WorldWideScience

Sample records for chaotic particle swarm

  1. Chaotic particle swarm optimization with mutation for classification.

    Science.gov (United States)

    Assarzadeh, Zahra; Naghsh-Nilchi, Ahmad Reza

    2015-01-01

    In this paper, a chaotic particle swarm optimization with mutation-based classifier particle swarm optimization is proposed to classify patterns of different classes in the feature space. The introduced mutation operators and chaotic sequences allows us to overcome the problem of early convergence into a local minima associated with particle swarm optimization algorithms. That is, the mutation operator sharpens the convergence and it tunes the best possible solution. Furthermore, to remove the irrelevant data and reduce the dimensionality of medical datasets, a feature selection approach using binary version of the proposed particle swarm optimization is introduced. In order to demonstrate the effectiveness of our proposed classifier, mutation-based classifier particle swarm optimization, it is checked out with three sets of data classifications namely, Wisconsin diagnostic breast cancer, Wisconsin breast cancer and heart-statlog, with different feature vector dimensions. The proposed algorithm is compared with different classifier algorithms including k-nearest neighbor, as a conventional classifier, particle swarm-classifier, genetic algorithm, and Imperialist competitive algorithm-classifier, as more sophisticated ones. The performance of each classifier was evaluated by calculating the accuracy, sensitivity, specificity and Matthews's correlation coefficient. The experimental results show that the mutation-based classifier particle swarm optimization unequivocally performs better than all the compared algorithms.

  2. Chaos Control of Lure Like Chaotic System using Backstepping Controller Optimized by Chaotic Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Alireza Khosravi

    2012-03-01

    Full Text Available This paper deals with the design of optimal backstepping controller, by using the chaotic particle swarm optimization (CPSO algorithm to control of chaos in Lure like chaotic system. The backstepping method consists of parameters which could have positive values. The parameters are usually chosen optional by trial and error method. The controlled system provides different behaviors for different values of the parameters. It is necessary to select proper parameters to obtain a good response, because the improper selection of the parameters leads to inappropriate responses or even may lead to instability of the system. The proposed optimal backstepping controller without trial and error determines the parameters of backstepping controller automatically and intelligently by minimizing the Integral of Time multiplied Absolute Error (ITAE and squared controller output. Finally, the efficiency of the proposed optimal backstepping controller (OBSC is illustrated by implementing the method on the Lure like chaotic system.

  3. Autotuning algorithm of particle swarm PID parameter based on D-Tent chaotic model

    Institute of Scientific and Technical Information of China (English)

    Min Zhu; Chunling Yang; Weiliang Li

    2013-01-01

    An improved particle swarm algorithm based on the D-Tent chaotic model is put forward aiming at the standard particle swarm algorithm. The convergence rate of the late of proposed al-gorithm is improved by revising the inertia weight of global optimal particles and the introduction of D-Tent chaotic sequence. Through the test of typical function and the autotuning test of proportional-integral-derivative (PID) parameter, finally a simulation is made to the servo control system of a permanent magnet synchronous motor (PMSM) under double-loop control of rotating speed and current by utilizing the chaotic particle swarm algorithm. Studies show that the proposed algorithm can reduce the iterative times and improve the convergence rate under the condition that the global optimal solution can be got.

  4. Chaotic System Identification Based on a Fuzzy Wiener Model with Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    LI Yong; TANG Ying-Gan

    2010-01-01

    @@ A fuzzy Wiener model is proposed to identify chaotic systems.The proposed fuzzy Wiener model consists of two parts,one is a linear dynamic subsystem and the other is a static nonlinear part,which is represented by the Takagi-Sugeno fuzzy model Identification of chaotic systems is converted to find optimal parameters of the fuzzy Wiener model by minimizing the state error between the original chaotic system and the fuzzy Wiener model.Particle swarm optimization algorithm,a global optimizer,is used to search the optimal parameter of the fuzzy Wiener model.The proposed method can identify the parameters of the linear part and nonlinear part simultaneously.Numerical simulations for Henón and Lozi chaotic system identification show the effectiveness of the proposed method.

  5. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

    Science.gov (United States)

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.

  6. Parameter estimation of fractional-order chaotic systems by using quantum parallel particle swarm optimization algorithm.

    Directory of Open Access Journals (Sweden)

    Yu Huang

    Full Text Available Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm.

  7. Crop Classification by Forward Neural Network with Adaptive Chaotic Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2011-05-01

    Full Text Available This paper proposes a hybrid crop classifier for polarimetric synthetic aperture radar (SAR images. The feature sets consisted of span image, the H/A/α decomposition, and the gray-level co-occurrence matrix (GLCM based texture features. Then, the features were reduced by principle component analysis (PCA. Finally, a two-hidden-layer forward neural network (NN was constructed and trained by adaptive chaotic particle swarm optimization (ACPSO. K-fold cross validation was employed to enhance generation. The experimental results on Flevoland sites demonstrate the superiority of ACPSO to back-propagation (BP, adaptive BP (ABP, momentum BP (MBP, Particle Swarm Optimization (PSO, and Resilient back-propagation (RPROP methods. Moreover, the computation time for each pixel is only 1.08 × 10−7 s.

  8. Model-free adaptive control optimization using a chaotic particle swarm approach

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br; Rodrigues Coelho, Antonio Augusto [Department of Automation and Systems, Federal University of Santa Catarina, Box 476, 88040-900 Florianopolis, Santa Catarina (Brazil)], E-mail: aarc@das.ufsc.br

    2009-08-30

    It is well known that conventional control theories are widely suited for applications where the processes can be reasonably described in advance. However, when the plant's dynamics are hard to characterize precisely or are subject to environmental uncertainties, one may encounter difficulties in applying the conventional controller design methodologies. Despite the difficulty in achieving high control performance, the fine tuning of controller parameters is a tedious task that always requires experts with knowledge in both control theory and process information. Nowadays, more and more studies have focused on the development of adaptive control algorithms that can be directly applied to complex processes whose dynamics are poorly modeled and/or have severe nonlinearities. In this context, the design of a Model-Free Learning Adaptive Control (MFLAC) based on pseudo-gradient concepts and optimization procedure by a Particle Swarm Optimization (PSO) approach using constriction coefficient and Henon chaotic sequences (CPSOH) is presented in this paper. PSO is a stochastic global optimization technique inspired by social behavior of bird flocking. The PSO models the exploration of a problem space by a population of particles. Each particle in PSO has a randomized velocity associated to it, which moves through the space of the problem. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed CPSOH introduces chaos mapping which introduces some flexibility in particle movements in each iteration. The chaotic sequences allow also explorations at early stages and exploitations at later stages during the search procedure of CPSOH. Motivation for application of CPSOH approach is to overcome the limitation of the conventional MFLAC design, which cannot guarantee satisfactory control performance when the plant has different gains for the operational range when designed by trial-and-error by user. Numerical results of the MFLAC with

  9. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems.

    Science.gov (United States)

    Li, Xuejun; Xu, Jia; Yang, Yun

    2015-01-01

    Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  10. A Chaotic Particle Swarm Optimization-Based Heuristic for Market-Oriented Task-Level Scheduling in Cloud Workflow Systems

    Directory of Open Access Journals (Sweden)

    Xuejun Li

    2015-01-01

    Full Text Available Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO and Particle Swarm Optimization (PSO have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.

  11. Double-Bottom Chaotic Map Particle Swarm Optimization Based on Chi-Square Test to Determine Gene-Gene Interactions

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2014-01-01

    Full Text Available Gene-gene interaction studies focus on the investigation of the association between the single nucleotide polymorphisms (SNPs of genes for disease susceptibility. Statistical methods are widely used to search for a good model of gene-gene interaction for disease analysis, and the previously determined models have successfully explained the effects between SNPs and diseases. However, the huge numbers of potential combinations of SNP genotypes limit the use of statistical methods for analysing high-order interaction, and finding an available high-order model of gene-gene interaction remains a challenge. In this study, an improved particle swarm optimization with double-bottom chaotic maps (DBM-PSO was applied to assist statistical methods in the analysis of associated variations to disease susceptibility. A big data set was simulated using the published genotype frequencies of 26 SNPs amongst eight genes for breast cancer. Results showed that the proposed DBM-PSO successfully determined two- to six-order models of gene-gene interaction for the risk association with breast cancer (odds ratio > 1.0; P value <0.05. Analysis results supported that the proposed DBM-PSO can identify good models and provide higher chi-square values than conventional PSO. This study indicates that DBM-PSO is a robust and precise algorithm for determination of gene-gene interaction models for breast cancer.

  12. 一种采用完全Logistic混沌的PSO-GA优化方法%Hybrid optimization method through complete Logistic chaotic particle swarm optimization and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    黄为勇

    2012-01-01

    为了提高粒子群优化算法的性能,提出了一种完全Logistic混沌粒子群优化与遗传算法的混合优化方法.该方法将具有伪随机性与遍历性特征的Logistic混沌应用到粒子群算法的粒子位置和速度初始化、惯性权重优化、随机常数以及局部最优解邻域点产生的全过程,并在粒子速度和位置更新后再与遗传算法相混合,进行选择和交叉操作.三种典型Benchmark函数的实验结果验证了所提方法的有效性,该方法具有更好的寻优能力与收敛速度.%School of Information & Electrical Engineering, Xuzhou Institute of Technology, Xuzhou Jiangsu 221111, China In order to improve the optimization performance of particle swarm optimization,this paper proposed a new algorithm called complete Logistic chaotic particle swarm optimization combined with genetic algorithm. Logistic chaos search, which had the property of pseudo-randomness and ergodicity, was applied to the initialization of position and velocity of initial swarm, the optimization of inertia weight, the generation of random constant and the generation of the local optimum neighborhood point. After the particle velocity and position were updated, it embedded genetic algorithm in the complete Logistic chaotic particle swarm optimization, to perform the operation of selection and crossover. Experimental results with three typical Benchmark functions show that the proposed algorithm is effective, and has better search property and convergence speed.

  13. Particle Swarm Optimization

    Science.gov (United States)

    Venter, Gerhard; Sobieszczanski-Sobieski Jaroslaw

    2002-01-01

    The purpose of this paper is to show how the search algorithm known as particle swarm optimization performs. Here, particle swarm optimization is applied to structural design problems, but the method has a much wider range of possible applications. The paper's new contributions are improvements to the particle swarm optimization algorithm and conclusions and recommendations as to the utility of the algorithm, Results of numerical experiments for both continuous and discrete applications are presented in the paper. The results indicate that the particle swarm optimization algorithm does locate the constrained minimum design in continuous applications with very good precision, albeit at a much higher computational cost than that of a typical gradient based optimizer. However, the true potential of particle swarm optimization is primarily in applications with discrete and/or discontinuous functions and variables. Additionally, particle swarm optimization has the potential of efficient computation with very large numbers of concurrently operating processors.

  14. Modified chaotic ant swarm to function optimization

    Institute of Scientific and Technical Information of China (English)

    LI Yu-ying; WEN Qiao-yan; LI Li-xiang

    2009-01-01

    The chaotic ant swarm algorithm (CAS) is an optimization algorithm based on swarm intelligence theory, and it is inspired by the chaotic and self-organizing behavior of the ants in nature. Based on the analysis of the properties of the CAS, this article proposes a variation on the CAS called the modified chaotic ant swarm (MCAS), which employs two novel strategies to significantly improve the performance of the original algorithm. This is achieved by restricting the variables to search ranges and making the global best ant to learn from different ants' best information in the end. The simulation of the MCAS on five benchmark functions shows that the MCAS improves the precision of the solution.

  15. Particle Swarm Optimization Toolbox

    Science.gov (United States)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  16. Parameter estimation for chaotic systems based on improved boundary chicken swarm optimization

    Science.gov (United States)

    Chen, Shaolong; Yan, Renhuan

    2016-10-01

    Estimating unknown parameters for chaotic system is a key problem in the field of chaos control and synchronization. Through constructing an appropriate fitness function, parameter estimation of chaotic system could be converted to a multidimensional parameter optimization problem. In this paper, a new method base on improved boundary chicken swarm optimization (IBCSO) algorithm is proposed for solving the problem of parameter estimation in chaotic system. However, to the best of our knowledge, there is no published research work on chicken swarm optimization for parameters estimation of chaotic system. Computer simulation based on Lorenz system and comparisons with chicken swarm optimization, particle swarm optimization, and genetic algorithm shows the effectiveness and feasibility of the proposed method.

  17. Momentum particle swarm optimizer

    Institute of Scientific and Technical Information of China (English)

    Liu Yu; Qin Zheng; Wang Xianghua; He Xingshi

    2005-01-01

    The previous particle swarm optimizers lack direct mechanism to prevent particles beyond predefined search space, which results in invalid solutions in some special cases. A momentum factor is introduced into the original particle swarm optimizer to resolve this problem. Furthermore, in order to accelerate convergence, a new strategy about updating velocities is given. The resulting approach is mromentum-PSO which guarantees that particles are never beyond predefined search space without checking boundary in every iteration. In addition, linearly decreasing wight PSO (LDW-PSO) equipped with a boundary checking strategy is also discussed, which is denoted as LDWBC-PSO. LDW-PSO, LDWBC-PSO and momentum-PSO are compared in optimization on five test functions. The experimental results show that in some special cases LDW-PSO finds invalid solutions and LDWBC-PSO has poor performance, while momentum-PSO not only exhibits good performance but also reduces computational cost for updating velocities.

  18. Active disturbance rejection control of a chaotic system based on immune binary-state particle swarm optimization algorithm%基于免疫双态微粒群的混沌系统自抗扰控制

    Institute of Scientific and Technical Information of China (English)

    刘朝华; 张英杰; 章兢; 吴建辉

    2011-01-01

    The active disturbance rejection control (ADRC) has the property of requiring no knowledge about the precise mathematical model, but the parameters of controller is difficult to be tuned. An active disturbance rejection control based on immune binary-state particle swarm optimization algorithm (IBPSO-ADRC) is proposed, which takes advantage of the combination of the artificial immune systems (AIS) and particle swarm optimization (PSO). The proposed algorithm is applied to optimize the parameters of ADRC and then to control chaotic system. Furthermore, a new ADRC for the chaotic system is constructed. The simulation experiments indicate that the scheme requires no knowledge about the mathematical model with fast response speed, while restraining the parameter perturbation of chaotic system effectively and is robust to noise.%利用人工免疫算法及粒子群优化算法融合的优点,提出了一种免疫双态微粒群算法(immune binarystate particle swarm optimization,IBPSO)的自抗扰控制器(IBPSO-ADRC),应用于混沌系统控制,构建一种混沌系统自抗扰控制系统.实验研究表明:该控制方法无需了解动态系统精确模型,具有响应速度快,有效抑制混沌系统参数摄动及较强抗干扰能力的特点.

  19. A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-11-01

    Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.

  20. 基于改进混沌粒子群算法的管网优化%Pipe Network Optimization Based on Improved Chaotic Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    乔俊飞; 潘广源; 韩红桂

    2013-01-01

    This paper analyses and improves the no purpose in initial and ineffective for jumping out of the local optimum in the late on Chaotic Particle Swarm Optimization(CPSO),based on the randomness,stochastic property and regularity of chaos to find a new superior individual by chaotic searching on the global best individual.Defined chaos parametersμ according to the particularity of the water distribution network diameter,introduces an improved method of CPSO(HMCPSO),and improves the ability for seeking the global excellent result.By introducing the mechanism of startup of CPSO,the convergence ability in early stage is improved effectively.By introducing the mechanism of judge the historical data of particle position,reduces the excess operations of chaos,the calculation time is reduced effectively.HMCPSO is then applied in the pipe network; comparing with PSO and CPSO,the result shows HMCPSO has higher speed and more stable outcomes.%针对混沌粒子群运算初期的无目的性、固定的控制参量在运算后期不利于跳出局部最优等进行了分析和改进,利用混沌运动的随机性、遍历性和规律性特点对粒子群体中的最优粒子进行混沌寻优,根据给水管网管径选取的离散化特殊性,对混沌粒子群的混沌参量μ进行公式化规定,提出一种改进型混沌粒子群算法(HMCPSO),提高粒子群算法摆脱局部极优的能力.通过引入混沌算法启动机制,有效提高种群初期的收敛能力,通过引入粒子群位置的历史数据判断机制,减少多余的混沌运算,有效缩短算法运行时间.将本改进算法应用于给水管网的模型中,仿真效果表明文中提出的改进算法与PSO和CPSO算法相比,找到的结果更优且稳定性较好,运算时间得到有效减少.

  1. KNN Text Classification Algorithm Based on Chaotic Binary Particle Swarm Optimization%基于混沌二进制粒子群优化的KNN文本分类算法

    Institute of Scientific and Technical Information of China (English)

    徐辉

    2012-01-01

    中文文本分类的主要问题是特征空间的高维性.提出了基于混沌二进制粒子群的KNN文本分类算法,利用混沌二进制粒子群算法遍历训练集的特征空间,选择特征子空间,然后在特征子空间中使用KNN算法进行文本分类.在粒子群的迭代优化过程中,利用混沌映射,指导群体进行混沌搜索,使算法摆脱局部最优,扩大寻找全局最优解的能力.实验结果表明,提出的新分类算法对中文文本分类是有效的,其分类准确率、召回率都优于KNN算法.%The main problem of Chinese text classification is the high dimenmonat teature space particle swarm optimization, KNN text classification algorithm is proposed. It uses chaotic particle swarm algorithm to traverse feature space of the training set, selects the feature subspace, and then it uses KNN algorithm to classify text in feature subspace. In particle swarm' s iterative process, It uses chaotic map to guide swarms for chaotic search,it makes the algorithm out of local optimum, and expands the ability of finding global optimal solution. Experimental results show that the proposed new classification algorithm for Chinese text classification is effective, the classification accuracy and recall are better than KNN algorithm.

  2. 一种基于空间混沌序列的量子粒子群优化算法及其应用%QUANTUM-BEHAVED PARTICLE SWARM OPTIMISATION BASED ON SPACE CHAOTIC SEQUENCE AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    靳雁霞; 师志斌

    2013-01-01

    为了改善粒子群的局部收敛能力和收敛速度,在经典粒子群优化算法和量子理论的基础上,提出一种改进的基于量子行为的粒子群优化算法.在新算法中,运用全同粒子系更新粒子位置,并引入空间混沌思想[1].将新算法应用到虚拟射手飞碟训练系统中射点的三维姿态参数优化中,取得了很好的优化效果.%In order to improve local convergence ability and convergence speed of particle swarm, this paper proposes an improved particle swarm optimisation algorithm based on quantum behaviour according to classical particle swarm optimisation and quantum theory. The new algorithm renews particle positions by utilising identical particle system, and introduces spatial chaotic thought. The new algorithm made good optimisation effect in virtual reality training system for clay target shooter (CTS) at the point of 3D pose parameters optimisation.

  3. An Extended Particle Swarm Optimizer

    Institute of Scientific and Technical Information of China (English)

    XU Jun-jie; XIN Zhan-hong

    2005-01-01

    An Extended Particle Swarm Optimizer (EPSO) is proposed in this paper. In this new algorithm, not only the local but also the global best position will impact the particle's velocity updating process. EPSO is an integration of Local Best paradigm (LBEST) and Global Best paradigm (GBEST) and it significantly enhances the performance of the conventional particle swarm optimizers. The experiment results have proved that EPSO deserves to be investigated.

  4. A Study of Chaotic Particle Swarm Optimization for Shallow Foundation Design%浅基础的混沌粒子群优化设计方法

    Institute of Scientific and Technical Information of China (English)

    王成华; 曾超峰

    2011-01-01

    目的 探讨浅基础的各种参数对浅基础造价影响的基本规律,提高浅基础设计工作的质量与效率.方法 根据中国建筑地基基础设计规范的设计规定,通过相应的工程算例分析,以FORTRAN90语言编制了优化设计计算程序,将混沌粒子群算法引入到浅基础优化设计中.建立了以造价为目标函数的竖向荷载作用下的浅基础优化设计数学模型.对常规浅基础的地基承载力、基础沉降及基础结构强度进行分析与设计.结果 提出了一个完整的浅基础优化设计方法,即CPSOSF,并利用其对实际工程中基础宽度、基础高度、基础埋深进行优化得到总造价最低的方案.结论 相对于基础宽度而言,基础造价对基础埋深的变化更加敏感.因而工程中为了节省造价,在满足地基稳定和变形要求及有关条件的前提下,应该尽量浅埋基础.%In order to improve the quality and efficiency of shallow foundation design and find the laws of the influence of various parameters on the cost of shallow foundation,the Chaotic Particle Swarm Optimization (CPSO) is introduced into the optimal design of shallow foundations. Based on a corresponding engineering project, a mathematical model for the optimal design of Conventional shallow foundation under vertical loadings, according to the China's code for design of building foundation, is established for the analyses of bearing capacity, the foundation settlement and the foundation structural strength. The computation program for the optimal design is compiled in Fortran90. In this process,a completed method of shallow foundation design and analyses is formed,called CPSOSF,which is used to optimize the foundation width,height and the buried depth of a real project and the best plan for the minimal cost is found consequently. We observe that the cost is more sensitive to the foundation height relative to the foundation width. As a result,the foundation must be shallowly

  5. Route Planning for Parafoil System Based on Chaotic Particle Swarm Optimization%基于混沌粒子群优化算法的翼伞系统轨迹规划

    Institute of Scientific and Technical Information of China (English)

    焦亮; 孙青林; 亢晓峰

    2012-01-01

    The trajectory planning of parafoil and air-dropped robot system in the disaster environments is discussed. A chaotic particle swarm optimization is proposed to deal with trajectory planning of parafoil and payload system and the controlled object is the mass model of parafoil and payload system. The non-uniform B-spline is adopted to characterize the control law and achieve the parameterized design variables. So the optimal control problem of trajectory planning is transformed into a parameter optimization problem. Then the chaotic particle swarm optimization is employed for optimization. The optimal controls are smooth, so the control rope can be manipulated easily by controlling motors. The effectiveness of the approach is shown by simulation examples.%研究灾难环境下翼伞空投机器人系统轨迹规划问题,基于简化的翼伞系统质点模型,采用混沌粒子群优化算法对翼伞系统归航轨迹进行寻优.该方法采用非均匀B样条技术实现最优控制规律的参数化,将翼伞系统轨迹规划的最优控制问题转换成参数优化问题,进而运用混沌粒子群优化算法进行寻优计算.轨迹规划的控制曲线是光滑的,利于电机对翼伞系统的操纵伞绳实施控制.仿真结果表明,该方法对翼伞系统的轨迹规划控制是有效的.

  6. A Novel Particle Swarm Optimization Algorithm for Global Optimization.

    Science.gov (United States)

    Wang, Chun-Feng; Liu, Kui

    2016-01-01

    Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms.

  7. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-11

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  8. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields

    Institute of Scientific and Technical Information of China (English)

    张海云; 贺凯芬

    2002-01-01

    We investigate charged particle motion in temporal chaotic and spatiotemporal chaotic fields. In its steady wave frame a few key modes of the solution of the driven/damped nonlinear wave equation are used as the field. It is found that in the spatiotemporal chaotic field the particle drifts relative to the steady wave, in contrast to that in the temporal chaotic field where the particle motion is localized in a trough of the wave field. The result is of significance for understanding stochastic acceleration of particles.

  9. Particle Swarm Optimization with Double Learning Patterns.

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  10. Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network

    Institute of Scientific and Technical Information of China (English)

    Juan A. Lazzús

    2011-01-01

    Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO).Firstly,the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6),using the current value x(t) and the past values:x(t - 6),x(t - 12),x(t - 18).Then,this method is applied on solar radiation data using the values of the past years:x(t - 1),...,x(t - 4).The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series.Chaotic time series is an important research and application area.Several models for time series data can have many forms and represent different stochastic processes.Time series contain much information about dynamic systems.[1] These systems are usually modeled by delay-differential equations.[2]%Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6), using the current value x(t) and the past values: x(t - 6), x(t - 12), x(t - 18). Then, this method is applied on solar radiation data using the values of the past years: x(t - 1), ..., x(t - 4). The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series.

  11. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Dong Yumin; Zhao Li

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  12. 混沌粒子群算法在PID控制器参数整定中的应用%Application of chaotic particle swarm optimization algorithm in parameter tuning of PID controller

    Institute of Scientific and Technical Information of China (English)

    宋莉莉; 孙万麟

    2016-01-01

    In view of the PID parameter tuning problem, the chaotic particle swarm optimization algorithm is proposed and the PID parameters of the control system are optimized by using the powerful matrix operation ability of MATLAB and the simulation function of the Simulink system.Simulation results show that the optimization method is better than that of the traditional PID parameter tuning method,and the convergence performance is better.%针对PID参数整定问题,提出混沌粒子群算法并利用MATLAB强大的矩阵运算能力和Simulink系统仿真功能,对具体控制系统的PID参数进行了优化整定。仿真显示优化结果基本粒子群算法和传统的PID参数整定方法的优化方法都要好,收敛性能也较好。

  13. 基于自适应混沌粒子群算法的推力分配研究%Design of the thrust allocation based on adaptive chaotic particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    朱艳; 李建祯

    2015-01-01

    随着海洋开发的日益频繁,人们对动力定位系统(Dynamic Positioning System DPS)的需求越来越大,推力分配作为动力定位中的关键问题,受到了广泛关注.针对这一现状,文中提出将自适应混沌粒子群(Adaptive Chaotic Particle Swarm Optimization,ACPSO)算法用于推力分配问题的研究,通过该算法对推力模型在能源消耗、艏向、推进器机械磨损、推进器最大推力几方面进行优化,约束中考虑推进器的推力区域,舵角变化率,主推螺距百分比等限制.实验仿真表明该算法在收敛性及准确性上有较大的提高,可以得到收敛速度较快、精度较高的结果.

  14. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Science.gov (United States)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO-ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO-ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO-ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO-ACO is a very powerful tool for parameter estimation with high accuracy and low deviations.

  15. Particle Swarm Transport in Fracture Networks

    Science.gov (United States)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  16. Immunity clone algorithm with particle swarm evolution

    Institute of Scientific and Technical Information of China (English)

    LIU Li-jue; CAI Zi-xing; CHEN Hong

    2006-01-01

    Combining the clonal selection mechanism of the immune system with the evolution equations of particle swarm optimization, an advanced algorithm was introduced for functions optimization. The advantages of this algorithm lies in two aspects.Via immunity operation, the diversity of the antibodies was maintained, and the speed of convergent was improved by using particle swarm evolution equations. Simulation programme and three functions were used to check the effect of the algorithm. The advanced algorithm were compared with clonal selection algorithm and particle swarm algorithm. The results show that this advanced algorithm can converge to the global optimum at a great rate in a given range, the performance of optimization is improved effectively.

  17. Bluetooth Based Chaos Synchronization Using Particle Swarm Optimization and Its Applications to Image Encryption

    Directory of Open Access Journals (Sweden)

    Tzu-Hsiang Hung

    2012-06-01

    Full Text Available This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  18. Bluetooth based chaos synchronization using particle swarm optimization and its applications to image encryption.

    Science.gov (United States)

    Yau, Her-Terng; Hung, Tzu-Hsiang; Hsieh, Chia-Chun

    2012-01-01

    This study used the complex dynamic characteristics of chaotic systems and Bluetooth to explore the topic of wireless chaotic communication secrecy and develop a communication security system. The PID controller for chaos synchronization control was applied, and the optimum parameters of this PID controller were obtained using a Particle Swarm Optimization (PSO) algorithm. Bluetooth was used to realize wireless transmissions, and a chaotic wireless communication security system was developed in the design concept of a chaotic communication security system. The experimental results show that this scheme can be used successfully in image encryption.

  19. COGNITIVE NETWORK TRAFFIC CLASSIFICATION BASED ON CHAOTIC PARTICLE SWARM OPTIMISATION%基于混沌粒子群优化算法的认知网络流量分类方法研究

    Institute of Scientific and Technical Information of China (English)

    顾成杰; 张顺颐; 高飞; 王晓军

    2011-01-01

    Owing to the complexity, isomerism, and ubiquity of the access mode and network applications, current networks cannot provide the QoS meeting the requirements of users. Cognitive network ( CN) is considered as a new way of improving entire network performance and end-to-end system performance as well as simplifying network management. It is the trend of the next-generation communication. A novel algorithm of chaotic particle swarm optimisation (CPSO-BP) is proposed in this paper, and is applied to cognitive network environment for precise network traffic classification to achieve the controllability and manageability of the business-oriented cognitive network. Experimental results show that the method can fully integrate global search characteristics of PSO algorithm with local search feature of BP algorithm, and uses chaotic search which has a strong local search ability in the small space to increase classification accuracy. This method can classify network traffic with high accuracy and strong stability. It can effectively improve the utilisation of network resources to ensure end to end QoS performance for cognitive networks.%针对网络的接入形式以及网络应用日益复杂、异构和泛在等特点,当前网络所提供的服务质量QoS难以满足用户的需要.认知网络被认为是提高网络整体及端到端系统的性能、简化网络管理的新途径,是下一代通信网络发展的必然趋势.提出一种混沌粒子群优化算法(CPSO-BP),并将该算法应用于认知网络环境中对网络流量进行精确分类,以实现对以业务为中心的认知网络的可管可控.实验结果表明该方法能够充分结合粒子群优化算法的全局搜索特性和BP算法的局部搜索特性,并利用混沌搜索在小空间具有较强的局部搜索能力来提高分类精度,从而具有分类精度高、稳定性强的特点,能够有效地提高网络资源利用率,保证认知网络端到端QoS效能.

  20. 基于混沌变异粒子群的物种物联网监测技术研究%Application and research of plant species monitoring Internet of Things technology based on particle swarm with chaotic mutation

    Institute of Scientific and Technical Information of China (English)

    林桂亚

    2012-01-01

    This paper researched the monitoring problem of the plant species based on Internet of Things. In view of massive monitoring data redundancy and high convergence, rough, system deployment and maintenance more difficult problems in the existed biological species monitoring system,this paper proposed a networking species monitoring technology based on the chaotic mutation particle swarm optimizatio. The technology, according to the monitoring region' s species to establish monitoring cluster,construct monitoring subsystem and implement particle mutation operation combined with the population status and environmental change. Subsystems aggregated and forwarded data by the mobile agent node, it had reached high precision data mining and fusion using data on global implementation of chaos. In addition,for monitoring node,it designed efficient interpretation function module, so that the system had adjustment capability. Simulation experiment and mathematical analysis show that, the technology achieves complex species monitoring system maintenance and global data fusion interpretation function, improves the communication performance.%研究了各类生物物种及其生存环境的监测和保护物联网技术.针对已有的生物物种监测系统存在大规模监测数据冗余度高、汇聚融合粗糙、系统部署及维护较难等问题,提出了一种基于混沌变异粒子群的物联网物种监测技术.该技术根据监测区域内物种种类进行区分建立监测分簇,构建监测子系统,结合种群状态及其环境变化进行粒子变异操作,子系统间通过移动代理节点汇聚和转发数据,对全局数据实施混沌扰动以达到高精度数据挖掘和融合.此外,对于监测节点设计了高效和具有自判读功能模块,使系统具有自适应调节能力.仿真实验和数学分析表明,该技术对复杂物种监测实现了自适应维护和全局数据融合判读功能,有效改善了通信性能.

  1. Particle Swarm Optimization with Adaptive Mutation

    Institute of Scientific and Technical Information of China (English)

    LU Zhen-su; HOU Zhi-rong; DU Juan

    2006-01-01

    A new adaptive mutation particle swarm optimizer,which is based on the variance of the population's fitness,is presented in this paper.During the rtmning time,the mutation probability for the current best particle is determined by two factors:the variance of the population's fitness and the current optimal solution.The ability of particle swarm optimization (PSO) algorithm to break away from the local optimum is greatly improved by the mutation.The experimental results show that the new algorithm not only has great advantage of convergence property over genetic algorithm and PSO,but can also avoid the premature convergence problem effectively.

  2. Selectively-informed particle swarm optimization.

    Science.gov (United States)

    Gao, Yang; Du, Wenbo; Yan, Gang

    2015-03-19

    Particle swarm optimization (PSO) is a nature-inspired algorithm that has shown outstanding performance in solving many realistic problems. In the original PSO and most of its variants all particles are treated equally, overlooking the impact of structural heterogeneity on individual behavior. Here we employ complex networks to represent the population structure of swarms and propose a selectively-informed PSO (SIPSO), in which the particles choose different learning strategies based on their connections: a densely-connected hub particle gets full information from all of its neighbors while a non-hub particle with few connections can only follow a single yet best-performed neighbor. Extensive numerical experiments on widely-used benchmark functions show that our SIPSO algorithm remarkably outperforms the PSO and its existing variants in success rate, solution quality, and convergence speed. We also explore the evolution process from a microscopic point of view, leading to the discovery of different roles that the particles play in optimization. The hub particles guide the optimization process towards correct directions while the non-hub particles maintain the necessary population diversity, resulting in the optimum overall performance of SIPSO. These findings deepen our understanding of swarm intelligence and may shed light on the underlying mechanism of information exchange in natural swarm and flocking behaviors.

  3. 基于混沌多目标粒子群优化算法的云服务选择%Cloud Service Selection Based on Chaotic Multi-objective Particle Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    王娜; 卫波; 王晋东; 张恒巍

    2014-01-01

    随着云计算环境中各种服务数量的急剧增长,如何从功能相同或相似的云服务中选择满足用户需求的服务成为云计算研究中亟待解决的关键问题。为此,建立带服务质量约束的多目标服务组合优化模型,针对传统多目标粒子群优化(MOPSO)算法中解的多样性差、易陷入局部最优等缺点,设计基于混沌多目标粒子群优化(CMOPSO)算法的云服务选择方法。采用信息熵理论来维护非支配解集,以保持解的多样性和分布的均匀性。当种群多样性丢失时,引入混沌扰动机制,以提高种群多样性和算法全局寻优能力,避免陷入局部最优。实验结果表明,与MOPSO算法相比,CMOPSO算法的收敛性和解集多样性均得到改善,能够更好地解决云计算环境下服务动态选择问题。%With the explosive number growth of services in cloud computing environment, how to select the services that can meet user’s requirement from the services which have same or similar function becomes the key problem to be resolved in cloud computing. So a multi-objective service composition optimization model with Quality of Service(QoS) restriction is built, and since some disadvantages of the traditional Multi-objective Particle Swarm Optimization(MOPSO) algorithm, such as less diversity of solutions and falling into local extremum easily, a method of Chaotic MOPSO(CMOPSO) algorithm is proposed. This algorithm uses the information entropy theory to maintain non-dominated solution set so as to retain the diversity of solution and the uniformity of distribution. When the diversity of population disappears, it introduces chaotic disturbance mechanism to improve the diversity of population and the ability of global optimization algorithm to avoid falling into local extremum. Experimental result shows that the astringency and the diversity of solution set of CMOPSO algorithm are better than traditional MOPSO algorithm, and

  4. Novelty-driven Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Galvao, Diana; Lehman, Joel Anthony; Urbano, Paulo

    2015-01-01

    Particle Swarm Optimization (PSO) is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However...

  5. Fuzzy entropy image segmentation based on particle Swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Linyi Li; Deren Li

    2008-01-01

    Partide swaFnl optimization is a stochastic global optimization algorithm that is based on swarm intelligence.Because of its excellent performance,particle swarm optimization is introduced into fuzzy entropy image segmentation to select the optimal fuzzy parameter combination and fuzzy threshold adaptively.In this study,the particles in the swarm are constructed and the swarm search strategy is proposed to meet the needs of the segmentation application.Then fuzzy entropy image segmentation based on particle swarm opti-mization is implemented and the proposed method obtains satisfactory results in the segmentation experiments.Compared with the exhaustive search method,particle swarm optimization can give the salne optimal fuzzy parameter combination and fuzzy threshold while needing less search time in the segmentation experiments and also has good search stability in the repeated experiments.Therefore,fuzzy entropy image segmentation based on particle swarm optimization is an efficient and promising segmentation method.

  6. An Improved Particle Swarm Optimization for Traveling Salesman Problem

    Science.gov (United States)

    Liu, Xinmei; Su, Jinrong; Han, Yan

    In allusion to particle swarm optimization being prone to get into local minimum, an improved particle swarm optimization algorithm is proposed. The algorithm draws on the thinking of the greedy algorithm to initialize the particle swarm. Two swarms are used to optimize synchronously. Crossover and mutation operators in genetic algorithm are introduced into the new algorithm to realize the sharing of information among swarms. We test the algorithm with Traveling Salesman Problem with 14 nodes and 30 nodes. The result shows that the algorithm can break away from local minimum earlier and it has high convergence speed and convergence ratio.

  7. Improving Vector Evaluated Particle Swarm Optimisation by incorporating nondominated solutions.

    Science.gov (United States)

    Lim, Kian Sheng; Ibrahim, Zuwairie; Buyamin, Salinda; Ahmad, Anita; Naim, Faradila; Ghazali, Kamarul Hawari; Mokhtar, Norrima

    2013-01-01

    The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.

  8. A Novel Adaptive Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xiaobing Yu

    2012-07-01

    Full Text Available Particle swarm optimization (PSO is a stochastic search technique for solving optimization problems, which has been proven to be efficient and effective in wide applications. However, the PSO can easily fly into the local optima and lack the ability to jump out of the local optima. A novel adaptive PSO is proposed by evaluating convergence of the fitness value. The novel mechanism is to ensure the diversity of particles. Simulations for benchmark test functions have illustrated that the proposed algorithm possesses better ability to find the global optima than other variants and is an effective global optimization tool.

  9. Modified constriction particle swarm optimization algorithm

    Institute of Scientific and Technical Information of China (English)

    Zhe Zhang; Limin Jia; Yong Qin

    2015-01-01

    To deal with the demerits of constriction particle swarm optimization (CPSO), such as relapsing into local optima, slow convergence velocity, a modified CPSO algorithm is proposed by improving the velocity update formula of CPSO. The random ve-locity operator from local optima to global optima is added into the velocity update formula of CPSO to accelerate the convergence speed of the particles to the global optima and reduce the likeli-hood of being trapped into local optima. Final y the convergence of the algorithm is verified by calculation examples.

  10. Earth Observing Satellite Orbit Design Via Particle Swarm Optimization

    Science.gov (United States)

    2014-08-01

    Earth Observing Satellite Orbit Design Via Particle Swarm Optimization Sharon Vtipil ∗ and John G. Warner ∗ US Naval Research Laboratory, Washington...number of passes per day given a satellite’s orbital altitude and inclination. These are used along with particle swarm optimization to determine optimal...well suited to use within a meta-heuristic optimization method such as the Particle Swarm Optimizer (PSO). This method seeks to find the optimal set

  11. Swarms of particles settling under gravity in a viscous fluid

    CERN Document Server

    Ekiel-Jezewska, Maria L

    2012-01-01

    We investigate swarms made of a small number of particles settling under gravity in a viscous fluid. The particles do not touch each other and can move relative to each other. The dynamics is analyzed in the point-particle approximation. A family of swarms is found with periodic oscillations of all the settling particles. In the presence of an additional particle above the swarm, the trajectories are horizontally repelled from the symmetry axis, and flattened vertically. The results are used to explain how a spherical cloud, made of a large number of particles distributed at random, evolves and destabilizes.

  12. Orientational hysteresis in swarms of active particles in external field

    CERN Document Server

    Romensky, Maksym

    2015-01-01

    Structure and ordering in swarms of active particles have much in common with condensed matter systems like magnets or liquid crystals. A number of important characteristics of such materials can be obtained via dynamic tests such as hysteresis. In this work, we show that dynamic hysteresis can be observed also in swarms of active particles and possesses similar properties to the counterparts in magnetic materials. To study the swarm dynamics, we use computer simulation of the active Brownian particle model with dissipative interactions. The swarm is confined to a narrow linear channel and one-dimensional polar order parameter is measured. In an oscillating external field, the order parameter demonstrates dynamic hysteresis with the shape of the loop and its area varying with the amplitude and frequency of the applied field, swarm density and the noise intensity. We measure the scaling exponents for the hysteresis loop area, which can be associated with the controllability of the swarm. Although the exponents...

  13. Particle Swarm Optimisation with Spatial Particle Extension

    DEFF Research Database (Denmark)

    Krink, Thiemo; Vesterstrøm, Jakob Svaneborg; Riget, Jacques

    2002-01-01

    In this paper, we introduce spatial extension to particles in the PSO model in order to overcome premature convergence in iterative optimisation. The standard PSO and the new model (SEPSO) are compared w.r.t. performance on well-studied benchmark problems. We show that the SEPSO indeed managed...

  14. Neural network sliding mode control based on improved particle swarm optimization algorithm for discrete-time chaotic systems%基于改进粒子群优化算法的离散混沌系统神经滑模控制

    Institute of Scientific and Technical Information of China (English)

    吴建辉; 章兢; 刘朝华

    2013-01-01

      Aiming at discrete-time chaotic systems, the neural network sliding mode equivalent control method based on a hybrid algorithm which combines the particle swarm optimization algorithm and the Powell search method(Powell-PSO algorithm) is proposed. When taking the output of BP neural network as the coefficient of the switch part of sliding mode equivalent control, the method effectively overcomes the chattering phenomenon of conventional sliding mode equivalent control. The Powell-PSO algorithm is applied to globally optimize the parameters of neural network sliding mode controller and then to control discrete-time chaotic systems more effectively. Simulation results show that the method requires no knowledge about the precise mathematical model of discrete-time chaotic systems with fast response speed, high control precision and strong anti-interference ability.%  针对离散混沌系统,提出一种基于融合Powell法的粒子群优化策略(Powell-PSO算法)的神经滑模等效控制方法。该方法通过将BP神经网络的输出作为滑模等效控制的切换部分的系数,有效地克服了传统滑模等效控制的抖振现象;利用Powell-PSO算法对神经滑模控制器的参数进行全局优化,提高了离散混沌系统的控制品质。仿真实验结果表明,所提出的方法无需了解离散混沌系统精确模型,具有响应速度快、控制精度高以及抗干扰能力强的优点。

  15. Antenna optimization using Particle Swarm Optimization algorithm

    Directory of Open Access Journals (Sweden)

    Golubović Ružica M.

    2006-01-01

    Full Text Available We present the results for two different antenna optimization problems that are found using the Particle Swarm Optimization (PSO algorithm. The first problem is finding the maximal forward gain of a Yagi antenna. The second problem is finding the optimal feeding of a broadside antenna array. The optimization problems have 6 and 20 optimization variables, respectively. The preferred values of the parameters of the PSO algorithm are found for presented problems. The results show that the preferred parameters of PSO are somewhat different for optimization problems with different number of dimensions of the optimization space. The results that are found using the PSO algorithm are compared with the results that are found using other optimization algorithms, in order to estimate the efficiency of the PSO.

  16. Apical-dominant particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Zhihua Cui; Xingjuan Cai; Jianchao Zeng; Guoji Sun

    2008-01-01

    Particle swarm optimization (PSO) is a new stochastic population-based search methodology by simulating the animal social behaviors such as birds flocking and fish schooling.Many improvements have been proposed within the framework of this biological assumption.However,in this paper,the search pattern of PSO is used to model the branch growth process of natural plants.It provides a different poten-tial manner from artificial plant.To illustrate the effectiveness of this new model,apical dominance phenomenon is introduced to construct a novel variant by emphasizing the influence of the phototaxis.In this improvement,the population is divided into three different kinds of buds associated with their performances.Furthermore,a mutation strategy is applied to enhance the ability escaping from a local optimum.Sim-ulation results demonstrate good performance of the new method when solving high-dimensional multi-modal problems.

  17. Cosmological parameter estimation using Particle Swarm Optimization

    Science.gov (United States)

    Prasad, J.; Souradeep, T.

    2014-03-01

    Constraining parameters of a theoretical model from observational data is an important exercise in cosmology. There are many theoretically motivated models, which demand greater number of cosmological parameters than the standard model of cosmology uses, and make the problem of parameter estimation challenging. It is a common practice to employ Bayesian formalism for parameter estimation for which, in general, likelihood surface is probed. For the standard cosmological model with six parameters, likelihood surface is quite smooth and does not have local maxima, and sampling based methods like Markov Chain Monte Carlo (MCMC) method are quite successful. However, when there are a large number of parameters or the likelihood surface is not smooth, other methods may be more effective. In this paper, we have demonstrated application of another method inspired from artificial intelligence, called Particle Swarm Optimization (PSO) for estimating cosmological parameters from Cosmic Microwave Background (CMB) data taken from the WMAP satellite.

  18. Particle Swarm Optimization for Outdoor Lighting Design

    Directory of Open Access Journals (Sweden)

    Ana Castillo-Martinez

    2017-01-01

    Full Text Available Outdoor lighting is an essential service for modern life. However, the high influence of this type of facility on energy consumption makes it necessary to take extra care in the design phase. Therefore, this manuscript describes an algorithm to help light designers to get, in an easy way, the best configuration parameters and to improve energy efficiency, while ensuring a minimum level of overall uniformity. To make this possible, we used a particle swarm optimization (PSO algorithm. These algorithms are well established, and are simple and effective to solve optimization problems. To take into account the most influential parameters on lighting and energy efficiency, 500 simulations were performed using DIALux software (4.10.0.2, DIAL, Ludenscheid, Germany. Next, the relation between these parameters was studied using to data mining software. Subsequently, we conducted two experiments for setting parameters that enabled the best configuration algorithm in order to improve efficiency in the proposed process optimization.

  19. Acceleration Factor Harmonious Particle Swarm Optimizer

    Institute of Scientific and Technical Information of China (English)

    Jie Chen; Feng Pan; Tao Cai

    2006-01-01

    A Particle Swarm Optimizer (PSO) exhibits good performance for optimization problems, although it cannot guarantee convergence to a global, or even local minimum. However, there are some adjustable parameters, and restrictive conditions, which can affect the performance of the algorithm. In this paper, the sufficient conditions for the asymptotic stability of an acceleration factor and inertia weight are deduced, the value of the inertia weight ω is enhanced to (-1, 1).Furthermore a new adaptive PSO algorithm - Acceleration Factor Harmonious PSO (AFHPSO) is proposed, and is proved to be a global search algorithm. AFHPSO is used for the parameter design of a fuzzy controller for a linear motor driving servo system. The performance of the nonlinear model for the servo system demonstrates the effectiveness of the optimized fuzzy controller and AFHPSO.

  20. Particle Swarm Optimization Based Reactive Power Optimization

    CERN Document Server

    Sujin, P R; Linda, M Mary

    2010-01-01

    Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as minimization of transmission losses. Reactive power cost compensation to a generator is based on the incurred cost of its reactive power contribution less the cost of its obligation to support the active power delivery. In this paper an efficient Particle Swarm Optimization (PSO) based reactive power optimization approach is presented. The optimal reactive power dispatch problem is a nonlinear optimization problem with several constraints. The objective of the proposed PSO is to minimize the total support cost from generators and reactive compensators. It is achieved by maintaining the whole system power loss as minimum...

  1. An Improved Particle Swarm Optimization for Feature Selection

    Institute of Scientific and Technical Information of China (English)

    Yuanning Liu; Gang Wang; Huiling Chen; Hao Dong; Xiaodong Zhu; Sujing Wang

    2011-01-01

    Particle Swarm Optimization (PSO) is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. To maintain the diversity of swarms, a few studies of multi-swarm strategy have been reported. However, the competition among swarms, reservation or destruction of a swarm, has not been considered further. In this paper, we formulate four rules by introducing the mechanism for survival of the fittest, which simulates the competition among the swarms. Based on the mechanism, we design a modified Multi-Swarm PSO (MSPSO) to solve discrete problems,which consists of a number of sub-swarms and a multi-swarm scheduler that can monitor and control each sub-swarm using the rules. To further settle the feature selection problems, we propose an Improved Feature Selection (IFS) method by integrating MSPSO, Support Vector Machines (SVM) with F-score method. The IFS method aims to achieve higher generalization capability through performing kernel parameter optimization and feature selection simultaneously. The performance of the proposed method is compared with that of the standard PSO based, Genetic Algorithm (GA) based and the grid search based methods on 10 benchmark datasets, taken from UCI machine learning and StatLog databases. The numerical results and statistical analysis show that the proposed IFS method performs significantly better than the other three methods in terms of prediction accuracy with smaller subset of features.

  2. Improved Rao-Blackwellized Particle Filter by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zeng-Shun Zhao

    2013-01-01

    Full Text Available The Rao-Blackwellized particle filter (RBPF algorithm usually has better performance than the traditional particle filter (PF by utilizing conditional dependency relationships between parts of the state variables to estimate. By doing so, RBPF could not only improve the estimation precision but also reduce the overall computational complexity. However, the computational burden is still too high for many real-time applications. To improve the efficiency of RBPF, the particle swarm optimization (PSO is applied to drive all the particles to the regions where their likelihoods are high in the nonlinear area. So only a small number of particles are needed to participate in the required computation. The experimental results demonstrate that this novel algorithm is more efficient than the standard RBPF.

