect on process configuration and performance, and the characterization of recycle oil composition and chemistry has been the subject of considerable interest. This paper discusses recycle oil characterization and its influence on the industrial development of coal liquefaction technology,

  17. 生物质富氮热解联产高值含氮油炭的理化特性%Physicochemical properties of nitrogen rich in oil and char during biomass nitrogen-rich pyrolysis

    Institute of Scientific and Technical Information of China (English)

    闻明; 张世红; 邵敬爱; 陈应泉; 冯磊; 王贤华; 陈汉平

    2015-01-01

    Biomass is one of the most important renewable resources. Pyrolysis for producing high value added products provides additional value for biomass energy utilization. Through the introduction of exogenous nitrogen in biomass pyrolysis in nitrogen-rich conditions, it can get high value of nitrogen-containing products, i.e. nitrogen-rich char and oil. In this study, wood chips were used as raw materials. The experiment was carried out in a fixed bed reactor at 350 to 850℃, and the effect of temperature and impregnation ratio(5%, 10%, 15%, 20%) on products yields, compositions and characteristics were investigated. Firstly, wood chips were immersed in different mass fractions of urea solution, stirred for 12 hours with a magnetic mixer at room temperature. The woodchips was then separated from solution by filtration and was dried after for 24 hours in an oven. The dried woodchips was then gone through pyrolysis and the bio-oil obtained at different temperatures was analyzed by gas chromatography-mass spectrometry. Derived bio-oil and char were also analyzed for their compositions to trace nitrogen mass transfer. The surface physicochemical property of the char under nitrogen-rich conditions was characterized using a diffuse reflectance infrared spectroscopy and X-ray photoelectron spectroscopy. With the rise of impregnation ratio, the yield of char and bio-oil had little change. Temperature had a remarkable effect on the yield and nitrogen content of boichar and bio oil. Change of product yields was mainly due to the three components (cellulose, ligin and semicellulose) decomposing at different temperatures, and to the volatilization of the secondary cracking at high temperature. The GC-MS results indicated that after treated with urea solution, biomass pyrolysis oil contains large amounts of nitrogen-containing chemicals that can be used to refine high value-added chemical products. The nitrogen-containing chemicals in the bio-oil mainly include aromatic amine

  18. A solid state NMR investigation of char forming processes in polymer degradation

    CERN Document Server

    Dick, C M

    2002-01-01

    A detailed knowledge of the condensed phase chemistry occurring in polymers exposed to elevated temperatures is crucial to understanding the behaviour of polymers exposed to fire. This is particularly true when trying to reduce polymer flammability by means of promoting char-forming reactions. Until recently, however, structural information on highly crosslinked chars and their precursors has been difficult to obtain, and as a consequence many degradation workers have merely labelled degradation residues as 'intractable'. However, the application of solid state NMR techniques developed in our laboratories for the structural characterisation of coals has provided a considerable insight into the structure and chemistry of polymer chars formed under both oxidative and non-oxidative conditions. A series of polymers including poly(vinyl chloride), poly(vinyl acetate), polyurethanes, polychloropene, cis and trans polyisoprene have been studied. These polymers have been used to describe the application of quantitati...

  19. Development of carbon dioxide adsorbent from rice husk char

    Science.gov (United States)

    Abang, S.; Janaun, J.; Anisuzzaman, S. M.; Ikhwan, F. S.

    2016-06-01

    This study was mainly concerned about the development of carbon dioxide (CO2) adsorbent from rice husk (RH). Several chemical treatments were used to produce activated rice husk char (RHAC) from RH. Initially the RH was refluxed with 3M of sodium hydroxide (NaOH) solution, activation followed by using 0.5M of zinc chloride (ZnCl2) solution and finally acidic treatment by using 0.1M of hydrochloric acid (HCl). Then, the RHAC was functionalized by using 3-chloropropylamine hydrochloride (3-CPA) and noted as RHN. RHN samples were characterized with scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), fourier transform infrared spectroscopy (FTIR). Based on the SEM, the RHN sample had a large pore diameter compared to RH sample after being treated. Based on MIP data, the average pore diameter between RH and RHAC samples were increased significantly from 0.928 microns to 1.017 microns. The RHN sample also had higher total porosity (%) compared to RHAC and RH (58.45%, 47.82% and 45.57% respectively). The total specific surface area of the sample was much increasing from RHO to RHAC (29.17 m2/g and 62.94 m2/g respectively) and slightly being decreasing from RHAC to RHN (58.88 m2/g). FTIR result showed the present of weak band at 1587 cm-1 which demonstrating of the amine group present on the sample. The CO2 capture result showed that the decreasing of operating temperature can increase the breakthrough time of CO2 capture. On the contrary decreasing of CO2 gas flow rate can increase the breakthrough time of CO2 capture. The highest total amount of CO2 adsorbed was 25338.57 mg of CO2/g of RHN sample by using 100 mL/min of gas flow rate at 30oC. Based on adsorption isotherm analysis, the Freundlich isotherm was the best isotherm to describe the CO2 adsorption on the sample.

  20. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 k...

  1. Eco-friendly and cleaner process for isolation of essential oil using microwave energy: experimental and theoretical study.

    Science.gov (United States)

    Farhat, Asma; Ginies, Christian; Romdhane, Mehrez; Chemat, Farid

    2009-06-26

    Microwave steam diffusion (MSD) was developed as a cleaner and new process design and operation for isolation of essentials oils and was compared to conventional steam diffusion (SD). The essential oils extracted by MSD for 3 min were quantitatively (yield) and qualitatively (aromatic profile) similar to those obtained by conventional steam diffusion for 20 min. In addition, an optimal operating steam flow rate of 25 g min(-1) and microwave power 200 W were found to ensure complete extraction yield with reduced extraction time. To confirm the efficiency of this process a mathematical model was proposed to describe the mass transfer of essential oil from lavender. Solid-steam mass transfer coefficients obtained by MSD were six times higher than obtained by SD. Scanning electronic microscopy was used to confirm the extraction mechanism of the essential oil present in the glandular trichomes of the flowers from lavender outer surface. MSD was better than SD in terms of energy saving, cleanliness and reduced waste water.

  2. Evaluation of energy efficiency efforts of oil and gas offshore processing

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter

    2015-01-01

    Oil and gas platforms are energy-intensive systems, and each facility consumes from a few to several hundred MW of power, depending on the oil, gas and water extraction, as well as different field and export conditions. Despite these differences, several strategies can be applied to improve the e...

  3. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process.

    Science.gov (United States)

    Brandt, Adam R

    2008-10-01

    Oil shale is a sedimentary rock that contains kerogen, a fossil organic material. Kerogen can be heated to produce oil and gas (retorted). This has traditionally been a CO2-intensive process. In this paper, the Shell in situ conversion process (ICP), which is a novel method of retorting oil shale in place, is analyzed. The ICP utilizes electricity to heat the underground shale over a period of 2 years. Hydrocarbons are produced using conventional oil production techniques, leaving shale oil coke within the formation. The energy inputs and outputs from the ICP, as applied to oil shales of the Green River formation, are modeled. Using these energy inputs, the greenhouse gas (GHG) emissions from the ICP are calculated and are compared to emissions from conventional petroleum. Energy outputs (as refined liquid fuel) are 1.2-1.6 times greater than the total primary energy inputs to the process. In the absence of capturing CO2 generated from electricity produced to fuel the process, well-to-pump GHG emissions are in the range of 30.6-37.1 grams of carbon equivalent per megajoule of liquid fuel produced. These full-fuel-cycle emissions are 21%-47% larger than those from conventionally produced petroleum-based fuels.

  4. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated

  5. Chemical characterization of chars developed from thermochemical treatment of Kentucky bluegrass seed screenings.

    Science.gov (United States)

    Griffith, Stephen M; Banowetz, Gary M; Gady, David

    2013-08-01

    Seed mill screenings would be a considerable biofeedstock source for bioenergy and char production. Char produced from the gasification of residues resulting from cleaning of grass seed and small grains could be recycled to a cropping system as a soil amendment if chemical characterization determined that the gasification process had not produced or concentrated deleterious chemical or physical factors that might harm the environment, crop growth or yield. Previous reports have shown that char derived from the pyrolysis of a variety of biomass feedstocks has potential to enhance soil quality by pH adjustment, mineral amendment, and improved soil porosity. The objective of this research was to characterize char produced from Kentucky bluegrass seed mill screenings (KBss) by a small-scale gasification unit, operated at temperatures between 600 and 650°C, with respect to polycyclic aromatic hydrocarbons, selected heavy metals, as well as other physical and chemical characteristics, and determine its suitability for agricultural application as a soil amendment. We utilized KBss as a model for seed and grain-cleaning residues with the understanding that chemical and physical characteristics of char produced by gasification or other cleaning residues may differ based on soil and environmental conditions under which the crops were produced. Our results support the hypothesis that KBss char could be applied in a cropping system without toxic environmental consequences and serve multiple purposes, such as; recycling critical plant macro- and micro-nutrients back to existing cropland, enhancing soil carbon sequestration, managing soil pH, and improving water holding capacity. Crop field trails need to be implemented to further test these hypotheses.

  6. Kinetics and Mechanisms of NO(x) - Char Reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Suurerg, E.M.; Lilly, W.D.; Aarna, I.

    1997-12-31

    Most industrially important carbons are produced from naturally occurring materials such as coal, oil, peat or wood by some form of thermal process. Chars are obtained from those natural materials as a residue after removal of the volatile matter. Chars (prepared from coal or other organic precursors) are non-graphitizable carbons, meaning that they cannot be transformed into graphitic carbon. Chars are comprised of elementary crystallites in parallel layers which are randomly oriented with respect to each other and are crosslinked together through weak bonds. Voids between crystallites determine the porosity of the char, and this plays an important role in char gasification behavior. Chars usually contain a pore size distribution, in which the larger macro- and mesopores play an important role in transport of reactants into the much smaller micropores, in which most gasification and combustion take place. Therefore, the effectiveness of micropores in gasification depends heavily on the numbers of meso- and macropores.

  7. Combustion of char from plastic wastes pyrolysis

    Science.gov (United States)

    Saptoadi, Harwin; Rohmat, Tri Agung; Sutoyo

    2016-06-01

    A popular method to recycle plastic wastes is pyrolysis, where oil, gas and char can be produced. These products can be utilized as fuels because they are basically hydrocarbons. The research investigates char properties, including their performance as fuel briquettes. There are 13 char samples from PE (Polyethylene) pyrolyzed at temperatures of around 450 °C, with and without a catalyst. Some of the samples were obtained from PE mixed with other types, such as Polystyrene (PS), Polypropylene (PP), Polyethylene Terephthalate (PET), and Others. Char properties, such as moisture, ash, volatile matter, and fixed carbon contents, are revealed from the proximate analysis, whereas calorific values were measured with a bomb calorimeter. Briquettes are made by mixing 4 g of char with 0.5 - 1 g binder. Briquettes are hollow cylinders with an outer and inner diameter of around 1.75 cm and 0.25 cm, respectively. Combustion is carried out in a furnace with wall temperatures of about 230°C and a constant air velocity of 0.7 m/s. Five out of 13 char briquettes are not feasible because they melt during combustion. Briquettes made from 100% PE wastes burn in substantially shorter duration than those from mixed plastic wastes. Char #1 and #5 are excellent due to their highest energy release, whereas #10 show the worst performance.

  8. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim

    2013-01-01

    centrifugel reactor (PCR) at 475, 525, 575, and 625 °C. Maxima of both organic oil yield of 41 wt % on a dry ash free feedstock basis (daf) and a sludge oil energy recovery of 50% were obtained at 575 °C. The water-insoluble fraction, molecular-weight distribution, higher heating value (HHV), and thermal...... behaviors of sludge oils were found to be considerably influenced by the applied pyrolysis temperatures. The sludge oil properties obtained at the optimal temperature of 575 °C were a HHV of 25.5 MJ/kg, a water-insoluble fraction of 18.7 wt %, a viscosity of 43.6 mPa s at 40 °C, a mean molecular weight...

  9. The effect of chars and their water extractable organic carbon (WEOC) fractions on atrazine adsorption-desorption processes

    Science.gov (United States)

    Cavoski, I.; Jablonowski, N.; Burauel, P.; Miano, T.

    2012-04-01

    Chars are carbonaceous material produced from different type of biomass by pyrolysis. They are known as highly effective adsorbents for atrazine therefore limiting its degradation and its diffusion into the aqueous phase. The aim of the present work is to study the effects of different chars and char's derived WEOC on atrazine sorption-desorption processes. The five chars been used in this study derived from: 1) fast pyrolysis from hard wood (FP1); 2) flash pyrolysis from soft wood (FP2); 3) slow pyrolysis from deciduous wood (CC); 4) gasification from deciduous wood (GC) and 5) the market, purchased as activated charcoal standard (AC). Short-term batch equilibration tests were conducted to assess the sorption-desorption behavior of 14C-labeled atrazine on the chars, with a special focus on the desorption behavior using successive dilution method with six consecutive desorption step. Chars and their WEOC were physically and chemically characterized. Results demonstrate that biomass and pyrolysis process used to produce chars affect their physical and chemical properties, and atrazine adsorption-desorption behavior. Atrazine desorption resulted from the positive and competitive interactions between WEOC and chars surfaces. WEOC pool play important role in atrazine adsorption-desorption behavior. FP1 and FP2 with higher concentration of WEOC showed higher desorption rates, whereas GC, CC and AC with insignificant WEOC concentration strongly adsorb atrazine with low desorption rates. According to our results, when high WEOC pools chars are concerned, an increase in atrazine desorption can be observed but further studies would help in confirming the present results.

  10. Sustainable development of tyre char-based activated carbons with different textural properties for value-added applications.

    Science.gov (United States)

    Hadi, Pejman; Yeung, Kit Ying; Guo, Jiaxin; Wang, Huaimin; McKay, Gordon

    2016-04-01

    This paper aims at the sustainable development of activated carbons for value-added applications from the waste tyre pyrolysis product, tyre char, in order to make pyrolysis economically favorable. Two activation process parameters, activation temperature (900, 925, 950 and 975 °C) and residence time (2, 4 and 6 h) with steam as the activating agent have been investigated. The textural properties of the produced tyre char activated carbons have been characterized by nitrogen adsorption-desorption experiments at -196 °C. The activation process has resulted in the production of mesoporous activated carbons confirmed by the existence of hysteresis loops in the N2 adsorption-desorption curves and the pore size distribution curves obtained from BJH method. The BET surface area, total pore volume and mesopore volume of the activated carbons from tyre char have been improved to 732 m(2)/g, 0.91 cm(3)/g and 0.89 cm(3)/g, respectively. It has been observed that the BET surface area, mesopore volume and total pore volume increased linearly with burnoff during activation in the range of experimental parameters studied. Thus, yield-normalized surface area, defined as the surface area of the activated carbon per gram of the precursor, has been introduced to optimize the activation conditions. Accordingly, the optimized activation conditions have been demonstrated as an activation temperature of 975 °C and an activation time of 4 h.

  11. HEAVY OIL DEVELOPMENT KEY TO CHINA'S OIL PRODUCTION GROWTH

    Institute of Scientific and Technical Information of China (English)

    Ma Chunpeng

    2006-01-01

    @@ How to raise the heavy oil production rate has long been a difficult research project focused by international oil giants while the super-heavy oil development is particularly a world-class bottleneck for many oil producers. However, China's main oil companies will give priority to heavy oil exploration and production in the next decade to meet China's increasing energy needs.

  12. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters.

    Science.gov (United States)

    Han, Xiangxin; Jiang, Xiumin; Cui, Zhigang; Liu, Jianguo; Yan, Junwei

    2010-03-15

    Shale char, formed in retort furnaces of oil shale, is classified as a dangerous waste containing several toxic compounds. In order to retort oil shale to produce shale oil as well as treat shale char efficiently and in an environmentally friendly way, a novel kind of comprehensive utilization system was developed to use oil shale for shale oil production, electricity generation (shale char fired) and the extensive application of oil shale ash. For exploring the combustion properties of shale char further, in this paper organic matters within shale chars obtained under different retorting conditions were extracted and identified using a gas chromatography-mass spectrometry (GC-MS) method. Subsequently, the effects of retorting factors, including retorting temperature, residence time, particle size and heating rate, were analyzed in detail. As a result, a retorting condition with a retorting temperature of 460-490 degrees C, residence time of circulating fluidized bed technology with fractional combustion.

  13. Preparatory selection of sterilization regime for canned Natural Atlantic Mackerel with oil based on developed mathematical models of the process

    Directory of Open Access Journals (Sweden)

    Maslov A. A.

    2016-12-01

    Full Text Available Definition of preparatory parameters for sterilization regime of canned "Natural Atlantic Mackerel with Oil" is the aim of current study. PRSC software developed at the department of automation and computer engineering is used for preparatory selection. To determine the parameters of process model, in laboratory autoclave AVK-30M the pre-trial process of sterilization and cooling in water with backpressure of canned "Natural Atlantic Mackerel with Oil" in can N 3 has been performed. Gathering information about the temperature in the autoclave sterilization chamber and the can with product has been carried out using Ellab TrackSense PRO loggers. Due to the obtained information three transfer functions for the product model have been identified: in the least heated area of autoclave, the average heated and the most heated. In PRSC programme temporary temperature dependences in the sterilization chamber have been built using this information. The model of sterilization process of canned "Natural Atlantic Mackerel with Oil" has been received after the pre-trial process. Then in the automatic mode the sterilization regime of canned "Natural Atlantic Mackerel with Oil" has been selected using the value of actual effect close to normative sterilizing effect (5.9 conditional minutes. Furthermore, in this study step-mode sterilization of canned "Natural Atlantic Mackerel with Oil" has been selected. Utilization of step-mode sterilization with the maximum temperature equal to 125 °C in the sterilization chamber allows reduce process duration by 10 %. However, the application of this regime in practice requires additional research. Using the described approach based on the developed mathematical models of the process allows receive optimal step and variable canned food sterilization regimes with high energy efficiency and product quality.

  14. Influence of nanomirelal phases on development processes of oil reservoirs in Volga-Ural region

    Science.gov (United States)

    Izotov, Victor; Sitdikova, Lyalya

    2010-05-01

    The optimisation of oil-field development by enhancing oil recovery is the most important target in further improvement of oil production processes. The resulting economic benefits often exceed those from discoveries of new fields, especially in hard-to-reach regions. Despite the wide use of enhanced oil recovery methods, their efficiency is in many cases not as high as expected. For instance, in terrigenous reservoirs of the Volga-Ural region oil recovery rarely exceeds 0.4, and in carbonate reservoirs with the complex structure, variability and high oil viscosity it can be as low as 0.15-0.20. In natural bitumen fields, the recovery factor is even lower. Analysis of the conducted EOR optimisation operations indicates that EOR methods mainly aim to change the hydrodynamic conditions in the reservoir under development or the physicochemical properties of oil, - for instance, to decrease its viscosity or to change its lyophilic behaviour. The impact of EOR methods on the reservoir's mineral component remains largely unstudied. It is generally believed that the mineral component of the reservoir, its matrix, is inert and remains unaffected by EOR methods. However, the analysis of oil-field development processes and the available studies allow the conclusion that natural hydrocarbon reservoirs are sensitive to any impact on both the near-wellbore zone and the whole reservoir. The authors' research in the reservoir's mineral phase dynamics has permitted the conclusion that the reservoir's fluid phases (including hydrocarbons) and the reservoir itself form a lithogeochemical system that remains in unstable equilibrium. Any external impact, such as the reservoir penetration or the use of EOR methods, disturbs this equilibrium and changes the filtration characteristics of the reservoir, the fluid chemistry and the reaction of the reservoir's mineral component to the impact. In order to characterise the processes in the reservoir in the course of its development, the

  15. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    Science.gov (United States)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  16. Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Özdemir, N.; Boutrup Stephansen, Karen

    2017-01-01

    attributed to a higher fish oil entrapment and to the location of the oil in large bead-structures with a reduced specific surface area. These results indicated the feasibility of producing omega-3 nanodelivery systems by encapsulating fish oil in pullulan nano-microfibers using electrospinning processing....

  17. CFD Applied to Process Development in the Oil and Gas Industry – A Review

    Directory of Open Access Journals (Sweden)

    Raynal L.

    2016-05-01

    Full Text Available Computational Fluid Dynamics (CFD is increasingly used in the oil and gas industry. The present article aims to show how CFD can be used at all steps of the development of a new process, with a focus on refining technologies. Those different steps consist first of setting up tools that will be used during the development phase, second of obtaining data in complement with experiments required for the process development, and finally, of troubleshooting actions or technology developments that will make the process even more efficient. A large number of applications corresponding to various flow configurations, single-phase or gas-liquid, gas-solid or even gas-liquid-solid, characterised by significantly different scales and requiring adapted simulation approaches, are discussed based on original results and a review of the literature. Perspectives are given in particular on the multi-scale approach and physical phenomena coupling.

  18. Regional Strategies for Renewable Energies: Development Processes in Greater Manchester

    OpenAIRE

    Faller, Fabian

    2014-01-01

    Making the transition to renewable, low-carbon forms of energy could be the defining question of our times. Especially for complex problems such as energy supply the regional scale and new forms of control, coordination and cooperation—subsumed under the term regional governance—are widely discussed both in politics (e.g. G8 conferences, Climate Summits, etc.) and academia. The turn from conventional to renewable energies is one major topic of discussion. For this process of change, regional ...

  19. Oil development and health in the Amazon basin of Ecuador: the popular epidemiology process.

    Science.gov (United States)

    San Sebastián, Miguel; Hurtig, Anna Karin

    2005-02-01

    Recent decades have witnessed an increasing corporate access to and control over natural resources resulting in environmental degradation, inequalities and ill health. Since 1972, oil companies have extracted more than two billion barrels of crude oil from the Ecuadorian Amazon. During this process, millions of gallons of untreated toxic wastes, gas and oil have been released into the environment. Indigenous federations, peasant's movements and environmental groups have claimed that contamination has caused widespread damage to both people and the environment. This article tells the story of how the relationship between local organisations and research institutions developed around an epidemiological study constructed to address communities' concerns. Local organisations set the agenda of the research: they were involved in the hypothesis formulation, consulted in each step during the study and responsible of the dissemination of the findings. This process is known as popular epidemiology. Practical and personal issues and dilemmas faced during the research process are discussed with emphasis on the communication and dissemination of the findings. The article concludes the need of alliances between communities and researchers in order to protect health and environment. Popular epidemiology is an essential approach for public health researchers to reaffirm their roots in improving public health as a primary value.

  20. Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.; Thambimuthu, K.; Valix, M. [University of Sydney (Australia). Dept. of Chemical Engineering

    2003-04-01

    Carbonisation experiments on samples of sugar cane bagasse were conducted in a static fixed bed reactor to determine the effect of process variables such as temperature, heating rate, inert sweep gas flow rate and particle size on the yield and composition of solid product char. Experiments were performed to the final temperatures of 250-700{sup o}C with heating rates from 5 to 30{sup o}C/min with nitrogen sweep gas flow rate of 350 cc/min. Additional tests were aimed at studying the effect of different flow rates of nitrogen sweep gas from 0 to 700 cc/min during carbonization and different particle size fractions of bagasse. The results showed that as the carbonisation temperature was increased, the yield of char decreased. The reduction in yield was rapid up to a final temperature of 500{sup o}C and was slower thereafter. The yield of char was relatively insensitive to the changes in heating rate and particle size. Increasing the sweep gas flow rate to 350 cc/min reduced the yield of char. It appears the presence of inert sweep gas reduced secondary reactions which promoted char formation. The proximate analysis of the char suggests that fixed carbon and ash content increased with temperature. The char obtained at temperatures higher than 500{sup o}C have high carbon content and is suitable as renewable fuel and for other applications. The carbonization of bagasse has the potential to produce environmental friendly fuels and can assist in reducing deforestation for the production of charcoal. (Author)

  1. Promotion of hydrogen-rich gas and phenolic-rich bio-oil production from green macroalgae Cladophora glomerata via pyrolysis over its bio-char.

    Science.gov (United States)

    Norouzi, Omid; Jafarian, Sajedeh; Safari, Farid; Tavasoli, Ahmad; Nejati, Behnam

    2016-11-01

    Conversion of Cladophora glomerata (C. glomerata) as a Caspian Sea's green macroalgae into gaseous, liquid and solid products was carried out via pyrolysis at different temperatures to determine its potential for bio-oil and hydrogen-rich gas production for further industrial utilization. Non-catalytic tests were performed to determine the optimum condition for bio-oil production. The highest portion of bio-oil was retrieved at 500°C. The catalytic test was performed using the bio-char derived at 500°C as a catalyst. Effect of the addition of the algal bio-char on the composition of the bio-oil and also gaseous products was investigated. Pyrolysis derived bio-char was characterized by BET, FESEM and ICP method to show its surface area, porosity, and presence of inorganic metals on its surface, respectively. Phenols were increased from 8.5 to 20.76area% by the addition of bio-char. Moreover, the hydrogen concentration and hydrogen selectivity were also enhanced by the factors of 1.37, 1.59 respectively.

  2. The development of a neuroscience-based methodology for the nuclear energy learning/teaching process

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de C.; Sabundjian, Gaiane, E-mail: robertabarabas@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    When compared to other energy sources such as fossil fuels, coal, oil, and gas, nuclear energy has perhaps the lowest impact on the environment. Moreover, nuclear energy has also benefited other fields such as medicine, pharmaceutical industry, and agriculture, among others. However, despite all benefits that result from the peaceful uses of nuclear energy, the theme is still addressed with prejudice. Education may be the starting point for public acceptance of nuclear energy as it provides pedagogical approaches, learning environments, and human resources, which are essential conditions for effective learning. So far nuclear energy educational researches have been conducted using only conventional assessment methods. The global educational scenario has demonstrated absence of neuroscience-based methods for the teaching of nuclear energy, and that may be an opportunity for developing new strategic teaching methods that will help demystifying the theme consequently improving public acceptance of this type of energy. This work aims to present the first step of a methodology in progress based on researches in neuroscience to be applied to Brazilian science teachers in order to contribute to an effective teaching/learning process. This research will use the Implicit Association Test (IAT) to verify implicit attitudes of science teachers concerning nuclear energy. Results will provide data for the next steps of the research. The literature has not reported a similar neuroscience-based methodology applied to the nuclear energy learning/teaching process; therefore, this has demonstrated to be an innovating methodology. The development of the methodology is in progress and the results will be presented in future works. (author)

  3. Process design team report to the Northern Development Commissioner on the process to discuss the offshore oil and gas moratorium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-22

    The Northern Development Commissioner of British Columbia established a Process Design Team to develop a community based consensus building consultative process to allow for public examination of the current moratorium on offshore oil and gas exploration in the Hecate Strait area which has been in place since 1989. Regional conferences will be held to determine if the moratorium should be removed, and if so, under what conditions. The Process Design Team was composed mostly of volunteers from many segments of the communities, from First Nations, municipal governments, business people, environmentalists, academics and the fishing and resource industry. Their role was to provide a template for a community process to discuss the relevant issues, make decisions and report on the outcome. It was recommended that there should be about 15 meetings held in Northwestern and Coastal communities with four Main Events being held in Terrace, Prince Rupert, on the Queen Charlotte Islands/Haida Gwaii and in Port Hardy with presenters from eastern Canada, Alaska. It was recommended that communities be given 30 days after the reports are released following the meetings to present their opinions. It was suggested that the entire process be completed by March 31, 2002 with a report to government at that time. It was noted that if the government decides to open the issue of offshore oil and gas exploration, an environmental evaluation would have to be conducted. Initial geological reports suggest that the oil potential in the BC offshore is great. In addition, there have been many new experiences in offshore oil and gas operations since the moratorium went into effect. New advanced technologies such as 3-D seismic, directional drilling, multi-beam bathymetry, satellite communications and weather forecasting have benefited offshore development in Nova Scotia, Newfoundland as well as other fields around the world. Statistics regarding the input of hydrocarbons into the marine

  4. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

    2004-10-01

    This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in

  5. Production and Characterization of Bio-Char from the Pyrolysis of Empty Fruit Bunches

    Directory of Open Access Journals (Sweden)

    Mohamad A. Sukiran

    2011-01-01

    Full Text Available Problem statement: The palm oil industry generates an abundance of oil palm biomass such as the Empty Fruit Bunch (EFB, shell, frond, trunk and Palm Oil Mill Effluent (POME. For 88 million tones of Fresh Fruit Bunch (FFB processed in 2008, the amount of oil palm biomass was more than 26 million tones. Studies about production of bio-char from oil palm biomass are still lacking in Malaysia. So, this study was aimed to: (i determine the effect of pyrolysis temperatures on bio-char yield (ii characterize the bio-char obtained under different pyrolysed temperatures. Approach: In this study, pyrolysis of EFB was conducted using a fluidized fixed bed reactor. The effect of pyrolysis temperatures on bio-char yield was investigated. The pyrolysis temperature used ranged from 300-700°C. The elemental analysis, calorific value, surface area and total pore volume of the bio-char were determined. Results: The highest bio char yield of 41.56% was obtained at an optimum pyrolysis temperature of 300°C with particle size of 91-106 μm and the heating rate of 30°C min-1. The calorific values of bio-char ranged from 23-26 MJ kg-1. Conclusion: It was found that the bio-char products can be characterized as carbon rich, high calorific value and potential solid biofuels.

  6. 煤焦与生物质焦CO2共气化特性及分布活化能研究%Investigation on the Co-gasification of Coal Char With Biomass Char and the Distributed Activation Energy

    Institute of Scientific and Technical Information of China (English)

    高正阳; 胡佳琪; 郭振; 王星久; 吴小芳

    2011-01-01

    gasification of straw char. For coal char, the onset temperature drops when a catalyst is introduced while the speed of the reaction remains, but the effect of increasing quantity of catalysts is limited to the increase of the reaction speed and no notable further decrease of the onset temperature could be observed. During the gasification process, distributed activation energy of all samples shows the tendency to increase at first and decent later. The existent of ash in the samples has the ability to assist the gasification in a TGA.

  7. The Relationship between Palm Oil Quality Index Development and Physical Properties of Fresh Fruit Bunches in the Ripening Process

    Directory of Open Access Journals (Sweden)

    Afshin Keshvadi

    2011-02-01

    Full Text Available Oil palm (Elaeis guineensis is the most important tree crop in the rural economy of the humid rainforest of Malaysia. The oil is consumed as household food, used domestically for industrial purposes, and an important foreign exchange earning export. Normally, oil palm will be harvested after four years of planting. The oil palm yield will increase variously until the tenth year of planting. The yield will then remains at a stable stage until the twenty-fifth year. The maturity and palm oil development in the fruit ripening process is a good way to monitor harvest time and recommendation to evaluate the palm oil performance in food industries. This research is done on Tenera oil palm variety (A cross between Dura and Pisifera on 8-year-old planted in 2003 at the Malaysian Palm Oil Board (MPOB Research Station. Fresh fruit Bunches were carried and were divided to three regions (Top, Middle and Bottom then were removed the fruits from outer and inner layers of them randomly, during the ripening process between 8, 12,16 and 20 weeks after anthesis for these aims: The relationship between maturity and oil development in mesocarp and kernel also investigate to fatty acid compositions during the ripening process at each three regions of bunch by Gas Chromatography (GC and Physical properties of oil palm fresh fruits such as length, width, thickness, weight, apparent volume, true density, bulk density, porosity, sphericity and surface area. Calculation of earned data related to ripening time, oil content and physical properties were done by MSTAT-C, SAS and Microsoft Excel computer programs.

  8. Relationship between attachment probability and surface energy in adhesion process of gold particles to oil-carbon agglomerates

    Institute of Scientific and Technical Information of China (English)

    WU Xi-qing(伍喜庆); A.J. Monhemius; R.J. Gochin

    2003-01-01

    Based on the theoretical analyses, the adhesion process of fine gold particles to oil-carbon agglomerates in a dynamic system was quantitatively investigated in terms of the relationship between the attachment probability and the surface energy. The proposed way to establish this relationship is to firstly theoretically derive the formula to evaluate the surface energy change of the system by analyzing the adhesion process of a gold particle on an oil-carbon agglomerate in a mathematic and thermodynamic way. The obtained formula of the maximum energy change of unit surface area is, △ω'max =-1/2σhw (cosθ-1), which involves two measurable elements: interfacial tension and contact angle. In a well-quantified system, based on the related model it is also possible to calculate the complicated concept, namely, the attachment probability by transferring other measurable indices. In this way, after some adhesion experiments and measurements of relevant parameters, the empirical relationship between the attachment probability and the surface energy change was established in an exponential function, Pa =Aexp(-△Gsurf/k).

  9. Evaluation of solid fuel char briquettes from human waste.

    Science.gov (United States)

    Ward, Barbara J; Yacob, Tesfayohanes W; Montoya, Lupita D

    2014-08-19

    The developing world faces dual crises of escalating energy demand and lack of urban sanitation infrastructure that pose significant burdens on the environment. This article presents results of a study evaluating the feasibility of using human feces-derived char as a solid fuel for heating and cooking and a potential way to address both crises. The study determined the energy content and the elemental composition of chars pyrolyzed at 300, 450, and 750 °C. Fecal chars made at 300 °C were found to be similar in energy content to wood chars and bituminous coal, having a heating value of 25.6 ± 0.08 MJ/kg, while fecal chars made at 750 °C had an energy content of 13.8 ± 0.48 MJ/kg. The higher heating values of the studied chars were evaluated using their elemental composition and a published predictive model; results found good agreement between the measured and predicted values. Fecal chars made at low temperatures were briquetted with molasses/lime and starch binders. Briquettes made with 10% starch had an average impact resistance index of 79 and a higher heating value of 25 MJ/kg. These values are comparable to those of commercial charcoal briquettes, making fecal char briquettes a potential substitute that also contributes to the preservation of the environment.

  10. Char porosity characterisation by scanning electron microscopy and image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, H.S.; Rosenberg, P.; Petersen, H.I.; Soerensen, L.H. [Danfoss A/S, Nordborg (Denmark)

    2000-09-01

    No significant change in either the morphotype composition or the macroporosity (pores {gt}5 {mu}m) in the 0-30 wt.% char burnout interval were revealed by reflected light microscopy or image analysis. Two high temperature char series from a Tertiary South American coal (C1) and a Permian Gondwana coal (C2) were therefore examined by scanning electron microscopy to provide information on the combustion process up to {approximately} 60 wt% char burnout. This study documents a significant mesopore ({approximately} 0.1-5 {mu}m) development on the fused chars in the burnout interval studied. A method to quantify the size and amount of the mesopores is described and both the parameters increased with increasing char burnout. Above a char burnout of {approximately} 30 wt% an increase in macroporosity was detected and ascribed to coalescence of mesopores to form large pores. Although the measurement of mesoporosity is restricted to fused chars, i.e. pores in fragments and the char morphotypes inertoid, fusinoid and solid could not be measured, the consideration of mesoporosity seems to be fundamental in understanding, evaluating and modelling combustion processes in the char burnout interval studied. 7 refs., 9 figs., 4 tabs.

  11. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

    2006-01-01

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and

  12. 共热解过程对褐煤焦和生物质焦氧化特性的影响%Effect of co-pyrolysis process on the oxidation reactivity of lignite char and biomass char

    Institute of Scientific and Technical Information of China (English)

    郭沛; 赵慧明; 贾挺豪; 王美君; 常丽萍

    2015-01-01

    Ximeng lignite and cornstalk were used as the feedstock to prepare lignite char, biomass char and co-pyrolysis char with different blending ratios in a fixed bed reactor with temperature-programmed pyrolysis. The pore and chemical structure of char samples were characterized and the ash composition was analyzed. The oxidation reactivity of the mixtures of lignite char/cornstalk char with different blending ratios and the co-pyrolysis char of lignite and cornstalk with corresponding blending ratios were investigated by the isothermal thermogravimetry at 450℃, aimed at the effect of co-pyrolysis process on the char reactivity. The results show that there are obvious influences on the char structures through secondary reactions during co-pyrolysis process, leading to the char reactivity decrease. Especially with the cornstalk proportion less than 50%, these influences are more significant due to a large number of volatiles from cornstalk during co-pyrolysis enhancing the secondary reactions between the volatile and nascent char, prompting parts of organic structure less than 5 rings turn into the larger organic structure. For the char samples with cornstalk proportion above 50%, the catalytic effect of alkaline and alkaline earth metal in biomass char plays a dominating role, especially the effect of potassium, resulting in the weaker effects of secondary reactions on the structure and oxidation reactivity of the char samples.%以锡盟褐煤和玉米秸秆为原料,利用固定床程序升温热解的方法制备了褐煤焦、生物质焦以及褐煤和生物质不同混合比例的共热解焦样,并进行了孔结构和化学结构的表征以及其灰成分分析。采用等温热重法在450℃下考察褐煤焦和生物质焦的混合样与其相同比例的共热解焦样的氧化活性,对比分析共热解过程对焦样反应活性的影响。实验结果表明,共热解过程中的二次反应对焦样结构有着明显的影响,进一步导

  13. Oil Pipelines, This is an ESRI feature class of Enbridge Energy's Rock County crude oil lines., Published in 2005, Rock County Planning, Economic, and Community Development Agency.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Oil Pipelines dataset as of 2005. It is described as 'This is an ESRI feature class of Enbridge Energy's Rock County crude oil lines.'. Data by this publisher...

  14. Energy policy, social exclusion and sustainable development: The biofuels and oil and gas cases in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeremy; Matos, Stelvia; Silvestre, Bruno

    2010-09-15

    Recent Brazilian policies have encouraged impoverished communities to participate in the country's growing energy industry. This paper explores the country's attempts to encourage such participation within the oil and gas and biofuels sectors. Our research is based on interviews with industry executives, policymakers, non-governmental organizations and farmers conducted between 2005-2009 in Brazil, an emerging energy leader, yet a country grappling with social exclusion. We propose that some sectors have a propensity to be exclusive due to technological complexity, whereas other sectors, although less complex, tend to economize at the expense of social programs. We conclude with managerial and policy implications.

  15. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    OpenAIRE

    Jundika C. Kurnia; Sachin V. Jangam; Saad Akhtar; Sasmito, Agus P.; Mujumdar, Arun S.

    2016-01-01

    Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet) which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further...

  16. The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets.

    Science.gov (United States)

    Hu, Qiang; Yang, Haiping; Yao, Dingding; Zhu, Danchen; Wang, Xianhua; Shao, Jingai; Chen, Hanping

    2016-01-01

    The densification of bio-chars pyrolyzed at different temperatures were investigated to elucidate the effect of temperature on the properties of bio-char pellets and determine the bonding mechanism of pellets. Optimized process conditions were obtained with 128MPa compressive pressure and 35% water addition content. Results showed that both the volume density and compressive strength of bio-char pellets initially decreased and subsequently increased, while the energy consumption increased first and then decreased, with the increase of pyrolysis temperature. The moisture adsorption of bio-char pellets was noticeably lower than raw woody shavings but had elevated than the corresponding char particles. Hydrophilic functional groups, particle size and binder were the main factors that contributed to the cementation of bio-char particles at different temperatures. The result indicated that pyrolysis of woody shavings at 550-650°C and followed by densification was suitable to form bio-char pellets for application as renewable biofuels.

  17. Cyber-Spatial Academic Networking for Energy (Oil, Natural Gas, Electricity Development in Nigeria

    Directory of Open Access Journals (Sweden)

    Richard INGWE

    2014-01-01

    Full Text Available Philosophers of society/sociology recently espoused the concept of a new society and its new paradigm distinguished from the old that was based on industry and the energy forms that drove them since the industrial revolution. The new society which is driven by information and communications technologies (ICTs has created the network society whereby cyber-spatial (internet-based platforms operate in leveraging previous and conventional interaction among researchers concerned with single subjects and/or multi-disciplinary research projects, exchanges of ideas, opinions, concerns/worries, viewpoints, project management, among other issues in the nexus of developing and applying academic knowledge. While most of those that are popularly used are of the universal (non-specific nationality or global character, fairly country-specific (i.e. restricted membership or nation-focused cyber-spatial platforms present opportunities for enhancing or optimizing the profit of academic interaction and exchanges that concentrate on challenges that are limited to one country but promote greater understanding among those academics involved compared to the rather universal cyber-spatial platforms. Here, we conceive and hypothetically theorize a cyber-spatial platform for enhancing interaction among Nigerian scholars and academics concerned with energy which has been driving industry. Examined in this article are: contexts of scholarship in Nigeria (tertiary educational institutions, research and knowledge needs for sustainable development; the network society as a suitable framework for theoretically framing the cyber-spatial platform; an exemplary multi-disciplinary approach for multi-disciplinary petroleum oil, natural gas and energy concentrating on (or drawing from the social sciences; management of the program; discussion and conclusion. The implications of this article for policy is that while the National Universities’ Commission and the Federal Ministry of

  18. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    Science.gov (United States)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  19. 重油残渣焦水蒸气气化反应特性的研究%Steam gasification reactivity of chars from heavy oil residue

    Institute of Scientific and Technical Information of China (English)

    张乾; 李庆峰; 房倚天; 张林仙

    2012-01-01

    The gasification reactivity of heavy oil residue chars in steam atmosphere was studied by Thermal Gravimetric Analyzer (TGA) and micro-crystalite of the char was analyzed by X-ray diffraction (XRD). The effects of heating rate,pyrolysis temperature,residence time,gasification temperature and the partial pressure of steam were evaluated separately. The results show that at 950℃ and 60% partial steam pressure,gasification reactivity of chars formed at slow heating rate is lower than that formed at fast heating rate. With increasing pyrolysis temperature and residence time,the reactivity of char decreases. Gasification temperature is the main factor influencing the gasification rate. From 900 to 1 050℃ the gasification time is almost halved with the increasing temperature of 50℃. The increasing of steam partial pressure can improve the gasification rates greatly until the partial pressure comes to 60% ,and after that it has no significant effect. The homogeneous model and the shrinking core model were used to characterize the gasification kinetic parameters. The later model is better and the apparent activation energy is 195. 0 kJ/mol,the preexponentiol factor A0 is 2. 6×l07min-1.%采用常压热重分析仪,研究了重油残渣焦的水蒸气气化反应性,主要考察了热解温度、升温速率、停留时间及气化反应温度、气化剂分压对重油残渣焦水蒸气气化反应的影响,并借助XRD对残渣焦进行了分析表征.结果表明,气化温度950℃,60%水蒸气分压条件下,快速热解焦比慢速热解焦的气化反应性高;随制焦温度(500 ~ 900℃)的提高及停留时间的延长,焦的气化反应性降低.气化温度是影响重油残渣焦气化反应的主要因素,在900 ~1 050℃,温度每提高50℃,重油残渣焦气化反应时间几乎减半;随着水蒸气分压的提高,气化反应速率增加,但当气化剂分压高于60%时,其对气化反应影响较小.采用均相模型和缩核

  20. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  1. Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun Ju; Park, Young-Kwon; Kim, Joo Sik [Faculty of Environmental Engineering, University of Seoul, 90 Jeonnong-Dong, Dondaemun-Gu, Seoul 130-743 (Korea)

    2008-08-15

    Radiata pine sawdust was pyrolyzed in a bubbling fluidized bed equipped with a char separation system. The influence of the reaction conditions on the production of bio-oil was investigated through the establishment of mass balance, and the examination of the products' chemical and physical characteristics. The optimal reaction temperature for the production of bio-oil was between 673 and 723 K, and the yield was above 50 wt.% of the product. An optimal feed size also existed. In a particle with a size that was less than 0.3 mm, the bio-oil yield decreased due to overheating, which led to gas formation. A higher flow rate and feeding rate were found to be more effective for the production of bio-oil, but did not significantly affect it. The main compounds of bio-oil were phenolics, including cresol, guaiacol, eugenol, benzendiol and their derivatives, ketones, and aldehydes. In addition, high-quality bio-oils, which contained less than 0.005 wt.% of solid, no ash and low concentrations of alkali and alkaline earth metals, were produced due to the char removal system. (author)

  2. Combustion char characterisation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Ingermann Petersen, H.; Sund Soerensen, H.; Thomsen, E.; Guvad, C.

