WorldWideScience

Sample records for channels mediates cytoprotection

  1. The NRF2 transcriptional target, OSGIN1, contributes to monomethyl fumarate-mediated cytoprotection in human astrocytes

    Science.gov (United States)

    Brennan, Melanie S.; Matos, Maria F.; Richter, Karl E.; Li, Bing; Scannevin, Robert H.

    2017-01-01

    Dimethyl fumarate (DMF) is indicated for the treatment of relapsing multiple sclerosis and may exert therapeutic effects via activation of the nuclear factor (erythroid-derived 2)-like 2 (NRF2) pathway. Following oral DMF administration, central nervous system (CNS) tissue is predominantly exposed to monomethyl fumarate (MMF), the bioactive metabolite of DMF, which can stabilize NRF2 and induce antioxidant gene expression; however, the detailed NRF2-dependent mechanisms modulated by MMF that lead to cytoprotection are unknown. Our data identify a mechanism for MMF-mediated cytoprotection in human astrocytes that functions in an OSGIN1-dependent manner, specifically via upregulation of the OSGIN1-61 kDa isoform. NRF2-dependent OSGIN1 expression induced P53 nuclear translocation following MMF administration, leading to cell-cycle inhibition and cell protection against oxidative challenge. This study provides mechanistic insight into MMF-mediated cytoprotection via NRF2, OSGIN1, and P53 in human CNS-derived cells and contributes to our understanding of how DMF may act clinically to ameliorate pathological processes in neurodegenerative disease. PMID:28181536

  2. Do sensory neurons mediate adaptive cytoprotection of gastric mucosa against bile acid injury?

    Science.gov (United States)

    Mercer, D W; Ritchie, W P; Dempsey, D T

    1992-01-01

    Pretreatment with the mild irritant 1 mmol acidified taurocholate protects the gastric mucosa from the injury induced by the subsequent application of 5 mmol acidified taurocholate, a phenomenon referred to as "adaptive cytoprotection." How this occurs remains an enigma. The purpose of this study was to investigate the role of sensory neurons and mucus secretion in this phenomenon. Prior to injury with 5 mmol acidified taurocholate (pH 1.2), the stomachs of six groups of rats were subjected to the following protocol. Two groups were topically pretreated with either saline or the mild irritant 1 mmol acidified taurocholate. Two other groups received the topical anesthetic 1% lidocaine prior to pretreatment with either saline or 1 mmol acidified taurocholate. The last two groups got the mucolytic agent 10% N-acetylcysteine (NAC) after pretreatment with either saline or 1 mmol acidified taurocholate. Injury was assessed by measuring net transmucosal ion fluxes, luminal appearance of deoxyribonucleic acid (DNA), and gross and histologic injury. Pretreatment with the mild irritant 1 mmol acidified taurocholate significantly decreased bile acid-induced luminal ion fluxes and DNA accumulation, suggesting mucosal protection (corroborated by gross and histologic injury analysis). This effect was negated by lidocaine but not by NAC. Thus, it appears that sensory neurons, and not increased mucus secretion, play a critical role in adaptive cytoprotection.

  3. Tissue-level cytoprotection.

    Science.gov (United States)

    Hightower, L E; Brown; Renfro, J L; Perdrizet, G A; Rewinski, M; Guidon, P T; Mistry, T; House, S D

    2000-11-01

    In vitro and ex vivo tissue models provide a useful level of biological organization for cytoprotection studies positioned between cultured cells and intact animals. We have used 2 such models, primary tissue cultures of winter flounder renal secretory epithelium and ex vivo preparations of rat intestinal tissues, the latter to access the microcirculation of exposed mesentery tissues. Herein we discuss studies indicating that differentiated functions are altered in thermotolerant or cytoprotected tissues. These functions include transepithelial transport in renal epithelium and attachment and transmigration of leukocytes across vascular endothelium in response to mediators of inflammation. Evidence pointing to inflammation as a major venue for the heat shock response in vertebrates continues to mount. One such venue is wound healing. Heat shock proteins are induced early in wound responses, and some are released into the extracellular wound fluid where they appear to function as proinflammatory cytokines. However, within responding cells in the wound, heat shock proteins contribute to the acquisition of a state of cytoprotection that protects cells from the hostile environment of the wound, an environment created to destroy pathogens and essentially sterilize the wound. We propose that the cytoprotected state is an anti-inflammatory state that contributes to limiting the inflammatory response; that is, it serves as a brake on inflammation.