  3. Particle Swarm Optimization With Interswarm Interactive Learning Strategy.

    Science.gov (United States)

    Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui

    2016-10-01

    The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.

  4. Software Project Scheduling Management by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Dinesh B. Hanchate

    2014-12-01

    Full Text Available PSO (Particle Swarm Optimization is, like GA, a heuristic global optimization method based on swarm intelligence. In this paper, we present a particle swarm optimization algorithm to solve software project scheduling problem. PSO itself inherits very efficient local search method to find the near optimal and best-known solutions for all instances given as inputs required for SPSM (Software Project Scheduling Management. At last, this paper imparts PSO and research situation with SPSM. The effect of PSO parameter on project cost and time is studied and some better results in terms of minimum SCE (Software Cost Estimation and time as compared to GA and ACO are obtained.

  5. Symbiosis-Based Alternative Learning Multi-Swarm Particle Swarm Optimization.

    Science.gov (United States)

    Niu, Ben; Huang, Huali; Tan, Lijing; Duan, Qiqi

    2017-01-01

    Inspired by the ideas from the mutual cooperation of symbiosis in natural ecosystem, this paper proposes a new variant of PSO, named Symbiosis-based Alternative Learning Multi-swarm Particle Swarm Optimization (SALMPSO). A learning probability to select one exemplar out of the center positions, the local best position, and the historical best position including the experience of internal and external multiple swarms, is used to keep the diversity of the population. Two different levels of social interaction within and between multiple swarms are proposed. In the search process, particles not only exchange social experience with others that are from their own sub-swarms, but also are influenced by the experience of particles from other fellow sub-swarms. According to the different exemplars and learning strategy, this model is instantiated as four variants of SALMPSO and a set of 15 test functions are conducted to compare with some variants of PSO including 10, 30 and 50 dimensions, respectively. Experimental results demonstrate that the alternative learning strategy in each SALMPSO version can exhibit better performance in terms of the convergence speed and optimal values on most multimodal functions in our simulation.

  6. Searching for Planets using Particle Swarm Optimization

    Science.gov (United States)

    Chambers, John E.

    2008-05-01

    The Doppler radial velocity technique has been highly successful in discovering planetary-mass companions in orbit around nearby stars. A typical data set contains around one hundred instantaneous velocities for the star, spread over a period of several years,with each observation measuring only the radial component of velocity. From this data set, one would like to determine the masses and orbital parameters of the system of planets responsible for the star's reflex motion. Assuming coplanar orbits, each planet is characterized by five parameters, with an additional parameter for each telescope used to make observations, representing the instrument's velocity offset. The large number of free parameters and the relatively sparse data sets make the fitting process challenging when multiple planets are present, especially if some of these objects have low masses. Conventional approaches using periodograms often perform poorly when the orbital periods are not separated by large amounts or the longest period is comparable to the length of the data set. Here, I will describe a new approach to fitting Doppler radial velocity sets using particle swarm optimization (PSO). I will describe how the PSO method works, and show examples of PSO fits to existing radial velocity data sets, with comparisons to published solutions and those submitted to the Systemic website (http://www.oklo.org).

  7. A Comparative Study of Several Hybrid Particle Swarm Algorithms for Function Optimization

    Directory of Open Access Journals (Sweden)

    Yanhua Zhong

    2012-11-01

    Full Text Available Currently, the researchers have made a lot of hybrid particle swarm algorithm in order to solve the shortcomings that the Particle Swarm Algorithms is easy to converge to local extremum, these algorithms declare that there has been better than the standard particle swarm. This study selects three kinds of representative hybrid particle swarm optimizations (differential evolution particle swarm optimization, GA particle swarm optimization, quantum particle swarm optimization and the standard particle swarm optimization to test with three objective functions. We compare evolutionary algorithm performance by a fixed number of iterations of the convergence speed and accuracy and the number of iterations under the fixed convergence precision; analyzing these types of hybrid particle swarm optimization results and practical performance. Test results show hybrid particle algorithm performance has improved significantly.

  8. A Comparative Study of Several Hybrid Particle Swarm Algorithms for Function Optimization

    Directory of Open Access Journals (Sweden)

    Yanhua Zhong

    2013-01-01

    Full Text Available Currently, the researchers have made a lot of hybrid particle swarm algorithm in order to solve the shortcomings that the Particle Swarm Algorithms is easy to converge to local extremum, these algorithms declare that there has been better than the standard particle swarm. This study selects three kinds of representative hybrid particle swarm optimizations (differential evolution particle swarm optimization, GA particle swarm optimization, quantum particle swarm optimization and the standard particle swarm optimization to test with three objective functions. We compare evolutionary algorithm performance by a fixed number of iterations of the convergence speed and accuracy and the number of iterations under the fixed convergence precision, analyzing these types of hybrid particle swarm optimization results and practical performance. Test results show hybrid particle algorithm performance has improved significantly.

  9. Fuzzy Neural Networks Learning by Variable-Dimensional Quantum-behaved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2013-10-01

    Full Text Available The evolutionary learning of fuzzy neural networks (FNN consists of structure learning to determine the proper number of fuzzy rules and parameters learning to adjust the network parameters. Many optimization algorithms can be applied to evolve FNN. However the search space of most algorithms has fixed dimension, which can not suit to dynamic structure learning of FNN. We propose a novel technique, which is named the variable-dimensional quantum-behaved particle swarm optimization algorithm (VDQPSO, to address the problem. In the proposed algorithm, the optimum dimension, which is unknown at the beginning, is updated together with the position of swarm. The optimum dimension converged at the end of the optimization process corresponds to a unique FNN structure where the optimum parameters can be achieved. The results of the prediction of chaotic time series experiment show that the proposed technique is effective. It can evolve to optimum or near-optimum FNN structure and optimum parameters.

  10. A hybrid multi-swarm particle swarm optimization to solve constrained optimization problems

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Zixing CAI

    2009-01-01

    In the real-world applications, most optimization problems are subject to different types of constraints. These problems are known as constrained optimization problems (COPs). Solving COPs is a very important area in the optimization field. In this paper, a hybrid multi-swarm particle swarm optimization (HMPSO) is proposed to deal with COPs. This method adopts a parallel search operator in which the current swarm is partitioned into several subswarms and particle swarm optimization (PSO) is severed as the search engine for each sub-swarm. Moreover, in order to explore more promising regions of the search space, differential evolution (DE) is incorporated to improve the personal best of each particle. First, the method is tested on 13 benchmark test functions and compared with three stateof-the-art approaches. The simulation results indicate that the proposed HMPSO is highly competitive in solving the 13 benchmark test functions. Afterward, the effectiveness of some mechanisms proposed in this paper and the effect of the parameter setting were validated by various experiments. Finally, HMPSO is further applied to solve 24 benchmark test functions collected in the 2006 IEEE Congress on Evolutionary Computation (CEC2006) and the experimental results indicate that HMPSO is able to deal with 22 test functions.

  11. Fractional order Darwinian particle swarm optimization applications and evaluation of an evolutionary algorithm

    CERN Document Server

    Couceiro, Micael

    2015-01-01

    This book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, suc

  12. Auto-Clustering using Particle Swarm Optimization and Bacterial Foraging

    DEFF Research Database (Denmark)

    Rutkowski Olesen, Jakob; Cordero, Jorge; Zeng, Yifeng

    2009-01-01

    This paper presents a hybrid approach for clustering based on particle swarm optimization (PSO) and bacteria foraging algorithms (BFA). The new method AutoCPB (Auto-Clustering based on particle bacterial foraging) makes use of autonomous agents whose primary objective is to cluster chunks of data...

  13. Fractional particle swarm optimization in multidimensional search space.

    Science.gov (United States)

    Kiranyaz, Serkan; Ince, Turker; Yildirim, Alper; Gabbouj, Moncef

    2010-04-01

    In this paper, we propose two novel techniques, which successfully address several major problems in the field of particle swarm optimization (PSO) and promise a significant breakthrough over complex multimodal optimization problems at high dimensions. The first one, which is the so-called multidimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make interdimensional passes with a dedicated dimensional PSO process. Therefore, in an MD search space, where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. Among many PSO variants in the literature, none yields a robust solution, particularly over multimodal complex problems at high dimensions. To address this problem, we propose the fractional global best formation (FGBF) technique, which basically collects all the best dimensional components and fractionally creates an artificial global best (aGB) particle that has the potential to be a better "guide" than the PSO's native gbest particle. This way, the potential diversity that is present among the dimensions of swarm particles can be efficiently used within the aGB particle. We investigated both individual and mutual applications of the proposed techniques over the following two well-known domains: 1) nonlinear function minimization and 2) data clustering. An extensive set of experiments shows that in both application domains, MD PSO with FGBF exhibits an impressive speed gain and converges to the global optima at the true dimension regardless of the search space dimension, swarm size, and the complexity of the problem.

  14. Markerless human motion tracking using hierarchical multi-swarm cooperative particle swarm optimization.

    Science.gov (United States)

    Saini, Sanjay; Zakaria, Nordin; Rambli, Dayang Rohaya Awang; Sulaiman, Suziah

    2015-01-01

    The high-dimensional search space involved in markerless full-body articulated human motion tracking from multiple-views video sequences has led to a number of solutions based on metaheuristics, the most recent form of which is Particle Swarm Optimization (PSO). However, the classical PSO suffers from premature convergence and it is trapped easily into local optima, significantly affecting the tracking accuracy. To overcome these drawbacks, we have developed a method for the problem based on Hierarchical Multi-Swarm Cooperative Particle Swarm Optimization (H-MCPSO). The tracking problem is formulated as a non-linear 34-dimensional function optimization problem where the fitness function quantifies the difference between the observed image and a projection of the model configuration. Both the silhouette and edge likelihoods are used in the fitness function. Experiments using Brown and HumanEva-II dataset demonstrated that H-MCPSO performance is better than two leading alternative approaches-Annealed Particle Filter (APF) and Hierarchical Particle Swarm Optimization (HPSO). Further, the proposed tracking method is capable of automatic initialization and self-recovery from temporary tracking failures. Comprehensive experimental results are presented to support the claims.

  15. Implementasi Algoritma Particle Swarm untuk Menyelesaikan Sistem Persamaan Nonlinear

    Directory of Open Access Journals (Sweden)

    Ardiana Rosita

    2012-09-01

    Full Text Available Penyelesaian sistem persamaan nonlinear merupakan salah satu permasalahan yang sulit pada komputasi numerik dan berbagai aplikasi teknik. Beberapa metode telah dikembangkan untuk menyelesaikan sistem persamaan ini dan metode Newton merupakan metode yang paling sering digunakan. Namun metode ini memerlukan perkiraan solusi awal dan memilih perkiraan solusi awal yang baik untuk sebagian besar sistem persamaan nonlinear tidaklah mudah. Pada makalah ini, algoritma Particle Swarm yang diusulkan oleh Jaberipour dan kawan-kawan[1] diimplementasikan. Algoritma ini merupakan pengembangan dari algoritma Particle Swarm Optimization (PSO. Algoritma ini meyelesaikan sistem persamaan nonlinear yang sebelumnya telah diubah menjadi permasalahan optimasi. Uji coba dilakukan terhadap beberapa fungsi dan sistem persamaan nonlinear untuk menguji kinerja dan efisiensi algoritma. Berdasarkan hasil uji coba, beberapa fungsi dan sistem persamaan nonlinear telah konvergen pada iterasi ke 10 sampai 20 dan terdapat fungsi yang konvergen pada iterasi ke 200. Selain itu, solusi yang dihasilkan algoritma Particle Swarm mendekati solusi eksak.

  16. Design of Low Noise Microwave Amplifiers Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Sadık Ülker

    2012-07-01

    Full Text Available This short paper presents a work on the design of low noise microwave amplifiers using particle swarm optimization (PSO technique. Particle Swarm Optimization is used as a method that is applied to a single stage amplifier circuit to meet two criteria: desired gain and desired low noise. The aim is to get the best optimized design using the predefined constraints for gain and low noise values. The code is written to apply the algorithm to meet the desired goals and the obtained results are verified using different simulators. The results obtained show that PSO can be applied very efficiently for this kind of design problems with multiple constraints.

  17. Optimal PMU Placement By Improved Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Rather, Zakir Hussain; Liu, Leo; Chen, Zhe;

    2013-01-01

    This paper presents an improved method of binary particle swarm optimization (IBPSO) technique for optimal phasor measurement unit (PMU) placement in a power network for complete system observability. Various effective improvements have been proposed to enhance the efficiency and convergence rate...... of conventional particle swarm optimization method. The proposed method of IBPSO ensures optimal PMU placement with and without consideration of zero injection measurements. The proposed method has been applied to standard test systems like 17 bus, IEEE 24-bus, IEEE 30-bus, New England 39-bus, IEEE 57-bus system...

  18. Entropy Diversity in Multi-Objective Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Eduardo J. Solteiro Pires

    2013-12-01

    Full Text Available Multi-objective particle swarm optimization (MOPSO is a search algorithm based on social behavior. Most of the existing multi-objective particle swarm optimization schemes are based on Pareto optimality and aim to obtain a representative non-dominated Pareto front for a given problem. Several approaches have been proposed to study the convergence and performance of the algorithm, particularly by accessing the final results. In the present paper, a different approach is proposed, by using Shannon entropy to analyze the MOPSO dynamics along the algorithm execution. The results indicate that Shannon entropy can be used as an indicator of diversity and convergence for MOPSO problems.

  19. Particle Swarm Optimizaton A Physics-Based Approach

    CERN Document Server

    Mikki, Said M

    2008-01-01

    This work aims to provide new introduction to the particle swarm optimization methods using a formal analogy with physical systems. By postulating that the swarm motion behaves similar to both classical and quantum particles, we establish a direct connection between what are usually assumed to be separate fields of study, optimization and physics. Within this framework, it becomes quite natural to derive the recently introduced quantum PSO algorithm from the Hamiltonian or the Lagrangian of the dynamical system. The physical theory of the PSO is used to suggest some improvements in the algorit

  20. Research of stochastic weight strategy for extended particle swarm optimizer

    Institute of Scientific and Technical Information of China (English)

    XU Jun-jie; YUE Xin; XIN Zhan-hong

    2008-01-01

    To improve the performance of extended particle swarm optimizer, a novel means of stochastic weight deployment is proposed for the iterative equation of velocity updation. In this scheme, one of the weights is specified to a random number within the range of [0, 1] and the other two remain constant configurations. The simulations show that this weight strategy outperforms the previous deterministic approach with respect to success rate and convergence speed. The experi- ments also reveal that if the weight for global best neighbor is specified to a stochastic number, extended particle swarm optimizer achieves high and robust performance on the given multi-modal function.

  1. NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER

    Institute of Scientific and Technical Information of China (English)

    Qin Zheng; Liu Yu; Wang Yu

    2006-01-01

    Objective To reduce the execution time of neural network training. Methods Parallel particle swarm optimization algorithm based on master-slave model is proposed to train radial basis function neural networks, which is implemented on a cluster using MPI libraries for inter-process communication. Results High speed-up factor is achieved and execution time is reduced greatly. On the other hand, the resulting neural network has good classification accuracy not only on training sets but also on test sets. Conclusion Since the fitness evaluation is intensive, parallel particle swarm optimization shows great advantages to speed up neural network training.

  2. Novel Particle Swarm Optimization and Its Application in Calibrating the Underwater Transponder Coordinates

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2014-01-01

    Full Text Available A novel improved particle swarm algorithm named competition particle swarm optimization (CPSO is proposed to calibrate the Underwater Transponder coordinates. To improve the performance of the algorithm, TVAC algorithm is introduced into CPSO to present an extension competition particle swarm optimization (ECPSO. The proposed method is tested with a set of 10 standard optimization benchmark problems and the results are compared with those obtained through existing PSO algorithms, basic particle swarm optimization (BPSO, linear decreasing inertia weight particle swarm optimization (LWPSO, exponential inertia weight particle swarm optimization (EPSO, and time-varying acceleration coefficient (TVAC. The results demonstrate that CPSO and ECPSO manifest faster searching speed, accuracy, and stability. The searching performance for multimodulus function of ECPSO is superior to CPSO. At last, calibration of the underwater transponder coordinates is present using particle swarm algorithm, and novel improved particle swarm algorithm shows better performance than other algorithms.

  3. Network Traffic Prediction based on Particle Swarm BP Neural Network

    Directory of Open Access Journals (Sweden)

    Yan Zhu

    2013-11-01

    Full Text Available The traditional BP neural network algorithm has some bugs such that it is easy to fall into local minimum and the slow convergence speed. Particle swarm optimization is an evolutionary computation technology based on swarm intelligence which can not guarantee global convergence. Artificial Bee Colony algorithm is a global optimum algorithm with many advantages such as simple, convenient and strong robust. In this paper, a new BP neural network based on Artificial Bee Colony algorithm and particle swarm optimization algorithm is proposed to optimize the weight and threshold value of BP neural network. After network traffic prediction experiment, we can conclude that optimized BP network traffic prediction based on PSO-ABC has high prediction accuracy and has stable prediction performance.

  4. A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra

    Science.gov (United States)

    Zhang, Yanjun; Zhao, Yu; Fu, Xinghu; Xu, Jinrui

    2016-10-01

    A novel particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization is proposed for extracting the features of Brillouin scattering spectra. Firstly, the adaptive inertia weight parameter of the velocity is introduced to the basic particle swarm algorithm. Based on the current iteration number of particles and the adaptation value, the algorithm can change the weight coefficient and adjust the iteration speed of searching space for particles, so the local optimization ability can be enhanced. Secondly, the logical self-mapping chaotic search is carried out by using the chaos optimization in particle swarm optimization algorithm, which makes the particle swarm optimization algorithm jump out of local optimum. The novel algorithm is compared with finite element analysis-Levenberg Marquardt algorithm, particle swarm optimization-Levenberg Marquardt algorithm and particle swarm optimization algorithm by changing the linewidth, the signal-to-noise ratio and the linear weight ratio of Brillouin scattering spectra. Then the algorithm is applied to the feature extraction of Brillouin scattering spectra in different temperatures. The simulation analysis and experimental results show that this algorithm has a high fitting degree and small Brillouin frequency shift error for different linewidth, SNR and linear weight ratio. Therefore, this algorithm can be applied to the distributed optical fiber sensing system based on Brillouin optical time domain reflection, which can effectively improve the accuracy of Brillouin frequency shift extraction.

  5. Particle Swarm Optimization with Watts-Strogatz Model

    Science.gov (United States)

    Zhu, Zhuanghua

    Particle swarm optimization (PSO) is a popular swarm intelligent methodology by simulating the animal social behaviors. Recent study shows that this type of social behaviors is a complex system, however, for most variants of PSO, all individuals lie in a fixed topology, and conflict this natural phenomenon. Therefore, in this paper, a new variant of PSO combined with Watts-Strogatz small-world topology model, called WSPSO, is proposed. In WSPSO, the topology is changed according to Watts-Strogatz rules within the whole evolutionary process. Simulation results show the proposed algorithm is effective and efficient.

  6. CriPS: Critical Dynamics in Particle Swarm Optimization

    OpenAIRE

    Erskine, Adam; Herrmann, J Michael

    2014-01-01

    Particle Swarm Optimisation (PSO) makes use of a dynamical system for solving a search task. Instead of adding search biases in order to improve performance in certain problems, we aim to remove algorithm-induced scales by controlling the swarm with a mechanism that is scale-free except possibly for a suppression of scales beyond the system size. In this way a very promising performance is achieved due to the balance of large-scale exploration and local search. The resulting algorithm shows e...

  7. Particle swarm optimization for programming deep brain stimulation arrays

    Science.gov (United States)

    Peña, Edgar; Zhang, Simeng; Deyo, Steve; Xiao, YiZi; Johnson, Matthew D.

    2017-02-01

    Objective. Deep brain stimulation (DBS) therapy relies on both precise neurosurgical targeting and systematic optimization of stimulation settings to achieve beneficial clinical outcomes. One recent advance to improve targeting is the development of DBS arrays (DBSAs) with electrodes segmented both along and around the DBS lead. However, increasing the number of independent electrodes creates the logistical challenge of optimizing stimulation parameters efficiently. Approach. Solving such complex problems with multiple solutions and objectives is well known to occur in biology, in which complex collective behaviors emerge out of swarms of individual organisms engaged in learning through social interactions. Here, we developed a particle swarm optimization (PSO) algorithm to program DBSAs using a swarm of individual particles representing electrode configurations and stimulation amplitudes. Using a finite element model of motor thalamic DBS, we demonstrate how the PSO algorithm can efficiently optimize a multi-objective function that maximizes predictions of axonal activation in regions of interest (ROI, cerebellar-receiving area of motor thalamus), minimizes predictions of axonal activation in regions of avoidance (ROA, somatosensory thalamus), and minimizes power consumption. Main results. The algorithm solved the multi-objective problem by producing a Pareto front. ROI and ROA activation predictions were consistent across swarms (multi-compartment axon model simulations showed discrepancies of  program DBS systems especially those with higher electrode counts.

  8. A Particle Swarm Optimization with Adaptive Multi-Swarm Strategy for Capacitated Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    Kui-Ting CHEN

    2015-12-01

    Full Text Available Capacitated vehicle routing problem with pickups and deliveries (CVRPPD is one of the most challenging combinatorial optimization problems which include goods delivery/pickup optimization, vehicle number optimization, routing path optimization and transportation cost minimization. The conventional particle swarm optimization (PSO is difficult to find an optimal solution of the CVRPPD due to its simple search strategy. A PSO with adaptive multi-swarm strategy (AMSPSO is proposed to solve the CVRPPD in this paper. The proposed AMSPSO employs multiple PSO algorithms and an adaptive algorithm with punishment mechanism to search the optimal solution, which can deal with large-scale optimization problems. The simulation results prove that the proposed AMSPSO can solve the CVRPPD with the least number of vehicles and less transportation cost, simultaneously.

  9. Support Vector Machine Based on Adaptive Acceleration Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammed Hasan Abdulameer

    2014-01-01

    Full Text Available Existing face recognition methods utilize particle swarm optimizer (PSO and opposition based particle swarm optimizer (OPSO to optimize the parameters of SVM. However, the utilization of random values in the velocity calculation decreases the performance of these techniques; that is, during the velocity computation, we normally use random values for the acceleration coefficients and this creates randomness in the solution. To address this problem, an adaptive acceleration particle swarm optimization (AAPSO technique is proposed. To evaluate our proposed method, we employ both face and iris recognition based on AAPSO with SVM (AAPSO-SVM. In the face and iris recognition systems, performance is evaluated using two human face databases, YALE and CASIA, and the UBiris dataset. In this method, we initially perform feature extraction and then recognition on the extracted features. In the recognition process, the extracted features are used for SVM training and testing. During the training and testing, the SVM parameters are optimized with the AAPSO technique, and in AAPSO, the acceleration coefficients are computed using the particle fitness values. The parameters in SVM, which are optimized by AAPSO, perform efficiently for both face and iris recognition. A comparative analysis between our proposed AAPSO-SVM and the PSO-SVM technique is presented.

  10. Particle swarm optimization applied to impulsive orbital transfers

    Science.gov (United States)

    Pontani, Mauro; Conway, Bruce A.

    2012-05-01

    The particle swarm optimization (PSO) technique is a population-based stochastic method developed in recent years and successfully applied in several fields of research. It mimics the unpredictable motion of bird flocks while searching for food, with the intent of determining the optimal values of the unknown parameters of the problem under consideration. At the end of the process, the best particle (i.e. the best solution with reference to the objective function) is expected to contain the globally optimal values of the unknown parameters. The central idea underlying the method is contained in the formula for velocity updating. This formula includes three terms with stochastic weights. This research applies the particle swarm optimization algorithm to the problem of optimizing impulsive orbital transfers. More specifically, the following problems are considered and solved with the PSO algorithm: (i) determination of the globally optimal two- and three-impulse transfer trajectories between two coplanar circular orbits; (ii) determination of the optimal transfer between two coplanar, elliptic orbits with arbitrary orientation; (iii) determination of the optimal two-impulse transfer between two circular, non-coplanar orbits; (iv) determination of the globally optimal two-impulse transfer between two non-coplanar elliptic orbits. Despite its intuitiveness and simplicity, the particle swarm optimization method proves to be capable of effectively solving the orbital transfer problems of interest with great numerical accuracy.

  11. A Diversity-Guided Particle Swarm Optimizer - the ARPSO

    DEFF Research Database (Denmark)

    Vesterstrøm, Jacob Svaneborg; Riget, Jacques

    2002-01-01

    The particle swarm optimization (PSO) algorithm is a new population based search strat- egy, which has exhibited good performance on well-known numerical test problems. How- ever, on strongly multi-modal test problems the PSO tends to suffer from premature convergence. This is due to a decrease...... that the ARPSO prevents premature convergence to a high degree, but still keeps a rapid convergence like the basic PSO. Thus, it clearly outperforms the basic PSO as well as the implemented GA in multi-modal optimization. Keywords Particle Swarm Optimization, Diversity-Guided Search 1 Introduction The PSO model...... is a new population based optimization strategy introduced by J. Kennedy et al. in 1995 (Kennedy95). It has already shown to be comparable in performance with tra- ditional optimization algorithms such as simulated annealing (SA) and the genetic algorithm (GA) (Angeline98; Eberhart98; Krink01; Vesterstrom...

  12. Usage of the particle swarm optimization in problems of mechanics

    Directory of Open Access Journals (Sweden)

    Hajžman M.

    2016-06-01

    Full Text Available This paper deals with the optimization method called particle swarm optimization and its usage in mechanics. Basic versions of the method is introduced and several improvements and modifications are applied for better convergence of the algorithms. The performance of the optimization algorithm implemented in an original in-house software is investigated by means of three basic and one complex problems of mechanics. The goal of the first problem is to find optimal parameters of a dynamic absorber of vibrations. The second problem is about the tunning of eigenfrequencies of beam bending vibrations. The third problem is to optimize parameters of a clamped beam with various segments. The last complex problem is the optimization of a tilting mechanism with multilevel control. The presented results show that the particle swarm optimization can be efficiently used in mechanical tasks.

  13. EXPERIENCE WITH SYNCHRONOUS GENERATOR MODEL USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

    OpenAIRE

    N.RATHIKA; Dr.A.Senthil kumar; A.ANUSUYA

    2014-01-01

    This paper intends to the modeling of polyphase synchronous generator and minimization of power losses using Particle swarm optimization (PSO) technique with a constriction factor. Usage of Polyphase synchronous generator mainly leads to the total power circulation in the system which can be distributed in all phases. Another advantage of polyphase system is the fault at one winding does not lead to the system shutdown. The Process optimization is the chastisement of adjusting a process so as...

  14. Genetic algorithm and particle swarm optimization combined with Powell method

    Science.gov (United States)

    Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui

    2013-10-01

    In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.

  15. Adaptive stochastic resonance method for weak signal detection based on particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    XING; Hongyan; ZHANG; Qiang; LU; Chunxia

    2015-01-01

    In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.

  16. Improvement of Interior Ballistic Performance Utilizing Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hazem El Sadek

    2014-01-01

    Full Text Available This paper investigates the interior ballistic propelling charge design using the optimization methods to select the optimum charge design and to improve the interior ballistic performance. The propelling charge consists of a mixture propellant of seven-perforated granular propellant and one-hole tubular propellant. The genetic algorithms and some other evolutionary algorithms have complex evolution operators such as crossover, mutation, encoding, and decoding. These evolution operators have a bad performance represented in convergence speed and accuracy of the solution. Hence, the particle swarm optimization technique is developed. It is carried out in conjunction with interior ballistic lumped-parameter model with the mixture propellant. This technique is applied to both single-objective and multiobjective problems. In the single-objective problem, the optimization results are compared with genetic algorithm and the experimental results. The particle swarm optimization introduces a better performance of solution quality and convergence speed. In the multiobjective problem, the feasible region provides a set of available choices to the charge’s designer. Hence, a linear analysis method is adopted to give an appropriate set of the weight coefficients for the objective functions. The results of particle swarm optimization improved the interior ballistic performance and provided a modern direction for interior ballistic propelling charge design of guided projectile.

  17. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.

    Science.gov (United States)

    Garro, Beatriz A; Vázquez, Roberto A

    2015-01-01

    Artificial Neural Network (ANN) design is a complex task because its performance depends on the architecture, the selected transfer function, and the learning algorithm used to train the set of synaptic weights. In this paper we present a methodology that automatically designs an ANN using particle swarm optimization algorithms such as Basic Particle Swarm Optimization (PSO), Second Generation of Particle Swarm Optimization (SGPSO), and a New Model of PSO called NMPSO. The aim of these algorithms is to evolve, at the same time, the three principal components of an ANN: the set of synaptic weights, the connections or architecture, and the transfer functions for each neuron. Eight different fitness functions were proposed to evaluate the fitness of each solution and find the best design. These functions are based on the mean square error (MSE) and the classification error (CER) and implement a strategy to avoid overtraining and to reduce the number of connections in the ANN. In addition, the ANN designed with the proposed methodology is compared with those designed manually using the well-known Back-Propagation and Levenberg-Marquardt Learning Algorithms. Finally, the accuracy of the method is tested with different nonlinear pattern classification problems.

  18. Chaotic motion of charged particles in toroidal magnetic configurations.

    Science.gov (United States)

    Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; Dumont, Rémi; Garbet, Xavier

    2014-09-01

    We study the motion of a charged particle in a tokamak magnetic field and discuss its chaotic nature. Contrary to most of recent studies, we do not make any assumption on any constant of the motion and solve numerically the cyclotron gyration using Hamiltonian formalism. We take advantage of a symplectic integrator allowing us to make long-time simulations. First considering an idealized magnetic configuration, we add a nongeneric perturbation corresponding to a magnetic ripple, breaking one of the invariant of the motion. Chaotic motion is then observed and opens questions about the link between chaos of magnetic field lines and chaos of particle trajectories. Second, we return to an axisymmetric configuration and tune the safety factor (magnetic configuration) in order to recover chaotic motion. In this last setting with two constants of the motion, the presence of chaos implies that no third global constant exists, we highlight this fact by looking at variations of the first order of the magnetic moment in this chaotic setting. We are facing a mixed phase space with both regular and chaotic regions and point out the difficulties in performing a global reduction such as gyrokinetics.

  19. Performance Evaluation of OLSR Using Swarm Intelligence and Hybrid Particle Swarm Optimization Using Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    S. Meenakshi Sundaram

    2014-04-01

    Full Text Available The aim of this research is to evaluate the performance of OLSR using swarm intelligence and HPSO with Gravitational search algorithm to lower the jitter time, data drop and end to end delay and improve the network throughput. Simulation was carried out for multimedia traffic and video streamed network traffic using OPNET Simulator. Routing is exchanging of information from one host to another in a network. Routing forwards packets to destination using an efficient path. Path efficiency is measured through metrics like hop number, traffic and security. Each host node acts as a specialized router in Ad-hoc networks. A table driven proactive routing protocol Optimized Link State Protocol (OLSR has available topology information and routes. OLSR’s efficiency depends on Multipoint relay selection. Various studies were conducted to decrease control traffic overheads through modification of existing OLSR routing protocol and traffic shaping based on packet priority. This study proposes a modification of OLSR using swarm intelligence, Hybrid Particle Swarm Optimization (HPSO using Gravitational Search Algorithm (GSA and evaluation of performance of jitter, end to end delay, data drop and throughput. Simulation was carried out to investigate the proposed method for the network’s multimedia traffic.

  20. Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem

    Directory of Open Access Journals (Sweden)

    Mansour Eddaly

    2016-10-01

    Full Text Available This paper addresses to the flowshop scheduling problem with blocking constraints. The objective is to minimize the makespan criterion. We propose a hybrid combinatorial particle swarm optimization algorithm (HCPSO as a resolution technique for solving this problem. At the initialization, different priority rules are exploited. Experimental study and statistical analysis were performed to select the most adapted one for this problem. Then, the swarm behavior is tested for solving a combinatorial optimization problem such as a sequencing problem under constraints. Finally, an iterated local search algorithm based on probabilistic perturbation is sequentially introduced to the particle swarm optimization algorithm for improving the quality of solution. The computational results show that our approach is able to improve several best known solutions of the literature. In fact, 76 solutions among 120 were improved. Moreover, HCPSO outperforms the compared methods in terms of quality of solutions in short time requirements. Also, the performance of the proposed approach is evaluated according to a real-world industrial problem.

  1. Design of Low Noise Microwave Amplifiers Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Sadık Ulker

    2012-08-01

    Full Text Available This short paper presents a work on the design of low noise microwave amplifiers using particle swarmoptimization (PSO technique. Particle Swarm Optimization is used as a method that is applied to a singlestage amplifier circuit to meet two criteria: desired gain and desired low noise. The aim is to get the bestoptimized design using the predefined constraints for gain and low noise values. The code is written toapply the algorithm to meet the desired goals and the obtained results are verified using differentsimulators. The results obtained show that PSO can be applied very efficiently for this kind of designproblems with multiple constraints.

  2. An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Yan; HUANG Cong-ming

    2006-01-01

    An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases.

  3. A New Class of Hybrid Particle Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    Da-Qing Guo; Yong-Jin Zhao; Hui Xiong; Xiao Li

    2007-01-01

    A new class of hybrid particle swarm optimization (PSO) algorithm is developed for solving the premature convergence caused by some particles in standard PSO fall into stagnation. In this algorithm, the linearly decreasing inertia weight technique (LDIW) and the mutative scale chaos optimization algorithm (MSCOA) are combined with standard PSO, which are used to balance the global and local exploration abilities and enhance the local searching abilities, respectively. In order to evaluate the performance of the new method, three benchmark functions are used. The simulation results confirm the proposed algorithm can greatly enhance the searching ability and effectively improve the premature convergence.

  4. Celestial Navigation Fix Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tsou Ming-Cheng

    2015-09-01

    Full Text Available A technique for solving celestial fix problems is proposed in this study. This method is based on Particle Swarm Optimization from the field of swarm intelligence, utilizing its superior optimization and searching abilities to obtain the most probable astronomical vessel position. In addition to being applicable to two-body fix, multi-body fix, and high-altitude observation problems, it is also less reliant on the initial dead reckoning position. Moreover, by introducing spatial data processing and display functions in a Geographical Information System, calculation results and chart work used in Circle of Position graphical positioning can both be integrated. As a result, in addition to avoiding tedious and complicated computational and graphical procedures, this work has more flexibility and is more robust when compared to other analytical approaches.

  5. Binary Particle Swarm Optimization based Biclustering of Web usage Data

    CERN Document Server

    Bagyamani, R Rathipriya K Thangavel J

    2011-01-01

    Web mining is the nontrivial process to discover valid, novel, potentially useful knowledge from web data using the data mining techniques or methods. It may give information that is useful for improving the services offered by web portals and information access and retrieval tools. With the rapid development of biclustering, more researchers have applied the biclustering technique to different fields in recent years. When biclustering approach is applied to the web usage data it automatically captures the hidden browsing patterns from it in the form of biclusters. In this work, swarm intelligent technique is combined with biclustering approach to propose an algorithm called Binary Particle Swarm Optimization (BPSO) based Biclustering for Web Usage Data. The main objective of this algorithm is to retrieve the global optimal bicluster from the web usage data. These biclusters contain relationships between web users and web pages which are useful for the E-Commerce applications like web advertising and marketin...

  6. Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems

    OpenAIRE

    Chai Jun-Feng; Wang Shu-Yan

    2013-01-01

    A new algorithm is presented for solving the nonlinear complementarity problem by combining the particle swarm and proximal point algorithm, which is called the particle swarm optimization-proximal point algorithm. The algorithm mainly transforms nonlinear complementarity problems into unconstrained optimization problems of smooth functions using the maximum entropy function and then optimizes the problem using the proximal point algorithm as the outer algorithm and particle swarm algorithm a...

  7. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Directory of Open Access Journals (Sweden)

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  8. An Orthogonal Multi-Swarm Cooperative PSO Algorithm with a Particle Trajectory Knowledge Base

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available A novel orthogonal multi-swarm cooperative particle swarm optimization (PSO algorithm with a particle trajectory knowledge base is presented in this paper. Different from the traditional PSO algorithms and other variants of PSO, the proposed orthogonal multi-swarm cooperative PSO algorithm not only introduces an orthogonal initialization mechanism and a particle trajectory knowledge base for multi-dimensional optimization problems, but also conceives a new adaptive cooperation mechanism to accomplish the information interaction among swarms and particles. Experiments are conducted on a set of benchmark functions, and the results show its better performance compared with traditional PSO algorithm in aspects of convergence, computational efficiency and avoiding premature convergence.

  9. Finite element model selection using Particle Swarm Optimization

    CERN Document Server

    Mthembu, Linda; Friswell, Michael I; Adhikari, Sondipon

    2009-01-01

    This paper proposes the application of particle swarm optimization (PSO) to the problem of finite element model (FEM) selection. This problem arises when a choice of the best model for a system has to be made from set of competing models, each developed a priori from engineering judgment. PSO is a population-based stochastic search algorithm inspired by the behaviour of biological entities in nature when they are foraging for resources. Each potentially correct model is represented as a particle that exhibits both individualistic and group behaviour. Each particle moves within the model search space looking for the best solution by updating the parameters values that define it. The most important step in the particle swarm algorithm is the method of representing models which should take into account the number, location and variables of parameters to be updated. One example structural system is used to show the applicability of PSO in finding an optimal FEM. An optimal model is defined as the model that has t...

  10. A Synchronous-Asynchronous Particle Swarm Optimisation Algorithm

    Directory of Open Access Journals (Sweden)

    Nor Azlina Ab Aziz

    2014-01-01

    Full Text Available In the original particle swarm optimisation (PSO algorithm, the particles’ velocities and positions are updated after the whole swarm performance is evaluated. This algorithm is also known as synchronous PSO (S-PSO. The strength of this update method is in the exploitation of the information. Asynchronous update PSO (A-PSO has been proposed as an alternative to S-PSO. A particle in A-PSO updates its velocity and position as soon as its own performance has been evaluated. Hence, particles are updated using partial information, leading to stronger exploration. In this paper, we attempt to improve PSO by merging both update methods to utilise the strengths of both methods. The proposed synchronous-asynchronous PSO (SA-PSO algorithm divides the particles into smaller groups. The best member of a group and the swarm’s best are chosen to lead the search. Members within a group are updated synchronously, while the groups themselves are asynchronously updated. Five well-known unimodal functions, four multimodal functions, and a real world optimisation problem are used to study the performance of SA-PSO, which is compared with the performances of S-PSO and A-PSO. The results are statistically analysed and show that the proposed SA-PSO has performed consistently well.

  11. Incorporate Energy Strategy into Particle Swarm Optimizer Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lun; DONG De-cun; LU Yan; CHEN Lan

    2008-01-01

    The issue of optimizing the dynamic parameters in Particle Swarm Optimizer (PSO) is addressed in this paper.An algorithm is designed which makes all particles originally endowed with a certain level energy, what here we define as EPSO (Energy Strategy PSO).During the iterative process of PSO algorithm, the Inertia Weight is updated according to the calculation of the particle's energy.The portion ratio of the current residual energy to the initial endowed energy is used as the parameter Inertia Weight which aims to update the particles' velocity efficiently.By the simulation in a graph theoritical and a functional optimization problem respectively, it could be easily found that the rate of convergence in EPSO is obviously increased.

  12. Swarm.

    Science.gov (United States)

    Petersen, Hugh

    2002-01-01

    Describes an eighth grade art project for which students created bug swarms on scratchboard. Explains that the project also teaches students about design principles, such as balance. Discusses how the students created their drawings. (CMK)

  13. Optimal choice of parameters for particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-ping; YU Huan-jun; HU Shang-xu

    2005-01-01

    The constriction factor method (CFM) is a new variation of the basic particle swarm optimization (PSO), which has relatively better convergent nature. The effects of the major parameters on CFM were systematically investigated based on some benchmark functions. The constriction factor, velocity constraint, and population size all have significant impact on the performance of CFM for PSO. The constriction factor and velocity constraint have optimal values in practical application, and improper choice of these factors will lead to bad results. Increasing population size can improve the solution quality, although the computing time will be longer. The characteristics of CFM parameters are described and guidelines for determining parameter values are given in this paper.

  14. SECURE STEGANOGRAPHY BASED ON BINARY PARTICLE SWARM OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    Guo Yanqing; Kong Xiangwei; You Xingang

    2009-01-01

    The objective of steganography is to hide message securely in cover objects for secret communication. How to design a secure steganographic algorithm is still major challenge in this research field. In this letter, developing secure steganography is formulated as solving a constrained IP (Integer Programming) problem, which takes the relative entropy of cover and stego distributions as the objective function. Furthermore, a novel method is introduced based on BPSO (Binary Particle Swarm Optimization) for achieving the optimal solution of this programming problem. Experimental results show that the proposed method can achieve excellent performance on preserving neighboring co-occurrence features for JPEG steganography.

  15. Power System Aggregate Load Area Modelling by Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    Jian-Lin Wei; Ji-Hong Wang; Q.H.Wu; Nan Lu

    2005-01-01

    This paper presents a new approach for deriving a power system aggregate load area model (ALAM). In this approach, an equivalent area load model is derived to represent the load characters for a particular area load of a power system network. The Particle Swarm Optimization (PSO) method is employed to identify the unknown parameters of the generalised system, ALAM, based on the system measurement directly using a one-step scheme. Simulation studies are carried out for an IEEE 14-Bus power system and an IEEE 57-Bus power system. Simulation results show that the ALAM can represent the area load characters accurately under different operational conditions and at different power system states.

  16. Learning Bayesian Networks from Data by Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Learning Bayesian network is an NP-hard problem. When the number of variables is large, the process of searching optimal network structure could be very time consuming and tends to return a structure which is local optimal. The particle swarm optimization (PSO) was introduced to the problem of learning Bayesian networks and a novel structure learning algorithm using PSO was proposed. To search in directed acyclic graphs spaces efficiently, a discrete PSO algorithm especially for structure learning was proposed based on the characteristics of Bayesian networks. The results of experiments show that our PSO based algorithm is fast for convergence and can obtain better structures compared with genetic algorithm based algorithms.

  17. Impedance Controller Tuned by Particle Swarm Optimization for Robotic Arms

    Directory of Open Access Journals (Sweden)

    Haifa Mehdi

    2011-11-01

    Full Text Available This paper presents an efficient and fast method for fine tuning the controller parameters of robot manipulators in constrained motion. The stability of the robotic system is proved using a Lyapunov‐based impedance approach whereas the optimal design of the controller parameters are tuned, in offline, by a Particle Swarm Optimization (PSO algorithm. For designing the PSOmethod,differentindexperformancesare considered in both joint and Cartesian spaces. A 3DOF manipulator constrained to a circular trajectory is finally used to validate the performances of the proposed approach. The simulation results show the stability and the performances of the proposed approach.

  18. Hybrid particle swarm optimization for solving resource-constrained FMS

    Institute of Scientific and Technical Information of China (English)

    Dongyun Wang; Liping Liu

    2008-01-01

    In this paper,an approach for resource-constrained flexible manufacturing system(FMS)scheduling was proposed,which is based on the particle swarm optimization(PSO)algorithm and simulated annealing(SA)algorithm.First,the formulation for resource-con-strained FMS scheduling problem was introduced and cost function for this problem was obtained.Then.a hybrid algorithm of PSO and SA was employed to obtain optimal solution.The simulated results show that the approach can dislodge a state from a local min-imum and guide it to the global minimum.

  19. Optimization of mechanical structures using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Victor C.; Schirru, Roberto, E-mail: victor.coppo.leite@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (LMP/PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoracao de Processos

    2015-07-01

    Several optimization problems are dealed with the particle swarm optimization (PSO) algorithm, there is a wide kind of optimization problems, it may be applications related to logistics or the reload of nuclear reactors. This paper discusses the use of the PSO in the treatment of problems related to mechanical structure optimization. The geometry and material characteristics of mechanical components are important for the proper functioning and performance of the systems were they are applied, particularly to the nuclear field. Calculations related to mechanical aspects are all made using ANSYS, while the PSO is programed in MATLAB. (author)

  20. Multidimensional particle swarm optimization for machine learning and pattern recognition

    CERN Document Server

    Kiranyaz, Serkan; Gabbouj, Moncef

    2013-01-01

    For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach.  After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in chal

  1. Transmitter antenna placement in indoor environments using particle swarm optimisation

    Science.gov (United States)

    Talepour, Zeinab; Tavakoli, Saeed; Ahmadi-Shokouh, Javad

    2013-07-01

    The aim of this article is to suitably locate the minimum number of transmitter antennas in a given indoor environment to achieve good propagation coverage. To calculate the electromagnetic field in various points of the environment, we develop a software engine, named ray-tracing engine (RTE), in Matlab. To achieve realistic calculations, all parameters of geometry and material of building are considered. Particle swarm optimisation is employed to determine good location of transmitters. Simulation results show that a full coverage is obtained through suitably locating three transmitters.

  2. Particle Swarm Optimization Applied to the Economic Dispatch Problem

    Directory of Open Access Journals (Sweden)

    Rafik Labdani

    2006-06-01

    Full Text Available This paper presents solution of optimal power flow (OPF problem of a power system via a simple particle swarm optimization (PSO algorithm. The objective is to minimize the fuel cost and keep the power outputs of generators, bus voltages, shunt capacitors/reactors and transformers tap-setting in their secure limits.The effectiveness of PSO was compared to that of OPF by MATPOWER. The potential and superiority of PSO have been demonstrated through the results of IEEE 30-bus system

  3. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    Directory of Open Access Journals (Sweden)

    Huanqing Cui

    2017-03-01

    Full Text Available Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  4. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization.

    Science.gov (United States)

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-03-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.

  5. Parameter Selection and Performance Comparison of Particle Swarm Optimization in Sensor Networks Localization

    Science.gov (United States)

    Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong

    2017-01-01

    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060

  6. Particle swarm optimization with a leader and followers

    Institute of Scientific and Technical Information of China (English)

    Junwei Wang; Dingwei Wang

    2008-01-01

    Referring to the flight mechanism of wild goose flock, we propose a novel version of Particle Swarm Optimization (PSO) with a leader and followers. It is referred to as Goose Team Optimization (GTO). The basic features of goose team flight such as goose role division, parallel principle, aggregate principle and separate principle are implemented in the recommended algorithm. In GTO, a team is formed by the particles with a leader and some followers. The role of the leader is to determine the search direction. The followers decide their flying modes according to their distances to the leader individually. Thus, a wide area can be explored and the particle collision can be really avoided. When GTO is applied to four benchmark examples of complex nonlinear functions, it has a better computation performance than the standard PSO.

  7. Particle energization in a chaotic force-free magnetic field

    Science.gov (United States)

    Li, Xiaocan; Li, Gang; Dasgupta, Brahmananda

    2015-04-01

    A force-free field (FFF) is believed to be a reasonable description of the solar corona and in general a good approximation for low-beta plasma. The equations describing the magnetic field of FFF is similar to the ABC fluid equations which has been demonstrated to be chaotic. This implies that charged particles will experience chaotic magnetic field in the corona. Here, we study particle energization in a time-dependent FFF using a test particle approach. An inductive electric field is introduced by turbulent motions of plasma parcels. We find efficient particle acceleration with power-law like particle energy spectra. The power-law indices depend on the amplitude of plasma parcel velocity field and the spatial scales of the magnetic field fluctuation. The spectra are similar for different particle species. This model provide a possible mechanism for seed population generation for particle acceleration by, e.g., CME-driven shocks. Generalization of our results to certain non-force-free-field (NFFF) is straightforward as the sum of two or multiple FFFs naturally yield NFFF.

  8. Control strategy of maglev vehicles based on particle swarm algorithm

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Gang Shen; Jinsong Zhou

    2014-01-01

    Taking a single magnet levitation system as the object, a nonlinear numerical model of the vehicle-guide-way coupling system was established to study the levitation control strategies. According to the similarity in dynamics, the single magnet-guideway coupling system was simpli-fied into a magnet-suspended track system, and the corre-sponding hardware-in-loop test rig was set up using dSPACE. A full-state-feedback controller was developed using the levitation gap signal and the current signal, and controller parameters were optimized by particle swarm algorithm. The results from the simulation and the test rig show that, the proposed control method can keep the sys-tem stable by calculating the controller output with the full-state information of the coupling system, Step responses from the test rig show that the controller can stabilize the system within 0.15 s with a 2% overshot, and performs well even in the condition of violent external disturbances. Unlike the linear quadratic optimal method, the particle swarm algorithm carries out the optimization with the nonlinear controlled object included, and its optimized results make the system responses much better.