    1996-06-01

    The aim was to correlate reactivity measures of raw coals and the maceral concentrates of the coals obtained in a previous project with the morphology of the produced chars by using a wire grid devolatilization method. Work involved determination of morphology, macroporosity and a detailed study by Scanning Electron Microscopy (SEM). Systematic variations in the texture of chars produced in different temperature domains and heating rates were demonstrated by using incident light microscopy on polished blocks and by SEM studies directly on the surfaces of untreated particles. Results suggest that work in the field of char reactivity estimates and correlations between char morphology and coal petrography can be accomplished only on chars produced under heating rates and temperatures comparable to those for the intended use of coal. A general correlation between the coals` petrography and the the morphology of high temperature chars was found. The SEM study of the chars revealed that during the devolatilization period the particles fuse and the macroporosity and thus the morphotypes are formed. After devolatilization ceases, secondary micropores are formed. These develop in number and size throughout the medium combustion interval. At the end of the combustion interval the macrostructure breaks down, caused by coalescence of the increased number of microspores. This can be observed as a change in the morphology and the macroporosity of the chars. Results indicate that char reactivity is a function of the macroporosity and thus the morphology of combustion chars. (AB) 34 refs.

  3. Energy efficient production of hydrogen and syngas from biomass: development of low-temperature catalytic process for cellulose gasification.

    Science.gov (United States)

    Asadullah, Mohammad; Ito, Shin-ichi; Kunimori, Kimio; Yamada, Muneyoshi; Tomishige, Keiichi

    2002-10-15

    The Rh/CeO2/M (M = SiO2, Al2O3, and ZrO2) type catalysts with various compositions have been prepared and investigated in the gasification of cellulose, a model compound of biomass, in a fluidized bed reactor at 500-700 degrees C. The conventional nickel and dolomite catalysts have also been investigated. Among the catalysts, Rh/CeO2/SiO2 with 35% CeO2 has been found to be the best catalyst with respect to the carbon conversion to gas and product distribution. The steam addition contributed to the complete conversion of cellulose to gas even at 600 degrees C. Lower steam supply gave the syngas and higher steam supply gave the hydrogen as the major product. Hydrogen and syngas from cellulose or cellulosic biomass gasification are environmentally super clean gaseous fuels for power generation. Moreover, the syngas derived liquid fuels such as methanol, dimethyl ether, and synthetic diesels are also super clean transportation fuels. However, the use of cellulose or cellulosic biomass for energy source through the gasification is challenging because of the formation of tar and char during the gasification process. It is interesting that no tar or char was finally formed in the effluent gas at as low as 500-600 degrees C using Rh/CeO2/SiO2(35) catalyst in this process.

  4. Effect of char from municipal solid waste on pyrolysis oil%城市生活垃圾热解焦对热解焦油的影响

    Institute of Scientific and Technical Information of China (English)

    任善普; 宋强; 张蒙蒙; 舒新前

    2016-01-01

    The effect of char from Municipal Soild Waste (MSW) on pyrolysis oil was explored by means of a fixed bed reactor and gas charomatography-mass spectrometer (GC-MS).The products distribution and compounds of pyrolysis oil were investigated and analyzed.The result shown that when the temperature increased to 600 ℃,the yield of pyrolysis oil was 38.38%.When the char added up to 30%,the yield of pyrolysis oil reduced to 31.79%,the oxygen-carbon ratio of pyrolysis oil fallen from 0.20 to 0.10 and calorific value increased from 30.24 MJ/kg to 35.81 MJ/kg.The catalytic effect of char on pyrolysis oil was reduced when the ratios of char above 30%.When the char added up to 30%,the contact of the alcohols and carboxylic acids of pyrolysis oil were decreased by 19.18% and 13.73% respectively and the content of the esters and fatty hydrocarbons were increased by 27.69% and 5.63% respectively.The quality of pyrolysis oil improved by adding 30% char and the pyrolysis oil achieve heavy oil lightening.%为研究城市生活垃圾热解焦对城市生活垃圾热解焦油的影响,采用固定床对添加不同比例的城市生活垃圾热解焦的城市生活垃圾进行热解实验.实验结果表明:未添加热解焦时,城市生活垃圾热解焦油产率为38.38%;当热解焦添加比例为30%时,焦油产率为31.79%,焦油中的O/C由0.20下降到0.10,焦油热值由30.24 MJ/kg升高到35.81 MJ/kg;当热解焦添加量超过30%时,热解焦对热解焦油品质的改善作用减弱.利用GC-MS对热解焦油分析发现,热解焦添加比例为30%时,热解焦油中醇类和羧酸类分别下降了19.18%和13.73%,酯类和脂肪烃类分别增加了27.69%和5.63%.热解焦明显改善了热解焦油的品质,实现了一定程度的轻质化.

  5. Improving Light Oil Yield,an Important Way to the Sustainable Development of Petroleum

    Institute of Scientific and Technical Information of China (English)

    Sun Lili

    2004-01-01

    Oil resources are non- renewable and the utilization of oil resources should be sustainable and rational. Oil processing industry must, to the maximum extent, produce liquid transportation fuel and chemical feedstocks, which can hardly be replaced by other forms of energy. Restructuring oil refineries in China,developing hydrocracking technologies and improving light oil yield are the significant means to achieve the sustainable development of petroleum processing industry.

  6. Advances in biofuel production from oil palm and palm oil processing wastes: A review

    Directory of Open Access Journals (Sweden)

    Jundika C. Kurnia

    2016-03-01

    Full Text Available Over the last decades, the palm oil industry has been growing rapidly due to increasing demands for food, cosmetic, and hygienic products. Aside from producing palm oil, the industry generates a huge quantity of residues (dry and wet which can be processed to produce biofuel. Driven by the necessity to find an alternative and renewable energy/fuel resources, numerous technologies have been developed and more are being developed to process oil-palm and palm-oil wastes into biofuel. To further develop these technologies, it is essential to understand the current stage of the industry and technology developments. The objective of this paper is to provide an overview of the palm oil industry, review technologies available to process oil palm and palm oil residues into biofuel, and to summarise the challenges that should be overcome for further development. The paper also discusses the research and development needs, technoeconomics, and life cycle analysis of biofuel production from oil-palm and palm-oil wastes.

  7. Continuous sterilization process developed for offal processing needs half the amount of energy necessary for batch processing. Continu sterilisatieproces voor slachtafval vergt helft minder energie

    Energy Technology Data Exchange (ETDEWEB)

    Walraven, O.E.D. (Stork Duke, Boxmeer (Netherlands))

    1990-09-01

    Offal is processed into meat flour and fat by dehydration. During this process the offal has to be sterilized. This is normally done by batch processing. Stork Duke has developed a continuous sterilization process with financial support from the European Communities. As a result of less energy consumption and operational advantages the extra investments have payback periods from three to four years. Additional advantages are better product quality and reduced odor emission. 2 figs., 4 refs., 2 ills.

  8. Olive oil and pomace olive oil processing

    Directory of Open Access Journals (Sweden)

    Siragakis, George

    2006-03-01

    Full Text Available Olive oil processing is introduced in food industry at the end of the nineteenth century and a lot of improvements have been initialized since. The steps for refining are, settling, neutralizing, bleaching and deodorizing. Monitoring of effective refining and the use of processes that remove less minor components of olive oil, like polyphenols and tocopherols are some issues for the process. The stringent environmental requirements and the target of industry for continuous improvements and cost savings, forcing equipment manufacturers to innovations and new products. The complete removal of polycyclic aromatic hydrocarbons during pomace oil process and the utilization of distillates are also important areas for research and development.El procesado del aceite de oliva se introdujo en la industria alimentaria a finales del siglo diecinueve y desde entonces se han realizado considerables mejoras. Los pasos de refinación son: decantado, neutralización, decoloración, y desodorización. La monitorización de una refinación efectiva así como el uso de procesos que eliminen una menor proporción de componentes menores del aceite de oliva, tales como polifenoles y tocoferoles, son algunos de los objetivos del proceso. La rigurosa normativa medioambiental y el interés de la industria por introducir mejoras y ahorro de costes han forzado a los fabricantes de equipos a innovar y desarrollar nuevos productos. La eliminación completa de los hidrocarburos aromáticos policíclicos durante el refinado del aceite de orujo y la utilización de los destilados son también áreas importantes de investigación y desarrollo.

  9. Development of coconut pith chars towards high elemental mercury adsorption performance - Effect of pyrolysis temperatures.

    Science.gov (United States)

    Johari, Khairiraihanna; Saman, Norasikin; Song, Shiow Tien; Cheu, Siew Chin; Kong, Helen; Mat, Hanapi

    2016-08-01

    In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.

  10. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process.

    Directory of Open Access Journals (Sweden)

    Mariano Ucchesu

    Full Text Available The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017-1751 2σ cal. BC, allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants.

  11. Predictive Method for Correct Identification of Archaeological Charred Grape Seeds: Support for Advances in Knowledge of Grape Domestication Process

    Science.gov (United States)

    Ucchesu, Mariano; Orrù, Martino; Grillo, Oscar; Venora, Gianfranco; Paglietti, Giacomo; Ardu, Andrea; Bacchetta, Gianluigi

    2016-01-01

    The identification of archaeological charred grape seeds is a difficult task due to the alteration of the morphological seeds shape. In archaeobotanical studies, for the correct discrimination between Vitis vinifera subsp. sylvestris and Vitis vinifera subsp. vinifera grape seeds it is very important to understand the history and origin of the domesticated grapevine. In this work, different carbonisation experiments were carried out using a hearth to reproduce the same burning conditions that occurred in archaeological contexts. In addition, several carbonisation trials on modern wild and cultivated grape seeds were performed using a muffle furnace. For comparison with archaeological materials, modern grape seed samples were obtained using seven different temperatures of carbonisation ranging between 180 and 340ºC for 120 min. Analysing the grape seed size and shape by computer vision techniques, and applying the stepwise linear discriminant analysis (LDA) method, discrimination of the wild from the cultivated charred grape seeds was possible. An overall correct classification of 93.3% was achieved. Applying the same statistical procedure to compare modern charred with archaeological grape seeds, found in Sardinia and dating back to the Early Bronze Age (2017–1751 2σ cal. BC), allowed 75.0% of the cases to be identified as wild grape. The proposed method proved to be a useful and effective procedure in identifying, with high accuracy, the charred grape seeds found in archaeological sites. Moreover, it may be considered valid support for advances in the knowledge and comprehension of viticulture adoption and the grape domestication process. The same methodology may also be successful when applied to other plant remains, and provide important information about the history of domesticated plants. PMID:26901361

  12. Clean, premium-quality chars: Demineralized and carbon enriched

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  13. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  14. Improving Energy Efficiency In Thermal Oil Recovery Surface Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Murthy Nadella, Narayana

    2010-09-15

    Thermal oil recovery methods such as Cyclic Steam Stimulation (CSS), Steam Assisted Gravity Drainage (SAGD) and In-situ Combustion are being used for recovering heavy oil and bitumen. These processes expend energy to recover oil. The process design of the surface facilities requires optimization to improve the efficiency of oil recovery by minimizing the energy consumption per barrel of oil produced. Optimization involves minimizing external energy use by heat integration. This paper discusses the unit processes and design methodology considering thermodynamic energy requirements and heat integration methods to improve energy efficiency in the surface facilities. A design case study is presented.

  15. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  16. Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.

    Science.gov (United States)

    Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

    2014-05-07

    Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.

  17. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars

    Energy Technology Data Exchange (ETDEWEB)

    E. Cetin; B. Moghtaderi; R. Gupta; T.F. Wall [University of Newcastle, Callaghan, NSW (Australia). Discipline of Chemical Engineering, Faculty of Engineering and Built Environment, School of Engineering

    2004-11-01

    The physical and chemical structure as well as gasification reactivities of chars generated from several biomass species (i.e. pinus radiata, eucalyptus maculata and sugar cane bagasse) were studied to gain insight into the role of heating rate and pressure on the gasification characteristics of biomass chars. Char samples were generated in a suite of reactors including a wire mesh reactor, a tubular reactor, and a drop tube furnace. Scanning electron microscopy analysis, X-ray diffractometry, digital cinematography and surface area analysis were employed to determine the impact of operating conditions on the char structure. The global gasification reactivities of char samples were also determined for a range of pressures between 1 and 20 bar using pressurised thermogravimetric analysis technique. Char reactivities were found to increase with increasing pyrolysis heating rates and decreasing pyrolysis pressure. It was found that under high heating rates the char particles underwent plastic deformation (i.e. melted) developing a structure different to that of the virgin biomass. Pressure was also found to influence the physical and chemical structures of char particles. The difference in the gasification reactivities of biomass chars at pressure was found to correlate well with the effect of pyrolysis pressure on the graphitisation process in the biomass char structure. 29 refs., 18 figs., 2 tabs.

  18. The development of the super-biodiesel production continuously from Sunan pecan oil through the process of reactive distillation

    Science.gov (United States)

    Yohana, Eflita; Yulianto, Moh. Endy; Ikhsan, Diyono; Nanta, Aditya Marga; Puspitasari, Ristiyanti

    2016-06-01

    In general, a vegetable oil-based biodiesel production commercially operates a batch process with high investments and operational costs. Thus, it is necessary to develop super-biodiesel production from sunan pecan oil continuously through the process of reactive distillation. There are four advantages of the reactive distillation process for the biodiesel production, as follows: (i) it incorporates the process of transesterification reaction, and product separation of residual reactants become one stage of the process, so it saves the investment and operation costs, (ii) it reduces the need for raw materials because the methanol needed corresponds to the stoichiometry, so it also reduces the operation costs, (iii) the holdup time in the column is relatively short (5±0,5 minutes) compared to the batch process (1-2 hours), so it will reduce the operational production costs, and (iv) it is able to shift the reaction equilibrium, because the products and reactants that do not react are instantly separated (based on Le Chatelier's principles) so the conversion will be increased. However, the very crucial problem is determining the design tools and process conditions in order to maximize the conversion of the transesterification reaction in both phases. Thus, the purpose of this research was to design a continuous reactive distillation process by using a recycled condensate to increase the productivity of the super-biodiesel from sunan pecan oil. The research was carried out in three stages including (i) designing and fabricating the reactive distillation equipment, (ii) testing the tool performance and the optimization of the biodiesel production, and (iii) biodiesel testing on the diesel engine. These three stages were needed in designing and scaling-up the process tools and the process operation commercially. The reactive distillation process tools were designed and manufactured with reference to the design system tower by Kitzer, et.al. (2008). The manufactured

  19. Development of the software for energy savings in chemical processes. 3

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.C.; Kim, K.I.; Park, J.K. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    Chemical industry is the most energy consuming industry in the nation and the thermal separation processes such as distillation and drying are the major energy consuming processes. Especially, distillation processes consume about 40% of energy in chemical industry. Special interest in energy saving in thermal separation processes is necessary and a software to select appropriate technology is required. On the first year term of this project, energy saving technology was composed. A program for selecting adequate technology was developed based on the algorithm on the second year term of this project. On this year term of the project, soft-wares for optimizing thermal insulation thickness and optimal design of multi-effect mechanical vapor re-compression evaporator were developed. Also, methods to calculate efficiency of distillation feed preheater and optimize feed preheater were introduced. (author). 16 refs., 29 figs., 2 tabs.

  20. Intensification of adsorption process by using the pyrolytic char from waste tires to remove chromium(Ⅵ) from wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yong-rong

    2004-01-01

    Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char(PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr(Ⅵ) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution / concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon(CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(Ⅵ) ion are weaker than that of CAC, which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr(Ⅵ) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr(Ⅵ) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr(Ⅵ) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr(Ⅵ) removal. The adsorption of Cr(Ⅵ) has been identified as pseudo-second- order kinetics. The rate constants of adsorption have been evaluated.

  1. Intensification of adsorption process by using the pyrolytic char from waste tires to remove chromium (VI) from wastewater.

    Science.gov (United States)

    Zhou, Jie; Yang, Yong-Rong

    2004-01-01

    Pyrolysis has the potential of transforming waste into valuable recyclable products. Pyrolytic char (PC) is one of the most important products from the pyrolysis of used tires. One of the most significant applications for pyrolytic char recovered is used for the removal of Cr(VI) in the wastewater effluent to control waste by waste. The surface chemistry properties of surface element distribution/concentration and chemical structure were examined for the pyrolytic char and the commercial activated carbon (CAC) respectively. The results showed that surfaces of PC possesses a large amount of ester and hydrocarbon graft, whereas there are mainly carbon functional components of C-OH, C=O and COOH on the surface of CAC. Therefore the surface electronegativity of PC is lower than that of CAC in the water. The repulsive interactions between the surfaces of PC and the negatively charged Cr(VI) ion are weaker than that of CAC, which results in an intensification of the adsorption process by the utilization of PC. The adsorption isotherms of Cr(VI) ion on the two kinds of carbons were determined experimentally. The larger adsorption amount on the PC in the case of Cr(VI) may be attributed mainly to its special surface micro-chemical environment. The mechanism of the removal Cr(VI) from aqueous solution was assumed to be the integration of adsorption and redox reaction. The adsorption was the rate-controlled step for Cr(VI) removal. The adsorption of Cr(VI) was identified as pseudo-second-order kinetics. The rate constants of adsorption were evaluated.

  2. Key parameters influencing the NOx reduction process by low-cost char pellets: An overview

    Energy Technology Data Exchange (ETDEWEB)

    J.M. Soriano-Mora; A. Bueno-Lopez; A. Garcia-Garcia; R. Perry; C.E. Snape [University of Alicante, Alicante (Spain). Dept. of Inorganic Chemistry

    2007-07-01

    High potassium content char briquettes prepared from a bituminous coal have shown to be remarkably selective towards NOx reduction by the carbon contained within them. For the present work, it was decided to pursue the preparation of a number of pelletised formulations as well as testing reaction temperatures and lifetime tests. Low-cost carbon feedstocks were selected for pellet preparation (a metallurgical coke breeze, petroleum coke fines and a medium temperature domestic coke), two coals (an anthracite and a high volatile bituminous coal), a scrap tyre pyrolysis char and a carbon concentrate from PFA. Pellets were prepared from a solid mixture containing 65% of air-dried carbon, 30% potassium hydroxide and 5% of cashew nut shell liquid as binder. The results show that good and constant values of NOx reduction are kept after 2 hours of reaction as well as satisfactory selectivity factors (up to 0.45). This parameter is highly dependent on potassium content of the samples and on reaction temperature. The most efficient pellets in terms of high selectivity and high amount of NOx reduced were analysed under lifetime tests at 400{sup o}C. Very encouraging results were obtained showing that high values of NOx conversions (well above O{sub 2} conversions), long lifetimes, no uncontrolled increase in sample temperature and very low CO emissions, (leading to an optimum sample efficiency) were observed throughout lifetime tests. 4 refs., 4 figs., 5 tabs.

  3. The Development of Experimental Setups And Experimental Studies of The Process of Energy-Technological Processing of Wood

    Science.gov (United States)

    Timerbaev, Nail F.; Safin, Rushan G.; Ziatdinova, Dilyara F.; Fomin, Anatoly A.; Mokhovikov, Alexey A.

    2016-08-01

    The paper describes the experimental setups for the study of the various stages of the process of energy-technological processing of wood waste with the production of synthesis gas. The systems for the study of conjugated processes of drying, pyrolysis and gasification, that are an integral part of energy-technological processing of wood wastes were developed. Experimental studies of the processes have identified their basic properties and optimum operating parameters, allowing to obtain a synthesis gas suitable for the chemical synthesis of various olefins.

  4. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: contaminants, char and pyrolysis oil properties.

    Science.gov (United States)

    Miskolczi, Norbert; Ateş, Funda; Borsodi, Nikolett

    2013-09-01

    Pyrolysis of real wastes (MPW and MSW) has been investigated at 500°C, 550°C and 600°C using Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3 as catalysts. The viscosity of pyrolysis oils could be decreased by the using of catalysts, especially by β-zeolite and MoO3. Both carbon frame and double bound isomerization was found in case of thermo-catalytic pyrolysis. Char morphology and texture analysis showed more coke deposits on the catalyst surface using MSW raw material. Pyrolysis oils had K, S, P Cl, Ca, Zn, Fe, Cr, Br and Sb as contaminants; and the concentrations of K, S, P, Cl and Br could be decreased by the using of catalysts.

  5. Oil for development 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    In this report present key achievements for each of the various cooperation countries. Oil for Development (OfD) assistance has been important for the ability of a country like Ghana to improve petroleum resource management on its most important oil and gas field, and to better safeguard that the petroleum activities are conducted in an environmentally sustainable way. Competence building on Increased Oil Recovery (IOR), and negotiation training have helped to increase both the resource extraction potential and the revenue generation potential of a more mature oil producing country like Iraq. Furthermore, OfD has contributed to improving the legislative frameworks in several of our cooperating countries, including Afghanistan, Cambodia and Madagascar, although it will take time before we can assess to what extent the laws have been implemented. OfD's strong focus on providing legal assistance reflects our belief that clear divisions of roles and firm legal mandates are prerequisites for good governance of the petroleum sector and for attracting serious investors. A lot of our capacity building took place through seminars and more tailored workshops with a national or regional scope. We believe that some of these events have significantly increased awareness as well as the level of debate among government institutions and civil society. The oil production accounting workshop in Nigeria and the NOC workshop in Timor-Leste are particularly valid examples. Timor-Leste also addressed other petroleum sector governance issues with a focus on including civil society and by the end of 2009 had nearly fulfilled all criteria for becoming Extractive Industries Transparency Initiative (EITI) compliant. It should be noted that OfD assistance only made a relatively small contribution to this process, which was very much nationally driven. Petroleum related environmental issues were addressed at different levels and from different angles. A thorough environmental needs

  6. Suspension of oil supply and import of oil from the overseas oil development program

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Hyung [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    The import of oil from the overseas oil development is not only reducing the probability and the scale of supply suspension but also enhancing the competitive power of oil industry by securing crude oil stably and economically. Therefore, the import of oil from the overseas oil development is desperately required to meet the opening of domestic oil market. Since the overseas oil development program has started in 1981, the government subsidy from special energy accounting is $0.6 billion occupying 25% of total investment with $2.4 billion. In spite of such a government subsidy, the import amount of development in 1997 is 13.6 million barrel, which is only 1.6% of domestic crude oil consumption. With the goal of supplying 10% of domestically consumed crude oil with self-developed crude oil by 2010, the government is considering a support plan to secure oil for the energy security, because enterprises are lowering its priority of investment on the overseas oil development program as a result of IMF crisis and restructuring. This study estimates the amount of government subsidy through the positive analysis, by selecting an aftermath supporting program as an alternative. (author). 28 refs., 3 figs., 9 tabs.

  7. Assessing local population vulnerability to wind energy development with branching process models: an application to wind energy development

    Science.gov (United States)

    Erickson, Richard A.; Eager, Eric A.; Stanton, Jessica C.; Beston, Julie A.; Diffendorfer, James E.; Thogmartin, Wayne E.

    2015-01-01

    Quantifying the impact of anthropogenic development on local populations is important for conservation biology and wildlife management. However, these local populations are often subject to demographic stochasticity because of their small population size. Traditional modeling efforts such as population projection matrices do not consider this source of variation whereas individual-based models, which include demographic stochasticity, are computationally intense and lack analytical tractability. One compromise between approaches is branching process models because they accommodate demographic stochasticity and are easily calculated. These models are known within some sub-fields of probability and mathematical ecology but are not often applied in conservation biology and applied ecology. We applied branching process models to quantitatively compare and prioritize species locally vulnerable to the development of wind energy facilities. Specifically, we examined species vulnerability using branching process models for four representative species: A cave bat (a long-lived, low fecundity species), a tree bat (short-lived, moderate fecundity species), a grassland songbird (a short-lived, high fecundity species), and an eagle (a long-lived, slow maturation species). Wind turbine-induced mortality has been observed for all of these species types, raising conservation concerns. We simulated different mortality rates from wind farms while calculating local extinction probabilities. The longer-lived species types (e.g., cave bats and eagles) had much more pronounced transitions from low extinction risk to high extinction risk than short-lived species types (e.g., tree bats and grassland songbirds). High-offspring-producing species types had a much greater variability in baseline risk of extinction than the lower-offspring-producing species types. Long-lived species types may appear stable until a critical level of incidental mortality occurs. After this threshold, the risk of

  8. Energy flows, material cycles and global development. A process engineering approach to the Earth system

    Energy Technology Data Exchange (ETDEWEB)

    Schaub, Georg [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Engler-Bunte-Institut; Turek, Thomas [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Chemische Verfahrenstechnik

    2011-07-01

    The book deals with the global flows of energy and materials, and changes caused by human activities. Based on these facts, the limitations of anthropogenic energy and material flows and the resulting consequences for the development of human societies are discussed. Different scenarios for lifestyle patterns are correlated with the world's future development of energy supply and climate. The book provides a process engineering approach to the Earth system and global development. It requires basic understanding of mathematics, physics, chemistry and biology, and provides an insight into the complex matter for readers ranging from undergraduate students to experts. (orig.)

  9. Global Trends and Development Prospects for Oil and the Oil Products Market

    Directory of Open Access Journals (Sweden)

    Maria Dorozhkina

    2006-03-01

    Full Text Available This article discusses the important issue of the development of the global market of oil and oil products. It offers an overview of how this market was formed and its current status, classification, location and potential of countries in the oil and oil processing business. It analyzes the Ukrainian oil products market. The article discusses the shortcomings and strategic areas for the development of Ukraine’s oil transport system. It presents an optimum method for creating integration groups in order to develop the oil processing business in Ukraine for the future. The article considers the main trends and outlines development prospects for the global oil and oil products market.

  10. Preparation and characterization of activated carbon from demineralized tyre char

    Science.gov (United States)

    Manocha, S.; Prasad, Guddu R.; Joshi, Parth.; Zala, Ranjitsingh S.; Gokhale, Siddharth S.; Manocha, L. M.

    2013-06-01

    Activated carbon is the most adsorbing material for industrial waste water treatment. For wider applications, the main consideration is to manufacture activated carbon from low cost precursors, which are easily available and cost effective. One such source is scrap tyres. Recently much effort has been devoted to the thermal degradation of tyres into gaseous and liquid hydrocarbons and solid char residue, all of which have the potential to be processed into valuable products. As for solid residue, char can be used either as low-grade reinforcing filler or as activated carbon. The product recovered by a typical pyrolysis of tyres are usually, 33-38 wt% pyrolytic char, 38-55 wt% oil and 10-30 wt% solid fractions. In the present work activated carbon was prepared from pyrolyzed tyre char (PC). Demineralization involves the dissolution of metal into acids i.e. HCl, HNO3 and H2SO4 and in base i.e. NaOH. Different concentration of acid and base were used. Sodium hydroxide showed maximum amount of metal oxide removal. Further the concentration of sodium hydroxide was varied from 1N to 6N. As the concentration of acid are increased demineralization increases. 6N Sodium hydroxide is found to be more effective demineralising agent of tyre char.

  11. Development of a process maturity model for engineering, construction and maintenance projects in the oil and gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Veldman, J.; Klingenberg, W. [Faculty of Management and Organization, University of Groningen, PO BOX 800, 9700 AV Groningen (Netherlands)

    2006-07-01

    Process improvement is a topic gaining considerable attention in literature. For the processes of Engineering, Procurement, Construction and Maintenance (i.e. EPCM) projects in the oil and gas industry, no frameworks exist that can guide these firms in the management of these processes. Using a detailed gap analysis we map the typical processes of EPCM-organisations onto the Capability Maturity Model Integrated (CMMI), a stepwise process improvement model that is widely used in the software industry. Our main contribution is the conclusion that CMMI can benefit the management of EPCM-processes to a large degree, since it gives direction to the improvement of a considerable set of processes within EPCM-projects. Additional insight is given into the scientifically neglected area of learning between projects and the relationship between an organisation's goals and targeted areas of process improvement. These issues are absent in CMMI so further research is needed to develop framework support for, amongst others, downstream processes (construction and maintenance), learning between projects and goal driven process improvement.

  12. Oil for development 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-09-15

    In this report present key achievements for each of the various cooperation countries. Oil for Development (OfD) assistance has been important for the ability of a country like Ghana to improve petroleum resource management on its most important oil and gas field, and to better safeguard that the petroleum activities are conducted in an environmentally sustainable way. Competence building on Increased Oil Recovery (IOR), and negotiation training have helped to increase both the resource extraction potential and the revenue generation potential of a more mature oil producing country like Iraq. Furthermore, OfD has contributed to improving the legislative frameworks in several of our cooperating countries, including Afghanistan, Cambodia and Madagascar, although it will take time before we can assess to what extent the laws have been implemented. OfD's strong focus on providing legal assistance reflects our belief that clear divisions of roles and firm legal mandates are prerequisites for good governance of the petroleum sector and for attracting serious investors. A lot of our capacity building took place through seminars and more tailored workshops with a national or regional scope. We believe that some of these events have significantly increased awareness as well as the level of debate among government institutions and civil society. The oil production accounting workshop in Nigeria and the NOC workshop in Timor-Leste are particularly valid examples. Timor-Leste also addressed other petroleum sector governance issues with a focus on including civil society and by the end of 2009 had nearly fulfilled all criteria for becoming Extractive Industries Transparency Initiative (EITI) compliant. It should be noted that OfD assistance only made a relatively small contribution to this process, which was very much nationally driven. Petroleum related environmental issues were addressed at different levels and from different angles. A thorough environmental needs

  13. An overview of emerging techniques in virgin olive oil extraction process: strategies in the development of innovative plants

    Directory of Open Access Journals (Sweden)

    Maria Lisa Clodoveo

    2013-09-01

    Full Text Available Currently the systems for mechanically extracting virgin oils from olives are basically of two types: discontinuous-type systems (obsolete and dying out and continuous-type systems. Systems defined as “continuous- type” are generally comprised of a mechanical crusher, a malaxer and a horizontal-axis centrifugal separator (decanter. The “continuous” appellation refers to the fact that two (mechanical crusher and decanter out of the three machines making up the system operate continuously; the malaxer, which actually is a machine working in batches, is located between these two continuous apparatuses. Consequently the malaxation represents the bottleneck of the continuous extraction process. The entire virgin olive oil (VOO process has changed very little over the last 20 years. One of the essential challenges of VOO industrial plant manufacturing sector is to design and build advanced machines in order to transform the discontinuous malaxing step in a continuous phase and improve the working capacity of the industrial plants. In recent years, rapid progress in the application of emerging technologies in food processing has been made, also in VOO extraction process. Ultrasounds (US, microwaves (MW, and pulsed electric fields (PEF are emerging technologies that have already found application in the VOO extraction process on pilot scale plants. This paper aims to describe the basic principles of these technologies as well as the results concerning their impact on VOO yields and quality. Current and potential applications will be discussed, taking into account the relationship between the processing, the olive paste behavior and the characteristics of the resultant VOO, as well as recent advances in the process development.

  14. Offshore Oil Development versus Environmental Protection

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Offshore petroleum development is an expensive and high-risk operation that applies advanced science and technology. The Bohai Bay oil spill has resulted in calls for changes in the relationship between China and the foreign oil companies that enable the search for resources. Amid the criticism heaped on ConocoPhillips Co. - the United States-based energy conglomerate whose operations spilled more than 700 barrels of oil into the waters of China's Bohai Bay in June, the nation's industrial experts are clamoring for a review of the policies for oil and gas exploration with foreign oil companies in China.

  15. Role of the national energy system modelling in the process of the policy development

    Directory of Open Access Journals (Sweden)

    Merse Stane

    2012-01-01

    Full Text Available Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and optimisation approach has been done, favouring presentation of relations between controls and their effects rather than the elusive optimality of results which can be misleading for small energy systems. Scenario-based planning was integrated into the MESAP (Modular Energy System Analysis and Planning environment, allowing integration of past, present and planned (calculated data in a comprehensive overall system. Within the paper, the main technical, economic and environmental characteristics of the Slovenian energy system model REES-SLO are described. This paper presents a new approach in modelling relatively small energy systems which goes beyond investment in particular technologies or categories of technology and allows smooth transition to low carbon economy. Presented research work confirms that transition from environment unfriendly fossil fuelled economy to sustainable and climate friendly development requires a new approach, which must be based on excellent knowledge of alternative possibilities of development and especially awareness about new opportunities in exploitation of energy efficiency and renewable energy sources.

  16. Development Of Educational Programs In Renewable And Alternative Energy Processing: The Case Of Russia

    Science.gov (United States)

    Svirina, Anna; Shindor, Olga; Tatmyshevsky, Konstantin

    2014-12-01

    The paper deals with the main problems of Russian energy system development that proves necessary to provide educational programs in the field of renewable and alternative energy. In the paper the process of curricula development and defining teaching techniques on the basis of expert opinion evaluation is defined, and the competence model for renewable and alternative energy processing master students is suggested. On the basis of a distributed questionnaire and in-depth interviews, the data for statistical analysis was obtained. On the basis of this data, an optimization of curricula structure was performed, and three models of a structure for optimizing teaching techniques were developed. The suggested educational program structure which was adopted by employers is presented in the paper. The findings include quantitatively estimated importance of systemic thinking and professional skills and knowledge as basic competences of a masters' program graduate; statistically estimated necessity of practice-based learning approach; and optimization models for structuring curricula in renewable and alternative energy processing. These findings allow the establishment of a platform for the development of educational programs.

  17. Recent research development of process integration in analysis and optimisation of energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, F.X.X.; Vaideeswaran, L. [UMIST, Manchester (United Kingdom). Dept. of Process Integration

    2000-11-01

    The design of energy systems in a process plant requires a good understanding of each subsystem (e.g. processes, heat exchanger networks, utility systems),and their interactions in the context of an overall plant. An effective design method should be able to explore the synergy between the subsystems to the maximum extent and allow users to interact with the design process. To achieve this, the effective way is to combine physical insights with mathematical optimisation techniques. Physical insights are used as a wise man's brain and eyes, while optimisation techniques are employed as a superman's power in searching for optimal solutions. In the past, concepts and methods have been developed for handling grassroots design, operational management, retrofit and debottlenecking scenarios. This paper describes the recent research progress at UMIST in developing fundamental concepts and methodologies for analysis and optimisation of energy systems. (author)

  18. Development of an energy module for the multi-objective optimisation of complex distillation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, Alhassan Salami

    2010-06-04

    Reduction of energy consumption has increasingly come into sharp focus in the chemical process industry. This is of great value not only for existing plant but also for the development of new processes. Therefore, the challenge for process design engineers to develop an integrated chemical process that simultaneously satisfies economic and environmental objectives has increased considerably. Particularly, multi-objective optimization in the chemical industry has become increasingly popular during the last decade. The main problem lies, in selecting the alternative best design during decision making with multiple and often conflicting objectives. This thesis work presents a methodology for the multi-objective optimization of process design alternatives under economic and environmental objectives and also to establish the linkage between exergy and the environment. Four distillation units design alternatives with increasing level of heat integration were considered. Each design is analysed from exergy, potential environmental impact (PEI) and economic point of view. A non-dominated solution known as the ''Pareto optimal solution'' is generated for decision making. The thermodynamic efficiency indicates where exergy losses occur. The demand for industrial process heat by means of solar energy has generated much interest because it offers an innovative way to reduce operating cost and improve clean renewable electric power. Concentrated Solar Thermal Power (CSP) can provide solution to global energy problems within a relatively short time and is capable of contributing to carbon dioxide reduction, which is an important step towards zero emissions in the process industries. This work provides an overview of a simulation model to evaluate the environmental and economic performance of two case studies of solar thermal power plants. A methodology is presented to integrate solar thermal power plant into industrial processes and this is then compared with

  19. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D. [Mirage Systems, Sunnyvale, CA (United States)

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  20. Oil prices and the stock prices of alternative energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, Irene; Sadorsky, Perry [Schulich School of Business, 4700 Keele Street, Toronto, Ontario (Canada)

    2008-05-15

    Energy security issues coupled with increased concern over the natural environment are driving factors behind oil price movements. While it is widely accepted that rising oil prices are good for the financial performance of alternative energy companies, there has been relatively little statistical work done to measure just how sensitive the financial performance of alternative energy companies are to changes in oil prices. In this paper, a four variable vector autoregression model is developed and estimated in order to investigate the empirical relationship between alternative energy stock prices, technology stock prices, oil prices, and interest rates. Our results show technology stock prices and oil prices each individually Granger cause the stock prices of alternative energy companies. Simulation results show that a shock to technology stock prices has a larger impact on alternative energy stock prices than does a shock to oil prices. These results should be of use to investors, managers and policy makers. (author)

  1. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development.

    Science.gov (United States)

    Golberg, Alexander; Sack, Martin; Teissie, Justin; Pataro, Gianpiero; Pliquett, Uwe; Saulis, Gintautas; Stefan, Töpfl; Miklavcic, Damijan; Vorobiev, Eugene; Frey, Wolfgang

    2016-01-01

    Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.

  2. Comparison of the Acceptability of Various Oil Shale Processes

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, A K; McConaghy, J R

    2006-03-11

    While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

  3. Developments in Oil Shale

    Science.gov (United States)

    2008-11-17

    demonstration (RD&D). The ongoing program will confirm whether an economically significant shale oil volume can be extracted under current operating...Petroleum Trade, [http://www.eia.doe.gov/emeu/mer/pdf/pages/sec1_15.pdf]. 2 Oil sands yield a bitumen substantially heavier most crude oils and shale oil. 3...hydrocarbon products that can be extracted from the shale. The most promising oil shales occur in the Green River formation that underlies 16,000 square

  4. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  5. Energy and Development

    Directory of Open Access Journals (Sweden)

    Gilles Carbonnier

    2012-03-01

    Full Text Available Published by Palgrave MacmillanThis chapter introduces the thematic dossier of International Development Policy on the intimate relationship between energy and development. The authors discuss the centrality of fossil fuels in the economic growth of the Western world since the nineteenth century and the key role of oil in the twentieth century and question the future of this development model in the face of geological and climatic constraints. They examine the gaps and misunderstandings that separate social sciences and natural sciences as well as recent attempts to establish interdisciplinary dialogue around ecological economics and industrial ecology. The authors then analyse what is at stake for developing countries, inequalities in access to energy resources, the failure of the global governance system to deal with mounting tensions associated with the depletion of oil and the environmental consequences of an ever increasing consumption of non-renewable resources.

  6. An integrated process for hydrogen-rich gas production from cotton stalks: The simultaneous gasification of pyrolysis gases and char in an entrained flow bed reactor.

    Science.gov (United States)

    Chen, Zhiyuan; Zhang, Suping; Chen, Zhenqi; Ding, Ding

    2015-12-01

    An integrated process (pyrolysis, gas-solid simultaneous gasification and catalytic steam reforming) was utilized to produce hydrogen-rich gas from cotton stalks. The simultaneous conversion of the pyrolysis products (char and pyrolysis gases) was emphatically investigated using an entrained flow bed reactor. More carbon of char is converted into hydrogen-rich gas in the simultaneous conversion process and the carbon conversion is increased from 78.84% to 92.06% compared with the two stages process (pyrolysis and catalytic steam reforming). The distribution of tar components is also changed in this process. The polycyclic aromatic compounds (PACs) of tar are converted into low-ring compounds or even chain compounds due to the catalysis of char. In addition, the carbon deposition yield over NiO/MgO catalyst in the steam reforming process is approximately 4 times higher without the simultaneous process. The potential H2 yield increases from 47.71 to 78.19g/kg cotton stalks due to the simultaneous conversion process.

  7. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  8. Development of three stable isotope dilution assays for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food.

    Science.gov (United States)

    Granvogl, Michael

    2014-02-12

    Three stable isotope dilution assays (SIDAs) were developed for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food using synthesized [¹³C₄]-crotonaldehyde as internal standard. First, a direct headspace GC-MS method, followed by two indirect methods on the basis of derivatization with either pentafluorophenylhydrazine (GC-MS) or 2,4-dinitrophenylhydrazine (LC-MS/MS), was developed. All methods are also suitable for the quantitation of acrolein using the standard [¹³C₃]-acrolein. Applying these three methods on five different types of fats and oils varying in their fatty acid compositions revealed significantly varying crotonaldehyde concentrations for the different samples, but nearly identical quantitative data for all methods. Formed amounts of crotonaldehyde were dependent not only on the type of oil, e.g., 0.29-0.32 mg/kg of coconut oil or 33.9-34.4 mg/kg of linseed oil after heat-processing for 24 h at 180 °C, but also on the applied temperature and time. The results indicated that the concentration of formed crotonaldehyde seemed to be correlated with the amount of linolenic acid in the oils. Furthermore, the formation of crotonaldehyde was compared to that of its homologue acrolein, demonstrating that acrolein was always present in higher amounts in heat-processed oils, e.g., 12.3 mg of crotonaldehyde/kg of rapeseed oil in comparison to 23.4 mg of acrolein/kg after 24 h at 180 °C. Finally, crotonaldehyde was also quantitated in fried food, revealing concentrations from 12 to 25 μg/kg for potato chips and from 8 to 19 μg/kg for donuts, depending on the oil used.

  9. Environmental control costs for oil shale processes

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

  10. Studying the specific features pertinent to combustion of chars obtained from coals having different degrees of metamorphism and biomass chars

    Science.gov (United States)

    Bestsennyi, I. V.; Shchudlo, T. S.; Dunaevskaya, N. I.; Topal, A. I.

    2013-12-01

    Better conditions for igniting low-reaction coal (anthracite) can be obtained, higher fuel burnout ratio can be achieved, and the problem of shortage of a certain grade of coal can be solved by firing coal mixtures and by combusting coal jointly with solid biomass in coal-fired boilers. Results from studying the synergetic effect that had been revealed previously during the combustion of coal mixtures in flames are presented. A similar effect was also obtained during joint combustion of coal and wood in a flame. The kinetics pertinent to combustion of char mixtures obtained from coals characterized by different degrees of metamorphism and the kinetics pertinent to combustion of wood chars were studied on the RSK-1D laboratory setup. It was found from the experiments that the combustion rate of char mixtures obtained from coals having close degrees of metamorphism is equal to the value determined as a weighted mean rate with respect to the content of carbon. The combustion rate of char mixtures obtained from coals having essentially different degrees of metamorphism is close to the combustion rate of more reactive coal initially in the process and to the combustion rate of less reactive coal at the end of the process. A dependence of the specific burnout rate of carbon contained in the char of two wood fractions on reciprocal temperature in the range 663—833 K is obtained. The combustion mode of an experimental sample is determined together with the reaction rate constant and activation energy.

  11. Microwave processing of oil sands and contribution of clay minerals

    OpenAIRE

    John P. Robinson; Binner, Eleanor; Saeid, Abdul; Al-Harahsheh, Mohammad; Kingman, S. W.

    2014-01-01

    This study establishes the feasibility of microwave heating for extracting oil from Oil Sands in ex-situ processes. Previous studies in this area have shown some potential, but have not characterised the dielectric properties of the Oil Sands used, nor related them to the mineral composition, both of which are vital if successful scale up is to be achieved. In this work the fundamental interactions of microwave energy with Oil Sands are investigated and understood for the first time, and the ...

  12. Palm Oil Milling Wastes and Sustainable Development

    Directory of Open Access Journals (Sweden)

    A. C. Er

    2011-01-01

    Full Text Available Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of wastes into resources. Approach: A longitudinal study was carried out from 2003-2010 via, initially a field survey and subsequently a key informant approach with observation as a complementation for both. Results: Solid wastes, inclusive of solid wastes derived from air emissions and palm oil mil effluent, have a utility function with zero wastage. The principal source of effluent is palm oil mill effluent. Treated palm oil mill effluent is utilized for cropland application by plantation-based palm oil mills. However, independent mills discharge treated palm oil mill effluent in accordance to environmental parameters into receiving waterways. Methane is also released by palm oil mill effluent. Biogas from palm oil mill effluent and biomass energy from solid wastes are potential sources of renewable energy in Malaysia. Conclusion: In general, the wastes from palm oil milling are returned to the field for cropland application, utilized in-house or in the plantation, or sold to third parties. Thus, there is progress made towards sustainable development. The addition of new technologies and replacement of old mills will help to reduce the carbon footprint. However, at this juncture, the feed-in tariff for renewable energy is not financially attractive. If the biogas and biomass renewable energy sector were to take-off, enhancement in the value chain would occur and in tandem further progress towards sustainable development can be attained.

  13. Unconventional oil and gas development and its stresses on water resources in the context of Water-Energy-Food Nexus: The case of Weld County, Colorado

    Science.gov (United States)

    Oikonomou, P. D.; Waskom, R.; Boone, K.; Ryan, J. N.