  4. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sobhakumari, Arya [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Schickling, Brandon M. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Love-Homan, Laurie; Raeburn, Ayanna [Department of Pathology, The University of Iowa, Iowa City, IA (United States); Fletcher, Elise V.M. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Case, Adam J. [Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Domann, Frederick E. [Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA (United States); Department of Pathology, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); Miller, Francis J. [Department of Internal Medicine, The University of Iowa, Iowa City, IA (United States); Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA (United States); Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics (UIHC), Iowa City, IA (United States); and others

    2013-11-01

    Most head and neck squamous cell carcinomas (HNSCCs) overexpress epidermal growth factor receptor (EGFR) and EGFR inhibitors are routinely used in the treatment of HNSCC. However, many HNSCC tumors do not respond or become refractory to EGFR inhibitors. Autophagy, which is a stress-induced cellular self-degradation process, has been reported to reduce the efficacy of chemotherapy in various disease models. The purpose of this study is to determine if the efficacy of the EGFR inhibitor erlotinib is reduced by activation of autophagy via NOX4-mediated oxidative stress in HNSCC cells. Erlotinib induced the expression of the autophagy marker LC3B-II and autophagosome formation in FaDu and Cal-27 cells. Inhibition of autophagy by chloroquine and knockdown of autophagy pathway genes Beclin-1 and Atg5 sensitized both cell lines to erlotinib-induced cytotoxicity, suggesting that autophagy may serve as a protective mechanism. Treatment with catalase (CAT) and diphenylene iodonium (DPI) in the presence of erlotinib suppressed the increase in LC3B-II expression in FaDu and Cal-27 cells. Erlotinib increased NOX4 mRNA and protein expression by increasing its promoter activity and mRNA stability in FaDu cells. Knockdown of NOX4 using adenoviral siNOX4 partially suppressed erlotinib-induced LC3B-II expression, while overexpression of NOX4 increased expression of LC3B-II. These studies suggest that erlotinib may activate autophagy in HNSCC cells as a pro-survival mechanism, and NOX4 may play a role in mediating this effect. - Highlights: • Erlotinib increased LC3B-II and autophagosome formation in HNSCC cells. • Inhibition of autophagy sensitized HNSCC cells to erlotinib. • Erlotinib increased NOX4 promoter and 3′UTR luciferase activity. • Manipulating NOX4 decreases or increases autophagy.

  5. Tissue-level cytoprotection

    OpenAIRE

    Hightower, L E; Brown, M A; Renfro, J.L.; Perdrizet, G.A.; Rewinski, M.; Guidon, P T; Mistry, T.; House, S.D.

    2000-01-01

    In vitro and ex vivo tissue models provide a useful level of biological organization for cytoprotection studies positioned between cultured cells and intact animals. We have used 2 such models, primary tissue cultures of winter flounder renal secretory epithelium and ex vivo preparations of rat intestinal tissues, the latter to access the microcirculation of exposed mesentery tissues. Herein we discuss studies indicating that differentiated functions are altered in thermotolerant or cytoprote...

  6. "Gastric cytoprotection" is still relevant.