  9. A Study of Load Flow Analysis Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Deepak Saini

    2015-01-01

    Full Text Available Load flow study is done to determine the power system static states (voltage magnitudes and voltage angles at each bus to find the steady state working condition of a power system. It is important and most frequently carried out study performed by power utilities for power system planning, optimization, operation and control. In this project a Particle Swarm Optimization (PSO is proposed to solve load flow problem under different loading/ contingency conditions for computing bus voltage magnitudes and angles of the power system. With the increasing size of power system, this is very necessary to finding the solution to maximize the utilization of existing system and to provide adequate voltage support. For this the good voltage profile is must. STATCOM, if placed optimally can be effective in providing good voltage profile and in turn resulting into stable power system. The study presents a hybrid particle swarm based methodology for solving load flow in electrical power systems. Load flow is an electrical engineering well-known problem which provides the system status in the steady-state and is required by several functions performed in power system control centers.

  10. Particle Swarm Optimization approach to defect detection in armour ceramics.

    Science.gov (United States)

    Kesharaju, Manasa; Nagarajah, Romesh

    2017-03-01

    In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function.

  11. Prediction of RNA Secondary Structure Based on Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-ning; DONG Hao; ZHANG Hao; WANG Gang; LI Zhi; CHEN Hui-ling

    2011-01-01

    A novel method for the prediction of RNA secondary structure was proposed based on the particle swarm optimization(PSO). PSO is known to be effective in solving many different types of optimization problems and known for being able to approximate the global optimal results in the solution space. We designed an efficient objective function according to the minimum free energy, the number of selected stems and the average length of selected stems. We calculated how many legal stems there were in the sequence, and selected some of them to obtain an optimal result using PSO in the right of the objective function. A method based on the improved particle swarm optimization(IPSO) was proposed to predict RNA secondary structure, which consisted of three stages. The first stage was applied to e ncoding the source sequences, and to exploring all the legal stems. Then, a set of encoded stems were created in order to prepare input data for the second stage. In the second stage, IPSO was responsible for structure selection. At last, the optimal result was obtained from the secondary structures selected via IPSO. Nine sequences from the comparative RNA website were selected for the evaluation of the proposed method. Compared with other six methods, the proposed method decreased the complexity and enhanced the sensitivity and specificity on the basis of the experiment results.

  12. Hybrid particle swarm optimization for multiobjective resource allocation

    Institute of Scientific and Technical Information of China (English)

    Yi Yang; Li Xiaoxing; Gu Chunqin

    2008-01-01

    Resource allocation (RA) is the problem of allocating resources among various artifacts or business units to meet one or more expected goals,such as maximizing the profits,minimizing the costs,or achieving the best qualities.A complex multiobjective RA is addressed,and a multiobjective mathematical model is used to find solutions efficiently.Then,an improved particle swarm algorithm (mO_PSO) is proposed combined with a new particle diversity controller policies and dissipation operation.Meanwhile,a modified Pareto methods used in PSO to deal with multiobjectives optimization is presented.The effectiveness of the provided algorithm is validated by its application to some illustrative example dealing with multiobjective RA problems and with the comparative experiment with other algorithm.

  13. Drilling Path Optimization Based on Particle Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Guangyu; ZHANG Weibo; DU Yuexiang

    2006-01-01

    This paper presents a new approach based on the particle swarm optimization (PSO) algorithm for solving the drilling path optimization problem belonging to discrete space. Because the standard PSO algorithm is not guaranteed to be global convergence or local convergence, based on the mathematical algorithm model, the algorithm is improved by adopting the method of generate the stop evolution particle over again to get the ability of convergence to the global optimization solution. And the operators are improved by establishing the duality transposition method and the handle manner for the elements of the operator, the improved operator can satisfy the need of integer coding in drilling path optimization. The experiment with small node numbers indicates that the improved algorithm has the characteristics of easy realize, fast convergence speed, and better global convergence characteristics, hence the new PSO can play a role in solving the problem of drilling path optimization in drilling holes.

  14. Multivariable PID Decoupling Control Method of Electroslag Remelting Process Based on Improved Particle Swarm Optimization (PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Jie-Sheng Wang

    2014-02-01

    Full Text Available A mathematical model of electroslag remelting (ESR process is established based on its technical features and dynamic characteristics. A new multivariable self-tuning proportional-integral-derivative (PID controller tuned optimally by an improved particle swarm optimization (IPSO algorithm is proposed to control the two-input/two-output (TITO ESR process. An adaptive chaotic migration mutation operator is used to tackle the particles trapped in the clustering field in order to enhance the diversity of the particles in the population, prevent premature convergence and improve the search efficiency of PSO algorithm. The simulation results show the feasibility and effectiveness of the proposed control method. The new method can overcome dynamic working conditions and coupling features of the system in a wide range, and it has strong robustness and adaptability.

  15. Fishing for Data: Using Particle Swarm Optimization to Search Data

    Science.gov (United States)

    Caputo, Daniel P.; Dolan, R.

    2010-01-01

    As the size of data and model sets continue to increase, more efficient ways are needed to sift through the available information. We present a computational method which will efficiently search large parameter spaces to either map the space or find individual data/models of interest. Particle swarm optimization (PSO) is a subclass of artificial life computer algorithms. The PSO algorithm attempts to leverage "swarm intelligence” against finding optimal solutions to a problem. This system is often based on a biological model of a swarm (e.g. schooling fish). These biological models are broken down into a few simple rules which govern the behavior of the system. "Agents” (e.g. fish) are introduced and the agents, following the rules, search out solutions much like a fish would seek out food. We have made extensive modifications to the standard PSO model which increase its efficiency as-well-as adding the capacity to map a parameter space and find multiple solutions. Our modified PSO is ideally suited to search and map large sets of data/models which are degenerate or to search through data/models which are too numerous to analyze by hand. One example of this would include radiative transfer models, which are inherently degenerate. Applying the PSO algorithm will allow the degeneracy space to be mapped and thus better determine limits on dust shell parameters. Another example is searching through legacy data from a survey for hints of Polycyclic Aromatic Hydrocarbon emission. What might have once taken years of searching (and many frustrated graduate students) can now be relegated to the task of a computer which will work day and night for only the cost of electricity. We hope this algorithm will allow fellow astronomers to more efficiently search data and models, thereby freeing them to focus on the physics of the Universe.

  16. An Improved Particle Swarm Optimization Algorithm with Harmony Strategy for the Location of Critical Slip Surface of Slopes

    Institute of Scientific and Technical Information of China (English)

    LI Liang; CHU Xue-song

    2011-01-01

    The determination of optimal values for three parameters required in the original particle swarm optimization algorithm is very difficult. It is proposed that two new parameters simulating the harmony search strategy can be adopted instead of the three parameters which are required in the original particle swarm optimization algorithm to update the positions of all the particles. The improved particle swarm optimization is used in the location of the critical slip surface of soil slope, and it is found that the improved particle swarm optimization algorithm is insensitive to the two parameters while the original particle swarm optimization algorithm can be sensitive to its three parameters.

  17. Reliability Evaluation of Slopes Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohammad Khajehzadeh

    2011-01-01

    Full Text Available The objective of this research is to develop a numerical procedure to reliability evaluation of earth slope and locating the critical probabilistic slip surface. The performance function is  formulated using simplified Bishop’s limit equilibrium method  to calculate the reliability index. The reliability index defined by Hasofer and Lind is used as an index of safety measure. Searching the critical probabilistic surface that is associated with the lowest reliability index will be formulated as an optimization problem. In this paper, particle swarm optimization is applied to calculate the minimum Hasofer and Lind reliability index and critical probabilistic failure surface. To demonstrate the applicability and to investigate the effectiveness of the algorithm, two numerical examples from literature are illustrated. Results show that the proposed method is capable to achieve better solutions for reliability analysis of slope if compared with those reported in the literature.

  18. A fuzzy neural network evolved by particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    PENG Zhi-ping; PENG Hong

    2007-01-01

    A cooperative system of a fuzzy logic model and a fuzzy neural network (CSFLMFNN) is proposed,in which a fuzzy logic model is acquired from domain experts and a fuzzy neural network is generated and prewired according to the model. Then PSO-CSFLMFNN is constructed by introducing particle swarm optimization (PSO) into the cooperative system instead of the commonly used evolutionary algorithms to evolve the prewired fuzzy neural network. The evolutionary fuzzy neural network implements accuracy fuzzy inference without rule matching. PSO-CSFLMFNN is applied to the intelligent fault diagnosis for a petrochemical engineering equipment, in which the cooperative system is proved to be effective. It is shown by the applied results that the performance of the evolutionary fuzzy neural network outperforms remarkably that of the one evolved by genetic algorithm in the convergence rate and the generalization precision.

  19. Cosmological parameter estimation using Particle Swarm Optimization (PSO)

    CERN Document Server

    Prasad, Jayanti

    2011-01-01

    Obtaining the set of cosmological parameters consistent with observational data is an important exercise in current cosmological research. It involves finding the global maximum of the likelihood function in the multi-dimensional parameter space. Currently sampling based methods, which are in general stochastic in nature, like Markov-Chain Monte Carlo(MCMC), are being commonly used for parameter estimation. The beauty of stochastic methods is that the computational cost grows, at the most, linearly in place of exponentially (as in grid based approaches) with the dimensionality of the search space. MCMC methods sample the full joint probability distribution (posterior) from which one and two dimensional probability distributions, best fit (average) values of parameters and then error bars can be computed. In the present work we demonstrate the application of another stochastic method, named Particle Swarm Optimization (PSO), that is widely used in the field of engineering and artificial intelligence, for cosmo...

  20. Differential Evolution and Particle Swarm Optimization for Partitional Clustering

    DEFF Research Database (Denmark)

    Krink, Thiemo; Paterlini, Sandra

    2006-01-01

    Many partitional clustering algorithms based on genetic algorithms (GA) have been proposed to tackle the problem of finding the optimal partition of a data set. Very few studies considered alternative stochastic search heuristics other than GAs or simulated annealing. Two promising algorithms...... to implement and requires hardly any parameter tuning compared to substantial tuning for GAs and PSOs. Our study shows that DE rather than GAs should receive primary attention in partitional clustering algorithms....... for numerical optimisation, which are hardly known outside the search heuristics field, are particle swarm optimisation (PSO) and differential evolution (DE). The performance of GAs for a representative point evolution approach to clustering is compared with PSO and DE. The empirical results show that DE...

  1. Particle Swarm Optimization with Genetic Operators for Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    P. V. PURANIK

    2012-07-01

    Full Text Available Vehicle Routing Problem (VRP is to find shortest route thereby minimizing total cost. VRP is a NP-hard and Combinatorial optimization problem. Such problems increase exponentially with the problem size. Various derivative based optimization techniques are employed for optimization. Derivative based optimization techniques are difficult to evaluate. Therefore parallel search algorithm emerged to solve VRP. In this work, a particle swarm optimization (PSO algorithm and Genetic algorithm (GA with crossover and mutation operator are applied to two typical functions to deal with the problem of VRP efficiently using MATLAB software. Before solving VRP, optimization of functions using PSO and GA are checked. In this paper capacitate VRP with time window (CVRPTW is proposed. The computational result shows generation of input for VRP, optimization of Rastrigin function, Rosenbrock function using PSO and GA.

  2. Particle Swarm Optimization of Electricity Market Negotiating Players Portfolio

    DEFF Research Database (Denmark)

    Pinto, Tiago; Vale, Zita; Sousa, Tiago

    2014-01-01

    ’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system...... for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method......, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day...

  3. EXPERIENCE WITH SYNCHRONOUS GENERATOR MODEL USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    N.RATHIKA

    2014-07-01

    Full Text Available This paper intends to the modeling of polyphase synchronous generator and minimization of power losses using Particle swarm optimization (PSO technique with a constriction factor. Usage of Polyphase synchronous generator mainly leads to the total power circulation in the system which can be distributed in all phases. Another advantage of polyphase system is the fault at one winding does not lead to the system shutdown. The Process optimization is the chastisement of adjusting a process so as to optimize some stipulated set of parameters without violating some constraint. Accurate value can be extracted using PSO and it can be reformulated. Modeling and simulation of the machine is executed. MATLAB/Simulink has been cast-off to implement and validate the result.

  4. Distribution systems reconfiguration using a modified particle swarm optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, A.Y.; Mohammed, F.M.; Mekhamer, S.F.; Badr, M.A.L. [Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, 1 Elsarayat Street, Cairo (Egypt)

    2009-11-15

    This paper presents the particle swarm optimization (PSO) algorithm for solving the optimal distribution system reconfiguration problem for power loss minimization. The PSO is a relatively new and powerful intelligence evolution algorithm for solving optimization problems. It is a population-based approach. The PSO is originally inspired from the social behavior of bird flocks and fish schools. The proposed PSO algorithm in this paper is introduced with some modifications such as using an inertia weight that decreases linearly during the simulation. This setting allows the PSO to explore a large area at the start of the simulation. Also, a modification in the number of iterations and the population size is presented. Comparative studies are conducted on two test distribution systems to verify the effectiveness of the proposed PSO algorithm. The obtained results are compared with those obtained using other techniques in previous work to evaluate the performance. (author)

  5. Particle swarm optimization based space debris surveillance network scheduling

    Science.gov (United States)

    Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao

    2017-02-01

    The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.

  6. Planar straightness error evaluation based on particle swarm optimization

    Science.gov (United States)

    Mao, Jian; Zheng, Huawen; Cao, Yanlong; Yang, Jiangxin

    2006-11-01

    The straightness error generally refers to the deviation between an actual line and an ideal line. According to the characteristics of planar straightness error evaluation, a novel method to evaluate planar straightness errors based on the particle swarm optimization (PSO) is proposed. The planar straightness error evaluation problem is formulated as a nonlinear optimization problem. According to minimum zone condition the mathematical model of planar straightness together with the optimal objective function and fitness function is developed. Compared with the genetic algorithm (GA), the PSO algorithm has some advantages. It is not only implemented without crossover and mutation but also has fast congruence speed. Moreover fewer parameters are needed to set up. The results show that the PSO method is very suitable for nonlinear optimization problems and provides a promising new method for straightness error evaluation. It can be applied to deal with the measured data of planar straightness obtained by the three-coordinates measuring machines.

  7. OPTIMIZING LOCALIZATION ROUTE USING PARTICLE SWARM-A GENETIC APPROACH

    Directory of Open Access Journals (Sweden)

    L. Lakshmanan

    2014-01-01

    Full Text Available One of the most key problems in wireless sensor networks is finding optimal algorithms for sending packets from source node to destination node. Several algorithms exist in literature, since some are in vital role other may not. Since WSN focus on low power consumption during packet transmission and receiving, finally we adopt by merging swarm particle based algorithm with genetic approach. Initially we order the nodes based on their energy criterion and then focusing towards node path; this can be done using Proactive route algorithm for finding optimal path between Source-Destination (S-D nodes. Fast processing and pre traversal can be done using selective flooding approach and results are in genetic. We have improved our results with high accuracy and optimality in rendering routes.

  8. R2-Based Multi/Many-Objective Particle Swarm Optimization

    Science.gov (United States)

    Toscano, Gregorio; Barron-Zambrano, Jose Hugo; Tello-Leal, Edgar

    2016-01-01

    We propose to couple the R2 performance measure and Particle Swarm Optimization in order to handle multi/many-objective problems. Our proposal shows that through a well-designed interaction process we could maintain the metaheuristic almost inalterable and through the R2 performance measure we did not use neither an external archive nor Pareto dominance to guide the search. The proposed approach is validated using several test problems and performance measures commonly adopted in the specialized literature. Results indicate that the proposed algorithm produces results that are competitive with respect to those obtained by four well-known MOEAs. Additionally, we validate our proposal in many-objective optimization problems. In these problems, our approach showed its main strength, since it could outperform another well-known indicator-based MOEA. PMID:27656200

  9. Gravitational Lens Modeling with Genetic Algorithms and Particle Swarm Optimizers

    CERN Document Server

    Rogers, Adam

    2011-01-01

    Strong gravitational lensing of an extended object is described by a mapping from source to image coordinates that is nonlinear and cannot generally be inverted analytically. Determining the structure of the source intensity distribution also requires a description of the blurring effect due to a point spread function. This initial study uses an iterative gravitational lens modeling scheme based on the semilinear method to determine the linear parameters (source intensity profile) of a strongly lensed system. Our 'matrix-free' approach avoids construction of the lens and blurring operators while retaining the least squares formulation of the problem. The parameters of an analytical lens model are found through nonlinear optimization by an advanced genetic algorithm (GA) and particle swarm optimizer (PSO). These global optimization routines are designed to explore the parameter space thoroughly, mapping model degeneracies in detail. We develop a novel method that determines the L-curve for each solution automa...

  10. Particle swarm optimization algorithm for partner selection in virtual enterprise

    Institute of Scientific and Technical Information of China (English)

    Qiang Zhao; Xinhui Zhang; Renbin Xiao

    2008-01-01

    Partner selection is a fundamental problem in the formation and success of a virtual enterprise. The partner selection problem with precedence and due date constraint is the basis of the various extensions and is studied in this paper. A nonlinear integer program model for the partner selection problem is established. The problem is shown to be NP-complete by reduction to the knapsack problem, and therefore no polynomial time algorithm exists. To solve it efficiently, a particle swarm optimization (PSO) algorithm is adopted, and several mechanisms that include initialization expansion mechanism, variance mechanism and local searching mechanism have been developed to improve the performance of the proposed PSO algorithm. A set of experiments have been conducted using real examples and numerical simulation, and have shown that the PSO algorithm is an effective and efficient way to solve the partner selection problems with precedence and due date constraints.

  11. Stability, Convergence of Harmonious Particle Swarm Optimizer and Its Application

    Institute of Scientific and Technical Information of China (English)

    PAN Feng; CHEN Jie; CAI Tao; GAN Ming-gang; WANG Guang-hui

    2008-01-01

    Particle swarm optimizer (PSO), a new evolutionary computation algorithm, exhibits good performance for optimization problems, although PSO can not guarantee convergence of a global minimum, even a local minimum. However, there are some adjustable parameters and restrictive conditions which can affect performance of the algorithm. The sufficient conditions for asymptotic stability of an acceleration factor and inertia weight are deduced in this paper. The value of the inertia weight w is enhanced to (-1,1). Furthermore a new adaptive PSO algorithm-harmonious PSO (HPSO) is proposed and proved that HPSO is a global search algorithm. Finally it is focused on a design task of a servo system controller. Considering the existence of model uncertainty and noise from sensors, HPSO are applied to optimize the parameters of fuzzy PID controller. The experiment results demonstrate the efficiency of the methods.

  12. Economic Dispatch Thermal Generator Using Modified Improved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    M. Natsir Rahman

    2012-07-01

    Full Text Available Fuel cost of a thermal generator is its own load functions. In this research, Modified Improved Particle Swarm Optimization (MIPSO is applied to calculate economic dispatch. Constriction Factor Approach (CFA is used to modify IPSO algorithm because of the advantage to improve the ability of global searching and avoid local minimum so that the time needed to converge become faster. Simulation results achieved by using  MIPSO method at the time of peak load of of 9602 MW, obtained generation cost is Rp 7,366,912,798,34 per hour, while generation cost of real system is Rp. 7,724,012,070.30 per hour. From the simulation result can be concluded that MIPSO can reduce the generation cost of  500 kV Jawa Bali transmission system of Rp 357,099,271.96 per hour or equal to 4,64%.

  13. The onset of chaotic motion of a spinning particle around the Schwarzchild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kao, J.-K. [Department of Physics, Tamkang University, Tamsui, Taipei, Taiwan (China)]. E-mail: g3180011@tkgis.tku.edu.tw; Cho, H.T. [Department of Physics, Tamkang University, Tamsui, Taipei, Taiwan (China)]. E-mail: htcho@mail.tku.edu.tw

    2005-03-07

    In the Schwarzschild black hole spacetime, we show that chaotic motion can be triggered by the spin of a particle. Taking the spin of the particle as a perturbation and using the Melnikov method, we find that the perturbed stable and unstable orbits are entangled with each other and that illustrates the onset of chaotic behavior in the motion of the particle.

  14. The Onset of Chaotic Motion of a Spinning Particle around the Schwarzchild Black Hole

    CERN Document Server

    Kao, J K

    2005-01-01

    In the Schwarzchild black hole spacetime, we show that chaotic motion can be triggered by the spin of a particle. Taking the spin of the particle as a perturbation and using the Melnikov method, we find that the perturbed stable and unstable orbits are entangled with each other and that illustrates the onset of chaotic behavior in the motion of the particle.

  15. Object Detection In Image Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Nirbhowjap Singh

    2010-12-01

    Full Text Available Image matching is a key component in almost any image analysis process. Image matching is crucial to a wide range of applications, such as in navigation, guidance, automatic surveillance, robot vision, and in mapping sciences. Any automated system for three-dimensional point positioning must include a potent procedure for image matching. Most biological vision systems have the talent to cope with changing world. Computer vision systems have developed in the same way. For a computer vision system, the ability to cope withmoving and changing objects, changing illumination, and changing viewpoints is essential to perform several tasks. Object detection is necessary for surveillance applications, for guidance of autonomous vehicles, for efficient video compression, for smart tracking of moving objects, for automatic target recognition (ATR systems and for many other applications. Cross-correlation and related techniqueshave dominated the field since the early fifties. Conventional template matching algorithm based on cross-correlation requires complex calculation and large time for object detection, which makes difficult to use them in real time applications. The shortcomings of this class of image matching methods have caused a slow-down in the development of operational automated correlation systems. In the proposed work particle swarm optimization & its variants basedalgorithm is used for detection of object in image. Implementation of this algorithm reduces the time required for object detection than conventional template matching algorithm. Algorithm can detect object in less number of iteration & hence less time & energy than the complexity of conventional template matching. This feature makes the method capable for real time implementation. In this thesis a study of particle Swarm optimization algorithm is done & then formulation of the algorithm for object detection using PSO & its variants is implemented for validating its effectiveness.

  16. Research on particle swarm optimization algorithm based on optimal movement probability

    Science.gov (United States)

    Ma, Jianhong; Zhang, Han; He, Baofeng

    2017-01-01

    The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.

  17. Hybrid particle swarm cooperative optimization algorithm and its application to MBC in alumina production

    Institute of Scientific and Technical Information of China (English)

    Shengli Song; Li Kong; Yong Gan; Rijian Su

    2008-01-01

    An effective hybrid particle swarm cooperative optimization (HPSCO) algorithm combining simulated annealing method and simplex method is proposed. The main idea is to divide particle swarm into several sub-groups and achieve optimization through cooperativeness of different sub-groups among the groups. The proposed algorithm is tested by benchmark functions and applied to material balance computation (MBC) in alumina production. Results show that HPSCO, with both a better stability and a steady convergence, has faster convergence speed and higher global convergence ability than the single method and the improved particle swarm optimization method. Most importantly, results demonstrate that HPSCO is more feasible and efficient than other algorithms in MBC.

  18. Particle Swarm Optimization and Its Application in Transmission Network Expansion Planning

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The author introduced particle swarm optimization as a new method for power transmission network expansion planning. A new discrete method for particle swarm optimization, was developed, which is suitable for power transmission network expansion planning, and requires less computer s memory. The optimization fitness function construction, parameter selection, convergence judgement, and their characters were analyzed. Numerical simulation demonstrated the effectiveness and correctness of the method, This paper provides an academic and practical basis of particle swarm optimization in application of transmission network expansion planning for further investigation.

  19. Improved Particle Swarm Optimization for Global Optimization of Unimodal and Multimodal Functions

    Science.gov (United States)

    Basu, Mousumi

    2016-12-01

    Particle swarm optimization (PSO) performs well for small dimensional and less complicated problems but fails to locate global minima for complex multi-minima functions. This paper proposes an improved particle swarm optimization (IPSO) which introduces Gaussian random variables in velocity term. This improves search efficiency and guarantees a high probability of obtaining the global optimum without significantly impairing the speed of convergence and the simplicity of the structure of particle swarm optimization. The algorithm is experimentally validated on 17 benchmark functions and the results demonstrate good performance of the IPSO in solving unimodal and multimodal problems. Its high performance is verified by comparing with two popular PSO variants.

  20. Attractive and Repulsive Particle Swarm Optimization and Random Virus Algorithm for Solving Reactive Power Optimization Problem

    Directory of Open Access Journals (Sweden)

    K. Lenin

    2013-03-01

    Full Text Available Reactive Power Optimization is a complex combinatorial optimization problem involving non-linear function having multiple local minima, non-linear and discontinuous constrains. This paper presents Attractive and repulsive Particle Swarm Optimization (ARPSO and Random Virus Algorithm (RVA in trying to overcome the Problem of premature convergence. RVA and ARPSO is applied to Reactive Power Optimization problem and is evaluated on standard IEEE 30Bus System. The results show that RVA prevents premature convergence to high degree but still keeps a rapid convergence. It gives best solution when compared to Attractive and repulsive Particle Swarm Optimization (ARPSO and Particle Swarm Optimization (PSO.

  1. A Bayesian interpretation of the particle swarm optimization and its kernel extension.

    Science.gov (United States)

    Andras, Peter

    2012-01-01

    Particle swarm optimization is a popular method for solving difficult optimization problems. There have been attempts to formulate the method in formal probabilistic or stochastic terms (e.g. bare bones particle swarm) with the aim to achieve more generality and explain the practical behavior of the method. Here we present a Bayesian interpretation of the particle swarm optimization. This interpretation provides a formal framework for incorporation of prior knowledge about the problem that is being solved. Furthermore, it also allows to extend the particle optimization method through the use of kernel functions that represent the intermediary transformation of the data into a different space where the optimization problem is expected to be easier to be resolved-such transformation can be seen as a form of prior knowledge about the nature of the optimization problem. We derive from the general Bayesian formulation the commonly used particle swarm methods as particular cases.

  2. Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction

    Directory of Open Access Journals (Sweden)

    Chao-Hong Chen

    2011-01-01

    Full Text Available We analyze the convergence time of particle swarm optimization (PSO on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.

  3. A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2015-01-01

    Full Text Available Particle swarm optimization (PSO is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO, population topology (as fully connected, von Neumann, ring, star, random, etc., hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization, extensions (to multiobjective, constrained, discrete, and binary optimization, theoretical analysis (parameter selection and tuning, and convergence analysis, and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms. On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms.

  4. Constrained Fuzzy Predictive Control Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Oussama Ait Sahed

    2015-01-01

    Full Text Available A fuzzy predictive controller using particle swarm optimization (PSO approach is proposed. The aim is to develop an efficient algorithm that is able to handle the relatively complex optimization problem with minimal computational time. This can be achieved using reduced population size and small number of iterations. In this algorithm, instead of using the uniform distribution as in the conventional PSO algorithm, the initial particles positions are distributed according to the normal distribution law, within the area around the best position. The radius limiting this area is adaptively changed according to the tracking error values. Moreover, the choice of the initial best position is based on prior knowledge about the search space landscape and the fact that in most practical applications the dynamic optimization problem changes are gradual. The efficiency of the proposed control algorithm is evaluated by considering the control of the model of a 4 × 4 Multi-Input Multi-Output industrial boiler. This model is characterized by being nonlinear with high interactions between its inputs and outputs, having a nonminimum phase behaviour, and containing instabilities and time delays. The obtained results are compared to those of the control algorithms based on the conventional PSO and the linear approach.

  5. The infrared spectral transmittance of Aspergillus niger spore aggregated particle swarm

    Science.gov (United States)

    Zhao, Xinying; Hu, Yihua; Gu, Youlin; Li, Le

    2015-10-01

    Microorganism aggregated particle swarm, which is quite an important composition of complex media environment, can be developed as a new kind of infrared functional materials. Current researches mainly focus on the optical properties of single microorganism particle. As for the swarm, especially the microorganism aggregated particle swarm, a more accurate simulation model should be proposed to calculate its extinction effect. At the same time, certain parameters deserve to be discussed, which helps to better develop the microorganism aggregated particle swarm as a new kind of infrared functional materials. In this paper, take Aspergillus Niger spore as an example. On the one hand, a new calculation model is established. Firstly, the cluster-cluster aggregation (CCA) model is used to simulate the structure of Aspergillus Niger spore aggregated particle. Secondly, the single scattering extinction parameters for Aspergillus Niger spore aggregated particle are calculated by using the discrete dipole approximation (DDA) method. Thirdly, the transmittance of Aspergillus Niger spore aggregated particle swarm is simulated by using Monte Carlo method. On the other hand, based on the model proposed above, what influences can wavelength causes has been studied, including the spectral distribution of scattering intensity of Aspergillus Niger spore aggregated particle and the infrared spectral transmittance of the aggregated particle swarm within the range of 8~14μm incident infrared wavelengths. Numerical results indicate that the scattering intensity of Aspergillus Niger spore aggregated particle reduces with the increase of incident wavelengths at each scattering angle. Scattering energy mainly concentrates on the scattering angle between 0~40°, forward scattering has an obvious effect. In addition, the infrared transmittance of Aspergillus Niger spore aggregated particle swarm goes up with the increase of incident wavelengths. However, some turning points of the trend

  6. Application of Particle Swarm Optimization Algorithm in Design of Multilayered Planar Shielding Body

    Institute of Scientific and Technical Information of China (English)

    FUJiwei; HOUChaozhen; DOULihua

    2005-01-01

    Based on the basic electromagnetic wave propagation theory in this article, the Particle swarm optimization algorithm (PSO) is used in the design of the multilayered composite materials and the thickness of shielding body by the existent multilayered planar composite elec-tromagnetic shielding materials model, the different shielding materials of each layer can be designed under some kinds of circumstances: the prespecified Shielding effectiveness (SE), different incident angle and the prespecified band of frequencies. Finally the algorithm is simulated. At the same time the similar procedure can be implemented by Genetic algorithm (GA). The results acquired by particle swarm optimization algorithm are compared with there sults acquired by the genetic algorithm. The results indicate that: the particle swarm optimization algorithm is much better than the genetic algorithm not only in convergence speed but also in simplicity. So a more effective method (Particle Swarm Optimization algorithm) is offered for the design of the multilayered composite shielding materials.

  7. Support vector machine based on chaos particle swarm optimization for fault diagnosis of rotating machine

    Institute of Scientific and Technical Information of China (English)

    TANG Xian-lun; ZHUANG Ling; QIU Guo-qing; CAI Jun

    2009-01-01

    The performance of the support vector machine models depends on a proper setting of its parameters to a great extent. A novel method of searching the optimal parameters of support vector machine based on chaos particle swarm optimization is proposed. A multi-fault classification model based on SVM optimized by chaos particle swarm optimization is established and applied to the fault diagnosis of rotating machines. The results show that the proposed fault classification model outperforms the neural network trained by chaos particle swarm optimization and least squares support vector machine, and the precision and reliability of the fault classification results can meet the requirement of practical application. It indicates that chaos particle swarm optimization is a suitable method for searching the optimal parameters of support vector machine.

  8. Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence

    Institute of Scientific and Technical Information of China (English)

    Wei Jingxuan; Wang Yuping

    2008-01-01

    A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems.First,a new perturbation operator is designed,and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator.After that,particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second,the elite archiving technique is used during the process of evolution,namely,the elite particles are introduced into the swarm,whereas the inferior particles are deleted.Therefore,the quality of the swarm is ensured.Finally,the convergence of this swarm is proved.The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.

  9. Research on Multiple Particle Swarm Algorithm Based on Analysis of Scientific Materials

    Directory of Open Access Journals (Sweden)

    Zhao Hongwei

    2017-01-01

    Full Text Available This paper proposed an improved particle swarm optimization algorithm based on analysis of scientific materials. The core thesis of MPSO (Multiple Particle Swarm Algorithm is to improve the single population PSO to interactive multi-swarms, which is used to settle the problem of being trapped into local minima during later iterations because it is lack of diversity. The simulation results show that the convergence rate is fast and the search performance is good, and it has achieved very good results.

  10. ADAPTIVE LIFTING BASED IMAGE COMPRESSION SCHEME WITH PARTICLE SWARM OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Nishat kanvel

    2010-09-01

    Full Text Available This paper presents an adaptive lifting scheme with Particle Swarm Optimization technique for image compression. Particle swarm Optimization technique is used to improve the accuracy of the predictionfunction used in the lifting scheme. This scheme is applied in Image compression and parameters such as PSNR, Compression Ratio and the visual quality of the image is calculated .The proposed scheme iscompared with the existing methods.

  11. Multilayered feed forward neural network based on particle swarm optimizer algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    BP is a commonly used neural network training method, which has some disadvantages, such as local minima,sensitivity of initial value of weights, total dependence on gradient information. This paper presents some methods to train a neural network, including standard particle swarm optimizer (PSO), guaranteed convergence particle swarm optimizer (GCPSO), an improved PSO algorithm, and GCPSO-BP, an algorithm combined GCPSO with BP. The simulation results demonstrate the effectiveness of the three algorithms for neural network training.

  12. Quantum-behaved particle swarm optimization: analysis of individual particle behavior and parameter selection.

    Science.gov (United States)

    Sun, Jun; Fang, Wei; Wu, Xiaojun; Palade, Vasile; Xu, Wenbo

    2012-01-01

    Quantum-behaved particle swarm optimization (QPSO), motivated by concepts from quantum mechanics and particle swarm optimization (PSO), is a probabilistic optimization algorithm belonging to the bare-bones PSO family. Although it has been shown to perform well in finding the optimal solutions for many optimization problems, there has so far been little analysis on how it works in detail. This paper presents a comprehensive analysis of the QPSO algorithm. In the theoretical analysis, we analyze the behavior of a single particle in QPSO in terms of probability measure. Since the particle's behavior is influenced by the contraction-expansion (CE) coefficient, which is the most important parameter of the algorithm, the goal of the theoretical analysis is to find out the upper bound of the CE coefficient, within which the value of the CE coefficient selected can guarantee the convergence or boundedness of the particle's position. In the experimental analysis, the theoretical results are first validated by stochastic simulations for the particle's behavior. Then, based on the derived upper bound of the CE coefficient, we perform empirical studies on a suite of well-known benchmark functions to show how to control and select the value of the CE coefficient, in order to obtain generally good algorithmic performance in real world applications. Finally, a further performance comparison between QPSO and other variants of PSO on the benchmarks is made to show the efficiency of the QPSO algorithm with the proposed parameter control and selection methods.

  13. Perceptual Dominant Color Extraction by Multidimensional Particle Swarm Optimization

    Science.gov (United States)

    Kiranyaz, Serkan; Uhlmann (Eurasip Member), Stefan; Ince, Turker; Gabbouj, Moncef

    2010-12-01

    Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utmost importance since the human visual system primarily uses them for perception and similarity judgment. In this paper, we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO) for finding optimal (number of) dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multidimensional (MD) PSO can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergence due to lack of divergence. To address this problem we then apply Fractional Global Best Formation (FGBF) technique. In order to extract perceptually important colors and to further improve the discrimination factor for a better clustering performance, an efficient color distance metric, which uses a fuzzy model for computing color (dis-) similarities over HSV (or HSL) color space is proposed. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.

  14. Multiobjective Reliable Cloud Storage with Its Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xiyang Liu

    2016-01-01

    Full Text Available Information abounds in all fields of the real life, which is often recorded as digital data in computer systems and treated as a kind of increasingly important resource. Its increasing volume growth causes great difficulties in both storage and analysis. The massive data storage in cloud environments has significant impacts on the quality of service (QoS of the systems, which is becoming an increasingly challenging problem. In this paper, we propose a multiobjective optimization model for the reliable data storage in clouds through considering both cost and reliability of the storage service simultaneously. In the proposed model, the total cost is analyzed to be composed of storage space occupation cost, data migration cost, and communication cost. According to the analysis of the storage process, the transmission reliability, equipment stability, and software reliability are taken into account in the storage reliability evaluation. To solve the proposed multiobjective model, a Constrained Multiobjective Particle Swarm Optimization (CMPSO algorithm is designed. At last, experiments are designed to validate the proposed model and its solution PSO algorithm. In the experiments, the proposed model is tested in cooperation with 3 storage strategies. Experimental results show that the proposed model is positive and effective. The experimental results also demonstrate that the proposed model can perform much better in alliance with proper file splitting methods.

  15. Optimasi Desain Heat Exchanger dengan Menggunakan Metode Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Rifnaldi Veriyawan

    2014-09-01

    Full Text Available Industri proses terutama perminyakan adalah salah satu industri membutuhkan energi panas dengan jumlah kapasitas besar. Dengan berjalan perkembangan teknologi dibutuhkannya proses perpindahan panas dalam jumlah besar. Tetapi dengan besarnya penukaran panas yang diberikan maka besar pula luas permukaan. Dibutuhkannya optimasi pada desain heat exchanger terutama shell-and-tube¬. Dalam tugas akhir ini, Algoritma particle swarm optimization (PSO digunakan untuk mengoptimasikan nilai koefesien perpindahan panas keseluruhan dengan mendapatkan nilai terbaik. Perumusan fungsi tujuan nilai perpindahan panas keseluruhan (U, dan luas permukaan (A yang digunakan untuk mencari nilai fungsi objektif pada PSO. Partikel dalam PSO menyatakan sebagai posisi atau solusi dari hasil optimasi didapatnya nilai perpindahan panas maksimal dengan luas permukaan dan pressure drop dibawah data desain atau datasheet. Partikel tersebut dalam pemodelan berupa rentang nilai minimal dan maksimal dari diameter luar diantara (do dan jumlah baffle (Nb. Dari hasil optimasi pada tiga HE didapatkan nilai U dan A secara berturut-turut; HE E-1111 472 W/m2C dan 289 m2 ;pada HE E-1107 174 W/m2C dan 265 m2 ; dan HE E-1102 618 W/m2C dan 574 m2. Nilai perpindahan panas keseluruhan yang telah dioptimasi sesuai dengan fungsi objektif dapat dikatakan HE shell-and-tube mencapai titik optimal.

  16. Asteroid Rendezvous Mission Design Using Multiobjective Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ya-zhong Luo

    2014-01-01

    Full Text Available A new preliminary trajectory design method for asteroid rendezvous mission using multiobjective optimization techniques is proposed. This method can overcome the disadvantages of the widely employed Pork-Chop method. The multiobjective integrated launch window and multi-impulse transfer trajectory design model is formulated, which employes minimum-fuel cost and minimum-time transfer as two objective functions. The multiobjective particle swarm optimization (MOPSO is employed to locate the Pareto solution. The optimization results of two different asteroid mission designs show that the proposed approach can effectively and efficiently demonstrate the relations among the mission characteristic parameters such as launch time, transfer time, propellant cost, and number of maneuvers, which will provide very useful reference for practical asteroid mission design. Compared with the PCP method, the proposed approach is demonstrated to be able to provide much more easily used results, obtain better propellant-optimal solutions, and have much better efficiency. The MOPSO shows a very competitive performance with respect to the NSGA-II and the SPEA-II; besides a proposed boundary constraint optimization strategy is testified to be able to improve its performance.

  17. Perceptual Dominant Color Extraction by Multidimensional Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Moncef Gabbouj

    2009-01-01

    Full Text Available Color is the major source of information widely used in image analysis and content-based retrieval. Extracting dominant colors that are prominent in a visual scenery is of utmost importance since the human visual system primarily uses them for perception and similarity judgment. In this paper, we address dominant color extraction as a dynamic clustering problem and use techniques based on Particle Swarm Optimization (PSO for finding optimal (number of dominant colors in a given color space, distance metric and a proper validity index function. The first technique, so-called Multidimensional (MD PSO can seek both positional and dimensional optima. Nevertheless, MD PSO is still susceptible to premature convergence due to lack of divergence. To address this problem we then apply Fractional Global Best Formation (FGBF technique. In order to extract perceptually important colors and to further improve the discrimination factor for a better clustering performance, an efficient color distance metric, which uses a fuzzy model for computing color (dis- similarities over HSV (or HSL color space is proposed. The comparative evaluations against MPEG-7 dominant color descriptor show the superiority of the proposed technique.

  18. Improved SpikeProp for Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Falah Y. H. Ahmed

    2013-01-01

    Full Text Available A spiking neurons network encodes information in the timing of individual spike times. A novel supervised learning rule for SpikeProp is derived to overcome the discontinuities introduced by the spiking thresholding. This algorithm is based on an error-backpropagation learning rule suited for supervised learning of spiking neurons that use exact spike time coding. The SpikeProp is able to demonstrate the spiking neurons that can perform complex nonlinear classification in fast temporal coding. This study proposes enhancements of SpikeProp learning algorithm for supervised training of spiking networks which can deal with complex patterns. The proposed methods include the SpikeProp particle swarm optimization (PSO and angle driven dependency learning rate. These methods are presented to SpikeProp network for multilayer learning enhancement and weights optimization. Input and output patterns are encoded as spike trains of precisely timed spikes, and the network learns to transform the input trains into target output trains. With these enhancements, our proposed methods outperformed other conventional neural network architectures.

  19. Multiple objective particle swarm optimization technique for economic load dispatch

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bo; CAO Yi-jia

    2005-01-01

    A multi-objective particle swarm optimization (MOPSO) approach for multi-objective economic load dispatch problem in power system is presented in this paper. The economic load dispatch problem is a non-linear constrained multi-objective optimization problem. The proposed MOPSO approach handles the problem as a multi-objective problem with competing and non-commensurable fuel cost, emission and system loss objectives and has a diversity-preserving mechanism using an external memory (call "repository") and a geographically-based approach to find widely different Pareto-optimal solutions. In addition, fuzzy set theory is employed to extract the best compromise solution. Several optimization runs of the proposed MOPSO approach were carried out on the standard IEEE 30-bus test system. The results revealed the capabilities of the proposed MOPSO approach to generate well-distributed Pareto-optimal non-dominated solutions of multi-objective economic load dispatch. Com parison with Multi-objective Evolutionary Algorithm (MOEA) showed the superiority of the proposed MOPSO approach and confirmed its potential for solving multi-objective economic load dispatch.

  20. A New Particle Swarm Optimization Based Stock Market Prediction Technique

    Directory of Open Access Journals (Sweden)

    Essam El. Seidy

    2016-04-01

    Full Text Available Over the last years, the average person's interest in the stock market has grown dramatically. This demand has doubled with the advancement of technology that has opened in the International stock market, so that nowadays anybody can own stocks, and use many types of software to perform the aspired profit with minimum risk. Consequently, the analysis and prediction of future values and trends of the financial markets have got more attention, and due to large applications in different business transactions, stock market prediction has become a critical topic of research. In this paper, our earlier presented particle swarm optimization with center of mass technique (PSOCoM is applied to the task of training an adaptive linear combiner to form a new stock market prediction model. This prediction model is used with some common indicators to maximize the return and minimize the risk for the stock market. The experimental results show that the proposed technique is superior than the other PSO based models according to the prediction accuracy.

  1. APPLYING PARTICLE SWARM OPTIMIZATION TO JOB-SHOP SCHEDULING PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Xia Weijun; Wu Zhiming; Zhang Wei; Yang Genke

    2004-01-01

    A new heuristic algorithm is proposed for the problem of finding the minimum makespan in the job-shop scheduling problem. The new algorithm is based on the principles of particle swarm optimization (PSO). PSO employs a collaborative population-based search, which is inspired by the social behavior of bird flocking. It combines local search (by self experience) and global search (by neighboring experience), possessing high search efficiency. Simulated annealing (SA) employs certain probability to avoid becoming trapped in a local optimum and the search process can be controlled by the cooling schedule. By reasonably combining these two different search algorithms, a general, fast and easily implemented hybrid optimization algorithm, named HPSO, is developed. The effectiveness and efficiency of the proposed PSO-based algorithm are demonstrated by applying it to some benchmark job-shop scheduling problems and comparing results with other algorithms in literature. Comparing results indicate that PSO-based algorithm is a viable and effective approach for the job-shop scheduling problem.

  2. Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

    Directory of Open Access Journals (Sweden)

    Naser Moosavian

    2015-06-01

    Full Text Available The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for such an uncertain problem. In the present paper, the Content Model is minimized using the particle-swarm optimization (PSO technique. This is a population-based iterative evolutionary algorithm, applied for non-linear and non-convex optimization problems. The penalty-function method is used to convert the constrained problem into an unconstrained one. Both the PSO and GGA algorithms are applied to analyse two sample examples. It is revealed that while GGA demonstrates better performance in convex problems, PSO is more successful in non-convex networks. By increasing the penalty-function coefficient the accuracy of the solution may be improved considerably.

  3. A Novel Adaptive Elite-Based Particle Swarm Optimization Applied to VAR Optimization in Electric Power Systems

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-01-01

    Full Text Available Particle swarm optimization (PSO has been successfully applied to solve many practical engineering problems. However, more efficient strategies are needed to coordinate global and local searches in the solution space when the studied problem is extremely nonlinear and highly dimensional. This work proposes a novel adaptive elite-based PSO approach. The adaptive elite strategies involve the following two tasks: (1 appending the mean search to the original approach and (2 pruning/cloning particles. The mean search, leading to stable convergence, helps the iterative process coordinate between the global and local searches. The mean of the particles and standard deviation of the distances between pairs of particles are utilized to prune distant particles. The best particle is cloned and it replaces the pruned distant particles in the elite strategy. To evaluate the performance and generality of the proposed method, four benchmark functions were tested by traditional PSO, chaotic PSO, differential evolution, and genetic algorithm. Finally, a realistic loss minimization problem in an electric power system is studied to show the robustness of the proposed method.

  4. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhen-Lun Yang

    2015-01-01

    Full Text Available An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  5. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    Science.gov (United States)

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  6. A Hybrid Chaos-Particle Swarm Optimization Algorithm for the Vehicle Routing Problem with Time Window

    Directory of Open Access Journals (Sweden)

    Qi Hu

    2013-04-01

    Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.

  7. Intelligent particle swarm optimized fuzzy PID controller for AVR system

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, V. [Department of Electrical Engineering, Asansol Engineering College, Asansol, West Bengal (India); Ghoshal, S.P. [Department of Electrical Engineering, National Institute of Technology, Durgapur, West Bengal (India)

    2007-10-15

    In process plants like thermal power plants, biomedical instrumentation the popular use of proportional-integral-derivative (PID) controllers can be noted. Proper tuning of such controllers is obviously a prime priority as any other alternative situation will require a high degree of industrial expertise. So in order to get the best results of PID controllers the optimal tuning of PID gains is required. This paper, thus, deals with the determination of off-line, nominal, optimal PID gains of a PID controller of an automatic voltage regulator (AVR) for nominal system parameters and step reference voltage input. Craziness based particle swarm optimization (CRPSO) and binary coded genetic algorithm (GA) are the two props used to get the optimal PID gains. CRPSO proves to be more robust than GA in performing optimal transient performance even under various nominal operating conditions. Computational time required by CRPSO is lesser than that of GA. Factors that have influenced the enhancement of global searching ability of PSO are the incorporation of systematic and intelligent velocity, position updating procedure and introduction of craziness. This modified from of PSO is termed as CRPSO. For on-line off-nominal system parameters Sugeno fuzzy logic (SFL) is applied to get on-line terminal voltage response. The work of SFL is to extrapolate intelligently and linearly, the nominal optimal gains in order to determine off-nominal optimal gains. The on-line computational burden of SFL is noticeably low. Consequently, on-line optimized transient response of incremental change in terminal voltage is obtained. (author)

  8. Surface Navigation Using Optimized Waypoints and Particle Swarm Optimization

    Science.gov (United States)

    Birge, Brian

    2013-01-01

    The design priority for manned space exploration missions is almost always placed on human safety. Proposed manned surface exploration tasks (lunar, asteroid sample returns, Mars) have the possibility of astronauts traveling several kilometers away from a home base. Deviations from preplanned paths are expected while exploring. In a time-critical emergency situation, there is a need to develop an optimal home base return path. The return path may or may not be similar to the outbound path, and what defines optimal may change with, and even within, each mission. A novel path planning algorithm and prototype program was developed using biologically inspired particle swarm optimization (PSO) that generates an optimal path of traversal while avoiding obstacles. Applications include emergency path planning on lunar, Martian, and/or asteroid surfaces, generating multiple scenarios for outbound missions, Earth-based search and rescue, as well as human manual traversal and/or path integration into robotic control systems. The strategy allows for a changing environment, and can be re-tasked at will and run in real-time situations. Given a random extraterrestrial planetary or small body surface position, the goal was to find the fastest (or shortest) path to an arbitrary position such as a safe zone or geographic objective, subject to possibly varying constraints. The problem requires a workable solution 100% of the time, though it does not require the absolute theoretical optimum. Obstacles should be avoided, but if they cannot be, then the algorithm needs to be smart enough to recognize this and deal with it. With some modifications, it works with non-stationary error topologies as well.

  9. Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization

    CERN Document Server

    Zhang, Jianlei; Chu, Tianguang; Perc, Matjaz; 10.1371/journal.pone.0021787

    2011-01-01

    We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available stra...

  10. Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems.