    2015-12-01

    The development of unconventional oil and gas resources in Colorado started to rapidly increase since the early 2000's. The recent oil price plunge resulted in a decline of well starts' rate in the US, but in Weld County, Colorado, it is currently at the 2013-levels. The additional water demand, despite its insignificant percentage in overall state's demand (0.1% in 2012), it competes with traditional ones, since Colorado's water is almost fully appropriated. Presently, the state has 53,597 active producing oil and gas wells. More than 40% of these are located in Weld County, which happens also to be one of top food production U.S. counties. The competition for land and water resources between the energy and agricultural sectors in water stressed areas, like the western U.S., is further intensified if recycle and reuse practices are not preferred to water disposal by the energy industry. Satisfying the multiple objectives of the Water-Energy-Food Nexus in order to achieve sustainable economic development requires balanced management of these resources. Identifying pressures on key areas that food and energy sectors are competing for water, is essential for prudent water management and developing appropriate policies. Weld County, as a water stressed and fossil fuel producing area, was selected for investigating current stresses on local water resources alongside with future climatic and water demand scenarios for exploring probable long-term effects.

  14. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    near-zero hazardous air or water pollution. This technology would also be conducive to the efficient coproduction of methane and hydrogen while also generating a relatively pure CO{sub 2} stream suitable for enhanced oil recovery (EOR) or sequestration. Specific results of bench-scale testing in the 4- to 38-lb/hr range in the EERC pilot system demonstrated high methane yields approaching 15 mol%, with high hydrogen yields approaching 50%. This was compared to an existing catalytic gasification model developed by GPE for its process. Long-term operation was demonstrated on both Powder River Basin subbituminous coal and on petcoke feedstocks utilizing oxygen injection without creating significant bed agglomeration. Carbon conversion was greater than 80% while operating at temperatures less than 1400°F, even with the shorter-than-desired reactor height. Initial designs for the GPE gasification concept called for a height that could not be accommodated by the EERC pilot facility. More gas-phase residence time should allow the syngas to be converted even more to methane. Another goal of producing significant quantities of highly concentrated catalyzed char for catalyst recovery and material handling studies was also successful. A Pd–Cu membrane was also successfully tested and demonstrated to produce 2.54 lb/day of hydrogen permeate, exceeding the desired hydrogen permeate production rate of 2.0 lb/day while being tested on actual coal-derived syngas that had been cleaned with advanced warm-gas cleanup systems. The membranes did not appear to suffer any performance degradation after exposure to the cleaned, warm syngas over a nominal 100-hour test.

  15. Development of strategies for saving energy by temperature reduction in warm forging processes

    Science.gov (United States)

    Varela, Sonia; Santos, Maite; Vadillo, Leire; Idoyaga, Zuriñe; Valbuena, Óscar

    2016-10-01

    This paper is associated to the European policy of increasing efficiency in raw material and energy usage. This policy becomes even more important in sectors consuming high amount of resources, like hot forging industry, where material costs sums up to 50% of component price and energy ones are continuously raising. The warm forging shows a clear potential of raw material reduction (near-net-shape components) and also of energy saving (forging temperature under 1000°C). However and due to the increment of the energy costs, new solutions are required by the forging sector in order to reduce the temperature below 900°C. The reported research is based on several approaches to reduce the forging temperature applied to a flanged shaft of the automotive sector as demonstration case. The developed investigations have included several aspects: raw material, process parameters, tools and dies behavior during forging process and also metallographic evaluation of the forged parts. This paper summarizes analysis of the ductility and the admissible forces of the flanged shaft material Ck45 in as-supplied state (as-rolled) and also in two additional heat treated states. Hot compression and tensile tests using a GLEEBLE 3800C Thermo mechanical simulator have been performed pursuing this target. In the same way, a coupled numerical model based on Finite Element Method (FEM) has been developed to predict the material flow, the forging loads and the stresses on the tools at lower temperature with the new heat treatments of the raw material. In order to validate the previous development, experimental trials at 850 °C and 750 °C were carried out in a mechanical press and the results were very promising.

  16. Processing and Utilization of Naphthenic Base Heavy Crude Oil

    Institute of Scientific and Technical Information of China (English)

    Wang Xianqing; Men Cungui

    1995-01-01

    @@ Recently China National Petroleum Corporation (CNPC) has gradually set up its own down stream industry in response to the development of oil fields, the demand of domestic market and the unique characteristics of crude oil resources.The capacity of crude oil processing has reached 21million tons per year approximately and 14 million tons of crude oil was processed in 1994,making up one-tenth of CNPC's total output.

  17. Exploration of process parameters for continuous hydrolysis of canola oil, camelina oil and algal oil

    KAUST Repository

    Wang, Weicheng

    2012-07-01

    Thermal hydrolysis of triglycerides to form free fatty acid (FFA) is a well-established industry practice. Recently, this process has been employed as a first step in the production of biofuels from lipids. To that end, batch and continuous hydrolysis of various feedstocks has been examined at the laboratory scale. Canola, the primary feedstock in this paper, camelina and algal oils were converted to high quality FFA. For the different reaction temperatures, the continuous hydrolysis system was found to provide better yields than the laboratory batch system. In addition, CFD simulation with ANSYS-CFX was used to model the performance and reactant/product separation in the continuous, counter-flow reactor. The effects of reaction temperature, water-to-oil ratio (ratio of water and oil volumetric inflow rate), and preheating of the reactants were examined experimentally. Optimization of these parameters has resulted in an improved, continuous process with high mass yields (89-93%, for reactor temperature of 260°C and water-to-oil ratio of 4:1) and energy efficiency (76%, for reactor temperature of 250°C and water-to-oil ratio of 2:1). Based on the product quality and energy efficiency considerations, the reactor temperature of 260°C and water-to-oil ratio of 4:1 have provided the optimal condition for the lab scale continuous hydrolysis reaction. © 2012 Elsevier B.V.

  18. Analysis of problems in the implementation of management systems of quality in the energy industry, oil and gas

    Energy Technology Data Exchange (ETDEWEB)

    Borhi, Juan Carlos

    2010-09-15

    The aim of this paper is to describe the problem in the development of systems of quality management based on ISO 9001:2008 to implement in energy companies involved in the extraction, distribution and processing of oil and gas.

  19. Potential small-scale development of western oil shale

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

    1989-10-01

    Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

  20. Towards Ideal NOx and CO2 Emission Control Technology for Bio-Oils Combustion Energy System Using a Plasma-Chemical Hybrid Process

    Science.gov (United States)

    Okubo, M.; Fujishima, H.; Yamato, Y.; Kuroki, T.; Tanaka, A.; Otsuka, K.

    2013-03-01

    A pilot-scale low-emission boiler system consisting of a bio-fuel boiler and plasma-chemical hybrid NOx removal system is investigated. This system can achieve carbon neutrality because the bio-fuel boiler uses waste vegetable oil as one of the fuels. The plasma-chemical hybrid NOx removal system has two processes: NO oxidation by ozone produced from plasma ozonizers and NO2 removal using a Na2SO3 chemical scrubber. Test demonstrations of the system are carried out for mixed oils (mixture of A-heavy oil and waste vegetable oil). Stable combustion is achieved for the mixed oil (20 - 50% waste vegetable oil). Properties of flue gas—e.g., O2, CO2 and NOx—when firing mixed oils are nearly the same as those when firing heavy oil for an average flue gas flow rate of 1000 Nm3/h. NOx concentrations at the boiler outlet are 90 - 95 ppm. Furthermore, during a 300-min continuous operation when firing 20% mixed oil, NOx removal efficiency of more than 90% (less than 10 ppm NOx emission) is confirmed. In addition, the CO2 reduction when heavy oil is replaced with waste vegetable oil is estimated. The system comparison is described between the plasma-chemical hybrid NOx removal and the conventional technology.

  1. Energy cost reduction in oil pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Limeira, Fabio Machado; Correa, Joao Luiz Lavoura; Costa, Luciano Macedo Josino da; Silva, Jose Luiz da; Henriques, Fausto Metzger Pessanha [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    One of the key questions of modern society consists on the rational use of the planet's natural resources and energy. Due to the lack of energy, many companies are forced to reduce their workload, especially during peak hours, because residential demand reaches its top and there is not enough energy to fulfill the needs of all users, which affects major industries. Therefore, using energy more wisely has become a strategic issue for any company, due to the limited supply and also for the excessive cost it represents. With the objective of saving energy and reducing costs for oil pipelines, it has been identified that the increase in energy consumption is primordially related to pumping stations and also by the way many facilities are operated, that is, differently from what was originally designed. Realizing this opportunity, in order to optimize the process, this article intends to examine the possibility of gains evaluating alternatives regarding changes in the pump scheme configuration and non-use of pump stations at peak hours. Initially, an oil pipeline with potential to reduce energy costs was chosen being followed by a history analysis, in order to confirm if there was sufficient room to change the operation mode. After confirming the pipeline choice, the system is briefly described and the literature is reviewed, explaining how the energy cost is calculated and also the main characteristics of a pumping system in series and in parallel. In that sequence, technically feasible alternatives are studied in order to operate and also to negotiate the energy demand contract. Finally, costs are calculated to identify the most economical alternative, that is, for a scenario with no increase in the actual transported volume of the pipeline and for another scenario that considers an increase of about 20%. The conclusion of this study indicates that the chosen pipeline can achieve a reduction on energy costs of up to 25% without the need for investments in new

  2. Benefit-risk trade-offs in retrospect: how major stakeholders perceive the decision-making process in the Barents Sea oil field development

    DEFF Research Database (Denmark)

    Renn, Ortwin; Grieger, Khara Deanne; Øien, Knut;

    2013-01-01

    This study provides an analysis of risk-benefit communication and participation of the siting process for the Norwegian Goliat oil field development, within the context of a revised model of the International Risk Governance Council’s framework. The main objective of the study is a retrospective ...

  3. Active sites in char gasification: Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, M.; Lilly, W.D.; Perkins, M.T.; Hradil, G.; Calo, J.M.; Suuberg, E.M.

    1987-09-01

    Among the key variables in the design of gasifiers and combustors is the reactivity of the chars which must be gasified or combusted. Significant loss of unburned char is unacceptable in virtually any process; the provision of sufficient residence time for complete conversion is essential. A very wide range of reactivities are observed, depending upon the nature of the char in a process. The current work focuses on furthering the understanding of gasification reactivities of chars. It has been well established that the reactivity of char to gasification generally depends upon three principal factors: (1) the concentration of ''active sites'' in the char; (2) mass transfer within the char; and (3) the type and concentration of catalytic impurities in the char. The present study primarily addresses the first factor. The subject of this research is the origin, nature, and fate of active sites in chars derived from parent hydrocarbons with coal-like structure. The nature and number of the active sites and their reactivity towards oxygen are examined in ''model'' chars derived from phenol-formaldehyde type resins. How the active sites are lost by the process of thermal annealing during heat treatment of chars are studied, and actual rate for the annealing process is derived. Since intrinsic char reactivities are of primary interest in the present study, a fair amount of attention was given to the model char synthesis and handling so that the effect of catalytic impurities and oxygen-containing functional groups in the chemical structure of the material were minimized, if not completely eliminated. The project would not be considered complete without comparing characteristic features of synthetic chars with kinetic behavior exhibited by natural chars, including coal chars.

  4. Report and recommendations to Minister of Competition, Science and Enterprise and Minister of Energy and Mines regarding the offshore oil and gas moratorium process design team consensus report

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, J.

    2001-07-05

    The Northern Development Commissioner of British Columbia recognized that with the economic pressures associated with decreased activities in the fishing and forestry sectors along the West Coast, there is serious interest on the part of northerners to publicly examine the issue of the current moratorium on offshore oil and gas exploration in the Hecate Strait area which has been in place since 1989. A Process Design Team was therefore engaged to provide a template for a community process to discuss the relevant issues, make decisions and report on the outcome. It was recommended that there should be about 15 meetings held in Northwestern and Coastal communities with four Main Events being held in Terrace, Prince Rupert, on the Queen Charlotte Islands/Haida Gwaii and in Port Hardy. Presenters from eastern Canada, Alaska and other countries will be invited to share their knowledge. It was noted that the consultation processes will be successful only with the involvement of a community advisory group and therefore recommendations were made to establish a six member Community Advisory Committee from those Process Design Team members who wish to continue their involvement. It was also recommended that communities be given 30 days after the reports are released following the meetings to present their views regarding the Offshore Oil and Gas Moratorium. It was suggested that the entire process be completed by March 31, 2002 with a report to government at that time.

  5. Recent developments in plasma spray processes for applications in energy technology

    Science.gov (United States)

    Mauer, G.; Jarligo, M. O.; Marcano, D.; Rezanka, S.; Zhou, D.; Vaßen, R.

    2017-03-01

    This work focuses on recent developments of plasma spray processes with respect to specific demands in energy technology. High Velocity Atmospheric Plasma Spraying (HV-APS) is a novel variant of plasma spraying devoted to materials which are prone to oxidation or decomposition. It is shown how this process can be used for metallic bondcoats in thermal barrier coating systems. Furthermore, Suspension Plasma Spraying (SPS) is a new method to process submicron-sized feedstock powders which are not sufficiently flowable to feed them in dry state. SPS is presently promoted by the development of novel torch concepts with axial feedstock injection. An example for a columnar structured double layer thermal barrier coating is given. Finally, Plasma Spray-Physical Vapor Deposition (PS-PVD) is a novel technology operating in controlled atmosphere at low pressure and high plasma power. At such condition, vaporization even of high-melting oxide ceramics is possible enabling the formation of columnar structured, strain tolerant coatings with low thermal conductivity. Applying different conditions, the deposition is still dominated by liquid splats. Such process is termed Low Pressure Plasma Spraying-Thin Film (LPPS-TF). Two examples of applications are gas-tight and highly ionic and electronic conductive electrolyte and membrane layers which were deposited on porous metallic substrates.

  6. Effect of graded levels of rapeseed oil in isonitrogenous diets on the development of the gastrointestinal tract, and utilisation of protein, fat and energy in broiler chickens

    DEFF Research Database (Denmark)

    Jørgensen, Henry; Zhao, Xin Quan; Theil, Peter Kappel;

    2008-01-01

    The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246...... g were allocated to the four groups and kept pair-wise in metabolism cages. The chickens were fed similar amounts of metabolisable energy (ME) per day and similar amounts of essential amino acids relative to ME by adjusting with crystalline amino acids. The chickens were subjected to four balance...

  7. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF)

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800[degrees]F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400[degrees]F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  8. Improvement of biomass char-CO{sub 2} gasification reactivity using microwave irradiation and natural catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lahijani, Pooya, E-mail: pooya.lahijani@gmail.com [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohammadi, Maedeh, E-mail: m.mohammadi@nit.ac.ir [Faculty of Chemical Engineering, Babol Noushirvani University of Technology, 47148 Babol (Iran, Islamic Republic of); Zainal, Zainal Alimuddin, E-mail: mezainal@eng.usm.my [Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, Abdul Rahman, E-mail: chrahman@usm.my [Low Carbon Economy (LCE) Research Group, School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2015-03-20

    Highlights: • We study microwave-induced gasification of EFB ash-loaded biomass char with CO{sub 2}. • Synergistic effect of microwave and catalyst resulted in CO{sub 2} conversion of 93%. • Gasification of pristine char using conventional heating gives CO{sub 2} conversion of 58%. • E{sub a} of 74 and 247 kJ/mol were obtained for microwave and conventional CO{sub 2} gasification. - Abstract: In char-CO{sub 2} gasification, the highly endothermic nature of the Boudouard reaction (CO{sub 2} (g) + C (s) ↔ 2CO (g)) dictates use of very high temperatures to shift the equilibrium towards CO production. In this study, such high temperature (750–900 °C) was provided by microwave irradiation. A microwave heating system was developed to perform the gasification tests by passing CO{sub 2} through a packed bed of oil palm shell (OPS) char. In order to speed up the microwave-induced CO{sub 2} gasification, ash of palm empty fruit bunch (EFB) was used as natural catalyst (rich in potassium) and incorporated into the skeleton of the OPS char. The synergistic effect of microwave and catalyst concluded to very encouraging results, where a CO{sub 2} conversion of 93% was achieved at 900 °C, within 60 min microwave gasification. In comparison, CO{sub 2} conversion in thermal gasification (conventional heating) of pristine OPS char was only 58% under the same operating condition.

  9. Beneficiated coals' char morphology

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2012-09-01

    Full Text Available This work evaluated the char morphology of beneficiated and original coal (without beneficiation from four Colombian coalmines: Cerrejón (La Guajira, La Jagua (Cesar, Guachinte (Valle del Cauca and Nechí (Antioquia. Column flotation was used to obtain beneficiated coal, whereas a drop tube reactor at 1,000°C, 104 °C/s heating rate and 100 ms residence time was used to obtain char. The chars were analysed by image analysis which determined their shape, size, porosity and wall thickness. It was found that char morphology depended on coal rank and maceral composition. Morphological characteristics like high porosity, thinner walls and network-like morphology which are beneficial in improving combustion were present in vitrinite- and liptinite-rich lowest-ranking coals. Beneficiated coals showed that their chars had better performance regarding their morphological characteristics than their original coal chars.

  10. Heavy oils processing materials requirements crude processing

    Energy Technology Data Exchange (ETDEWEB)

    Sloley, Andrew W. [CH2M Hill, Englewood, CO (United States)

    2012-07-01

    Over time, recommended best practices for crude unit materials selection have evolved to accommodate new operating requirements, feed qualities, and product qualities. The shift to heavier oil processing is one of the major changes in crude feed quality occurring over the last 20 years. The three major types of crude unit corrosion include sulfidation attack, naphthenic acid attack, and corrosion resulting from hydrolyzable chlorides. Heavy oils processing makes all three areas worse. Heavy oils have higher sulfur content; higher naphthenic acid content; and are more difficult to desalt, leading to higher chloride corrosion rates. Materials selection involves two major criteria, meeting required safety standards, and optimizing economics of the overall plant. Proper materials selection is only one component of a plant integrity approach. Materials selection cannot eliminate all corrosion. Proper materials selection requires appropriate support from other elements of an integrity protection program. The elements of integrity preservation include: materials selection (type and corrosion allowance); management limits on operating conditions allowed; feed quality control; chemical additives for corrosion reduction; and preventive maintenance and inspection (PMI). The following discussion must be taken in the context of the application of required supporting work in all the other areas. Within that context, specific materials recommendations are made to minimize corrosion due to the most common causes in the crude unit. (author)

  11. Production of activated carbon from TCR char

    Science.gov (United States)

    Stenzel, Fabian; Heberlein, Markus; Klinner, Tobias; Hornung, Andreas

    2016-04-01

    The utilization of char for adsorptive purposes is known since the 18th century. At that time the char was made of wood or bones and used for decoloration of fluids. In the 20th century the production of activated carbon in an industrial scale was started. The today's raw materials for activated carbon production are hard coal, peat, wood or coconut shells. All these materials entail costs especially the latter. Thus, the utilization of carbon rich residues (biomass) is an interesting economic opportunity because it is available for no costs or even can create income. The char is produced by thermo-catalytic reforming (TCR®). This process is a combination of an intermediate pyrolysis and subsequently a reforming step. During the pyrolysis step the material is decomposed in a vapor and a solid carbon enriched phase. In the second step the vapor and the solid phase get in an intensive contact and the quality of both materials is improved via the reforming process. Subsequently, the condensables are precipitated from the vapor phase and a permanent gas as well as oil is obtained. Both are suitable for heat and power production which is a clear advantage of the TCR® process. The obtained biochar from the TCR® process has special properties. This material has a very low hydrogen and oxygen content. Its stability is comparable to hard coal or anthracite. Therefore it consists almost only of carbon and ash. The latter depends from input material. Furthermore the surface structure and area can be influenced during the reforming step. Depending from temperature and residence time the number of micro pores and the surface area can be increased. Preliminary investigations with methylene blue solution have shown that a TCR® char made of digestate from anaerobic digestion has adsorptive properties. The decoloration of the solution was achieved. A further influencing factor of the adsorption performance is the particle size. Based on the results of the preliminary tests a

  12. Outlook for developing the Hungarian oil industry

    Energy Technology Data Exchange (ETDEWEB)

    Zsengeller, I.

    1984-01-01

    Reports from the 72nd general meeting of the Hungarian state society of miners and metallurgists are presented. Half of the need for energy supply is provided by oil and natural gas. The annual extraction is 2 million T of oil and 7 billion mT of natural gas. The discovered reserves guarantee extraction for 10-30 years. The need is stressed for using new methods in oil refining to extract more valuable products. World Bank credit also has to be used for development of the industry.

  13. Bone char surface modification by nano-gold coating for elemental mercury vapor removal

    Energy Technology Data Exchange (ETDEWEB)

    Assari, Mohamad javad [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rezaee, Abbas, E-mail: rezaee@modares.ac.ir [Department of Environmental & Occupational Health, Faculty of Medical Sciences, Tarbiat Modares university, Tehran (Iran, Islamic Republic of); Rangkooy, Hossinali [Occupational Health Department, Faculty of Health, Jondishapor Medical Sciences University, Ahvaz (Iran, Islamic Republic of)

    2015-07-01

    Highlights: • A novel nanocomposite including bone char and gold nanoparticle was developed for capture of Hg{sup 0} vapor. • EDS and XRD results confirm the presence of nano-gold on the surface of the bone char support. • The majority of the pores were found to be in the mesoporous range. • The dynamic capacity of 586 μg/g was obtained for Hg{sup 0} vapor. - Abstract: The present work was done to develop a novel nanocomposite using bone char coated with nano-gold for capture of elemental mercury (Hg{sup 0}) from air. The morphologies, structures, and chemical constitute of the prepared nanocomposite were evaluated by UV–VIS–NIR, dynamic light-scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red (FTIR) spectroscopy, and energy dispersive X-ray spectroscopy (EDS). The capture performance of nanocomposite was evaluated in a needle trap for mercury vapor. An on-line setup based on cold vapor atomic absorption spectrometry (CVAAS) was designed for Hg{sup 0} determination. Dynamic capacity of nanocomposite for Hg{sup 0} was shown high efficient operating capacity of 586.7 μg/g. As temperature increases, the dynamic adsorption capacity of the nanocomposite was decreased, which are characteristics of physicosorption processes. It was found that the surface modification of bone char with nano-gold has various advantages such as high operating dynamic adsorption capacity and low cost preparation. It was also demonstrated that the developed nanocomposite is suitable for on-line monitoring of Hg{sup 0}. It could be applied for the laboratory and field studies.

  14. Development of wear resistant nanostructured duplex coatings by high velocity oxy-fuel process for use in oil sands industry.

    Science.gov (United States)

    Saha, Gobinda C; Khan, Tahir I; Glenesk, Larry B

    2009-07-01

    Oil sands deposits in Northern Alberta, Canada represent a wealth of resources attracting huge capital investment and significant research focus in recent years. As of 2005, crude oil production from the current oil sands operators accounted for 50% of Canada's domestic production. Alberta's oil sands deposits contain approximately 1.7 trillion barrels of bitumen, of which over 175 billion are recoverable with current technology, and 315 billion barrels are ultimately recoverable with technological advances. A major problem of operating machinery and equipment in the oil sands is the unpredictable failure from operating in this highly aggressive environment. One of the significant causes of that problem is premature material wear. An approach to minimize this wear is the use of protective coatings and, in particular, a cermet thin coating. A high level of coating homogeneity is critical for components such as bucketwheels, draglines, conveyors, shovels, heavyhauler trucks etc. that are subjected to severe degradation through abrasive wear. The identification, development and application of optimum wear solutions for these components pose an ongoing challenge. Nanostructured cermet coatings have shown the best results of achieving the degree of homogeneity required for these applications. In this study, WC-17Co cermet powder with nanocrystalline WC core encapsulated with 'duplex' Co layer was used to obtain a nanostructured coating. To apply this coating, high velocity oxy-fuel (HVOF) thermal spraying technique was used, as it is known for producing wear-resistant coatings superior to those obtained from plasma-based techniques. Mechanical, sliding wear and microstructural behavior of the coating was compared with those of the microstructured coating obtained from spraying WC-10Co-4Cr cermet powder by HVOF technique. Results from the nanostructured coating, among others, showed an average of 25% increase in microhardness, 30% increase in sliding wear resistance and

  15. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    2015-04-15

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced

  16. Fiscal 2000 survey report. Survey report on development and utilization of alternative energies for oil in Pacific region; 2000 nendo Taiheiyo chiiki sekiyu daitai energy kaihatsu riyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    A survey was conducted, with environmental matters taken into consideration, for building an information gathering infrastructure for the countries in the Pacific region, capable of promptly and accurately collecting and offering energy related information. Conducted in this fiscal year were regular data gathering, review of oil supply and demand and alternative energy supply and demand in the Pacific region, on-site survey of alternative energy development and utilization in Vietnam, quarterly analyses of trend of energy demand, and the like. The supply of primary energy in the Pacific region increased by 2.3% per year in the period 1980 through 1998. The rate of increase was the lowest with oil, and the highest with hydroelectricity, atomic power, and recoverable energies such as geothermal energy. The Vietnamese Government is promoting its efforts to develop power sources by use of recoverable energies for farm village electrification. Efforts are being earnestly exerted to develop its rich natural gas resources and it is expected that there will be a remarkable achievement in the use of alternative energies due to an increase in natural gas consumption. In the field of data collection, various data were registered with the database. (NEDO)

  17. Development of a correlaton between slurry oil composition and process performance: analyses of slurry recycle oils from H-Coal PDU runs 5, 8 and 9. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F.P.; Winschel, R.A.; Pochapsky, T.C.

    1981-01-01

    Daily samples of slurry recycle oils from three thirty-day H-Coal PDU runs (5, 8 and 9) were analyzed by /sup 1/H-NMR, GC/MS and various liquid chromatographic techniques. These data were interpreted in light of process performance to investigate the relationship between recycle oil composition and process performance. The data were also used to determine the approach of each PDU run to steady state operation. The results show that the composition of the non-distillate recycle components (resid) is much more sensitive to space velocity than the recycle distillate composition. At high space velocity the low recycle resid quality may be a significant factor, contributing to operability problems and rapid catalyst deactivation. Recycle composition depends more on space velocity than feed coal when comparing operations with Illinois 6 and Kentucky 11 coals. The recycle distillates in H-Coal operation are good hydrogen donors relative to, for example, SRC-I distillates. However, catalyst deactivation with respect to distillate composition appears to proceed at a slower pace than deactivation with respect to resid composition. This suggests that steady state performance may not have been achieved in these 30-day PDU runs, even though gross product distributions were at apparent steady state.

  18. Sustainable energy transitions in emerging economies: The formation of a palm oil biomass waste-to-energy niche in Malaysia 1990–2011

    DEFF Research Database (Denmark)

    Hansen, Ulrich Elmer; Nygaard, Ivan

    2014-01-01

    in addressing how transitions towards more sustainable development pathways in this region may be achieved. This paper contributes to the abovementioned literature by examining the conducive and limiting factors for development and proliferation of a palm oil biomass waste-to-energy niche in Malaysia during...... the period 1990–2011. Rising oil prices, strong pressure on the palm oil industry from environmental groups, and a persisting palm oil biomass waste disposal problem in Malaysia appear to have been conducive to niche proliferation, and on top of this national renewable energy policies and large-scale donor...... programmes have specifically supported the utilisation of palm oil biomass waste for energy. However, in spite of this, the niche development process has only made slow progress. The paper identifies reluctant implementation of energy policy, rise in biomass resource prices, limited network formation...

  19. China's Energy Security Strategy for Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In recent years, soaring energy consumption is posing a huge potential threat to China's energy security. China has rich coal resources, but most of the coal is mainly burned directly with low efficiency. Thus oil and gas plays a comparatively important role in national economic development. However domestic oil and gas cannot meet the need of economic development. To solve this problem, China would continue to import oil and gas from petroleum producing countries, especially from the Middle East. The dependence on oil import increases year after year and the sources of supply are concentrated in a few countries, which results in the insecurity of energy supply. Therefore, China should optimize its energy structure, improve energy efficiency, increase the geographic diversity of oil supply, build oil reserve bases, and develop new energies actively.

  20. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    Energy Technology Data Exchange (ETDEWEB)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste

  1. The different effects of applying fresh, composted or charred manure on soil N2O emissions

    DEFF Research Database (Denmark)

    Zhu, Kun; Christel, Wibke; Bruun, Sander;

    2014-01-01

    New manure management strategies and technologies are currently being developed in order to reduce manure volume and odorous emissions, utilise energy potential and produce improved manure-derived fertilisers. This has accentuated the need to determine their effects on greenhouse gas emissions...... to higher N2O and CO2 emissions than heterogeneous distribution. However, the effect of different distribution modes was not significant in treatments with charred manure, since N turnover in the immature compost was much more active than that in the charred manure. By combining charred manure...... with composted manure, N2O emissions were significantly reduced by 41% at pF 2.0, but the mitigation effect of charred manure was not observed at lower soil water potentials. © 2014 Elsevier Ltd....

  2. Development of the process of energy transfer from a nuclear Power Plant to an intermediate temperature electrolyse; Desarrollo del proceso de transferencia de energia desde una central nuclear a un electrolizador de temperatura intermedia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Cervantes, A.; Cuadrado Garcia, P.; Soraino Garcia, J.

    2013-07-01

    Fifty million tons of hydrogen are consumed annually in the world in various industrial processes. Among them, the ammonia production, oil refining and the production of methanol. One of the methods to produce it is the electrolysis of water, oxygen and hydrogen. This process needs electricity and steam which a central nuclear It can be your source; Hence the importance of developing the transfer process energy between the two. The objective of the study is to characterize the process of thermal energy transfer from a nuclear power plant to an electrolyzer of intermediate temperature (ITSE) already defined. The study is limited to the intermediate engineering process, from the central to the cell.

  3. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    Science.gov (United States)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications.

  4. Effect of reduction roasting by using bio-char derived from empty fruit bunch on the magnetic properties of Malaysian iron ore

    Institute of Scientific and Technical Information of China (English)

    Nurul A. Yunus; Mohd H. Ani; Hamzah M. Salleh; Rusila Z. A. Rashid; Tomohiro Akiyama; Hadi Purwanto; Nur E. F. Othman

    2014-01-01

    Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the mag-netization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was par-tially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic proper-ties.

  5. Effect of reduction roasting by using bio-char derived from empty fruit bunch on the magnetic properties of Malaysian iron ore

    Science.gov (United States)

    Yunus, Nurul A.; Ani, Mohd H.; Salleh, Hamzah M.; Rashid, Rusila Z. A.; Akiyama, Tomohiro; Purwanto, Hadi; Othman, Nur E. F.

    2014-04-01

    Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the magnetization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was partially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic properties.

  6. 原油集输系统能耗分析软件开发与应用%The Development and Application of Energy Consumption Analysis of Oil Gathering System

    Institute of Scientific and Technical Information of China (English)

    曾昭英; 周峤; 吴新果

    2012-01-01

    油田进入高含水、特高含水开发阶段后,运行效率降低,系统能耗升高,原油生产成本呈逐年上升趋势,必须进行能耗分析,优化工艺流程.研究开发原油集输系统能耗分析软件,对于控制原油生产中能耗上升,降低原油生产成本,实现油田地面工程高效、低耗运行和科学管理将起到重要作用.以大庆油田第三采油厂以北二二脱水站为例,对其集输系统用能现状和能损分布规律进行了研究,结果表明此软件分析结果准确高效.%As the oilfield is in high water and extra-high water cut stage, the problems, such as widespreadly declining load rate of surface producing system, decreasing operation efficiency, rising energy consumption of gathering system and increasing cost of crude oil production, are getting more serious. Therefore, it's necessary to opit-mize process links by research of energy consumption analysis and energy optimal utilization. Research and development of "energy consumption analysis of oil gathering system and integrated optimizing design" application software will play an important role in controling energy consumption of oil production, reducing oil production cost and achieving efficient, low consumption, orderly adjustment and scientific management of oil fields surface engineering. Research on present situation of energy consumption and regularity of distribution of gathering system, the center of which is a dehydration station in Oil Recovery Plant No. 3 , Daqing Oilfield Corp. Ltd. , is done by the use of the software, and the results show that the software are accurate and efficient.

  7. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  8. Solar energy for industrial process heat

    Science.gov (United States)

    Barbieri, R. H.; Pivirotto, D. L.

    1979-01-01

    Findings of study of potential use for solar energy utilization by California dairy industry, prove that applicable solar energy system furnish much of heat needed for milk processing with large savings in expenditures for oil and gas and ensurance of adequate readily available sources of process heat.

  9. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  10. Development of Decision Support Process for Building Energy Conservation Measures and Economic Analysis

    Directory of Open Access Journals (Sweden)

    Bo-Eun Choi

    2017-03-01

    Full Text Available As policies for energy efficiency of buildings are being actively implemented, building energy performance improvement is urgently required. However, in Korea, information on measures and technologies for building energy efficiency is dispersed and concrete methods are not established, making it difficult to apply effective measures. Therefore, it is required to apply and evaluate energy efficiency measures through database construction integrating diverse information. In this study, the energy efficiency measures in the architectural sector that satisfy domestic legal standards are built. Because of the economic evaluation is necessary for the constructed alternatives, an economic efficiency database was established. The target building was set up, and energy efficiency measures were derived. In addition, a methodology that can induce energy efficient decision making of buildings was proposed, and the energy use evaluation and the economic analysis for each of the alternatives derived from applying the methodology to the target building were carried out. Furthermore, the optimal energy efficiency measures for the target building were suggested through the application of the decision-making process.

  11. Clean, premium-quality chars: Demineralized and carbon enriched. Quarterly report, September 1, 1991--Novemer 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  12. Development of an oil spill forecast system for offshore China

    Science.gov (United States)

    Wang, Yonggang; Wei, Zexun; An, Wei

    2016-07-01

    An oil spill forecast system for offshore China was developed based on Visual C++. The oil spill forecast system includes an ocean environmental forecast model and an oil spill model. The ocean environmental forecast model was designed to include timesaving methods, and comprised a parametrical wind wave forecast model and a sea surface current forecast model. The oil spill model was based on the "particle method" and fulfills the prediction of oil particle behavior by considering the drifting, evaporation and emulsification processes. A specific database was embedded into the oil spill forecast system, which contained fundamental information, such as the properties of oil, reserve of emergency equipment and distribution of marine petroleum platform. The oil spill forecast system was successfully applied as part of an oil spill emergency exercise, and provides an operational service in the Research and Development Center for Offshore Oil Safety and Environmental Technology.

  13. New international developments in oil sands projects

    Energy Technology Data Exchange (ETDEWEB)

    Vercoe, J. [Fasken Martineau DuMoulin LLP, London (United Kingdom)

    2008-09-15

    Governments and oil companies from a variety of different countries are now working to create alternative oil and gas operations and the policies required to enable their financial success. The Africa Energy Commission was developed to coordinate policy and act as a framework for the African energy sector. Several large oil and gas operators have become involved in the creation of new contracts to develop training and human resources policies for the petroleum industry in Congo. Issues related to national oil companies and value creation in African countries are currently being studied by the World Bank. A biofuel alliance was recently signed between Congo and Brazil, and a Congo Forest Fund has also been created to help the inhabitants of the Congolese rainforest protect their environment. Congo is also offering opportunities for international companies to implement greenhouse gas (GHG) emission reduction programs to trade emission credits when requirements are satisfied. It was concluded that several African countries are suitable candidates for oil sands development. 1 fig.

  14. Formation of hydrothermal biochar and char stability in soils

    Science.gov (United States)

    Baumert, Julia; Gleixner, Gerd

    2010-05-01

    The use of charcoal as an artificial soil additive is suggested to beneficially modify degraded soil, reduce greenhouse gas emission and improve crop yields. So far research has been mainly done using pyrolysis chars which are produced by dry pyrolysis of biomass. Here we used hydrothermal carbonisation (HTC). In this process wet biomass is converted to char at moderate temperatures (~200°C). Due to the exothermal carbonisation reaction this process is almost energy neutral, i.e. the energy needed to start the carbonisation equals the energy released during carbonisation. Different process parameters have been used to modify the properties of the produced chars. We examined the chemical and morphological properties of hydrothermally synthesized biochar. Cellulose, yeast and sucrose were used as model substances for a range of parent material types like organic and garden waste as well as residues from biogas production. By modifying the process conditions of hydrothermal carbonisation concerning temperature (180°C to 220°C) and duration (6 hours to 24 hours) we produced a variety of different biochars. Our findings suggest that the elemental composition and the thermal stability of resulting chars depend on the feedstock and production conditions. Functional group chemistry determined by NMR shows that the aromaticity of the product increases as a function of temperature whereas the amount of O-alkylic compounds declines, concurrently. Our results show that the properties of the biochar can be manipulated by the modification of process conditions. This opens the opportunity to adjust the charcoal to a given soil type.

  15. Fiscal 1997 report on the model project for the effective energy consumption in developing countries. Survey of changes of energy conservation technology and environmental protection technology in the oil refining industry in Japan; 1997 nendo chosa hokokusho. Hatten tojokoku energy shohi koritsuka model jigyo (Nippon sekiyu seiseigyo ni okeru sho energy gijutsu to kankyo taisaku gijutsu no hensen chosa hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For global scale measures to be taken for environmental protection, it becomes more and more important in the future to positively transfer and spread energy conservation technologies of Japan to overseas countries. Especially, it is effective for both economic growth in the Asian region and global environmental protection to transfer technologies which the oil refining industry has been developing and accumulating. Energy conservation in the oil refining industry means the energy conservation by strengthening the operational control at the first and second oil crises in the first stage, the energy conservation in the second stage which was accompanied by small and medium scale plant/equipment investments during several years after the first stage, and the energy conservation in the third stage which was accompanied by large scale investments from the first half of the 1980s to the present, resulting in improvement of 40% over before the first oil crisis. As to environmental protection measures, measures to reduce waste from oil refinery against air pollution and water pollution were prepared by the first half of the 1970s, and technologies were established of waste water treatment, flue gas desulfurization and denitrification. A lot of facilities for improvement of product quality and for low pollution were installed. In addition to environmental technologies, also in other industries, there were seen the heightening of thermal efficiency of kiln and thermal efficiency of cooling technique of clinker cooler in the cement industry and the improvement of productivity in the paper/pulp industry. 360 figs., 62 tabs.

  16. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  17. Caracterização dos produtos líquidos e do carvão da pirólise de serragem de eucalipto Characterization of liquid products and char from the pyrolysis of eucalyptus sawdust

    Directory of Open Access Journals (Sweden)

    Ayrton F. Martins

    2007-08-01

    Full Text Available This study proposes the low temperature pyrolysis as an alternative conversion process for residual biomass and for obtaining gaseous, liquid and solid chemical feedstocks. Using a bench electrical pyrolysis oven, four product fractions from eucalyptus sawdust were obtained: a gaseous one, two liquid (aqueous and oily, and a solid residue (char. These products were characterized by different analytical methods. The liquid fractions showed themselves as potential sources for input chemicals. The residual char revealed appreciable adsorption capability. The process demonstrated good efficiency, generating at least two fractions of great industrial interest: bio oil and char.

  18. Development of a Neural Network-Based Renewable Energy Forecasting Framework for Process Industries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soobin; Ryu, Jun-Hyung; Hodge, Bri-Mathias; Lee, In-Beum

    2016-06-25

    This paper presents a neural network-based forecasting framework for photovoltaic power (PV) generation as a decision-supporting tool to employ renewable energies in the process industry. The applicability of the proposed framework is illustrated by comparing its performance against other methodologies such as linear and nonlinear time series modelling approaches. A case study of an actual PV power plant in South Korea is presented.

  19. Development of karanja oil based offset printing ink in comparison with linseed oil.

    Science.gov (United States)

    Bhattacharjee, Moumita; Roy, Ananda Sankar; Ghosh, Santinath; Dey, Munmun

    2011-01-01

    The conventional offset lithographic printing ink is mainly based on linseed oil. But in recent years, due to stiff competition from synthetic substitutes mainly from petroleum products, the crop production shrinks down to an unsustainable level, which increases the price of linseed oil. Though soyabean oil has replaced a major portion of linseed oil, it is also necessary to develop alternate cost effective vegetable oils for printing ink industry. The present study aims to evaluate the performance of karanja oil (Pongamia glabra) as an alternative of linseed oil in the formulation of offset printing ink because karanja oil is easily available in rural India. Physical properties of raw karanja oil are measured and compared with that of alkali refined linseed oil. Rosin modified phenolic resin based varnishes were made with linseed oil as well as with karanja oil and their properties are compared. Sheetfed offset inks of process colour yellow and cyan is chosen to evaluate the effect of karanja oil in ink properties. In conclusion, karanja oil can be accepted as an alternate vegetable oil source with its noticeable effect on print and post print properties with slower drying time on paper. However, the colour and odour of the oil will restrict its usage on offset inks.

  20. Models of optimal technology for removing oil by secondary methods of developing highly viscous oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Jewulski, J.

    1982-01-01

    This paper presents research on developing several methods of optimal technology for removing oil in highly viscous oil fields from the following wells: Lubno-3, Kharklova-Gvaretstvo 154 and Vetzhno (heavy oil). The problem connected with preparing the displacement fluids, with special emphasis on the authors patented technology for producing micellar solutions are discussed. The studies of dislocation fluids (including modified ones) were conducted at 3 temperatures: 293, 308, and 323/sup 0/K and with and without micellar solutions. The tests were used to idetify static regressive models of oil removal from oil fields. The model is satisfactorily accurate in predicting the amount of oil yield by using various secondary methods. Practical conclusions are reached based on an analysis of the studies. These conclusions provide the basis for industrial tests to increase the effectiveness of waterflooding highly viscous oil fields. They can also be used to develop old (gased) oil fields, an advantage considering the current fuel-energy situation.

  1. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    Science.gov (United States)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  2. Optimization of biodiesel production process using recycled vegetable oil

    Science.gov (United States)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  3. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research, Durham, NC (United States); Meng, Jiajia [Southern Research, Durham, NC (United States); McCabe, Kevin [Southern Research, Durham, NC (United States); Larson, Eric [Princeton Univ., NJ (United States). Princeton Environmental Inst.; Mastro, Kelly [Southern Research, Durham, NC (United States)

    2016-04-25

    Southern Research (SR) in cooperation with U.S. Department of Energy (DOE), Bioenergy Technology Office (BETO), investigated a biomass liquefaction process for economic production of stabilized refinery-ready bio-oil. The project was awarded by DOE under a Funding Opportunity Announcement (DE-FOA-0000686) for Bio-oil Stabilization and Commoditization that intended to evaluate the feasibility of using bio-oil as a potential feedstock in an existing petroleum refinery. SR investigated Topic Area 1 of the FOA at Technology Readiness Level 2-3 to develop thermochemical liquefaction technologies for producing a bio-oil feedstock from high-impact biomass that can be utilized within a petroleum refinery. Bio-oil obtained from fast pyrolysis of biomass is a green intermediate that can be further upgraded into a biofuel for blending in a petroleum refinery using a hydro-deoxygenation (HDO) route. Co-processing pyrolysis bio-oil in a petroleum refinery is an attractive approach to leverage the refinery’s existing capital. However, the petroleum industry is reluctant to accept pyrolysis bio-oil because of a lack of a standard definition for an acceptable bio-oil feedstock in existing refinery processes. Also per BETO’s multiyear program plan, fast pyrolysis-based bio-fuel is presently not cost competitive with petroleum-based transportation fuels. SR aims to develop and demonstrate a cost-effective low-severity thermal liquefaction and hydrodeoxygenation (HDO) process to convert woody biomass to stabilized bio-oils that can be directly blended with hydrotreater input streams in a petroleum refinery for production of gasoline and/or diesel range hydrocarbons. The specific project objectives are to demonstrate the processes at laboratory scale, characterize the bio-oil product and develop a plan in partnership with a refinery company to move the technology towards commercialization.

  4. Difficulties for innovation in energy technology development: thermoelectric generation with vegetable oils; As dificuldades para a inovacao em rotas tecnologicas de desenvolvimento energetico: geracao termeletica com oleos vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Jose Antonio Sales de [Universidade de Brasilia (UNB-CDS), DF (Brazil). Centro de Desenvolvimento Sustentavel

    2008-07-01

    Analysis of the vegetable oil as energy source, observing the troubles caused by technology innovation insertion in the Brazilian Electrical Matrix by the use of renewable alternative energy sources while competing with the products and systems' market leaders that use fossil sources. (author)

  5. Development of Web GIS for information of renewable energy in Aceh Province after rehabilitation and reconstruction process

    Science.gov (United States)

    Nizamuddin; Hizir; Ardiansyah; Pertiwi, D.; Handayani, P.