    Science.gov (United States)

    Szabo, Sandor

    2014-12-01

    Although Andre Robert's historic article on "gastric cytoprotection" in 1979 introduced this new name and concept, gastroprotective drugs (e.g. sofalcone, sucralfate), which prevent and/or accelerate healing of gastric ulcers without inhibiting acid secretion, were known in Japan before or around that time. But since Robert's studies were solely focused on prostaglandins (PG), they became the center of gastrointestinal research for more than 30 years. As endogenous products, PG were implicated in mediating the gastroprotective effect of other drugs such as sofalcone and sucralfate, despite that the cyclooxygenase inhibitor indomethacin diminished but never abolished gastroprotection by other drugs. Another group of endogenous substances, that is, sulfhydryls (SH), investigated in parallel with PG, also seem to play a mechanistic role in gastroprotection, especially since SH alkylators like N-ethylmaleimide counteract virtually any form of gastroprotection. In Robert's terms of "prevention of chemically induced acute mucosal lesions," so far no single mechanism could explain the beneficial effects of diverse protective agents, but I argue that these two endogenous substances (i.e. PG, SH), in addition to histamine, are the main mechanistic mediators of acute gastroprotection: PG and histamine, because as mediators of acute inflammation, they increase vascular permeability (VP), and SH scavenge free radicals. This is contrary to the search for a single mechanism of action, long focused on enhanced secretion of mucus and/or bicarbonate that may contribute but cannot explain all forms of gastroprotection. Nevertheless, based on research work of the last 30 years, in part from our lab, a new mechanistic explanation of gastroprotection may be formulated: it's a complex but orderly and evolution-based physiologic response of the gastric mucosa under pathologic conditions. Namely, one of the first physiologic defense responses of any organ is inflammation that starts with

  7. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes.

    Science.gov (United States)

    Kavitha, K; Thiyagarajan, P; Rathna Nandhini, J; Mishra, Rajakishore; Nagini, S

    2013-08-01

    Identifying agents that activate nuclear factor erythroid-2 related factor-2 (Nrf2), a key regulator of various cytoprotective antioxidant, and detoxifying enzymes has evolved as a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary supplementation of structurally diverse phytochemicals- astaxanthin, blueberry, chlorophyllin, ellagic acid, and theaphenon-E on Nrf2 signaling, and xenobiotic-metabolizing and antioxidant enzymes in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. We observed that these phytochemicals induce nuclear accumulation of Nrf2 while downregulating its negative regulator, Keap-1. This was associated with reduced expression of CYP1A1 and CYP1B1, the cytochrome P450 isoforms involved in the activation of DMBA, and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine coupled with upregulation of the phase II detoxification enzymes glutathione S-transferases and NAD(P)H:quinone oxidoreductase 1 and the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. In addition, these dietary phytochemicals also enhanced the DNA repair enzymes 8-oxoguanine glycosylase 1 (OGG1), xeroderma pigmentosum D (XPD), xeroderma pigmentosum G (XPG), and x-ray repair cross complementing group 1 (XRCC1). Our data provide substantial evidence that the dietary phytochemicals inhibit the development of HBP carcinomas through the activation of Nrf2/Keap-1 signaling and by upregulating cytoprotective enzymes. The extent of the chemopreventive effects of the phytochemicals was in the order: chlorophyllin > blueberry > ellagic acid > astaxanthin > theaphenon-E. Thus these dietary phytochemicals that function as potent activators of Nrf2 and its orchestrated response are novel candidates for cancer chemoprevention.

  8. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

    Science.gov (United States)

    Kanzaki, Hiroyuki; Shinohara, Fumiaki; Kanako, Itohiya; Yamaguchi, Yuuki; Fukaya, Sari; Miyamoto, Yutaka; Wada, Satoshi; Nakamura, Yoshiki

    2016-01-01

    It has been reported that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis. PMID:26795736

  9. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kanzaki

    2016-08-01

    Full Text Available It has been reported that reactive oxygen species (ROS, such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis.

  10. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  11. Lactobacilli Modulate Epithelial Cytoprotection through the Nrf2 Pathway.