    Science.gov (United States)

    Yu, Xiang; Zhang, Xueqing

    2017-01-01

    Comprehensive learning particle swarm optimization (CLPSO) is a powerful state-of-the-art single-objective metaheuristic. Extending from CLPSO, this paper proposes multiswarm CLPSO (MSCLPSO) for multiobjective optimization. MSCLPSO involves multiple swarms, with each swarm associated with a separate original objective. Each particle's personal best position is determined just according to the corresponding single objective. Elitists are stored externally. MSCLPSO differs from existing multiobjective particle swarm optimizers in three aspects. First, each swarm focuses on optimizing the associated objective using CLPSO, without learning from the elitists or any other swarm. Second, mutation is applied to the elitists and the mutation strategy appropriately exploits the personal best positions and elitists. Third, a modified differential evolution (DE) strategy is applied to some extreme and least crowded elitists. The DE strategy updates an elitist based on the differences of the elitists. The personal best positions carry useful information about the Pareto set, and the mutation and DE strategies help MSCLPSO discover the true Pareto front. Experiments conducted on various benchmark problems demonstrate that MSCLPSO can find nondominated solutions distributed reasonably over the true Pareto front in a single run.

  11. Particle swarm optimization using multi-information characteristics of all personal-best information.

    Science.gov (United States)

    Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng

    2016-01-01

    Convergence stagnation is the chief difficulty to solve hard optimization problems for most particle swarm optimization variants. To address this issue, a novel particle swarm optimization using multi-information characteristics of all personal-best information is developed in our research. In the modified algorithm, two positions are defined by personal-best positions and an improved cognition term with three positions of all personal-best information is used in velocity update equation to enhance the search capability. This strategy could make particles fly to a better direction by discovering useful information from all the personal-best positions. The validity of the proposed algorithm is assessed on twenty benchmark problems including unimodal, multimodal, rotated and shifted functions, and the results are compared with that obtained by some published variants of particle swarm optimization in the literature. Computational results demonstrate that the proposed algorithm finds several global optimum and high-quality solutions in most case with a fast convergence speed.

  12. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    Science.gov (United States)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  13. Purely hydrodynamic origin for swarming of swimming particles

    Science.gov (United States)

    Oyama, Norihiro; Molina, John Jairo; Yamamoto, Ryoichi

    2016-04-01

    Three-dimensional simulations with fully resolved hydrodynamics are performed to study the collective motion of model swimmers in bulk and confinement. Calculating the dynamic structure factor, we clarified that the swarming in bulk systems can be understood as a pseudoacoustic mode. Under confinement between flat parallel walls, this pseudoacoustic mode leads to a traveling wavelike motion. This swarming behavior is due purely to the hydrodynamic interactions between the swimmers and depends strongly on the type and strength of swimming (i.e., pusher or puller).

  14. Multiswarm comprehensive learning particle swarm optimization for solving multiobjective optimization problems

    Science.gov (United States)

    Yu, Xiang; Zhang, Xueqing

    2017-01-01

    Comprehensive learning particle swarm optimization (CLPSO) is a powerful state-of-the-art single-objective metaheuristic. Extending from CLPSO, this paper proposes multiswarm CLPSO (MSCLPSO) for multiobjective optimization. MSCLPSO involves multiple swarms, with each swarm associated with a separate original objective. Each particle’s personal best position is determined just according to the corresponding single objective. Elitists are stored externally. MSCLPSO differs from existing multiobjective particle swarm optimizers in three aspects. First, each swarm focuses on optimizing the associated objective using CLPSO, without learning from the elitists or any other swarm. Second, mutation is applied to the elitists and the mutation strategy appropriately exploits the personal best positions and elitists. Third, a modified differential evolution (DE) strategy is applied to some extreme and least crowded elitists. The DE strategy updates an elitist based on the differences of the elitists. The personal best positions carry useful information about the Pareto set, and the mutation and DE strategies help MSCLPSO discover the true Pareto front. Experiments conducted on various benchmark problems demonstrate that MSCLPSO can find nondominated solutions distributed reasonably over the true Pareto front in a single run. PMID:28192508

  15. Application of particle swarm optimization algorithm in the heating system planning problem.

    Science.gov (United States)

    Ma, Rong-Jiang; Yu, Nan-Yang; Hu, Jun-Yi

    2013-01-01

    Based on the life cycle cost (LCC) approach, this paper presents an integral mathematical model and particle swarm optimization (PSO) algorithm for the heating system planning (HSP) problem. The proposed mathematical model minimizes the cost of heating system as the objective for a given life cycle time. For the particularity of HSP problem, the general particle swarm optimization algorithm was improved. An actual case study was calculated to check its feasibility in practical use. The results show that the improved particle swarm optimization (IPSO) algorithm can more preferably solve the HSP problem than PSO algorithm. Moreover, the results also present the potential to provide useful information when making decisions in the practical planning process. Therefore, it is believed that if this approach is applied correctly and in combination with other elements, it can become a powerful and effective optimization tool for HSP problem.

  16. Binary classification posed as a quadratically constrained quadratic programming and solved using particle swarm optimization

    Indian Academy of Sciences (India)

    DEEPAK KUMAR; A G RAMAKRISHNAN

    2016-03-01

    Particle swarm optimization (PSO) is used in several combinatorial optimization problems. In this work, particle swarms are used to solve quadratic programming problems with quadratic constraints. The central idea is to use PSO to move in the direction towards optimal solution rather than searching the entire feasibleregion. Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or classification boundary for a data set. Our results on the Iris, Pima, Wine, Thyroid, Balance, Bupa, Haberman, and TAE datasets show that the proposed method works better than a neural network and the performance is close to that of a support vector machine

  17. A Local and Global Search Combined Particle Swarm Optimization Algorithm and Its Convergence Analysis

    Directory of Open Access Journals (Sweden)

    Weitian Lin

    2014-01-01

    Full Text Available Particle swarm optimization algorithm (PSOA is an advantage optimization tool. However, it has a tendency to get stuck in a near optimal solution especially for middle and large size problems and it is difficult to improve solution accuracy by fine-tuning parameters. According to the insufficiency, this paper researches the local and global search combine particle swarm algorithm (LGSCPSOA, and its convergence and obtains its convergence qualification. At the same time, it is tested with a set of 8 benchmark continuous functions and compared their optimization results with original particle swarm algorithm (OPSOA. Experimental results indicate that the LGSCPSOA improves the search performance especially on the middle and large size benchmark functions significantly.

  18. Path planning for UAV based on quantum-behaved particle swarm optimization

    Science.gov (United States)

    Fu, Yangguang; Ding, Mingyue; Zhou, Chengping; Cai, Chao; Sun, Yangguang

    2009-10-01

    Based on quantum-behaved particle swarm optimization (QPSO), a novel path planner for unmanned aerial vehicle (UAV) is employed to generate a safe and flyable path. The standard particle swarm optimization (PSO) and quantum-behaved particle swarm optimization (QPSO) are presented and compared through a UAV path planning application. Every particle in swarm represents a potential path in search space. For the purpose of pruning the search space, constraints are incorporated into the pre-specified cost function, which is used to evaluate whether a particle is good or not. As the system iterated, each particle is pulled toward its local attractor, which is located between the personal best position (pbest) and the global best position (gbest) based on the interaction of particles' individual searches and group's public search. For the sake of simplicity, we only consider planning the projection of path on the plane and assume threats are static instead of moving. Simulation results demonstrated the effectiveness and feasibility of the proposed approach.

  19. An Improved Particle Swarm Optimization Algorithm and Its Application in the Community Division

    Directory of Open Access Journals (Sweden)

    Jiang Hao

    2016-01-01

    Full Text Available With the deepening of the research on complex networks, the method of detecting and classifying social network is springing up. In this essay, the basic particle swarm algorithm is improved based on the GN algorithm. Modularity is taken as a measure of community division [1]. In view of the dynamic network community division, scrolling calculation method is put forward. Experiments show that using the improved particle swarm optimization algorithm can improve the accuracy of the community division and can also get higher value of the modularity in the dynamic community

  20. Particle Swarm Social Adaptive Model for Multi-Agent Based Insurgency Warfare Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Potok, Thomas E [ORNL

    2009-12-01

    To better understand insurgent activities and asymmetric warfare, a social adaptive model for modeling multiple insurgent groups attacking multiple military and civilian targets is proposed and investigated. This report presents a pilot study using the particle swarm modeling, a widely used non-linear optimal tool to model the emergence of insurgency campaign. The objective of this research is to apply the particle swarm metaphor as a model of insurgent social adaptation for the dynamically changing environment and to provide insight and understanding of insurgency warfare. Our results show that unified leadership, strategic planning, and effective communication between insurgent groups are not the necessary requirements for insurgents to efficiently attain their objective.

  1. The path planning of UAV based on orthogonal particle swarm optimization

    Science.gov (United States)

    Liu, Xin; Wei, Haiguang; Zhou, Chengping; Li, Shujing

    2013-10-01

    To ensure the attack mission success rate, a trajectory with high survivability and accepted path length and multiple paths with different attack angles must be planned. This paper proposes a novel path planning algorithm based on orthogonal particle swarm optimization, which divides population individual and speed vector into independent orthogonal parts, velocity and individual part update independently, this improvement advances optimization effect of traditional particle swarm optimization in the field of path planning, multiple paths are produced by setting different attacking angles, this method is simulated on electronic chart, the simulation result shows the effect of this method.

  2. Multiagent and Particle Swarm Optimization for Ship Integrated Power System Network Reconfiguration

    Directory of Open Access Journals (Sweden)

    Zheng Wang

    2014-01-01

    Full Text Available Ship integrated power system adopts electric power propulsion. Power network and electric power network are integrated into complicated one. Network reconfiguration of ship integrated power system is a typical nonlinear optimization that is multitarget and multiconstraint. According to the characteristics of ship integrated power system, simplified network model and reconfiguration mathematical model are established. A multiagent and particle swarm optimization is presented to solve network reconfiguration problem. The results of simulation show that multiagent and particle swarm optimization can reconfigure ship integrated power system efficiently.

  3. Parameter Identification of Anaerobic Wastewater Treatment Bioprocesses Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Dorin Sendrescu

    2013-01-01

    Full Text Available This paper deals with the offline parameters identification for a class of wastewater treatment bioprocesses using particle swarm optimization (PSO techniques. Particle swarm optimization is a relatively new heuristic method that has produced promising results for solving complex optimization problems. In this paper one uses some variants of the PSO algorithm for parameter estimation of an anaerobic wastewater treatment process that is a complex biotechnological system. The identification scheme is based on a multimodal numerical optimization problem with high dimension. The performances of the method are analyzed by numerical simulations.

  4. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  5. Adaptive particle swarm optimization for optimal orbital elements of binary stars

    Science.gov (United States)

    Attia, Abdel-Fattah

    2016-12-01

    The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.

  6. Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization.

    Science.gov (United States)

    Zhang, Jianlei; Zhang, Chunyan; Chu, Tianguang; Perc, Matjaž

    2011-01-01

    We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.

  7. Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Jianlei Zhang

    Full Text Available We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.

  8. Steady-State Configuration and Tension Calculations of Marine Cables Under Complex Currents via Separated Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    徐雪松

    2014-01-01

    Under complex currents, the motion governing equations of marine cables are complex and nonlinear, and the calculations of cable configuration and tension become difficult compared with those under the uniform or simple currents. To obtain the numerical results, the usual Newton−Raphson iteration is often adopted, but its stability depends on the initial guessed solution to the governing equations. To improve the stability of numerical calculation, this paper proposed separated the particle swarm optimization, in which the variables are separated into several groups, and the dimension of search space is reduced to facilitate the particle swarm optimization. Via the separated particle swarm optimization, these governing nonlinear equations can be solved successfully with any initial solution, and the process of numerical calculation is very stable. For the calculations of cable configuration and tension of marine cables under complex currents, the proposed separated swarm particle optimization is more effective than the other particle swarm optimizations.

  9. An Analysis of Particle Swarm Optimization with Data Clustering-Technique for Optimization in Data Mining

    Directory of Open Access Journals (Sweden)

    Amreen Khan,

    2010-07-01

    Full Text Available Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. Clustering aims at representing large datasets by a fewer number of prototypes or clusters. It brings simplicity in modeling data and thus plays a central role in the process of knowledge discovery and data mining. Data mining tasks require fast and accurate partitioning of huge datasets, which may come with a variety of attributes or features. This imposes severe computational requirements on the relevant clustering techniques. A family of bio-inspired algorithms, well-known as Swarm Intelligence (SI has recently emerged that meets these requirements and has successfully been applied to a number ofreal world clustering problems. This paper looks into the use ofParticle Swarm Optimization for cluster analysis. The effectiveness of Fuzzy C-means clustering provides enhanced performance and maintains more diversity in the swarm and also allows the particles to be robust to trace the changing environment.

  10. An Adaptive Particle Swarm Optimization Algorithm Based on Directed Weighted Complex Network

    Directory of Open Access Journals (Sweden)

    Ming Li

    2014-01-01

    Full Text Available The disadvantages of particle swarm optimization (PSO algorithm are that it is easy to fall into local optimum in high-dimensional space and has a low convergence rate in the iterative process. To deal with these problems, an adaptive particle swarm optimization algorithm based on directed weighted complex network (DWCNPSO is proposed. Particles can be scattered uniformly over the search space by using the topology of small-world network to initialize the particles position. At the same time, an evolutionary mechanism of the directed dynamic network is employed to make the particles evolve into the scale-free network when the in-degree obeys power-law distribution. In the proposed method, not only the diversity of the algorithm was improved, but also particles’ falling into local optimum was avoided. The simulation results indicate that the proposed algorithm can effectively avoid the premature convergence problem. Compared with other algorithms, the convergence rate is faster.

  11. Portfolio management using value at risk: A comparison between genetic algorithms and particle swarm optimization

    NARCIS (Netherlands)

    V.A.F. Dallagnol (V. A F); J.H. van den Berg (Jan); L. Mous (Lonneke)

    2009-01-01

    textabstractIn this paper, it is shown a comparison of the application of particle swarm optimization and genetic algorithms to portfolio management, in a constrained portfolio optimization problem where no short sales are allowed. The objective function to be minimized is the value at risk calculat

  12. The Study on Food Sensory Evaluation based on Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hairong Wang

    2015-07-01

    Full Text Available In this study, it explores the procedures and methods of the system for establishing food sensory evaluation based on particle swarm optimization algorithm, by means of explaining the interpretation of sensory evaluation and sensory analysis, combined with the applying situation of sensory evaluation in food industry.

  13. A BP Neural Network Based on Improved Particle Swarm Optimization and its Application in Reliability Forecasting

    Directory of Open Access Journals (Sweden)

    Heqing Li

    2013-07-01

    Full Text Available The basic Particle Swarm Optimization (PSO algorithm and its principle have been introduced, the Particle Swarm Optimization has low accelerate speed and can be easy to fall into local extreme value, so the Particle Swarm Optimization based on the improved inertia weight is presented. This method means using nonlinear decreasing weight factor to change the fundamental ways of PSO. To allow full play to the approximation capability of the function of BP neural network and overcome the main shortcomings of its liability to fall into local extreme value and the study proposed a concept of applying improved PSO algorithm and BP network jointly to optimize the original weight and threshold value of network and incorporating the improved PSO algorithm into BP network to establish a improved PSO-BP network system. This method improves convergence speed and the ability to search optimal value. We apply the improved particle swarm algorithm to reliability prediction. Compared with the traditional BP method, this kind of algorithm can minimize errors and improve convergence speed at the same time.

  14. Agent based Particle Swarm Optimization for Load Frequency Control of Distribution Grid

    DEFF Research Database (Denmark)

    Cha, Seung-Tae; Saleem, Arshad; Wu, Qiuwei;

    2012-01-01

    This paper presents a Particle Swarm Optimization (PSO) based on multi-agent controller. Real-time digital simulator (RTDS) is used for modelling the power system, while a PSO based multi-agent LFC algorithm is developed in JAVA for communicating with resource agents and determines the scenario t...

  15. Design of Wire Antennas by Using an Evolved Particle Swarm Optimization Algorithm

    NARCIS (Netherlands)

    Lepelaars, E.S.A.M.; Zwamborn, A.P.M.; Rogovic, A.; Marasini, C.; Monorchio, A.

    2007-01-01

    A Particle Swarm Optimization (PSO) algorithm has been used in conjunction with a full-wave numerical code based on the Method of Moments (MoM) to design and optimize wire antennas. The PSO is a robust stochastic evolutionary numerical technique that is very effective in optimizing multidimensional

  16. A new support vector machine optimized by improved particle swarm optimization and its application

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; YANG Shang-dong; QI Jian-xun

    2006-01-01

    A new support vectormachine (SVM) optimized by an improved particle swarm optimization (PSO)combined with simulated annealing algorithm (SA) was proposed. By incorporating with the simulated annealing method, the global searching capacity of the particle swarm optimization(SAPSO) was enchanced, and the searching capacity of the particle swarm optimization was studied. Then, the improved particle swarm optimization algorithm was used to optimize the parameters of SVM (c, σ and ε). Based on the operational data provided by a regional power grid in north China, the method was used in the actual short term load forecasting. The results show that compared to the PSO-SVM and the traditional SVM, the average time of the proposed method in the experimental process reduces by 11.6 s and 31.1 s, and the precision of the proposed method increases by 1.24% and 3.18%, respectively. So, the improved method is better than the PSO-SVM and the traditional SVM.

  17. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review.

    Science.gov (United States)

    Bonyadi, Mohammad Reza; Michalewicz, Zbigniew

    2017-01-01

    This paper reviews recent studies on the Particle Swarm Optimization (PSO) algorithm. The review has been focused on high impact recent articles that have analyzed and/or modified PSO algorithms. This paper also presents some potential areas for future study.

  18. Solubility Prediction of Gases in Polymers based on Chaotic Self-adaptive Particle Swarm Optimization Artificial Neural Networks%基于混沌自适应粒子群人工神经网络的气体在聚合物中的溶解模型

    Institute of Scientific and Technical Information of China (English)

    李孟山; 黄兴元; 柳和生; 柳炳祥; 武燕; 艾凡荣

    2013-01-01

    为提高溶解预测模型的效率和关联度,建立基于混沌理论、自适应粒子群优化(PSO)算法和反向传播(BP)算法的混沌自适应PSO-BP神经网络模型,并对二氧化碳(CO2)在聚苯乙烯(PS)和聚丙烯(PP)中、氮气(N2)在PS中的溶解度进行预测试验.模型选用压力和温度作为输入参数,使用试探法确定隐含层结点个数为8,输出为预测的溶解度.模型融合混沌理论、自适应PSO和BP算法各自的优势,提高了训练速度和预测精度.结果表明,混沌自适应PSO-BP神经网络有很好的预测能力,预测值与实验值相当吻合,通过与传统BP神经网络和PSO-BP神经网络的比较可知,其预测精度和相关性均明显较优,预测平均绝对误差(AAD),标准偏差(SD)和平方相关系数(R2)分别为0.0058,0.0198和0.9914.%Solubility is one of the most important physicochemical properties of polymer compounds,which determines the compatibility of blending system.To enhance the performance of artificial neural networks (ANN) and improve the efficiency and correlation of prediction of gas solubility in polymers,in this work,a novel ANN model based on chaos theory,self-adaptive particle swarm optimization (PSO) algorithm and back propagation (BP) algorithm is proposed,hereafter called CSAPSO-BP ANN.In the CSAPSO-BP ANN,the conventional PSO algorithm is modified by using chaos theory and self-adaptive inertia weight factor to overcome its premature convergence problem.Then the CSAPSO-BP ANN trained by hybrid algorithm which combined the modified PSO and BP algorithm has been employed to investigate carbon dioxide (CO2) solubility in polystyrene (PS),polypropylene (PP) and nitrogen (N2) solubility in PS,respectively.The CSAPSO-BP ANN model which consisted of three layers with one hidden layer,two input nodes including temperature and pressure,8 hidden nodes which obtained by heuristics and one output node that is the solubility of gases in polymers was designed.The model

  19. Efficiency of particle swarm optimization applied on fuzzy logic DC motor speed control

    Directory of Open Access Journals (Sweden)

    Allaoua Boumediene

    2008-01-01

    Full Text Available This paper presents the application of Fuzzy Logic for DC motor speed control using Particle Swarm Optimization (PSO. Firstly, the controller designed according to Fuzzy Logic rules is such that the systems are fundamentally robust. Secondly, the Fuzzy Logic controller (FLC used earlier was optimized with PSO so as to obtain optimal adjustment of the membership functions only. Finally, the FLC is completely optimized by Swarm Intelligence Algorithms. Digital simulation results demonstrate that in comparison with the FLC the designed FLC-PSO speed controller obtains better dynamic behavior and superior performance of the DC motor, as well as perfect speed tracking with no overshoot.

  20. A Lyapunov-Based Extension to Particle Swarm Dynamics for Continuous Function Optimization

    Science.gov (United States)

    Bhattacharya, Sayantani; Konar, Amit; Das, Swagatam; Han, Sang Yong

    2009-01-01

    The paper proposes three alternative extensions to the classical global-best particle swarm optimization dynamics, and compares their relative performance with the standard particle swarm algorithm. The first extension, which readily follows from the well-known Lyapunov's stability theorem, provides a mathematical basis of the particle dynamics with a guaranteed convergence at an optimum. The inclusion of local and global attractors to this dynamics leads to faster convergence speed and better accuracy than the classical one. The second extension augments the velocity adaptation equation by a negative randomly weighted positional term of individual particle, while the third extension considers the negative positional term in place of the inertial term. Computer simulations further reveal that the last two extensions outperform both the classical and the first extension in terms of convergence speed and accuracy. PMID:22303158

  1. A Particle Swarm Optimization Algorithm with Variable Random Functions and Mutation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiao-Jun; YANG Chun-Hua; GUI Wei-Hua; DONG Tian-Xue

    2014-01-01

    The convergence analysis of the standard particle swarm optimization (PSO) has shown that the changing of random functions, personal best and group best has the potential to improve the performance of the PSO. In this paper, a novel strategy with variable random functions and polynomial mutation is introduced into the PSO, which is called particle swarm optimization algorithm with variable random functions and mutation (PSO-RM). Random functions are adjusted with the density of the population so as to manipulate the weight of cognition part and social part. Mutation is executed on both personal best particle and group best particle to explore new areas. Experiment results have demonstrated the effectiveness of the strategy.

  2. FPGA Implementation of Parallel Particle Swarm Optimization Algorithm and Compared with Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    BEN AMEUR Mohamed sadek

    2016-08-01

    Full Text Available In this paper, a digital implementation of Particle Swarm Optimization algorithm (PSO is developed for implementation on Field Programmable Gate Array (FPGA. PSO is a recent intelligent heuristic search method in which the mechanism of algorithm is inspired by the swarming of biological populations. PSO is similar to the Genetic Algorithm (GA. In fact, both of them use a combination of deterministic and probabilistic rules. The experimental results of this algorithm are effective to evaluate the performance of the PSO compared to GA and other PSO algorithm. New digital solutions are available to generate a hardware implementation of PSO Algorithms. Thus, we developed a hardware architecture based on Finite state machine (FSM and implemented into FPGA to solve some dispatch computing problems over other circuits based on swarm intelligence. Moreover, the inherent parallelism of these new hardware solutions with a large computational capacity makes the running time negligible regardless the complexity of the processing.

  3. A closed-loop particle swarm optimizer for multivariable process controller design

    Institute of Scientific and Technical Information of China (English)

    Kai HAN; Jun ZHAO; Zu-hua XU; Ji-xin QIAN

    2008-01-01

    Design of general multivariable process controllers is an attractive and practical alternative to optimizing design by evolutionary algorithms (EAs) since it can be formulated as an optimization problem.A closed-loop particle swarm optimization (CLPSO) algorithm is proposed by mapping PSO elements into the closed-loop system based on control theories.At each time step,a proportional integral (PI) controller is used to calculate an updated inertia weight for each particle in swarms from its last fitness.With this modification,limitations caused by a uniform inertia weight for the whole population are avoided,and the particles have enough diversity.After the effectiveness,efficiency and robustness are tested by benchmark functions,CLPSO is applied to design a multivariable proportional-integral-derivative (PID) controller for a solvent dehydration tower in a chemical plant and has improved its performances.

  4. Research on Demand Prediction of Fresh Food Supply Chain Based on Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    He Wang

    2015-04-01

    Full Text Available Demand prediction of supply chain is an important content and the first premise in supply management of different enterprises and has become one of the difficulties and hot research fields for the researchers related. The paper takes fresh food demand prediction for example and presents a new algorithm for predicting demand of fresh food supply chain. First, the working principle and the root causes of the defects of particle swarm optimization algorithm are analyzed in the study; Second, the study designs a new cloud particle swarm optimization algorithm to guarantee the effectiveness of particles in later searching phase and redesigns its cloud global optimization searching method and crossover operation; Finally, a certain fresh food supply chain is taken for example to illustrate the validity and feasibility of the improved algorithm and the experimental results show that the improved algorithm can improve prediction accuracy and calculation efficiency when used for demand prediction of fresh food supply chain.

  5. Simulation of microcirculatory hemodynamics: estimation of boundary condition using particle swarm optimization.

    Science.gov (United States)

    Pan, Qing; Wang, Ruofan; Reglin, Bettina; Fang, Luping; Pries, Axel R; Ning, Gangmin

    2014-01-01

    Estimation of the boundary condition is a critical problem in simulating hemodynamics in microvascular networks. This paper proposed a boundary estimation strategy based on a particle swarm optimization (PSO) algorithm, which aims to minimize the number of vessels with inverted flow direction in comparison to the experimental observation. The algorithm took boundary values as the particle swarm and updated the position of the particles iteratively to approach the optimization target. The method was tested in a real rat mesenteric network. With random initial boundary values, the method achieved a minimized 9 segments with an inverted flow direction in the network with 546 vessels. Compared with reported literature, the current work has the advantage of a better fit with experimental observations and is more suitable for the boundary estimation problem in pulsatile hemodynamic models due to the experiment-based optimization target selection.

  6. An extended particle swarm optimization algorithm based on coarse-grained and fine-grained criteria and its application

    Institute of Scientific and Technical Information of China (English)

    LI Xing-mei; ZHANG Li-hui; QI Jian-xun; ZHANG Su-fang

    2008-01-01

    In order to study the problem that particle swarm optimization (PSO) algorithm can easily trap into local mechanism when analyzing the high dimensional complex optimization problems, the optimization calculation using the information in the iterative process of more particles was analyzed and the optimal system of particle swarm algorithm was improved. The extended particle swarm optimization algorithm (EPSO) was proposed. The coarse-grained and free-grained criteria that can control the selection were given to ensure the convergence of the algorithm. The two criteria considered the parameter selection mechanism under the situation of random probability. By adopting MATLAB7.1, the extended particle swarm optimization algorithm was demonstrated in the resource leveling of power project scheduling. EPSO was compared with genetic algorithm (GA) and common PSO, the result indicates that the variance of the objective function of resource leveling is decreased by 7.9%, 18.2%, respectively, certifying thee effectiveness and stronger global convergence ability of the EPSO.

  7. A Hybrid Multiobjective Discrete Particle Swarm Optimization Algorithm for a SLA-Aware Service Composition Problem

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2014-01-01

    Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.

  8. Chaotic delocalization of two interacting particles in the classical Harper model

    Science.gov (United States)

    Shepelyansky, Dima L.

    2016-06-01

    We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.

  9. Linear Array Geometry Synthesis with Minimum Side Lobe Level and Null Control Using Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search

    Science.gov (United States)

    Ghosh, Pradipta; Zafar, Hamim

    Linear antenna array design is one of the most important electromagnetic optimization problems of current interest. This paper describes the synthesis method of linear array geometry with minimum side lobe level and null control by the Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search (DMSPSO) which optimizes the spacing between the elements of the linear array to produce a radiation pattern with minimum side lobe level and null placement control. The results of the DMSPSO algorithm have been shown to meet or beat the results obtained using other state-of-the-art metaheuristics like the Genetic Algorithm (GA),General Particle Swarm Optimization (PSO), Memetic Algorithms (MA), and Tabu Search (TS) in a statistically meaningful way. Three design examples are presented that illustrate the use of the DMSPSO algorithm, and the optimization goal in each example is easily achieved.

  10. Estimation of key parameters in adaptive neuron model according to firing patterns based on improved particle swarm optimization algorithm

    Science.gov (United States)

    Yuan, Chunhua; Wang, Jiang; Yi, Guosheng

    2017-03-01

    Estimation of ion channel parameters is crucial to spike initiation of neurons. The biophysical neuron models have numerous ion channel parameters, but only a few of them play key roles in the firing patterns of the models. So we choose three parameters featuring the adaptation in the Ermentrout neuron model to be estimated. However, the traditional particle swarm optimization (PSO) algorithm is still easy to fall into local optimum and has the premature convergence phenomenon in the study of some problems. In this paper, we propose an improved method that uses a concave function and dynamic logistic chaotic mapping mixed to adjust the inertia weights of the fitness value, effectively improve the global convergence ability of the algorithm. The perfect predicting firing trajectories of the rebuilt model using the estimated parameters prove that only estimating a few important ion channel parameters can establish the model well and the proposed algorithm is effective. Estimations using two classic PSO algorithms are also compared to the improved PSO to verify that the algorithm proposed in this paper can avoid local optimum and quickly converge to the optimal value. The results provide important theoretical foundations for building biologically realistic neuron models.

  11. Enhancing the Discrete Particle Swarm Optimization based Workflow Grid Scheduling using Hierarchical Structure

    Directory of Open Access Journals (Sweden)

    Ritu Garg

    2013-05-01

    Full Text Available The problem of scheduling dependent tasks (DAG is an important version of scheduling, to efficiently exploit the computational capabilities of grid systems. The problem of scheduling tasks of a graph onto a set of different machines is an NP Complete problem. As a result, a number of heuristic and meta-heuristic approaches are used over the years due to their ability of providing high quality solutions with reasonable computation time. Discrete Particle Swarm Optimization is one such meta-heuristic used for solving the discrete problem of grid scheduling, but this method converge to sub optimal solutions due to premature convergence. To deal with premature convergence, in this paper we proposed the design and implementation of hierarchical discrete particle swarm optimization (H-DPSO for dependent task scheduling in grid environment. In H-DPSO particles are arranged in dynamic hierarchy where good particles lying above in hierarchy are having larger influence on the swarm. We consider the bi-objective version of problem to minimize makespan and total cost simultaneously as the optimization criteria. The H-DPSO based scheduler was evaluated under different application task graphs. Simulation analysis manifests that H-DPSO based scheduling is highly viable and effective approach for grid computing.

  12. CLUSTERING BASED ADAPTIVE IMAGE COMPRESSION SCHEME USING PARTICLE SWARM OPTIMIZATION TECHNIQUE

    Directory of Open Access Journals (Sweden)

    M.Mohamed Ismail,

    2010-10-01

    Full Text Available This paper presents an image compression scheme with particle swarm optimization technique for clustering. The PSO technique is a powerful general purpose optimization technique that uses the concept of fitness.It provides a mechanism such that individuals in the swarm communicate and exchange information which is similar to the social behaviour of insects & human beings. Because of the mimicking the social sharing of information ,PSO directs particle to search the solution more efficiently.PSO is like a GA in that the population isinitialized with random potential solutions.The adjustment towards the best individual experience (PBEST and the best social experience (GBEST.Is conceptually similar to the cross over operaton of the GA.However it is unlike a GA in that each potential solution , called a particle is flying through the solution space with a velocity.Moreover the particles and the swarm have memory,which does not exist in the populatiom of GA.This optimization technique is used in Image compression and better results have obtained in terms of PSNR, CR and the visual quality of the image when compared to other existing methods.

  13. PARTICLE SWARM OPTIMIZATION BASED ON PYRAMID MODEL FOR SATELLITE MODULE LAYOUT

    Institute of Scientific and Technical Information of China (English)

    Zhang Bao; Teng Hongfei

    2005-01-01

    To improve the global search ability of particle swarm optimization (PSO), a multi-population PSO based on pyramid model (PPSO) is presented. Then, it is applied to solve the layout optimization problems against the background of an international commercial communication satellite (INTELSAT-Ⅲ) module. Three improvements are developed, including multi-population search based on pyramid model, adaptive collision avoidance among particles, and mutation of degraded particles. In the numerical examples of the layout design of this simplified satellite module, the performance of PPSO is compared to global version PSO and local version PSO (ring and Neumann PSO). The results show that PPSO has higher computational accuracy, efficiency and success ratio.

  14. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing.

    Directory of Open Access Journals (Sweden)

    Ahmad Abubaker

    Full Text Available This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO and the Multi-Objective Simulated Annealing (MOSA. Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.

  15. Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing.

    Science.gov (United States)

    Abubaker, Ahmad; Baharum, Adam; Alrefaei, Mahmoud

    2015-01-01

    This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.

  16. An Image Enhancement Method Using the Quantum-Behaved Particle Swarm Optimization with an Adaptive Strategy

    Directory of Open Access Journals (Sweden)

    Xiaoping Su

    2013-01-01

    Full Text Available Image enhancement techniques are very important to image processing, which are used to improve image quality or extract the fine details in degraded images. In this paper, two novel objective functions based on the normalized incomplete Beta transform function are proposed to evaluate the effectiveness of grayscale image enhancement and color image enhancement, respectively. Using these objective functions, the parameters of transform functions are estimated by the quantum-behaved particle swarm optimization (QPSO. We also propose an improved QPSO with an adaptive parameter control strategy. The QPSO and the AQPSO algorithms, along with genetic algorithm (GA and particle swarm optimization (PSO, are tested on several benchmark grayscale and color images. The results show that the QPSO and AQPSO perform better than GA and PSO for the enhancement of these images, and the AQPSO has some advantages over QPSO due to its adaptive parameter control strategy.

  17. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  18. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization

    Directory of Open Access Journals (Sweden)

    Jianwen Guo

    2016-01-01

    Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.

  19. Reliability Allocation of Underwater Experiment System Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Lu Xiong

    2013-06-01

    Full Text Available The problem of system reliability allocation is often solved by direct search method. The shortage, which affects the application of this method, is the large calculation amount of complex system architecture. Particle Swarm Optimization (PSO is a popular and bionic algorithm based on the social behavior associated with bird flocking for optimization problems. The particle swarm optimization, which attracted the interest of researchers. In this paper, a kind of PSO algorithm is proposed to solve underwater experimental system reliability problems. In addition, the reliability of the system model is established as well, the model is numerically simulated by PSO algorithm and examples are provided. The results show that compared to other algorithms, PSO has a better adaptability and can solve the optimal solution more stably without the precocious weakness, which is more suitable for reliability optimization of a system underwater with a more complex structure.

  20. Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.

    Science.gov (United States)

    Elhossini, Ahmed; Areibi, Shawki; Dony, Robert

    2010-01-01

    This paper proposes an efficient particle swarm optimization (PSO) technique that can handle multi-objective optimization problems. It is based on the strength Pareto approach originally used in evolutionary algorithms (EA). The proposed modified particle swarm algorithm is used to build three hybrid EA-PSO algorithms to solve different multi-objective optimization problems. This algorithm and its hybrid forms are tested using seven benchmarks from the literature and the results are compared to the strength Pareto evolutionary algorithm (SPEA2) and a competitive multi-objective PSO using several metrics. The proposed algorithm shows a slower convergence, compared to the other algorithms, but requires less CPU time. Combining PSO and evolutionary algorithms leads to superior hybrid algorithms that outperform SPEA2, the competitive multi-objective PSO (MO-PSO), and the proposed strength Pareto PSO based on different metrics.

  1. Localization of WSN using Distributed Particle Swarm Optimization algorithm with precise references

    Science.gov (United States)

    Janapati, Ravi Chander; Balaswamy, Ch.; Soundararajan, K.

    2016-08-01

    Localization is the key research area in Wireless Sensor Networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao Bound (CRB). This censoring scheme can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper Distributed localization algorithm PSO with CRB is proposed. Proposed method shows better results in terms of position accuracy, latency and complexity.

  2. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm.

    Science.gov (United States)

    Han, Gaining; Fu, Weiping; Wang, Wen

    2016-01-01

    In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO) algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  3. The Study of Intelligent Vehicle Navigation Path Based on Behavior Coordination of Particle Swarm

    Directory of Open Access Journals (Sweden)

    Gaining Han

    2016-01-01

    Full Text Available In the behavior dynamics model, behavior competition leads to the shock problem of the intelligent vehicle navigation path, because of the simultaneous occurrence of the time-variant target behavior and obstacle avoidance behavior. Considering the safety and real-time of intelligent vehicle, the particle swarm optimization (PSO algorithm is proposed to solve these problems for the optimization of weight coefficients of the heading angle and the path velocity. Firstly, according to the behavior dynamics model, the fitness function is defined concerning the intelligent vehicle driving characteristics, the distance between intelligent vehicle and obstacle, and distance of intelligent vehicle and target. Secondly, behavior coordination parameters that minimize the fitness function are obtained by particle swarm optimization algorithms. Finally, the simulation results show that the optimization method and its fitness function can improve the perturbations of the vehicle planning path and real-time and reliability.

  4. DAILY SCHEDULING OF SMALL HYDRO POWER PLANTS DISPATCH WITH MODIFIED PARTICLES SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Sinvaldo Rodrigues Moreno

    2015-04-01

    Full Text Available This paper presents a new approach for short-term hydro power scheduling of reservoirs using an algorithm-based Particle Swarm Optimization (PSO. PSO is a population-based algorithm designed to find good solutions to optimization problems, its characteristics have encouraged its adoption to tackle a variety of problems in different fields. In this paper the authors consider an optimization problem related to a daily scheduling of small hydro power dispatch. The goal is construct a feasible solution that maximize the cascade electricity production, following the environmental constraints and water balance. The paper proposes an improved Particle Swarm Optimization (PSO algorithm, which takes advantage of simplicity and facility of implementation. The algorithm was successfully applied to the optimization of the daily schedule strategies of small hydro power plants, considering maximum water utilization and all constraints related to simultaneous water uses. Extensive computational tests and comparisons with other heuristics methods showed the effectiveness of the proposed approach.

  5. Application of Particle Swarm Optimization to Formative E-Assessment in Project Management

    Directory of Open Access Journals (Sweden)

    Maria-Iuliana DASCALU

    2011-01-01

    Full Text Available The current paper describes the application of Particle Swarm Optimization algorithm to the formative e-assessment problem in project management. The proposed approach resolves the issue of personalization, by taking into account, when selecting the item tests in an e-assessment, the following elements: the ability level of the user, the targeted difficulty of the test and the learning objectives, represented by project management concepts which have to be checked. The e-assessment tool in which the Particle Swarm Optimization algorithm is integrated is also presented. Experimental results and comparison with other algorithms used in item tests selection prove the suitability of the proposed approach to the formative e-assessment domain. The study is presented in the framework of other evolutionary and genetic algorithms applied in e-education.

  6. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  7. Optimal risky bidding strategy for a generating company by self-organising hierarchical particle swarm optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Boonchuay, Chanwit [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology (Thailand); Ongsakul, Weerakorn, E-mail: ongsakul@ait.asi [Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology (Thailand)

    2011-02-15

    In this paper, an optimal risky bidding strategy for a generating company (GenCo) by self-organising hierarchical particle swarm optimisation with time-varying acceleration coefficients (SPSO-TVAC) is proposed. A significant risk index based on mean-standard deviation ratio (MSR) is maximised to provide the optimal bid prices and quantities. The Monte Carlo (MC) method is employed to simulate rivals' behaviour in competitive environment. Non-convex operating cost functions of thermal generating units and minimum up/down time constraints are taken into account. The proposed bidding strategy is implemented in a multi-hourly trading in a uniform price spot market and compared to other particle swarm optimisation (PSO). Test results indicate that the proposed SPSO-TVAC approach can provide a higher MSR than the other PSO methods. It is potentially applicable to risk management of profit variation of GenCo in spot market.

  8. Power System Stabilizer Design Based on a Particle Swarm Optimization Multiobjective Function Implemented Under Graphical Interface

    Directory of Open Access Journals (Sweden)

    Ghouraf Djamel Eddine

    2016-05-01

    Full Text Available Power system stability considered a necessary condition for normal functioning of an electrical network. The role of regulation and control systems is to ensure that stability by determining the essential elements that influence it. This paper proposes a Particle Swarm Optimization (PSO based multiobjective function to tuning optimal parameters of Power System Stabilizer (PSS; this later is used as auxiliary to generator excitation system in order to damp electro mechanicals oscillations of the rotor and consequently improve Power system stability. The computer simulation results obtained by developed graphical user interface (GUI have proved the efficiency of PSS optimized by a Particle Swarm Optimization, in comparison with a conventional PSS, showing stable   system   responses   almost   insensitive   to   large parameter variations.Our present study was performed using a GUI realized under MATLAB in our work.

  9. Application of support vector machine and particle swarm optimization in micro near infrared spectrometer

    Science.gov (United States)

    Xiong, Yuhong; Liu, Yunxiang; Shu, Minglei

    2016-10-01

    In the process of actual measurement and analysis of micro near infrared spectrometer, genetic algorithm is used to select the wavelengths and then partial least square method is used for modeling and analyzing. Because genetic algorithm has the disadvantages of slow convergence and difficult parameter setting, and partial least square method in dealing with nonlinear data is far from being satisfactory, the practical application effect of partial least square method based on genetic algorithm is severely affected negatively. The paper introduces the fundamental principles of particle swarm optimization and support vector machine, and proposes a support vector machine method based on particle swarm optimization. The method can overcome the disadvantage of partial least squares method based on genetic algorithm to a certain extent. Finally, the method is tested by an example, and the results show that the method is effective.

  10. Quantum-behaved particle swarm optimization with collaborative attractors for nonlinear numerical problems

    Science.gov (United States)

    Liu, Tianyu; Jiao, Licheng; Ma, Wenping; Shang, Ronghua

    2017-03-01

    In this paper, an improved quantum-behaved particle swarm optimization (CL-QPSO), which adopts a new collaborative learning strategy to generate local attractors for particles, is proposed to solve nonlinear numerical problems. Local attractors, which directly determine the convergence behavior of particles, play an important role in quantum-behaved particle swarm optimization (QPSO). In order to get a promising and efficient local attractor for each particle, a collaborative learning strategy is introduced to generate local attractors in the proposed algorithm. Collaborative learning strategy consists of two operators, namely orthogonal operator and comparison operator. For each particle, orthogonal operator is used to discover the useful information that lies in its personal and global best positions, while comparison operator is used to enhance the particle's ability of jumping out of local optima. By using a probability parameter, the two operators cooperate with each other to generate local attractors for particles. A comprehensive comparison of CL-QPSO with some state-of-the-art evolutionary algorithms on nonlinear numeric optimization functions demonstrates the effectiveness of the proposed algorithm.

  11. Design of a Fractional Order PID Controller Using Particle Swarm Optimization Technique

    CERN Document Server

    Maiti, Deepyaman; Konar, Amit

    2008-01-01

    Particle Swarm Optimization technique offers optimal or suboptimal solution to multidimensional rough objective functions. In this paper, this optimization technique is used for designing fractional order PID controllers that give better performance than their integer order counterparts. Controller synthesis is based on required peak overshoot and rise time specifications. The characteristic equation is minimized to obtain an optimum set of controller parameters. Results show that this design method can effectively tune the parameters of the fractional order controller.

  12. Particle Swarm Optimization/Greedy-Search Algorithm for Helicopter Mission Assignment in Disaster Relief

    OpenAIRE

    Andreeva-Mori, Adriana; KOBAYASHI, Keiji; Shindo, Masato; アンドレエバ森, アドリアナ; 小林, 啓二; 真道, 雅人

    2015-01-01

    In the immediate aftermath of a large-scale disaster, optimal helicopter rescue mission assignment is critical to saving many lives. However, the current practice in the field is mostly human centered. The Japan Aerospace Exploration Agency has been developing a decision support system for aircraft operation in order to promptly plan and execute rescue missions. The current research focuses on evacuation missions in particular and investigates the potential of particle swarm optimization with...

  13. Forecasting Electrical Energy Consumption of Equipment Maintenance Using Neural Network and Particle Swarm Optimization

    OpenAIRE

    Xunlin Jiang; Haifeng Ling; Jun Yan; Bo Li; Zhao Li

    2013-01-01

    Accurate forecasting of electrical energy consumption of equipment maintenance plays an important role in maintenance decision making and helps greatly in sustainable energy use. The paper presents an approach for forecasting electrical energy consumption of equipment maintenance based on artificial neural network (ANN) and particle swarm optimization (PSO). A multilayer forward ANN is used for modeling relationships between the input variables and the expected electrical energy consumption, ...

  14. Stabilizing Gain Selection of Networked Variable Gain Controller to Maximize Robustness Using Particle Swarm Optimization

    CERN Document Server

    Pan, Indranil; Ghosh, Soumyajit; Gupta, Amitava; 10.1109/PACC.2011.5978958

    2012-01-01

    Networked Control Systems (NCSs) are often associated with problems like random data losses which might lead to system instability. This paper proposes a method based on the use of variable controller gains to achieve maximum parametric robustness of the plant controlled over a network. Stability using variable controller gains under data loss conditions is analyzed using a suitable Linear Matrix Inequality (LMI) formulation. Also, a Particle Swarm Optimization (PSO) based technique is used to maximize parametric robustness of the plant.

  15. Fuzzy Adaptive Particle Swarm Optimization for Power Loss Minimisation in Distribution Systems Using Optimal Load Response

    DEFF Research Database (Denmark)

    Hu, Weihao; Chen, Zhe; Bak-Jensen, Birgitte;

    2014-01-01

    power loss minimization in distribution systems. In this paper, a new method to achieve power loss minimization in distribution systems by using a price signal to guide the demand side management is proposed. A fuzzy adaptive particle swarm optimization (FAPSO) is used as a tool for the power loss...... minimization study. Simulation results show that the proposed approach is an effective measure to achieve power loss minimization in distribution systems....

  16. A Decomposition Model for HPLC-DAD Data Set and Its Solution by Particle Swarm Optimization

    OpenAIRE

    Lizhi Cui; Zhihao Ling; Josiah Poon; Poon, Simon K.; Junbin Gao; Paul Kwan

    2014-01-01

    This paper proposes a separation method, based on the model of Generalized Reference Curve Measurement and the algorithm of Particle Swarm Optimization (GRCM-PSO), for the High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD) data set. Firstly, initial parameters are generated to construct reference curves for the chromatogram peaks of the compounds based on its physical principle. Then, a General Reference Curve Measurement (GRCM) model is designed to transform these p...

  17. Hybrid Optimization Algorithm of Particle Swarm Optimization and Cuckoo Search for Preventive Maintenance Period Optimization

    OpenAIRE

    Jianwen Guo; Zhenzhong Sun; Hong Tang; Xuejun Jia; Song Wang; Xiaohui Yan; Guoliang Ye; Guohong Wu

    2016-01-01

    All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM) to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO) and cuckoo search (CS) algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test fun...

  18. Field computation in non-linear magnetic media using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. E-mail: amradlya@intouch.com; Abd-El-Hafiz, S.K

    2004-05-01

    This paper presents an automated particle swarm optimization approach using which field computations may be carried out in devices involving non-linear magnetic media. Among the advantages of the proposed approach are its ability to handle complex geometries and its computational efficiency. The proposed approach has been implemented and computations were carried out for an electromagnet subject to different DC excitation conditions. These computations showed good agreement with the results obtained by the finite-element approach.

  19. Democratic Inspired Particle Swarm Optimization for Multi-Robot Exploration Task

    OpenAIRE

    Moslah, Oussama; Hachaïchi, Yassine; Lahbib, Younes

    2016-01-01

    In this paper, we propose a new method for exploring an unknown environment with a team of homogeneous mobile robots. The goal of our approach is to minimize the exploration time. The challenge in multi-robot exploration is how to develop distributed algorithm to govern the colony of robots while choosing its new direction so that they simultaneously explore different regions. In this paper we use the extended version of Particle Swarm Optimization (PSO) to robotic applications, which is refe...

  20. Particle Swarm Optimization Algorithm for Optimizing Assignment of Blood in Blood Banking System

    OpenAIRE

    Olusanya, Micheal O.; Arasomwan, Martins A.; Aderemi O. Adewumi

    2015-01-01

    This paper reports the performance of particle swarm optimization (PSO) for the assignment of blood to meet patients’ blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessi...

  1. A New Hybrid Algorithm for Bankruptcy Prediction Using Switching Particle Swarm Optimization and Support Vector Machines

    OpenAIRE

    2015-01-01

    Bankruptcy prediction has been extensively investigated by data mining techniques since it is a critical issue in the accounting and finance field. In this paper, a new hybrid algorithm combining switching particle swarm optimization (SPSO) and support vector machine (SVM) is proposed to solve the bankruptcy prediction problem. In particular, a recently developed SPSO algorithm is exploited to search the optimal parameter values of radial basis function (RBF) kernel of the SVM. The new algori...