    2017-02-01

    There are a lot of renewable energy potentials that is spread in numerous locations in Aceh Province. These potentials can be developed into energy source that can be utilized to fulfill the need of energy in the area. It is unfortunate that the information about the potentials is still hard to find, regardless the abundance of spatial data that were produced during the rehabilitation and reconstruction process, including data related to the renewable energy. Therefore, this research was conducted to develop an application of information technology, especially Web Geographic Information System (GIS) for renewable energy potential. The objective of this research was to fulfill the needs of relevant agencies for the Web GIS-based information technology applications to manage information on renewable energy potential in an interactive and integrated way. This research used components of Free Open Source System (FOSS) to develop a Web-based geospatial information technology application. The component consists of GeoServer as a GIS server, PostgreSQL as a geographic databases management system, QGIS as Desktop GIS for spatial data preparation and GeoExt as the framework in developing user interfaces for the Web GIS. The result of combining those components was a Web GIS that displayed areas with its renewable energy potential which was organized for each area along with legends for the map information. The Web GIS is equipped with search feature and tooltips function to select any areas and bring up detailed information of renewable energy potential of the area.

  6. Oil spill model development and application for emergency response system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper introduces systematically the developing principle ofCWCM 1.0 oil spill model based on Lagrange system and oil spill fate processes in environment, reviews two oil spill incidents of "East Ambassador" in Jiaozhou Bay and "Min Fuel 2" in the mouth of Pearl River, and designs the predict system simulating oil spill applied in contingency plans. It is indicated that CWCM 1.0 has met preliminarily the demands for functions of precision simulating and oil spill predicting, and can plan an important role to support oil spill response.

  7. New dynamic analysis and system identification of bio diesel production process from palm oil

    Energy Technology Data Exchange (ETDEWEB)

    Ibrehema, A.S.; Al-Salima, H.S. [UCSI Univ., Kuala Lumpur (Malaysia). Dept. of Chemical and Petroleum Engineering

    2010-07-01

    Malaysia and Indonesia are developing biodiesel derived from vegetable oils using different sources for the oil. The use of biodiesel from vegetable oils has the potential to become an important renewable energy sources for transportation and household applications. This paper reported on a study that determined the types of input signals that are needed to identify the input/output behaviour of a system. A new mathematical model was developed to describe production processes by the most active input variables inside a batch reactor. The dynamic model was applied to the process of biodiesel production from vegetable oils. The model considered the presence of particles participating in the reaction with triglycerides conversion which depend on the methanol/triglyceride ratio and catalyst weight percentage. A new parameters average slope analysis (PASA) was also presented for the system dynamic behaviour under different operational conditions. 3 refs., 1 tab., 3 figs.

  8. Structural ordering of coal char during heat treatment and its impact on reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B.; Bhatia, S.K.; Barry, J.C.

    2002-07-01

    The effect of heat treatment on the structure of an Australian semi-anthracite char was studied between 850-1150{sup o}C using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change during heat treatment, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained unchanged. This suggests the occurrence of catalytic ordering during heat treatment. Electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary. High resolution transmission electron micrographs depicted well-organized carbon layers surrounding iron particles. The fraction of organized carbon attains an apparent equilibrium value that increases with increase in temperature. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is structure sensitive. These results suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. It is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be low, which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron.

  9. STUDY OF ACTIVATION OF COAL CHAR

    Energy Technology Data Exchange (ETDEWEB)

    E.M. Suuberg; I. Kulaots; I Aarna; M. Callejo; A. Hsu

    2003-12-31

    This is the final report on a project whose aim is to explore in a fundamental manner the factors that influence the development of porosity in coal chars during the process of activation. It is known that choices of starting coal, activating agent and conditions can strongly influence the nature of an activated carbon produced from a coal. This project has been concerned mainly with the process of physical activation, which in fact involves the gasification of a char produced from a coal by oxidizing gases. This is of interest for two reasons. One is that there is commercial interest in production of activated carbons from coal, and therefore, in the conditions that can best be used in producing these materials. Much is already known about this, but there is a great deal that is in the realm of ''trade secret'' or just ''industry lore''. The second reason for interest in these processes is that they shed light on how porosity develops during any gasification process involving oxidizing gases. This has implications for understanding the kinetics and the role that ''surface area'' may play in determining kinetics. In earlier reports from this project, several conclusions had been reached upon which the present results rest. There is an often-cited difference in use of nitrogen and carbon dioxide as molecular probes of carbon porosity when using vapor adsorption techniques. Carbon dioxide is often ''preferred'' since it is argued that it offers greater access to fine microporosity, due to the higher temperature of carbon dioxide as opposed to nitrogen measurements. The early phases of this work revealed that the extreme differences are observed only in chars which are not much activated, and that by a few weight percent burnoff, the difference was negligible, provided a consistent theoretical equation was used in calculating uptake or ''surface area''. In another phase

  10. Development of a correlation between slurry oil composition and process performance. Topical report 1. Analyses of slurry recycle oils from H-Coal PDU Run 5

    Energy Technology Data Exchange (ETDEWEB)

    Burke, F. P.; Winschel, R. A.; Pochapsky, T. C.

    1980-04-01

    Daily samples of the slurry recycle oil from the 30-day H-Coal PDU Run 5 (Syncrude mode, Illinois 6 coal) were analyzed by /sup 1/H-NMR spectroscopy GS/MS, and liquid chromatographic techniques. The recycle oils composition in PDU Run 5 reached an initial steady-state at about day 12, but this was upset when the hydrogen partial pressure was increased on day 20. The recycle oil composition was again approaching a steady-state by the end of the run. The distillates increased in aromaticity during the first 12 days of the run, as catalyst activity declined. The more aromatic distillates are better liquefaction media. Therefore, the solvent quality of the recycle distillates improved as the run progressed. The recycle distillates boiling below phenanthrene consist largely of cracking and isomerization products of hydrophenanthrenes. The relative ratios of reactants and products may be useful in establishing catalyst activity during the run. The start-up solvent had little effect on the run, because it was rapidly replaced by coal-derived recycle oils. The molecular weight distribution of the recycle resid (975/sup 0/F/sup +/, THF soluble) was relatively unchanged during the run although the ratio of benzene solubles to insolubles first decreased as catalyst activity declined, then increased with the increased hydrogen partial pressure during the last ten days of the run.

  11. Oil prices, nuclear energy consumption, and economic growth: New evidence using a heterogeneous panel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chien-Chiang, E-mail: cclee@cm.nsysu.edu.t [Department of Finance, National Sun Yat-sen University Kaohsiung, Taiwan (China); Chiu, Yi-Bin [Department of Finance, National Sun Yat-sen University Kaohsiung, Taiwan (China)

    2011-04-15

    This paper applies panel data analysis to examine the short-run dynamics and long-run equilibrium relationships among nuclear energy consumption, oil prices, oil consumption, and economic growth for developed countries covering the period 1971-2006. The panel cointegration results show that in the long run, oil prices have a positive impact on nuclear energy consumption, suggesting the existence of the substitution relationship between nuclear energy and oil. The long-run elasticity of nuclear energy with respect to real income is approximately 0.89, and real income has a greater impact on nuclear energy than do oil prices in the long run. Furthermore, the panel causality results find evidence of unidirectional causality running from oil prices and economic growth to nuclear energy consumption in the long run, while there is no causality between nuclear energy consumption and economic growth in the short run. - Research highlights: {yields} We examine the relationship among nuclear energy consumption, oil prices, oil consumption, and economic growth for developed countries. {yields} The existence of the substitution relationship between nuclear energy and oil. {yields} Real income has a greater impact on nuclear energy than do oil prices in the long run. {yields} An unidirectional causality running from oil prices and economic growth to nuclear energy consumption in the long run.

  12. Comparison of kinetic models for isothermal CO2 gasification of coal char-biomass char blended char

    Science.gov (United States)

    Zuo, Hai-bin; Geng, Wei-wei; Zhang, Jian-liang; Wang, Guang-wei

    2015-04-01

    This study investigated the isothermal gasification reactivity of biomass char (BC) and coal char (CC) blended at mass ratios of 1:3, 1:1, and 3:1 via isothermal thermogravimetric analysis (TGA) at 900, 950, and 1000°C under CO2. With an increase in BC blending ratio, there were an increase in gasification rate and a shortening of gasification time. This could be attributed to the high specific surface area of BC and the high uniformity of carbon structures in CC when compared to those in BC. Three representative gas-solid kinetic models, namely, the volumetric model (VM), grain model (GM), and random pore model (RPM), were applied to describe the reaction behavior of the char. Among them, the RPM model was considered the best model to describe the reactivity of the char gasification reaction. The activation energy of BC and CC isothermal gasification as determined using the RPM model was found to be 126.7 kJ/mol and 210.2 kJ/mol, respectively. The activation energy was minimum (123.1 kJ/mol) for the BC blending ratio of 75%. Synergistic effect manifested at all mass ratios of the blended char, which increased with the gasification temperature.

  13. Life Cycle Assessment of Biochar - EuroChar Project

    Science.gov (United States)

    Rack, M.; Woods, J.

    2012-04-01

    will therefore not have any final results available. However, preliminary results concerning the feedstocks and the two production processes could potentially be available. An early hypothesis is that HTC will have reduced environmental impacts compared to TC, as the feedstocks do not require the energy-intensive drying process. A comparison between the different feedstocks will also be made once the data is available. An evaluation framework will be presented, which will be used to derive the final conclusions and recommendations for the EuroChar project. The poster outlines the biochar supply chains being evaluated using SimaPro LCA software and further details concerning the LCA, including the Goal & Scope, the Functional Unit and the System Boundaries.

  14. Oil heat technology research and development

    Energy Technology Data Exchange (ETDEWEB)

    Kweller, E.R. [Department of Energy, Washington, DC (United States); McDonald, R.J. [Brookhaven National Lab., Upton, NY (United States)

    1995-04-01

    The purpose of this United States Department of Energy (DOE)/Brookhaven National Laboratory (BNL) program is to develop a technology base for advancing the state-of-the-art related to oilfired combustion equipment. The major thrust is through technology based research that will seek new knowledge leading to improved designs and equipment optimization. The Combustion Equipment space Conditioning Technology program currently deals exclusively with residential and small commercial building oil heat technology.

  15. Oil shale in the United States: prospects for development

    Energy Technology Data Exchange (ETDEWEB)

    Drabenstott, M.; Duncan, M.; Borowski, M.

    1984-05-01

    The development of an oil shale industry has had its ups and downs throughout this century. Despite vast reserves of recoverable shale oil, energy prices usually have been high enough to make extraction of that oil commercially viable. The tripling and then tripling again of world oil prices in the 1970s gave initial promise that development had become economically feasible. After only a few years of rapid development activity, however, the effort was brought to a near-halt by falling world oil prices. The results were a substantial reduction in economic activity for northwestern Colorado and, maybe more importantly, sharply lower expectations for the region's future economic growth. In both the upturn and the downturn, the local public sector was essentially shielded from financial stress because the energy companies helped fund public spending on infrastructure and services. The future for oil shale remains uncertain. A few energy companies continue to pursue their development plans. To spur development of commercial scale plants, Synthetic Fuels Corporation has made loan and price guarantees to energy firms. Some projects may soon be extracting oil, providing needed technological and financial information on various techniques of oil extraction. But the future for oil shale remains clouded by uncertainties regarding the cost of producing syncrude and future oil prices. Environmental issues could also hamper oil shale development. Therefore, oil shale remains, as it has for more than a century, a technical and economic enigma that has only begun to be understood and developed. 8 references, 3 figures, 3 tables

  16. China to Increase Oil Processing Capacity Sharply

    Institute of Scientific and Technical Information of China (English)

    Shao Wenjing

    2009-01-01

    @@ China plans to raise its annual crude oil processing capacity to 405 million tons by 2011 in the efforts to implement its restructuring and stimulus plans for the petrochemical industry. This will represent an increase of about 18.4 percent over its processing volume last year,which topped 342.1 million tons, according to the figures from National Bureau of Statistics. China is scheduled to build three to four major oil refining plants in the Yangtze River Delta in eastern China and the Pearl River Delta in southern China by 2011. Each plant would be capable of processing 20 million tons of oil annually.

  17. Impact of heavy metals on the oil products biodegradation process.

    Science.gov (United States)

    Zukauskaite, Audrone; Jakubauskaite, Viktorija; Belous, Olga; Ambrazaitiene, Dalia; Stasiskiene, Zaneta

    2008-12-01

    Oil products continue to be used as a principal source of energy. Wide-scale production, transport, global use and disposal of petroleum have made them major contaminants in prevalence and quantity in the environment. In accidental spills, actions are taken to remove or remediate or recover the contaminants immediately, especially if they occur in environmentally sensitive areas, for example, in coastal zones. Traditional methods to cope with oil spills are confined to physical containment. Biological methods can have an advantage over the physical-chemical treatment regimes in removing spills in situ as they offer biodegradation of oil fractions by the micro-organisms. Recently, biological methods have been known to play a significant role in bioremediation of oil-polluted coastal areas. Such systems are likely to be of significance in the effective management of sensitive coastal ecosystems chronically subjected to oil spillage. For this reason the aim of this paper is to present an impact of Mn, Cu, Co and Mo quantities on oil biodegradation effectiveness in coastal soil and to determine the relationship between metal concentrations and degradation of two oil products (black oil and diesel fuel). Soil was collected in the Baltic Sea coastal zone oil products degradation area (Klaipeda, Lithuania). The experiment consisted of two parts: study on the influence of micro-elements on the oil product biodegradation process; and analysis of the influence of metal concentration on the number of HDMs. The analysis performed and results obtained address the following areas: impact of metal on a population of hydrocarbon degrading micro-organisms, impact of metals on residual concentrations of oil products, influence of metals on the growth of micro-organisms, inter-relation of metal concentrations with degradation rates. Statistical analysis was made using ;Statgraphics plus' software. The influence of metals on the growth of micro-organisms, the biodegradation process

  18. A Study on Recycling of Spent Mushroom Substrate to Prepare Chars and Activated Carbon

    Directory of Open Access Journals (Sweden)

    Yuhui Ma

    2014-05-01

    Full Text Available Chars were obtained from spent mushroom substrate (SMS via pyrolysis. It was found that as the pyrolysis temperature increased from 400 to 700 °C, the char yield decreased from 45.10 to 33.79 wt.% and the higher heating value increased from 17.32 to 22.72 MJ/kg. The largest BET surface area (13 m2/g was created at 500 °C. Hydrogen atoms were continuously lost during pyrolysis, whereas oxygen atoms were difficult to eliminate. Whewellite, calcite, lime, and quartz were the minerals in the chars, and their forms and crystallinity changed with changing pyrolysis temperature. Activated carbon with a BET surface area of 1023 m2/g and a total pore volume of 0.595 cm3/g was obtained from the char prepared at 500 °C. Its characteristics were studied by N2-adsorption, Fourier transform infrared spectroscopy (FTIR, and X-ray diffraction (XRD. The pyrolysis and KOH-activation processes were investigated by thermogravimetric analysis (TGA. The results showed that the pyrolysis of SMS occurred primarily between 217 and 375 °C and that the energies needed for the pyrolysis reactions were relatively low due to the prior mushroom cultivation. Furthermore, lignin was incompletely decomposed in the char prepared at 500 °C, and KOH suppressed tar evolution and reduced the energy needed to decompose the residual lignin during activation.

  19. Evaluation of char combustion models: measurement and analysis of variability in char particle size and density

    Energy Technology Data Exchange (ETDEWEB)

    Daniel J. Maloney; Esmail R. Monazam; Kent H. Casleton; Christopher R. Shaddix

    2008-08-01

    Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle- to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion. Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.

  20. Effects of catalytic mineral matter on CO/CO{sub 2} temperature and burning time for char combustion. Quarterly progress report No. 15 (Final report), October 1993--December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Longwell, J.P.; Sarofim, A.F.; Lee, C.H.

    1993-12-31

    The high temperature oxidation of char is of interest in a number of applications in which coal must be burned in confined spaces including the conversion of oil-fired boilers to coal using coal-water slurries, the development of a new generation of pulverized-coal-fired cyclone burners, the injection of coal into the tuyeres of blast furnaces, the use of coal as a fuel in direct-fired gas turbines and in large-bore low-speed diesels, and entrained flow gasifiers. There is a need to understand the temperature history of char particles in conventional pulverized-coal-fired boilers to better explain the processes governing the formation of pollutants and the transformation of mineral matter. The temperature of char particle burning is the product of a strongly coupled balance between particle physical properties, heat and mass transfer, surface reaction, and CO/CO{sub 2} ratio. Particle temperature has major effects not only on the burning rate but also on ash properties and mineral matter vaporization. Measurements of the temperature of individual burning char particles have clearly demonstrated large particle-to-particle temperature variations which depend strongly on particle size and on particle composition. This report consists of two major parts. In the first part, experimental measurements of CO/CO{sub 2} ratio for a single spherocarb particle is presented along with a kinetic model which allows estimation of CO/CO{sub 2} generated at a carbon surface for temperatures higher than those reported in the experimental work. In the second part, modeling of a temperature profile during a char combustion is reported, and also progress in modeling the complex sets of coupled phenomena involving full gas phase reaction kinetics, heat transfer, and mass transfer is summarized. In the appendix progress on construction and testing of an improved electrodynamic balance is presented.

  1. Determining the thermal and physicals properties of oil processing products

    Directory of Open Access Journals (Sweden)

    Viktoria I. Kryvda

    2015-03-01

    Full Text Available In the last decades both technological process’ improvement and primary energy resources saving are the main tasks of oil refineries. Using various oil products does impose an accurate knowledge of their properties. The dispersion analysis applied makes possible to construct a model simulating the primary oil refining products’ and raw materials’ thermal physical properties. As a result of data approximation there were obtained polynomials with coefficients differing from attributable to the studied oil products fractions. The research represents graphic dependences of thermal physical properties on temperature values for diesel oil fraction. The linear character of density and calorific capacity dependencies from temperature is represented with a proportional error in calculations. The relative minimum error is below 2% that confirms the implemented calculations’ adequacy. The resulting model can be used in calculations for further technological process improvements.

  2. Geothermal energy development in Washington State. A guide to the federal, state and local regulatory process

    Energy Technology Data Exchange (ETDEWEB)

    Bloomquist, R.G.; Simpson, S.J.

    1986-03-01

    Washington State's geothermal potential is wide spread. Hot springs and five strato volcanoes existing throughout the Cascade Range, limited hot spring activity on the Olympic Peninsula, and broad reaching, low temperature geothermal resources found in the Columbia Basin comprise the extent of Washington's known geothermal resources. Determination of resource ownership is the first step in proceeding with geothermal exploration and development activities. The federal and state processes are examined from pre-lease activity through leasing and post-lease development concerns. Plans, permits, licenses, and other requirements are addressed for the federal, state, and local level. Lease, permit, and other forms for a number of geothermal exploration and development activities are included. A map of public lands and another displaying the measured geothermal resources throughout the state are provided.

  3. Energy efficiency measures for offshore oil and gas platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Voldsund, Mari; Breuhaus, Peter

    2016-01-01

    Oil and gas platforms are energy-intensive systems { each facility uses from a few to several hundredsMW of energy, depending on the petroleum properties, export specifcations and feld lifetime. Several technologies for increasing the energy effciency of these plants are investigated in this work....... They include: (i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphaseexpanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation around the compressors, (v) the exploitation of low-temperature heat from...... the gas cooling steps, (vi) the downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the powerplant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by the type of oil processed, operating conditions...

  4. Problems and prospects of integration development of oil and gas complex in the south of Russia

    Directory of Open Access Journals (Sweden)

    Nikitaeva Anastasia, Y.

    2015-06-01

    Full Text Available Macroeconomic transformations of the global energy market in recent years have formed the basic tendency of development of modern oil and gas complex – consolidation and integration of companies in the industry to maintain its competitiveness and ensure sustainable strategic business development. In this regard, the issues of building effective mechanisms of partnership interactions and management of integration processes of oil and gas complex at the national and regional levels become relevant. The authors describe the specific operating conditions of oil and gas companies in southern Russia, identify obstacles to the region's integration into the structure of the Russian oil and gas industry, and formulate directions and measures activation of innovative development of oil and gas complex in the South of Russia.

  5. Enabling technologies: Supporting the development and use of innovative, energy-efficient, and environmentally friendly products and processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    This pamphlet describes the Office of Industrial Technologies cooperative efforts to address industry needs for advanced materials, sensors and controls, process energy and energy efficiency. US industry needs enabling materials that are stronger and lighter, with resistance to high-temperature fatigue and improved resistance to corrosion and wear. New industrial materials such as intermetallic alloys and advanced ceramics have the potential to meet the challenges of the Industries of the Future. The manufacturing industries obtain over 85% of their energy from the on-site combustion of fuels. Enhancements to burners, boilers, and process heating systems can lower energy costs, reduce emissions, enhance fuel options, and increase safety and reliability. Robust, integrated measurement devices linked to intelligent control systems will enable US industry to use resources more efficiently and improve product quality. Through constant process monitoring and adjustment of parameters, these systems can reduce energy use and labor, minimize waste and pollution, and boost productivity. The Enabling Technologies Program is designed to address the cross-cutting needs of the Office of Industrial Technologies (OIT). OIT partners with industry to promote the development and use of energy-efficient, pollution-preventing technologies. The Nation`s environment benefits from greater use of these technologies, and industries benefit from cost savings, improved productivity, and increased competitiveness.

  6. Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4. 1 to 4. 6), Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. (Institute of Gas Technology, Chicago, IL (United States)); Duthie, R.G. (Bechtel Group, Inc., San Francisco, CA (United States)); Wootten, J.M. (Peabody Holding Co., Inc., St. Louis, MO (United States))

    1991-09-01

    Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

  7. Structural and Compositional Transformations of Biomass Chars during Fast Pyrolysis

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    In this work the physical and chemical transformations of biomass chars during fast pyrolysis, considered as a 2nd stage of combustion, has been investigated. Seven biomasses containing different amount of ash and organic components were reacted at up to 1673 K with high heating rates in a wire......-mesh reactor and the resulting chars were retrieved. In order to obtain information on the structural and compositional transformations of the biomass chars, samples were subjected to elemental analysis, scanning electron microcopy with EDX and Raman spectrometry. The results show that there are significant...... changes in both the organic and inorganic constituents of the chars.Under high heating rates (> 100 K/s) char particles underwent different types of melting and pores of different size were developed in dependency on the temperature and biomass composition. The Si-rich rice husks char did not show any...

  8. Structure Based Predictive Model for Coal Char Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Robert Hurt; Joseph Calo; Robert Essenhigh; Christopher Hadad

    2000-12-30

    This unique collaborative project has taken a very fundamental look at the origin of structure, and combustion reactivity of coal chars. It was a combined experimental and theoretical effort involving three universities and collaborators from universities outside the U.S. and from U.S. National Laboratories and contract research companies. The project goal was to improve our understanding of char structure and behavior by examining the fundamental chemistry of its polyaromatic building blocks. The project team investigated the elementary oxidative attack on polyaromatic systems, and coupled with a study of the assembly processes that convert these polyaromatic clusters to mature carbon materials (or chars). We believe that the work done in this project has defined a powerful new science-based approach to the understanding of char behavior. The work on aromatic oxidation pathways made extensive use of computational chemistry, and was led by Professor Christopher Hadad in the Department of Chemistry at Ohio State University. Laboratory experiments on char structure, properties, and combustion reactivity were carried out at both OSU and Brown, led by Principle Investigators Joseph Calo, Robert Essenhigh, and Robert Hurt. Modeling activities were divided into two parts: first unique models of crystal structure development were formulated by the team at Brown (PI'S Hurt and Calo) with input from Boston University and significant collaboration with Dr. Alan Kerstein at Sandia and with Dr. Zhong-Ying chen at SAIC. Secondly, new combustion models were developed and tested, led by Professor Essenhigh at OSU, Dieter Foertsch (a collaborator at the University of Stuttgart), and Professor Hurt at Brown. One product of this work is the CBK8 model of carbon burnout, which has already found practical use in CFD codes and in other numerical models of pulverized fuel combustion processes, such as EPRI's NOxLOI Predictor. The remainder of the report consists of detailed

  9. Ultrasound Energy Effect on Solvent Extraction of Amaranth Seed Oil

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Il; Chung, Ki Won; Lee, Seung Bum; Hong, In Kwon [Department of Chemical Engineering, Dankook University, Seoul (Korea); Park, Kyung Ai [Seoul Metropolitan Government Institute of Health and Environment, Seoul (Korea)

    2001-05-01

    Ultrasonic energy has been widely applied to cleaning, medical appliances, extraction, etc. And ultrasonic energy can be applied to solvent extraction of plant oil from amaranth seed. Amaranth seed oil contains small amount of squalene. Squalene is polyunsaturated branched hydrocarbon, which is an essential part of the human body. In this study, the seed oil was extracted from amaranth seed by ultrasonic solvent extraction process. Ultrasonic irradiation time was 1, 3 ,5, 10, 20 and 30 min and extraction temperature was 20, 30, and 40 degree C. And ultrasonic power was 390 W and 520 W. The extracted amounts of amaranth seed oil and squalene were increased with the increase of ultrasonic power and irradiation time. Using ultrasonic energy in solvent extraction, extraction time was very shorten. The optimum extraction temperature was 30 degree C, it was caused that ultrasonic energy effects were increased in the matters of low temperature. The maximum extracted amount of amaranth seed oil was 0.746 g and squalene was 37.54 mg per 10 g amaranth seed at 30 degree C. 10 refs., 8 figs., 1 tab.

  10. Focusing on sustainable energy ambitions in the area development process. 2. ed.; Centraal stellen van duurzame energieambities in het gebiedsontwikkelingsproces

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-03-15

    Many local authorities have established firm energy ambitions. Making the built environment more sustainable, both by means of energy saving measures and by making the remaining energy use sustainable, are important focus points. The question rises how sustainable energy ambitions can be embedded in the area development process. Area developments related to new buildings or demolition/new building projects often involve lengthy and complex projects. Projects in which many parties and interests play a role, in which many instruments can be used and energy concepts can be applied. This report provides an overview of the area development process and the corresponding instruments and concepts. [Dutch] Veel gemeenten hebben stevige energieambities vastgesteld. Verduurzaming van de gebouwde omgeving, zowel door energiebesparingsmaatregelen als door het duurzaam invullen van het resterende energieverbruik, zijn daarbij belangrijke aangrijpingspunten. De vraag is hoe duurzame energieambities goed verankerd kunnen worden in het gebiedsontwikkelingsproces. Bij gebiedsontwikkeling van nieuwbouw of sloop/nieuwbouw projecten gaat het vaak om langdurige complexe projecten. Projecten waarbij vele partijen en belangen een rol spelen, diverse instrumenten kunnen worden gebruikt en energieconcepten kunnen worden toegepast. Dit rapport geeft een overzicht van het gebiedsontwikkelingsproces en de bijbehorende instrumenten en concepten.

  11. Application of material and energy flow analysis in the early stages of biotechnical process development - a case study

    Energy Technology Data Exchange (ETDEWEB)

    Rubbeling, H. [ifu Hamburg GmbH, Hamburg (Germany); Froehlich, P.; Katzberg, M.; Bertau, M. [TU Bergakademie Freiberg, Institut fuer Technische Chemie, Freiberg (Germany); Brinkmann, T.

    2010-04-15

    Biotechnical technologies are often viewed as generally green processes, since they operate at low temperatures and pressures. However, as shown by various comparative studies of chemical and biotechnical engineering processes, this view cannot be generalized. It is clear that sustainable assessment should be carried out in the early stages of process development, since these stages have a major influence on the economic and ecological performance of processes later at the industrial scale. One option to use as a basis for evaluating the potential advantages to developing a biotechnical process can be a material and energy flow analysis (MEFA) at an early stage. This article provides an understanding of MEFA in general and illustrates its successful application by means of two case studies. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Time resolved pyrolysis of char

    DEFF Research Database (Denmark)

    Egsgaard, Helge; Ahrenfeldt, Jesper; Henriksen, Ulrik Birk

    In laboratory experiments, biomass char was produced under controlled conditions using wood chips from French pinewood. Different char qualities were obtained by pyrolysing the biomass at similar heating rates with end-temperatures ranging from 250 to 1000 o C. The char was analysed by flash...

  13. Cost- and energy-efficient dehydration of unconventional oil using disc-stack centrifuges

    Energy Technology Data Exchange (ETDEWEB)

    Agrell, J. [Alfa Laval Tumba AB, Stockholm (Sweden)

    2008-07-01

    Centrifuge dehydration methods for heavy oils were discussed. The high viscosity of heavy oils can mean that emulsions are often stabilized by surface-active compounds that occur naturally in the oil during dehydration processes. Disc-stack centrifuges are used to dehydrate crude oils without the excessive need for chemical treatments and wash water. The lower separation temperatures mean that dehydration can be accomplished with reduced energy inputs and lower carbon dioxide (CO{sub 2}) emissions. The main challenges to efficient crude oil dehydration were identified as the small density difference between oil and water; high oil viscosity; higher solids content; and the tight emulsions formed through oil processing. It was concluded that separation at higher viscosities leads to reduced heating requirements and increased energy savings. Continuous solids discharge make it possible for large amounts of solids to be processed. 3 refs.

  14. What can wave energy learn from offshore oil and gas?

    Science.gov (United States)

    Jefferys, E R

    2012-01-28

    This title may appear rather presumptuous in the light of the progress made by the leading wave energy devices. However, there may still be some useful lessons to be learnt from current 'offshore' practice, and there are certainly some awful warnings from the past. Wave energy devices and the marine structures used in oil and gas exploration as well as production share a common environment and both are subject to wave, wind and current loads, which may be evaluated with well-validated, albeit imperfect, tools. Both types of structure can be designed, analysed and fabricated using similar tools and technologies. They fulfil very different missions and are subject to different economic and performance requirements; hence 'offshore' design tools must be used appropriately in wave energy project and system design, and 'offshore' cost data should be adapted for 'wave' applications. This article reviews the similarities and differences between the fields and highlights the differing economic environments; offshore structures are typically a small to moderate component of field development cost, while wave power devices will dominate overall system cost. The typical 'offshore' design process is summarized and issues such as reliability-based design and design of not normally manned structures are addressed. Lessons learned from poor design in the past are discussed to highlight areas where care is needed, and wave energy-specific design areas are reviewed. Opportunities for innovation and optimization in wave energy project and device design are discussed; wave energy projects must ultimately compete on a level playing field with other routes to low CO₂ energy and/or energy efficiency. This article is a personal viewpoint and not an expression of a ConocoPhillips position.

  15. China Needs More Oil to Fuel Its Economic Development

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ The Chinese government has always insisted that development should be the theme of China's 10th Five-Year Plan (2001-2005) and the nation should take advantage of all opportunities to speed up development with economic construction as the focal point. However, economic researchers and energy experts were caught off guard by the surprisingly strong pace in oil imports despite their prediction of China's increasing need for crude oil. In addition, the doubledigit growth of oil-related industries such as automobile and transportation sectors has further resulted in rocketing demand for crude oil consumption and imports.

  16. Review of feasible solar energy applications to water processes

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, J.; Malato, S.; Fernandez-Ibanez, P.; Alarcon, D.; Gernjak, W.; Maldonado, M.I. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Plataforma Solar de Almeria (CIEMAT-PSA), Tabernas (Almeria) (Spain)

    2009-08-15

    In the context of an upcoming energy crisis due to the decline of the Oil Era, water problems are expected to substantially worsen. And vice versa, due to the close relationship between water and energy issues, water problems are also expected to contribute to increased energy problems. Furthermore, environmental considerations, such as global warming, will surely add significant pressure. In this scenario, renewable energies are rapidly increasing their contribution to the global mix, with solar energy clearly having the greatest potential, and in view of the worldwide coincidence that where there is water stress and/or scarcity, there are also good solar radiation levels, the conclusion seems clear suitable technologies must be developed to permit the use of solar energy to simultaneously help solve energy and water problems. The main solar energy applications for water processes presented in this paper are: (1) solar desalination; (2) solar detoxification and; (3) solar disinfection. (author)

  17. Effect of processing conditions on oil point pressure of moringa oleifera seed.

    Science.gov (United States)

    Aviara, N A; Musa, W B; Owolarafe, O K; Ogunsina, B S; Oluwole, F A

    2015-07-01

    Seed oil expression is an important economic venture in rural Nigeria. The traditional techniques of carrying out the operation is not only energy sapping and time consuming but also wasteful. In order to reduce the tedium involved in the expression of oil from moringa oleifera seed and develop efficient equipment for carrying out the operation, the oil point pressure of the seed was determined under different processing conditions using a laboratory press. The processing conditions employed were moisture content (4.78, 6.00, 8.00 and 10.00 % wet basis), heating temperature (50, 70, 85 and 100 °C) and heating time (15, 20, 25 and 30 min). Results showed that the oil point pressure increased with increase in seed moisture content, but decreased with increase in heating temperature and heating time within the above ranges. Highest oil point pressure value of 1.1239 MPa was obtained at the processing conditions of 10.00 % moisture content, 50 °C heating temperature and 15 min heating time. The lowest oil point pressure obtained was 0.3164 MPa and it occurred at the moisture content of 4.78 %, heating temperature of 100 °C and heating time of 30 min. Analysis of Variance (ANOVA) showed that all the processing variables and their interactions had significant effect on the oil point pressure of moringa oleifera seed at 1 % level of significance. This was further demonstrated using Response Surface Methodology (RSM). Tukey's test and Duncan's Multiple Range Analysis successfully separated the means and a multiple regression equation was used to express the relationship existing between the oil point pressure of moringa oleifera seed and its moisture content, processing temperature, heating time and their interactions. The model yielded coefficients that enabled the oil point pressure of the seed to be predicted with very high coefficient of determination.

  18. An overview of emerging techniques in virgin olive oil extraction process: strategies in the development of innovative plants

    OpenAIRE

    Maria Lisa Clodoveo

    2013-01-01

    Currently the systems for mechanically extracting virgin oils from olives are basically of two types: discontinuous-type systems (obsolete and dying out) and continuous-type systems. Systems defined as “continuous- type” are generally comprised of a mechanical crusher, a malaxer and a horizontal-axis centrifugal separator (decanter). The “continuous” appellation refers to the fact that two (mechanical crusher and decanter) out of the three machines making up the system operate continuously; t...

  19. Stabilization of Fast Pyrolysis Oil: Post Processing Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

    2012-03-01

    UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

  20. The bioliq {sup registered} bioslurry gasification process for the production of biosynfuels, organic chemicals, and energy

    Energy Technology Data Exchange (ETDEWEB)

    Dahmen, Nicolaus; Henrich, Edmund; Dinjus, Eckhard; Weirich, Friedhelm [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. of Catalysis Research and Technology

    2012-12-15

    Biofuels may play a significant role in regard to carbon emission reduction in the transportation sector. Therefore, a thermochemical process for biomass conversion into synthetic chemicals and fuels is being developed at the Karlsruhe Institute of Technology (KIT) by producing process energy to achieve a desirable high carbon dioxide reduction potential. In the bioliq process, lignocellulosic biomass is first liquefied by fast pyrolysis in distributed regional plants to produce an energy-dense intermediate suitable for economic transport over long distances. Slurries of pyrolysis condensates and char, also referred to as biosyncrude, are transported to a large central gasification and synthesis plant. The bioslurry is preheated and pumped into a pressurized entrained flow gasifier, atomized with technical oxygen, and converted at > 1,200 C to an almost tar-free, low-methane syngas. Syngas - a mixture of CO and H2 - is a well-known versatile intermediate for the selectively catalyzed production of various base chemicals or synthetic fuels. At KIT, a pilot plant has been constructed together with industrial partners to demonstrate the process chain in representative scale. The process data obtained will allow for process scale-up and reliable cost estimates. In addition, practical experience is gained. The paper describes the background, principal technical concepts, and actual development status of the bioliq process. It is considered to have the potential for worldwide application in large scale since any kind of dry biomass can be used as feedstock. Thus, a significant contribution to a sustainable future energy supply could be achieved.

  1. Development of a centrifugal in-line separator for oil-water flows

    NARCIS (Netherlands)

    Slot, J.J.

    2013-01-01

    The world energy consumption will increase in the next decades. However, many aging oil fields are showing a steady decline in oil production. And they are producing increasing amounts of water, making the separation of the oil from the oil-water mixture an important processing step. In-line separa

  2. Evaluating energy efficiency and emissions of charred biomass used as a fuel for household cooking in rural Kenya

    OpenAIRE

    Achour, Nemer

    2015-01-01

    In sub-Saharan Africa a large share of the energy use utilize biomass as a fuel. In some countries more than 90 percent of the energy use is biomass. This energy is primarily used for cooking, heating and drying. Cooking food on an open fire or using a traditional stove will combust the firewood inefficiently and leads to pollution in the form of particulate matter, carbon monoxide and other hazardous pollutants. Indoor pollution has serious health effects and especially women and children ar...

  3. Energy Criterion of Oil Film Failure during Friction

    Directory of Open Access Journals (Sweden)

    S.V. Fedorov

    2014-12-01

    Full Text Available The concepts developed by the thermodynamic theory of solid body strength and fracture are used to examine the conditions of lubricant film failure. We obtain a quantitative criterion that defines the lubricant film "defectness" - the critical value (constant for a given mineral oil of the internal (thermal energy density in the volume of the lubricant film. We propose analytic relations for evaluating scuffing in friction with lubrication and verify them experimentally on a full-scale stand for testing actual sliding bearings. We show the constancy of the critical value of the internal (thermal energy density in the volume of the oil film at the moment of scuffing for an inactive mineral oil.

  4. The renewable energies development policy. Statement of renewable energies. Cogeneration. Gas distribution. Oil rates. The after-mining. The European helps; La politique de developpement des energies renouvelables. Bilan des energies renouvelables. La cogeneration. La desserte gaziere. Les cours du petrole. L`apres mine. Les aides europeennes

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch. [Ministere de l`Economie, des Finances et de l`Industrie, 75 - Paris (France). Direction Generale de L`Energie et des Matieres Premieres

    1999-11-01

    This issue of `Energies et Matieres Premieres` comprises 7 papers dealing successively with: the French policy for the development of renewable energies (talk given by C. Pierret, French state secretary of Industry, at the colloquium `energy diversification and environment protection: the renewable energies at the 2010 vista`); the statement of the renewable energies development policy (wood-fuel, wind energy, thermal solar energy, electrification of isolated areas, biomass for power production, revalorization of the conditions of power repurchase); the recent development of cogeneration in France (advantages, promotion, financial incentives, contracts, future developments); the natural gas distribution or how to combine public utility and market deregulation; the crude oil rates (key-role of Saudi Arabia, effect of speculation, perspectives and uncertainties); the human, technical, financial and legal problems linked with mines decommissioning; the European helps in favour of energy mastery (the fifth R and D management program, the energy program and its 6 specific programs: ETAP, SYNERGY, ALTENER, SAVE, CARNOT, SURE). (J.S.)

  5. Structural evolution of biomass char and its effect on the gasification rate

    DEFF Research Database (Denmark)

    Fatehi, Hesameddin; Bai, Xue Song

    2017-01-01

    with different radii. The model is valid for biomass chars produced under relatively low heating rates, when the original beehive structure of the biomass is not destroyed during the pyrolysis stage. The contribution of different pores with different radius is taken into account using an effectiveness factor...... during the entire conversion process. This model is used to analyze the steam gasification process of biomass char of centimeter sizes. The results from the present multi-pore model are in better agreement with experimental data than those from a corresponding single pore model. Since the multi......-pore model accommodates the detailed intra-particle transport, it is a useful basis toward developing a more predictive model for biomass char gasification....

  6. Influence of the processed sunflower oil on the cement properties

    Science.gov (United States)

    Fleysher, A. U.; Tokarchuk, V. V.; Sviderskiy, V. A.

    2015-01-01

    Used oils (vegetable oil, animal oil, engine oil, etc.), which are essentially industrial wastes, have found application as secondary raw materials in some braches of industry. In particular, the only well-known and commonly-used way of utilizing wastes of vegetable oils is to apply them as raw materials in the production of biodiesel. The goal of the present study is to develop a conceptually new way of vegetable oil wastes utilization in the building industry. The test admixture D-148 was obtained from the processing of wastes of sunflower oil and it mainly consists of fatty acid diethanolamide. The test admixture was added to the cement system for the purpose of studying its influence on water demand, flowability, setting times, compressive strength and moisture adsorption. The test admixture D-148 at the optimal content 0. 2 weight % causes 10% decrease in water demand, 1.7 time increase in flowability (namely spread diameter), 23% increase in grade strength and 34% decrease in moisture adsorption. The results of the present investigation make it possible to consider the final product of the waste sunflower oil processing as multifunctional plasticizing-waterproofing admixture.

  7. Oils and fats: changes due to culinary and industrial processes.

    Science.gov (United States)

    Sanchez-Muniz, F J

    2006-07-01

    Diets of developed countries contain substantial quantities of fat subjected to different processing and heat treatments. Heating in the presence of air produces oxidative and thermal degradations in the unsaturated acyl groups of triacylglycerols and in other unsaturated compounds present in the oils and fats. These changes modify the nutritional properties of culinary fat and lead to the formation of many oxidized and polymerized compounds that present higher polarity than that of the original triacylglycerols. Some aspects of lipid peroxidation that occur in heated and used frying oils will be briefly presented and discussed. This paper will focus on appropriate methodology for the assessment of fat alteration (e.g. chromatography) and the point at which any oil used for frying should be discarded. Polar material (PM) and triacylglycerol oligomer content (TOC) determinations constitute the basis of legislation for oil discarding in some European countries; we will try to open some debate on whether PM or TOC is preferred for oil discarding assessment. Correct frying performance helps to lengthen oil frying-life and to decrease the alteration content in the fried food. Because many factors are present in the culinary and industrial frying, the effect of the process itself and that of the food and the type of oil used will be reviewed. The present report analyses and describes a wide variety of topics related to frying performance, and their nutritional implications with a special focus on the behavior during frying of most consumed oils in Mediterranean countries.

  8. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Taufiq-Yap, Y.H. [Centre of Excellence for Catalysis Science and Technology and Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    Oil palm is one of the major economic crops in many countries. Malaysia alone produces about 47% of the world's palm oil supply and can be considered as the world's largest producer and exporter of palm oil. Malaysia also generates huge quantity of oil palm biomass including oil palm trunks, oil palm fronds, empty fruit bunches (EFB), shells and fibers as waste from palm oil fruit harvest and oil extraction processing. At present there is a continuously increasing interest in the utilization of oil palm biomass as a source of clean energy. One of the major interests is hydrogen from oil palm biomass. Hydrogen from biomass is a clean and efficient energy source and is expected to take a significant role in future energy demand due to the raw material availability. This paper presents a review which focuses on different types of thermo-chemical processes for conversion of oil palm biomass to hydrogen rich gas. This paper offers a concise and up-to-date scenario of the present status of oil palm industry in contributing towards sustainable and renewable energy. (author)

  9. Geo energy research and development: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  10. Biodiesel Production from Rubber Seed Oil via Esterification Process

    Directory of Open Access Journals (Sweden)

    W Widayat

    2012-07-01

    Full Text Available One promise source of alternative energy is biodiesel from rubber seed oil, because the raw materials available in plentiful quantities and can be renewed. In addition, the rubber seed is still lack of utilization, and Indonesia is one of the largest rubbers producing country in the world. The objective of this research is to studied on biodiesel production by esterification process. Parameters used in this study are the ratio of catalyst and temperature and its influence on the characteristics of the resulting biodiesel product. Characterization of rubber seed include acid content number analysis, saponification numbers, density, viscosity, iodine number, type of free fatty acids and triglyceride oils. The results of analysis showed that rubber seed oil content obtained is 50.5%. The results of the GCMS analysis showed that a free fatty acid level in rubber seed is very high. Conversion into bio-diesel oil is obtained by at most 59.91% and lowest 48.24%.

  11. Compilation of Sandia coal char combustion data and kinetic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R.E.; Hurt, R.H.; Baxter, L.L.; Hardesty, D.R.