    Science.gov (United States)

    Jones, Rheinallt M; Desai, Chirayu; Darby, Trevor M; Luo, Liping; Wolfarth, Alexandra A; Scharer, Christopher D; Ardita, Courtney S; Reedy, April R; Keebaugh, Erin S; Neish, Andrew S

    2015-08-25

    An optimal gut microbiota influences many beneficial processes in the metazoan host. However, the molecular mechanisms that mediate and function in symbiont-induced host responses have not yet been fully characterized. Here, we report that cellular ROS enzymatically generated in response to contact with lactobacilli in both mice and Drosophila has salutary effects against exogenous insults to the intestinal epithelium via the activation of Nrf2 responsive cytoprotective genes. These data show that the xenobiotic-inducible Nrf2 pathway participates as a signaling conduit between the prokaryotic symbiont and the eukaryotic host. Indeed, our data imply that the capacity of lactobacilli to induce redox signaling in epithelial cells is a highly conserved hormetic adaptation to impel cellular conditioning to exogenous biotic stimuli. These data also highlight the role the microbiota plays in eukaryotic cytoprotective pathways and may have significant implications in the characterization of a eubiotic microbiota.

  12. Testing the gonadal regression-cytoprotection hypothesis.

    Science.gov (United States)

    Crawford, B A; Spaliviero, J A; Simpson, J M; Handelsman, D J

    1998-11-15

    potential protective effects on spermatogenesis. Although the three cytotoxins produced a range of severity of spermatogenic damage, there was no evidence of cytoprotection in the hpg mice that were completely gonadotrophin deficient at the time of treatment. These findings cast doubt on the validity of the hypothesis that spermatogenic regression via gonadotrophin withdrawal can protect the mouse testis against cytotoxin-mediated spermatogenic damage.

  13. Cytoprotective action of roxatidine acetate HCl.

    Science.gov (United States)

    Shiratsuchi, K; Fuse, H; Hagiwara, M; Mikami, T; Miyasaka, K; Sakuma, H

    1988-01-01

    The cytoprotective action of roxatidine acetate HCl (roxatidine) was investigated. We also studied the involvement of endogenous prostaglandins (PGs) in the cytoprotective action of roxatidine and the effect of roxatidine on SRS content in pleurisy induced by A23187. Simultaneously, these effects of roxatidine were compared with those of other histamine H2-receptor antagonists at the same anti-secretory activity level. Roxatidine prevented formation of the gastric mucosal lesions induced by abs. ethanol, 0.6 N HCl and 0.2 N NaOH, but it failed to prevent 30% NaCl-induced gastric mucosal lesions. Cimetidine, ranitidine and famotidine failed to prevent formation of the gastric mucosal lesions induced by necrotizing agents. The cytoprotective action of roxatidine was not abolished by pretreatment with indomethacin. Roxatidine did not greatly influence SRS production. Consequently, it appears that roxatidine has a cytoprotective action and that this action is not associated with endogenous PGs and SRS.

  14. Calcium binding protein-mediated regulation of voltage-gated calcium channels linked to human diseases

    Institute of Scientific and Technical Information of China (English)

    Nasrin NFJATBAKHSH; Zhong-ping FENG

    2011-01-01

    Calcium ion entry through voltage-gated calcium channels is essential for cellular signalling in a wide variety of cells and multiple physiological processes. Perturbations of voltage-gated calcium channel function can lead to pathophysiological consequences. Calcium binding proteins serve as calcium sensors and regulate the calcium channel properties via feedback mechanisms. This review highlights the current evidences of calcium binding protein-mediated channel regulation in human diseases.