  2. Nuclear Power Plant Construction Scheduling Problem with Time Restrictions: A Particle Swarm Optimization Approach

    Directory of Open Access Journals (Sweden)

    Shang-Kuan Chen

    2016-01-01

    Full Text Available In nuclear power plant construction scheduling, a project is generally defined by its dependent preparation time, the time required for construction, and its reactor installation time. The issues of multiple construction teams and multiple reactor installation teams are considered. In this paper, a hierarchical particle swarm optimization algorithm is proposed to solve the nuclear power plant construction scheduling problem and minimize the occurrence of projects failing to achieve deliverables within applicable due times and deadlines.

  3. Particle Swarm Optimization Recurrent Neural Network Based Z-source Inverter Fed Induction Motor Drive

    OpenAIRE

    R. Selva Santhose Kumar; S.M. Girirajkumar

    2014-01-01

    In this study, the proposal is made for Particle Swarm Optimization (PSO) Recurrent Neural Network (RNN) based Z-Source Inverter Fed Induction Motor Drive. The proposed method is used to enhance the performance of the induction motor while reducing the Total Harmonic Distortion (THD), eliminating the oscillation period of the stator current, torque and speed. Here, the PSO technique uses the induction motor speed and reference speed as the input parameters. From the input parameters, it optim...

  4. Dynamic Optimization Method on Electromechanical Coupling System by Exponential Inertia Weight Particle Swarm Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; WU Jianxin; SUN Yan

    2009-01-01

    Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimization. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments.

  5. Study on Ice Regime Forecast Based on SVR Optimized by Particle Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG; Fu-qiang; RONG; Fei

    2012-01-01

    [Objective] The research aimed to study forecast models for frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River based on SVR optimized by particle swarm optimization algorithm. [Method] Correlation analysis and cause analysis were used to select suitable forecast factor combination of the ice regime. Particle swarm optimization algorithm was used to determine the optimal parameter to construct forecast model. The model was used to forecast frozen and melted dates of the river water in Ningxia-Inner Mongolia section of the Yellow River. [Result] The model had high prediction accuracy and short running time. Average forecast error was 3.51 d, and average running time was 10.464 s. Its forecast effect was better than that of the support vector regression optimized by genetic algorithm (GA) and back propagation type neural network (BPNN). It could accurately forecast frozen and melted dates of the river water. [Conclusion] SVR based on particle swarm optimization algorithm could be used for ice regime forecast.

  6. Adaptive feature selection using v-shaped binary particle swarm optimization

    Science.gov (United States)

    Dong, Hongbin; Zhou, Xiurong

    2017-01-01

    Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850

  7. Vector bundle constraint for particle swarm optimization and its application to active contour modeling

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Active contour modeling (ACM) has been shown to be a powerful method in object boundary extraction. In this paper,a new ACM based on vector bundle constraint for particle swarm optimization (VBCPSO-ACM) is proposed. Different from the traditional.particle swarm optimization (PSO), in the process of velocity update, a vector bundle is predefined for each particle and velocity update of the particle is restricted to its bundle. Applying this idea to ACM, control points on the contour are treated as particles in PSO and the evolution of the contour is driven by the particles. Meanwhile, global searching is shifted to local searching in ACM by decreasing the number of neighbors and inertia. In addition, the addition and deletion of particles on the active contour make this new model possible for representing the real boundaries more precisely. The proposed VBCPSO-ACM can avoid self-intersection during contour evolving and also extract inhomogeneous boundaries. The simulation results proved its great performance in performing contour extraction.

  8. Chaotic Dynamics of Test Particle in the Gravitational Field with Magnetic Dipoles

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-Hua; WANG Yong-Jiu

    2003-01-01

    We investigate the dynamics of the test particle in the gravitational field with magnetic dipoles in thispaper. At first we study the gravitational potential by numerical simulations. We find, for appropriate parameters, thatthere are two different cases in the potential curve, one of which is the one-well case with a stable critical point, and theother is the three-well case with three stable critical points and two unstable ones. As a consequence, the chaotic motionwill rise. By performing the evolution of the orbits of the test particle in the phase space, we find that the orbits of thetest particle randomly oscillate without any periods, even sensitively depending on the initial conditions and parameters.chaotic motion of the test particle in the field with magnetic dipoles becomes even obvious as the value of the magneticdipoles increases.

  9. Particle swarm optimization with random keys applied to the nuclear reactor reload problem

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Anderson Alvarenga de Moura [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear; Fundacao Educacional de Macae (FUNEMAC), RJ (Brazil). Faculdade Professor Miguel Angelo da Silva Santos; Machado, Marcelo Dornellas; Medeiros, Jose Antonio Carlos Canedo; Schirru, Roberto [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: ameneses@con.ufrj.br; marcelo@lmp.ufrj.br; canedo@lmp.ufrj.br; schirru@lmp.ufrj.br

    2007-07-01

    In 1995, Kennedy and Eberhart presented the Particle Swarm Optimization (PSO), an Artificial Intelligence metaheuristic technique to optimize non-linear continuous functions. The concept of Swarm Intelligence is based on the socials aspects of intelligence, it means, the ability of individuals to learn with their own experience in a group as well as to take advantage of the performance of other individuals. Some PSO models for discrete search spaces have been developed for combinatorial optimization, although none of them presented satisfactory results to optimize a combinatorial problem as the nuclear reactor fuel reloading problem (NRFRP). In this sense, we developed the Particle Swarm Optimization with Random Keys (PSORK) in previous research to solve Combinatorial Problems. Experiences demonstrated that PSORK performed comparable to or better than other techniques. Thus, PSORK metaheuristic is being applied in optimization studies of the NRFRP for Angra 1 Nuclear Power Plant. Results will be compared with Genetic Algorithms and the manual method provided by a specialist. In this experience, the problem is being modeled for an eight-core symmetry and three-dimensional geometry, aiming at the minimization of the Nuclear Enthalpy Power Peaking Factor as well as the maximization of the cycle length. (author)

  10. Chaotic motion of particles in the accelerating and rotating black holes spacetime

    CERN Document Server

    Chen, Songbai; Jing, Jiliang

    2016-01-01

    We have investigated the motion of timelike particles along geodesic in the background of accelerating and rotating black hole spacetime. We confirmed that the chaos exists in the geodesic motion of the particles by Poincar\\'e sections, the power spectrum, the fast Lyapunov exponent indicator and the bifurcation diagram. Moreover, we probe the effects of the acceleration and rotation parameters on the chaotic behavior of a timelike geodesic particle in the black hole spacetime. Our results show that the acceleration brings richer physics for the geodesic motion of particles.

  11. Multi-Robot, Multi-Target Particle Swarm Optimization Search in Noisy Wireless Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2009-05-01

    Multiple small robots (swarms) can work together using Particle Swarm Optimization (PSO) to perform tasks that are difficult or impossible for a single robot to accomplish. The problem considered in this paper is exploration of an unknown environment with the goal of finding a target(s) at an unknown location(s) using multiple small mobile robots. This work demonstrates the use of a distributed PSO algorithm with a novel adaptive RSS weighting factor to guide robots for locating target(s) in high risk environments. The approach was developed and analyzed on multiple robot single and multiple target search. The approach was further enhanced by the multi-robot-multi-target search in noisy environments. The experimental results demonstrated how the availability of radio frequency signal can significantly affect robot search time to reach a target.

  12. OPTIMIZATION OF PLY STACKING SEQUENCE OF COMPOSITE DRIVE SHAFT USING PARTICLE SWARM ALGORITHM

    Directory of Open Access Journals (Sweden)

    CHANNAKESHAVA K. R.

    2011-06-01

    Full Text Available In this paper an attempt has been made to optimize ply stacking sequence of single piece E-Glass/Epoxy and Boron /Epoxy composite drive shafts using Particle swarm algorithm (PSA. PSA is a population based evolutionary stochastic optimization technique which is a resent heuristic search method, where mechanics are inspired by swarming or collaborative behavior of biological population. PSA programme is developed to optimize the ply stacking sequence with an objective of weight minimization by considering design constraints as torque transmission capacity, fundamental natural frequency, lateral vibration and torsional buckling strength having number of laminates, ply thickness and stacking sequence as design variables. The weight savings of the E-Glass/epoxy and Boron /Epoxy shaft from PAS were 51% and 85 % of the steel shaft respectively. The optimum results of PSA obtained are compared with results of genetic algorithm (GA results and found that PSA yields better results than GA.

  13. Particle Swarm Optimization Based Support Vector Regression for Blind Image Restoration

    Institute of Scientific and Technical Information of China (English)

    Ratnakar Dash; Pankaj Kumar Sa; Banshidhar Majhi

    2012-01-01

    This paper presents a swarm intelligence based parameter optimization of the support vector machine (SVM)for blind image restoration.In this work,SVM is used to solve a regression problem.Support vector regression (SVR)has been utilized to obtain a true mapping of images from the observed noisy blurred images.The parameters of SVR are optimized through particle swarm optimization (PSO) technique.The restoration error function has been utilized as the fitness function for PSO.The suggested scheme tries to adapt the SVM parameters depending on the type of blur and noise strength and the experimental results validate its effectiveness.The results show that the parameter optimization of the SVR model gives better performance than conventional SVR model as well as other competent schemes for blind image restoration.

  14. Binary particle swarm optimization algorithm assisted to design of plasmonic nanospheres sensor

    Science.gov (United States)

    Kaboli, Milad; Akhlaghi, Majid; Shahmirzaee, Hossein

    2016-04-01

    In this study, a coherent perfect absorption (CPA)-type sensor based on plasmonic nanoparticles is proposed. It consists of a plasmonic nanospheres array on top of a quartz substrate. The refractive index changes above the sensor surface, which is due to the appearance of gas or the absorption of biomolecules, can be detected by measuring the resulting spectral shifts of the absorption coefficient. Since the CPA efficiency depends strongly on the number of plasmonic nanoparticles and the locations of nanoparticles, binary particle swarm optimization (BPSO) algorithm is used to design an optimized array of the plasmonic nanospheres. This optimized structure should be maximizing the absorption coefficient only in the one frequency. BPSO algorithm, a swarm of birds including a matrix with binary entries responsible for controlling nanospheres in the array, shows the presence with symbol of ('1') and the absence with ('0'). The sensor can be used for sensing both gas and low refractive index materials in an aqueous environment.

  15. Survival probability for chaotic particles in a set of area preserving maps

    Science.gov (United States)

    de Oliveira, Juliano A.; da Costa, Diogo R.; Leonel, Edson D.

    2016-11-01

    We found critical exponents for the dynamics of an ensemble of particles described by a family of Hamiltonian mappings by using the formalism of escape rates. The mappings are described by a canonical pair of variables, say action J and angle θ and the corresponding phase spaces show a large chaotic sea surrounding periodic islands and limited by a set of invariant spanning curves. When a hole is introduced in the dynamical variable action, the histogram for the frequency of escape of particles grows rapidly until reaches a maximum and then decreases towards zero for long enough time. The survival probability of the particles as a function of time is measured and statistical investigations show it is scaling invariant with respect to γ and time for chaotic orbits along the phase space.

  16. NEURAL NETWORK TRAINING WITH PARALLEL PARTICLE SWARM OPTIMIZER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Feed forward neural net works such as multi-layer perceptron,radial basis function neural net-works,have been widely applied to classification,function approxi mation and data mining.Evolu-tionary computation has been explored to train neu-ral net works as a very promising and competitive al-ternative learning method,because it has potentialto produce global mini mum in the weight space.Recently,an emerging evolutionary computationtechnique,Particle Swar m Opti mization(PSO)be-comes a hot topic because of i...

  17. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks.

    Science.gov (United States)

    Yang, Jin; Liu, Fagui; Cao, Jianneng; Wang, Liangming

    2016-07-14

    Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs). However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs), we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO) to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO) is put forward to address this problem. In the GMDPSO, particle's position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  18. The optimal operation of cascade reservoirs based on catfish effect particle swarm optimization algorithm%基于鲶鱼效应粒子群算法的梯级水库群优化调度

    Institute of Scientific and Technical Information of China (English)

    纪昌明; 刘方; 喻杉; 张验科; 赵璧奎

    2011-01-01

    针对梯级水库群优化调度多约束、高维、非线性和难以求解的特点,将鲶鱼效应机制引入到粒子群算法中提出鲶鱼效应粒子群算法.该算法在进化中通过鲶鱼启发器引入鲶鱼粒子,依据鲶鱼效应调整种群的飞行模式,一方面利用鲶鱼粒子的驱赶作用使粒子种群跳出稳定状态激发活力,从而提高种群多样性;另一方面利用鲶鱼的高素质动态调节对进化过程进行有目的指导,进而保持算法的高搜索性能.算例表明,和标准粒子群算法、混沌粒子群算法相比,鲶鱼效应粒子群算法具有更好的全局寻优能力和较快的收敛速度,能有效地应用于梯级水库群优化调度中.%In the light of the characteristics of the optimal operation of cascade reservoirs, such as multi-restriction, multi-dimension, non-linearity and being difficult to slove, the catfish effect mechanism is introduced into the particle swarm optimization, named catfish effect particle swarm optimization. The arithmetic introduces catfish particles through the catfish generator in the evolution and adjusts the flying pattern of population swarm by using the catfish effect. On the one hand, the driven influence of catfish particles is used to force the swarm out of steady-state and inspire its vitality in order to improve the whole diversity; on the other hand, it takes the advantage of the high quality of dynamic adjustment of catfish to guide the optimization and hence keep remaining its high search function. Calculation results show that compared with the standard particle swarm optimization and the chaotic particle swarm optimization, the catfish effect particle swarm optimization has better global searching capability and faster convergence speed, which can be effectively applied to the optimal operation of cascade reservoirs.

  19. Groundwater level forecasting using an artificial neural network trained with particle swarm optimization.

    Science.gov (United States)

    Tapoglou, E.; Trichakis, I. C.; Dokou, Z.; Karatzas, G. P.

    2012-04-01

    The purpose of this study is to examine the use of particle swarm optimization algorithm in order to train a feed-forward multi-layer artificial neural network, which can simulate hydraulic head change at an observation well. Particle swarm optimization is a relatively new evolutionary algorithm, developed by Eberhart and Kennedy (1995), which is used to find optimal solutions to numerical and quantitative problems. Three different variations of particle swarm optimization algorithm are considered, the classic algorithm with the improvement of inertia weight, PSO-TVAC and GLBest-PSO. The best performance among all the algorithms was achieved by GLBest-PSO, where the distance between the overall best solution found and the best solution of each particle plays a major role in updating each particle's velocity. The algorithm is implemented using field data from the region of Agia, Chania, Greece. The particle swarm optimization algorithm shows an improvement of 9.3% and 18% in training and test errors respectively, compared to the errors of the back propagation algorithm. The trained neural network can predict the hydraulic head change at a well, without being able to predict extreme and transitional phenomena. The maximum divergence from the observed values is 0.35m. When the hydraulic head change is converted into hydraulic head, using the observed hydraulic head of the previous day, the deviations of simulated values from the actual hydraulic head appear comparatively smaller, with an average deviation of 0.041m. The trained neural network was also used for midterm prediction. In this case, the hydraulic head of the first day of the simulation is used together with the hydraulic head change derived from the simulation. The values obtained by this process were smaller than the observed, while the maximum difference is approximately 1m. However, this error, is not accumulated during the two hydrological years of simulation, and the error at the end of the simulation

  20. Discrete Particle Swarm Optimization Routing Protocol for Wireless Sensor Networks with Multiple Mobile Sinks

    Directory of Open Access Journals (Sweden)

    Jin Yang

    2016-07-01

    Full Text Available Mobile sinks can achieve load-balancing and energy-consumption balancing across the wireless sensor networks (WSNs. However, the frequent change of the paths between source nodes and the sinks caused by sink mobility introduces significant overhead in terms of energy and packet delays. To enhance network performance of WSNs with mobile sinks (MWSNs, we present an efficient routing strategy, which is formulated as an optimization problem and employs the particle swarm optimization algorithm (PSO to build the optimal routing paths. However, the conventional PSO is insufficient to solve discrete routing optimization problems. Therefore, a novel greedy discrete particle swarm optimization with memory (GMDPSO is put forward to address this problem. In the GMDPSO, particle’s position and velocity of traditional PSO are redefined under discrete MWSNs scenario. Particle updating rule is also reconsidered based on the subnetwork topology of MWSNs. Besides, by improving the greedy forwarding routing, a greedy search strategy is designed to drive particles to find a better position quickly. Furthermore, searching history is memorized to accelerate convergence. Simulation results demonstrate that our new protocol significantly improves the robustness and adapts to rapid topological changes with multiple mobile sinks, while efficiently reducing the communication overhead and the energy consumption.

  1. Quantum Behaved Particle Swarm Optimization with Neighborhood Search for Numerical Optimization

    Directory of Open Access Journals (Sweden)

    Xiao Fu

    2013-01-01

    Full Text Available Quantum-behaved particle swarm optimization (QPSO algorithm is a new PSO variant, which outperforms the original PSO in search ability but has fewer control parameters. However, QPSO as well as PSO still suffers from premature convergence in solving complex optimization problems. The main reason is that new particles in QPSO are generated around the weighted attractors of previous best particles and the global best particle. This may result in attracting too fast. To tackle this problem, this paper proposes a new QPSO algorithm called NQPSO, in which one local and one global neighborhood search strategies are utilized to balance exploitation and exploration. Moreover, a concept of opposition-based learning (OBL is employed for population initialization. Experimental studies are conducted on a set of well-known benchmark functions including multimodal and rotated problems. Computational results show that our approach outperforms some similar QPSO algorithms and five other state-of-the-art PSO variants.

  2. Artificial Fish Swarm Algorithm-Based Particle Filter for Li-Ion Battery Life Prediction

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2014-01-01

    Full Text Available An intelligent online prognostic approach is proposed for predicting the remaining useful life (RUL of lithium-ion (Li-ion batteries based on artificial fish swarm algorithm (AFSA and particle filter (PF, which is an integrated approach combining model-based method with data-driven method. The parameters, used in the empirical model which is based on the capacity fade trends of Li-ion batteries, are identified dependent on the tracking ability of PF. AFSA-PF aims to improve the performance of the basic PF. By driving the prior particles to the domain with high likelihood, AFSA-PF allows global optimization, prevents particle degeneracy, thereby improving particle distribution and increasing prediction accuracy and algorithm convergence. Data provided by NASA are used to verify this approach and compare it with basic PF and regularized PF. AFSA-PF is shown to be more accurate and precise.

  3. Incorporating the Avoidance Behavior to the Standard Particle Swarm Optimization 2011

    Directory of Open Access Journals (Sweden)

    ALTINOZ, O. T.

    2015-05-01

    Full Text Available Inspired from social and cognitive behaviors of animals living as swarms; particle swarm optimization (PSO provides a simple but very powerful tool for researchers who are dealing with collective intelligence. The algorithm depends on modeling the very basic random behavior (i.e. exploration capability of individuals in addition to their tendency to revisit positions of good memories (cognitive behavior and tendency to keep an eye on and follow the majority of swarm members (social behavior. The balance among these three major behaviors is the key of success of the algorithm. On the other hand, there are other social and cognitive phenomena, which might be useful for improvement of the algorithm. In this paper, we particularly investigate avoidance from the bad behavior. We propose modifications about modeling the Standard PSO 2011 formulation, and we test performance of our proposals at each step via benchmark functions, and compare the results of the proposed algorithms with well-known algorithms. Our results show that incorporation of Social Avoidance behavior into SPSO11 improves the performance. It is also shown that in case the Social Avoidance behavior is applied in an adaptive manner at the very first iterations of the algorithm, there might be further improvements.

  4. Memory effects in chaotic advection of inertial particles

    Science.gov (United States)

    Daitche, Anton; Tél, Tamás

    2014-07-01

    A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von Kármán flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather non-trivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, {{t}^{-1/2}} type convergence towards the asymptotic form. We find that the concept of snapshot attractors is useful to understand this slow convergence: an ensemble of particles converges exponentially fast towards a snapshot attractor, which undergoes a slow shift for long times.

  5. Swarm of bees and particles algorithms in the problem of gradual failure reliability assurance

    Directory of Open Access Journals (Sweden)

    M. F. Anop

    2015-01-01

    Full Text Available Probability-statistical framework of reliability theory uses models based on the chance failures analysis. These models are not functional and do not reflect relation of reliability characteristics to the object performance. At the same time, a significant part of the technical systems failures are gradual failures caused by degradation of the internal parameters of the system under the influence of various external factors.The paper shows how to provide the required level of reliability at the design stage using a functional model of a technical object. Paper describes the method for solving this problem under incomplete initial information, when there is no information about the patterns of technological deviations and degradation parameters, and the considered system model is a \\black box" one.To this end, we formulate the problem of optimal parametric synthesis. It lies in the choice of the nominal values of the system parameters to satisfy the requirements for its operation and take into account the unavoidable deviations of the parameters from their design values during operation. As an optimization criterion in this case we propose to use a deterministic geometric criterion \\reliability reserve", which is the minimum distance measured along the coordinate directions from the nominal parameter value to the acceptability region boundary rather than statistical values.The paper presents the results of the application of heuristic swarm intelligence methods to solve the formulated optimization problem. Efficiency of particle swarm algorithms and swarm of bees one compared with undirected random search algorithm in solving a number of test optimal parametric synthesis problems in three areas: reliability, convergence rate and operating time. The study suggests that the use of a swarm of bees method for solving the problem of the technical systems gradual failure reliability ensuring is preferred because of the greater flexibility of the

  6. A cloud theory-based particle swarm optimization for multiple decision maker vehicle routing problems with fuzzy random time windows

    Science.gov (United States)

    Ma, Yanfang; Xu, Jiuping

    2015-06-01

    This article puts forward a cloud theory-based particle swarm optimization (CTPSO) algorithm for solving a variant of the vehicle routing problem, namely a multiple decision maker vehicle routing problem with fuzzy random time windows (MDVRPFRTW). A new mathematical model is developed for the proposed problem in which fuzzy random theory is used to describe the time windows and bi-level programming is applied to describe the relationship between the multiple decision makers. To solve the problem, a cloud theory-based particle swarm optimization (CTPSO) is proposed. More specifically, this approach makes improvements in initialization, inertia weight and particle updates to overcome the shortcomings of the basic particle swarm optimization (PSO). Parameter tests and results analysis are presented to highlight the performance of the optimization method, and comparison of the algorithm with the basic PSO and the genetic algorithm demonstrates its efficiency.

  7. Memory Effects in Chaotic Advection of Inertial Particles

    CERN Document Server

    Daitche, Anton

    2014-01-01

    A systematic investigation of the effect of the history force on particle advection is carried out for both heavy and light particles. General relations are given to identify parameter regions where the history force is expected to be comparable with the Stokes drag. As an illustrative example, a paradigmatic two-dimensional flow, the von K\\'arm\\'an flow is taken. For small (but not extremely small) particles all investigated dynamical properties turn out to heavily depend on the presence of memory when compared to the memoryless case: the history force generates a rather nontrivial dynamics that appears to weaken (but not to suppress) inertial effects, it enhances the overall contribution of viscosity. We explore the parameter space spanned by the particle size and the density ratio, and find a weaker tendency for accumulation in attractors and for caustics formation. The Lyapunov exponent of transients becomes larger with memory. Periodic attractors are found to have a very slow, $t^{-1/2}$ type convergence...

  8. Application of particle swarm optimization blind source separation technology in fault diagnosis of gearbox

    Institute of Scientific and Technical Information of China (English)

    黄晋英; 潘宏侠; 毕世华; 杨喜旺

    2008-01-01

    Blind source separation (BBS) technology was applied to vibration signal processing of gearbox for separating different fault vibration sources and enhancing fault information. An improved BSS algorithm based on particle swarm optimization (PSO) was proposed. It can change the traditional fault-enhancing thought based on de-noising. And it can also solve the practical difficult problem of fault location and low fault diagnosis rate in early stage. It was applied to the vibration signal of gearbox under three working states. The result proves that the BSS greatly enhances fault information and supplies technological method for diagnosis of weak fault.

  9. Image Filtering using All Neighbor Directional Weighted Pixels: Optimization using Particle Swarm Optimization

    CERN Document Server

    Mandal, J K

    2012-01-01

    In this paper a novel approach for de noising images corrupted by random valued impulses has been proposed. Noise suppression is done in two steps. The detection of noisy pixels is done using all neighbor directional weighted pixels (ANDWP) in the 5 x 5 window. The filtering scheme is based on minimum variance of the four directional pixels. In this approach, relatively recent category of stochastic global optimization technique i.e., particle swarm optimization (PSO) has also been used for searching the parameters of detection and filtering operators required for optimal performance. Results obtained shows better de noising and preservation of fine details for highly corrupted images.

  10. Multi-objective two-stage multiprocessor flow shop scheduling - a subgroup particle swarm optimisation approach

    Science.gov (United States)

    Huang, Rong-Hwa; Yang, Chang-Lin; Hsu, Chun-Ting

    2015-12-01

    Flow shop production system - compared to other economically important production systems - is popular in real manufacturing environments. This study focuses on the flow shop with multiprocessor scheduling problem (FSMP), and develops an improved particle swarm optimisation heuristic to solve it. Additionally, this study designs an integer programming model to perform effectiveness and robustness testing on the proposed heuristic. Experimental results demonstrate a 10% to 50% improvement in the effectiveness of the proposed heuristic in small-scale problem tests, and a 10% to 40% improvement in the robustness of the heuristic in large-scale problem tests, indicating extremely satisfactory performance.

  11. Optimization of Determinant Factors of Satellite Electrical Power System with Particle Swarm Optimization (PSO Algorithm

    Directory of Open Access Journals (Sweden)

    Mojtaba Biglarahmadi

    2014-03-01

    Full Text Available Weight and dimension, cost, and performance are determinant factors for design, fabrication, and launch the satellites which are related to the mission type of the satellites. Each satellite includes several subsystems such as Electrical Power Subsystem (EPS, Navigation Subsystem, Thermal Subsystem, etc. The purpose of this paper is to optimize these determinant factors by Particle Swarm Optimization (PSO algorithm, for Electrical Power Subsystem. This paper considers the effects of selecting various types of Photovoltaic (PV cells and batteries on weight and dimension, cost, and performance of the satellite. We have used two various types of PVs and two various type of batteries in optimization of the Electrical Power Subsystem (EPS

  12. Forecasting Electrical Energy Consumption of Equipment Maintenance Using Neural Network and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xunlin Jiang

    2013-01-01

    Full Text Available Accurate forecasting of electrical energy consumption of equipment maintenance plays an important role in maintenance decision making and helps greatly in sustainable energy use. The paper presents an approach for forecasting electrical energy consumption of equipment maintenance based on artificial neural network (ANN and particle swarm optimization (PSO. A multilayer forward ANN is used for modeling relationships between the input variables and the expected electrical energy consumption, and a new adaptive PSO algorithm is proposed for optimizing the parameters of the ANN. Experimental results demonstrate that our approach provides much better accuracies than some other competitive methods on the test data.

  13. Pareto-Ranking Based Quantum-Behaved Particle Swarm Optimization for Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Na Tian

    2015-01-01

    Full Text Available A study on pareto-ranking based quantum-behaved particle swarm optimization (QPSO for multiobjective optimization problems is presented in this paper. During the iteration, an external repository is maintained to remember the nondominated solutions, from which the global best position is chosen. The comparison between different elitist selection strategies (preference order, sigma value, and random selection is performed on four benchmark functions and two metrics. The results demonstrate that QPSO with preference order has comparative performance with sigma value according to different number of objectives. Finally, QPSO with sigma value is applied to solve multiobjective flexible job-shop scheduling problems.

  14. Blind Decorrelating Detection Based on Particle Swarm Optimization under Spreading Code Mismatch

    Institute of Scientific and Technical Information of China (English)

    Jhih-Chung Chang; Chih-Chang Shen

    2014-01-01

    A way of resolving spreading code mismatches in blind multiuser detection with a particle swarm optimization (PSO) approach is proposed. It has been shown that the PSO algorithm incorporating the linear system of the decorrelating detector, which is termed as decorrelating PSO (DPSO), can significantly improve the bit error rate (BER) and the system capacity. As the code mismatch occurs, the output BER performance is vulnerable to degradation for DPSO. With a blind decorrelating scheme, the proposed blind DPSO (BDPSO) offers more robust capabilities over existing DPSO under code mismatch scenarios.

  15. Multi-objective parallel particle swarm optimization for day-ahead Vehicle-to-Grid scheduling

    DEFF Research Database (Denmark)

    Soares, Joao; Vale, Zita; Canizes, Bruno;

    2013-01-01

    This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle-To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming...... to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow...

  16. A LINEAR PRECODING STRATEGY BASED ON PARTICLE SWARM OPTIMIZATION IN MULTICELL COOPERATIVE TRANSMISSION

    Institute of Scientific and Technical Information of China (English)

    Zhang Rui; Song Rongfang

    2011-01-01

    An optimal linear precoding scheme based on Particle Swarm Optimization (PSO),which aims to maximize the system capacity of the cooperative transmission in the downlink channel,is proposed for a multicell multiuser single input single output system.With such a scheme,the optimal precoding vector could be easily searched for each user according to a simplified objective function.Simulation results show that the proposed scheme can obtain larger average spectrum efficiency and a better Bit Error Rate (BER) performance than Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) algorithm.

  17. A Survey on Particle Swarm Optimization for Use in Distributed Generation Placement and Sizing

    Directory of Open Access Journals (Sweden)

    Arif Syed Muhammad

    2016-01-01

    Full Text Available This paper surveys the research and development of Particle Swarm Optimization (PSO algorithm for use in selecting a suitable position for Distributed Generation (DG units within a distribution network. Our discussion first covers the algorithm development of PSO and its use in neural networks. After establishing the foundations of PSO, we then explore its use in sizing and sitting of DG units in distribution network. Combining PSO with other optimization techniques for attaining better results is also discussed in this paper.

  18. Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid approximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimization (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems.

  19. Control of the Bed Temperature of a Circulating Fluidized Bed Boiler by using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    AYGUN, H.

    2012-05-01

    Full Text Available Circulating fluidized bed boilers are increasingly used in the power generation due to their higher combustion efficiency and lower pollutant emissions. Such boilers require an effective control of the bed temperature, because it influences the boiler combustion efficiency and the rate of harmful emissions. A Particle-Swarm-Optimization-Proportional-Integrative-Derivative (PSO-PID controller for the bed temperature of a circulating fluidized bed boiler is presented. In order to prove the capability of the proposed controller, its performances are compared at different boiler loads with those of a Fuzzy Logic (FL controller. The simulation results demonstrate some advantages of the proposed controller.

  20. Particle Swarm Optimization with Time Varying Parameters for Scheduling in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Shuang Zhao

    2015-01-01

    Full Text Available Task resource management is important in cloud computing system. It's necessary to find the efficient way to optimize scheduling in cloud computing. In this paper, an optimized particle swarm optimization (PSO algorithms with adaptive change of parameter (viz., inertial weight and acceleration coefficients according to the evolution state evaluation is presented. This adaptation helps to avoid premature convergence and explore the search space more efficiently. Simulations are carried out to test proposed algorithm, test reveal that the algorithm can achieving significant optimization of makespan.

  1. Prediction model for permeability index by integrating case-based reasoning with adaptive particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Zhu Hongqiu; Yang Chunhua; Gui Weihua

    2009-01-01

    To effectively predict the permeability index of smelting process in the imperial smelting furnace, an intelligent prediction model is proposed. It integrates the case-based reasoning (CBR) with adaptive particle swarm optimization (PSO). The number of nearest neighbors and the weighted features vector are optimized online using the adaptive PSO to improve the prediction accuracy of CBR. The adaptive inertia weight and mutation operation are used to overcome the premature convergence of the PSO. The proposed method is validated a compared with the basic weighted CBR. The results show that the proposed model has higher prediction accuracy and better performance than the basic CBR model.

  2. Improved particle swarm optimization algorithm for android medical care IOT using modified parameters.

    Science.gov (United States)

    Sung, Wen-Tsai; Chiang, Yen-Chun

    2012-12-01

    This study examines wireless sensor network with real-time remote identification using the Android study of things (HCIOT) platform in community healthcare. An improved particle swarm optimization (PSO) method is proposed to efficiently enhance physiological multi-sensors data fusion measurement precision in the Internet of Things (IOT) system. Improved PSO (IPSO) includes: inertia weight factor design, shrinkage factor adjustment to allow improved PSO algorithm data fusion performance. The Android platform is employed to build multi-physiological signal processing and timely medical care of things analysis. Wireless sensor network signal transmission and Internet links allow community or family members to have timely medical care network services.

  3. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem....... A pseudo code based algorithm is suggested to deal with the equality constraints of the problem for accelerating the optimization process. The simulation results show that the proposed PSO methods are capable of obtaining higher quality solutions efficiently in wind-thermal coordination problems....

  4. Particle Swarm Optimization based predictive control of Proton Exchange Membrane Fuel Cell (PEMFC)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the main focus of their current development as power sources because they are capable of higher power density and faster start-up than other fuel cells. The humidification system and output performance of PEMFC stack are briefly analyzed. Predictive control of PEMFC based on Support Vector Regression Machine (SVRM) is presented and the SVRM is constructed. The processing plant is modelled on SVRM and the predictive control law is obtained by using Particle Swarm Optimization (PSO). The simulation and the results showed that the SVRM and the PSO receding optimization applied to the PEMFC predictive control yielded good performance.

  5. Optimal control of switched linear systems based on Migrant Particle Swarm Optimization algorithm

    Science.gov (United States)

    Xie, Fuqiang; Wang, Yongji; Zheng, Zongzhun; Li, Chuanfeng

    2009-10-01

    The optimal control problem for switched linear systems with internally forced switching has more constraints than with externally forced switching. Heavy computations and slow convergence in solving this problem is a major obstacle. In this paper we describe a new approach for solving this problem, which is called Migrant Particle Swarm Optimization (Migrant PSO). Imitating the behavior of a flock of migrant birds, the Migrant PSO applies naturally to both continuous and discrete spaces, in which definitive optimization algorithm and stochastic search method are combined. The efficacy of the proposed algorithm is illustrated via a numerical example.

  6. A particle swarm model for estimating reliability and scheduling system maintenance

    Science.gov (United States)

    Puzis, Rami; Shirtz, Dov; Elovici, Yuval

    2016-05-01

    Modifying data and information system components may introduce new errors and deteriorate the reliability of the system. Reliability can be efficiently regained with reliability centred maintenance, which requires reliability estimation for maintenance scheduling. A variant of the particle swarm model is used to estimate reliability of systems implemented according to the model view controller paradigm. Simulations based on data collected from an online system of a large financial institute are used to compare three component-level maintenance policies. Results show that appropriately scheduled component-level maintenance greatly reduces the cost of upholding an acceptable level of reliability by reducing the need in system-wide maintenance.

  7. Reliable Distribution Feeder Reconfiguration Containing Distributed Generation using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    I. Moradi

    2014-03-01

    Full Text Available Distributed feeder reconfiguration (DFR is an operation processand a very important methodfor saving electrical energy and loss reduction in distribution systems. This process is carried out by changingdistribution system topology by opening and/or closing of circuit breakers. Status of the circuit breakers is optimally determined to have an improved system operation and reduced power losses. This paper proposes a multi-objective evolutionary method for distribution feeder reconfiguration. The multi-objectives optimization minimizes power losses and improves reliability of the system. For this purpose a particle swarm optimization algorithm is used for solving the problem. Simulation results show the efficiency of the proposed method for DFR

  8. Particle Swarm Based Approach of a Real-Time Discrete Neural Identifier for Linear Induction Motors

    Directory of Open Access Journals (Sweden)

    Alma Y. Alanis

    2013-01-01

    Full Text Available This paper focusses on a discrete-time neural identifier applied to a linear induction motor (LIM model, whose model is assumed to be unknown. This neural identifier is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high-order neural network (RHONN trained with a novel algorithm based on extended Kalman filter (EKF and particle swarm optimization (PSO, using an online series-parallel con…figuration. Real-time results are included in order to illustrate the applicability of the proposed scheme.

  9. Welding Diagnostics by Means of Particle Swarm Optimization and Feature Selection

    Directory of Open Access Journals (Sweden)

    J. Mirapeix

    2012-01-01

    Full Text Available In a previous contribution, a welding diagnostics approach based on plasma optical spectroscopy was presented. It consisted of the employment of optimization algorithms and synthetic spectra to obtain the participation profiles of the species participating in the plasma. A modification of the model is discussed here: on the one hand the controlled random search algorithm has been substituted by a particle swarm optimization implementation. On the other hand a feature selection stage has been included to determine those spectral windows where the optimization process will take place. Both experimental and field tests will be shown to illustrate the performance of the solution that improves the results of the previous work.

  10. Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization

    Science.gov (United States)

    Ma, Yuliang; Ding, Xiaohui; She, Qingshan; Luo, Zhizeng; Potter, Thomas; Zhang, Yingchun

    2016-01-01

    Support vector machines are powerful tools used to solve the small sample and nonlinear classification problems, but their ultimate classification performance depends heavily upon the selection of appropriate kernel and penalty parameters. In this study, we propose using a particle swarm optimization algorithm to optimize the selection of both the kernel and penalty parameters in order to improve the classification performance of support vector machines. The performance of the optimized classifier was evaluated with motor imagery EEG signals in terms of both classification and prediction. Results show that the optimized classifier can significantly improve the classification accuracy of motor imagery EEG signals. PMID:27313656

  11. Modified Particle Swarm Optimization for Blind Deconvolution and Identification of Multichannel FIR Filters

    Directory of Open Access Journals (Sweden)

    Khanagha Ali

    2010-01-01

    Full Text Available Blind identification of MIMO FIR systems has widely received attentions in various fields of wireless data communications. Here, we use Particle Swarm Optimization (PSO as the update mechanism of the well-known inverse filtering approach and we show its good performance compared to original method. Specially, the proposed method is shown to be more robust against lower SNR scenarios or in cases with smaller lengths of available data records. Also, a modified version of PSO is presented which further improves the robustness and preciseness of PSO algorithm. However the most important promise of the modified version is its drastically faster convergence compared to standard implementation of PSO.

  12. Using Animal Instincts to Design Efficient Biomedical Studies via Particle Swarm Optimization.

    Science.gov (United States)

    Qiu, Jiaheng; Chen, Ray-Bing; Wang, Weichung; Wong, Weng Kee

    2014-10-01

    Particle swarm optimization (PSO) is an increasingly popular metaheuristic algorithm for solving complex optimization problems. Its popularity is due to its repeated successes in finding an optimum or a near optimal solution for problems in many applied disciplines. The algorithm makes no assumption of the function to be optimized and for biomedical experiments like those presented here, PSO typically finds the optimal solutions in a few seconds of CPU time on a garden-variety laptop. We apply PSO to find various types of optimal designs for several problems in the biological sciences and compare PSO performance relative to the differential evolution algorithm, another popular metaheuristic algorithm in the engineering literature.

  13. Application of Fuzzy C-Means Clustering Algorithm Based on Particle Swarm Optimization in Computer Forensics

    Science.gov (United States)

    Wang, Deguang; Han, Baochang; Huang, Ming

    Computer forensics is the technology of applying computer technology to access, investigate and analysis the evidence of computer crime. It mainly include the process of determine and obtain digital evidence, analyze and take data, file and submit result. And the data analysis is the key link of computer forensics. As the complexity of real data and the characteristics of fuzzy, evidence analysis has been difficult to obtain the desired results. This paper applies fuzzy c-means clustering algorithm based on particle swarm optimization (FCMP) in computer forensics, and it can be more satisfactory results.

  14. Optimization of Gain, Impedance, and Bandwidth of Yagi-Uda Array Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Munish Rattan

    2008-01-01

    Full Text Available Particle swarm optimization (PSO is a new, high-performance evolutionary technique, which has recently been used for optimization problems in antennas and electromagnetics. It is a global optimization technique-like genetic algorithm (GA but has less computational cost compared to GA. In this paper, PSO has been used to optimize the gain, impedance, and bandwidth of Yagi-Uda array. To evaluate the performance of designs, a method of moments code NEC2 has been used. The results are comparable to those obtained using GA.

  15. Multi-Objective Bidding Strategy for Genco Using Non-Dominated Sorting Particle Swarm Optimization

    Science.gov (United States)

    Saksinchai, Apinat; Boonchuay, Chanwit; Ongsakul, Weerakorn

    2010-06-01

    This paper proposes a multi-objective bidding strategy for a generation company (GenCo) in uniform price spot market using non-dominated sorting particle swarm optimization (NSPSO). Instead of using a tradeoff technique, NSPSO is introduced to solve the multi-objective strategic bidding problem considering expected profit maximization and risk (profit variation) minimization. Monte Carlo simulation is employed to simulate rivals' bidding behavior. Test results indicate that the proposed approach can provide the efficient non-dominated solution front effectively. In addition, it can be used as a decision making tool for a GenCo compromising between expected profit and price risk in spot market.

  16. 混沌萤火虫优化算法的研究及应用%Research and Application of Chaotic Glowworm Swarm Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    郁书好; 苏守宝

    2014-01-01

    针对基本萤火虫群优化算法的早熟收敛,易陷入局部最优值,求解精度不高等问题,提出了一种基于切比雪夫映射的混沌萤火虫优化算法。利用混沌系统的随机性和遍历性初始化萤火虫群,获得了质量较高且分布较均匀的初始解;同时对部分适应值低的个体进行了混沌优化,以提高种群的多样性。对4个标准测试函数进行了仿真实验,结果表明该算法的求解精度、全局搜索能力优于基本萤火虫优化算法。将改进算法应用于车辆路径问题的求解中,结果表明了改进算法的有效性。%To overcome the disadvantages of premature convergence, local optimum and low precision in basic glow-worm swarm optimization (GSO) algorithm, this paper proposes a chaotic glowworm swarm optimization (CGSO) algorithm based on Chebyshev map. CGSO applies the features of chaotic randomness and ergodicity to initial the glowworm population. Therefore, it can achieve high quality and uniformly distributed initial solutions. Meanwhile, in order to increase the diversity of population, the proposed algorithm disturbs the partial individuals with low fitness value by Chebyshev map. The experiments on four standard test functions show that CGSO outperforms the basic GSO in precision and global searching ability. Finally, the improved algorithm is applied to vehicle routing problem (VRP), the results show that the algorithm is effective.

  17. A New Mutated Quantum-Behaved Particle Swarm Optimizer for Digital IIR Filter Design

    Directory of Open Access Journals (Sweden)

    Wenbo Xu

    2009-01-01

    Full Text Available Adaptive infinite impulse response (IIR filters have shown their worth in a wide range of practical applications. Because the error surface of IIR filters is multimodal in most cases, global optimization techniques are required for avoiding local minima. In this paper, we employ a global optimization algorithm, Quantum-behaved particle swarm optimization (QPSO that was proposed by us previously, and its mutated version in the design of digital IIR filter. The mechanism in QPSO is based on the quantum behaviour of particles in a potential well and particle swarm optimization (PSO algorithm. QPSO is characterized by fast convergence, good search ability, and easy implementation. The mutated QPSO (MuQPSO is proposed in this paper by using a random vector in QPSO to increase the randomness and to enhance the global search ability. Experimental results on three examples show that QPSO and MuQPSO are superior to genetic algorithm (GA, differential evolution (DE algorithm, and PSO algorithm in quality, convergence speed, and robustness.

  18. Dynamic Network Traffic Flow Prediction Model based on Modified Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hongying Jin

    2013-10-01

    Full Text Available This paper aims at effectively predicting the dynamic network traffic flow based on quantum-behaved particle swarm optimization algorithm. Firstly, the dynamic network traffic flow prediction problem is analyzed through formal description. Secondly, the structure of the network traffic flow prediction model is given. In this structure, Users can used a computer to start the traffic flow prediction process, and data collecting module can collect and return the data through the destination device. Thirdly, the dynamic network traffic flow prediction model is implemented based on BP Neural Network. Particularly, in this paper, the BP Neural Network is trained by a modified quantum-behaved particle swarm optimization(QPSO. We modified the QPSO by utilizing chaos signals to implement typical logistic mapping and pursuing the fitness function of a particle by a set of optimal parameters. Afterwards, based on the above process, dynamic network traffic flow prediction model is illustrated. Finally, a series of experiments are conduct to make performance evaluation, and related analyses for experimental results are also given

  19. Discrete ternary particle swarm optimization for area optimization of MPRM circuits

    Institute of Scientific and Technical Information of China (English)

    Yu Haizhen; Wang Pengjun; Wang Disheng; Zhang Huihong

    2013-01-01

    Having the advantage of simplicity,robustness and low computational costs,the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of ReedMuller logic based circuits.Exploring discrete PSO and probabilistic transition rules,the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits.According to the characteristics of mixed polarity OR/XNOR expression,a tabular technique is improved,and it is applied in the polarity conversion of MPRM functions.DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities.The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions.The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average.

  20. Comment on "Chaotic orbits for spinning particles in Schwarzschild spacetime"

    Science.gov (United States)

    Lukes-Gerakopoulos, Georgios

    2016-11-01

    The astrophysical relevance of chaos for a test particle with spin moving in Schwarzschild spacetime was the objective of C. Verhaaren and E. W. Hirschmann in [Phys. Rev. D 81, 124034 (2010)]. Even if the results of the study might appear to be qualitatively in agreement with similar works, the study presented in their work suffers both from theoretical and technical issues. These issues are discussed in this comment.

  1. Acceleration of charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field

    CERN Document Server

    Stuchlík, Zdeněk

    2015-01-01

    To test the role of large-scale magnetic fields in accretion processes, we study dynamics of charged test particles in vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes od the charged particle dynamics provides mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is larg...

  2. Chaotic phenomena of charged particles in crystal lattices.

    Science.gov (United States)

    Desalvo, Agostino; Giannerini, Simone; Rosa, Rodolfo

    2006-06-01

    In this article, we have applied the methods of chaos theory to channeling phenomena of positive charged particles in crystal lattices. In particular, we studied the transition between two ordered types of motion; i.e., motion parallel to a crystal axis (axial channeling) and to a crystal plane (planar channeling), respectively. The transition between these two regimes turns out to occur through an angular range in which the particle motion is highly disordered and the region of phase space spanned by the particle is much larger than the one swept in the two ordered motions. We have evaluated the maximum Lyapunov exponent with the method put forward by Rosenstein et al. [Physica D 65, 117 (1993)] and by Kantz [Phys. Lett. A 185, 77 (1994)]. Moreover, we estimated the correlation dimension by using the Grassberger-Procaccia method. We found that at the transition the system exhibits a very complex behavior showing an exponential divergence of the trajectories corresponding to a positive Lyapunov exponent and a noninteger value of the correlation dimension. These results turn out to be linked to a physical interpretation. The Lyapunov exponents are in agreement with the model by Akhiezer et al. [Phys. Rep. 203, 289 (1991)], based on the equivalence between the ion motion along the crystal plane described as a "string of strings" and the "kicked" rotator. The nonintegral value of the correlation dimension can be explained by the nonconservation of transverse energy at the transition.

  3. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  4. Particle Swarm Optimization as an Efficient Computational Method in order to Minimize Vibrations of Multimesh Gears Transmission

    Directory of Open Access Journals (Sweden)

    Alexandre Carbonelli

    2011-01-01

    Full Text Available The aim of this work is to present the great performance of the numerical algorithm of Particle Swarm Optimization applied to find the best teeth modifications for multimesh helical gears, which are crucial for the static transmission error (STE. Indeed, STE fluctuation is the main source of vibrations and noise radiated by the geared transmission system. The microgeometrical parameters studied for each toothed wheel are the crowning, tip reliefs and start diameters for these reliefs. Minimization of added up STE amplitudes on the idler gear of a three-gear cascade is then performed using the Particle Swarm Optimization. Finally, robustness of the solutions towards manufacturing errors and applied torque is analyzed by the Particle Swarm algorithm to access to the deterioration capacity of the tested solution.

  5. Chaotic motion of dust particles in planetary magnetospheres

    Indian Academy of Sciences (India)

    Jia Xu; Xin Wu; Da-Zhu Ma

    2010-06-01

    We numerically investigate the motion of a charged particle in a planetary magnetosphere using several kinds of equatorial plane phase portraits determined by two dynamical parameters: the charge-to-mass ratio and the -component of the angular momentum. The dependence of chaos on any of the three factors including the two parameters and the energy is mainly discussed. It is found that increasing the energy or the absolute value of the ratio always causes the extent of chaos. However, chaos is weaker for larger

  6. Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization

    Science.gov (United States)

    Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi

    2016-10-01

    One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.

  7. Identification of strategy parameters for particle swarm optimizer through Taguchi method

    Institute of Scientific and Technical Information of China (English)

    KHOSLA Arun; KUMAR Shakti; AGGARWAL K.K.