    1992-06-01

    An experimental project was undertaken to characterize the physical and chemical processes that govern the combustion of pulverized coal chars. The experimental endeavor establishes a database on the reactivities of coal chars as a function of coal type, particle size, particle temperature, gas temperature, and gas and composition. The project also provides a better understanding of the mechanism of char oxidation, and yields quantitative information on the release rates of nitrogen- and sulfur-containing species during char combustion. An accurate predictive engineering model of the overall char combustion process under technologically relevant conditions in a primary product of this experimental effort. This document summarizes the experimental effort, the approach used to analyze the data, and individual compilations of data and kinetic analyses for each of the parent coals investigates.

  12. Development of the techniques for food processing with low-energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Todoroki, Setsuko; Hayashi, Toru [National Food Research Inst., Tsukuba, Ibaraki (Japan)

    1999-02-01

    This study aimed to construct a new electron beam irradiation apparatus which allows to perform homogeneous irradiation up to a certain depth of a spherical or granular material through rotating it. And the sterilizing effects of this apparatus on various kinds of spices such as black and white peppers (grains), turmeric (root), coriander (seed), basil (leaves) were investigated to compare with the effects of {gamma}-ray irradiation. Electron beam irradiation was made changing the energy form 200 keV for 15 min to 500 keV for 5 min and a dose-depth curve was drawn for each electron energy. Indicator balls were used to examine the radiation effects. It became possible to make homogeneous irradiation onto a spherical surface of food by using the rotary system of the apparatus. It was demonstrated that satisfactory sterilizing effects as much as those of {gamma}-ray were obtainable by superficial treatments with low-energy electron. (M.N.)

  13. Macondo crude oil from the Deepwater Horizon oil spill disrupts specific developmental processes during zebrafish embryogenesis

    Directory of Open Access Journals (Sweden)

    de Soysa T Yvanka

    2012-05-01

    Full Text Available Abstract Background The Deepwater Horizon disaster was the largest marine oil spill in history, and total vertical exposure of oil to the water column suggests it could impact an enormous diversity of ecosystems. The most vulnerable organisms are those encountering these pollutants during their early life stages. Water-soluble components of crude oil and specific polycyclic aromatic hydrocarbons have been shown to cause defects in cardiovascular and craniofacial development in a variety of teleost species, but the developmental origins of these defects have yet to be determined. We have adopted zebrafish, Danio rerio, as a model to test whether water accumulated fractions (WAF of the Deepwater Horizon oil could impact specific embryonic developmental processes. While not a native species to the Gulf waters, the developmental biology of zebrafish has been well characterized and makes it a powerful model system to reveal the cellular and molecular mechanisms behind Macondo crude toxicity. Results WAF of Macondo crude oil sampled during the oil spill was used to treat zebrafish throughout embryonic and larval development. Our results indicate that the Macondo crude oil causes a variety of significant defects in zebrafish embryogenesis, but these defects have specific developmental origins. WAF treatments caused defects in craniofacial development and circulatory function similar to previous reports, but we extend these results to show they are likely derived from an earlier defect in neural crest cell development. Moreover, we demonstrate that exposure to WAFs causes a variety of novel deformations in specific developmental processes, including programmed cell death, locomotor behavior, sensory and motor axon pathfinding, somitogenesis and muscle patterning. Interestingly, the severity of cell death and muscle phenotypes decreased over several months of repeated analysis, which was correlated with a rapid drop-off in the aromatic and alkane

  14. Panorama of CNOOC's Recent Oil & Gas Development

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Offshore oil industry promising for China Vice President of CNOOC Jiang Longsheng recently pointed out that the incremental amount of China's crude production will come mainly from the offshore oil fields in the country's 11 th FiveYear Plan Period (2006-2010). He added that some onshore oil fields have entered their depletion stage while the offshore oil industry is experiencing a rapid business development.

  15. Energy Requirement of Extra Virgin Olive Oil Production

    Directory of Open Access Journals (Sweden)

    Giulio Mario Cappelletti

    2014-08-01

    Full Text Available The scope of this chapter is to calculate the net energy of the production chain for virgin olive oil. Therefore, the determination was carried out for the direct and indirect energy inputs and the energy present as feedstock in the outputs (products and by-products. To perform this analysis, all of the production processes for olives and for oil extraction were studied. For the agricultural phase, three systems of cultivation were taken into consideration: the centenary olive grove (COO, the “intensive” olive grove (HDO and, the more recently introduced, “super-intensive” olive grove (HSDO. The last two models are distinguished by the high number of trees per hectare and by an intense mechanization of agricultural practices. Regarding the oil extraction phase, four different technologies were compared: the pressure system (PS, the two-phase system (2PS, the three-phase (3PS, and the system, called “de-pitted”, which provides for the separation of the pits before the oil is extracted (DPS. The analysis showed that the production of olives needs more than 90% of energy requirements, much of which is met by non-renewable sources of energy. The production of fertilizers, and also irrigation, are the production factors that require a considerable amount of energy. Among the three agricultural systems analyzed, the COO system of cultivation is the one that requires less energy as compared to the other systems. The scenario that enables the most energy return, however, is the SHDO system of cultivation, due to the greater amount of pruning residues that can be obtained.

  16. Assessment of energy return on energy investment (EROEI of oil bearing crops for renewable fuel production

    Directory of Open Access Journals (Sweden)

    A. Restuccia

    2013-09-01

    Full Text Available As reported in literature the production of biodiesel should lead to a lower energy consumption than those obtainable with its use. So, to justify its consumption, a sustainable and “low input” production should be carried out. In order to assess the sustainability of Linum usitatissimum, Camelina sativa and Brassica carinata cultivation for biodiesel production in terms of energy used compared to that obtained, the index EROEI (Energy Return On Energy Invested has been used. At this aim, an experimental field was realised in the south-eastern Sicilian land. During the autumn-winter crop cycle, no irrigation was carried out and some suitable agricultural practices have been carried out taking into account the peculiarity of each type of used seeds. The total energy consumed for the cultivation of oil bearing crops from sowing to the production of biodiesel represents the Input of the process. In particular, this concerned the energy embodied in machinery and tools utilized, in seed, chemical fertilizer and herbicide but also the energy embodied in diesel fuels and lubricant oils. In addition, the energy consumption relating to machines and reagents required for the processes of extraction and transesterification of the vegetable oil into biodiesel have been calculated for each crops. The energy obtainable from biodiesel production, taking into account the energy used for seed pressing and for vegetable oil transesterification into biodiesel, represents the Output of the process. The ratio Output/Input gets the EROEI index which in the case of Camelina sativa and Linum usatissimum is greater than one. These results show that the cultivation of these crops for biofuels production is convenient in terms of energy return on energy investment. The EROEI index for Brassica carinata is lower than one. This could means that some factors, concerning mechanisation and climatic

  17. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  18. Characterization of chars form biomass-derived materials: pectin chars

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, R.K.; Wooten, J.B.; Baliga, V.L.; Hajaligol, M.R. [Philip Morris USA, Richmond, VA (United States). Research Center

    2001-10-09

    The effect of pyrolysis conditions on the yield and composition of char from pectin was studied. The volatile product was analyzed by gas chromatography/mass spectrometry (GC/MS). The solid product, i.e. char, was characterised by solid-state {sup 13}C nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectrsocopy. The char was also analysed for its elemental composition and surface area. The surface morphology of the char was studied by scanning electron microscopy (SEM). The results were compared to those from chlorogenic acid (CA). For both pectin and CA, the char yield decreased with increasing temperature before levelling-off at ca.20% of the starting substrate in non-oxidative runs. In oxidative runs, the char yields from both substrates became negligible at 550{degree}C. NMR analysis indicated that the aromatic character of char increased as the pyrolysis temperature increased. The oxygen functionality was progressively lost and the resonance bands corresponding to carbonyl groups mostly disappeared above 350{degree}C. FTIR analysis also suggested the loss of hydroxyl and carbonyl groups from chars at high temperatures. The H/C and O/C ratios of chars decreased continuously with increasing temperature. The oxidative chars showed characteristics essentially similar to those of the non-oxidative chars. The surface area of char was negligible at low temperatures, but increased dramatically to a maximum of 70 m{sup 2}g{sup -1} at 450{degree}C before decreasing at 500{degree}C. SEM analysis indicated that the pyrolysis of pectin occurred via softening and melting of the substrate followed by bubble formation. At high temperatures, surface etching followed by the appearance of crystal

  19. Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar

    Science.gov (United States)

    Biewick, Laura R.H.; Wilson, Anna B.

    2014-01-01

    The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.

  20. A novel and innovative process to produce oil from tar sands and heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Denivelle, C. [OSEAD, Paris (France); Fourt, J.F. [Truffle Capital, Paris (France)

    2009-07-01

    Oil sands extraction by adsorption (OSEAD) was created in October 2006 to develop an innovative hydrocarbon extraction technology from oil sands. It has since grown by taking control of a lead, zinc and silver mine in Morocco. This paper discussed the novel and innovative OSEAD process to produce oil from tar sands and heavy oil. The paper provided a description of the oil sand samples and discussed lab testing. The adsorption and desorption phases were both outlined. The main properties of the agent were identified. A summary of the test work results was also presented. The optimized OSEAD process includes an ore preparation step involving mixing of oil sand and water at ambient temperature; an adsorption step involving addition of agent to the sand/water mix; a phase separation step; a desorption step; and a tailings treatment step. It was concluded that the laboratory test work performed on Canadian oil sands is conclusive in demonstrating the capacity of the OSEAD process to efficiently adsorb heavy and viscous hydrocarbon at ambient temperature and with limited amount of water addition. 11 figs., 1 appendix.

  1. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  2. Coal char oxidation kinetics in air medium

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander G.

    2017-01-01

    Full Text Available Study of oxidation kinetics for three types of coal char with different carbon content in air is presented. The coal char powders of anthracite, bituminous T-grade coal and 2B-grade lignite with particle size less than 80 μm were tested. The coal char oxidation was researched by isothermal method via simultaneous TG-DSC analyzer Netzsch STA 449 Jupiter F3 in the temperature range of 1000–1200 °C. Measurements were carried out at ambient pressure. Volumetric flow rate of oxidizing medium into analyser chamber was 250 ml/min. Flow consisted of air and argon with volumetric ratio 24/1. Carbon average rate of oxidation reaction at each temperature were defined based on experimental results. Kinetic constants (the frequency factor and activation energy were defined for Arrhenius equation modified with three submodels: volumetric model, shrinking core model and random pore model. The activation energy values for anthracite are 1,6-1,7 times higher than for chars of bituminous coal and lignite.

  3. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-11-19

    This is the second technical report, covering the period from April 1, 2003 through September 30, 2003. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. The geo-technical component is a shared effort between the State Department of Administration and the US Department of Energy. The Alaska Oil and Gas Conservation Commission is rapidly converting high volumes of paper documents and geo-technical information to formats suitable for search and retrieval over the Internet. The permitting component is under the lead of the DNR Office of Project Management and Permitting. A web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information on-line. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. Structural changes are taking place in terms of organization, statutory authority, and regulatory requirements. Geographic Information Systems are a central component to the organization of information, and the delivery of on-line services. Progress has been made to deploy the foundation system for the shared GIS based on open GIS protocols to the extent feasible. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells.

  4. Microwave Assisted Hydrolysis of Holocellulose Catalyzed with Sulfonated Char Derived from Lignin-Rich Residue

    Directory of Open Access Journals (Sweden)

    Kui Wang

    2015-01-01

    Full Text Available A microwave assisted green process has been developed for production of sugars through liquefying holocellulose catalyzed with sulfonated char derived from the lignin-rich residue produced during pretreatment of lignocellulose. Various reaction parameters including the hydrolysis temperature, hydrolysis time, catalyst content, and the ratio of water to feedstock were evaluated. The maximum sugars yield of 82.6% (based on the dry mass of holocellulose was obtained under the optimum reaction conditions. The sulfonated char showed superior catalytic performance to that of dilute sulfuric acid in converting holocellulose into sugars under microwave irradiation.

  5. Formation, Structure and Properties of Amorphous Carbon Char from Polymer Materials in Extreme Atmospheric Reentry Environments

    Science.gov (United States)

    Lawson, John W.

    2010-01-01

    Amorphous carbonaceous char produced from the pyrolysis of polymer solids has many desirable properties for ablative heat shields for space vehicles. Molecular dynamics simulations are presented to study the transformation of the local atomic structure from virgin polymer to a dense, disordered char [1]. Release of polymer hydrogen is found to be critical to allow the system to collapse into a highly coordinated char structure. Mechanisms of the char formation process and the morphology of the resulting structures are elucidated. Thermal conductivity and mechanical response of the resulting char are evaluated [2]. During reenty, the optical response and oxidative reactivity of char are also important properties. Results of ab initio computations of char optical functions [3] and char reactivity [4] are also presented.

  6. Enhancement of Hydrodynamic Processes in Oil Pipelines Considering Rheologically Complex High-Viscosity Oils

    Science.gov (United States)

    Konakhina, I. A.; Khusnutdinova, E. M.; Khamidullina, G. R.; Khamidullina, A. F.

    2016-06-01

    This paper describes a mathematical model of flow-related hydrodynamic processes for rheologically complex high-viscosity bitumen oil and oil-water suspensions and presents methods to improve the design and performance of oil pipelines.

  7. Study of a new energy efficient process for French fries production

    NARCIS (Netherlands)

    Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Heijmans, R.M.H.; Deventer, van H.; Burgering, M.J.M.; Drooge, van B.; Voragen, A.G.J.

    2005-01-01

    A new, energy efficient production process for French fries was developed and evaluated. Superheated steam (SHS) was used for evaporation of water instead of pre-drying with air and par-frying with oil. The product was frozen by vacuum cooling. Unfortunately, with this process it was not possible to

  8. Study on Drying Edible Soya-bean Oil Using Solar Energy

    Institute of Scientific and Technical Information of China (English)

    LIU Shengyong; LIU Peng; SHEN Xiaozhen; XU Guizhuan; SU Chaojie; CAI Xianjie

    2010-01-01

    Soya-bean oil(bean dregs)was dried in a solar energy drying system.Characteristics of the process were measured and the corresponding curves were done.The practicability of this process has been discussed.The results showed that the solar drying system could completely meet technological requirements of drying soy-bean oil,and it was feasible in technology to use the solar drying system to dry the vegetable oil.

  9. ECOLOGY SAFETY TECHNOLOGIES OF UNCONVENTIONAL OIL RESERVES RECOVERY FOR SUSTAINABLE OIL AND GAS INDUSTRY DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Viacheslav Zyrin

    2016-09-01

    Full Text Available The problem of effective technology for heavy oil recovery nowadays has a great importance, because of worsening geological conditions of the developed deposits, decreasing recovery factor, increasing the part of heavy oil. For the future sustainable development of oil producing industry the involved technologies must require energy effectiveness and ecological safety. The paper proves the enhanced oil recovery methods necessity for heavy oil deposits, highlighted thermal technologies as the most effective. But traditional thermal treatment technologies is a source of air pollutant emission, such as CO, NO etc. The calculation of emissions for traditional steam generator is provided. Besides, the paper shows the effectiveness of electrical enhanced oil recovery methods. The advantages of associated gas as a fuel for cogeneration plants is shown. The main approaches to implementation of carbon dioxide sequestration technologies in the oil and gas industry of Russia are defined. Conceptual view of СО2-EOR technologies potential within the context of sustainable development of oil and gas industry are presented. On the basis of the conducted research a number of scientific research and practical areas of the CCS technology development are revealed.

  10. MEDSLIK oil spill model recent developments

    Science.gov (United States)

    Lardner, Robin; Zodiatis, George

    2016-04-01

    MEDSLIK oil spill model recent developments Robin Lardner and George Zodiatis Oceanography Center, University of Cyprus, 1678 Nicosia, Cyprus MEDSLIK is a well established 3D oil spill model that predicts the transport, fate and weathering of oil spills and is used by several response agencies and institutions around the Mediterranean, the Black seas and worldwide. MEDSLIK has been used operationally for real oil spill accidents and for preparedness in contingency planning within the framework of pilot projects with REMPEC-Regional Marine Pollution Emergency Response Centre for the Mediterranean Sea and EMSA-European Maritime Safety Agency. MEDSLIK has been implemented in many EU funded projects regarding oil spill predictions using the operational ocean forecasts, as for example the ECOOP, NEREIDs, RAOP-Med, EMODNET MedSea Check Point. Within the frame of MEDESS4MS project, MEDSLIK is at the heart of the MEDESS4MS multi model oil spill prediction system. The MEDSLIK oil spill model contains among other, the following features: a built-in database with 240 different oil types characteristics, assimilation of oil slick observations from in-situ or aerial, to correct the predictions, virtual deployment of oil booms and/or oil skimmers/dispersants, continuous or instantaneous oil spills from moving or drifting ships whose slicks merge can be modelled together, multiple oil spill predictions from different locations, backward simulations for tracking the source of oil spill pollution, integration with AIS data upon the availability of AIS data, sub-surface oil spills at any given water depth, coupling with SAR satellite data. The MEDSLIK can be used for operational intervention for any user-selected region in the world if the appropriate coastline, bathymetry and meteo-ocean forecast files are provided. MEDSLIK oil spill model has been extensively validated in the Mediterranean Sea, both in real oil spill incidents (i.e. during the Lebanese oil pollution crisis in

  11. Process for purification of petroleum oil fractions

    Energy Technology Data Exchange (ETDEWEB)

    Gaile, A.A.; Proskuryakov, V.A.; Semenov, L.V.; Ul' chenkova, L.M.; Volkova, N.I.

    1981-03-10

    In the process for removal of polycyclic aromatic hydrocarbons, asphatic tarry materials, and heterocyclic compounds from petroleum oil fractions by extraction with a selective solvent, with the aim of increasing the degree of purification and increasing the oil fraction yield, cyanomethyl acetate (I) or its aqueous solution is used as the solvent. I possesses a combination of high selectivity with sufficiently high dissolving capacity in relation to the undesirable oil fraction components. The extraction properties of I were studied both on artificial mixtures modelling the hydrocarbon part of petroleum oil fractions (tridecane + ..cap alpha..-methylnaphthalene) and on industrial oil fractions. The H/sub 2/O content in I can be from 0 to 10%. By reducing the water content of the extractant the yield and quality of the purified oil can be regulated. The solvent: feedstock ratio with the use of I or mixtures of it with H/sub 2/O is advisably maintained within the limits 0.5-3:1. Example -- Results are presented for a one-stage extraction of ..cap alpha..-methylnaphthalene from a mixture with tridecane at 20/sup 0/ and with a solvent:feedstock weight ratio of 1.5 in comparison with the use of furfurol as the selective solvent. In the proposed process the degree of extraction of ..cap alpha..-methylnaphthalene is 57% as against 55.6%; the tridecane content in the raffinate is 80.9% as against 79.3%; the degree of tridecane extraction is 97.5% as against 92%, and the raffinate yield is 78.5% as against 75.3%. In a multistage extraction process the advantages of I will be still more substantial.

  12. Effect of pyrolysis conditions and composition on the char structure and char yield of biomass chars

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Steibel, Markus; Spliethoff, Hartmut

    The char yield as well as physical and chemical structure of chars generated from different types of biomass divided into five different particle size fractions from 50μm to 1mm were studied to better understand the influences of holding time, final temperatures and heating rates on the pyrolysis...... characteristics of biomass chars. An additional study of the char phase-organic transformation was conducted on the biomass organic matter. Char samples were generated in a wire-mesh reactor up to 1400°C, and with the heating rates between 10 K/s and 3000 K/s. The results were compared with the data gained from...... slow (10 K/min) and fast heating (600 K/min) by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM/EDS), elementary analysis and Fourier transform infrared spectroscopy (FTIR) were conducted to determine the effect of operating conditions and the biomass composition on the char...

  13. University of Utah Oil Sand Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-12-31

    An overview of the Oil Sand Research and Development Program at the University of Utah will be presented. It will include resource characterization of the Uinta Basin oils and deposits and bitumens and bitumen-derived liquid recovery and upgrading technology and product utilization. The characterization studies will include the Whiterocks and Asphalt Ridge oil sands. The discussion of recovery and upgrading technologies will include aqueous separation, thermal recovery processes; solvent extraction, and thermal and catalytic upgrading of bitumen and bitumen-derived heavy oils. Product evaluation studies will include jet fuels, diesel fuel, asphalt and specialty chemicals. Plans for the future of the project will be discussed.

  14. Heavy Oil Development Technology of Liaohe Oilfield

    Institute of Scientific and Technical Information of China (English)

    Han Yun

    2007-01-01

    @@ Liaohe Oilfield, the largest heavy oil production base in China, features in various reservoir types, deep burial, and wide range of crude oil viscosity. For many years, a series of technologies have been developed for different oil products and reservoir types of the oilfield, of which water flooding, foam slug drive, steam stimulation, steam drive,and SAGD are the main technologies. After continuous improvement, they have been further developed and played an important role in the development of heavy oil in the oilfield.

  15. ENERGY EFFICIENT LAUNDRY PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Tim Richter

    2005-04-01

    With the rising cost of energy and increased concerns for pollution and greenhouse gas emissions from power generation, increased focus is being put on energy efficiency. This study looks at several approaches to reducing energy consumption in clothes care appliances by considering the appliances and laundry chemistry as a system, rather than individually.

  16. Oil Policy Key to Onshore Exploration and Development

    Institute of Scientific and Technical Information of China (English)

    Staff Commentator

    1997-01-01

    @@ The development of energy industry holds the key to the national economic growth and social stability both in developed and developing countries. Chinese Premier Li Peng has recently stressed once more the importance of energy industry in national economy. As for the oil and gas sector, Premier Li pointed out that China's petroleum industry should adhere to the policy of keeping production stable in East China while accelerating exploration and development in West China.

  17. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  18. Design, fabrication, operation and Aspen simulation of oil shale pyrolysis and biomass gasification process using a moving bed downdraft reactor

    Science.gov (United States)

    Golpour, Hassan

    Energy is the major facilitator of the modern life. Every developed and developing economy requires access to advanced sources of energy to support its growth and prosperity. Declining worldwide crude oil reserves and increasing energy needs has focused attention on developing existing unconventional fossil fuels like oil shale and renewable resources such as biomass. Sustainable, renewable and reliable resources of domestically produced biomass comparing to wind and solar energy is a sensible motivation to establish a small-scale power plant using biomass as feed to supply electricity demand and heat for rural development. The work in Paper I focuses on the possibility of water pollution from spent oil shale which should be studied before any significant commercial production is attempted. In Paper II, the proposed Aspen models for oil shale pyrolysis is to identify the key process parameters for the reactor and optimize the rate of production of syncrude from oil shale. The work in Paper III focuses on (1) Design and operation of a vertical downdraft reactor, (2) Establishing an optimum operating methodology and parameters to maximize syngas production through process testing. Finally in Paper IV, a proposed Aspen model for biomass gasification simulates a real biomass gasification system discussed in Paper III.

  19. Development of an advanced, continuous mild gasification process for the production of co-products (Tasks 2, 3, and 4.1 to 4.6), Volume 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.A.; Gissy, J.L.; Onischak, M.; Babu, S.P.; Carty, R.H. [Institute of Gas Technology, Chicago, IL (United States); Duthie, R.G. [Bechtel Group, Inc., San Francisco, CA (United States); Wootten, J.M. [Peabody Holding Co., Inc., St. Louis, MO (United States)

    1991-09-01

    Volume 2 contains information on the following topics: (1) Mild Gasification Technology Development: Process Research Unit Tests Using Slipstream Sampling; (2) Bench-Scale Char Upgrading Study; (3) Mild Gasification Technology Development: System Integration Studies. (VC)

  20. Production of phenol-rich bio-oil during catalytic fixed-bed and microwave pyrolysis of palm kernel shell.

    Science.gov (United States)

    Omoriyekomwan, Joy Esohe; Tahmasebi, Arash; Yu, Jianglong

    2016-05-01

    Catalytic fixed-bed and microwave pyrolysis of palm kernel shell using activated carbon (AC) and lignite char (LC) as catalysts and microwave receptors are investigated. The effects of process parameters including temperature and biomass:catalyst ratio on the yield and composition of pyrolysis products were studied. The addition of catalyst increased the bio-oil yield, but decreased the selectivity of phenol in fixed-bed. Catalytic microwave pyrolysis of PKS significantly enhanced the selectivity of phenol production. The highest concentration of phenol in bio-oil of 64.58 %(area) and total phenolics concentration of 71.24 %(area) were obtained at 500°C using AC. Fourier transform infrared spectroscopy (FTIR) results indicated that concentration of OH, CH, CO and CO functional groups in char samples decreased after pyrolysis. Scanning electron microscopy (SEM) analysis clearly indicated the development of liquid phase in biomass particles during microwave pyrolysis, and the mechanism is also discussed.

  1. Improvement of Waste Tire Pyrolysis Oil and Performance Test with Diesel in CI Engine

    Directory of Open Access Journals (Sweden)

    M. N. Islam

    2016-01-01

    Full Text Available The standard of living, quality of life, and development of a nation depend on its per capita energy consumption. Global energy supply that mainly depends on fossil fuel is decreasing day by day. It is estimated that the energy demand will be increased five times by the year 2021 from present scenario. Due to the fossil fuel crisis, the development of alternative fuel technologies has drawn more attraction to deliver the replacement of fossil fuel. Pyrolysis is one of the promising alternative fuel technologies which produces valuable oil, char, and gas product from organic waste. Early investigations report that tire pyrolysis oil extracted from vacuum pyrolysis method seemed to have properties similar to diesel fuel. The main concern of this paper is to produce and improve the properties of crude tire pyrolysis oil by desulfurizing, distilling, and utilizing it with diesel in CI engine to analyze the efficiency for various compositions.

  2. Water Flooding Development and Enhanced Oil Recovery of Daqing Oilfields

    Institute of Scientific and Technical Information of China (English)

    Cao Zefu; Yue Dengtai; Rong Jiashu

    1997-01-01

    @@ The Daqing oil region consists of typical sand oilfields formed by a large inland shallow water lake basin and riverdelta. It is characterized by multiple reservoirs, extreme heterogeneity, and insufficient natural oil reservoir energy. A comparatively long period of high stable yield and high efficiency recovery was achieved in the initial stage of development through the use of the hydraulic pressure drive technique, which manually injected water to maintain formation pressure.

  3. 菜籽油加工产业“差异化”发展模式分析%Analysis of the “differentiation” development mode of rapeseed oil processing industry

    Institute of Scientific and Technical Information of China (English)

    梅星星; 冯中朝; 郑炎成

    2015-01-01

    Based on the perspective of rape industry chain,with the raw material supply,rapeseed oil pro-cessing,rapeseed oil marketing in rapeseed oil processing industry as breakthrough points,the“differenti-ation” concept of rapeseed oil processing industry was described,and the obstacles in developing“differ-entiation” of rapeseed oil processing industry in rape industry were dicussed. It was thought that the“dif-ferentiation” development of rapeseed oil processing industry was beneficial to the development of domes-tic rape industry. Finally,the policy recommendations for the“differentiation” development mode of rape-seed oil processing industry was proposed from the aspects of national standards of rapeseed oil,processing technology of rapeseed oil,target price subsidy of rapeseed,industrially technological innovation and sci-entific planning of rape planting.%基于油菜产业链脉络的研究视角,以菜籽油加工产业原料供给、菜籽油加工、菜籽油销售等环节为分析的切入点,阐述菜籽油加工产业“差异化”概念,探讨发展菜籽油加工产业“差异化”在油菜产业方面所面临的障碍,认为菜籽油加工产业“差异化”发展有益于国内油菜产业发展。最后,从菜籽油国家标准、菜籽油加工工艺、油菜籽目标价格补贴、产业科技创新、油菜种植科学规划等方面,提出菜籽油加工产业“差异化”发展模式的政策建议。

  4. Development of a high-performance coal-fired power generating system with pyrolysis gas and char-fired high temperature furnace (HITAF). Quarterly progress report No. 3, July--September 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    A concept for an advanced coal-fired combined-cycle power generating system is currently being developed. The first phase of this three-phase program consists of conducting the necessary research and development to define the system, evaluate the economic and technical feasibility of the concept, and prepare an R & D plan to develop the concept further. Foster Wheeler Development Corporation is leading a team ofcompanies involved in this effort. The system proposed to meet these goals is a combined-cycle system where air for a gas turbine is indirectly heated to approximately 1800{degrees}F in furnaces fired with cool-derived fuels and then directly heated in a natural-gas-fired combustor up to about 2400{degrees}F. The system is based on a pyrolyzing process that converts the coal into a low-Btu fuel gas and char. The fuelgas is a relatively clean fuel, and it is fired to heat tube surfaces that are susceptible to corrosion and problems from ash deposition. In particular, the high-temperature air heater tubes, which will need tobe a ceramic material, will be located in a separate furnace or region of a furnace that is exposed to combustion products from the low-Btu fuel gas only. A simplified process flow diagram is shown.

  5. A New Screening Methodology for Improved Oil Recovery Processes Using Soft-Computing Techniques

    Science.gov (United States)

    Parada, Claudia; Ertekin, Turgay

    2010-05-01

    The first stage of production of any oil reservoir involves oil displacement by natural drive mechanisms such as solution gas drive, gas cap drive and gravity drainage. Typically, improved oil recovery (IOR) methods are applied to oil reservoirs that have been depleted naturally. In more recent years, IOR techniques are applied to reservoirs even before their natural energy drive is exhausted by primary depletion. Descriptive screening criteria for IOR methods are used to select the appropriate recovery technique according to the fluid and rock properties. This methodology helps in assessing the most suitable recovery process for field deployment of a candidate reservoir. However, the already published screening guidelines neither provide information about the expected reservoir performance nor suggest a set of project design parameters, which can be used towards the optimization of the process. In this study, artificial neural networks (ANN) are used to build a high-performance neuro-simulation tool for screening different improved oil recovery techniques: miscible injection (CO2 and N2), waterflooding and steam injection processes. The simulation tool consists of proxy models that implement a multilayer cascade feedforward back propagation network algorithm. The tool is intended to narrow the ranges of possible scenarios to be modeled using conventional simulation, reducing the extensive time and energy spent in dynamic reservoir modeling. A commercial reservoir simulator is used to generate the data to train and validate the artificial neural networks. The proxy models are built considering four different well patterns with different well operating conditions as the field design parameters. Different expert systems are developed for each well pattern. The screening networks predict oil production rate and cumulative oil production profiles for a given set of rock and fluid properties, and design parameters. The results of this study show that the networks are

  6. Non-OPEC Oil Supply: Economics and Energy Policy Options

    Energy Technology Data Exchange (ETDEWEB)

    Mourik, Maarten van [Paris (France); Shepherd, Richard K. [Perpignan (France)

    2003-07-01

    and convenient for those who now control the fuel business. It is after all, the duty of integrated oil companies to deliver best value for their shareholders, not to find secure, competitive, long-term energy solutions to the needs of consumers and their governments. In short, there is no need for a massive metamorphosis in fuels, or engines, or cars or delivery systems which fuel cells and other alternatives necessitate. Instead, it is entirely feasible that any growth in transportation fuel demand in the critical period a decade from now can be met by simple changes in the specification of current fuels through blending of biodiesels, methanol from natural gas, ethanol and other products. This process will deliver a transportation fuel continuum that does not form a significant part of any national energy policy outside Brazil, a country which has plainly demonstrated what is possible for many years. [abstract truncated

  7. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  8. Disintegration of beech wood char during thermal conversion

    DEFF Research Database (Denmark)

    Hindsgaul, Claus

    In the present work the processes occurring in the structures of slowly pyrolysed beech wood char during thermal gasification have been investigated. Emphasis was put on physical changes and gas transport properties during conversion. The highly anisotropic structure of wood was preserved in its...... differences of 3—4 orders of magnitude between the longitudinal and other directions in freshly pyrolysed beech wood char. Diffusion in the longitudinal direction of the beech wood char before gasification corresponded to direct, unobstructed diffusion through its vessel cells. Radial and tangential diffusion...

  9. Crude-oil vs coal-oil processing comparison study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    This study evaluates three refinery schemes that have been developed for the processing of H-Coal liquids. The refinery processing employed for the naphtha and lighter components of the H-Coal liquid is essentially the same for all three schemes. It is in the processing of the H-Coal distillate product that refinery variations occur, and these differences are outlined: hydrotreating of the middle coal distillate to produce a No. 2 fuel oil equivalent product; hydrocracking of the total coal distillate to produce more gasoline and higher quality distillate fuel; and hydrotreating of the light coal distillate to a No. 2 fuel oil equivalent, and hydrogenating the heavy coal distillate to upgrade feedstock to a fluid catalytic cracking (FCC) unit. To provide a perspective of the value of coal liquid relative to petroleum, a parallel set of petroleum refinery schemes, processing a 65/35 Light/Heavy Arabian crude oil blend, was developed: reduced crude desulfurization with FCC processing of the desulfurized VGO; reduced crude desulfurization with hydrocracking of the desulfurized VGO; solvent demetallization of the vacuum pitch with desulfurization and FCC processing of VGO and demetallized oil; and solvent demetallization of the vacuum pitch with hydrocracking of the VGO and demetallized oil. Various gasoline to distillate ratios were set as parameters in developing the best possible processing schemes. Linear programming techniques were used to select the optimal schemes at various product ratios. Applying the same product prices to all cases and subtracting operating costs and the capital change, a comparative feedstock value is calculated. This method places the various refinery schemes on a common basis and gives an appraisal of the relative value of the H-Coal liquid charge stock, based on new refinery facilities.

  10. Gasification of biomass chars in steam-nitrogen mixture

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)]. E-mail: hanzade@itu.edu.tr; Yaman, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey); Kucukbayrak, S. [Department of Chemical Engineering, Chemical and Metallurgical Engineering Faculty, Istanbul Technical University, 34469 Maslak, Istanbul (Turkey)

    2006-05-15

    Some agricultural and waste biomass samples such as sunflower shell, pinecone, rapeseed, cotton refuse and olive refuse were first pyrolyzed in nitrogen, and then, their chars were gasified in a gas mixture of steam and nitrogen. Experiments were performed using the thermogravimetric analysis technique. Pyrolysis of the biomass samples was performed at a heating rate of 20 K/min from ambient to 1273 K in a dynamic nitrogen atmosphere of 40 cm{sup 3} min{sup -1}. The obtained chars were cooled to ambient temperature and then gasified up to 1273 K in a dynamic atmosphere of 40 cm{sup 3} min{sup -1} of a mixture of steam and nitrogen. Derivative thermogravimetric analysis profiles from gasification of the chars were derived, and the mass losses from the chars were interpreted in terms of temperature. It was concluded that gasification characteristics of biomass chars were fairly dependent on the biomass properties such as ash and fixed carbon contents and the constituents present in the ash. Different mechanisms in the three temperature intervals, namely water desorption at lower temperatures, decomposition of hydroxide minerals to oxide minerals and formation of carbon monoxide at medium temperatures and production of hydrogen at high temperatures govern the behavior of the char during the gasification process. The chars from pinecone and sunflower shell could be easily gasified under the mentioned conditions. In order to further raise the conversion yields, long hold times should be applied at high temperatures. However, the chars from rapeseed and olive refuse were not gasified satisfactorily. Low ash content and high fixed carbon content biomass materials are recommended for use in gasification processes when char from pyrolysis at elevated temperatures is used as a feedstock.

  11. Cyclone oil shale retorting concept. [Use it all retorting process

    Energy Technology Data Exchange (ETDEWEB)

    Harak, A.E.; Little, W.E.; Faulders, C.R.

    1984-04-01

    A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

  12. Energy management via Internet. Process control system helps companies save energy; Energiemanagement via Internet. Prozessleitsystem hilft Unternehmen Energie sparen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-02-15

    In view of constantly rising oil and natural gas prices and the demand for environmentally compatible production processes, efficient use of energy is a decisive factor governing the productivity of an industrial company, now more than ever. (orig.)

  13. IT support of energy-sensitive product development. Energy-efficient product and process innovations in production engineering. Virtual product development for energy-efficient products and processes; IT-Unterstuetzung zur energiesensitiven Produktentwicklung. Energieeffiziente Produkt- und Prozessinnovationen in der Produktionstechnik. Handlungsfeld virtuelle Produktentwicklung fuer energieeffiziente Produkte und Prozesse (PE)

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, Thomas; Ruenger, Gudula; Steger, Daniel; Xu, Haibin

    2010-07-07

    The development of low-cost, energy-saving and resources-saving products is increasingly important. Thecalculation of the life cycle cost is an important basis for this. For this, it is necessary to extract empirical, decision-relevant data from IT systems of product development (e.g. product data management systems) and operation (e.g. enterprise resource planning systems), and to give the planner appropriate methods for data aggregation. Life cycle data are particularly important for optimising energy efficiency, which may be achieved either by enhanced productivity at constant energy consumption or by reduced energy consumption at constant productivity. The report presents an IT view of the product development process. First, modern methods of product development are analysed including IT support and IT systems. Requirements on IT systems are formulated which enable energy efficiency assessment and optimisation in all phases of product development on the basis of the IT systems used. IT systems for energy-sensitive product development will support the construction engineer in the development of energy-efficient products. For this, the functionalities of existing PDM systems must be enhanced by methods of analysis, synthesis and energy efficiency assessment. Finally, it is shown how the methods for analyzing energy-relevant data can be integrated in the work flow.

  14. Visualizing the Stability of Char: Molecular- to Micron-scale Observations of Char Incubated in a Tropical Soil

    Science.gov (United States)

    Heckman, K. A.; Ramon, C.; Weber, P. K.; Torn, M. S.; Pett-Ridge, J.; Nico, P. S.

    2014-12-01

    The persistence of pyrogenic materials (hereafter referred to as char) in terrestrial ecosystems is of interest both from a carbon cycle modelling perspective and a climate change mitigation standpoint. However, the fate of newly introduced char in soils remains unclear. Recent reviews attempting to summarize trends in char decomposition have come to differing conclusions, further stressing the complexity of factors dictating char stability in soils. The current dataset specifically addresses the stability of char additions to a tropical clay-rich soil, possible priming effects, and interactions among char, microbial communities and the mineral matrix. 13C- and 15N-labeled Acer rubrum(red maple) wood was combusted at 400°C and added to surface (0-10 cm) and subsurface (20-30 cm) soils from the Luquillo Experimental Forest, Puerto Rico. Soils were incubated for 13 and 345 days at 26°C. Following incubation, intact microaggregates were frozen and cryosectioned into thin sections of approximately 5 μm thickness and mounted on gold-coated quartz slides. Thin sections were examined by synchrotron-based Fourier transform infrared spectroscopy (SR-FTIR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), and high resolution secondary ion mass spectrometry (nanoSIMS). The combination of these μm to nm scale techniques allowed us to create corresponding spatial maps of native organic matter, char, and mineral phase distribution, track spatial variability in organic matter molecular structure, and dispersion of 13C and 15N isotopic labels. We present preliminary results indicating a high degree of stability of char in these wet tropical soils throughout the incubation period, suggesting that applied char may persist for long periods of time in similar soils.

  15. Determination of the intrinsic reactivities for carbon dioxide gasification of rice husk chars through using random pore model.

    Science.gov (United States)

    Gao, Xiaoyan; Zhang, Yaning; Li, Bingxi; Zhao, Yijun; Jiang, Baocheng

    2016-10-01

    Rice husk is abundantly available and environmentally friendly, and char-CO2 gasification is of great importance for the biomass gasification process. The intrinsic reaction rates of carbon dioxide gasification with rice husk chars derived from different pyrolysis temperatures were investigated in this study by conducting thermogravimetric analysis (TGA) measurements. The effects of gasification temperature and reactant partial pressure on the char-CO2 gasification were investigated and the random pore model (RPM) was used to determine the intrinsic kinetic parameters based on the experimental data. The results obtained from this study show that the activation energy, reaction order and pre-exponential factor varied in the ranges of 226.65-232.28kJ/mol, 0.288-0.346 and 2.38×10(5)-2.82×10(5)1/sPa(n) for the rice husk chars pyrolyzed at 700-900°C, respectively. All the determination coefficients between the RPM predictions and experimental results were higher than 0.906, indicating the RPM is reliable for determining and evaluating the intrinsic reactivities of rice husk chars.

  16. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  17. A burnout prediction model based around char morphology

    Energy Technology Data Exchange (ETDEWEB)

    Tao Wu; Edward Lester; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2006-05-15

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coal particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.

  18. 美国页岩油气发展趋势及影响%Shale Oil and Gas Development Trend of America and Its Effect on the World Energy Structure

    Institute of Scientific and Technical Information of China (English)

    李富兵; 白羽; 王建忠; 闫建平

    2015-01-01

    近年来页岩油气革命对美国经济的复苏起到了重要的推动作用,降低了化工原料成本,推动了化学工业发展;美国原油对外依存度不断降低,天然气基本实现自给,页岩油气发展势头减缓。对世界能源格局的影响:页岩油产量的快速增长是国际原油暴跌的重要因素之一;页岩油气革命对全球能源供需格局带来深刻影响;美国战略重心已转移到亚太。分析认为,市场化是美国实现页岩油气重大突破的关键,页岩油气的突破颠覆了常规油气的发展轨迹。政策建议:(1)加强常规油气的勘探开发;(2)积极推进我国石油工业的市场化改革;(3)政府应减少对石油企业的行政干预。%In recent years, shale oil and gas revolution has played an important role in economic recovery in the U.S. For example, the cost of chemical raw material has been reduced, with the result that the development of chemical industry has been promoted. At the same time, crude oil external dependence of America has been constantly decreased, basically achieving self-sufifciency in natural gas, and development momentum of shale oil and gas has slowed down. This paper analyzes the inlfuence of shale oil and gas development trend on the world energy structure. This inlfuence is that the rapid growth of shale oil production is one of the important factors which lead to the international crude oil tumbled; shale oil and gas revolution has impacted profoundly the global energy supply and demand pattern. As a result, the United States strategic focus has shifted to the Asia-Paciifc region. That analysis suggests that marketization holds the key to achieving shale oil and gas breakthrough; and this breakthrough overturns the development track of conventional oil and gas. On this basis, this paper offers some policy suggestions that we must do in China. These suggestions lay emphasis on the following: enhancing efforts on the

  19. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  20. Energy scenarios for Colombia: process and content

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ricardo A. [National Univ. of Colombia, Escuela de Geosciencias y Medio Ambiente, Medellin (Colombia); Vesga, Daniel R.A. [Unidad de Planeacion Minero Energetica, Bogota (Colombia); Cadena, Angela I. [Los Andes Univ., School of Engineering, Bogota (Colombia); Boman, Ulf [Kairos Future AB, Stockholm (Sweden); Larsen, Erik [Cass Business School, London (United Kingdom); Dyner, Isaac [Universidad Nacional de Colombia, Energy Inst., Medellin (Colombia)

    2005-02-01

    This paper presents the approach undertaken, and the four energy scenarios that have been developed, to support long term energy policy in Colombia. The scenarios were constructed with emphasis on maximum interaction between stakeholders in the Colombian energy sector. The process directly involved over 120 people. The scenarios were developed as strategic support tools for the Energy and Mining Planning Unit (UPME), which is the Colombian institution in charge of developing the country's energy strategies and National Energy Policy. The methodology employed is presented, followed by a detailed description of each of the four scenarios. (Author)

  1. Drug Development Process

    Science.gov (United States)

    ... Device Approvals The Drug Development Process The Drug Development Process Share Tweet Linkedin Pin it More sharing ... Pin it Email Print Step 1 Discovery and Development Discovery and Development Research for a new drug ...

  2. Striving for an Energy and Resources Saving Refinery with Harmonious Development

    Institute of Scientific and Technical Information of China (English)

    Sun Lili

    2007-01-01

    The operating circumstances of refinery industry in China in 2005 were referred to in this paper,along with the processes for development of petrochemical industry aimed at regionalization,concentrated disposition of enterprises and construction of industrial bases.The pressure faced currently by the oil refining industry in terms of resources avalibility and environmental regulations was analyzed.The key elements associated with the refining industry restructuring to economize on all kinds of resources were discussed and presented.It is stated that the key for building an energy and materials saving oil refining industry should rely on the adoption of advanced process and engineering technology,adjustment of refinery configuration,improving the energy and resources utilization efficiency,deep processing of crude oils,optimizing all kinds of resources,reducing effluents by saving water,as well as boosting the integration of oil refining with chemical production,concentrated disposition and realization of large scale of process units.

  3. Effect of temperature and pressure on characteristics and reactivity of biomass-derived chars.

    Science.gov (United States)

    Recari, J; Berrueco, C; Abelló, S; Montané, D; Farriol, X

    2014-10-01

    This study evaluates the influence of pyrolysis temperature (350-450°C) and pressure (0.1-2.0MPa) on product yields and char properties. Spruce chars were produced under slow pyrolysis conditions in a fixed bed reactor. Special attention was devoted to the study of the oxidation reactivity of the produced chars, and its relationship with the evaluated char properties. The obtained results showed that the effect of the pyrolysis condition on char production and in particular on the mechanism of secondary char formation strongly influenced the char reactivity. Additionally it has been observed that the interval of temperature between 350 and 450°C may be key in the mechanism of tar repolymerization. The information provided in this study is of great interest for the determination of optimal operation conditions and the design of new gasification concepts or the development of bioenergy carriers via pyrolysis technologies.

  4. Effect of char preparation temperature on the evolution of nitrogen-containing species during char oxidation at fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Lu, J.; Yue, G. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Beer, J.M. [Massachusetts Inst. of Technology, Boston, MA (United States). Dept. of Chemical and Fuel Engineering; Molina, A.; Sarofim, A.F. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

    2002-07-01

    Fluidized bed combustion is gaining popularity as a means to burn coal and waste fuels because the low temperatures of fluidized bed combustors generally result in low thermal nitric oxide (NO) production. However, nitrous oxide (N{sub 2}O) emissions can be relativity high and strategies must be developed to reduce emissions of this greenhouse gas. This paper presents the results of a laboratory study that examined the effect of pyrolysis temperature on the conversion of char-N to N{sub 2}O, NO and hydrogen cyanide (HCN) in fluidized bed combustion. When anthracite coal was used, an increase in the pyrolysis temperature resulted in reduced conversion of char-N to N{sub 2}O and HCN. However, the conversion to NO increased. This observation may be due to the lower hydrogen content of the chars produced at higher temperature and their lower reactivity. Other possibilities may be that the lower char reactivity for chars produced at high pyrolysis temperature may affect the reactions occurring in the boundary layer. Chars of lower reactivity in particular, may react at lower particle temperature and under high transient oxygen concentrations. A simplified char combustion representation was used to examine the effect of temperature and equivalence ratio on HCN oxidation. A reduction of equivalence ratio could explain some of the observed variations in product distribution with increased pyrolysis temperature. 19 refs., 1 tab., 5 figs.

  5. High temperature process steam application at the Southern Union Refining Company, Hobbs, New Mexico. Solar energy in the oil patch. Final report, Phase III: operation, maintenance, and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, L.E.; McGuire, D.R.

    1984-05-01

    This final report summarizes the technical reports for Phase III of this project. The third phase included the operation, maintenance, upgrade and performance reporting of a 10,080 square foot Solar Industrial Process Heat System installed at the Famariss Energy Refinery of Southern Union Refining Company near Hobbs, New Mexico. This report contains a description of the upgraded system, and a summary of the overall operation, maintenance and performance of the installed system. The results of the upgrade activities can be seen in the last two months of operational data. Steam production was significantly greater in peak flow and monthly total than at any previous time. Also monthly total cost savings was greatly improved even though natural gas costs remain much lower than originally anticipated.

  6. Applications of Enzymes in Oil and Oilseed Processing

    DEFF Research Database (Denmark)

    Xu, Xuebing

    conventionally high temperature conditioning or cooking is necessary. The good story in industry is the fish oil and olive oil processing. Good quality and higher oil yield have been achieved through the use of enzymes in the processing stages. For the refining stage, the use of enzymes for degumming has...

  7. Current Status of Oil Distribution and Development in China

    Institute of Scientific and Technical Information of China (English)

    Zhou Qingfan

    2009-01-01

    @@ China has rich oil resources, yet relatively low-quality crude oil and difficulty in exploration and development limit the pace the oil industry will be. At present, the prospects of oil development are in a moderate mature stage, the increasing trend of high basic value in oil reserves pose a huge potential of oil exploration and development in China. The most proved reserves are distributed in big-and-middle-sized basins, and will be the main fields of undiscovered oil resources. In addition,though the degree of exploration in unconventional oil is low, its development with abundance resources will be as a significant complementary resource to conventional oil.

  8. Genetics Home Reference: Char syndrome

    Science.gov (United States)

    ... a distinctive facial appearance, a heart defect called patent ductus arteriosus, and hand abnormalities. Most people with Char syndrome ... a triangular-shaped mouth, and thick, prominent lips. Patent ductus arteriosus is a common heart defect in newborns, and ...

  9. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  10. International oil and gas exploration and development activities

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-29

    This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

  11. Experimental Study of Hydrogasification of Lignite and Subbituminous Coal Chars

    Directory of Open Access Journals (Sweden)

    Stanisław Gil

    2015-01-01

    Full Text Available The experimental facility for pressure hydrogasification research was adapted to the pressure of 10 MPa and temperature of 1300 K, which ensured repeatability of results and hydrogen heating to the process temperature. A hydrogasification reaction of chars produced from two rank coals was investigated at temperatures up to 1173 K, pressures up to 8 MPa, and the gas flow rates of 0.5–5 dmn3/min. Reactivity of the “Szczerców” lignite char was found to be slightly higher than that of the subbituminous “Janina” coal char produced under the same conditions. A high value of the char reactivity was observed to a certain carbon conversion degree, above which a sharp drop took place. It was shown that, to achieve proper carbon conversion, the hydrogasification reaction must proceed at a temperature above 1200 K.

  12. Direct reduction of iron ore by biomass char

    Science.gov (United States)

    Zuo, Hai-bin; Hu, Zheng-wen; Zhang, Jian-liang; Li, Jing; Liu, Zheng-jian

    2013-06-01

    By using thermogravimetric analysis the process and mechanism of iron ore reduced by biomass char were investigated and compared with those reduced by coal and coke. It is found that biomass char has a higher reactivity. The increase of carbon-to-oxygen mole ratio (C/O) can lead to the enhancement of reaction rate and reduction fraction, but cannot change the temperature and trend of each reaction. The reaction temperature of hematite reduced by biomass char is at least 100 K lower than that reduced by coal and coke, the maximum reaction rate is 1.57 times as high as that of coal, and the final reaction fraction is much higher. Model calculation indicates that the use of burden composed of biomass char and iron ore for blast furnaces can probably decrease the temperature of the thermal reserve zone and reduce the CO equilibrium concentration.

  13. Energy saving in milk processing

    Directory of Open Access Journals (Sweden)

    M. Janzekovic

    2009-04-01

    Full Text Available Purpose: of this paper is to present the justification of replacement of the obsolete system for milk pasteurization and washing of the production line by the newer CIP system (cleaning in place in the dairy. The latter ensures reliable washing and sterilization of lines and machines, which is one of the principal prerequisites for the product quality.Design/methodology/approach: The measurements were performed with the installed equipment CIP Module 5111 - 5116. The cleaning equipment is an 8 line satellite system. The SPS control and the visualization take place through the RAS (Remote - Access network. The visualization data are archived and the visualization is connected to the PC network. The worn Alfa Laval pasteur has been replaced by the new Fischer equipment.Findings: The new CIP system assured 43% water saving, if compared with the old equipment. Saving of washing agents (caustic solution, acid amounted to 11.5%. Due to smaller need for energy (gas, electricity the energy costs were reduced by 19%.Research limitations/implications: The modern system for pasteurization and washing is closely connected with energy saving measures. It allows the production of safe milk products in accordance with HACCP (hazard analyses of critical control points and reduces the hazard of injuries with chemicals.Practical implications: For any company the investments are a decisive factor for its growth and development. Modernization of systems for washing of production lines in dairies assures the cost reduction at all levels and the milk processing into high-quality milk products.Originality/value: The new CIP energy saving system has an influence on the costs of the dairy business activities and the reduction of environment burdening. Owing to the use of new equipment allowing 20 second maintaining time of pasteurization the pasteurization temperature has been reduced from 78°C to 76°C and, thus, the profitability of the pasteurization process has

  14. Application of Hilbert-Huang signal processing to ultrasonic non-destructive testing of oil pipelines

    Institute of Scientific and Technical Information of China (English)

    MAO Yi-mei; QUE Pei-wen

    2006-01-01

    In this paper, a detection technique for locating and determining the extent of defects and cracks in oil pipelines based on Hilbert-Huang time-frequency analysis is proposed. The ultrasonic signals reflected from defect-free pipelines and from pipelines with defects were processed using Hilbert-Huang transform, a recently developed signal processing technique based on direct extraction of the energy associated with the intrinsic time scales in the signal. Experimental results showed that the proposed method is feasible and can accurately and efficiently determine the location and size of defects in pipelines.

  15. Rapid Development of China's Offshore Oil Industry

    Institute of Scientific and Technical Information of China (English)

    Zhang Haimin

    2002-01-01

    @@ Founded on February 15, 1982, China National Offshore Oil Corporation (CNOOC) has experienced two decades of rapid development, in which the annual offshore oil production rose dramatically to 23.13 million tons in 2001 from 90,000 tons in 1982while the total assets jumped to 72 billion yuan from 2.8 billion yuan, but the total employees dropped to 21,000 people from 30,000. This offshore oil giant generated a profit of 9.2 billion yuan in 2001 and turned over 4 billion yuan in taxes to the State with the crude production cost lowered to US$9 per barrel.

  16. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  17. Development of Bottom Oil Recovery Systems. Revised

    Science.gov (United States)

    2014-02-01

    Athos I), open-ocean (T/V Prestige), and oil-field deep ocean drilling (Deepwater Horizon) related spills, the problems associated with tracking... mud . Probably the least sensitive bottom types are sand and mud bottoms in areas that already suffer from pollution such as industrial areas. Note...Capping Coral Reef Sea Grass Beds Kelp Forest Rocky Bottom Sand Mud Recommended Provisional Not Recommended Development of Bottom Oil Recovery Systems

  18. Highly effective technology and technique for extraction of oils from fruit-and-vegetable stones with use of renewable energy sources

    OpenAIRE

    Karim Gafurov; Adyl Safarov

    2009-01-01

    The oil extraction processes from oil-bearing cultures’ seeds and stones is time and energy-intensive. The study shows that during processing kernels of oil-bearing cultures under influence of electromagnetic field the destruction process of cellar structure is intensified in 7-9 times than in existing moist-heat processing. Moreover, the process runs shorter and under comparatively low temperature regime that reduces the electric power expenses. Using electromagnetic processing of oil-beari...

  19. ESST Proceedings Rotterdam 2009. Beet Quality. Sustainability of beet sugar production. Energy usage - future challenges. General process technology developments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the conference of the European Society for Sugar Technology (Berlin, Federal Republic of Germany) between 17th and 20th June, 2009 in Rotterdam (The Netherlands) the following lectures were held: (1) Sugar beet quality during long-term storage in clamp and field (A.W.M. Huijbregts); (2) Methods used in the Netherlands to limit frost damage and to process frost-deteriorated beets (J. Strujis, M. Jaspers, M. van Dijk); (3) Biotech in sugarbeet and sugarcane: Current status (T.K. Schwartz, C. Richard); (4) Separation of water through gas hydrate (T. Boech Andersen); (5) Optimised standard of sugar manufacturing - first calculations (F. Lorenz, T. Frankenfeld); (6) Reconsidering vapour compression for sugar crystallization (A. Dolls, M. Bruhns); (7) The development of sustainability standards in the sugar industry (P. Rein); (8) Bioethanol: sugar beet, sugar cane or second generation? (W.J. Corre, J.G. Conijin); (9) The sustainability of beet sugar production in comparison with other sugar crops (P. Christodoulou, V. Kazantzi, S. Bezergianni, K. Gounaris); (10) Alternative products from sugar beets (J. Iciek, S. Wawro); (11) Alternative products from sugar beets (M. Wojtczak); (12) Increase of sugar yield by electrodialysis (J.P. Jenen, P.B. Hansen, M.P. Carter); (13) Optimal dosing of alkalizing agents in the juice purification (G. Roesner, W. Hein, F. Emerstorfer); (14) Affinity based separation technologies and their role in the current and future sugar industry (V. Kochergin); (15) Four to three-stage sugarhouse with two white sugar products (J. Jeppesen, M. Carter); (16) Practical experience of juice decalcification using a weak acid cation exchange resin plant incorporating fractal fluid distribution (E. West, P. Burroughs, P. Seymour); (17) A new process for the production of 'seed crystals' - Process development and field report from the factories (M. Walter, B. Ekelhof, S. Heppner, D. Wullbrandt); (18) Application possibilities and Properties

  20. Energy research and development profile of Australia

    Energy Technology Data Exchange (ETDEWEB)

    Kenkeremath, L.

    1986-01-01

    Australia is a large, sparsely populated country with an economy based traditionally on raw materials exports. Though still a major international trader in minerals and agricultural products, Australia has suffered a decline in productivity, employment, exports, and economic growth since the 1950s. Most energy research and development (R and D) and policymaking activities are carried out under the National Energy Research, Development, and Demonstration (NERDD) program. The NERDD program priorities include, among others, production of liquid hydrocarbon fuels from natural gas or coal-derived synthesis gas and oil and gas exploration, assessment, and recovery technology (high priority); production of liquid fuels from coal and oil shale by hydrogenation or pyrolysis, coal gasification, and achievement of cost reductions in coal and oil shale exploration and assessment techniques (medium priority); and in-situ coal gasification (low priority). Bilateral agreements for energy R and D with other countries are carried out under the Australian Department of National Development and Energy. Australia currently has agreements related to oil, gas, shale, and coal liquids R and D with the UK, the US, Japan, and West Germany.

  1. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Rotariu, G. J.

    1982-02-01

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We

  2. Essential oil extraction with concentrating solar thermal energy

    OpenAIRE

    Veynandt, François

    2015-01-01

    Material complementari del cas estudi "Essential oil extraction with concentrating solar thermal energy”, part component del llibre "Case studies for developing globally responsible engineers" Peer Reviewed

  3. Prospective framework for collection and exploitation of waste cooking oil as feedstock for energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-04-15

    From the viewpoint of waste-to-energy, waste cooking oil is one of the attractive and available recycled feedstocks, apart from agricultural residues. The generation of energy from waste cooking oil is considered as an effective technique for waste management, as well as a beneficial form of energy recovery. Two alternative systems and a conventional system of waste cooking oil collection and conversion are evaluated by the cost benefit analysis in order to find a suitable method for waste-to-energy conversion. The results show that the collection of waste cooking oil with waste lubricating oil (System II) a useful alternative to the management of waste cooking oil (B/C > 1). The total heat produced by the combustion of pyrolytic oil at maximum and minimum conversion rates is also determined. The separate collection of waste cooking oil, subjected to chemical pre-treatment prior to introduction in a pyrolysis reactor (System III), is considered an undesirable option (B/C < 1) due to the cost of the chemicals involved. Although the exclusion of chemical pre-treatment makes System III a desirable option, the total amount of heat of combustion generated is less. The increased electricity cost required for the process has no effect on the benefit-cost ratio of System II. However, System III, excluding chemical pre-treatment, becomes an unprofitable alternative when the electricity cost reaches 100% of the fixed capital cost at the minimum conversion rate. (author)

  4. Energy 2007. Research, development, demonstration; Energi 07. Forskning, udvikling, demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Byriel, I.P.; Justesen, Helle; Beck, A.; Borup Jensen, J.; Rosenfeldt Jakobsen, Kl; Jacobsen, Steen Hartvig (eds.)

    2007-08-10

    Danish energy research is in an exciting and challenging situation. Rising oil prices, unstable energy supply, climate policy responsibilities and globalization have brought development of new environmentally friendly and more efficient energy technologies into focus. Promising international markets for newly developed energy technologies are emerging, and at the same time well established Danish positions of strength are challenged by new strong actors on the global market. The Danish government has set to work on its vision of an appreciable strengthening of public energy research funding through the recent law on the energy technological development and demonstration programme EUDP and the realization of globalization funds. The interaction between basic and applied research must be kept intact. In this report the various Danish energy research programmes administered by Energinet.dk, Danish Energy Authority, Danish Energy Association, Danish Council for Strategic Research's Programme Commission on Energy and Environment and Danish National Advanced Technology Foundation, coordinate their annual reports for the first time. The aim of Energy 2007 is to give the reader an idea of how the energy research programmes collaborate on solving the major energy technology challenges - also in an international context. (BA)

  5. Decomposition of Transformer Oil Under Ultrasonic Irradiation During Degassing Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the degassing process of transformer oil with ultrasonic waves, decomposition of the oil was observed. Light hydrocarbons, including methane, ethane, ethylene, acetylene, propane etc, were found to be released continuously from the oil into headspace within a closed vial placed in an ultrasonic field. The gases came from decomposition of hydrocarbon molecules under cavitation effect.

  6. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  7. 巴西能源发展规划及油气投资环境分析%Analysis on Energy Development Planning and the Investment Environment of Oil and Gas in Brazil

    Institute of Scientific and Technical Information of China (English)

    王越

    2009-01-01

    2008年12月,巴西的石油平均日产量为188万桶,位居拉美第三位,相比位居第一位的墨西哥(272万桶)和第二位的委内瑞拉(235万桶),巴西与之迥然不同的是它的石油产量正日益增长.巴西计划2020年以前使本国的石油产量增加一倍以上,并有潜力成为重要的石油出口国;随着巴西2030年国家能源发展规划的颁布和实施,更使其成为国际关注的焦点.近年来,巴西与中国的传统友谊因两国高层互访频繁而出现上升态势,使得中巴能源领域的更深一步合作成为可能.%Up to December of 2008, the average per day oil output was 1,880,000 barrels in Brazil, ranked third in Latin America; Comparing to the first ranks of Mexico (272 million barrels) and Venezuela in the second (235 million barrels), the difference is that Brazil's oil production is growing. Brazil plans to make its oil production increase more than twice by 2020, and have the potential to become an important oil-exporting country. With the promulgation and implementation of the national energy development planning of 2030, Brazil has become the focus of international concern. In recent years, due to frequent high-level visits between the two countries, the traditional friendship between Brazil and China has been arising, and this makes the deeper cooperation of the two countries in the energy sector possible.

  8. Modeling Energy and Development : An Evaluation of Models and Concepts

    NARCIS (Netherlands)

    Ruijven, Bas van; Urban, Frauke; Benders, René M.J.; Moll, Henri C.; Sluijs, Jeroen P. van der; Vries, Bert de; Vuuren, Detlef P. van

    2008-01-01

    Most global energy models are developed by institutes from developed countries focusing primarily oil issues that are important in industrialized countries. Evaluation of the results for Asia of the IPCC/SRES models shows that broad concepts of energy and development. the energy ladder and the envir

  9. Removal of heteroatoms and metals from heavy oils by bioconversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.

    1996-06-01

    Biocatalysts, either appropriate microorganisms or isolated enzymes, will be used in an aqueous phase in contact with the heavy oil phase to extract heteroatoms such as sulfur from the oil phase by bioconversion processes. Somewhat similar work on coal processing will be adapted and extended for this application. Bacteria such as Desulfovibrio desulfuricans will be studied for the reductive removal of organically-bound sulfur and bacteria such as Rhodococcus rhodochrum will be investigated for the oxidative removal of sulfur. Isolated bacteria from either oil field co-produced sour water or from soil contaminated by oil spills will also be tested. At a later time, bacteria that interact with organic nitrogen may also be studied. This type of interaction will be carried out in advanced bioreactor systems where organic and aqueous phases are contacted. One new concept of emulsion-phase contacting, which will be investigated, disperses the aqueous phase in the organic phase and is then recoalesced for removal of the contaminants and recycled back to the reactor. This program is a cooperative research and development program with the following companies: Baker Performance Chemicals, Chevron, Energy BioSystems, Exxon, Texaco, and UNOCAL. After verification of the bioprocessing concepts on a laboratory-scale, the end-product will be a demonstration of the technology at an industrial site. This should result in rapid transfer of the technology to industry.

  10. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  11. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India)]. E-mail: aljymittal@yahoo.co.in; Mittal, Jyoti [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Kurup, Lisha [Department of Applied Chemistry, Maulana Azad National Institute of Technology, Bhopal 462007 (India); Singh, A.K. [Department of Applied Chemistry, University Institute of Technology, RGPV, Bhopal 462036 (India)

    2006-11-02

    Erythrosine is a water-soluble xanthene class of dye. It is widely used as colorant in foods, textiles, drugs and cosmetics. It is highly toxic, causes various types of allergies, thyroid activities, carcinogenicity, DNA damage behaviour, neurotoxicity and xenoestrogen nature in the humans and animals. The photochemical and biochemical degradation of the erythrosine is not recommended due to formation of toxic by-products. The present paper is an attempt to remove erythrosine from wastewater using adsorption over Bottom Ash-a power plant waste and De-Oiled Soya-an agricultural waste. Under the batch studies, effect of concentration of dye, temperature, pH of the solution, dosage of adsorbents, sieve size of adsorbents, etc., have been studied for the uptake of the dye over both adsorbents. The adsorption process verifies Langmuir and Freundlich adsorption isotherms in both the cases and based on the data different thermodynamic parameters have been evaluated. Batch studies also include kinetic measurements, rate constant study, mass transfer behaviour and establishment of mechanistic pathway for both the cases. For the bulk removal of the dye column operations have been carried out and breakthrough capacities of the Bottom Ash and De-Oiled Soya columns have been calculated. Attempts have also been made for the recovery of the adsorbed dye from exhausted columns by eluting dilute NaOH and more than 90% of the dye was recovered.

  12. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  13. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  14. The value of offshore field experiments in oil spill technology development for Norwegian waters.

    Science.gov (United States)

    Faksness, Liv-Guri; Brandvik, Per Johan; Daling, Per S; Singsaas, Ivar; Sørstrøm, Stein Erik

    2016-10-15

    The blowout on the Ekofisk field in the North Sea in 1977 initiated R&D efforts in Norway focusing on improving oil spill contingency in general and more specifically on weathering processes and modeling drift and spreading of oil spills. Since 1978, approximately 40 experimental oil spills have been performed under controlled conditions in open and ice covered waters in Norway. The importance of these experimental oil spills for understanding oil spill behavior, development of oil spill and response models, and response technologies are discussed here. The large progress within oil spill R&D in Norway since the Ekofisk blowout has been possible through a combination of laboratory testing, basin studies, and experimental oil spills. However, it is the authors' recommendation that experimental oil spills still play an important role as a final validation for the extensive R&D presently going on in Norway, e.g. deep-water releases of oil and gas.

  15. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A. V., E-mail: ponomarev@ipc.rssi.ru [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation); Pershukov, V. A. [ROSATOM National Nuclear Corporation (Russian Federation); Smirnov, V. P. [CJSC “Nauka i Innovatsii” (Russian Federation)

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  16. The effect of char structure on burnout during pulverized coal combustion at pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Wu, H.; Benfell, K.E.; Lucas, J.A.; Wall, T.F.

    1999-07-01

    An Australian bituminous coal sample was burnt in a drop tube furnace (DTF) at 1 atm and a pressurized drop tube furnace (PDTF) at 15 atm. The char samples were collected at different burnout levels, and a scanning electron microscope was used to examine the structures of chars. A model was developed to predict the burnout of char particles with different structures. The model accounts for combustion of the thin-walled structure of cenospheric char and its fragmentation during burnout. The effect of pressure on reaction rate was also considered in the model. As a result, approximately 40% and 70% cenospheric char particles were observed in the char samples collected after coal pyrolysis in the DTF and PDTF respectively. A large number of fine particles (< 30 mm) were observed in the 1 atm char samples at burnout levels between 30% and 50%, which suggests that significant fragmentation occurred during early combustion. Ash particle size distributions show that a large number of small ash particles formed during burnout at high pressure. The time needed for 70% char burnout at 15 atm is approximately 1.6 times that at 1 atm under the same temperature and gas environment conditions, which is attributed to the different pressures as well as char structures. The overall reaction rate for cenospheric char was predicted to be approximately 2 times that of the dense chars, which is consistent with previous experimental results. The predicted char burnout including char structures agrees reasonably well with the experimental measurements that were obtained at 1 atm and 15 atm pressures.

  17. The Relationship Between Oil and Gas Industry Investment in Alternative Energy and Corporate Social Responsibility

    Science.gov (United States)

    Konyushikhin, Maxim

    The U.S. Energy Information Administration forecasted energy consumption in the United States to increase approximately 19% between 2006 and 2030, or about 0.7% annually. The research problem addressed in this study was that the oil and gas industry's interest in alternative energy is contrary to its current business objectives and profit goals. The purpose of the quantitative study was to explore the relationship between oil and gas industry investments in alternative energy and corporate social responsibilities. Research questions addressed the relationship between alternative energy investment and corporate social responsibility, the role of oil and gas companies in alternative energy investment, and why these companies chose to invest in alternative energy sources. Systems theory was the conceptual framework, and data were collected from a sample of 25 companies drawn from the 28,000 companies in the oil and gas industry from 2004 to 2009. Multiple regression and correlation analysis were used to answer the research questions and test hypotheses using corporate financial data and company profiles related to alternative energy investment and corporate social responsibility in terms of oil and gas industry financial support of programs that serve the greater social good. Results indicated significant relationships between alternative energy investment and corporate social responsibility. With an increasing global population with energy requirements in excess of what is available using traditional means, the industry should increase investment in alternative sources. The research results may promote positive social change by increasing public awareness regarding the degree to which oil and gas companies invest in developing alternative energy sources, which might, in turn, inspire public pressure on companies in the oil and gas industry to pursue use of alternative energy.

  18. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.

    Science.gov (United States)

    Leng, L Y; Husni, M H A; Samsuri, A W

    2011-11-01

    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field.

  19. Oil demand and price elasticity of energy consumption in the GCC countries: A panel cointegration analysis

    Directory of Open Access Journals (Sweden)

    Md Qaiser Alam

    2016-07-01

    Full Text Available This paper examines the cointegrating relationship between oil demand and price elasticity of energy consumption in the Gulf Co-operation Council (GCC countries during the period 1980-2010. The paper has applied the recently developed panel cointegration techniques, Dynamic Ordinary Least Squares (DOLS and panel DOLS in a panel of GCC countries. The region is being recognized as the major region of oil production and export in the global economy. In recent times, the region is emerging as a fastest growing oil consuming region globally. This fast increase in the level of oil consumption in the major oil exporting countries raises the energy security implications in the sphere of the growing oil demand in the world economy. This is likely to bring many pitfalls in the form of price distortions and reduced growth rates in and outside the oil export region. The empirical finding reveals a cointegrating relationship among the variables and indicates an income elastic and price inelastic demand for oil in the long-run in the GCC countries. The outcomes of income elastic and price inelastic demand for oil are also consistent in the short-run. The income and price inelastic demand for oil though exists for a full panel of countries but vary across the GCC countries. The result of the Granger Causality test also depicts a unidirectional causality running from income to oil consumption and bidirectional causality running between oil prices and income in the GCC countries. Moreover, the outcomes reveal that demand for oil varies positively with the growth of income and negatively with the price level in the economy.

  20. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  1. From Wellhead to Market. Oil Pipeline Tariffs and Tariff Methodologies in Selected Energy Charter Member Countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    Freedom of energy transit is an important element of the Energy Charter process. The Energy Charter Treaty obliges its member countries to facilitate energy transit on a nondiscriminatory basis, and to refrain from imposing unreasonable delays, restrictions or charges on energy in transit. A main focus for the Energy Charter process has been the conditions for transit of natural gas. Tariffs, along with access to energy transit infrastructure, are the basis of free transit. To examine gas transit flows and tariff methodologies, the Energy Charter Secretariat published a study on gas transit tariffs in selected Energy Charter member countries in January 2006. This report follows on from the gas tariff study and examines oil transit flows and oil transit tariffs. The Energy Charter constituency in the land-locked part of the Eurasian continent has the world's largest oil pipeline system, which was originally built during the Soviet era. After collapse of the Soviet Union the pipeline system was divided into separate parts by emergence of new borders, and oil transported by the pipeline now has to cross multiple borders before it reaches its destination. The main objectives of this study are; to review transit tariff methodologies for existing and new oil transit pipeline systems across selected member countries of the Energy Charter; to compare transit tariff regimes with those for domestic transport; and to assess the overall consistency of these transit tariffs vis-a-vis the provisions of the Energy Charter Treaty and draft Transit Protocol. Geographically, this study covers the following key oil transit countries; in Eastern Europe, the Caucasus and Central Asia: the Russian Federation, Belarus, Ukraine, Azerbaijan, Kazakhstan, Georgia; and in Western Europe: France, Switzerland, Germany, Austria, Italy, Norway and the UK. Chapter 3 gives a brief review on main domestic and cross-border oil flows in the countries examined. Chapter 4 describes essential

  2. Development Situation and Future Tendency of Liaohe Oil Province

    Institute of Scientific and Technical Information of China (English)

    Cao Weigeng

    1995-01-01

    @@ Liaohe Oil Province is the third largest one stably developing in China. It's composed of more than 20 oil and gas fields with complicated geological conditions. It has various types of reservoir developing 14 sets of oil-bearig horizon with multi-types of crude oil (light oil,heavy oil and high pour-point oil). From 1970 to the end of 1993, there were 22 oilfields which have been put into exploitation, including Huaxiling Oilfield etc. More, Shuangnan and Kailu Oilfields are now on trial production. Since 1984,the annual incremental production of crude oil from these fields reached over 85× 104 t (see Fig. 1).

  3. Rural energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Stern, R.

    1997-12-01

    The author discusses the worldwide problem and need for rural electrification to support development. He points out that rural areas will pay high rates to receive such services, but cannot afford the capital cost for conventional services. The author looks at this problem from the point of energy choices, subsides, initial costs, financing, investors, local involvement, and governmental actions. In particular he is concerned with ways to make better use of biofuels, to promote sustainable harvesting, and to encourage development of more modern fuels.

  4. Effects of different catalysts on steam gasification of biomass char at low temperature%不同催化剂对生物质半焦低温气化效果的影响

    Institute of Scientific and Technical Information of China (English)

    俞元元; 肖军; 沈来宏; 杜玉照

    2013-01-01

      生物质气化技术是将低品位的生物质能转换成高品位能源的有效途径.该文以稻壳和麦秸半焦为试验对象,进行了低温下生物质半焦的水蒸气气化试验,研究了浸渍法制备的碱金属催化剂和气化温度对生物质半焦气化行为的影响.结果显示,对于稻壳半焦气化而言,相同负载量的 K 基催化剂的催化效果明显优于 Na 基催化剂,相比非催化时稻壳半焦的碳转化率分别提高了18.2%和13.5%,差异明显.增加 K2CO3负载量有利于半焦气化反应的进行,但负载量不宜超过30%.不同的煅烧温度,催化剂的活性组分存在形式有较大差别,负载量为30%的K 基催化剂在800℃煅烧后具有最佳的催化效果.相同条件下,麦秸半焦的气体产率和碳转化率均较高,在700℃下添加该催化剂时分别达到130.0 mol/kg 和95.9%,相比非催化时分别提高了57.0%和34.1%.随着温度的降低,气体产率和碳转化率均明显下降,该文催化条件下的半焦气化温度不宜低于700℃.研究结果可为生物质低温气化高效催化剂的选择提供理论依据.%The low-temperature catalytic gasification of biomass is a promising technology for hydrogen production from the energy point of view due to its relatively low heat input. And it has attracted the worldwide interests. However, the lower char conversion efficiency and higher tar yield at low-temperature are unsolved problems to the technical application of low-temperature catalytic gasification. In order to overcome these issues, numerous researches are being focused on the catalyst development. As the studies concerning catalytic gasification of biomass char under relatively low temperature (T≤750℃) are fairly limited, catalytic gasification of two biomass char samples, rice husk and wheat straw, were investigated at relatively low temperature in this paper. The impregnated alkali metal catalysts were prepared in this

  5. Supporting Clean Energy Development in Swaziland

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    Swaziland, a country largely dependent on regional fossil fuel imports to meet power needs, is vulnerable to supply changes and price shocks. To address this challenge, the country's National Energy Policy and Implementation Strategy prioritizes actions to enhance energy independence through scaling up renewable energy and energy efficiency. With approximately 70 percent of the country lacking electricity, Swaziland is also strongly committed to expanding energy access to support key economic and social development goals. Within this context, energy security and energy access are two foundational objectives for clean energy development in Swaziland. The partnership between the Swaziland Energy Regulatory Authority and the Clean Energy Solutions Center led to concrete outcomes to support clean energy development in Swaziland. Improving renewable energy project licensing processes will enable Swaziland to achieve key national objectives to expand clean energy access and transition to greater energy independence.

  6. Coagulation-flocculation pretreatment of oil sands process affected water

    Energy Technology Data Exchange (ETDEWEB)

    Pourrezaei, P.; El-Din, M.G. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2008-07-01

    This presentation addressed the issue of water use in the oil sands industry and efforts to use this limited resource more efficiently. Three wastewater treatment schemes for oil sands tailings ponds were proposed, notably primary, secondary and tertiary treatment. Primary treatment involves the removal of suspended solids using physical-chemical treatments. Secondary treatment involves the removal of dissolved solids and organics using chemical oxidation, ultrafiltration or nanofiltration. Tertiary treatment involves removal of residual organics/solids using biological activated carbon filtration, sand filtration or reverse osmosis. The composition of oil sands process water (OSPW) was also discussed with reference to suspended solids, salts, hydrocarbons, other dissolved organics (such as naphthenic acids and phenols), ammonia, inorganic compounds and trace elements. The conventional coagulation/flocculation process is essential in industrial wastewater treatment. It is cost effective, easy to operate and energy efficient. The process is used because small suspended and colloidal particles and dissolved constituents cannot be removed quickly by sedimentation. A chemical method must be used. Coagulation/flocculation brings small suspended and colloidal particles into contact so that they collide, stick and grow to a size that settles readily. Alum is the predominant and least expensive water treatment coagulant used for the coagulation/flocculation process. It provides positively charged ions to neutralize the negative charge of colloidal particles resulting in aggregation. It creates big settling flocs that enmesh colloids as it settles. The factors affecting the process include pH, chemical type, chemical concentration, rapid mixing intensity, slow mixing intensity and time. tabs., figs.

  7. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  8. THE CHARACTERISTICS OF THE PRODUCTION AND PROCESSING OF OIL AND NATURAL GAS IN CROATIA FROM 2000 TO 2014

    Directory of Open Access Journals (Sweden)

    Josipa Velić

    2016-06-01

    Full Text Available This research analyzes the characteristics of the production and processing of oil, condensates and natural gas in the Republic of Croatia starting from 2000, until the end of 2014. Amounts of balance sheet (exploitable reserves of oil and condensates ranges from 9330,92 × 103 m3 in 2005, to 13 471,08 × 103 m3 in 2013, while extracted amounts are gradually declining from 1332,61 × 103 m3 to 639,96 × 103 m3. The ratio of extracted amounts and reserves is gradually declining, meaning that a slight increase in reserves does not affect the extracted amounts. Exploitable reserves of natural gas during the observed period fluctuate greatly. Being peaked in 2007, at 40,919.70 × 106 m3, they reached a low in 2014, at 17,932.98 × 106 m3. Unlike liquid hydrocarbons, the ratio of extracted and exploitable amounts is growing and peaked in 2014. Overall energy demands for oil in Croatia (shown as total consumption of crude oil amounted to 3032,8 × 103 m3 in 2013, while demands for natural gas amounted to 2809,90 × 106 m3. It is interesting to note that the consumption of oil is rapidly declining, which is a favorable trend from the standpoint of reducing emissions of greenhouse gases. While needs are partly covered by domestic exploitation, the dependence on imports of oil and natural gas is still evident and ranges from 75% to 84% for oil and 28% to 46% for natural gas, without major changes to the trend. The amounts of processed hydrocarbons are declining gradually, especially motor gasoline and fuel oil, while diesel fuel amounts remain mostly the same. Further research as well as development of the exploitation of oil and natural gas is of paramount importance, especially by investing in cadre education and new technologies.

  9. Technical difficulties and solutions of direct transesterification process of microbial oil for biodiesel synthesis.

    Science.gov (United States)

    Yousuf, Abu; Khan, Maksudur Rahman; Islam, M Amirul; Wahid, Zularisam Ab; Pirozzi, Domenico

    2017-01-01

    Microbial oils are considered as alternative to vegetable oils or animal fats as biodiesel feedstock. Microalgae and oleaginous yeast are the main candidates of microbial oil producers' community. However, biodiesel synthesis from these sources is associated with high cost and process complexity. The traditional transesterification method includes several steps such as biomass drying, cell disruption, oil extraction and solvent recovery. Therefore, direct transesterification or in situ transesterification, which combines all the steps in a single reactor, has been suggested to make the process cost effective. Nevertheless, the process is not applicable for large-scale biodiesel production having some difficulties such as high water content of biomass that makes the reaction rate slower and hurdles of cell disruption makes the efficiency of oil extraction lower. Additionally, it requires high heating energy in the solvent extraction and recovery stage. To resolve these difficulties, this review suggests the application of antimicrobial peptides and high electric fields to foster the microbial cell wall disruption.

  10. Product Development Process Modeling

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The use of Concurrent Engineering and other modern methods of product development and maintenance require that a large number of time-overlapped "processes" be performed by many people. However, successfully describing and optimizing these processes are becoming even more difficult to achieve. The perspective of industrial process theory (the definition of process) and the perspective of process implementation (process transition, accumulation, and inter-operations between processes) are used to survey the method used to build one base model (multi-view) process model.

  11. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  12. Energy Return on Investment (EROI) for Forty Global Oilfields Using a Detailed Engineering-Based Model of Oil Production.

    Science.gov (United States)

    Brandt, Adam R; Sun, Yuchi; Bharadwaj, Sharad; Livingston, David; Tan, Eugene; Gordon, Deborah

    2015-01-01

    Studies of the energy return on investment (EROI) for oil production generally rely on aggregated statistics for large regions or countries. In order to better understand the drivers of the energy productivity of oil production, we use a novel approach that applies a detailed field-level engineering model of oil and gas production to estimate energy requirements of drilling, producing, processing, and transporting crude oil. We examine 40 global oilfields, utilizing detailed data for each field from hundreds of technical and scientific data sources. Resulting net energy return (NER) ratios for studied oil fields range from ≈2 to ≈100 MJ crude oil produced per MJ of total fuels consumed. External energy return (EER) ratios, which compare energy produced to energy consumed from external sources, exceed 1000:1 for fields that are largely self-sufficient. The lowest energy returns are found to come from thermally-enhanced oil recovery technologies. Results are generally insensitive to reasonable ranges of assumptions explored in sensitivity analysis. Fields with very large associated gas production are sensitive to assumptions about surface fluids processing due to the shifts in energy consumed under different gas treatment configurations. This model does not currently include energy invested in building oilfield capital equipment (e.g., drilling rigs), nor does it include other indirect energy uses such as labor or services.

  13. The Development of Breakdown in Transformer Oil

    Directory of Open Access Journals (Sweden)

    Jozef Kudelcik

    2007-01-01

    Full Text Available The conditions under which breakdown of composite liquid - solid insulation can be occurred, e.g. in transformer, play an important role in designing of such insulation. The initial state of breakdown development is explained based on development of streamers in cavitations. The whole breakdown development in transformer oil is represented by RLC circuit and it depends on the parameters of outer circuit.

  14. Chars from gasification of coal and pine activated with K2CO3: acetaminophen and caffeine adsorption from aqueous solutions.

    Science.gov (United States)

    Galhetas, Margarida; Mestre, Ana S; Pinto, Moisés L; Gulyurtlu, Ibrahim; Lopes, Helena; Carvalho, Ana P

    2014-11-01

    The high carbon contents and low toxicity levels of chars from coal and pine gasification provide an incentive to consider their use as precursors of porous carbons obtained by chemical activation with K2CO3. Given the chars characteristics, previous demineralization and thermal treatments were made, but no improvement on the solids properties was observed. The highest porosity development was obtained with the biomass derived char (Pi). This char sample produced porous materials with preparation yields near 50% along with high porosity development (ABET≈1500m(2)g(-1)). For calcinations at 800°C, the control of the experimental conditions allowed the preparation of samples with a micropore system formed almost exclusively by larger micropores. A mesopore network was developed only for samples calcined at 900°C. Kinetic and equilibrium acetaminophen and caffeine adsorption data, showed that the processes obey to a pseudo-second order kinetic equation and to the Langmuir model, respectively. The results of sample Pi/1:3/800/2 outperformed those of the commercial carbons. Acetaminophen adsorption process was ruled by the micropore size distribution of the carbons. The caffeine monolayer capacities suggest a very efficient packing of this molecule in samples presenting monomodal micropore size distribution. The surface chemistry seems to be the determinant factor that controls the affinity of caffeine towards the carbons.

  15. Bolivia renewable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  16. HTL heavy oil upgrading a key solution for heavy oil upstream and midstream operations

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, M.A.; Pavel, S. K.; Hillderman, M. D. [Ivanhoe Energy (Canada)

    2011-07-01

    In the oil industry, heavy oil has become a strategic resource due to the decline of light crude oil reserves and the rising energy demand. Many challenges have to be overcome during heavy oil development and Ivanhoe Energy has developed a new process to address these issues. The heavy to light (HTL) upgrading process converts heavy crude oil into lighter and more valuable synthetic oil. This process can be used upstream, midstream or near the well head. The aim of this paper is to present the history of HTL's development, the technology itself and its performance and advantages. HTL captures the majority of the market value difference between heavy and light oil while eliminating diluent requirement; in addition this technology is economic at small scales. The HTL upgrading process presented herein is a simple and efficient solution for exploiting heavy oil and bitumen reserves.

  17. Projecting Wildlife Impacts Before Oil and Gas Development

    OpenAIRE

    Thomson, Janice

    2012-01-01

    Planning and decision making for oil and gas development are typically done without a landscape level spatial assessment of wildlife impacts. Yet readily available GIS technology can simulate alternative infrastructure development scenarios prior to development on the ground. To illustrate its application in a decision making process, spatial build-out scenarios of roads and well pads were used during three phases of the Resource Management Plan revision for the Bureau of Land Management’s Li...

  18. High-temperature process-steam application at the Southern Union Refining Company, Hobbs, New Mexico (solar energy in the oil patch). Phase I design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-31

    Southern Union Refining Company's Famariss Energy Refinery has worked diligently with Monument Solar Corporation in the conceptual and detail design for this unique application of solar generated steam. An area closely adjacent to the refinery and fronting New Mexico State Highway No. 18 has been designated for the solar collector array. Space planned for the demonstration parabolic trough array is sufficiently large to handle an array of 25,200 square feet in size - an array more than twice the size of the 10,080 square feet proposed originally. The conceptual design, performance, safety, environmental impact, and economic analysis are described. Engineering drawings are included. (WHK)

  19. Process for removing polychlorinated and polybrominated biphenyls from oils

    Science.gov (United States)

    Orlett, M.J.

    The invention is a relatively simple and inexpensive process for detoxifying oils contaminated with PCBs and/or PBBs. The process is especially suitable for processing lubricating oils containing such contaminants. In one aspect of the invention, the contaminated lubricating oil is contacted with a particulate reagent comprising adsorbent particles carrying a dispersion of metallic sodium. The solid sodium reagent converts the PCB and/or PBB contaminants to environmentally acceptable products and also converts various sodium-reactive additives normally present in lubricating oil to reaction products. The adsorbent reagent retains most of the products and is easily separated from the detoxified oil. The detoxified oil may be fortified with various additives functionally equivalent to those removed during detoxification.

  20. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  1. Energy Bandwidth for Petroleum Refining Processes

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2006-10-01

    The petroleum refining energy bandwidth report analyzes the most energy-intensive unit operations used in U.S. refineries: crude oil distillation, fluid catalytic cracking, catalytic hydrotreating, catalytic reforming, and alkylation. The "bandwidth" provides a snapshot of the energy losses that can potentially be recovered through best practices and technology R&D.