    2006-01-01

    Particle swarm optimization (PSO), like other evolutionary algorithms is a population-based stochastic algorithm inspired from the metaphor of social interaction in birds, insects, wasps, etc. It has been used for finding promising solutions in complex search space through the interaction of particles in a swarm. It is a well recognized fact that the performance of evolutionary algorithms to a great extent depends on the choice of appropriate strategy/operating parameters like population size,crossover rate, mutation rate, crossover operator, etc. Generally, these parameters are selected through hit and trial process, which is very unsystematic and requires rigorous experimentation. This paper proposes a systematic based on Taguchi method reasoning scheme for rapidly identifying the strategy parameters for the PSO algorithm. The Taguchi method is a robust design approach using fractional factorial design to study a large number of parameters with small number of experiments. Computer simulations have been performed on two benchmark functions-Rosenbrock function and Griewank function-to validate the approach.

  8. A Decomposition Model for HPLC-DAD Data Set and Its Solution by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Lizhi Cui

    2014-01-01

    Full Text Available This paper proposes a separation method, based on the model of Generalized Reference Curve Measurement and the algorithm of Particle Swarm Optimization (GRCM-PSO, for the High Performance Liquid Chromatography with Diode Array Detection (HPLC-DAD data set. Firstly, initial parameters are generated to construct reference curves for the chromatogram peaks of the compounds based on its physical principle. Then, a General Reference Curve Measurement (GRCM model is designed to transform these parameters to scalar values, which indicate the fitness for all parameters. Thirdly, rough solutions are found by searching individual target for every parameter, and reinitialization only around these rough solutions is executed. Then, the Particle Swarm Optimization (PSO algorithm is adopted to obtain the optimal parameters by minimizing the fitness of these new parameters given by the GRCM model. Finally, spectra for the compounds are estimated based on the optimal parameters and the HPLC-DAD data set. Through simulations and experiments, following conclusions are drawn: (1 the GRCM-PSO method can separate the chromatogram peaks and spectra from the HPLC-DAD data set without knowing the number of the compounds in advance even when severe overlap and white noise exist; (2 the GRCM-PSO method is able to handle the real HPLC-DAD data set.

  9. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    Science.gov (United States)

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  10. Multiobjective Dynamic Vehicle Routing Problem and Time Seed Based Solution Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Omprakash Kaiwartya

    2015-01-01

    Full Text Available A multiobjective dynamic vehicle routing problem (M-DVRP has been identified and a time seed based solution using particle swarm optimization (TS-PSO for M-DVRP has been proposed. M-DVRP considers five objectives, namely, geographical ranking of the request, customer ranking, service time, expected reachability time, and satisfaction level of the customers. The multiobjective function of M-DVRP has four components, namely, number of vehicles, expected reachability time, and profit and satisfaction level. Three constraints of the objective function are vehicle, capacity, and reachability. In TS-PSO, first of all, the problem is partitioned into smaller size DVRPs. Secondly, the time horizon of each smaller size DVRP is divided into time seeds and the problem is solved in each time seed using particle swarm optimization. The proposed solution has been simulated in ns-2 considering real road network of New Delhi, India, and results are compared with those obtained from genetic algorithm (GA simulations. The comparison confirms that TS-PSO optimizes the multiobjective function of the identified problem better than what is offered by GA solution.

  11. State Feedback H∞ Control of Power Units Based on an Improved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zhongqiang Wu

    2015-01-01

    Full Text Available A new state feedback H∞ control scheme is presented used in the boiler-turbine power units based on an improved particle swarm optimizing algorithm. Firstly, the nonlinear system is transformed into a linear time-varying system; then the H∞ control problem is transformed into the solution of a Riccati equation. The control effect of H∞ controller depends on the selection of matrix P, so an improved particle swarm optimizing (PSO algorithm by introducing differential evolution algorithm is used to solve the Riccati equation. The main purpose is that mutation and crossover are introduced for a new population, and the population diversity is improved. It is beneficial to eliminate stagnation caused by premature convergence, and the algorithm convergence rate is improved. Finally, the real-time optimizing of the controller parameters is realized. Theoretical analysis and simulation results show that a state feedback H∞ controller can be obtained, which can ensure asymptotic stability of the system, and the double objectives of stabilizing system and suppressing the disturbance are got. The system can work well over a large range working point.

  12. Model-Free Adaptive Fuzzy Sliding Mode Controller Optimized by Particle Swarm for Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Amin Jalali

    2013-05-01

    Full Text Available The main purpose of this paper is to design a suitable control scheme that confronts the uncertainties in a robot. Sliding mode controller (SMC is one of the most important and powerful nonlinear robust controllers which has been applied to many non-linear systems. However, this controller has some intrinsic drawbacks, namely, the chattering phenomenon, equivalent dynamic formulation, and sensitivity to the noise. This paper focuses on applying artificial intelligence integrated with the sliding mode control theory. Proposed adaptive fuzzy sliding mode controller optimized by Particle swarm algorithm (AFSMC-PSO is a Mamdani’s error based fuzzy logic controller (FLS with 7 rules integrated with sliding mode framework to provide the adaptation in order to eliminate the high frequency oscillation (chattering and adjust the linear sliding surface slope in presence of many different disturbances and the best coefficients for the sliding surface were found by offline tuning Particle Swarm Optimization (PSO. Utilizing another fuzzy logic controller as an impressive manner to replace it with the equivalent dynamic part is the main goal to make the model free controller which compensate the unknown system dynamics parameters and obtain the desired control performance without exact information about the mathematical formulation of model.

  13. Particle Swarm Optimization with Various Inertia Weight Variants for Optimal Power Flow Solution

    Directory of Open Access Journals (Sweden)

    Prabha Umapathy

    2010-01-01

    Full Text Available This paper proposes an efficient method to solve the optimal power flow problem in power systems using Particle Swarm Optimization (PSO. The objective of the proposed method is to find the steady-state operating point which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow, and voltage. Three different inertia weights, a constant inertia weight (CIW, a time-varying inertia weight (TVIW, and global-local best inertia weight (GLbestIW, are considered with the particle swarm optimization algorithm to analyze the impact of inertia weight on the performance of PSO algorithm. The PSO algorithm is simulated for each of the method individually. It is observed that the PSO algorithm with the proposed inertia weight yields better results, both in terms of optimal solution and faster convergence. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The algorithm is computationally faster, in terms of the number of load flows executed, and provides better results than other heuristic techniques.

  14. Hybrid particle swarm optimization with Cauchy distribution for solving reentrant flexible flow shop with blocking constraint

    Directory of Open Access Journals (Sweden)

    Chatnugrob Sangsawang

    2016-06-01

    Full Text Available This paper addresses a problem of the two-stage flexible flow shop with reentrant and blocking constraints in Hard Disk Drive Manufacturing. This problem can be formulated as a deterministic FFS|stage=2,rcrc, block|Cmax problem. In this study, adaptive Hybrid Particle Swarm Optimization with Cauchy distribution (HPSO was developed to solve the problem. The objective of this research is to find the sequences in order to minimize the makespan. To show their performances, computational experiments were performed on a number of test problems and the results are reported. Experimental results show that the proposed algorithms give better solutions than the classical Particle Swarm Optimization (PSO for all test problems. Additionally, the relative improvement (RI of the makespan solutions obtained by the proposed algorithms with respect to those of the current practice is performed in order to measure the quality of the makespan solutions generated by the proposed algorithms. The RI results show that the HPSO algorithm can improve the makespan solution by averages of 14.78%.

  15. Lattice dynamical wavelet neural networks implemented using particle swarm optimization for spatio-temporal system identification.

    Science.gov (United States)

    Wei, Hua-Liang; Billings, Stephen A; Zhao, Yifan; Guo, Lingzhong

    2009-01-01

    In this brief, by combining an efficient wavelet representation with a coupled map lattice model, a new family of adaptive wavelet neural networks, called lattice dynamical wavelet neural networks (LDWNNs), is introduced for spatio-temporal system identification. A new orthogonal projection pursuit (OPP) method, coupled with a particle swarm optimization (PSO) algorithm, is proposed for augmenting the proposed network. A novel two-stage hybrid training scheme is developed for constructing a parsimonious network model. In the first stage, by applying the OPP algorithm, significant wavelet neurons are adaptively and successively recruited into the network, where adjustable parameters of the associated wavelet neurons are optimized using a particle swarm optimizer. The resultant network model, obtained in the first stage, however, may be redundant. In the second stage, an orthogonal least squares algorithm is then applied to refine and improve the initially trained network by removing redundant wavelet neurons from the network. An example for a real spatio-temporal system identification problem is presented to demonstrate the performance of the proposed new modeling framework.

  16. Hybrid Bacterial Foraging and Particle Swarm Optimization for detecting Bundle Branch Block.

    Science.gov (United States)

    Kora, Padmavathi; Kalva, Sri Ramakrishna

    2015-01-01

    Abnormal cardiac beat identification is a key process in the detection of heart diseases. Our present study describes a procedure for the detection of left and right bundle branch block (LBBB and RBBB) Electrocardiogram (ECG) patterns. The electrical impulses that control the cardiac beat face difficulty in moving inside the heart. This problem is termed as bundle branch block (BBB). BBB makes it harder for the heart to pump blood effectively through the heart circulatory system. ECG feature extraction is a key process in detecting heart ailments. Our present study comes up with a hybrid method combining two heuristic optimization methods: Bacterial Forging Optimization (BFO) and Particle Swarm Optimization (PSO) for the feature selection of ECG signals. One of the major controlling forces of BFO algorithm is the chemotactic movement of a bacterium that models a test solution. The chemotaxis process of the BFO depends on random search directions which may lead to a delay in achieving the global optimum solution. The hybrid technique: Bacterial Forging-Particle Swarm Optimization (BFPSO) incorporates the concepts from BFO and PSO and it creates individuals in a new generation. This BFPSO method performs local search through the chemotactic movement of BFO and the global search over the entire search domain is accomplished by a PSO operator. The BFPSO feature values are given as the input for the Levenberg-Marquardt Neural Network classifier.

  17. New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.

    Science.gov (United States)

    Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng

    2016-05-16

    The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.

  18. Energy-Aware Multipath Routing Scheme Based on Particle Swarm Optimization in Mobile Ad Hoc Networks.

    Science.gov (United States)

    Robinson, Y Harold; Rajaram, M

    2015-01-01

    Mobile ad hoc network (MANET) is a collection of autonomous mobile nodes forming an ad hoc network without fixed infrastructure. Dynamic topology property of MANET may degrade the performance of the network. However, multipath selection is a great challenging task to improve the network lifetime. We proposed an energy-aware multipath routing scheme based on particle swarm optimization (EMPSO) that uses continuous time recurrent neural network (CTRNN) to solve optimization problems. CTRNN finds the optimal loop-free paths to solve link disjoint paths in a MANET. The CTRNN is used as an optimum path selection technique that produces a set of optimal paths between source and destination. In CTRNN, particle swarm optimization (PSO) method is primly used for training the RNN. The proposed scheme uses the reliability measures such as transmission cost, energy factor, and the optimal traffic ratio between source and destination to increase routing performance. In this scheme, optimal loop-free paths can be found using PSO to seek better link quality nodes in route discovery phase. PSO optimizes a problem by iteratively trying to get a better solution with regard to a measure of quality. The proposed scheme discovers multiple loop-free paths by using PSO technique.

  19. OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2016-01-01

    Full Text Available Cloud Computing is a dominant way of sharing of computing resources that can be configured and provisioned easily. Task scheduling in Hybrid cloud is a challenge as it suffers from producing the best QoS (Quality of Service when there is a high demand. In this paper a new resource allocation algorithm, to find the best External Cloud provider when the intermediate provider’s resources aren’t enough to satisfy the customer’s demand is proposed. The proposed algorithm called Optimized Particle Swarm Optimization (OPSO combines the two metaheuristic algorithms namely Particle Swarm Optimization and Ant Colony Optimization (ACO. These metaheuristic algorithms are used for the purpose of optimization in the search space of the required solution, to find the best resource from the pool of resources and to obtain maximum profit even when the number of tasks submitted for execution is very high. This optimization is performed to allocate job requests to internal and external cloud providers to obtain maximum profit. It helps to improve the system performance by improving the CPU utilization, and handle multiple requests at the same time. The simulation result shows that an OPSO yields 0.1% - 5% profit to the intermediate cloud provider compared with standard PSO and ACO algorithms and it also increases the CPU utilization by 0.1%.

  20. Design of Optimal Attack-Angle for RLV Reentry Based on Quantum Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Qingzhen Zhang

    2014-04-01

    Full Text Available The attack-angle optimization is a key problem for reentry trajectory design of a gliding type reusable launch vehicle (RLV. In order to solve such a problem, the equations of motion are derived first. A physical programming (PP method is briefly presented and the preference function is reflected in mathematical representation. The attack-angle optimization problem with four criteria (i.e., downrange, total heat, heat rate, and trajectory oscillation is converted into a single-objective optimization problem based on the PP method. A winged gliding reentry RLV is chosen as a simulation example and the transformed single-objective problem is solved by the quantum-behaved particle swarm optimization (QPSO algorithm based on two types of preference structures, longer range preference and smaller total heat preference. The constraints of maximizing heating rate, normal load factor, and dynamic pressure and minimizing terminal velocity are handled by a penalty function method. The simulation results demonstrate the efficiency of these methods. The physical causation of the optimal solution and the typical profiles are presented, which reflect the designer's preference. At last, the feasibility and advantages of QPSO are revealed by comparison with the results of genetic algorithm (GA and standard particle swarm optimization (PSO algorithm on this optimization problem.

  1. Prediction of Skin Sensitization with a Particle Swarm Optimized Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2009-07-01

    Full Text Available Skin sensitization is the most commonly reported occupational illness, causing much suffering to a wide range of people. Identification and labeling of environmental allergens is urgently required to protect people from skin sensitization. The guinea pig maximization test (GPMT and murine local lymph node assay (LLNA are the two most important in vivo models for identification of skin sensitizers. In order to reduce the number of animal tests, quantitative structure-activity relationships (QSARs are strongly encouraged in the assessment of skin sensitization of chemicals. This paper has investigated the skin sensitization potential of 162 compounds with LLNA results and 92 compounds with GPMT results using a support vector machine. A particle swarm optimization algorithm was implemented for feature selection from a large number of molecular descriptors calculated by Dragon. For the LLNA data set, the classification accuracies are 95.37% and 88.89% for the training and the test sets, respectively. For the GPMT data set, the classification accuracies are 91.80% and 90.32% for the training and the test sets, respectively. The classification performances were greatly improved compared to those reported in the literature, indicating that the support vector machine optimized by particle swarm in this paper is competent for the identification of skin sensitizers.

  2. Advanced Adaptive Particle Swarm Optimization based SVC Controller for Power System Stability

    Directory of Open Access Journals (Sweden)

    Poonam Singhal

    2014-12-01

    Full Text Available The interconnected systems is continually increasing in size and extending over whole geographical regions, it is becoming increasingly more difficult to maintain synchronism between various parts of the power system. This paper work presents an advanced adaptive Particle swarm optimization technique to optimize the SVC controller parameters for enhancement of the steady state stability & overcoming the premature convergence & stagnation problems as in basic PSO algorithm & Particle swarm optimization with shrinkage factor & inertia weight approach (PSO-SFIWA. In this paper SMIB system along with PID damped SVC controller is considered for study. The generator speed deviation is used as an auxiliary signal to SVC, to generate the desired damping. This controller improves the dynamic performance of power system by reducing the steady-state error. The controller parameters are optimized using basic PSO, PSO-SFIWA & Advanced Adaptive PSO. Computational results show that Advanced Adaptive based SVC controller is able to find better quality solution as compare to conventional PSO & PSO-SFIWA Techniques.

  3. An analysis of the chaotic motion of particles of different sizes in a gas fluidized bed

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles.Typical particles are selected representing three kinds of particle motion:a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales.

  4. Fractal structures in the chaotic motion of charged particles in a magnetized plasma under the influence of drift waves

    Science.gov (United States)

    Mathias, A. C.; Viana, R. L.; Kroetz, T.; Caldas, I. L.

    2017-03-01

    Chaotic dynamics in open Hamiltonian dynamical systems typically presents a number of fractal structures in phase space derived from the interwoven structure of invariant manifolds and the corresponding chaotic saddle. These structures are thought to play an important role in the transport properties related to the chaotic motion. Such properties can explain some aspects of the non-uniform nature of the anomalous transport observed in magnetically confined plasmas. Accordingly we consider a theoretical model for the interaction of charged test particles with drift waves. We describe the exit basin structure of the corresponding chaotic orbit in phase space and interpret it in terms of the invariant manifold structure underlying chaotic dynamics. As a result, the exit basin boundary is shown to be a fractal curve, by direct calculation of its box-counting dimension. Moreover, when there are more than two basins, we verify the existence of the Wada property, an extreme form of fractality.

  5. Frequent item sets mining from high-dimensional dataset based on a novel binary particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    张中杰; 黄健; 卫莹

    2016-01-01

    A novel binary particle swarm optimization for frequent item sets mining from high-dimensional dataset (BPSO-HD) was proposed, where two improvements were joined. Firstly, the dimensionality reduction of initial particles was designed to ensure the reasonable initial fitness, and then, the dynamically dimensionality cutting of dataset was built to decrease the search space. Based on four high-dimensional datasets, BPSO-HD was compared with Apriori to test its reliability, and was compared with the ordinary BPSO and quantum swarm evolutionary (QSE) to prove its advantages. The experiments show that the results given by BPSO-HD is reliable and better than the results generated by BPSO and QSE.

  6. A Novel Path Planning for Robots Based on Rapidly-Exploring Random Tree and Particle Swarm Optimizer Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Feng

    2013-09-01

    Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.

  7. Chaotic particle sedimentation in a rotating flow with time-periodic strength

    CERN Document Server

    Angilella, J R

    2010-01-01

    Particle sedimentation in the vicinity of a fixed horizontal vortex with time-dependent intensity can be chaotic, provided gravity is sufficient to displace the particle cloud while the vortex is off or weak. This "stretch, sediment and fold" mechanism is close to the so-called blinking vortex effect, which is responsible for chaotic transport of perfect tracers, except that in the present case the vortex motion is replaced by gravitational settling. In the present work this phenomenon is analyzed for heavy Stokes particles moving under the sole effect of gravity and of a linear drag. The vortex is taken to be a fixed isolated point vortex the intensity of which varies under the effect of either boundary conditions or volume force. When the unsteadiness of the vortex is weak and the free-fall velocity is of the order of the fluid velocity, and the particle response time is small, the particle motion equation can be written asymptotically as a perturbed hamiltonian system the phase portrait of which displays a...

  8. A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows.

    Science.gov (United States)

    Xu, Sheng-Hua; Liu, Ji-Ping; Zhang, Fu-Hao; Wang, Liang; Sun, Li-Jian

    2015-08-27

    A combination of genetic algorithm and particle swarm optimization (PSO) for vehicle routing problems with time windows (VRPTW) is proposed in this paper. The improvements of the proposed algorithm include: using the particle real number encoding method to decode the route to alleviate the computation burden, applying a linear decreasing function based on the number of the iterations to provide balance between global and local exploration abilities, and integrating with the crossover operator of genetic algorithm to avoid the premature convergence and the local minimum. The experimental results show that the proposed algorithm is not only more efficient and competitive with other published results but can also obtain more optimal solutions for solving the VRPTW issue. One new well-known solution for this benchmark problem is also outlined in the following.

  9. Delay-area trade-off for MPRM circuits based on hybrid discrete particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhidi; Wang Zhenhai; Wang Pengjun

    2013-01-01

    Polarity optimization for mixed polarity Reed-Muller (MPRM) circuits is a combinatorial issue.Based on the study on discrete particle swarm optimization (DPSO) and mixed polarity,the corresponding relation between particle and mixed polarity is established,and the delay-area trade-off of large-scale MPRM circuits is proposed.Firstly,mutation operation and elitist strategy in genetic algorithm are incorporated into DPSO to further develop a hybrid DPSO (HDPSO).Then the best polarity for delay and area trade-off is searched for large-scale MPRM circuits by combining the HDPSO and a delay estimation model.Finally,the proposed algorithm is testified by MCNC Benchmarks.Experimental results show that HDPSO achieves a better convergence than DPSO in terms of search capability for large-scale MPRM circuits.

  10. Particle Swarm and Bacterial Foraging Inspired Hybrid Artificial Bee Colony Algorithm for Numerical Function Optimization

    Directory of Open Access Journals (Sweden)

    Li Mao

    2016-01-01

    Full Text Available Artificial bee colony (ABC algorithm has good performance in discovering the optimal solutions to difficult optimization problems, but it has weak local search ability and easily plunges into local optimum. In this paper, we introduce the chemotactic behavior of Bacterial Foraging Optimization into employed bees and adopt the principle of moving the particles toward the best solutions in the particle swarm optimization to improve the global search ability of onlooker bees and gain a hybrid artificial bee colony (HABC algorithm. To obtain a global optimal solution efficiently, we make HABC algorithm converge rapidly in the early stages of the search process, and the search range contracts dynamically during the late stages. Our experimental results on 16 benchmark functions of CEC 2014 show that HABC achieves significant improvement at accuracy and convergence rate, compared with the standard ABC, best-so-far ABC, directed ABC, Gaussian ABC, improved ABC, and memetic ABC algorithms.

  11. Distribution Grid Reactive Power Optimization Based on Improved Cloud Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Hongsheng Su

    2013-01-01

    Full Text Available To resolve the problems that cloud particle swarm optimization(CPSO was easily trapped in local minimum and possessed slow convergence speed and early-maturing during distribution grid reactive power optimization, CPSO algorithm was improved based on cloud digital features in this paper. The method firstly combined Local search with global search together based on solution space transform, where the crossover and mutation operation of the particles were implemented based on normal cloud operator. And then the dramatic achievements were acquired in time-consuming and storage-cost using the improved algorithm. Finally, applied in bus IEEE30 system, the simulation results show that the better global solution is attained using the improved CPSO algorithm, and its convergence speed and accuracy possesses a dramatic improvement.

  12. Patterns Antennas Arrays Synthesis Based on Adaptive Particle Swarm Optimization and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Boufeldja Kadri

    2013-01-01

    Full Text Available In recent years, evolutionary optimization (EO techniques have attracted considerable attention in the design of electromagnetic systems of increasing complexity. This paper presents a comparison between two optimization algorithms for the synthesis of uniform linear and planar antennas arrays, the first one is an adaptive particle swarm optimization (APSO where the inertia weight and acceleration coefficient are adjusted dynamically according to feedback taken from particles best memories to overcome the limitations of the standard PSO which are: premature convergence, low searching accuracy and iterative inefficiency. The second method is the genetic algorithms (GA inspired from the processes of the evolution of the species and the natural genetics. The results show that the design of uniform linear and planar antennas arrays using APSO method provides a low side lobe level and achieve faster convergence speed to the optimum solution than those obtained by a GA.

  13. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Gao Fei; Li Zhuo-Qiu; Tong Heng-Qing

    2008-01-01

    This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos'unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems axe given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises.

  14. A new logistic dynamic particle swarm optimization algorithm based on random topology.

    Science.gov (United States)

    Ni, Qingjian; Deng, Jianming

    2013-01-01

    Population topology of particle swarm optimization (PSO) will directly affect the dissemination of optimal information during the evolutionary process and will have a significant impact on the performance of PSO. Classic static population topologies are usually used in PSO, such as fully connected topology, ring topology, star topology, and square topology. In this paper, the performance of PSO with the proposed random topologies is analyzed, and the relationship between population topology and the performance of PSO is also explored from the perspective of graph theory characteristics in population topologies. Further, in a relatively new PSO variant which named logistic dynamic particle optimization, an extensive simulation study is presented to discuss the effectiveness of the random topology and the design strategies of population topology. Finally, the experimental data are analyzed and discussed. And about the design and use of population topology on PSO, some useful conclusions are proposed which can provide a basis for further discussion and research.

  15. On the application of Particle Swarm Optimization strategies on Scholte-wave inversion

    Science.gov (United States)

    Wilken, D.; Rabbel, W.

    2012-07-01

    We investigate different aspects concerning the application of swarm intelligence optimization to the inversion of Scholte-wave phase-slowness frequency (p-f) spectra with respect to shear wave velocity structure. Besides human influence due to the dependence on a priori information for starting models and interpretation of p-f spectra as well as noise, the model resolution of the inversion problem is strongly influenced by the multimodality of the misfit function. We thus tested the efficiency of global, stochastic optimization approaches with focus on swarm intelligence methods that can explore the multiple minima of the misfit function. A comparison among different PSO schemes by applying them to synthetic Scholte-wave spectra led to a hybrid of Particle Swarm Optimization and Downhill Simplex providing the best resolution of inverted shear wave velocity depth models. The results showed a very low spread of best fitting solutions of 7 per cent in shear wave velocity and an average of 9 per cent for noisy synthetic data and a very good fit to the true synthetic model used for computation of the input data. To classify this method we also compared the probability of finding a good fit in synthetic spectra inversion with that of Evolutionary Algorithm, Simulated Annealing, Neighbourhood Algorithm and Artificial Bee Colony algorithm. Again the hybrid optimization scheme showed its predominance. The usage of stochastic algorithms furthermore allowed a new way of misfit definition in terms of dispersion curve slowness residuals making the inversion scheme independent on Scholte-wave mode identification and allowing joint inversion of fundamental mode and higher mode information. Finally we used the hybrid optimization scheme and the misfit calculation for the inversion of 2-D shear wave velocity profiles from two locations in the North- and Baltic Sea. The models show acceptable resolution and a very good structural correlation to high resolution reflection seismic

  16. Estimation of the particle size distribution of colloids from multiangle dynamic light scattering measurements with particle swarm optimization

    Directory of Open Access Journals (Sweden)

    L. A. Bermeo

    2015-04-01

    Full Text Available In this paper particle Swarm Optimization (PSO algorithms are applied to estimate the particle size distribution (PSD of a colloidal system from the average PSD diameters, which are measured by multi-angle dynamic light scattering. The system is considered a nonlinear inverse problem, and for this reason the estimation procedure requires a Tikhonov regularization method. The inverse problem is solved through several PSO strategies. The evaluated PSOs are tested through three simulated examples corresponding to polystyrene (PS latexes with different PSDs, and two experimental examples obtained by simply mixing 2 PS standards. In general, the evaluation results of the PSOs are excellent; and particularly, the PSO with the Trelea’s parameter set shows a better performance than other implemented PSOs.

  17. Chaotic Dynamics of Test Particle in the Gravitational Field with Magnetic Dipoles

    Institute of Scientific and Technical Information of China (English)

    CHENJu-Hua; WANGYong-Jiu

    2003-01-01

    We investigate the dynamics of the test particle in the gravitational field with magnetic dipoles in this paper. At first we study the gravitational potential by numerical simulations. We find, for appropriate parameters, that there are two different cases in the potential curve, one of which is the one-well case with a stable critical point, and the other is the three-well case with three stable critical points and two unstable ones. As a consequence, the chaotic motion will rise. By performing the evolution of the orbits of the test particle in the phase space, we find that the orbits of the test particle randomly oscillate without any periods, even sensitively depending on the initial conditions and parameters.By performing Poincaré sections for different values of the parameters and initial conditions, we further conform that the chaotic motion of the test particle in the field with magnetic dipoles becomes even obvious as the value of the magnetic dipoles increases.

  18. Parameter Identification of Robot Manipulators: A Heuristic Particle Swarm Search Approach

    Science.gov (United States)

    Yan, Danping; Lu, Yongzhong; Levy, David

    2015-01-01

    Parameter identification of robot manipulators is an indispensable pivotal process of achieving accurate dynamic robot models. Since these kinetic models are highly nonlinear, it is not easy to tackle the matter of identifying their parameters. To solve the difficulty effectively, we herewith present an intelligent approach, namely, a heuristic particle swarm optimization (PSO) algorithm, which we call the elitist learning strategy (ELS) and proportional integral derivative (PID) controller hybridized PSO approach (ELPIDSO). A specified PID controller is designed to improve particles’ local and global positions information together with ELS. Parameter identification of robot manipulators is conducted for performance evaluation of our proposed approach. Experimental results clearly indicate the following findings: Compared with standard PSO (SPSO) algorithm, ELPIDSO has improved a lot. It not only enhances the diversity of the swarm, but also features better search effectiveness and efficiency in solving practical optimization problems. Accordingly, ELPIDSO is superior to least squares (LS) method, genetic algorithm (GA), and SPSO algorithm in estimating the parameters of the kinetic models of robot manipulators. PMID:26039090

  19. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  20. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    CERN Document Server

    Nag, Sankhasubhra; Ananda, Deepika B; Das, Tapas K

    2016-01-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by a asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  1. Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo

    Science.gov (United States)

    Nag, Sankhasubhra; Sinha, Siddhartha; Ananda, Deepika B.; Das, Tapas K.

    2017-04-01

    We investigate the role of the spin angular momentum of astrophysical black holes in controlling the special relativistic chaotic dynamics of test particles moving under the influence of a post-Newtonian pseudo-Kerr black hole potential, along with a perturbative potential created by an asymmetrically placed (dipolar) halo. Proposing a Lyapunov-like exponent to be the effective measure of the degree of chaos observed in the system under consideration, it has been found that black hole spin anti-correlates with the degree of chaos for the aforementioned dynamics. Our findings have been explained applying the general principles of dynamical systems analysis.

  2. Simplified particle swarm optimization algorithm - doi: 10.4025/actascitechnol.v34i1.9679

    Directory of Open Access Journals (Sweden)

    Ricardo Paupitz Barbosa dos Santos

    2011-11-01

    Full Text Available Real ants and bees are considered social insects, which present some remarkable characteristics that can be used, as inspiration, to solve complex optimization problems. This field of study is known as swarm intelligence. Therefore, this paper presents a new algorithm that can be understood as a simplified version of the well known Particle Swarm Optimization (PSO. The proposed algorithm allows saving some computational effort and obtains a considerable performance in the optimization of nonlinear functions. We employed four nonlinear benchmark functions, Sphere, Schwefel, Schaffer and Ackley functions, to test and validate the new proposal. Some simulated results were used in order to clarify the efficiency of the proposed algorithm.

  3. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    Science.gov (United States)

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human

  4. Voltage Profile Improvement in Distribution System Using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V.Veera Nagireddy

    2016-06-01

    Full Text Available The traditional method in electric power distribution is to have centralized plants distributing electricity through an extensive distribution network. Distributed generation (DG provides electric power at a site closer to the customer which reduces the transmission and distribution costs, reduces fossil fuel emissions, capital cost, reduce maintenance costs and improve the distribution feeder voltage profiles. In the case of small generation systems, the locations of DG and penetration level of DG are usually not priori known. In this paper, Particle Swarm Optimization (PSO algorithm attempts to calculate the boundaries of the randomly placed distributed generators in a distribution network. simulations are performed using MATLAB, and overall better improvements are determined with estimated DG size and location. The proposed PSO approach is compared with conventional method on IEEE 34 bus distribution feeder network

  5. A Discrete Particle Swarm Optimization to Estimate Parameters in Vision Tasks

    Directory of Open Access Journals (Sweden)

    Benchikhi Loubna

    2016-01-01

    Full Text Available The majority of manufacturers demand increasingly powerful vision systems for quality control. To have good outcomes, the installation requires an effort in the vision system tuning, for both hardware and software. As time and accuracy are important, actors are oriented to automate parameter’s adjustment optimization at least in image processing. This paper suggests an approach based on discrete particle swarm optimization (DPSO that automates software setting and provides optimal parameters for industrial vision applications. A novel update functions for our DPSO definition are suggested. The proposed method is applied on some real examples of quality control to validate its feasibility and efficiency, which shows that the new DPSO model furnishes promising results.

  6. Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications

    CERN Document Server

    Yang, Xin-She; Fong, Simon

    2012-01-01

    Business optimization is becoming increasingly important because all business activities aim to maximize the profit and performance of products and services, under limited resources and appropriate constraints. Recent developments in support vector machine and metaheuristics show many advantages of these techniques. In particular, particle swarm optimization is now widely used in solving tough optimization problems. In this paper, we use a combination of a recently developed Accelerated PSO and a nonlinear support vector machine to form a framework for solving business optimization problems. We first apply the proposed APSO-SVM to production optimization, and then use it for income prediction and project scheduling. We also carry out some parametric studies and discuss the advantages of the proposed metaheuristic SVM.

  7. Feature extraction of induction motor stator fault based on particle swarm optimization and wavelet packet

    Institute of Scientific and Technical Information of China (English)

    WANG Pan-pan; SHI Li-ping; HU Yong-jun; MIAO Chang-xin

    2012-01-01

    To effectively extract the interturn short circuit fault features of induction motor from stator current signal,a novel feature extraction method based on the bare-bones particle swarm optimization (BBPSO) algorithm and wavelet packet was proposed.First,according to the maximum inner product between the current signal and the cosine basis functions,this method could precisely estimate the waveform parameters of the fundamental component using the powerful global search capability of the BBPSO,which can eliminate the fundamental component and not affect other harmonic components.Then,the harmonic components of residual current signal were decomposed to a series of frequency bands by wavelet packet to extract the interturn circuit fault features of the induction motor.Finally,the results of simulation and laboratory tests demonstrated the effectiveness of the proposed method.

  8. DOA Estimation for Local Scattered CDMA Signals by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Jhih-Chung Chang

    2012-03-01

    Full Text Available This paper deals with the direction-of-arrival (DOA estimation of local scattered code-division multiple access (CDMA signals based on a particle swarm optimization (PSO search. For conventional spectral searching estimators with local scattering, the searching complexity and estimating accuracy strictly depend on the number of search grids used during the search. In order to obtain high-resolution and accurate DOA estimation, a smaller grid size is needed. This is time consuming and it is unclear how to determine the required number of search grids. In this paper, a modified PSO is presented to reduce the required search grids for the conventional spectral searching estimator with the effects of local scattering. Finally, several computer simulations are provided for illustration and comparison.

  9. Direction Tracking of Multiple Moving Targets Using Quantum Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Gao Hongyuan

    2016-01-01

    Full Text Available Based on weighted signal covariance (WSC matrix and maximum likelihood (ML estimation, a directionof-arrival (DOA estimation method of multiple moving targets is designed and named as WSC-ML in the presence of impulse noise. In order to overcome the shortcoming of the multidimensional search cost of maximum likelihood estimation, a novel continuous quantum particle swarm optimization (QPSO is proposed for this continuous optimization problem. And a tracking method of multiple moving targets in impulsive noise environment is proposed and named as QPSO-WSC-ML. Later, we make use of rank-one updating to update the weighted signal covariance matrix of WSC-ML. Simulation results illustrate the proposed QPSO-WSC-ML method is efficient and robust for the direction tracking of multiple moving targets in the presence of impulse noise.

  10. Design for sustainability of industrial symbiosis based on emergy and multi-objective particle swarm optimization.

    Science.gov (United States)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang; Sun, Lu; Gao, Zhiqiu

    2016-08-15

    Industrial symbiosis provides novel and practical pathway to the design for the sustainability. Decision support tool for its verification is necessary for practitioners and policy makers, while to date, quantitative research is limited. The objective of this work is to present an innovative approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision.

  11. Optimal Heating in Heat-Treatment Process Based on Grey Asynchronous Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    To ensure plate heating quality and reduce energy consumption in heat-treatment process, optimal heating for plates in a roller hearth furnace was investigated and a new strategy for heating procedure optimization was developed. During solving process, plate temperature forecast model based on heat transfer mechanics was established to calculate plate temperature with the assumed heating procedure. In addition, multi-objective feature of optimal heating was analyzed. And the method, which is composed of asynchronous particle swarm optimization and grey relational analysis, was adopted for solving the multi-objective problem. The developed strategy for optimizing heating has been applied to the mass production. The result indicates that the absolute plate discharging temperature deviation between measured value and target value does not exceed ± 8 ℃, and the relative deviation is less than ± 0.77%.

  12. TRACKING AND MONITORING OF TAGGED OBJECTS EMPLOYING PARTICLE SWARM OPTIMIZATION ALGORITHM IN A DEPARTMENTAL STORE

    Directory of Open Access Journals (Sweden)

    Indrajit Bhattacharya

    2011-05-01

    Full Text Available The present paper proposes a departmental store automation system based on Radio Frequency Identification (RFID technology and Particle Swarm Optimization (PSO algorithm. The items in the departmental store spanned over different sections and in multiple floors, are tagged with passive RFID tags. The floor is divided into number of zones depending on different types of items that are placed in their respective racks. Each of the zones is placed with one RFID reader, which constantly monitors the items in their zone and periodically sends that information to the application. The problem of systematic periodic monitoring of the store is addressed in this application so that the locations, distributions and demands of every item in the store can be invigilated with intelligence. The proposed application is successfully demonstrated on a simulated case study.

  13. Energy-Aware Real-Time Task Scheduling for Heterogeneous Multiprocessors with Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Weizhe Zhang

    2014-01-01

    Full Text Available Energy consumption in computer systems has become a more and more important issue. High energy consumption has already damaged the environment to some extent, especially in heterogeneous multiprocessors. In this paper, we first formulate and describe the energy-aware real-time task scheduling problem in heterogeneous multiprocessors. Then we propose a particle swarm optimization (PSO based algorithm, which can successfully reduce the energy cost and the time for searching feasible solutions. Experimental results show that the PSO-based energy-aware metaheuristic uses 40%–50% less energy than the GA-based and SFLA-based algorithms and spends 10% less time than the SFLA-based algorithm in finding the solutions. Besides, it can also find 19% more feasible solutions than the SFLA-based algorithm.

  14. Extended particle swarm optimisation method for folding protein on triangular lattice.

    Science.gov (United States)

    Guo, Yuzhen; Wu, Zikai; Wang, Ying; Wang, Yong

    2016-02-01

    In this study, the authors studied the protein structure prediction problem by the two-dimensional hydrophobic-polar model on triangular lattice. Particularly the non-compact conformation was modelled to fold the amino acid sequence into a relatively larger triangular lattice, which is more biologically realistic and significant than the compact conformation. Then protein structure prediction problem was abstracted to match amino acids to lattice points. Mathematically, the problem was formulated as an integer programming and they transformed the biological problem into an optimisation problem. To solve this problem, classical particle swarm optimisation algorithm was extended by the single point adjustment strategy. Compared with square lattice, conformations on triangular lattice are more flexible in several benchmark examples. They further compared the authors' algorithm with hybrid of hill climbing and genetic algorithm. The results showed that their method was more effective in finding solution with lower energy and less running time.

  15. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  16. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Y. Labbi

    2015-08-01

    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  17. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning

    Science.gov (United States)

    Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng

    2016-02-01

    Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.

  18. The Optimization of a Cogeneration System for Commercial Buildings by the Particle Swarm Optimization

    Science.gov (United States)

    Miyazaki, Takahiko; Akisawa, Atsushi; Kashiwagi, Takao

    The cogeneration system provides electricity as well as heating and cooling, which consequently leads to a complexity of the design and operation of the system. It requires, therefore, the optimization of parameters such as the number of machines and the capacity of equipment. Generally, the problem can be expressed as a mixed integer nonlinear programming problem, and a lot of efforts would be required to solve it. In this paper, we present a different approach to the optimization of cogeneration systems, which facilitates to find a quasi-optimum solution. The particle swarm optimization combined with a simulation of the system is applied to the minimization of the primary energy consumption and of the system cost. The results present the optimum system constitutions for medium- and large-sized buildings. The result of the system cost minimization under a constraint of the energy saving rate is also discussed.

  19. Particle swarm optimization and its application in MEG source localization using single time sliced data

    Science.gov (United States)

    Lin, Juan; Liu, Chenglian; Guo, Yongning

    2014-10-01

    The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.

  20. Real Time Direction of Arrival Estimation in Noisy Environment Using Particle Swarm Optimization with Single Snapshot

    Directory of Open Access Journals (Sweden)

    Fawad Zaman

    2012-07-01

    Full Text Available In this study, we propose a method based on Particle Swarm Optimization for estimating Direction of Arrival of sources impinging on uniform linear array in the presence of noise. Mean Square Error is used as a fitness function which is optimum in nature and avoids any ambiguity among the angles that are supplement to each others. Multiple sources have been taken in the far field of the sensors array. In Case-I the sources are assumed to be far away from each other whereas, in case-II they are assumed to be close enough to each other. The reliability and effectiveness of this proposed algorithm is tested on the bases of comprehensive statistical analysis. The proposed algorithm require single snapshot and can be applied in real time situation.

  1. Particle swarm optimization for discrete-time inverse optimal control of a doubly fed induction generator.

    Science.gov (United States)

    Ruiz-Cruz, Riemann; Sanchez, Edgar N; Ornelas-Tellez, Fernando; Loukianov, Alexander G; Harley, Ronald G

    2013-12-01

    In this paper, the authors propose a particle swarm optimization (PSO) for a discrete-time inverse optimal control scheme of a doubly fed induction generator (DFIG). For the inverse optimal scheme, a control Lyapunov function (CLF) is proposed to obtain an inverse optimal control law in order to achieve trajectory tracking. A posteriori, it is established that this control law minimizes a meaningful cost function. The CLFs depend on matrix selection in order to achieve the control objectives; this matrix is determined by two mechanisms: initially, fixed parameters are proposed for this matrix by a trial-and-error method and then by using the PSO algorithm. The inverse optimal control scheme is illustrated via simulations for the DFIG, including the comparison between both mechanisms.

  2. QUANTUM INSPIRED PARTICLE SWARM COMBINED WITH LIN-KERNIGHAN-HELSGAUN METHOD TO THE TRAVELING SALESMAN PROBLEM

    Directory of Open Access Journals (Sweden)

    Bruno Avila Leal de Meirelles Herrera

    2015-12-01

    Full Text Available ABSTRACT The Traveling Salesman Problem (TSP is one of the most well-known and studied problems of Operations Research field, more specifically, in the Combinatorial Optimization field. As the TSP is a NP (Non-Deterministic Polynomial time-hard problem, there are several heuristic methods which have been proposed for the past decades in the attempt to solve it the best possible way. The aim of this work is to introduce and to evaluate the performance of some approaches for achieving optimal solution considering some symmetrical and asymmetrical TSP instances, which were taken from the Traveling Salesman Problem Library (TSPLIB. The analyzed approaches were divided into three methods: (i Lin-Kernighan-Helsgaun (LKH algorithm; (ii LKH with initial tour based on uniform distribution; and (iii an hybrid proposal combining Particle Swarm Optimization (PSO with quantum inspired behavior and LKH for local search procedure. The tested algorithms presented promising results in terms of computational cost and solution quality.

  3. [Fetal electrocardiogram extraction based on independent component analysis and quantum particle swarm optimizer algorithm].

    Science.gov (United States)

    Du, Yanqin; Huang, Hua

    2011-10-01

    Fetal electrocardiogram (FECG) is an objective index of the activities of fetal cardiac electrophysiology. The acquired FECG is interfered by maternal electrocardiogram (MECG). How to extract the fetus ECG quickly and effectively has become an important research topic. During the non-invasive FECG extraction algorithms, independent component analysis(ICA) algorithm is considered as the best method, but the existing algorithms of obtaining the decomposition of the convergence properties of the matrix do not work effectively. Quantum particle swarm optimization (QPSO) is an intelligent optimization algorithm converging in the global. In order to extract the FECG signal effectively and quickly, we propose a method combining ICA and QPSO. The results show that this approach can extract the useful signal more clearly and accurately than other non-invasive methods.

  4. Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration

    Science.gov (United States)

    Petković, Dalibor; Gocic, Milan; Shamshirband, Shahaboddin; Qasem, Sultan Noman; Trajkovic, Slavisa

    2016-08-01

    Accurate estimation of the reference evapotranspiration (ET0) is important for the water resource planning and scheduling of irrigation systems. For this purpose, the radial basis function network with particle swarm optimization (RBFN-PSO) and radial basis function network with back propagation (RBFN-BP) were used in this investigation. The FAO-56 Penman-Monteith equation was used as reference equation to estimate ET0 for Serbia during the period of 1980-2010. The obtained simulation results confirmed the proposed models and were analyzed using the root mean-square error (RMSE), the mean absolute error (MAE), and the coefficient of determination ( R 2). The analysis showed that the RBFN-PSO had better statistical characteristics than RBFN-BP and can be helpful for the ET0 estimation.

  5. Particle swarm optimization of a neural network model in a machining process

    Indian Academy of Sciences (India)

    Saurabh Garg; Karali Patra; Surjya K Pal

    2014-06-01

    This paper presents a particle swarm optimization (PSO) technique to train an artificial neural network (ANN) for prediction of flank wear in drilling, and compares the network performance with that of the back propagation neural network (BPNN). This analysis is carried out following a series of experiments employing high speed steel (HSS) drills for drilling on mild steel workpieces, under different sets of cutting conditions and noting the root mean square (RMS) value of spindle motor current as well as the average flank wear in each case. The results show that the PSO trained ANN not only gives better prediction results and reduced computational times compared to the BPNN, it is also a more robust model, being free of getting trapped in local optimum solutions unlike the latter. Besides, it offers the advantages of a straight-forward logic, simple realization and underlying intelligence.

  6. Design for Sustainability of Industrial Symbiosis based on Emergy and Multi-objective Particle Swarm Optimization

    DEFF Research Database (Denmark)

    Ren, Jingzheng; Liang, Hanwei; Dong, Liang

    2016-01-01

    approach for supporting decision-making in the design for the sustainability with the implementation of industrial symbiosis in chemical complex. Through incorporating the emergy theory, the model is formulated as a multi-objective approach that can optimize both the economic benefit and sustainable...... performance of the integrated industrial system. A set of emergy based evaluation index are designed. Multi-objective Particle Swarm Algorithm is proposed to solve the model, and the decision-makers are allowed to choose the suitable solutions form the Pareto solutions. An illustrative case has been studied...... by the proposed method, a few of compromises between high profitability and high sustainability can be obtained for the decision-makers/stakeholders to make decision....

  7. A combination of genetic algorithm and particle swarm optimization method for solving traveling salesman problem

    Directory of Open Access Journals (Sweden)

    Keivan Borna

    2015-12-01

    Full Text Available Traveling salesman problem (TSP is a well-established NP-complete problem and many evolutionary techniques like particle swarm optimization (PSO are used to optimize existing solutions for that. PSO is a method inspired by the social behavior of birds. In PSO, each member will change its position in the search space, according to personal or social experience of the whole society. In this paper, we combine the principles of PSO and crossover operator of genetic algorithm to propose a heuristic algorithm for solving the TSP more efficiently. Finally, some experimental results on our algorithm are applied in some instances in TSPLIB to demonstrate the effectiveness of our methods which also show that our algorithm can achieve better results than other approaches.

  8. DOA estimation for local scattered CDMA signals by particle swarm optimization.

    Science.gov (United States)

    Chang, Jhih-Chung

    2012-01-01

    This paper deals with the direction-of-arrival (DOA) estimation of local scattered code-division multiple access (CDMA) signals based on a particle swarm optimization (PSO) search. For conventional spectral searching estimators with local scattering, the searching complexity and estimating accuracy strictly depend on the number of search grids used during the search. In order to obtain high-resolution and accurate DOA estimation, a smaller grid size is needed. This is time consuming and it is unclear how to determine the required number of search grids. In this paper, a modified PSO is presented to reduce the required search grids for the conventional spectral searching estimator with the effects of local scattering. Finally, several computer simulations are provided for illustration and comparison.

  9. Comparison between Genetic Algorithms and Particle Swarm Optimization Methods on Standard Test Functions and Machine Design

    DEFF Research Database (Denmark)

    Nica, Florin Valentin Traian; Ritchie, Ewen; Leban, Krisztina Monika

    2013-01-01

    , genetic algorithm and particle swarm are shortly presented in this paper. These two algorithms are tested to determine their performance on five different benchmark test functions. The algorithms are tested based on three requirements: precision of the result, number of iterations and calculation time......Nowadays the requirements imposed by the industry and economy ask for better quality and performance while the price must be maintained in the same range. To achieve this goal optimization must be introduced in the design process. Two of the best known optimization algorithms for machine design....... Both algorithms are also tested on an analytical design process of a Transverse Flux Permanent Magnet Generator to observe their performances in an electrical machine design application....

  10. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    Science.gov (United States)

    Zhang, Chuan-Xin; Yuan, Yuan; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-09-01

    Considering features of stellar spectral radiation and sky surveys, we established a computational model for stellar effective temperatures, detected angular parameters and gray rates. Using known stellar flux data in some bands, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177 860 stellar effective temperatures and detected angular parameters using data from the Midcourse Space Experiment (MSX) catalog. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research makes full use of catalog data and presents an original technique for studying stellar characteristics. It proposes a novel method for calculating stellar effective temperatures and detecting angular parameters, and provides theoretical and practical data for finding information about radiation in any band.