  2. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

  3. Renewable Energy and Proven Oil Reserves Relation: Evidence from OPEC Members

    Directory of Open Access Journals (Sweden)

    Mehmet Arcan TUZCU

    2014-12-01

    Full Text Available The well documented literature on the relation between energy consumption and climate change has been extended by the addition of renewable energy consumption. Several studies show its impact on technical efficiency, per capita income or carbon dioxide (CO2 emission levels for developed and developing countries. However, to the extent of our knowledge, very few of them state the importance of renewable energy for the countries where the main type of fossil fuels, oil, is exported. This study aims to explore the association between renewable energy, real gross domestic product (GDP, CO2 emission level, real oil prices as well as the proven oil reserves for seven members of Organization of the Petroleum Exporting Countries (OPEC. The analyses are conducted using panel data techniques, namely fixed effect – random effect tests. Our results show a positive and significant relation between renewable energy consumption, and real GDP and CO2 emission level. A statistically not significant coefficient is found for the relation between renewable energy and the proven oil reserves. The relation between energy and real oil prices is also insignificant.

  4. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  5. Energy, Sustainability and Development

    CERN Document Server

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  6. Gasification reactivity of biomass chars with CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong Kyun; Lee, Sun Ki; Kang, Min Woong; Hwang, Jungho [Department of Mechanical Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul (Korea, Republic of); Yu, Tae-U. [High Temperature Processing R and D Department of Korea Institute of Industrial Technology, 35-3, Hongchon-Ri, Ipchang-Myun, Seobuk-Gu, Chonan-Si (Korea, Republic of)

    2010-12-15

    In this study, carbon conversion was calculated from the data obtained with a real-time gas analyzer. In a lab-scale furnace, each biomass sample was pyrolyzed in a nitrogen environment and became biomass char. For preparation of the char, the furnace was electrically heated over 40 min up to the wall temperature of 850 C, and maintained at the same temperature over 17 min. The furnace was again heated over 3 min to a temperature higher than 850 C and then CO{sub 2} was injected. The biomass char was then gasified with CO{sub 2} under isothermal conditions. The reactivity of biomass char was investigated at various temperatures and CO{sub 2} concentrations. The VRM (volume reaction model), SCM (shrinking core model), and RPM (random pore model) were used to interpret the experimental data. For each model, the activation energy (E) and pre-exponential factor (A) of the biomass char-CO{sub 2} reaction were determined from gas-analysis data by using the Arrhenius equation. For the RPM, the apparent reaction order was determined. According to this study, it was found that the experimental data agreed better with the RPM than with the other two models. Through BET analyses, it was found that the structural parameter ({psi}) of the surface area for the RPM was obtained as 4.22. (author)

  7. Analysis of the environmental control technology for oil shale development

    Energy Technology Data Exchange (ETDEWEB)

    de Nevers, N.; Eckhoff, D.; Swanson, S.; Glenne, B.; Wagner, F.

    1978-02-01

    The environmental control technology proposed in the various oil shale projects which are under development are examined. The technologies for control of air pollution, water pollution, and for the disposal, stabilization, and vegetation of the processed shale were thoroughly investigated. Although some difficulties may be encountered in any of these undertakings, it seems clear that the air and water pollution problems can be solved to meet any applicable standard. There are no published national standards against which to judge the stabilization and vegetation of the processed shale. However, based on the goal of producing an environmentally and aesthetically acceptable finished processed shale pile, it seems probable that this can be accomplished. It is concluded that the environmental control technology is available to meet all current legal requirements. This was not the case before Colorado changed their applicable Air Pollution regulations in August of 1977; the previous ones for the oil shale region were sufficiently stringent to have caused a problem for the current stage of oil shale development. Similarly, the federal air-quality, non-deterioration regulations could be interpreted in the future in ways which would be difficult for the oil shale industry to comply with. The Utah water-quality, non-deterioration regulations could also be a problem. Thus, the only specific regulations which may be a problem are the non-deterioration parts of air and water quality regulations. The unresolved areas of environmental concern with oil shale processing are mostly for the problems not covered by existing environmental law, e.g., trace metals, polynuclear organics, ground water-quality changes, etc. These may be problems, but no evidence is yet available that these problems will prevent the successful commercialization of oil shale production.

  8. Thermal energy management process experiment

    Science.gov (United States)

    Ollendorf, S.

    1984-01-01

    The thermal energy management processes experiment (TEMP) will demonstrate that through the use of two-phase flow technology, thermal systems can be significantly enhanced by increasing heat transport capabilities at reduced power consumption while operating within narrow temperature limits. It has been noted that such phenomena as excess fluid puddling, priming, stratification, and surface tension effects all tend to mask the performance of two-phase flow systems in a 1-g field. The flight experiment approach would be to attack the experiment to an appropriate mounting surface with a 15 to 20 meter effective length and provide a heat input and output station in the form of heaters and a radiator. Using environmental data, the size, location, and orientation of the experiment can be optimized. The approach would be to provide a self-contained panel and mount it to the STEP through a frame. A small electronics package would be developed to interface with the STEP avionics for command and data handling. During the flight, heaters on the evaporator will be exercised to determine performance. Flight data will be evaluated against the ground tests to determine any anomalous behavior.

  9. Three Essays on National Oil Company Efficiency, Energy Demand and Transportation

    Science.gov (United States)

    Eller, Stacy L.

    This dissertation is composed of three separate essays in the field of energy economics. In the first paper, both data envelopment analysis and stochastic production frontier estimation are employed to provide empirical evidence on the revenue efficiency of national oil companies (NOCs) and private international oil companies (IOCs). Using a panel of 80 oil producing firms, the analysis suggests that NOCs are generally less efficient at generating revenue from a given resource base than IOCs, with some exceptions. Due to differing firm objectives, however, structural and institutional features may help explain much of the inefficiency. The second paper analyzes the relationship between economic development and the demand for energy. Energy consumption is modeled using panel data from 1990 to 2004 for 50 countries spanning all levels of development. We find the relationship between energy consumption and economic development corresponds to the structure of aggregate output and the nature of derived demand for electricity and direct-use fuels in each sector. Notably, the evidence of non-constant income elasticity of demand is much greater for electricity demand than for direct-use fuel consumption. In addition, we show that during periods of rapid economic development, one in which the short-term growth rate exceeds the long-run average, an increase in aggregate output is met by less energy-efficient capital. This is a result of capital being fixed in the short-term. As additional, more efficient capital stock is added to the production process, the short-term increase in energy intensity will diminish. In the third essay, we develop a system of equations to estimate a model of motor vehicle fuel consumption, vehicle miles traveled and implied fuel efficiency for the 67 counties of the State of Florida from 2001 to 2008. This procedure allows us to decompose the factors of fuel demand into elasticities of vehicle driving demand and fuel efficiency. Particular

  10. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  11. China's Oil Ties with Developing Countries Further Strengthened

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Petronas teams up with Chinese counterparts For Petroliam Nasional Bhd (Petronas),Malaysia's national petroleum corporation, China is a strategically important partner for growth as it expands into the country's energy market.Established in August 1974, Petronas is vested with all of Malaysia's oil and gas resources and is entrusted with the responsibility of developing and adding value to these resources. The company's foray into China began in the early 1990s in the upstream sector of the petroleum industry.

  12. Sequential Remediation Processes for Effective Removal of Oil from Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Deepika Dave

    2011-01-01

    Full Text Available Problem statement: Over 2.2 billions of oil and oil products are transported every year and often these activities can result in air, water and soil contamination. Expousure to petroleum products can cause health problems to humn and animals and affect marine animals and wildlife habitats. Approach: The objective of this study was to develop a technology for the remediation of soil contaminated with petroleum hydrocarbons. The remediation method included three processes: (a an effective soil washing process for the removal of the hydrocarbons from the contaminated soil, (b an efficient water decontamination process using peat moss as an oil absorbent and (c an effective bioremediation process for converting the oil in peat moss into carbon dioxide and water. Results: The results showed that water is an effective solvent for the removal of oil from contaminated soil. It has also been determined that peat moss is an effective absorbent and could be used to remove oil from the contaminated water. Peat can absorb 12.6 times its weight liquid (water/oil. The bioremediation process was effective in degrading the oil into harmless carbon dioxide and water products. About 77.65% of the THC was removed within 60 days of bioremediation. The hemophilic microbial population in the compost quickly acclimatized to the hydrocarbon as was evident from the immediate rise in the reactor temperature. The C: N ratio decreased from 30:1-12:1 indicating the degradation of organic C in the petroleum hydrocarbons and the peat. Urea was a very effective source of nitrogen in initiating and maintaining intense microbial respiration activity. Conclusion: A sequential processes for the remediation of oil contaminated soil was developed. These included soil washing, absorption of oil from water using peat and bioremediation of contaminated peat. A degradation model was developed and used to calculate the time required for a complete degradation. The model indicated that a

  13. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John [Univ. of Utah, Salt Lake City, UT (United States); Keiter, Robert [Univ. of Utah, Salt Lake City, UT (United States)

    2010-03-01

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  14. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    Energy Technology Data Exchange (ETDEWEB)

    Ruple, John; Keiter, Robert

    2010-12-31

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  15. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  16. CFD Analysis of Coal and Heavy Oil Gasification for Syngas Production

    DEFF Research Database (Denmark)

    Sreedharan, Vikram

    2012-01-01

    phases. Gasification consists of the processes of passive heating, devolatilization, volatiles oxidation, char gasification and gas phase reactions. Attention is given here to the chemical kinetics of the gasification processes. The coal gasification model has been validated for entrained-flow gasifiers...... dioxide is overestimated. The deviation is fairly small, particularly for the improved chemical kinetics scheme. The heavy oil gasification model has been validated for a pilot-scale entrained-flow gasifier operating under different oxygen ratios. A gasification model similar to that developed for coal...... gasification is proposed for heavy oil gasification, using a single chemical kinetics scheme. Predictions of heavy oil gasification are rare in the literature, so that the present work holds some significance. The predictions of the temperature along the gasifier centerline and the species mole fractions...

  17. Coal devolatilization and char conversion under suspension fired conditions in O2/N2 and O2/CO2 atmospheres

    DEFF Research Database (Denmark)

    Jensen, Anker Degn; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion......The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments...... indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char...

  18. Petro-Canada: The National Oil Company as a Tool of Canadian Energy Policy.

    Science.gov (United States)

    1981-10-15

    per day MMBD million barrels per day NEB National Energy Board OECD Organization for Economic Cooperation and Development PEMEX Petroleos Mexicanos ...of the actual sale were negotiated between the national oil companies, Petro-Canada and Petroleos Mexicanos (PEMEX). 25 CHAPTER 5 "THE WINDOW ON THE...Government for working out technical matters with PEMEX ( Petroleos Mexicanos ), the Mexican national oil company, and actually delivering and

  19. Mechanical Characterization of Bio-Char Made Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Amit pandey

    2016-08-01

    Full Text Available Material discoveries and development have always been the cause of the growth and development of a nation and the need of naturally made materials is the need of hours. Thus this paper takes you to the development of a hybrid composite made of sisal fiber with epoxy as the matrix intertwined with softwood bio-char. Softwood chip bio-char, produced by slow pyrolysis, has a porous structure improving its nutrient absorbing capacity, surface area and thus a potential substituent. Bio-char has an appreciable carbon sequestration value i.e. a carbon absorbing product. The orientation of sisal fiber are changed and studied in longitudinal and orthogonal direction indicating superiority of longitudinal fiber orientation .It also addresses the variation in mechanical characteristic (tensile flexural and impact with different constituent of the new composite and its position in material selection charts with a direction for further work.

  20. Geothermal energy market potential in industrial processing

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, R.J.; Hanny, J.A.; Knuth, W.H.

    1978-11-01

    Geothermal energy is currently being used for a number of industrial processes in countries throughout the world. Its application in the United States is mainly limited to space heating even though the temperature of the geothermal fluid is sufficient for process uses, and could be sold at attractive prices while maintaining a high return on investment. The temperature span for industrial use ranges from 40 to 275/sup 0/C, thus encompassing both the abundant low temperature and the less available high temperature resources. Hydrothermal fluids can be used either directly or indirectly dependent upon fluid quality and process needs. The barriers facing hydrothermal industrial process development are (a) the development infrastructure does not exist, (b) energy users are not aware of hydrothermal energy and its advantages, (c) federal incentives are limited, (d) resources are not fully defined.

  1. Development and Application of a Life Cycle-Based Model to Evaluate Greenhouse Gas Emissions of Oil Sands Upgrading Technologies.

    Science.gov (United States)

    Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L

    2016-12-20

    A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO2e/m(3) SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.

  2. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value.

  3. The Development of Renewable Energy Sources in Turkey

    Directory of Open Access Journals (Sweden)

    Atalay ÇETİN

    2014-10-01

    Full Text Available Especially in last two decades, most of the developed and developing countries around theworld have been supporting the researches that investigate more clean and sustainable energy sources. Renewable energy sources play more important role in today’s increasingly globalized energy market because of the environmental issues and the sources of fossil fuelare becoming scarce. According to that, as a virtue of the rapidly increase in energy demand, the supply of renewable energy sources are increasingly continue around theworld. As a matter of fact, when it is compared to the 2011 rates, the consumption rate of hydro-electricity and other renewable energy sources has increased to 4.3% and % 15.2 respectively in 2012 in the world, is verifying that view.The aim of this study is to investigate the present potential and sufficiency of the main sources of renewable energy such as solar, wind, hydropower, geothermal andbiomass at Turkey. In this regard, even Turkey has a remarkable potential especially in hydro, wind, solar and geothermal energies among Europe, renewable energy sources ratio in Turkey’s total energy consumption is not rising at desired level. Furthermore becauseTurkey hasn’t got a rich fossil fuel reserves, it needs to import fossil energy sources to meet its rapidly growing energy needs. In related to this, Turkey’s current deficit has beengrowing due to the increase in fossil fuel sources prices at international energy markets. On the other side Turkey’s Green House Gases (GHGs emission has grown more thantwo times as a result of its rapidly using of fossil fuel sources due to its growing economy, industrialization and urbanization process since 1990. Within this context, as a foreigndependent country on fossil fuel energy sources (especially on crude oil and natural gas, Turkey should rapidly change its energy policy from fossil fuels to renewable energysources which are domestic, clean and much more cheaper

  4. Strategic investment of embodied energy during the architectural planning process

    NARCIS (Netherlands)

    Hildebrand, L.

    2014-01-01

    It is an interesting time in the building industry; for more than one decade sustainability is a planning parameter that essentially impacts construction related processes. Reduction of operational energy was initiated after the oil crisis and changed the type of construction by including heat trans

  5. TREATABILITY STUDY REPORT OF GREEN MOUNTAIN LABORATORIES, INC.'S BIOREMEDIATION PROCESS, TREATMENT OF PCB CONTAMINATED SOILS, AT BEEDE WASTE OIL/CASH ENERGY SUPERFUND SITE, PLAISTOW, NEW HAMPSHIRE

    Science.gov (United States)

    In 1998, Green Mountain Laboratories, Inc. (GML) and the USEPA agreed to carry out a Superfund Innovative Technology Evaluation (SITE) project to evaluate the effectiveness of GML's Bioremediation Process for the treatment of PCB contaminated soils at the Beede Waste Oil/Cash Ene...

  6. Intensification of microalgae drying and oil extraction process by vapor recompression and heat integration.

    Science.gov (United States)

    Song, Chunfeng; Liu, Qingling; Ji, Na; Deng, Shuai; Zhao, Jun; Kitamura, Yutaka

    2016-05-01

    Reducing energy penalty caused by drying and oil extraction is the most critical challenge in microalgae biodiesel production. In this study, vapor recompression and heat integration are utilized to optimize the performance of wet microalgae drying and oil extraction. In the microalgae drying stage, the hot exhaust stream is recompressed and coupled with wet microalgae to recover the condensate heat. In the oil extraction stage, the exergy rate of recovered solvent is also elevated by compressor and then exchanged heat with feed and bottom stream in the distillation column. Energy and mass balance of the intensified process is investigated and compared with the conventional microalgae drying-extraction process. The simulation results indicated that the total energy consumption of the intensified process can be saved by 52.4% of the conventional route.

  7. Fossil Energy Research and Development Program of the U. S. Department of Energy, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-03-01

    The U.S. Department of Energy (DOE) focuses energy Research and Development efforts on new and promising ways to provide for our future energy needs. This document focuses on DOE's programs and projects related to the nation's Fossil Energy resources: coal, oil, natural gas and oil shale. Fossil Energy programs have grown rapidly from about $58 million in FY 1973 to the $802 million requested for FY 1979. As those programs have matured, there have been significant shifts in emphasis. For example, by FY 1979, gasification technologies will have matured sufficiently to enter the demonstration phase. Then we will have to make critical decisions as to which candidate processes to pursue and to encourage industry's active participation as early as possible. We will present the rationale for those changes and others at the beginning of each section describing a particular grouping of similar projects, e.g., coal liquefaction. We will then discuss each project and present its current status along with past and future milestones. Emphasis is on projects with early payoff potential, particularly the direct utilization of coal. However, this near-term emphasis will not overshadow the need for a stong technological base for development of longer-term promising technologies and the need for a strong environmental concern.

  8. Feasibility Process for Remediation of the Crude Oil Contaminated Soil

    Science.gov (United States)

    Keum, H.; Choi, H.; Heo, H.; Lee, S.; Kang, G.

    2015-12-01

    More than 600 oil wells were destroyed in Kuwait by Iraqi in 1991. During the war, over 300 oil lakes with depth of up to 2m at more than 500 different locations which has been over 49km2. Therefore, approximately 22 million m3was crude oil contaminated. As exposure of more than 20 years under atmospheric conditions of Kuwait, the crude oil has volatile hydrocarbons and covered heavy oily sludge under the crude oil lake. One of crude oil contaminated soil which located Burgan Oilfield area was collected by Kuwait Oil Company and got by H-plus Company. This contaminated soil has about 42% crude oil and could not biodegraded itself due to the extremely high toxicity. This contaminated soil was separated by 2mm sieve for removal oil sludge ball. Total petroleum hydrocarbons (TPH) was analysis by GC FID and initial TPH concentration was average 48,783 mg/kg. Ten grams of the contaminated soil replaced in two micro reactors with 20mL of bio surfactant produce microorganism. Reactor 1 was added 0.1g powder hemoglobin and other reactor was not added hemoglobin at time 0 day. Those reactors shake 120 rpm on the shaker for 7 days and CO2 produced about 150mg/L per day. After 7 days under the slurry systems, the rest days operated by hemoglobin as primary carbon source for enhanced biodegradation. The crude oil contaminated soil was degraded from 48,783mg/kg to 20,234mg/kg by slurry process and final TPH concentration degraded 11,324mg/kg for 21days. Therefore, highly contaminated soil by crude oil will be combined bio slurry process and biodegradation process with hemoglobin as bio catalytic source. Keywords: crude-oil contaminated soil, bio slurry, biodegradation, hemoglobin ACKOWLEDGEMENTS This project was supported by the Korea Ministry of Environment (MOE) GAIA Program

  9. The waste-to-energy framework for integrated multi-waste utilization: Waste cooking oil, waste lubricating oil, and waste plastics

    Energy Technology Data Exchange (ETDEWEB)

    Singhabhandhu, Ampaitepin; Tezuka, Tetsuo [Energy Economics Laboratory, Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2010-06-15

    Energy generation by wastes is considered one method of waste management that has the benefit of energy recovery. From the waste-to-energy point of view, waste cooking oil, waste lubricating oil, and waste plastics have been considered good candidates for feedstocks for energy conversion due to their high heating values. Compared to the independent management of these three wastes, the idea of co-processing them in integration is expected to gain more benefit. The economies of scale and the synergy of co-processing these wastes results in higher quality and higher yield of the end products. In this study, we use cost-benefit analysis to evaluate the integrated management scenario of collecting the three wastes and converting them to energy. We report the total heat of combustion of pyrolytic oil at the maximum and minimum conversion rates, and conduct a sensitivity analysis in which the parameters of an increase of the electricity cost for operating the process and increase of the feedstock transportation cost are tested. We evaluate the effects of economy of scale in the case of integrated waste management. We compare four cases of waste-to-energy conversion with the business as usual (BAU) scenario, and our results show that the integrated co-processing of waste cooking oil, waste lubricating oil, and waste plastics is the most profitable from the viewpoints of energy yield and economics. (author)

  10. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  11. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Thorsness, C. B., LLNL

    1997-01-21

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  12. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems.

  13. Highly effective technology and technique for extraction of oils from fruit-and-vegetable stones with use of renewable energy sources

    Directory of Open Access Journals (Sweden)

    Karim Gafurov

    2009-10-01

    Full Text Available The oil extraction processes from oil-bearing cultures’ seeds and stones is time and energy-intensive. The study shows that during processing kernels of oil-bearing cultures under influence of electromagnetic field the destruction process of cellar structure is intensified in 7-9 times than in existing moist-heat processing. Moreover, the process runs shorter and under comparatively low temperature regime that reduces the electric power expenses. Using electromagnetic processing of oil-bearing kernels provides increase of oil output up to 20-25% as well.

  14. NEMS International Energy Module, model documentation report: World Oil Market, Petroleum Products Supply and Oxygenates Supply components

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-04

    The Energy Information Administration (EIA) is developing the National Energy Modeling System (NEMS) to enhance its energy forecasting capabilities and to provide the Department of Energy with a comprehensive framework for analyzing alternative energy` futures. NEMS is designed with a multi-level modular structure that represents specific energy supply activities, conversion processes, and demand sectors as a series of self-contained units which are linked by an integrating mechanism. The NEMS International Energy Module (IEM) computes world oil prices and the resulting patterns of international trade in crude oil and refined products. This report is a reference document for energy analysts, model users, and the public that is intended to meet EIA`s legal obligation to provide adequate documentation for all statistical and forecast reports (Public Law 93-275, section 57(b)(1). Its purpose is to describe the structure of the IEM. Actual operation of the model is not discussed here. The report contains four sections summarizing the overall structure of the IEM and its interface with other NEMS modules, mathematical specifications of behavioral relationships, and data sources and estimation methods. Following a general description of the function and rationale of its key components, system and equation level information sufficient to permit independent evaluation of the model`s technical details is presented.

  15. Development and experimental study of oil-free capacitor module for plasma focus device

    Science.gov (United States)

    Sharma, Ravindra Kumar; Sharma, Archana

    2017-03-01

    This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μ F , 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.

  16. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  17. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1999-07-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating, and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating, (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating, and several industrial applications. Although only about 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven

  18. Oil palm genetic improvement and sustainable development

    Directory of Open Access Journals (Sweden)

    Cochard Benoît

    2005-03-01

    Full Text Available Genetic improvement of the oil palm may have a role to play in the sustainability of this crop. Given the criticism aimed at this commodity chain, notably due to the extension of oil palm plantations to the detriment of forests, providing very high-yielding planting material might be a solution, particularly as world demand is continually increasing. This crop is mostly managed by agroindustrialists, but the smallholder sector is developing. It happens that this sector is classed as a sustainable type of agriculture by numerous NGOs, which are also asking plant breeders to take the specificities of smallholdings into consideration. Oil palm genetic improvement takes numerous criteria into account, many of which fit in with sustainable agriculture. For example, this crop is subject to pressure from different pests and diseases. In each case, a genetic hence eco-friendly approach has been taken and, in particular, vascular wilttolerant planting material has been a successfully produced. Moreover, for the future of this crop, planting material needs to be developed that requires fewer inputs, and consideration has to be given to extending this crop in less favourable zones, by developing planting material that consumes less water. Lastly, it is important to disseminate genetically diversified planting material.

  19. PetroChina, Central Asia Oil Company Ltd Signed Oil Development Contract

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ PetroChina and the Central Asia Oil Company Ltd signed a contract of oil development and production for Block 413 in Songliao Basin in Beijing on July 16. This is the first oil development and production contract signed by PetroChina for external cooperation this year.

  20. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  1. The oil industry in France: contribution to the debate on energy; L'industrie petroliere en France contribution au debat sur l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-01-15

    Proposed by the professional body of the French oil industry, this document proposes a contribution of this body to the energy challenge. The authors first discuss the context and its evolution in terms of energy demand and of energy sources. They outline the necessary development of renewable energies. While giving recommendations, they state how the oil sector will support the economy and employment, how this sector will keep on exploring and producing hydrocarbons, how the refining activity needs to be adapted, how the oil logistics must evolve, and how the service station network is already evolving

  2. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt % wood flour in wood oil derived vacuum bottoms at pressures up to 3,000 psi. By comparison, conventional pumping systems are capable of pumping slurries containing only 10--20 wt % wood flour in wood oil under similar conditions. The extruder-feeder has been integrated with a unique reactor to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a 3,000 psi pressure reactor in the biomass liquefaction process. An experimental facility was constructed during 1983--84. Following shakedown operations, wood crude oil was produced by mid-1985. During the period January 1985 through July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3,000 psi and temperatures from 350{degrees}C to 430{degrees}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt % residual oxygen were produced. 43 refs., 81 figs., 52 tabs.

  3. Physico-chemical properties of chars obtained in the co-pyrolysis of waste mixtures.

    Science.gov (United States)

    Bernardo, M; Lapa, N; Gonçalves, M; Mendes, B; Pinto, F; Fonseca, I; Lopes, H

    2012-06-15

    The present work aims to perform a multistep upgrading of chars obtained in the co-pyrolysis of PE, PP and PS plastic wastes, pine biomass and used tires. The quality of the upgraded chars was evaluated by measuring some of their physico-chemical properties in order to assess their valorisation as adsorbents' precursors. The crude chars were submitted to a sequential solvent extraction with organic solvents of increasing polarity (hexane, mixture 1:1 v/v hexane:acetone and acetone) followed by an acidic demineralization procedure with 1M HCl solution. The results obtained showed that the upgrading treatment allow the recovery of 63-81% of the pyrolysis oils trapped in the crude chars and a reduction in the char's ash content in the range of 64-86%. The textural and adsorption properties of the upgraded chars were evaluated and the results indicate that the chars are mainly mesoporous and macroporous materials, with adsorption capacities in the range of 3.59-22.2 mg/g for the methylene blue dye. The upgrading treatment allowed to obtain carbonaceous materials with quality to be reused as adsorbents or as precursors for activated carbon.

  4. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  5. Energy availabilities for state and local development: projected energy patterns for 1985 and 1990

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, D. P.; Rice, P. L.; Corey, T. A.; Pai, V. P.

    1979-11-01

    This report (one of a series) presents projections of the energy supply, demand, and net imports of seven fuel types (gasoline, distillates, residual oil, crude, natural gas, coal, electricity) and four final consuming sectors. To facilitate detailed regional analysis these projections have been prepared for Bureau of Economic Analysis (BEA) areas, states, census regions, and the nation for 1985 and 1990. The data are formatted to present regional energy availability from primary extraction, as well as from energy-transformation processes. The tables depict energy balances between availability and use for each specific fuel. The objective of this series is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration of regional growth issues that may be influenced by the regional energy system. However, for analysis of specific regions, this basic data should be supplemented by additional information which only the local policy analyst can bring to bear in his or her assessment of the energy conditions that characterize the region. Earlier volumes in this series have proved useful for both specific and general analysis of this type, and it is hoped that the current volume will prove equally so. This volume presents an updated benchmark projection series, which captures recent developments in the business as usual projections of energy supply and consumption due to national policy developments since the 1976 National Energy Outlook projection series were prepared.

  6. China's Offshore Oil Development Expected to Take Off

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China's offshore oil industry will face a high-speed development with the crude oil production expected to top 50 million tons by 2010, according to a study recently released by China's State Oceanic Administration titled "China's Oceanic Development Report." Meanwhile, the offshore natural gas production will also enter a rapid growth stage. In addition, a series of new exploration technologies suitable for China's offshore areas will be developed, including 3D seismic imaging technology,data imaging logging technology, underwater multiphase flow oil and gas development technology, marginal oil field development technology and shallow sea oil and gas development technology.

  7. Reducing US oil vulnerability: Energy policy for the 1980's

    Science.gov (United States)

    1980-11-01

    Current Federal energy policies and programs are asked in light of recent events and in light of what are believed to be the most reliable available projections of the future. Additional steps are outlined that could reduce our vulnerability to an oil import disruption during the next decade. Specifically, the study seeks to answer three questions: as a base case, what levels of US energy consumption, production, and imports might we anticipate for 1985 and 1990 under existing statutes, policies, and programs; considering both our own and our allies dependence on oil imports, how vulnerable does this leave the United States to foreign supply disruptions; considering the likely effects of government policies and programs which already exist to reduce our vulnerability (through reduction of US oil imports or by any other means), are there additional initiatives that could be undertaken to give us greater protection - especially between now and 1990.

  8. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  9. The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs

    Energy Technology Data Exchange (ETDEWEB)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL

    2006-05-01

    Energy technology R&D is a cornerstone of U.S. energy policy. Understanding the potential for energy technology R&D to solve the nation's energy problems is critical to formulating a successful R&D program. In light of this, the U.S. Congress requested the National Research Council (NRC) to undertake both retrospective and prospective assessments of the Department of Energy's (DOE's) Energy Efficiency and Fossil Energy Research programs (NRC, 2001; NRC, 2005). ("The Congress continued to express its interest in R&D benefits assessment by providing funds for the NRC to build on the retrospective methodology to develop a methodology for assessing prospective benefits." NRC, 2005, p. ES-2) In 2004, the NRC Committee on Prospective Benefits of DOE's Energy Efficiency and Fossil Energy R&D Programs published a report recommending a new framework and principles for prospective benefits assessment. The Committee explicitly deferred the issue of estimating security benefits to future work. Recognizing the need for a rigorous framework for assessing the energy security benefits of its R&D programs, the DOE's Office of Energy Efficiency and Renewable Energy (EERE) developed a framework and approach for defining energy security metrics for R&D programs to use in gauging the energy security benefits of their programs (Lee, 2005). This report describes methods for estimating the prospective oil security benefits of EERE's R&D programs that are consistent with the methodologies of the NRC (2005) Committee and that build on Lee's (2005) framework. Its objective is to define and implement a method that makes use of the NRC's typology of prospective benefits and methodological framework, satisfies the NRC's criteria for prospective benefits evaluation, and permits measurement of that portion of the prospective energy security benefits of EERE's R&D portfolio related to oil. While the Oil Security Metrics (OSM) methodology described

  10. Operationalizing Sustainable Development Suncor Energy Inc: A critical case

    Science.gov (United States)

    Fergus, Andrew

    The concept of Sustainable Development is often understood as a framework within which organizations are able to move forward in a successful and beneficial manner. However, it is also seen as an ambiguous notion with little substance beyond a hopeful dialogue. If we are to base organizational action upon the concepts of Sustainable Development, it is vital that we comprehend the implications of how the concept is understood at a behavioral level. Industry leaders, competitors, shareholders, and stakeholders recognize Suncor Energy Inc as a leading organization within the Oil and Gas energy field. In particular it has a reputation for proactive thinking and action within the areas of environmental and social responsibility. Through attempting to integrate the ideas of Sustainable Development at a foundational level into the strategic plan, the management of Suncor Energy Inc has committed the organization to be a sustainable energy company. To achieve this vision the organization faces the challenge of converting strategic goals into operational behaviors, a process critical for a successful future. This research focuses on understanding the issues found with this conversion process. Through exploring a critical case, this research illuminates the reality of a best-case scenario. The findings thus have implications for both Suncor Energy Inc and more importantly all other organizations attempting to move in a Sustainable Development direction.

  11. Research, development and innovation in the electrical energy sector of Brazil: toward a tool for the support of the decision-making process

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Fernando Vieira; Salles-Filho, Sergio; Brittes, Jose Juiz Pereira; Corder, Solange Maria; Boer, Denile Cominato [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2008-07-01

    The objective of this article is to present a tool to help in the decision making process for the allocation of resources for research, development and innovation in the electrical energy sector in Brazil. It provides a computerized tool for the management of a portfolio of projects which contains myriads of information of projects of research, development, and innovation financed by companies in the area of the generation, transmission and distribution of electrical energy in Brazil. This tool permits the collection and analysis of this information with a view to evaluating the direction and progress of investments made in the past five years. The electrical energy sector of Brazil invests hundreds of millions of reals each year in research and development (henceforth 'R and D'). The investment of these resources is required by a set of federal laws. This legal framework is a consequence of the process of the privatization of the sector which began in 1997. The investment of the financial resources in R and D projects is supervised by the Brazilian Electricity Regulatory Agency (henceforth 'ANEEL'). It is the responsibility of ANEEL to evaluate and approve proposed R and D projects, and monitor their results, as per the 'Handbook of R and D of the Electrical Energy Sector.' This tool for supporting the decision-making process serves exactly the purpose of helping both ANEEL in the approval of resources under its supervision, as well as helping companies within the electrical energy sector in the management of applied resources. Almost one billion reals (approximately US $500,000,000) were invested in more than 3000 projects from 1998 to 2006. The data base associated with these projects already contains information concerning 1412 projects from 1998 to 2004, permitting significant analyses of the results and impacts of the allocation of resources. (author)

  12. Chapter 8: Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen; Bellman, Don; Paynter, Dave; Wykowski, Jim

    2016-09-06

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleum fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.

  13. Suppressing breakers with polar oil films: Using an epic sea rescue to model wave energy budgets

    Science.gov (United States)

    Cox, Charles S.; Zhang, Xin; Duda, Timothy F.

    2017-02-01

    Oil has been used to still stormy seas for centuries, but the mechanisms are poorly understood. Here we examine the processes by using quantitative information from a remarkable 1883 sea rescue where oil was used to reduce large breakers during a storm. Modeling of the oil film's extent and waves under the film suggests that large breakers were suppressed by a reduction of wind energy input. Modification of surface roughness by the film is hypothesized to alter the wind profile above the sea and the energy flow. The results are central to understanding air-sea momentum exchange, including its role in such processes as cyclone growth and storm surge, although they address only one aspect of the complex problem of wind interaction with the ocean surface.

  14. Leading trends in environmental regulation that affect energy development. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Steele, R V; Attaway, L D; Christerson, J A; Kikel, D A; Kuebler, J D; Lupatkin, B M; Liu, C S; Meyer, R; Peyton, T O; Sussin, M H

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive survey of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.

  15. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    Energy Technology Data Exchange (ETDEWEB)

    Wu, K.; Pezeshki, S.

    1995-03-01

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  16. Fossil-fuel process oils as continuous fluids

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian-Amin, M.J.

    1986-01-01

    The oils produced by fossil fuel conversion processes consist of such a large number of components that their only proper description is as continuous fluids (i.e., continuum of components). A methodology is presented here to describe the vapor liquid equilibrium processes involving continuous oils. It describes the oil in terms of one or more continuous distribution functions (fractional continuous oils) of some measurable quantity (i.e., characteristic variable) that, in the view of the equilibrium ratio relationship, maintain their functional form in equilibrium processes. Parameters of the distributions of the product streams in any equilibrium process (i.e., vapor and liquid) are determined in terms of the parameters of the feed stream and the operating condition (e.g., T,P). In general, the procedure can be applied to both ideal and non-ideal systems, but in view of the experimental results indicating ideality, only those systems were analyzed. An ambient pressure batch distillation system was constructed to collect vapor-liquid equilibrium data of continuous test oils. Two test oils, a shale oil and a coal oil were studied in this work. From measurement of the equilibrium ratios of the test oils it was determined that both oils behave ideally and the equilibrium ratio was independent of the liquid composition. A simple and definable function of the boiling point provided to be a suitable characteristic variable for the proposed methodology to the sequential operation has shown that if the functions are chosen properly, then the error incurred will not propagate at a significant rate and at the same level of accuracy can be maintained.

  17. Energy: China to Complete Key Oil Bases Soon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China will complete the construction of its first four strategic oil reserves by the end of 2008. "The progress has been smooth and all the four bases will be completed by the year end," Zhang Guobao, administrator of the National Energy Administration (NEA), said after a press conference in Beijing in mid-August.

  18. Analysis of Trans Fat in Edible Oils with Cooking Process.

    Science.gov (United States)

    Song, Juhee; Park, Joohyeok; Jung, Jinyeong; Lee, Chankyu; Gim, Seo Yeoung; Ka, HyeJung; Yi, BoRa; Kim, Mi-Ja; Kim, Cho-Il; Lee, JaeHwan

    2015-09-01

    Trans fat is a unsaturated fatty acid with trans configuration and separated double bonds. Analytical methods have been introduced to analyze trans fat content in foods including infrared (IR) spectroscopy, gas chromatography (GC), Fourier transform-infrared (FT-IR) spectroscopy, reverses-phase silver ion high performance liquid chromatography, and silver nitrate thin layer chromatography. Currently, FT-IR spectroscopy and GC are mostly used methods. Trans fat content in 6 vegetable oils were analyzed and processing effects including baking, stir-frying, pan-frying, and frying on the formation of trans fat in corn oil was evaluated by GC. Among tested vegetable oils, corn oil has 0.25 g trans fat/100 g, whereas other oils including rapeseed, soybean, olive, perilla, and sesame oils did not have detectable amount of trans fat content. Among cooking methods, stir-frying increased trans fat in corn oil whereas baking, pan-frying, and frying procedures did not make changes in trans fat content compared to untreated corn oils. However, the trans fat content was so low and food label can be declared as '0' trans based on the regulation of Ministry of Food ad Drug Safety (MFDS) (< 2 g/100 g edible oil).

  19. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....

  20. Heat Transfer in a Fixed Biomass Char Bed

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Glarborg, P.

    2002-01-01

    A thermal conductivity model based on the Yagi and Kunii model together with a bed model was developed to describe the thermal conductivity of a straw char bed. The bed model describes the relationship between the distance between particles and the external porosity. To verify the model, thermal...... conductivity experiments were performed on a wheat straw sample, which were cut in a shredder with two different sieves, 4 and 8 mm, and packed loosely in the thermal conductivity apparatus. The model, using external porosity and char diameter, compared reasonable well with experiments. The two straw samples...

  1. EMISSION OF POLLUTANTS AND ENERGY CONSUMPTION IN LIFE CYCLE OF DIESEL OIL

    Directory of Open Access Journals (Sweden)

    Piotr Haller

    2013-10-01

    Full Text Available The following article is an analysis of designed processes of the life cycle of the most popular fuel for Diesel engines: diesel oil. This fuel is produced from petroleum, which is a non-renewable source of energy. Analysis was carried out with the assumptions of Life Cycle Assessment, which is a tool to test the environmental impact of the product. The life cycle of diesel was divided into five unit processes: petroleum extraction, transport of petroleum to the refinery, refining petroleum to diesel, transport of diesel to the recipient and utilization of delivered fuel by transport company. For every process the energy consumption and emission of carbon monoxide, nitrogen oxides and sulphursulphur oxides was calculated, with assumption of probable data, that could occur in real processes. The analysis has shown, that the process of refining petroleum is highly pollution-intensive. Also the combustion of diesel generates a significant amount of pollutants’ emission, which is why it is necessary to develop technologies that could contribute to the reduction of emission.

  2. Effects of rice husks and their chars from hydrothermal carbonization on the germination rate and root length of Lepidium sativum

    Science.gov (United States)

    Kern, Jürgen; Mukhina, Irina; Dicke, Christiane; Lanza, Giacomo; Kalderis, Dimitrios

    2015-04-01

    Currently, char substrates gain a lot of interest, since they are being discussed as a component in growing media, which may become one option for the replacement of peat. Among different thermal conversion processes of biomass hydrothermal carbonization (HTC) has been found to produce chars with similar acidic pH values like peat. The question however is, if these hydrochars, which may contain toxic phenolic compounds are suitable to be introduced as a new substitute for peat in horticulture. In this study rice husk were hydrothermally carbonized at 200° C for 6 hours, yielding in hydrochars containing organic contaminants such as phenols and furfurals, which may affect plants and soil organisms. We investigated potential toxic effects on the germination rate and the root length of cress salad (Lepidium sativum) in four fractions: i) soil control, ii) raw rice husk + soil, iii) unwashed rice char + soil and iv) acetone/water washed rice char + soil. It could be shown that phenols and furfurals, which were removed from the hydrochar after washing by 80 to 96% did not affect the germination rate and the root length of the cress plants. The lowest germination rate and root length were found in the soil control, the highest in the non-washed hydrochar treatment, indicating a fertilization effect and growth stimulation of cress salad by hydrochar. If this result can be confirmed for other target and non-target organisms in future studies, a new strategy for the production of growing media may be developed.

  3. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)

    2013-11-01

    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  4. Corrosive components of nutshells and their chars

    Directory of Open Access Journals (Sweden)

    Karczewski Mateusz

    2016-01-01

    Full Text Available Biomass combustion stands among various technologies pointed at fossil fuels consumption decrease. Biomass can be found in very diversified sources spread more evenly across the globe, can be burned with use of traditional combustion solutions and is more CO2 neutral in combustion than their fossil fuel counterparts. On the other hand biomass has several problems with composition that despite its potential diversity. Problem of excess moisture can be already solved by material selection or by preliminary pyrolysis. The main problem concerns however biomass ash composition. Biomass ashes are more prone to have higher quantities of potentially corrosive components than their coal counterparts. The example of such constituents are alkali metals, sulphur and chlorine. Ash basic composition is also important due to various ash properties like its melting temperature and slagging or fouling tendencies. To address the problem, several indices for fast properties prediction and earlier problem identification can be appointed. This work concentrates on ash quality evaluation for potentially attractive biomass fuel from nutshell materials and their corresponding char obtained by pyrolysis in 300, 450 and 550 °C. Pistachio and hazelnut shells with their chars will be analysed for corrosive compounds and their potential influence on combustion process.

  5. Athabasca oil sands development : lessening the footprint

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, R. [Alberta Environment, AB (Canada)

    2005-07-01

    This presentation provided an overview of the oil sands development footprint from the perspectives of industry, environmental associations and regulatory agencies. A map of regional oil sands developments was presented along with details of land disturbance to date. Industry strategies for lessening the impact of land disturbance include compact space-efficient mining operations; good planning; and effective, progressive reclamation. A closure and reclamation model was presented, along with key reclamation challenges such as overburden. Issues concerning tailings sands were examined. Details of Syncrude's closure vision were presented, including details of the Mildred Lake site. Details of the Fort McMurray Environmental Association were presented as well as various regional multi-stakeholder initiatives. A background of Syncrude and Suncor operations was presented as well as development projection forecasts. Impacts to the Boreal region were examined. Details of land reclamation by Syncrude were provided, as well as a chart of cumulative disturbances. It was noted that recent applications have indicated numerous reclamation uncertainties, including long-term performance of landforms and the feasibility of developing trafficable tailings landforms. It was suggested that the ecosystem dynamics of the Boreal are poorly understood. Exacerbating factors include the degraded state of soils; viability of end pit lakes; and climate change. It was suggested that operators are proposing to deal with landscape and technology uncertainty using adaptive management strategies. Government responses to the oil sand development footprint include the encouragement of more research into tailings technologies, end pit lake viability and reclamation; and the identification of regional landscape ecological thresholds by the Cumulative Environmental Management Association (CEMA). It was concluded that uncertainty needs to be addressed via a variety of policy and management options

  6. Paraho oil shale module. Site development plan, Task 4

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  7. Low-cost sorbents for demetalisation of waste oils via pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, M.J.; Moliner, R. [Department of Energy and Environment, Instituto de Carboquimica (CSIC), Maria de Luna 12, 50.015, Zaragoza (Spain); Domeno, C.; Nerin, C. [Department of Analytical Chemistry, Centro Politecnico Superior, Universidad de Zaragoza, Maria de Luna 3, 50.015, Zaragoza (Spain)

    2001-01-01

    The behaviour of several solid sorbents during the pyrolysis process of industrial waste oils in a bench-scale pyrolysis unit is studied. The concentrations of V, Ni, Pb, Cd, Cu and Cr in the waste oils and in the original sorbents as well as that obtained in the final valuable product liquid fraction are measured. Limestone, commercial active char, Samca char, activated Samca char and sepiolite were the solid sorbents used. 100% of the lead from the waste oils can be retained on limestone. The behaviour of both metals and sorbents and the influence of specific surface area as well as chemical nature of metals and sorbents are discussed. Final liquid fractions resulted in valuable industrial products.

  8. Optimization of Energy and Exergy Consumption in MEG Regeneration Processes

    OpenAIRE

    Billington, Henrik Reymert

    2009-01-01

    Monoethylene glycol (MEG) is commonly used for hydrate inhibition in fields that require continuous injection. Traditional processes for regeneration and reclamation of MEG require significant amounts of heat. Reclamation (salt removal) is usually done by complete evaporation of salty MEG in a flash separator under partial vacuum. Regeneration (water removal) is done by distillation. Heat integration in current processes is limited. The oil and gas industry is heading towards energy systems b...