  11. Particle swarm optimization method for the control of a fleet of Unmanned Aerial Vehicles

    Science.gov (United States)

    Belkadi, A.; Ciarletta, L.; Theilliol, D.

    2015-11-01

    This paper concerns a control approach of a fleet of Unmanned Aerial Vehicles (UAV) based on virtual leader. Among others, optimization methods are used to develop the virtual leader control approach, particularly the particle swarm optimization method (PSO). The goal is to find optimal positions at each instant of each UAV to guarantee the best performance of a given task by minimizing a predefined objective function. The UAVs are able to organize themselves on a 2D plane in a predefined architecture, following a mission led by a virtual leader and simultaneously avoiding collisions between various vehicles of the group. The global proposed method is independent from the model or the control of a particular UAV. The method is tested in simulation on a group of UAVs whose model is treated as a double integrator. Test results for the different cases are presented.

  12. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Science.gov (United States)

    Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela

    2016-01-01

    Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  13. Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation

    Science.gov (United States)

    Liu, Qiang; Wang, Chengen

    2012-08-01

    Computer-aided design of pipe routing is of fundamental importance for complex equipments' developments. In this article, non-rectilinear branch pipe routing with multiple terminals that can be formulated as a Euclidean Steiner Minimal Tree with Obstacles (ESMTO) problem is studied in the context of an aeroengine-integrated design engineering. Unlike the traditional methods that connect pipe terminals sequentially, this article presents a new branch pipe routing algorithm based on the Steiner tree theory. The article begins with a new algorithm for solving the ESMTO problem by using particle swarm optimisation (PSO), and then extends the method to the surface cases by using geodesics to meet the requirements of routing non-rectilinear pipes on the surfaces of aeroengines. Subsequently, the adaptive region strategy and the basic visibility graph method are adopted to increase the computation efficiency. Numeral computations show that the proposed routing algorithm can find satisfactory routing layouts while running in polynomial time.

  14. Particle Swarm Optimization and gravitational wave data analysis: Performance on a binary inspiral testbed

    CERN Document Server

    Wang, Yan

    2010-01-01

    The detection and estimation of gravitational wave (GW) signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Due to noise in the data, the function to be maximized is often highly multi-modal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the Particle Swarm Optimization (PSO) method in this context. The method is applied to a testbed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that PSO works well in the presence of high multi-modality, making it a viable candidate method for further applications in GW data analysis.

  15. A Hybrid Multi Objective Particle Swarm Optimization Method to Discover Biclusters in Microarray Data

    CERN Document Server

    lashkargir, Mohsen; Dastjerdi, Ahmad Baraani

    2009-01-01

    In recent years, with the development of microarray technique, discovery of useful knowledge from microarray data has become very important. Biclustering is a very useful data mining technique for discovering genes which have similar behavior. In microarray data, several objectives have to be optimized simultaneously and often these objectives are in conflict with each other. A Multi Objective model is capable of solving such problems. Our method proposes a Hybrid algorithm which is based on the Multi Objective Particle Swarm Optimization for discovering biclusters in gene expression data. In our method, we will consider a low level of overlapping amongst the biclusters and try to cover all elements of the gene expression matrix. Experimental results in the bench mark database show a significant improvement in both overlap among biclusters and coverage of elements in the gene expression matrix.

  16. An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization

    Indian Academy of Sciences (India)

    S Ganapathy; R Sethukkarasi; P Yogesh; P Vijayakumar; A Kannan

    2014-04-01

    In this paper, we propose a new pattern classification system by combining Temporal features with Fuzzy Min–Max (TFMM) neural network based classifier for effective decision support in medical diagnosis. Moreover, a Particle Swarm Optimization (PSO) algorithm based rule extractor is also proposed in this work for improving the detection accuracy. Intelligent fuzzy rules are extracted from the temporal features with Fuzzy Min–Max neural network based classifier, and then PSO rule extractor is used to minimize the number of features in the extracted rules. We empirically evaluated the effectiveness of the proposed TFMM-PSO system using the UCI Machine Learning Repository Data Set. The results are analysed and compared with other published results. In addition, the detection accuracy is validated by using the ten-fold cross validation.

  17. Improved cuckoo search with particle swarm optimization for classification of compressed images

    Indian Academy of Sciences (India)

    Vamsidhar Enireddy; Reddi Kiran Kumar

    2015-12-01

    The need for a general purpose Content Based Image Retrieval (CBIR) system for huge image databases has attracted information-technology researchers and institutions for CBIR techniques development. These techniques include image feature extraction, segmentation, feature mapping, representation, semantics, indexing and storage, image similarity-distance measurement and retrieval making CBIR system development a challenge. Since medical images are large in size running to megabits of data they are compressed to reduce their size for storage and transmission. This paper investigates medical image retrieval problem for compressed images. An improved image classification algorithm for CBIR is proposed. In the proposed method, RAW images are compressed using Haar wavelet. Features are extracted using Gabor filter and Sobel edge detector. The extracted features are classified using Partial Recurrent Neural Network (PRNN). Since training parameters in Neural Network are NP hard, a hybrid Particle Swarm Optimization (PSO) – Cuckoo Search algorithm (CS) is proposed to optimize the learning rate of the neural network.

  18. Solving resource availability cost problem in project scheduling by pseudo particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Jianjun Qi; Bo Guo; Hongtao Lei; Tao Zhang

    2014-01-01

    This paper considers a project scheduling problem with the objective of minimizing resource availability costs appealed to finish al activities before the deadline. There are finish-start type precedence relations among the activities which require some kinds of renewable resources. We predigest the process of sol-ving the resource availability cost problem (RACP) by using start time of each activity to code the schedule. Then, a novel heuris-tic algorithm is proposed to make the process of looking for the best solution efficiently. And then pseudo particle swarm optimiza-tion (PPSO) combined with PSO and path relinking procedure is presented to solve the RACP. Final y, comparative computational experiments are designed and the computational results show that the proposed method is very effective to solve RACP.

  19. Weighted Fuzzy Interpolative Reasoning Based on the Slopes of Fuzzy Sets and Particle Swarm Optimization Techniques.

    Science.gov (United States)

    Chen, Shyi-Ming; Hsin, Wen-Chyuan

    2015-07-01

    In this paper, we propose a new weighted fuzzy interpolative reasoning method for sparse fuzzy rule-based systems based on the slopes of fuzzy sets. We also propose a particle swarm optimization (PSO)-based weights-learning algorithm to automatically learn the optimal weights of the antecedent variables of fuzzy rules for weighted fuzzy interpolative reasoning. We apply the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm to deal with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems. The experimental results show that the proposed weighted fuzzy interpolative reasoning method using the proposed PSO-based weights-learning algorithm outperforms the existing methods for dealing with the computer activity prediction problem, the multivariate regression problems, and the time series prediction problems.

  20. Improved wavelet neural network combined with particle swarm optimization algorithm and its application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An improved wavelet neural network algorithm which combines with particle swarm optimization was proposed to avoid encountering the curse of dimensionality and overcome the shortage in the responding speed and learning ability brought about by the traditional models. Based on the operational data provided by a regional power grid in the south of China, the method was used in the actual short term load forecasting. The results show that the average time cost of the proposed method in the experiment process is reduced by 12.2 s, and the precision of the proposed method is increased by 3.43% compared to the traditional wavelet network. Consequently, the improved wavelet neural network forecasting model is better than the traditional wavelet neural network forecasting model in both forecasting effect and network function.

  1. APPLICATION OF A PARTICLE SWARM OPTIMIZATION IN AN OPTIMAL POWER FLOW

    Directory of Open Access Journals (Sweden)

    D. Ben Attous

    2015-08-01

    Full Text Available In this paper an efficient and Particle Swarm Optimization (PSO has been presented for solving the economic dispatch problem. The objective is to minimize the total generation fuel and keep the power outputs of generators; bus voltages and transformer tap setting in their secure limits. The conventional load flow and incorporation of the proposed method using PSO has been examined and tested for standard IEEE 30 bus system. The PSO method is demonstrated and compared with conventional OPF method (NR, Quasi Newton, and the intelligence heuristic algorithms such ac genetic algorithm, evolutionary programming.From simulation results it has been found that PSO method is highly competitive for its better general convergence performance.

  2. APPLICATION OF A PARTICLE SWARM OPTIMIZATION IN AN OPTIMAL POWER FLOW

    Directory of Open Access Journals (Sweden)

    D. Ben Attous

    2010-12-01

    Full Text Available In this paper an efficient and Particle Swarm Optimization (PSO has been presented for solving the economic dispatch problem. The objective is to minimize the total generation fuel and keep the power outputs of generators; bus voltages and transformer tap setting in their secure limits. The conventional load flow and incorporation of the proposed method using PSO has been examined and tested for standard IEEE 30 bus system. The PSO method is demonstrated and compared with conventional OPF method (NR, Quasi Newton, and the intelligence heuristic algorithms such ac genetic algorithm, evolutionary programming. From simulation results it has been found that PSO method is highly competitive for its better general convergence performance.

  3. Optimal Bidding Strategies using New Aggregated Demand Model with Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Dr.B.Subramanyam

    2013-02-01

    Full Text Available In this paper, Particle Swarm optimization(PSO and Artificial Bee Colony (ABC algorithms are used to determine the optimal bidding strategy in competitive auction market implementation. The deregulated power industry meets the challenges of increase their profits and also minimize the associadted risks of the system. Themarket includes generating companies(Gencos and large Consumers. The demand prediction of the system has been determined by the neural network, which is trained by using the previous day demand dataset, the training process is achieved by the back propagation algorithm. The fitness of the system compared with PSO and ABC technique, the maximized fitness is the optimal bidding strategy of the system . The results for two techniques will be analyzed in this paper. The implementation of the two techniques could be implemented in theMATLAB Platform.

  4. Array Pattern Synthesis Using Particle Swarm Optimization with Dynamic Inertia Weight

    Directory of Open Access Journals (Sweden)

    Chuang Han

    2016-01-01

    Full Text Available A Feedback Particle Swarm Optimization (FPSO with a family of fitness functions is proposed to minimize sidelobe level (SLL and control null. In order to search in a large initial space and converge fast in local space to a refined solution, a FPSO with nonlinear inertia weight algorithm is developed, which is determined by a subtriplicate function with feedback taken from the fitness of the best previous position. The optimized objectives in the fitness function can obtain an accurate null level independently. The directly constrained SLL range reveals the capability to reduce SLL. Considering both element positions and complex weight coefficients, a low-level SLL, accurate null at specific directions, and constrained main beam are achieved. Numerical examples using a uniform linear array of isotropic elements are simulated, which demonstrate the effectiveness of the proposed array pattern synthesis approach.

  5. Particle swarm optimization for optimal sensor placement in ultrasonic SHM systems

    Science.gov (United States)

    Blanloeuil, Philippe; Nurhazli, Nur A. E.; Veidt, Martin

    2016-04-01

    A Particle Swarm Optimization (PSO) algorithm is used to improve sensors placement in an ultrasonic Structural Health Monitoring (SHM) system where the detection is performed through the beam-forming imaging algorithm. The imaging algorithm reconstructs the defect image and estimates its location based on analytically generated signals, considering circular through hole damage in an aluminum plate as the tested structure. Then, the PSO algorithm changes the position of sensors to improve the accuracy of the detection. Thus, the two algorithms are working together iteratively to optimize the system configuration, taking into account a complete modeling of the SHM system. It is shown that this approach can provide good sensors placements for detection of multiple defects in the target area, and for different numbers of sensors.

  6. Geometric Optimization of Three-Phalanx Prosthesis Underactuated Fingers using Particles Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Somar M. Nacy

    2009-01-01

    Full Text Available Problem statement: One are now interested to investigate the optimum design procedure for a finger driving mechanism to have a good configuration of the finger for its utilization in hand prosthesis. A Geometric Optimization of Three-Phalanx Prosthesis Underactuated Fingers (TPPUF based on a Particle Swarm Optimization (PSO was presented. Approach: Firstly, a numerical evaluation of the human-like motion was obtained by using an anthropomorphic finger mechanism. Secondly, the dimensional design of a finger driving mechanism had been formulated as a multi-objective optimization problem by using evaluation criteria for fundamental characteristics that were associated with finger motion, grasping equilibrium and force transmission. Results: Testing results indicated that the proposed PSO gives high-quality result and shorter computation time compared with genetic algorithm. Conclusion: Using the PSO Algorithm with the Matlab-software, it is possible to identify all the necessary parameters of the mathematical models.

  7. Reduction of Key Search Space of Vigenere Cipher Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ganapathi Sivagurunathan

    2011-01-01

    Full Text Available Problem statement: With the demand for effective network security is increasing, it becomes necessary to find the strength and weaknesses of the existing cryptographic methods. Vigenere cipher, a classical cipher is analyzed for its strength against a cipher only attack. Approach: The cipher texts so selected were of various sizes up to 1 Kb. A biologically inspired algorithm, Particle Swarm Optimization (PSO was applied to the problem of crypt analyzing the Vigenere cipher. PSO was an optimization technique and its used on the problem of optimizing the fitness function designed for Vigenere cipher was performed. Results: It was seen that PSO is able to find the keyword employed and the other possible combinations for the keyword. Conclusion: PSO is better than genetic algorithm to solve Vigenere cipher and can be used to find the keyword with lesser size.

  8. Product demand forecasts using wavelet kernel support vector machine and particle swarm optimization in manufacture system

    Science.gov (United States)

    Wu, Qi

    2010-03-01

    Demand forecasts play a crucial role in supply chain management. The future demand for a certain product is the basis for the respective replenishment systems. Aiming at demand series with small samples, seasonal character, nonlinearity, randomicity and fuzziness, the existing support vector kernel does not approach the random curve of the sales time series in the space (quadratic continuous integral space). In this paper, we present a hybrid intelligent system combining the wavelet kernel support vector machine and particle swarm optimization for demand forecasting. The results of application in car sale series forecasting show that the forecasting approach based on the hybrid PSOWv-SVM model is effective and feasible, the comparison between the method proposed in this paper and other ones is also given, which proves that this method is, for the discussed example, better than hybrid PSOv-SVM and other traditional methods.

  9. MULTIMODAL BIOMETRIC AUTHENTICATION USING PARTICLE SWARM OPTIMIZATION ALGORITHM WITH FINGERPRINT AND IRIS

    Directory of Open Access Journals (Sweden)

    A. Muthukumar

    2012-02-01

    Full Text Available In general, the identification and verification are done by passwords, pin number, etc., which is easily cracked by others. In order to overcome this issue biometrics is a unique tool for authenticate an individual person. Nevertheless, unimodal biometric is suffered due to noise, intra class variations, spoof attacks, non-universality and some other attacks. In order to avoid these attacks, the multimodal biometrics i.e. combining of more modalities is adapted. In a biometric authentication system, the acceptance or rejection of an entity is dependent on the similarity score falling above or below the threshold. Hence this paper has focused on the security of the biometric system, because compromised biometric templates cannot be revoked or reissued and also this paper has proposed a multimodal system based on an evolutionary algorithm, Particle Swarm Optimization that adapts for varying security environments. With these two concerns, this paper had developed a design incorporating adaptability, authenticity and security.

  10. Optimizing the Shunting Schedule of Electric Multiple Units Depot Using an Enhanced Particle Swarm Optimization Algorithm

    Science.gov (United States)

    Jin, Junchen

    2016-01-01

    The shunting schedule of electric multiple units depot (SSED) is one of the essential plans for high-speed train maintenance activities. This paper presents a 0-1 programming model to address the problem of determining an optimal SSED through automatic computing. The objective of the model is to minimize the number of shunting movements and the constraints include track occupation conflicts, shunting routes conflicts, time durations of maintenance processes, and shunting running time. An enhanced particle swarm optimization (EPSO) algorithm is proposed to solve the optimization problem. Finally, an empirical study from Shanghai South EMU Depot is carried out to illustrate the model and EPSO algorithm. The optimization results indicate that the proposed method is valid for the SSED problem and that the EPSO algorithm outperforms the traditional PSO algorithm on the aspect of optimality. PMID:27436998

  11. Neural Model with Particle Swarm Optimization Kalman Learning for Forecasting in Smart Grids

    Directory of Open Access Journals (Sweden)

    Alma Y. Alanis

    2013-01-01

    Full Text Available This paper discusses a novel training algorithm for a neural network architecture applied to time series prediction with smart grids applications. The proposed training algorithm is based on an extended Kalman filter (EKF improved using particle swarm optimization (PSO to compute the design parameters. The EKF-PSO-based algorithm is employed to update the synaptic weights of the neural network. The size of the regression vector is determined by means of the Cao methodology. The proposed structure captures more efficiently the complex nature of the wind speed, energy generation, and electrical load demand time series that are constantly monitorated in a smart grid benchmark. The proposed model is trained and tested using real data values in order to show the applicability of the proposed scheme.

  12. THD Minimization from H-Bridge Cascaded Multilevel Inverter Using Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    MUDASIR AHMED MEMON

    2017-01-01

    Full Text Available In this paper, PSO (Particle Swarm Optimization based technique is proposed to derive optimized switching angles that minimizes the THD (Total Harmonic Distortion and reduces the effect of selected low order non-triple harmonics from the output of the multilevel inverter. Conventional harmonic elimination techniques have plenty of limitations, and other heuristic techniques also not provide the satisfactory results. In this paper, single phase symmetrical cascaded H-Bridge 11-Level multilevel inverter is considered, and proposed algorithm is utilized to obtain the optimized switching angles that reduced the effect of 5th, 7th, 11th and 13th non-triplen harmonics from the output voltage of the multilevel inverter. A simulation result indicates that this technique outperforms other methods in terms of minimizing THD and provides high-quality output voltage waveform.

  13. Generation expansion planning in Pool market: A hybrid modified game theory and particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Moghddas-Tafreshi, S.M. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shayanfar, H.A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saliminia Lahiji, A. [Department of Electrical Engineering, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Rabiee, A. [Center of Excellence for Power System Automation and Operation, Department of Electrical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Aghaei, J., E-mail: aghaei@iust.ac.i [Department of Electrical and Electronic Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of)

    2011-02-15

    Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each GENeration COmpany (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a modified game theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, a particle swarm optimization (PSO) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-types of power plants. The results show that the presented method is both satisfactory and consistent with expectation.

  14. Energy and operation management of a microgrid using particle swarm optimization

    Science.gov (United States)

    Radosavljević, Jordan; Jevtić, Miroljub; Klimenta, Dardan

    2016-05-01

    This article presents an efficient algorithm based on particle swarm optimization (PSO) for energy and operation management (EOM) of a microgrid including different distributed generation units and energy storage devices. The proposed approach employs PSO to minimize the total energy and operating cost of the microgrid via optimal adjustment of the control variables of the EOM, while satisfying various operating constraints. Owing to the stochastic nature of energy produced from renewable sources, i.e. wind turbines and photovoltaic systems, as well as load uncertainties and market prices, a probabilistic approach in the EOM is introduced. The proposed method is examined and tested on a typical grid-connected microgrid including fuel cell, gas-fired microturbine, wind turbine, photovoltaic and energy storage devices. The obtained results prove the efficiency of the proposed approach to solve the EOM of the microgrids.

  15. A coordinated dispatch model for electricity and heat in a Microgrid via particle swarm optimization

    DEFF Research Database (Denmark)

    Xu, Lizhong; Yang, Guangya; Xu, Zhao

    2013-01-01

    This paper develops a coordinated electricity and heat dispatching model for Microgrid under day-ahead environment. In addition to operational constraints, network loss and physical limits are addressed in this model, which are always ignored in previous work. As an important component of Microgrid......, detailed combined heat and power (CHP) model is developed. The part load performance of CHP is modeled by curve fitting method. Furthermore, electric heater is introduced into the model to improve the economy of Microgrid operation and enhance the flexibility of the Microgrid by electricity-heat conversion....... Particle swarm optimization (PSO) is employed to solve this model for the operation schedule to minimize the total operational cost of Microgrid by coordinating the CHP, electric heater, boiler and heat storage. The efficacy of the model and methodology is verified with different operation scenarios....

  16. ARIMA Model Estimated by Particle Swarm Optimization Algorithm for Consumer Price Index Forecasting

    Science.gov (United States)

    Wang, Hongjie; Zhao, Weigang

    This paper presents an ARIMA model which uses particle swarm optimization algorithm (PSO) for model estimation. Because the traditional estimation method is complex and may obtain very bad results, PSO which can be implemented with ease and has a powerful optimizing performance is employed to optimize the coefficients of ARIMA. In recent years, inflation and deflation plague the world moreover the consumer price index (CPI) which is a measure of the average price of consumer goods and services purchased by households is usually observed as an important indicator of the level of inflation, so the forecast of CPI has been focused on by both scientific community and relevant authorities. Furthermore, taking the forecast of CPI as a case, we illustrate the improvement of accuracy and efficiency of the new method and the result shows it is predominant in forecasting.

  17. Reliability Optimization of Radial Distribution Systems Employing Differential Evolution and Bare Bones Particle Swarm Optimization

    Science.gov (United States)

    Kela, K. B.; Arya, L. D.

    2014-09-01

    This paper describes a methodology for determination of optimum failure rate and repair time for each section of a radial distribution system. An objective function in terms of reliability indices and their target values is selected. These indices depend mainly on failure rate and repair time of a section present in a distribution network. A cost is associated with the modification of failure rate and repair time. Hence the objective function is optimized subject to failure rate and repair time of each section of the distribution network considering the total budget allocated to achieve the task. The problem has been solved using differential evolution and bare bones particle swarm optimization. The algorithm has been implemented on a sample radial distribution system.

  18. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-03-13

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  19. Hierarchical winner-take-all particle swarm optimization social network for neural model fitting.

    Science.gov (United States)

    Coventry, Brandon S; Parthasarathy, Aravindakshan; Sommer, Alexandra L; Bartlett, Edward L

    2017-02-01

    Particle swarm optimization (PSO) has gained widespread use as a general mathematical programming paradigm and seen use in a wide variety of optimization and machine learning problems. In this work, we introduce a new variant on the PSO social network and apply this method to the inverse problem of input parameter selection from recorded auditory neuron tuning curves. The topology of a PSO social network is a major contributor to optimization success. Here we propose a new social network which draws influence from winner-take-all coding found in visual cortical neurons. We show that the winner-take-all network performs exceptionally well on optimization problems with greater than 5 dimensions and runs at a lower iteration count as compared to other PSO topologies. Finally we show that this variant of PSO is able to recreate auditory frequency tuning curves and modulation transfer functions, making it a potentially useful tool for computational neuroscience models.

  20. A Novel Method for Edge Detection in Images Based on Particle Swarm Optimization

    Science.gov (United States)

    Baby Sherin, C.; Mredhula, L.

    2017-01-01

    Edges give important structural information about the images. Edge detection is a process of identifying and locating the edges in an image. Edges are the points where discontinuity of intensity occurs. It also represents the boundaries of objects in images. In this paper a new edge detection method based on Particle Swarm Optimization is discussed. The proposed method uses morphological operations and a thresholding technique to improve the result of edge detector. This algorithm performs better in images comparing to other traditional methods of edge detection. The performance of proposed method is compared with traditional edge detection methods such as Sobel, Prewitt, Laplacian of Gaussian and Canny with parameters Baddeley's Delta Metric. Statistical analysis is performed to evaluate accuracy of edge detection techniques.

  1. Two image denoising approaches based on wavelet neural network and particle swarm optimization

    Institute of Scientific and Technical Information of China (English)

    Yunyi Yan; Baolong Guo

    2007-01-01

    Two image denoising approaches based on wavelet neural network (WNN) optimized by particle swarm optimization (PSO) are proposed. The noisy image is filtered by the modified median filtering (MMF).Feature values are extracted based on the MMF and then normalized in order to avoid data scattering. In approach 1, WNN is used to tell those uncorrupted but filtered by MMF and then the pixels are restored to their original values while other pixels will retain. In approach 2, WNN distinguishes the corrupted pixels and then these pixels are replaced by MMF results while other pixels retain. WNN can be seen as a classifier to distinguish the corrupted or uncorrupted pixels from others in both approaches. PSO is adopted to optimize and train the WNN for its low requirements and easy employment. Experiments have shown that in terms of peak signal-to-noise ratio (PSNR) and subjective image quality, both proposed approaches are superior to traditional median filtering.

  2. Estimating stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization

    CERN Document Server

    Zhang, Chuan-Xin; Zhang, Hao-Wei; Shuai, Yong; Tan, He-Ping

    2016-01-01

    Considering features of stellar spectral radiation and survey explorers, we established a computational model for stellar effective temperatures, detected angular parameters, and gray rates. Using known stellar flux data in some band, we estimated stellar effective temperatures and detected angular parameters using stochastic particle swarm optimization (SPSO). We first verified the reliability of SPSO, and then determined reasonable parameters that produced highly accurate estimates under certain gray deviation levels. Finally, we calculated 177,860 stellar effective temperatures and detected angular parameters using the Midcourse Space Experiment (MSX) catalog data. These derived stellar effective temperatures were accurate when we compared them to known values from literatures. This research made full use of catalog data and presented an original technique for studying stellar characteristics. It proposed a novel method for calculating stellar effective temperatures and detected angular parameters, and pro...

  3. Application of quantum-behaved particle swarm optimization to motor imagery EEG classification.

    Science.gov (United States)

    Hsu, Wei-Yen

    2013-12-01

    In this study, we propose a recognition system for single-trial analysis of motor imagery (MI) electroencephalogram (EEG) data. Applying event-related brain potential (ERP) data acquired from the sensorimotor cortices, the system chiefly consists of automatic artifact elimination, feature extraction, feature selection and classification. In addition to the use of independent component analysis, a similarity measure is proposed to further remove the electrooculographic (EOG) artifacts automatically. Several potential features, such as wavelet-fractal features, are then extracted for subsequent classification. Next, quantum-behaved particle swarm optimization (QPSO) is used to select features from the feature combination. Finally, selected sub-features are classified by support vector machine (SVM). Compared with without artifact elimination, feature selection using a genetic algorithm (GA) and feature classification with Fisher's linear discriminant (FLD) on MI data from two data sets for eight subjects, the results indicate that the proposed method is promising in brain-computer interface (BCI) applications.

  4. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  5. Penyelesaian Masalah Penempatan Fasilitas dengan Algoritma Estimasi Distribusi dan Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Amalia Utamima

    2016-11-01

    Full Text Available The layout positioning problem of facilities on a straight line is known as Single Row Facility Layout Problem (PFSB. Categorized as NP-Complete problem, PFSB aim to arrange the layout so that the sum of distances between all facilities’ pairs can be minimized. Estimation of Distribution Algorithm (EDA improves the solution quality efficiently in first few runs, but the diversity lost grows rapidly as more iterations are run. To maintain the diversity, hybridization with meta-heuristic algorithms is needed. This research proposes EDAPSO, an algorithm which consists of hybridization of EDA and Particle Swarm Optimization (PSO. The objective of this research is to test the performance of EDAPSO algorithm for solving PFSB. EDAPSO’s performance is tested in 10 benchmark problems of PFSB and it successfully achieves optimum solution.

  6. A time performance comparison of particle swarm optimization in mobile devices

    Directory of Open Access Journals (Sweden)

    Prieto Luis Antonio Beltrán

    2016-01-01

    Full Text Available This paper deals with the comparison of three implementations of Particle Swarm Optimization (PSO, which is a powerful algorithm utilized for optimization purposes. Xamarin, a cross-platform development software, was used to build a single C# application capable of being executed on three different mobile operating systems (OS devices, namely Android, iOS, and Windows Mobile 10, with native level performance. Seven thousand tests comprising PSO evaluations of seven benchmark functions were carried out per mobile OS. A statistical evaluation of time performance of the test set running on three similar devices –each running a different mobile OS– is presented and discussed. Our findings show that PSO running on Windows Mobile 10 and iOS devices have a better performance in computation time than in Android.

  7. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    Energy Technology Data Exchange (ETDEWEB)

    Pang, X., E-mail: xpang@lanl.gov; Rybarcyk, L.J.

    2014-03-21

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.

  8. Multi-objective particle swarm and genetic algorithm for the optimization of the LANSCE linac operation

    Science.gov (United States)

    Pang, X.; Rybarcyk, L. J.

    2014-03-01

    Particle swarm optimization (PSO) and genetic algorithm (GA) are both nature-inspired population based optimization methods. Compared to GA, whose long history can trace back to 1975, PSO is a relatively new heuristic search method first proposed in 1995. Due to its fast convergence rate in single objective optimization domain, the PSO method has been extended to optimize multi-objective problems. In this paper, we will introduce the PSO method and its multi-objective extension, the MOPSO, apply it along with the MOGA (mainly the NSGA-II) to simulations of the LANSCE linac and operational set point optimizations. Our tests show that both methods can provide very similar Pareto fronts but the MOPSO converges faster.

  9. Target Channel Visiting Order Design Using Particle Swarm Optimization for Spectrum Handoff in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Shilian Zheng

    2014-08-01

    Full Text Available In a dynamic spectrum access network, when a primary user (licensed user reappears on the current channel, cognitive radios (CRs need to vacate the channel and reestablish a communications link on some other channel to avoid interference to primary users, resulting in spectrum handoff. This paper studies the problem of designing target channel visiting order for spectrum handoff to minimize expected spectrum handoff delay. A particle swarm optimization (PSO based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithm performs far better than random target channel visiting scheme. The solutions obtained by PSO are very close to the optimal solution which further validates the effectiveness of the proposed method.

  10. Optimal PID Controller Tuning for Multivariable Aircraft Longitudinal Autopilot Based on Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mostafa Lotfi Forushani

    2012-04-01

    Full Text Available This paper presents an optimized controller around the longitudinal axis of multivariable system in one of the aircraft flight conditions. The controller is introduced in order to control the angle of attack from the pitch attitude angle independently (that is required for designing a set of direct force-modes for the longitudinal axis based on particle swarm optimization (PSO algorithm. The autopilot system for military or civil aircraft is an essential component and in this paper, the autopilot system via 6 degree of freedom model for the control and guidance of aircraft in which the autopilot design will perform based on defining the longitudinal and the lateral-directional axes are supposed. The effectiveness of the proposed controller is illustrated by considering HIMAT aircraft. The simulation results verify merits of the proposed controller.

  11. Transmission Expansion Planning – A Multiyear Dynamic Approach Using a Discrete Evolutionary Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Saraiva J. T.

    2012-10-01

    Full Text Available The basic objective of Transmission Expansion Planning (TEP is to schedule a number of transmission projects along an extended planning horizon minimizing the network construction and operational costs while satisfying the requirement of delivering power safely and reliably to load centres along the horizon. This principle is quite simple, but the complexity of the problem and the impact on society transforms TEP on a challenging issue. This paper describes a new approach to solve the dynamic TEP problem, based on an improved discrete integer version of the Evolutionary Particle Swarm Optimization (EPSO meta-heuristic algorithm. The paper includes sections describing in detail the EPSO enhanced approach, the mathematical formulation of the TEP problem, including the objective function and the constraints, and a section devoted to the application of the developed approach to this problem. Finally, the use of the developed approach is illustrated using a case study based on the IEEE 24 bus 38 branch test system.

  12. Potential Odor Intensity Grid Based UAV Path Planning Algorithm with Particle Swarm Optimization Approach

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available This paper proposes a potential odor intensity grid based optimization approach for unmanned aerial vehicle (UAV path planning with particle swarm optimization (PSO technique. Odor intensity is created to color the area in the searching space with highest probability where candidate particles may locate. A potential grid construction operator is designed for standard PSO based on different levels of odor intensity. The potential grid construction operator generates two potential location grids with highest odor intensity. Then the middle point will be seen as the final position in current particle dimension. The global optimum solution will be solved as the average. In addition, solution boundaries of searching space in each particle dimension are restricted based on properties of threats in the flying field to avoid prematurity. Objective function is redesigned by taking minimum direction angle to destination into account and a sampling method is introduced. A paired samples t-test is made and an index called straight line rate (SLR is used to evaluate the length of planned path. Experiments are made with other three heuristic evolutionary algorithms. The results demonstrate that the proposed method is capable of generating higher quality paths efficiently for UAV than any other tested optimization techniques.

  13. A Particle Swarm Optimization Variant with an Inner Variable Learning Strategy

    Directory of Open Access Journals (Sweden)

    Guohua Wu

    2014-01-01

    Full Text Available Although Particle Swarm Optimization (PSO has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.

  14. 粒子群遗传算法及其应用%Particle Swarm Genetic Algorithm and Its Application

    Institute of Scientific and Technical Information of China (English)

    刘成洋; 阎昌琪; 王建军; 刘振海

    2012-01-01

    针对标准粒子群算法在处理非线性约束优化问题时存在收敛速度慢和易陷入局部最优的缺点,设计了一种粒子群遗传算法.该算法采用可行性原则处理约束条件,避免罚函数法中惩罚因子选取的困难;随机产生初始可行群体,加快粒子群收敛速度;引入遗传算法的交叉和变异策略,避免粒子群陷入局部最优.通过对典型测试函数的优化计算,表明粒子群遗传算法有较好的优化性能.将该算法应用在核动力装置优化中,优化效果显著.%To solve the problems of slow convergence speed and tendency to fall into the local optimum of the standard particle swarm optimization while dealing with nonlinear constraint optimization problem, a particle swarm genetic algorithm is designed. The proposed algorithm adopts feasibility principle handles constraint conditions and avoids the difficulty of penalty function method in selecting punishment factor, generates initial feasible group randomly, which accelerates particle swarm convergence speed, and introduces genetic algorithm crossover and mutation strategy to avoid particle swarm falls into the local optimum. Through the optimization calculation of the typical test functions, the results show that particle swarm genetic algorithm has better optimized performance. The algorithm is applied in nuclear power plant optimization, and the optimization results are significantly.

  15. Association Rule Mining for Both Frequent and Infrequent Items Using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    MIR MD. JAHANGIR KABIR

    2014-07-01

    Full Text Available In data mining research, generating frequent items from large databases is one of the important issues and the key factor for implementing association rule mining tasks. Mining infrequent items such as relationships among rare but expensive products is another demanding issue which have been shown in some recent studies. Therefore this study considers user assigned threshold values as a constraint which helps users mine those rules which are more interesting for them. In addition, in real world users may prefer to know relationships among frequent items along with infrequent ones. The particle swarm optimization algorithm is an important heuristic technique in recent years and this study uses this technique to mine association rules effectively. If this technique considers user defined threshold values, interesting association rules can be generated more efficiently. Therefore this study proposes a novel approach which includes using particle swarm optimization algorithm to mine association rules from databases. Our implementation of the search strategy includes bitmap representation of nodes in a lexicographic tree and from superset-subset relationship of the nodes it classifies frequent items along with infrequent itemsets. In addition, this approach avoids extra calculation overhead for generating frequent pattern trees and handling large memory which store the support values of candidate item sets. Our experimental results show that this approach efficiently mines association rules. It accesses a database to calculate a support value for fewer numbers of nodes to find frequent itemsets and from that it generates association rules, which dramatically reduces search time. The main aim of this proposed algorithm is to show how heuristic method works on real databases to find all the interesting association rules in an efficient way.

  16. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei

    2013-05-06

    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  17. Chaotic dynamics in charged-particle beams: Possible analogs of galactic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Courtlandt L.; /Northern Illinois U. /Fermilab

    2004-12-01

    During the last couple of years of his life, Henry Kandrup became intensely interested in using charged-particle beams as a tool for exploring the dynamics of evolving galaxies. He and I recognized that both galaxies and charged-particle beams can exhibit collisionless relaxation on surprisingly short time scales, and that this circumstance can be attributed to phase mixing of chaotic orbits. The chaos is often triggered by resonances caused by time dependence in the bulk potential, which acts almost identically for attractive gravitational forces as for repulsive electrostatic forces superposed on external focusing forces. Together we published several papers concerning evolving beams and galaxies, papers that relate to diverse topics such as the physics of chaotic mixing, the applicability of the Vlasov-Poisson formalism, and the production of diffuse halos. We also teamed with people from the University of Maryland to begin designing controlled experiments to be done at the University of Maryland Electron Ring. This paper highlights our collaborative findings as well as plans for future investigations that the findings have motivated.

  18. Hybridizing Particle Swarm Optimization and Differential Evolution for the Mobile Robot Global Path Planning

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-05-01

    Full Text Available Global path planning is a challenging issue in the filed of mobile robotics due to its complexity and the nature of nondeterministic polynomial-time hard (NP-hard. Particle swarm optimization (PSO has gained increasing popularity in global path planning due to its simplicity and high convergence speed. However, since the basic PSO has difficulties balancing exploration and exploitation, and suffers from stagnation, its efficiency in solving global path planning may be restricted. Aiming at overcoming these drawbacks and solving the global path planning problem efficiently, this paper proposes a hybrid PSO algorithm that hybridizes PSO and differential evolution (DE algorithms. To dynamically adjust the exploration and exploitation abilities of the hybrid PSO, a novel PSO, the nonlinear time-varying PSO (NTVPSO, is proposed for updating the velocities and positions of particles in the hybrid PSO. In an attempt to avoid stagnation, a modified DE, the ranking-based self adaptive DE (RBSADE, is developed to evolve the personal best experience of particles in the hybrid PSO. The proposed algorithm is compared with four state-of-the-art evolutionary algorithms. Simulation results show that the proposed algorithm is highly competitive in terms of path optimality and can be considered as a vital alternative for solving global path planning.

  19. Parallel particle swarm optimization on a graphics processing unit with application to trajectory optimization

    Science.gov (United States)

    Wu, Q.; Xiong, F.; Wang, F.; Xiong, Y.

    2016-10-01

    In order to reduce the computational time, a fully parallel implementation of the particle swarm optimization (PSO) algorithm on a graphics processing unit (GPU) is presented. Instead of being executed on the central processing unit (CPU) sequentially, PSO is executed in parallel via the GPU on the compute unified device architecture (CUDA) platform. The processes of fitness evaluation, updating of velocity and position of all particles are all parallelized and introduced in detail. Comparative studies on the optimization of four benchmark functions and a trajectory optimization problem are conducted by running PSO on the GPU (GPU-PSO) and CPU (CPU-PSO). The impact of design dimension, number of particles and size of the thread-block in the GPU and their interactions on the computational time is investigated. The results show that the computational time of the developed GPU-PSO is much shorter than that of CPU-PSO, with comparable accuracy, which demonstrates the remarkable speed-up capability of GPU-PSO.

  20. Applying Particle Swarm Optimization for Solving Team Orienteering Problem with Time Windows

    Directory of Open Access Journals (Sweden)

    The Jin Ai

    2014-01-01

    Full Text Available The Team Orienteering Problem With Time Windows (TOPTW is a transportation problem case that have a set of vertices with a score, service time, and the time windows, start and final at a depot location. A number of paths are constructed to maximize the total collected score by the vertices which is visited. Each vertice can be visited only once and the visit can only start during the  time window of vertices. This paper proposes a Particle Swarm Optimization algorithm for solving the TOPTW, by defining a specific particle for representing the solution of TOPTW within the PSO algorithm and two alternatives, called PSO_TOPTW1 and PSO_TOPTW2, for translating the particle position to form the routes of the path. The performance of the proposed PSO algorithm is evaluated through some benchmark data problem available in the literature. The computational results show that the proposed PSO is able to produce sufficiently good TOPTW solutions that are comparable with corresponding solutions from other existing methods for solving the TOPTW.

  1. The chaotic four-body problem in Newtonian gravity I: Identical point-particles

    CERN Document Server

    Leigh, Nathan W C; Geller, Aaron M; Shara, Michael M; Muddu, Harsha; Solano-Oropeza, Diana; Thomas, Yancey

    2016-01-01

    In this paper, we study the chaotic four-body problem in Newtonian gravity. Assuming point particles and total encounter energies $\\le$ 0, the problem has three possible outcomes. We describe each outcome as a series of discrete transformations in energy space, using the diagrams first presented in Leigh \\& Geller (2012; see the Appendix). Furthermore, we develop a formalism for calculating probabilities for these outcomes to occur, expressed using the density of escape configurations per unit energy, and based on the Monaghan description originally developed for the three-body problem. We compare this analytic formalism to results from a series of binary-binary encounters with identical point particles, simulated using the \\texttt{FEWBODY} code. Each of our three encounter outcomes produces a unique velocity distribution for the escaping star(s). Thus, these distributions can potentially be used to constrain the origins of dynamically-formed populations, via a direct comparison between the predicted and ...

  2. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kia Saeed

    2015-03-01

    Full Text Available Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane’s elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar’s weight, a 20% decrease in the concrete’s weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  3. DNA Sequence Optimization Based on Continuous Particle Swarm Optimization for Reliable DNA Computing and DNA Nanotechnology

    Directory of Open Access Journals (Sweden)

    N. K. Khalid

    2008-01-01

    Full Text Available Problem statement: In DNA based computation and DNA nanotechnology, the design of good DNA sequences has turned out to be an essential problem and one of the most practical and important research topics. Basically, the DNA sequence design problem is a multi-objective problem and it can be evaluated using four objective functions, namely, Hmeasure, similarity, continuity and hairpin. Approach: There are several ways to solve multi-objective problem, however, in order to evaluate the correctness of PSO algorithm in DNA sequence design, this problem is converted into single objective problem. Particle Swarm Optimization (PSO is proposed to minimize the objective in the problem, subjected to two constraints: melting temperature and GCcontent. A model is developed to present the DNA sequence design based on PSO computation. Results: Based on experiments and researches done, 20 particles are used in the implementation of the optimization process, where the average values and the standard deviation for 100 runs are shown along with comparison to other existing methods. Conclusion: The results achieve verified that PSO can suitably solves the DNA sequence design problem using the proposed method and model, comparatively better than other approaches.

  4. Hybrid Multi-Objective Particle Swarm Optimization for Flexible Job Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    S. V. Kamble

    2015-03-01

    Full Text Available Hybrid algorithm based on Particle Swarm Optimization (PSO and Simulated annealing (SA is proposed, to solve Flexible Job Shop Scheduling with five objectives to be minimized simultaneously: makespan, maximal machine workload, total workload, machine idle time & total tardiness. Rescheduling strategy used to shuffle workload once the machine breakdown takes place in proposed algorithm. The hybrid algorithm combines the high global search efficiency of PSO with the powerful ability to avoid being trapped in local minimum of SA. A hybrid multi-objective PSO (MPSO and SA algorithm is proposed to identify an approximation of the pareto front for Flexible job shop scheduling (FJSSP. Pareto front and crowding distance is used for identify the fitness of particle. MPSO is significant to global search and SA used to local search. The proposed MPSO algorithm is experimentally applied on two benchmark data set. The result shows that the proposed algorithm is better in term quality of non-dominated solution compared to the other algorithms in the literature.

  5. A Novel Particle Swarm Optimization for Flow Shop Scheduling with Fuzzy Processing Time

    Institute of Scientific and Technical Information of China (English)

    NIU Qun; GU Xing-sheng

    2008-01-01

    Since in most practical cases the processing time of scheduling is not deterministic,flow shop scheduling model with fuzzy processing time is established.It is assumed that the processing times of jobs on the machines are described by triangular fuzzy sets.In order to find a sequence that minimizes the mean makespan and the spread of the makespan,Lee and Li fuzzy ranking method is adopted and modified to solve the problem.Particle swarm optimization (PSO) is a population-based stochyastic appmxilmtion aigorithm that has been applied to a wide range of problems,but there is little reported in respect of application to scheduling problems because of its unsuitability for them.In the paper,PSO is redefined and modified by introducing genetic operations such as crossover and mutation to update the particles,which is called GPSO and successfully employed to solve the formulated problem.A series of benchmarks with fuzzy processing time are used to verify GPSO.Extensive experiments show the feasibility and effectiveness of the proposed method.

  6. Conformational sampling enhancement of replica exchange molecular dynamics simulations using swarm particle intelligence

    Energy Technology Data Exchange (ETDEWEB)

    Kamberaj, Hiqmet, E-mail: hkamberaj@ibu.edu.mk [Department of Computer Engineering, International Balkan University, Tashko Karadza 11A, Skopje (Macedonia, The Former Yugoslav Republic of)

    2015-09-28

    In this paper, we present a new method based on swarm particle social intelligence for use in replica exchange molecular dynamics simulations. In this method, the replicas (representing the different system configurations) are allowed communicating with each other through the individual and social knowledge, in additional to considering them as a collection of real particles interacting through the Newtonian forces. The new method is based on the modification of the equations of motion in such way that the replicas are driven towards the global energy minimum. The method was tested for the Lennard-Jones clusters of N = 4,  5, and 6 atoms. Our results showed that the new method is more efficient than the conventional replica exchange method under the same practical conditions. In particular, the new method performed better on optimizing the distribution of the replicas among the thermostats with time and, in addition, ergodic convergence is observed to be faster. We also introduce a weighted histogram analysis method allowing analyzing the data from simulations by combining data from all of the replicas and rigorously removing the inserted bias.

  7. Performance analysis and optimization for CSDGB filling system of a beverage plant using particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2017-06-01

    Full Text Available The paper deals with the performance analysis and optimization for Carbonated Soft Drink Glass Bottle (CSDGB filling system of a beverage plant using Particle Swarm Optimization (PSO approach. The CSDGB system consists of seven main subsystems arranged in series namely Uncaser, Bottle Washer, Electronic Inspection Station, Filling Machine, Crowner, Coding Machine and Case Packer. Considering exponential distribution for probable failures and repairs, mathematical modeling is performed using Markov Approach (MA. The differential equations have been derived on the basis of probabilistic approach using transition diagram. These equations are solved using normalizing condition and recursive method to drive out the steady state availability expression of the system i.e. system’s performance criterion. The performance optimization of system has been carried out by varying the number of particles and number of generations. It has been observed that the maximum availability of 90.27% is achieved at flock size of 55 and 90.84% at 300th generation. Thus, findings of the paper will be useful to the plant management for execution of proper maintenance decisions.

  8. Optimal Formation Reconfiguration Control of Multiple UCAVs Using Improved Particle Swarm Optimization

    Institute of Scientific and Technical Information of China (English)

    Hai-bin Duan; Guan-jun Ma; De-lin Luo

    2008-01-01

    Optimal formation reconfiguration control of multiple Uninhabited Combat Air Vehicles (UCAVs) is a complicated global optimum problem. Particle Swarm Optimization (PSO) is a population based stochastic optimization technique inspired by social behaviour of bird flocking or fish schooling. PSO can achieve better results in a faster, cheaper way compared with other bio-inspired computational methods, and there are few parameters to adjust in PSO. In this paper, we propose an improved PSO model for solving the optimal formation reconfiguration control problem for multiple UCAVs. Firstly, the Control Parameteri-zation and Time Discretization (CPTD) method is designed in detail. Then, the mutation strategy and a special mutation-escape operator are adopted in the improved PSO model to make particles explore the search space more efficiently. The proposed strategy can produce a large speed value dynamically according to the variation of the speed, which makes the algorithm explore the local and global minima thoroughly at the same time. Series experimental results demonstrate the feasibility and effectiveness of the proposed method in solving the optimal formation reconfiguration control problem for multiple UCAVs.

  9. 单颗粒和颗粒群研究的挑战%Challenges in Study of Single Particles and Particle Swarms

    Institute of Scientific and Technical Information of China (English)

    毛在砂; 杨超

    2009-01-01

    Numerical simulation of multiphase flows in processing equipment in industry with two-fluid models and Eulerian-Lagrangian approaches requires the constitutive equations describing the interactions between the dispersed phase of high concentration and the continuous phase. The status of research on the forces on dispersed solid and fluid particles is reviewed in this article. As compared with the knowledge on drag of single solid particles, study on particle swarms and on other forces is not sufficient to meet the demand of reliable and efficient numerical simulation of multiphase flows. Thus, thorough study on the particle swarms becomes the key to accurate multi-scale simulation of multiphase flows. Besides, the development of efficient algorithm dealing with the non-uniformity on both equipment and mesoscopic scales is recognized as an important issue to be resolved. The research topics in the near future are suggested.

  10. Inversion of particle size distribution by spectral extinction technique using the attractive and repulsive particle swarm optimization algorithm

    Directory of Open Access Journals (Sweden)

    Qi Hong

    2015-01-01

    Full Text Available The particle size distribution (PSD plays an important role in environmental pollution detection and human health protection, such as fog, haze and soot. In this study, the Attractive and Repulsive Particle Swarm Optimization (ARPSO algorithm and the basic PSO were applied to retrieve the PSD. The spectral extinction technique coupled with the Anomalous Diffraction Approximation (ADA and the Lambert-Beer Law were employed to investigate the retrieval of the PSD. Three commonly used monomodal PSDs, i.e. the Rosin-Rammer (R-R distribution, the normal (N-N distribution, the logarithmic normal (L-N distribution were studied in the dependent model. Then, an optimal wavelengths selection algorithm was proposed. To study the accuracy and robustness of the inverse results, some characteristic parameters were employed. The research revealed that the ARPSO showed more accurate and faster convergence rate than the basic PSO, even with random measurement error. Moreover, the investigation also demonstrated that the inverse results of four incident laser wavelengths showed more accurate and robust than those of two wavelengths. The research also found that if increasing the interval of the selected incident laser wavelengths, inverse results would show more accurate, even in the presence of random error.

  11. Pareto optimal calibration of highly nonlinear reactive transport groundwater models using particle swarm optimization

    Science.gov (United States)

    Siade, A. J.; Prommer, H.; Welter, D.

    2014-12-01

    Groundwater management and remediation requires the implementation of numerical models in order to evaluate the potential anthropogenic impacts on aquifer systems. In many situations, the numerical model must, not only be able to simulate groundwater flow and transport, but also geochemical and biological processes. Each process being simulated carries with it a set of parameters that must be identified, along with differing potential sources of model-structure error. Various data types are often collected in the field and then used to calibrate the numerical model; however, these data types can represent very different processes and can subsequently be sensitive to the model parameters in extremely complex ways. Therefore, developing an appropriate weighting strategy to address the contributions of each data type to the overall least-squares objective function is not straightforward. This is further compounded by the presence of potential sources of model-structure errors that manifest themselves differently for each observation data type. Finally, reactive transport models are highly nonlinear, which can lead to convergence failure for algorithms operating on the assumption of local linearity. In this study, we propose a variation of the popular, particle swarm optimization algorithm to address trade-offs associated with the calibration of one data type over another. This method removes the need to specify weights between observation groups and instead, produces a multi-dimensional Pareto front that illustrates the trade-offs between data types. We use the PEST++ run manager, along with the standard PEST input/output structure, to implement parallel programming across multiple desktop computers using TCP/IP communications. This allows for very large swarms of particles without the need of a supercomputing facility. The method was applied to a case study in which modeling was used to gain insight into the mobilization of arsenic at a deepwell injection site

  12. Kinetic and fluid descriptions of charged particle swarms in gases and nonpolar fluids: Theory and applications

    Science.gov (United States)

    Dujko, Sasa

    2016-09-01

    In this work we review the progress achieved over the last few decades in the fundamental kinetic theory of charged particle swarms with the focus on numerical techniques for the solution of Boltzmann's equation for electrons, as well as on the development of fluid models. We present a time-dependent multi term solution of Boltzmann's equation valid for electrons and positrons in varying configurations of electric and magnetic fields. The capacity of a theory and associated computer code will be illustrated by considering the heating mechanisms for electrons in radio-frequency electric and magnetic fields in a collision-dominated regime under conditions when electron transport is greatly affected by non-conservative collisions. The kinetic theory for solving the Boltzmann equation will be followed by a fluid equation description of charged particle swarms in both the hydrodynamic and non-hydrodynamic regimes, highlighting (i) the utility of momentum transfer theory for evaluating collisional terms in the balance equations and (ii) closure assumptions and approximations. The applications of this theory are split into three sections. First, we will present our 1.5D model of Resistive Plate Chambers (RPCs) which are used for timing and triggering purposes in many high energy physics experiments. The model is employed to study the avalanche to streamer transition in RPCs under the influence of space charge effects and photoionization. Second, we will discuss our high-order fluid model for streamer discharges. Particular emphases will be placed on the correct implementation of transport data in streamer models as well as on the evaluation of the mean-energy-dependent collision rates for electrons required as an input in the high-order fluid model. In the last segment of this work, we will present our model to study the avalanche to streamer transition in non-polar fluids. Using a Monte Carlo simulation technique we have calculated transport coefficients for electrons in

  13. Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Khulood A. Dagher

    2013-12-01

    Full Text Available A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

  14. Prediction of coal grindability based on petrography, proximate and ultimate analysis using neural networks and particle swarm optimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Modarres, Hamid Reza; Kor, Mohammad; Abkhoshk, Emad; Alfi, Alireza; Lower, James C.

    2009-06-15

    In recent years, use of artificial neural networks have increased for estimation of Hardgrove grindability index (HGI) of coals. For training of the neural networks, gradient descent methods such as Backpropagaition (BP) method are used frequently. However they originally showed good performance in some non-linearly separable problems, but have a very slow convergence and can get stuck in local minima. In this paper, to overcome the lack of gradient descent methods, a novel particle swarm optimization and artificial neural network was employed for predicting the HGI of Kentucky coals by featuring eight coal parameters. The proposed approach also compared with two kinds of artificial neural network (generalized regression neural network and back propagation neural network). Results indicate that the neural networks - particle swarm optimization method gave the most accurate HGI prediction.

  15. Forecasting of DST index from auroral electrojet indices using time-delay neural network + particle swarm optimization

    Science.gov (United States)

    Lazzús, J. A.; López-Caraballo, C. H.; Rojas, P.; Salfate, I.; Rivera, M.; Palma-Chilla, L.

    2016-05-01

    In this study, an artificial neural network was optimized with particle swarm algorithm and trained to predict the geomagmetic DST index one hour ahead using the past values of DST and auroral electrojet indices. The results show that the proposed neural network model can be properly trained for predicting of DST(t + 1) with acceptable accuracy, and that the geomagnetic indices used have influential effects on the good training and predicting capabilities of the chosen network.

  16. Optimization of hydrofoil for tidal current turbine based on particle swarm optimization and computational fluid dynamic method

    OpenAIRE

    Zhang De-Sheng; Chen Jian; Shi Wei-Dong; Shi Lei; Geng Lin-Lin

    2016-01-01

    Both efficiency and cavitation performance of the hydrofoil are the key technologies to design the tidal current turbine. In this paper, the hydrofoil efficiency and lift coefficient were improved based on particle swarm optimization method and XFoil codes. The cavitation performance of the optimized hydrofoil was also discussed by the computational fluid dynamic. Numerical results show the efficiency of the optimized hydrofoil was improved 11% ranging from...

  17. Chaotic sedimentation of particle pairs in a vertical channel at low Reynolds number: multiple states and routes to chaos

    CERN Document Server

    Verjus, Romuald; Ezersky, Alexander; Angilella, Jean-Régis

    2016-01-01

    The sedimentation of a pair of rigid circular particles in a two-dimensional vertical channel containing a Newtonian fluid is investigated numerically, for terminal particle Reynolds numbers ranging from 1 to 10, and for a confinement ratio equal to 4. While it is widely admitted that sufficiently inertial pairs should sediment by performing a regular DKT oscillation (Drafting-Kissing-Tumbling), the present analysis shows in contrast that a chaotic regime can also exist for such particles, leading to a much slower sedimentation velocity. It consists of a nearly horizontal pair, corresponding to a maximum effective blockage ratio, and performing a quasiperiodic transition to chaos under increasing the particle weight. For less inertial regimes, the classical oblique doublet structure and its complex behavior (multiple stable states and hysteresis, period-doubling cascade and chaotic attractor) are recovered, in agreement with previous work [Aidun & Ding, Physics of Fluids 15(6), 2003]. As a consequence of ...

  18. Stochastic Set-Based Particle Swarm Optimization Based on Local Exploration for Solving the Carpool Service Problem.

    Science.gov (United States)

    Chou, Sheng-Kai; Jiau, Ming-Kai; Huang, Shih-Chia

    2016-08-01

    The growing ubiquity of vehicles has led to increased concerns about environmental issues. These concerns can be mitigated by implementing an effective carpool service. In an intelligent carpool system, an automated service process assists carpool participants in determining routes and matches. It is a discrete optimization problem that involves a system-wide condition as well as participants' expectations. In this paper, we solve the carpool service problem (CSP) to provide satisfactory ride matches. To this end, we developed a particle swarm carpool algorithm based on stochastic set-based particle swarm optimization (PSO). Our method introduces stochastic coding to augment traditional particles, and uses three terminologies to represent a particle: 1) particle position; 2) particle view; and 3) particle velocity. In this way, the set-based PSO (S-PSO) can be realized by local exploration. In the simulation and experiments, two kind of discrete PSOs-S-PSO and binary PSO (BPSO)-and a genetic algorithm (GA) are compared and examined using tested benchmarks that simulate a real-world metropolis. We observed that the S-PSO outperformed the BPSO and the GA thoroughly. Moreover, our method yielded the best result in a statistical test and successfully obtained numerical results for meeting the optimization objectives of the CSP.

  19. Motion generation of peristaltic mobile robot with particle swarm optimization algorithm

    Science.gov (United States)

    Homma, Takahiro; Kamamichi, Norihiro

    2015-03-01

    In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.

  20. Viewpoint Selection Using Hybrid Simplex Search and Particle Swarm Optimization for Volume Rendering

    Directory of Open Access Journals (Sweden)

    Zhang You-sai,,,

    2012-09-01

    Full Text Available In this paper we proposed a novel method of viewpoint selection using the hybrid Nelder-Mead (NM simplex search and particle swarm optimization (PSO to improve the efficiency and the intelligent level of volume rendering. This method constructed the viewpoint quality evaluation function in the form of entropy by utilizing the luminance and structure features of the two-dimensional projective image of volume data. During the process of volume rendering, the hybrid NM-PSO algorithm intended to locate the globally optimal viewpoint or a set of the optimized viewpoints automatically and intelligently. Experimental results have shown that this method avoids redundant interactions and evidently improves the efficiency of volume rendering. The optimized viewpoints can focus on the important structural features or the region of interest in volume data and exhibit definite correlation with the perception character of human visual system. Compared with the methods based on PSO or NM simplex search, our method has the better performance of convergence rate, convergence accuracy and robustness.

  1. Adaptive impedance control of a hydraulic suspension system using particle swarm optimisation

    Science.gov (United States)

    Fateh, Mohammad Mehdi; Moradi Zirkohi, Majid

    2011-12-01

    This paper presents a novel active control approach for a hydraulic suspension system subject to road disturbances. A novel impedance model is used as a model reference in a particular robust adaptive control which is applied for the first time to the hydraulic suspension system. A scheme is introduced for selecting the impedance parameters. The impedance model prescribes a desired behaviour of the active suspension system in a wide range of different road conditions. Moreover, performance of the control system is improved by applying a particle swarm optimisation algorithm for optimising control design parameters. Design of the control system consists of two interior loops. The inner loop is a force control of the hydraulic actuator, while the outer loop is a robust model reference adaptive control (MRAC). This type of MRAC has been applied for uncertain linear systems. As another novelty, despite nonlinearity of the hydraulic actuator, the suspension system and the force loop together are presented as an uncertain linear system to the MRAC. The proposed control method is simulated on a quarter-car model. Simulation results show effectiveness of the method.

  2. 3D gravity inversion and uncertainty assessment of basement relief via Particle Swarm Optimization

    Science.gov (United States)

    Pallero, J. L. G.; Fernández-Martínez, J. L.; Bonvalot, S.; Fudym, O.

    2017-04-01

    Nonlinear gravity inversion in sedimentary basins is a classical problem in applied geophysics. Although a 2D approximation is widely used, 3D models have been also proposed to better take into account the basin geometry. A common nonlinear approach to this 3D problem consists in modeling the basin as a set of right rectangular prisms with prescribed density contrast, whose depths are the unknowns. Then, the problem is iteratively solved via local optimization techniques from an initial model computed using some simplifications or being estimated using prior geophysical models. Nevertheless, this kind of approach is highly dependent on the prior information that is used, and lacks from a correct solution appraisal (nonlinear uncertainty analysis). In this paper, we use the family of global Particle Swarm Optimization (PSO) optimizers for the 3D gravity inversion and model appraisal of the solution that is adopted for basement relief estimation in sedimentary basins. Synthetic and real cases are illustrated, showing that robust results are obtained. Therefore, PSO seems to be a very good alternative for 3D gravity inversion and uncertainty assessment of basement relief when used in a sampling while optimizing approach. That way important geological questions can be answered probabilistically in order to perform risk assessment in the decisions that are made.

  3. Toeplitz block circulant matrix optimized with particle swarm optimization for compressive imaging

    Science.gov (United States)

    Tao, Huifeng; Yin, Songfeng; Tang, Cong

    2016-10-01

    Compressive imaging is an imaging way based on the compressive sensing theory, which could achieve to capture the high resolution image through a small set of measurements. As the core of the compressive imaging, the design of the measurement matrix is sufficient to ensure that the image can be recovered from the measurements. Due to the fast computing capacity and the characteristic of easy hardware implementation, The Toeplitz block circulant matrix is proposed to realize the encoded samples. The measurement matrix is usually optimized for improving the image reconstruction quality. However, the existing optimization methods can destroy the matrix structure easily when applied to the Toeplitz block circulant matrix optimization process, and the deterministic iterative processes of them are inflexible, because of requiring the task optimized to need to satisfy some certain mathematical property. To overcome this problem, a novel method of optimizing the Toeplitz block circulant matrix based on the particle swarm optimization intelligent algorithm is proposed in this paper. The objective function is established by the way of approaching the target matrix that is the Gram matrix truncated by the Welch threshold. The optimized object is the vector composed by the free entries instead of the Gram matrix. The experimental results indicate that the Toeplitz block circulant measurement matrix can be optimized while preserving the matrix structure by our method, and result in the reconstruction quality improvement.

  4. A Novel Optimal Control Method for Impulsive-Correction Projectile Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Ruisheng Sun

    2016-01-01

    Full Text Available This paper presents a new parametric optimization approach based on a modified particle swarm optimization (PSO to design a class of impulsive-correction projectiles with discrete, flexible-time interval, and finite-energy control. In terms of optimal control theory, the task is described as the formulation of minimum working number of impulses and minimum control error, which involves reference model linearization, boundary conditions, and discontinuous objective function. These result in difficulties in finding the global optimum solution by directly utilizing any other optimization approaches, for example, Hp-adaptive pseudospectral method. Consequently, PSO mechanism is employed for optimal setting of impulsive control by considering the time intervals between two neighboring lateral impulses as design variables, which makes the briefness of the optimization process. A modification on basic PSO algorithm is developed to improve the convergence speed of this optimization through linearly decreasing the inertial weight. In addition, a suboptimal control and guidance law based on PSO technique are put forward for the real-time consideration of the online design in practice. Finally, a simulation case coupled with a nonlinear flight dynamic model is applied to validate the modified PSO control algorithm. The results of comparative study illustrate that the proposed optimal control algorithm has a good performance in obtaining the optimal control efficiently and accurately and provides a reference approach to handling such impulsive-correction problem.

  5. An Evolutionary Stochastic Approach for Efficient Image Retrieval using Modified Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Hadis Heidari

    2016-07-01

    Full Text Available Image retrieval system as a reliable tool can help people in reaching efficient use of digital image accumulation; also finding efficient methods for the retrieval of images is important. Color and texture descriptors are two basic features in image retrieval. In this paper, an approach is employed which represents a composition of color moments and texture features to extract low-level feature of an image. By assigning equal weights for different types of features, we can’t obtain good results, but by applying different weights to each feature, this problem is solved. In this work, the weights are improved using a modified Particle Swarm Optimization (PSO method for increasing average Precision of system. In fact, a novel method based on an evolutionary approach is presented and the motivation of this work is to enhance Precision of the retrieval system with an improved PSO algorithm. The average Precision of presented method using equally weighted features and optimal weighted features is 49.85% and 54.16%, respectively. 4.31% increase in the average Precision achieved by proposed technique can achieve higher recognition accuracy, and the search result is better after using PSO.

  6. MPPT for Photovoltaic System Using Multi-objective Improved Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Xuecheng Zhao

    2013-07-01

    Full Text Available Making full use of abundant renewable solar energy through the development of photovoltaic (PV technology is an effective means to solve the problems such as difficulty in electricity supply and energy shortages in remote rural areas. In order to improve the electricity generating efficiency of PV cells, it is necessary to track the maximum power point of PV array, which is difficult to make under partially shaded conditions due to the odds of the appearance of two or more local maximum power points., In this paper, a control algorithm of maximum power point tracking (MPPT based on improved particle swarm optimization (IPSO algorithm is presented for PV systems. Firstly, the current in maximum power point is searched with the IPSO algorithm, and then the real maximum power point is tracked through controlling the output current of PV array.,. The MPPT method based on IPSO algorithm is established and simulated with Matlab / Simulink, and meanwhile, the comparison between IPSO MPPT algorithm and traditional MPPT algorithm is also performed in this paper. It is proved through simulation and experimental results that the IPSO algorithm has good performances and very fast response even to partial shaded PV modules, , which ensures the stability of PV system.  

  7. Digital redesign of uncertain interval systems based on time-response resemblance via particle swarm optimization.

    Science.gov (United States)

    Hsu, Chen-Chien; Lin, Geng-Yu

    2009-07-01

    In this paper, a particle swarm optimization (PSO) based approach is proposed to derive an optimal digital controller for redesigned digital systems having an interval plant based on time-response resemblance of the closed-loop systems. Because of difficulties in obtaining time-response envelopes for interval systems, the design problem is formulated as an optimization problem of a cost function in terms of aggregated deviation between the step responses corresponding to extremal energies of the redesigned digital system and those of their continuous counterpart. A proposed evolutionary framework incorporating three PSOs is subsequently presented to minimize the cost function to derive an optimal set of parameters for the digital controller, so that step response sequences corresponding to the extremal sequence energy of the redesigned digital system suitably approximate those of their continuous counterpart under the perturbation of the uncertain plant parameters. Computer simulations have shown that redesigned digital systems incorporating the PSO-derived digital controllers have better system performance than those using conventional open-loop discretization methods.

  8. Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique

    Directory of Open Access Journals (Sweden)

    Po-Chen Cheng

    2015-06-01

    Full Text Available In this paper, an asymmetrical fuzzy-logic-control (FLC-based maximum power point tracking (MPPT algorithm for photovoltaic (PV systems is presented. Two membership function (MF design methodologies that can improve the effectiveness of the proposed asymmetrical FLC-based MPPT methods are then proposed. The first method can quickly determine the input MF setting values via the power–voltage (P–V curve of solar cells under standard test conditions (STC. The second method uses the particle swarm optimization (PSO technique to optimize the input MF setting values. Because the PSO approach must target and optimize a cost function, a cost function design methodology that meets the performance requirements of practical photovoltaic generation systems (PGSs is also proposed. According to the simulated and experimental results, the proposed asymmetrical FLC-based MPPT method has the highest fitness value, therefore, it can successfully address the tracking speed/tracking accuracy dilemma compared with the traditional perturb and observe (P&O and symmetrical FLC-based MPPT algorithms. Compared to the conventional FLC-based MPPT method, the obtained optimal asymmetrical FLC-based MPPT can improve the transient time and the MPPT tracking accuracy by 25.8% and 0.98% under STC, respectively.

  9. An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM with RBF kernel, using particle swarm optimization (PSO to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.

  10. An Energy Efficient Scheme for Data Gathering in Wireless Sensor Networks Using Particle Swarm Optimization

    CERN Document Server

    Chakraborty, Ayon; Mitra, Swarup Kumar; Naskar, M K

    2010-01-01

    Energy Efficiency of sensor nodes is a sizzling issue, given the severe resource constraints of sensor nodes and pervasive nature of sensor networks. The base station being located at variable distances from the nodes in the sensor field, each node actually dissipates a different amount of energy to transmit data to the same. The LEACH [4] and PEGASIS [5] protocols provide elegant solutions to this problem, but may not always result in optimal performance. In this paper we have proposed a novel data gathering protocol for enhancing the network lifetime by optimizing energy dissipation in the nodes. To achieve our design objective we have applied particle swarm optimization (PSO) with Simulated Annealing (SA) to form a sub-optimal data gathering chain and devised a method for selecting an efficient leader for communicating to the base station. In our scheme each node only communicates with a close neighbor and takes turns in being the leader depending on its residual energy and location. This helps to rule out...

  11. Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

    Directory of Open Access Journals (Sweden)

    C. V. Subbulakshmi

    2015-01-01

    Full Text Available Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning paradigm. This paradigm integrates the successful exploration mechanism called self-regulated learning capability of the particle swarm optimization (PSO algorithm with the extreme learning machine (ELM classifier. As a recent off-line learning method, ELM is a single-hidden layer feedforward neural network (FFNN, proved to be an excellent classifier with large number of hidden layer neurons. In this research, PSO is used to determine the optimum set of parameters for the ELM, thus reducing the number of hidden layer neurons, and it further improves the network generalization performance. The proposed method is experimented on five benchmarked datasets of the UCI Machine Learning Repository for handling medical dataset classification. Simulation results show that the proposed approach is able to achieve good generalization performance, compared to the results of other classifiers.

  12. Optimization of Capacitated Vehicle Routing Problem by Nested Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Karuppusamy Kanthavel

    2011-01-01

    Full Text Available Problem statement: Vehicle routing problem determines the optimum route for each vehicle as a sequence of visiting cities. The problem has been defined as NP-hard and exact solution is relatively difficult to achieve for real time large scale models. Though several attempts to solve the problem were made in the literature, new approaches may be tried to solve the problem to further reduce computational efforts. Approach: In this context this study focuses on maximum utilization of loading capacity and determines the optimum set of vehicle routes for Capacitated Vehicle Routing Problem (CVRP by a Nested Particle Swarm Optimization (NPSO technique. The algorithm is implemented as Master PSO and slave PSO for the identification of candidate list and route sequence in nested form to optimize the model. Results: Benchmarking data set of capacitated vehicle routing is considered for the evaluations. The total distance of set vehicle route obtained by the new approach is compared with the best known solution and other existing techniques. Conclusions/Recommendations: The NPSO produces significant results and computational performance than the existing PSO algorithms. This newly proposed NPSO algorithm develops the vehicle schedule without any local optimization technique.

  13. Immune particle swarm optimization of linear frequency modulation in acoustic communication

    Institute of Scientific and Technical Information of China (English)

    Haipeng Ren; Yang Zhao

    2015-01-01

    With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter-displacement (CWID) modulation is proposed. It has been proved that CWID modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWID modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excel ent performance in solving complicated optimization problems. The multi-objective and multi-peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor-mance and effectiveness of the optimization method.

  14. Fitting of adaptive neuron model to electrophysiological recordings using particle swarm optimization algorithm

    Science.gov (United States)

    Shan, Bonan; Wang, Jiang; Zhang, Lvxia; Deng, Bin; Wei, Xile

    2017-02-01

    In order to fit neural model’s spiking features to electrophysiological recordings, in this paper, a fitting framework based on particle swarm optimization (PSO) algorithm is proposed to estimate the model parameters in an augmented multi-timescale adaptive threshold (AugMAT) model. PSO algorithm is an advanced evolutionary calculation method based on iteration. Selecting a reasonable criterion function will ensure the effectiveness of PSO algorithm. In this work, firing rate information is used as the main spiking feature and the estimation error of firing rate is selected as the criterion for fitting. A series of simulations are presented to verify the performance of the framework. The first step is model validation; an artificial training data is introduced to test the fitting procedure. Then we talk about the suitable PSO parameters, which exhibit adequate compromise between speediness and accuracy. Lastly, this framework is used to fit the electrophysiological recordings, after three adjustment steps, the features of experimental data are translated into realistic spiking neuron model.

  15. Automated Sperm Head Detection Using Intersecting Cortical Model Optimised by Particle Swarm Optimization

    Science.gov (United States)

    Tan, Weng Chun; Mat Isa, Nor Ashidi

    2016-01-01

    In human sperm motility analysis, sperm segmentation plays an important role to determine the location of multiple sperms. To ensure an improved segmentation result, the Laplacian of Gaussian filter is implemented as a kernel in a pre-processing step before applying the image segmentation process to automatically segment and detect human spermatozoa. This study proposes an intersecting cortical model (ICM), which was derived from several visual cortex models, to segment the sperm head region. However, the proposed method suffered from parameter selection; thus, the ICM network is optimised using particle swarm optimization where feature mutual information is introduced as the new fitness function. The final results showed that the proposed method is more accurate and robust than four state-of-the-art segmentation methods. The proposed method resulted in rates of 98.14%, 98.82%, 86.46% and 99.81% in accuracy, sensitivity, specificity and precision, respectively, after testing with 1200 sperms. The proposed algorithm is expected to be implemented in analysing sperm motility because of the robustness and capability of this algorithm. PMID:27632581

  16. An Optimized Device Sizing of Analog Circuits using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    K. Duraiswamy

    2012-01-01

    Full Text Available Problem statement: Day by day more and more products rely on analog circuits to improve the speed and reduce the power consumption(Products rely on analog circuits to improve the speed and reduce the power consumption day by day more and more.. For the VLSI implementation analog circuit design plays an important role. This analog circuit synthesis might be the most challenging and time-consumed task, because it does not only consist of topology and layout synthesis but also of component sizing. Approach: A Particle Swarm Optimization (PSO technique for the optimal design of analog circuits. Analog signal processing finds many applications and widely uses OpAmp based amplifiers, mixers, comparators. and filters. Results: A two-stage opamp (Miller Operational Trans-conductance Amplifier (OTA is considered for the synthesis that satisfies certain design specifications. Performance has been evaluated with the Simulation Program with Integrated Circuit Emphasis (SPICE circuit simulator until optimal sizes of the transistors are found. Conclusion: The output of the simulation for the two-stage opamp shows that the PSO technique is an accurate and promising approach in determining the device sizes in an analog circuit.

  17. Optimization of Setup Frequency for TOC Supply Chain Replenishment Systems Based on Pareto Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Jiang

    2013-12-01

    Full Text Available The theory of constraints (TOC supply chain replenishment system (TOC-SCRS is an effective solution for coping with conflicts during the management of supply chain inventories. When it is deployed in a plant or a central warehouse with capacity constraints, TOC-SCRS encounters a problem comprised of 2 parts: first, how to establish a sound setup frequency (SF that can meet production needs and prevent losses from stock-outs, meaning a SF that allows the plant to make full use of its existing capacity to achieve maximal effective output. Second, it must determine how to establish a sound SF that can help the plant minimize its inventory and cut costs to the greatest possible extent. To resolve the problem, a SF optimization model for TOC-SCRS with capacity constraints is constructed and is then used in combination with Pareto particle swarm optimization (PSO to obtain SF optimization schemes in this paper. An illustrative example is conducted to verify the feasibility and effectiveness of the proposed approach.

  18. Stochastic structural optimization using particle swarm optimization, surrogate models and Bayesian statistics

    Institute of Scientific and Technical Information of China (English)

    Jongbin Im; Jungsun Park

    2013-01-01

    This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO),surrogate models and Bayesian statistics.PSO is a random/stochastic search algorithm designed to find the global optimum.However,PSO needs many evaluations compared to gradient-based optimization.This means PSO increases the analysis costs of structural optimization.One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques.In this work,surrogate models are used,including the response surface method (RSM) and Kriging.When surrogate models are used,there are some errors between exact values and approximated values.These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models.In this paper,Bayesian statistics is used to obtain more reliable results.To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization,two numerical examples are optimized,and the optimization of a hub sleeve is demonstrated as a practical problem.

  19. Multi-stage approach for structural damage detection problem using basis pursuit and particle swarm optimization

    Science.gov (United States)

    Gerist, Saleheh; Maheri, Mahmoud R.

    2016-12-01

    In order to solve structural damage detection problem, a multi-stage method using particle swarm optimization is presented. First, a new spars recovery method, named Basis Pursuit (BP), is utilized to preliminarily identify structural damage locations. The BP method solves a system of equations which relates the damage parameters to the structural modal responses using the sensitivity matrix. Then, the results of this stage are subsequently enhanced to the exact damage locations and extents using the PSO search engine. Finally, the search space is reduced by elimination of some low damage variables using micro search (MS) operator embedded in the PSO algorithm. To overcome the noise present in structural responses, a method known as Basis Pursuit De-Noising (BPDN) is also used. The efficiency of the proposed method is investigated by three numerical examples: a cantilever beam, a plane truss and a portal plane frame. The frequency response is used to detect damage in the examples. The simulation results demonstrate the accuracy and efficiency of the proposed method in detecting multiple damage cases and exhibit its robustness regarding noise and its advantages compared to other reported solution algorithms.

  20. Speed Control of Induction Motor Fed from Wind Turbine via Particle Swarm Optimization Based PI Controller

    Directory of Open Access Journals (Sweden)

    A.S. Oshaba

    2013-05-01

    Full Text Available Three-phase Induction Motor (IM is widely used in the industry because of its rugged construction and absence of brushes. However, speed control of IM is required depending on the desired speed and application. This study proposes a design of a Proportional Integral (PI controller using Particle Swarm Optimization (PSO algorithm to control the speed of an IM supplied from wind turbine. The wind turbine acts as a prime mover to a connected DC generator. Pulse Width Modulation (PWM is used to obtain three phase AC voltage from the output of DC generator. The proposed design problem of speed controller is formulated as an optimization problem. PSO is employed to search for optimal controller parameters by minimizing the time domain objective function. The performance of the proposed technique has been evaluated with respect to the variation of load torque and speed wind turbine. Also the performance of the proposed controller has been evaluated with the performance of the PI controller tuned by Genetic Algorithm (GA in order to demonstrate the superior efficiency of the proposed PSO in tuning PI controller. Simulation results emphasis on the better performance of the optimized PI controller based on PSO in compare to optimized PI controller based on GA over a wide range of load torque and speed wind turbine.

  1. Deployment of Wireless Sensor Networks for Oilfield Monitoring by Multiobjective Discrete Binary Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zhen-Lun Yang

    2016-01-01

    Full Text Available The deployment problem of wireless sensor networks for real time oilfield monitoring is studied. As a characteristic of oilfield monitoring system, all sensor nodes have to be installed on designated spots. For the energy efficiency, some relay nodes and sink nodes are deployed as a delivery subsystem. The major concern of the construction of the monitoring system is the optimum placement of data delivery subsystem to ensure the full connectivity of the sensor nodes while keeping the construction cost as low as possible, with least construction and maintenance complexity. Due to the complicated landform of oilfields, in general, it is rather difficult to satisfy these requirements simultaneously. The deployment problem is formulated as a constrained multiobjective optimization problem and solved through a novel scheme based on multiobjective discrete binary particle swarm optimization to produce optimal solutions from the minimum financial cost to the minimum complexity of construction and maintenance. Simulation results validated that comparing to the three existing state-of-the-art algorithms, that is, NSGA-II, JGGA, and SPEA2, the proposed scheme is superior in locating the Pareto-optimal front and maintaining the diversity of the solutions, thus providing superior candidate solutions for the design of real time monitoring systems in oilfields.

  2. MIMO-Radar Waveform Design for Beampattern Using Particle-Swarm-Optimisation

    KAUST Repository

    Ahmed, Sajid

    2012-07-31

    Multiple input multiple output (MIMO) radars have many advantages over their phased-array counterparts: improved spatial resolution; better parametric identifiably and greater flexibility to acheive the desired transmit beampattern. The desired transmit beampatterns using MIMO-radar requires the waveforms to have arbitrary auto- and cross-correlations. To design such waveforms, generally a waveform covariance matrix, R, is synthesised first then the actual waveforms are designed. Synthesis of the covariance matrix, R, is a constrained optimisation problem, which requires R to be positive semidefinite and all of its diagonal elements to be equal. To simplify the first constraint the covariance matrix is synthesised indirectly from its square-root matrix U, while for the second constraint the elements of the m-th column of U are parameterised using the coordinates of the m-hypersphere. This implicitly fulfils both of the constraints and enables us to write the cost-function in closed form. Then the cost-function is optimised using a simple particle-swarm-optimisation (PSO) technique, which requires only the cost-function and can optimise any choice of norm cost-function. © 2012 IEEE.

  3. Optimasi Jaringan SFN pada Sistem DVB-T2 Menggunakan Metode Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Oxy Riza Primasetiya

    2013-09-01

    Full Text Available Di Indonesia perpindahan dari sistem analog ke sistem digital pada dunia pertelevisian saat ini sedang dalam proses. TV analog yang saat ini masih dipergunakan dianggap tidak lagi efisien, selain tidak memberikan kualitas layanan yang optimal, juga tidak efisien terhadap spektrum sinyal. Indonesia sesuai dengan Peraturan Menteri No 5 Tahun 2012, dalam penyiaran digital menggunakan Teknologi DVB-T2. Teknologi DVB-T2 (Digital Video Broadcasting-Terrestrial Second Generationdapat diaplikasikan dengan menggunakan SFN (Single Frequency Network. Jaringan SFN memungkinkan sebuah stasiun TV dapat memiliki pemancar dengan frekuensi yang sama dan tersebar pada wilayah layanan yang luas. Transmisi SFN dapat diartikan sebagai bentuk sederhana dari propagasi multipath, karena semua pemancar dalam jaringan mengirimkan secara bersamaan informasi yang sama menggunakan saluran frekuensi yang sama. Dengan teknologi SFN, meskipun semua pemancar dalam jaringan mengirimkan data pada frekuensi yang sama, hal tersebut tidak mengakibatkan interferensi dalam proses perngiriman data. Pada Penelitian ini, membahas mengenai optimasi jaringan SFN pada sistem DVB-T2. Metode yang dipilih dalam proses optimasi DVB-T2 adalah PSO (Particle Swarm Optimization, lalu hasil optimasi dibandingkan dengan sebelum optimasi dan juga dibandingkan dengan metode optimasi lain, yaitu Simulated Annealing. Melalui metode PSO, sebuah algoritma akan disimulasikan untuk mengoptimalisasi sejumlah parameter orientasi antena pemancar pada setiap pemancar SFN di wilayah tertentu. Dengan demikian, daerah coverage jaringan SFN pada wilayah tersebut dapat diperluas.

  4. CONSTRICTED PARTICLE SWARM OPTIMIZATION FOR DESIGN OF COLLINEAR ARRAY OF UNEQUAL LENGTH DIPOLE ANTENNAS

    Directory of Open Access Journals (Sweden)

    Banani Basu

    2010-06-01

    Full Text Available A method based on constricted Particle Swarm Optimization (CPSO algorithm to design a non-uniformly spaced collinear array of thin dipole antennas of unequal height is proposed. This paper presents a method for computing the appropriate excitation and geometry of individual array elements to generate a pencil beam in the vertical plane with minimum Standing Wave Ratio (SWR and fixed Side Lobe Level (SLL. Coupling effect between any two collinear center-fed thin dipole antennas having sinusoidal current distributions is analyzed using induced EMF method and minimized in terms of SWR. DRR of excitation distribution is fixed at a lower value for further mitigation of the coupling effect. Phase distribution for all the elements is kept at zero degree for broadside array. Optimization results show the effectiveness of the algorithm for the design of the array. Moreover method seems very conducive for estimating the mutual impedance between any two collinear center-fed thin dipole antennas having sinusoidal current distributions.

  5. Designing a mirrored Howland circuit with a particle swarm optimisation algorithm

    Science.gov (United States)

    Bertemes-Filho, Pedro; Negri, Lucas H.; Vincence, Volney C.

    2016-06-01

    Electrical impedance spectroscopy usually requires a wide bandwidth current source with high output impedance. Non-idealities of the operational amplifier (op-amp) degrade its performance. This work presents a particle swarm algorithm for extracting the main AC characteristics of the op-amp used to design a mirrored modified Howland current source circuit which satisfies both the output current and the impedance spectra required. User specifications were accommodated. Both resistive and biological loads were used in the simulations. The results showed that the algorithm can correctly identify the open-loop gain and the input and output resistance of the op-amp which best fit the performance requirements of the circuit. It was also shown that the higher the open-loop gain corner frequency the higher the output impedance of the circuit. The algorithm could be a powerful tool for developing a desirable current source for different bioimpedance medical and clinical applications, such as cancer tissue characterisation and tissue cell measurements.

  6. Performance analysis of a semiactive suspension system with particle swarm optimization and fuzzy logic control.

    Science.gov (United States)

    Qazi, Abroon Jamal; de Silva, Clarence W; Khan, Afzal; Khan, Muhammad Tahir

    2014-01-01

    This paper uses a quarter model of an automobile having passive and semiactive suspension systems to develop a scheme for an optimal suspension controller. Semi-active suspension is preferred over passive and active suspensions with regard to optimum performance within the constraints of weight and operational cost. A fuzzy logic controller is incorporated into the semi-active suspension system. It is able to handle nonlinearities through the use of heuristic rules. Particle swarm optimization (PSO) is applied to determine the optimal gain parameters for the fuzzy logic controller, while maintaining within the normalized ranges of the controller inputs and output. The performance of resulting optimized system is compared with different systems that use various control algorithms, including a conventional passive system, choice options of feedback signals, and damping coefficient limits. Also, the optimized semi-active suspension system is evaluated for its performance in relation to variation in payload. Furthermore, the systems are compared with respect to the attributes of road handling and ride comfort. In all the simulation studies it is found that the optimized fuzzy logic controller surpasses the other types of control.

  7. A Novel Gas Turbine Engine Health Status Estimation Method Using Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Xinyi Yang

    2014-01-01

    Full Text Available Accurate gas turbine engine health status estimation is very important for engine applications and aircraft flight safety. Due to the fact that there are many to-be-estimated parameters, engine health status estimation is a very difficult optimization problem. Traditional gas path analysis (GPA methods are based on the linearized thermodynamic engine performance model, and the estimation accuracy is not satisfactory on conditions that the nonlinearity of the engine model is significant. To solve this problem, a novel gas turbine engine health status estimation method has been developed. The method estimates degraded engine component parameters using quantum-behaved particle swarm optimization (QPSO algorithm. And the engine health indices are calculated using these estimated component parameters. The new method was applied to turbine fan engine health status estimation and is compared with the other three representative methods. Results show that although the developed method is slower in computation speed than GPA methods it succeeds in estimating engine health status with the highest accuracy in all test cases and is proven to be a very suitable tool for off-line engine health status estimation.

  8. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Liyong Niu

    2015-01-01

    Full Text Available Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.

  9. Calibration of SAMs with Particle Swarm Optimization: an application using intermediate and low redshift data

    CERN Document Server

    Ruiz, Andrés N; Padilla, Nelson D; Domínguez, Mariano J; Tecce, Tomás E; Orsi, Álvaro; Yaryura, Yamila C; Lambas, Diego García; Gargiulo, Ignacio D; Arancibia, Alejandra M Muñoz

    2013-01-01

    We present a fast and accurate method to select an optimal set of parameters in semi-analytic models of galaxy formation and evolution (SAMs). Our approach compares the results of a model against a set of observables applying a stochastic technique called Particle Swarm Optimization (PSO), a self-learning algorithm for localizing minima in multidimensional spaces that outperforms traditional sampling methods in terms of computational cost. We apply the PSO technique to the SAG semi-analytic model combined with merger trees extracted from a standard {\\Lambda}CDM N-body simulation. From the full set of model parameters used for the baryonic processes followed in SAG, we select six for tuning and keep all others fixed. In order to evaluate the ability of the PSO algorithm to find the best set of parameters, we perform several calibrations using different combinations of observed properties, both locally (e.g. z=0 K-, bj - and r- band luminosity functions, the black hole (BH) mass to bulge mass relation) and at i...

  10. Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.

    Science.gov (United States)

    Niu, Liyong; Zhang, Di

    2015-01-01

    Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.

  11. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-09-01

    Full Text Available High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO based hybrid forecasting method for short-term wind power forecasting. The hybrid forecasting method combines the persistence method, the back propagation neural network, and the radial basis function (RBF neural network. The EPSO algorithm is employed to optimize the weight coefficients in the hybrid forecasting method. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a wind energy conversion system (WECS installed on the Taichung coast of Taiwan. Comparisons of forecasting performance are made with the individual forecasting methods. Good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.

  12. Travel Mode Detection Based on Neural Networks and Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Guangnian Xiao

    2015-08-01

    Full Text Available The collection of massive Global Positioning System (GPS data from travel surveys has increased exponentially worldwide since the 1990s. A number of methods, which range from rule-based to advanced classification approaches, have been applied to detect travel modes from GPS positioning data collected in travel surveys based on GPS-enabled smartphones or dedicated GPS devices. Among these approaches, neural networks (NNs are widely adopted because they can extract subtle information from training data that cannot be directly obtained by human or other analysis techniques. However, traditional NNs, which are generally trained by back-propagation algorithms, are likely to be trapped in local optimum. Therefore, particle swarm optimization (PSO is introduced to train the NNs. The resulting PSO-NNs are employed to distinguish among four travel modes (walk, bike, bus, and car with GPS positioning data collected through a smartphone-based travel survey. As a result, 95.81% of samples are correctly flagged for the training set, while 94.44% are correctly identified for the test set. Results from this study indicate that smartphone-based travel surveys provide an opportunity to supplement traditional travel surveys.

  13. Parameter Estimation in Rainfall-Runoff Modelling Using Distributed Versions of Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Michala Jakubcová

    2015-01-01

    Full Text Available The presented paper provides the analysis of selected versions of the particle swarm optimization (PSO algorithm. The tested versions of the PSO were combined with the shuffling mechanism, which splits the model population into complexes and performs distributed PSO optimization. One of them is a new proposed PSO modification, APartW, which enhances the global exploration and local exploitation in the parametric space during the optimization process through the new updating mechanism applied on the PSO inertia weight. The performances of four selected PSO methods were tested on 11 benchmark optimization problems, which were prepared for the special session on single-objective real-parameter optimization CEC 2005. The results confirm that the tested new APartW PSO variant is comparable with other existing distributed PSO versions, AdaptW and LinTimeVarW. The distributed PSO versions were developed for finding the solution of inverse problems related to the estimation of parameters of hydrological model Bilan. The results of the case study, made on the selected set of 30 catchments obtained from MOPEX database, show that tested distributed PSO versions provide suitable estimates of Bilan model parameters and thus can be used for solving related inverse problems during the calibration process of studied water balance hydrological model.

  14. Enhanced Particle Swarm Optimization-Based Feeder Reconfiguration Considering Uncertain Large Photovoltaic Powers and Demands

    Directory of Open Access Journals (Sweden)

    Ying-Yi Hong

    2014-01-01

    Full Text Available The Kyoto protocol recommended that industrialized countries limit their green gas emissions in 2012 to 5.2% below 1990 levels. Photovoltaic (PV arrays provide clear and sustainable renewable energy to electric power systems. Solar PV arrays can be installed in distribution systems of rural and urban areas, as opposed to wind-turbine generators, which cause noise in surrounding environments. However, a large PV array (several MW may incur several operation problems, for example, low power quality and reverse power. This work presents a novel method to reconfigure the distribution feeders in order to prevent the injection of reverse power into a substation connected to the transmission level. Moreover, a two-stage algorithm is developed, in which the uncertain bus loads and PV powers are clustered by fuzzy-c-means to gain representative scenarios; optimal reconfiguration is then achieved by a novel mean-variance-based particle swarm optimization. The system loss is minimized while the operational constraints, including reverse power and voltage variation, are satisfied due to the optimal feeder reconfiguration. Simulation results obtained from a 70-bus distribution system with 4 large PV arrays validate the proposed method.

  15. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P. Reche; Reyes, N. Ruiz [Department of Telecommunication Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain); Gonzalez, M. Gomez [Junta of Andalusia, 23470 Maestro Francisco Yuste 2, Cazorla, Jaen (Spain); Jurado, F. [Department of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain)

    2008-08-15

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  16. Particle swarm optimization algorithm for optimizing assignment of blood in blood banking system.

    Science.gov (United States)

    Olusanya, Micheal O; Arasomwan, Martins A; Adewumi, Aderemi O

    2015-01-01

    This paper reports the performance of particle swarm optimization (PSO) for the assignment of blood to meet patients' blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessitate the development of mathematical models and techniques for effective handling of blood distribution among available blood types in order to minimize wastages and importation from external sources. This gives rise to the blood assignment problem (BAP) introduced recently in literature. We propose a queue and multiple knapsack models with PSO-based solution to address this challenge. Simulation is based on sets of randomly generated data that mimic real-world population distribution of blood types. Results obtained show the efficiency of the proposed algorithm for BAP with no blood units wasted and very low importation, where necessary, from outside the blood bank. The result therefore can serve as a benchmark and basis for decision support tools for real-life deployment.

  17. Particle Swarm Optimization Algorithm for Optimizing Assignment of Blood in Blood Banking System

    Directory of Open Access Journals (Sweden)

    Micheal O. Olusanya

    2015-01-01

    Full Text Available This paper reports the performance of particle swarm optimization (PSO for the assignment of blood to meet patients’ blood transfusion requests for blood transfusion. While the drive for blood donation lingers, there is need for effective and efficient management of available blood in blood banking systems. Moreover, inherent danger of transfusing wrong blood types to patients, unnecessary importation of blood units from external sources, and wastage of blood products due to nonusage necessitate the development of mathematical models and techniques for effective handling of blood distribution among available blood types in order to minimize wastages and importation from external sources. This gives rise to the blood assignment problem (BAP introduced recently in literature. We propose a queue and multiple knapsack models with PSO-based solution to address this challenge. Simulation is based on sets of randomly generated data that mimic real-world population distribution of blood types. Results obtained show the efficiency of the proposed algorithm for BAP with no blood units wasted and very low importation, where necessary, from outside the blood bank. The result therefore can serve as a benchmark and basis for decision support tools for real-life deployment.

  18. Transforming an Existing Distribution Network Into Autonomous MICRO-GRID using particle swarm optimization (Review

    Directory of Open Access Journals (Sweden)

    Vishal Ramesh Zambre

    2015-01-01

    Full Text Available A distribution network with renewable and fossil-based resources can be operated as a microgrid, in autonomous or nonautonomous modes. Autonomous operation of a distribution network requires cautious planning. In this context, a detailed methodology to develop a sustainable autonomous micro-grid is presented in this paper. The proposed methodology suggests novel sizing and siting strategies for distributed generators and structural modifications for autonomous micro-grids. This paper introduces the Particle Swarm Optimization (PSO algorithm to solve the optimal network reconfiguration problem for power loss reduction. The PSO is a relatively new and powerful intelligence evolution method for solving optimization problems. It is a population-based approach. The PSO was inspired from natural behavior of the bees on how they find the location of most flowers. The proposed PSO algorithm is introduced with some modifications such as using an inertia weight that decreases linearly during the simulation. This setting allows the PSO to explore a large area at the start of the simulation

  19. Detection of Carious Lesions and Restorations Using Particle Swarm Optimization Algorithm.

    Science.gov (United States)

    Naebi, Mohammad; Saberi, Eshaghali; Risbaf Fakour, Sirous; Naebi, Ahmad; Hosseini Tabatabaei, Somayeh; Ansari Moghadam, Somayeh; Bozorgmehr, Elham; Davtalab Behnam, Nasim; Azimi, Hamidreza

    2016-01-01

    Background/Purpose. In terms of the detection of tooth diagnosis, no intelligent detection has been done up till now. Dentists just look at images and then they can detect the diagnosis position in tooth based on their experiences. Using new technologies, scientists will implement detection and repair of tooth diagnosis intelligently. In this paper, we have introduced one intelligent method for detection using particle swarm optimization (PSO) and our mathematical formulation. This method was applied to 2D special images. Using developing of our method, we can detect tooth diagnosis for all of 2D and 3D images. Materials and Methods. In recent years, it is possible to implement intelligent processing of images by high efficiency optimization algorithms in many applications especially for detection of dental caries and restoration without human intervention. In the present work, we explain PSO algorithm with our detection formula for detection of dental caries and restoration. Also image processing helped us to implement our method. And to do so, pictures taken by digital radiography systems of tooth are used. Results and Conclusion. We implement some mathematics formula for fitness of PSO. Our results show that this method can detect dental caries and restoration in digital radiography pictures with the good convergence. In fact, the error rate of this method was 8%, so that it can be implemented for detection of dental caries and restoration. Using some parameters, it is possible that the error rate can be even reduced below 0.5%.

  20. Detection of Carious Lesions and Restorations Using Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Naebi

    2016-01-01

    Full Text Available Background/Purpose. In terms of the detection of tooth diagnosis, no intelligent detection has been done up till now. Dentists just look at images and then they can detect the diagnosis position in tooth based on their experiences. Using new technologies, scientists will implement detection and repair of tooth diagnosis intelligently. In this paper, we have introduced one intelligent method for detection using particle swarm optimization (PSO and our mathematical formulation. This method was applied to 2D special images. Using developing of our method, we can detect tooth diagnosis for all of 2D and 3D images. Materials and Methods. In recent years, it is possible to implement intelligent processing of images by high efficiency optimization algorithms in many applications especially for detection of dental caries and restoration without human intervention. In the present work, we explain PSO algorithm with our detection formula for detection of dental caries and restoration. Also image processing helped us to implement our method. And to do so, pictures taken by digital radiography systems of tooth are used. Results and Conclusion. We implement some mathematics formula for fitness of PSO. Our results show that this method can detect dental caries and restoration in digital radiography pictures with the good convergence. In fact, the error rate of this method was 8%, so that it can be implemented for detection of dental caries and restoration. Using some parameters, it is possible that the error rate can be even reduced below 0.5%.