  9. Wind energy: Developing energy, wealth, and change

    Science.gov (United States)

    Hopkins, Matt

    Wind energy has emerged as one of the fastest growing energy sources in the United States over the course of the last decade. It is the renewable energy type most readily defining clean economy leadership. An uncertain policy context, public conflicts over the impacts of turbine installations, and unsorted connections to a national green development strategy raise questions about the continued viability of wind power in the U.S. This thesis attempts to document and question some of the issues raised by wind energy expansion in the U.S. generally, but in Maine in particular, in order to explain how environmental, social, and economic benefits accrue to places hosting wind projects. The available information combined with a targeted inquiry produce insights into how the state of Maine can improve its wind development policies and outcomes.

  10. US oil dependency and energy security; Dependance petroliere et securite energetique americaine

    Energy Technology Data Exchange (ETDEWEB)

    Noel, P. [Institut francais des Relations Internationals, 75 - Paris (France)]|[Universite Pierre Mendes-France-IEPE-CNRS, 38 - Grenoble (France)

    2002-07-01

    The three papers of this document were written in the framework of a seminar organized the 30 may 2002 by the IFRI in the framework of its program Energy and Climatic Change. The first presentation deals with the american oil policy since 1980 (relation between the oil dependence and the energy security, the Reagan oil policy, the new oil policy facing the increase of the dependence). The second one deals with the US energy security (oil security, domestic energy security, policy implications). The last presentation is devoted to the US oil dependence in a global context and the problems and policies of international energy security. (A.L.B.)

  11. Removal of lead (Pb2+) from aqueous medium by using chars from co-pyrolysis.

    Science.gov (United States)

    Bernardo, Maria; Mendes, Sandra; Lapa, Nuno; Gonçalves, Margarida; Mendes, Benilde; Pinto, Filomena; Lopes, Helena; Fonseca, Isabel

    2013-11-01

    The effectiveness of chars from the co-pyrolysis of pine, used tires and plastic wastes for the removal of lead (Pb(2+)) from aqueous medium, was investigated. The chars were predominantly of macroporous nature, but the introduction of tires in the pyrolysis feedstock enhanced their mesoporous content as well as surface area. Pb(2+) sorption with the chars was a slow and unstable process in which sorption-desorption seems to be competing. The highest Pb(2+) removal (88%) was attained by the char resulting from the pyrolysis of a mixture composed by equal mass ratios of used tires and plastics, at 48 h of contact time. This char was also the one with the overall better performance for Pb(2+) sorption, achieving almost 100% of Pb(2+) removal on the study of the effect of adsorbent dose. Mixing the three raw materials for pyrolysis had no advantage for the resulting char concerning the removal efficiency of Pb(2+). The sorption mechanisms varied according to the pyrolysis feedstock: in chars from feedstock with pine, chemisorption involving complexation with oxygenated surface functional groups followed by cation exchange was the presumable mechanism. In tire rubber derived chars, cation exchange with Ca(2+), K(+), and Zn(2+) played the major role on Pb(2+) sorption.

  12. Fiscal 1998 research report. Development of metal forming technology by new energy-saving process (2nd fiscal year); 1998 nendo sho energy gata shin process ni yoru kinzoku seikei gijutsu no kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Based on computer-aided science possible to estimate phase transformation temperatures affecting fine crystal grain control strongly, this research develops the energy- saving production technology for near-net-shape manufacturing of heat-resistant hard materials such as HSS, TiAl and W, by using the new sintering and bonding technology by texture control, complex carbide dispersion technology and pulse discharge sintering based on phase diagram calculation. In fiscal 1998, study was made on optimum alloy composition and heat treatment condition to obtain high-hardness steel with the performance over that of existing HSS by carbide dispersion carburizing process using conventional gas-carburizing facility, based on the data of phase diagram calculation. As a result, the composition and heat treatment condition necessary to obtain a target hardness of Hv1000 were determined. As the research result in both fiscal 1997 and 1998, 10Mo-5V alloy for HSS including a large amount of Mo and V, and 3.5Mo- 1.5V-3Cr alloy for HSS including less than 6% Mo and V are promising as basic composition for the future R and D. (NEDO)

  13. Case studies of a COED-based coal-conversion process. Final report, August 1, 1979-July 15, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Reklaitis, G.V.

    1983-02-01

    The objectives of this project were to investigate the process section models developed under a previous DOE contract into a single modified COED coal-conversion process model; to conduct case studies with selected process section models; and to supplement these studies by developing several additional models. A cyclone coal/char combustor model was developed, implemented and documented. A major program of case studies involving three alternative coal-conversion-process configurations (modified COED, COGAS, and COED) was executed. The COGAS configuration proved superior to the modified COED but was shown to be quite limited in the range of feasible operating conditions. Based on a second-law analysis the COED configuration was the most energy efficient of the three. An oil-vapor-quench-process section model was developed. The key element was a three phase stage-wise absorber with external heat removal and side streams. The model was validated against literature performance data. Comparison of the two quench systems showed them to be comparable in capital cost. Finally, flowsheet models were created of three bulk methanation systems. Suitable base cases were identified for each flowsheet. Extensive experimentation was carried out to speed up integration and to improve recycle convergence calculations. Because of excessive computer charges further case studies were terminated.

  14. Thermo-Economic Modelling and Process Integration of CO2-Mitigation Options on Oil and Gas Platforms

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter

    2014-01-01

    The offshore extraction of oil and gas is an energy-intensive process associated with large CO2 and CH4 emissions to the atmosphere and chemicals to the sea. The taxation of these emissions has encouraged the development of more energy-efficient and environmental-friendly solutions, of which three...... are assessed in this paper. The integration of steam bottoming cycles on the gas turbines or of lowtemperature power cycles on the export gas compression can result either in an additional power output, or in a greater export of natural gas. Another possibility is to implement a CO2-capture unit, which allows...... recovering CO2 that can be used for enhanced oil recovery. In this paper, a North Sea platform is considered as case study, and the site-scale retrofit integration of these three options is analysed, considering thermodynamic, economic and environmental performance indicators. The results illustrate...

  15. Bio-oil Production - Process Optimization and Product Quality

    DEFF Research Database (Denmark)

    Hoffmann, Jessica

    and pharmaceutical products, it will become a high-cost commodity. Therefore it is of great importance to develop a sustainable and marketable process for the conversion of biomass, which is feedstock flexible and energy efficient and offers high conversion efficiency. Only a process like this has the ability...... to produce a drop-in product that is commercially compatible to conventional fuels as wells as has the capability to endure. Furthermore, liquid biofuels in future need to be produced in bulk to meet demand; thus, the challenge becomes one of finding the right process with high feedstock flexibility. One......, fossil fuels still accounted for 87% of global and 81% of EU primary energy consumption. In an effort to reduce the carbon footprint of a continued supply of liquid fuels, processes utilizing biomass in general, and lignocellulosic biomass in particular, are being developed to replace their fossil...

  16. Resolving environmental issues in energy development: roles for the Department of Energy and its field offices

    Energy Technology Data Exchange (ETDEWEB)

    Ellickson, P.L.; Merrow, E.W.

    1979-01-01

    This study asks what the Department of Energy (DOE) might do to resolve environmental conflicts that arise during the implementation of energy projects or programs. We define implementation as efforts to establish an energy facility at a specific site. The environmental concerns surrounding implementation serve as touchstones of the relevance and feasibility of national energy policies. We have analyzed geothermal development in California and oil shale development in Colorado and Utah and addressed the following questions: By what processes are energy and environmental tradeoffs made. In what circumstances can DOE participation in these processes lead to a more satisfactory outcome. What options does DOE have for resolving environmetal issues and how can it choose the best option. How can DOE establish an effective working relationship with both the governmental and private groups affected by the siting and operation of energy projects. The government's most effective role in resolving environmental conflicts and uncertainties is to improve communications among the concerned parties. This role requires flexibility and evenhandedness from the government as well as an understanding of the local conditions and a commitment to appropriate local solutions. Involving local sources at every stage of the environmental impact analysis will reduce the probability of conflicts and make those that do arise more easily resolvable.

  17. Cell abundance and microbial community composition along a complete oil sand mining and reclamation process

    Science.gov (United States)

    Lappé, M.; Schneider, B.; Kallmeyer, J.

    2012-12-01

    Hydrocarbons constitute an important energy source for microbes but can also be of environmental concern. Microbial activity causes hydrocarbon degradation and thereby loss of economical value, but also helps to remove hydrocarbons from the environment. The present study characterizes the abundance of microbes along the oil sand mining process in Alberta, Canada, as a first approach to assess the impact of mining and oil extraction on the microbial population. After mining the oil is extracted from the sediment by a hot-water extraction (50-60°C), resulting in three major fractions: crude oil, tailings sand and fine tailings. The tailings sand is used as substratum for newly developing soils on the reclamation areas. The very liquid fine tailings still have a TOC content of about 4.3% and are pumped into tailings ponds, where they need up to three decades to settle and solidify. After deposition, these mature fine tailings (MFTs) are enriched in organics (TOC content between 9.6 and 16.8%) and dredged out of the ponds and put on dumps for several years for dewatering. Finally they are brought out onto the reclamation sites and deposited below the sand layer. Cells were extracted from oily sediments according to the protocol of Lappé and Kallmeyer (2011), stained with SYBR Green I and counted by fluorescence microscopy. Cell abundance in the unprocessed oil sand is around 1.6 x 107 cells cm-3. After processing the fresh fine tailings still contain around 1.6 x 107 cells cm-3. Cell counts in the processed MFTs are 5.8 x 107 cells cm-3, whereas in the sand used as substratum for newly developing soils, they are twice as high (1.4 x 108). In root-bearing horizons, cell counts reach 1.1 x 109 cell cm-3. Cell numbers calculated from cultivation experiments are in the same range. Higher cell counts in the tailings sand are probably due to a higher nitrogen supply through the addition of a 35 cm top layer of a peat-mineral mix. In the sand nitrate concentrations are high

  18. Optimization of Field Development Scheduling, East Unity Oil Field, Sudan

    Directory of Open Access Journals (Sweden)

    Tagwa A. Musa

    2005-01-01

    Full Text Available In order to improve the reservoir performance in East Unity oil field Sudan, the studies focused on characterization, modeling and simulation of the actual performance and future development. A model was constructed using a three-phase, three dimensional, black oil simulator (ECLIPSE. In this study a data from East Unity oil field Sudan started production at July 1999 was used to perform the optimal oil rate and designing the best location of the new operating wells. Cumulative oil production, oil production rate, Water cut and recovery factor were used as key criteria to see if adding new wells in the area under study are economic risk.

  19. Energy needs, uses, and resources in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Palmedo, P.F.; Nathans, R.; Beardsworth, E.; Hale, S. Jr.

    1978-03-01

    The report identifies the energy needs, uses, and resources in the developing countries of the world and examines the energy options available to them for their continued social and economic growth. If traditional patterns of development are to continue, oil consumption in the non-OPEC LDCs will grow steadily to become comparable with current U.S. consumption between 2000 and 2020. Attempts to exploit indigenous hydrocarbon resources even in those LDCs with untapped reserves will be limited by shortages of capital and technical manpower. In the absence of major actions to replace noncommercial fuels or to increase the effectiveness with which they are used, a large fraction of the 3 to 4 billion LDC rural population in the year 2000 will not be able to raise their energy usage above subsistence levels. There is a wide variety of solutions to these problems, many of them emerging directly from the changed economics of energy. For example, most LDCs have not adequately explored and developed their own indigenous resources; in virtually all energy conversion and utilization processes there are opportunities for improvements in efficiency and substitution of renewable energy forms. In virtually all these areas there are opportunities for effective assistance activities.

  20. Investigation of Swelling and Dissolution Process of Natural Rubber in Aromatic Oil

    Institute of Scientific and Technical Information of China (English)

    Wang Feng; Kuang Minming; Li Guanlong; Zhou Xiaolong; Li Chenglie

    2015-01-01

    Aromatic oil has been used to promote the properties of crumb rubber modiifed asphalt which is an ideal method to deal with the resource utilization of waste rubber tires and by-product of reifnery. Furfural extract oil (FEO) was sepa-rated into the light fraction and the heavy fraction. Swelling and dissolution process of natural rubber sheet in these three oil samples was investigated to shed light on the interaction mechanism. Crumb rubber also interacted on FEO and asphalt respectively. Energy dispersive spectrometer (EDS), thermo-gravimetric analysis (TGA) and scanning electron microscope (SEM) were used to characterize the chemical and structural properties of processed rubber. The chemical composition of processed oils and asphalt was investigated by using the hydrocarbon group analysis (SARA) and gel permeation chroma-tography. The results revealed that the swelling rate and mass loss of rubber in oils were much higher than those in asphalt and rose with an increasing processing temperature. The heavy fraction of FEO had more diffusion and dissolving capabil-ity than the light fraction, whilst compatibility was observed between the heavy fraction and the light fraction. Selective ab-sorption was not observed in the study and detachment of dissolved rubber was disseminated from the outside to the inside. The cross-linking degree of the residue rubber was unchanged with the processing time, and sulfur predominantly remained in the undissolved rubber. Dissolution of crumbed rubber in oils was attributed to devulcanization, while that in the asphalt was mainly attributed to depolymerization.

  1. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  2. Wind Energy Workforce Development & Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  3. Oil Products Quality Improvement by Adsorption Method

    Directory of Open Access Journals (Sweden)

    Kulash K. Syrmanova

    2017-02-01

    Full Text Available Petroleum takes the leading place in fuel and energy sector. It is a basis of fuel and energy balance of advanced countries economics. Light oil proven reserves reducing is a general trend of modern oil industry development. Almost the entire increase in reserves is due to viscous heavy sour oil [1-2]. Nowadays quality of the most important oil products is a crucial problem in refinery industry. The problem of oil products quality is connected with their using and operation in engines and machines. Requirements increasing to stability and effective technics maintenance leads to oil products running abilities significant hardening. In order to protect the environment, the task to obtain oil products with improved environmental properties was assigned. Properties of the oil determine the direction and condition of its processing and directly affect the quality of the oil products [3-4].

  4. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis

  5. Biomass as an energy source: thermodynamic constraints on the performance of the conversion process.

    Science.gov (United States)

    Baratieri, M; Baggio, P; Fiori, L; Grigiante, M

    2008-10-01

    In the present work an equilibrium model (gas-solid), based on the minimization of the Gibbs energy, has been used in order to estimate the theoretical yield and the equilibrium composition of the reaction products (syngas and char) of biomass thermochemical conversion processes (pyrolysis and gasification). The data obtained from this model have also been used to calculate the heating value of the fuel gas, in order to evaluate the overall energy efficiency of the thermal conversion stage. The proposed model has been applied both to partial oxidation and steam gasification processes with varying air to biomass (ER) and steam to carbon (SC) ratio values and using different feedstocks; the obtained results have been compared with experimental data and with other model predictions obtaining a satisfactory agreement.

  6. Bitumen on Water: Charred Hay as a PFD (Petroleum Flotation Device

    Directory of Open Access Journals (Sweden)

    Nusrat Jahan

    2015-10-01

    Full Text Available Global demand for petroleum keeps increasing while traditional supplies decline. One alternative to the use of conventional crude oils is the utilization of Canadian bitumen. Raw bitumen is a dense, viscous, semi-liquid that is diluted with lighter crude oil to permit its transport through pipelines to terminals where it can then be shipped to global markets. When spilled, it naturally weathers to its original form and becomes dense enough to sink in aquatic systems. This severely limits oil spill recovery and remediation options. Here we report on the application of charred hay as a method for modifying the surface behavior of bitumen in aquatic environments. Waste or surplus hay is abundant in North America. Its surface can easily be modified through charring and/or chemical treatment. We have characterized the modified and charred hay using solid-state NMR, contact angle measurements and infrared spectroscopy. Tests of these materials to treat spilled bitumen in model aquatic systems have been undertaken. Our results indicate that bitumen spills on water will retain their buoyancy for longer periods after treatment with charred hay, or charred hay coated with calcium oxide, improving recovery options.

  7. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  8. Offshore wind energy developments

    OpenAIRE

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu; Kiil, Søren; Holbøll, Joachim; Piirainen, Kalle

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.

  9. Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels.

    Science.gov (United States)

    Yang, Y; Brammer, J G; Mahmood, A S N; Hornung, A

    2014-10-01

    This work describes the use of intermediate pyrolysis system to produce liquid, gaseous and solid fuels from pelletised wood and barley straw feedstock. Experiments were conducted in a pilot-scale system and all products were collected and analysed. The liquid products were separated into an aqueous phase and an organic phase (pyrolysis oil) under gravity. The oil yields were 34.1 wt.% and 12.0 wt.% for wood and barley straw, respectively. Analysis found that both oils were rich in heterocyclic and phenolic compounds and have heating values over 24 MJ/kg. The yields of char for both feedstocks were found to be about 30 wt.%, with heating values similar to that of typical sub-bituminous class coal. Gas yields were calculated to be approximately 20 wt.%. Studies showed that both gases had heating values similar to that of downdraft gasification producer gas. Analysis on product energy yields indicated the process efficiency was about 75%.

  10. The value of flexibility in offshore oil field development projects

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Morten Wattengaard

    1997-12-31

    Offshore oil field development projects often face substantial uncertainties and the operator`s ability to take corrective actions is very important. The main objective of this thesis was to identify the value of flexibility in such projects. Estimates obtained from exploratory wells can be dependent through common information. The effect of stochastic dependence was illustrated by an analytical model, where the dependence was expressed in terms of correlation between estimate errors. It was found that a high degree of correlation might distort the benefit of additional exploration. A prototype that covered the major phases of the project was developed to study the value of flexibility. The prototype was a Markov decision process, solved by stochastic dynamic programming. Based on discussions with Norwegian oil companies, three uncertain variables were addressed: the reservoir volume, the well rate, and the oil price. Simple descriptions were used to mimic the uncertainty. The reservoir was thus depicted as a tank model, and the well rate and oil prices were assumed to follow Markov processes. Flexibility was restricted to managerial as opposed to financial flexibility. Application of the prototype to a case study, based on an ongoing field development, showed that flexibility might be of considerable value to the project. In particular, capacity flexibility and initiation flexibility were identified as important aspects of the development. The results also emphasized the importance of a joint assessment, as the values of different flexibility types are not additive. In conclusion, the proposed model motivates further development of the decision support system presently available. Future decision making should therefore be made within a framework that gives consideration to flexibility. 129 refs., 46 figs., 23 tabs.

  11. World Energy Balance Outlook and OPEC Production Capacity: Implications for Global Oil Security

    Directory of Open Access Journals (Sweden)

    Azadeh M. Rouhani

    2012-07-01

    Full Text Available The imbalance between energy resource availability, demand, and production capacity, coupled with inherent economic and environmental uncertainties make strategic energy resources planning, management, and decision-making a challenging process. In this paper, a descriptive approach has been taken to synthesize the world’s energy portfolio and the global energy balance outlook in order to provide insights into the role of Organization of Petroleum Exporting Countries (OPEC in maintaining “stability” and “balance” of the world’s energy market. This synthesis illustrates that in the absence of stringent policies, i.e., if historical trends of the global energy production and consumption hold into the future, it is unlikely that non-conventional liquid fuels and renewable energy sources will play a dominant role in meeting global energy demand by 2030. This should be a source of major global concern as the world may be unprepared for an ultimate shift to other energy sources when the imminent peak oil production is reached. OPEC’s potential to impact the supply and price of oil could enable this organization to act as a facilitator or a barrier for energy transition policies, and to play a key role in the global energy security through cooperative or non-cooperative strategies. It is argued that, as the global energy portfolio becomes more balanced in the long run, OPEC may change its typical high oil price strategies to drive the market prices to lower equilibria, making alternative energy sources less competitive. Alternatively, OPEC can contribute to a cooperative portfolio management approach to help mitigate the gradually emerging energy crisis and global warming, facilitating a less turbulent energy transition path while there is time.

  12. Alaska oil and gas: Energy wealth or vanishing opportunity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  13. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil

  14. China's Petrochemical Industrial Development Against High Oil Prices Background

    Institute of Scientific and Technical Information of China (English)

    Hong Dingyi

    2006-01-01

    @@ As China's oil consumption enters a rapid growth period,increasingly serious oil shortage has become the major factor restricting the nation from economic and social development. It is predicted that China's annual oil consumption will reach 450 million tons by 2020 when the peak crude production is around 200 million tons.

  15. Phase equilibria of continuous fossil fuel process oils

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M.J.; Weil, S.A. (Institute of Gas Technology, Chicago, IL (US))

    1988-04-01

    Fossil fuel process oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the pseudocomponents technique, the level of accuracy can be maintained.

  16. Phase equilibria of continuous fossil fuel process oils

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M.J.; Weil, S.A.

    1987-01-01

    Fossil fuel process oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented here to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the pseudocomponents technique, the level of accuracy can be maintained. 22 refs., 10 figs., 4 tabs.

  17. Phase equilibria of continuous fossil fuel process oils

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, M.J.

    1987-01-01

    Fossil fuel processes oils consist of such a large number of components that their only proper description is in terms of continuous distribution functions of a suitable characteristic variable. A methodology is presented here to describe the oils in terms of a generalized distribution function. The characteristic variable is determined from measurements of the equilibrium ratios of two test oils, at ambient pressure. Application of the proposed methodology to a sequence of operations shows that, unlike the psuedocomponents technique, the level of accuracy can be maintained.

  18. Developing New Alternative Energy in Virginia: Bio-Diesel from Algae

    Energy Technology Data Exchange (ETDEWEB)

    Hatcher, Patrick [Old Dominion University

    2012-03-29

    The overall objective of this study was to select chemical processing equipment, install and operate that equipment to directly convert algae to biodiesel via a reaction patented by Old Dominion University (Pat. No. US 8,080,679B2). This reaction is a high temperature (250- 330{degrees}C) methylation reaction utilizing tetramethylammonium hydroxide (TMAH) to produce biodiesel. As originally envisioned, algal biomass could be treated with TMAH in methanol without the need to separately extract triacylglycerides (TAG). The reactor temperature allows volatilization and condensation of the methyl esters whereas the spent algae solids can be utilized as a high-value fertilizer because they are minimally charred. During the course of this work and immediately prior to commencing, we discovered that glycerol, a major by-product of the conventional transesterification reaction for biofuels, is not formed but rather three methoxylated glycerol derivatives are produced. These derivatives are high-value specialty green chemicals that strongly upgrade the economics of the process, rendering this approach as one that now values the biofuel only as a by-product, the main value products being the methoxylated glycerols. A horizontal agitated thin-film evaporator (one square foot heat transfer area) proved effective as the primary reactor facilitating the reaction and vaporization of the products, and subsequent discharge of the spent algae solids that are suitable for supplementing petrochemicalbased fertilizers for agriculture. Because of the size chosen for the reactor, we encountered problems with delivery of the algal feed to the reaction zone, but envision that this problem could easily disappear upon scale-up or can be replaced economically by incorporating an extraction process. The objective for production of biodiesel from algae in quantities that could be tested could not be met, but we implemented use of soybean oil as a surrogate TAG feed to overcome this limitation

  19. Rise of oil prices and energy policy; Hausse du petrole et politique energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document reprints the talk of the press conference given by D. de Villepin, French prime minister, on August 16, 2005 about the alarming rise of oil prices. In his talk, the prime minister explains the reasons of the crisis (increase of worldwide consumption, political tensions in the Middle East..) and presents the strategy and main trends of the French energy policy: re-launching of energy investments in petroleum refining capacities and in the nuclear domain (new generation of power plants), development of renewable energy sources and in particular biofuels, re-launching of the energy saving policy thanks to financial incentives and to the development of clean vehicles and mass transportation systems. In a second part, the prime minister presents his policy of retro-cession of petroleum tax profits to low income workers, and of charge abatement to professionals having an occupation strongly penalized by the rise of oil prices (truckers, farmers, fishermen, taxi drivers). (J.S.)

  20. VT Renewable Energy Sites - Waste Vegetable Oil Biodiesel

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  1. Improved energy efficiency by means of reduced oil consumption for an ammonia refrigeration system; Verbeterde energie-efficiency door lager olieverbruik bij ammoniakkoeling

    Energy Technology Data Exchange (ETDEWEB)

    Lobregt, S. [TNO Milieu, Energie en Procesinnovatie TNO-MEP, Apeldoorn (Netherlands)

    2002-12-01

    F and F Europe, located in Kerkrade, the Netherlands, produces frozen mushrooms in a process involving washing, cutting, blanching (optional), freezing and packing. A central cooling unit produces the necessary cold, with ammonia as a refrigerant. Ammonia refrigeration systems operate more efficiently when lubricating oil is removed from the refrigerant. Due to relatively high ammonia temperatures some of the oil applied as lubricant and sealant evaporates and is transported into the cooling system by the ammonia flow. This oil contamination causes a film to settle inside the evaporators and condensers, which decreases the heat transfer and causes a fall of the suction pressure, a rise of the condensation temperature and an increase in operation time and electric energy consumption of the cornpressors. Previously, the oil was removed in traditional separators. However, due to the high temperature of the ammonia leaving the compressor (over 100C in the piston compressor) the existing separators are unable to prevent evaporated oil and small oil droplets entering the system. The company decided to introduce a hydrotreated oil and a high-efficiency oil remover. This recently developed type of oil separator has been installed at the discharge sides of the piston compressor. These measures caused the oil concentration in the gas leaving the compressor to drop to less than 3 ppm. Not only does this lead to substantial energy savings, but also to a significant reduction of the oil consumption and a diminished need for maintenance. Also safety conditions during oil change are improved while the oil contains less ammonia solved. The oil reclaimed from the ammonia flow may be fed back to the system. [Dutch] F en F Europe te Kerkrade beschikt over een ammoniak-koelsysteem voor het invriezen van champignondelen. Het bedrijf breidt de koeicapaciteit uit met een tweetrapszuigercompressor en ziet hierin een uitgelezen kans om het olieverbruik van het gehele koelsysteem te

  2. Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

    1994-07-01

    Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

  3. Optimal Design of Biodiesel Production Process from Waste Cooking Palm Oil

    DEFF Research Database (Denmark)

    Simasatitkul, Lida; Gani, Rafiqul; Arpornwichanop, Amornchai

    2012-01-01

    A design methodology for biodiesel production from waste cooking palm oil is proposed. The proposed method is flexible to the biodiesel process using various catalyst types: alkali and acid catalyst in homogenous and heterogeneous forms, and different process: enzyme process and supercritical...... analysis is used to find a suitable biodiesel process. The results show that based on a net present value, the heterogeneous acid catalyzed process is the best process for biodiesel production. With the design methodology, the proposed biodiesel process can save the energy requirement of 41.5%, compared...... process. A two-step approach of hydrolysis and esterification processes is also considered. Waste cooking palm oil consists of a mixture of triglyceride (e.g., trilaurin, tripalmitin, triolein, tristearin, trilinolein and trilinolenin) and free fatty acids (e.g., lauric acid, palmitic acid, stearic acid...

  4. Comparing the ecological impacts of wind and oil & gas development: a landscape scale assessment.

    Science.gov (United States)

    Jones, Nathan F; Pejchar, Liba

    2013-01-01

    Energy production in the United States is in transition as the demand for clean and domestic power increases. Wind energy offers the benefit of reduced emissions, yet, like oil and natural gas, it also contributes to energy sprawl. We used a diverse set of indicators to quantify the ecological impacts of oil, natural gas, and wind energy development in Colorado and Wyoming. Aerial imagery was supplemented with empirical data to estimate habitat loss, fragmentation, potential for wildlife mortality, susceptibility to invasion, biomass carbon lost, and water resources. To quantify these impacts we digitized the land-use footprint within 375 plots, stratified by energy type. We quantified the change in impacts per unit area and per unit energy produced, compared wind energy to oil and gas, and compared landscapes with and without energy development. We found substantial differences in impacts between energy types for most indicators, although the magnitude and direction of the differences varied. Oil and gas generally resulted in greater impacts per unit area but fewer impacts per unit energy compared with wind. Biologically important and policy-relevant outcomes of this study include: 1) regardless of energy type, underlying land-use matters and development in already disturbed areas resulted in fewer total impacts; 2) the number and source of potential mortality varied between energy types, however, the lack of robust mortality data limits our ability to use this information to estimate and mitigate impacts; and 3) per unit energy produced, oil and gas extraction was less impactful on an annual basis but is likely to have a much larger cumulative footprint than wind energy over time. This rapid evaluation of landscape-scale energy development impacts could be replicated in other regions, and our specific findings can help meet the challenge of balancing land conservation with society's demand for energy.

  5. Effective strategies for development of thermal heavy oil field facilities

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ken; Lehnert-Thiel, Gunter [IMV Projects (Canada)

    2011-07-01

    In thermal heavy oil, a significant part of the capital has to be invested in field facilities and therefore strategies have to be implemented to optimize these costs. Field facilities consist of pipelines, earthworks and production pads whose purpose is to connect an oilsands reservoir to a central processing facility. This paper, presented by IMV Projects, a leading company in the thermal heavy oil field, highlights strategies to manage field facility lifecycle cost. Upfront planning should be done and the development of field facilities should be thought of as a long term infrastructure program rather than a stand-alone project. In addition, templates should be developed to save money and repeatability should be implemented to obtain a better prediction of the program's costs. The strategies presented herein allow major savings over the program's life by implementing an improved schedule and allowing refinements all along the program's course.

  6. Basic research on energy conservation in developing countries. Joint research on oil conservation (research report on the industrial basis of Socialist Republic of Vietnam); Hatten tojokoku energy shohi koritsuka kiso chosanado jigyo sekiyu shohi koritsuka kyoryoku chosa. Betonamu shakai shugi kyowakoku sangyo kiso chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The field research of oil conservation was conducted in developing countries, in particular, Vietnam where a steep increase in oil consumption is anticipated in the future. Energy conservation is the most effective direct measures to control combustion of fossil fuels, and an important issue to be promoted by all countries in the world to prevent global warming and reserve energy resources. In fiscal 1994, main industries in the northern part of Vietnam were researched. In fiscal 1995, the report meeting of plant survey results in the northern part and the technical seminar of energy-saving in industrial field were held, and plants around Ho Chi Minh City in the southern part of Vietnam were researched. Although Vietnam has recently acquired membership in ASEAN and is undergoing dramatic economic growth, has many problems in environmental measures. Japan has top-ranking results on energy-saving in industrial field, and the transfer of such superior technologies and techniques will greatly contribute to resource and global warming problems as well as pollution control measures in Vietnam. 13 refs., 25 figs., 26 tabs.

  7. Detecting oil sands process-affected waters in the Alberta oil sands region using synchronous fluorescence spectroscopy.

    Science.gov (United States)

    Kavanagh, Richard J; Burnison, B Kent; Frank, Richard A; Solomon, Keith R; Van Der Kraak, Glen

    2009-06-01

    Large volumes of oil sands process-affected waters (OSPW) are produced during the extraction of bitumen from oil sand. There are approximately 10(9) m(3) of OSPW currently being stored in settling basins on oil sands mining sites in Northern Alberta. Developers plan to create artificial lakes with OSPW and it is expected that this water may eventually enter the environment. This study was conducted in order to determine if synchronous fluorescence spectroscopy (SFS) could detect OSPW contamination in water systems. Water samples collected from ponds containing OSPW and selected sites in the Alberta oil sands region were evaluated using SFS with an offset value of 18 nm. OSPW ponds consistently displayed a minor peak at 282.5 nm and a broad major peak ranging between 320 and 340 nm. Water from reference sites within the oil sands region had little fluorescence at 282.5 nm but greater fluorescence beyond 345 nm. Naphthenic acids are the major toxic component of OSPW. Both a commercial naphthenic acid and a naphthenic acid extract prepared from OSPW had similar fluorescent spectra with peaks at 280 nm and 320 nm and minor shoulders at approximately 303 and 331 nm. The presence of aromatic acids closely associated with the naphthenic acids may be responsible for unique fluorescence at 320-340 nm. SFS is proposed to be a simple and fast method to monitor the release of OSPW into ground and surface waters in the oil sands region.

  8. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River

  9. Renewable Energy Development in India

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.M.

    2007-07-01

    India has done a significant progress in the power generation in the country. The installed generation capacity was 1300 megawatt (MW) at the time of Independence i.e. about 60 years back. The total generating capacity anticipated at the end of the Tenth Plan on 31-03-2007, is 1, 44,520 MW which includes the generation through various sectors like Hydro, Thermal and Nuclear. Emphasis is given to the renewable energy programme towards gradual commercialization. This programme is looked after by the Ministry of Non-Conventional Sources of energy. Since the availability of fossil fuel is on the decline therefore, in this backdrop the norms for conventional or renewable sources of energy (RSE) is given importance not only in India but has attracted the global attention. The main items under RSE are as follows: (i) Hydro Power (ii) Solar Power (iii) Wind Power (iv) Bio-mass Power (v) Energy from waste (vi) Ocean energy, and (vii) Alternative fuel for surface transportation. Evolution of power transformer technology in the country during the past five decades is quite impressive. There are manufacturers in the country with full access to the latest technology at the global level. Some of the manufacturers have impressive R&D set up to support the technology. Renewable energy is very much promoted by the Chinese Government. At the same time as the law was passed, the Chinese Government set a target for renewable energy to contribute 10% of the country's gross energy consumption by 2020, a huge increase from the current 1%. It has been felt that there is rising demand for energy, food and raw materials by a population of 2.5 billion Chinese and Indians. Both these countries have large coal dominated energy systems in the world and the use of fossil fuels such as coal and oil releases carbon dioxide (CO2) into the air which adds to the greenhouse gases which lead to global warming. (auth)

  10. A Model-based Phenomenological Investigation of Char Combustion Kinetics through Thermogravimetry

    Institute of Scientific and Technical Information of China (English)

    Qun CHEN; Rong HE; Zhan Gang LIANG; Xu Chang XU; Chang He CHEN

    2005-01-01

    Five coal char samples were burnt in thermobalance with ramp heating rate of 30 K/min.The pore structure of these char samples was studied through mercury intrusion method.Combined with the kinetic theory of gases, the data of surface area was used in fitting the results.As a result, the kinetic triplet was given. The analysis showed that five char samples share almost the same intrinsic activation energy of the overall reaction. The phenomenological implication of the derived combustion rate equation was given.

  11. Multidimensional energy operator for image processing

    Science.gov (United States)

    Maragos, Petros; Bovik, Alan C.; Quatieri, Thomas F.

    1992-11-01

    The 1-D nonlinear differential operator (Psi) (f) equals (f')2 - ff' has been recently introduced to signal processing and has been found very useful for estimating the parameters of sinusoids and the modulating signals of AM-FM signals. It is called an energy operator because it can track the energy of an oscillator source generating a sinusoidal signal. In this paper we introduce the multidimensional extension (Phi) (f) equals (parallel)DELf(parallel)2 - fDEL2f of the 1-D energy operator and briefly outline some of its applications to image processing. We discuss some interesting properties of the multidimensional operator and develop demodulation algorithms to estimate the amplitude envelope and instantaneous frequencies of 2-D spatially-varying AM-FM signals, which can model image texture. The attractive features of the multidimensional operator and the related amplitude/frequency demodulation algorithms are their simplicity, efficiency, and ability to track instantaneously- varying spatial modulation patterns.

  12. Business development in renewable energy

    NARCIS (Netherlands)

    Krozer, Yoram; Visa, Ion

    2014-01-01

    This paper discusses how to foster development of renewable energy business. Factors that impede or enhance renewable energy in the EU 27 member states in the period 1998–2008 are analyzed. Nine factors are considered: population density, production output and energy sector output to indicate market

  13. North Dakota Energy Workforce Development

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Drake [Bismarck State College, Bismarck, ND (United States)

    2014-12-29

    Bismarck State College, along with its partners (Williston State College, Minot State University and Dickinson State University), received funding to help address the labor and social impacts of rapid oilfield development in the Williston Basin of western North Dakota. Funding was used to develop and support both credit and non-credit workforce training as well as four major symposia designed to inform and educate the public; enhance communication and sense of partnership among citizens, local community leaders and industry; and identify and plan to ameliorate negative impacts of oil field development.

  14. Development of high energy density fuels from mild gasification of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  15. Development of high energy density fuels from mild gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  16. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    Energy Technology Data Exchange (ETDEWEB)

    Kishore K. Mohanty

    2004-12-01

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based

  17. DEVELOPMENT OF CHINA'S OFFSHORE OIL RESOURCES

    Institute of Scientific and Technical Information of China (English)

    Jin Xiaojian; You Xuegang; Liu Haishan

    2008-01-01

    @@ Compared with the traditional exploitation of landbased oil and gas, to explore offshore oil and gas might exert certain influences by high-risk, high-tech and highinvestment, which attributes to determine the basic characteristics of offshore oil and gas developmentsafe, efficiency and economy.

  18. Research of thermal processes in the soil during the development of oil fields in the Far North by the compression method with heating

    Science.gov (United States)

    Filimonov, A. S.; Tarasov, V. A.; Komkov, M. A.; Moiseev, V. A.; Timofeev, M. P.; Boyarskaya, R. V.

    2016-12-01

    In this paper, the hazard of adverse heat effect on permafrost soil as a result of viscous oil production in the Far North is studied with the method of thermocompression supply of superheated water steam to the oil-bearing layer. It is found that, due to the divergent nature of heat transfer and convective complex movement of air in the space between the tubing and the casing, the temperature of the latter in the area of load-bearing elements heated to 130°C is about 70°C. The heterogeneity of the temperature field is leveled up to 4-5% at a distance of 400-420 mm from the axis of the tubing. The thickness of the melting layer of ground ice within 90 days of operation of the tubing depends on the percentage of water-filled pores in the soil. With the minimum (10%) percentage of water-filled pores in the soil layer, the thickness of the ground ice melting layer for 90 days of operation of the tubing does not exceed 2.6 m.

  19. Managing the environmental challenges of oil sand development

    Energy Technology Data Exchange (ETDEWEB)

    Weagle, K. [Cumulative Environmental Management Association, Fort McMurray, AB (Canada)

    2003-07-01

    A brief overview of the development of the oil sand industry in Alberta was provided with reference to proposed projects, government revenue, and jobs in the industry between 1995 and 2002. The major environmental concerns facing the industry are: corporations and environmental risk; the process required by both the federal government and the government of Alberta to address cumulative effects; and, an increased interest in resource development. Self-regulation in the sector was discussed, examining who pays the bills, and the triad of self-regulation. The author described the Cumulative Environmental Management Association (CEMA) as being a multi-shareholder group working to implement sustainable development strategies by promoting management and understanding of cumulative impacts. The 14 themes of CEMA were examined, its goals reviewed, and the corporate structure described. Other challenges facing the oil sands industry originate from the Kyoto Protocol negotiations and construction costs. The Alberta government fosters a climate that encourages continued development in Alberta's oil sands areas. figs.

  20. Development of an Advanced Deshaling Technology to Improve the Energy Efficiency of Coal Handling, Processing, and Utilization Operations

    Energy Technology Data Exchange (ETDEWEB)

    Rick Honaker; Gerald Luttrell

    2007-09-30

    surface moisture of the feed coal exceeds the maximum limit. However, the content of -6mm in the feed to the FGX separator should be maintained between 10% and 20% to ensure an adequate fluidized bed. A parametric evaluation was conducted using a 3-level experimental design at each test site to identify the optimum separation performance and parameter values. The test data was used to develop empirical expressions that describe the response variables (i.e., mass yield and product ash content) as a function of the operating parameter values. From this process, it was established that table frequency and longitudinal slope are the most critical factors in controlling both mass yield and clean coal ash while the cross table slope was the least significant. Fan blower frequency is a critical parameter that controls mass yield. Although the splitter positions between product and middling streams and the middling and tailing streams were held constant during the tests, a separate evaluation indicated that performance is sensitive to splitter position within certain lengths of the table and insensitive in others. For a Utah bituminous coal, the FGX separator provided clean coal ash contents that ranged from a low of 8.57% to a high of 12.48% from a feed coal containing around 17% ash. From the 29 tests involved in the statistically designed test program, the average clean coal ash content was 10.76% while the tailings ash content averaged around 72%. One of the best separation performances achieved an ash reduction from 17.36% to 10.67% while recovering 85.9% of the total feed mass, which equated to an ash rejection value of around 47%. The total sulfur content was typically decreased from 1.61% to 1.49%. These performances were quantified by blending the middlings stream with the clean coal product. At a second Utah site, coal sources from three different bituminous coal seams were treated by the FGX deshaling unit. Three parameter values were varied based on the results

  1. Beneficiation-hydroretort processing of US oil shales, engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  2. Development narratives, notions of forest crisis, and boom of oil palm plantations in Indonesia

    NARCIS (Netherlands)

    Susanti, Ari; Maryudi, Ahmad

    2016-01-01

    Indonesia experienced massive deforestation in the last decades where rapid oil palm expansion has been considered as one of the main drivers. This article shows that the process of deforestation and the rapid oil palm expansion cannot be viewed in isolation from broader development contexts. Variou

  3. Green Diesel from Hydrotreated Vegetable Oil Process Design Study

    NARCIS (Netherlands)

    Hilbers, T.J.; Sprakel, L.M.J.; Enk, van den L.B.J.; Zaalberg, B.; Berg, van den H.; Ham, van der A.G.J.

    2015-01-01

    A systematic approach was applied to study the process of hydrotreating vegetable oils. During the three phases of conceptual, detailed, and final design, unit operations were designed and sized. Modeling of the process was performed with UniSim Design®. Producing green diesel and jet fuel from vege

  4. Properties of gasification-derived char and its utilization for catalytic tar reforming

    Science.gov (United States)

    Qian, Kezhen

    Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst

  5. Microwave irradiation biodiesel processing of waste cooking oil

    Science.gov (United States)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  6. Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char.

    Science.gov (United States)

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-03-01

    Palm empty fruit bunch ash (EFB-ash) was used as a natural catalyst, rich in potassium to enhance the CO2 gasification reactivity of palm shell char (PS-char). Various EFB-ash loadings (ranging from 0 to 12.5wt.%) were implemented to improve the reactivity of PS-char during CO2 gasification studies using thermogravimetric analysis. The achieved results explored that the highest gasification reactivity was devoted to 10% EFB-ash loaded char. The SEM-EDS and XRD analyses further confirmed the successful loading of EFB-ash on PS-char which contributed to promoting the gasification reactivity of char. Random pore model was applied to determine the kinetic parameters in catalytic gasification of char at various temperatures of 800-900°C. The dependence of char reaction rate on gasification temperature resulted in a straight line in Arrhenius-type plot, from which the activation energy of 158.75kJ/mol was obtained for the catalytic char gasification.

  7. Energy services and energy poverty for sustainable rural development

    Energy Technology Data Exchange (ETDEWEB)

    Kaygusuz, K. [Department of Chemistry, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2011-02-15

    In many rural areas, poor people still depend on wood and other biomass fuels for most of their household and income-generating activities. The difficult, time-consuming work of collecting and managing traditional fuels is widely viewed as women's responsibility, which is a factor in women's disproportionate lack of access to education and income, and inability to escape from poverty. Therefore, it is important for energy access programs to have a special focus on women. New options for energy access and sustainable livelihoods, like small-scale biofuels production, can have dramatic benefits for rural women, and their families and communities. Energy development, as both a driving force and a consequence of such tremendous changes, has had profound impact on economic, social, and environmental development. Rural energy has always been a critical issue due to years of energy shortage for both households and industries. Biomass, for long time, has been the only available fuel in many rural areas. The situation in rural areas is even more critical as local demand for energy outstrips availability and the vast majority of people depend on non-commercial energy supplies. Energy is needed for household uses, such as cooking, lighting, heating; for agricultural uses, such as tilling, irrigation and post-harvest processing; and for rural industry uses, such as milling and mechanical energy and process heat. Energy is also an input to water supply, communication, commerce, health, education and transportation in rural areas. (author)

  8. A review of oil-suspended particulate matter aggregation--a natural process of cleansing spilled oil in the aquatic environment.

    Science.gov (United States)

    Sun, Juan; Zheng, Xilai

    2009-10-01

    It has been acknowledged that following an oil spill in coastal areas where suspended particulate matter (SPM) is rich, aggregation between oil and SPM can be naturally formed. This kind of aggregation product is termed as oil-SPM aggregates (OSAs). Because OSAs are not as sticky to the shorelines as crude oil and the oil-water contact area is greatly increased du