  15. Nanobody mediated crystallization of an archeal mechanosensitive channel.

    Directory of Open Access Journals (Sweden)

    Christian Löw

    Full Text Available Mechanosensitive channels (MS are integral membrane proteins and allow bacteria to survive sudden changes in external osmolarity due to transient opening of their pores. The efflux of cytoplasmic osmolytes reduces the membrane tension and prevents membrane rupture. Therefore these channels serve as emergency valves when experiencing significant environmental stress. The preparation of high quality crystals of integral membrane proteins is a major bottleneck for structure determination by X-ray crystallography. Crystallization chaperones based on various protein scaffolds have emerged as promising tool to increase the crystallization probability of a selected target protein. So far archeal mechanosensitive channels of small conductance have resisted crystallization in our hands. To structurally analyse these channels, we selected nanobodies against an archeal MS channel after immunization of a llama with recombinant expressed, detergent solubilized and purified protein. Here we present the characterization of 23 different binders regarding their interaction with the channel protein using analytical gel filtration, western blotting and surface plasmon resonance. Selected nanobodies bound the target with affinities in the pico- to nanomolar range and some binders had a profound effect on the crystallization of the MS channel. Together with previous data we show that nanobodies are a versatile and valuable tool in structural biology by widening the crystallization space for highly challenging proteins, protein complexes and integral membrane proteins.

  16. Ca2+ channels as integrators of G protein-mediated signaling in neurons.

    Science.gov (United States)

    Strock, Jesse; Diversé-Pierluissi, María A

    2004-11-01

    The observations from Dunlap and Fischbach that transmitter-mediated shortening of the duration of action potentials could be caused by a decrease in calcium conductance led to numerous studies of the mechanisms of modulation of voltage-dependent calcium channels. Calcium channels are well known targets for inhibition by receptor-G protein pathways, and multiple forms of inhibition have been described. Inhibition of Ca(2+) channels can be mediated by G protein betagamma-subunits or by kinases, such as protein kinase C and tyrosine kinases. In the last few years, it has been shown that integration of G protein signaling can take place at the level of the calcium channel by regulation of the interaction of the channel pore-forming subunit with different cellular proteins.

  17. Is ion channel selectivity mediated by confined water?

    CERN Document Server

    Prada-Gracia, Diego

    2012-01-01

    Ion channels form pores across the lipid bilayer, selectively allowing inorganic ions to cross the membrane down their electrochemical gradient. While the study of ion desolvation free-energies have attracted much attention, the role of water inside the pore is less clear. Here, molecular dynamics simulations of a reduced model of the KcsA selectivity filter indicate that the equilibrium position of Na+, but not of K+, is strongly influenced by confined water. The latter forms a stable complex with Na+, moving the equilibrium position of the ion to the plane of the backbone carbonyls. Almost at the centre of the binding site, the water molecule is trapped by favorable electrostatic interactions and backbone hydrogen-bonds. In the absence of confined water the equilibrium position of both Na+ and K+ is identical. Our observations strongly suggest a previously unnoticed active role of confined water in the selectivity mechanism of ion channels.

  18. Channel-Mediated Lactate Release by K+-Stimulated Astrocytes

    KAUST Repository

    Sotelo-Hitschfeld, T.

    2015-03-11

    Excitatory synaptic transmission is accompanied by a local surge in interstitial lactate that occurs despite adequate oxygen availability, a puzzling phenomenon termed aerobic glycolysis. In addition to its role as an energy substrate, recent studies have shown that lactate modulates neuronal excitability acting through various targets, including NMDA receptors and G-protein-coupled receptors specific for lactate, but little is known about the cellular and molecular mechanisms responsible for the increase in interstitial lactate. Using a panel of genetically encoded fluorescence nanosensors for energy metabolites, we show here that mouse astrocytes in culture, in cortical slices, and in vivo maintain a steady-state reservoir of lactate. The reservoir was released to the extracellular space immediately after exposure of astrocytes to a physiological rise in extracellular K+ or cell depolarization. Cell-attached patch-clamp analysis of cultured astrocytes revealed a 37 pS lactate-permeable ion channel activated by cell depolarization. The channel was modulated by lactate itself, resulting in a positive feedback loop for lactate release. A rapid fall in intracellular lactate levels was also observed in cortical astrocytes of anesthetized mice in response to local field stimulation. The existence of an astrocytic lactate reservoir and its quick mobilization via an ion channel in response to a neuronal cue provides fresh support to lactate roles in neuronal fueling and in gliotransmission.

  19. BAX channel activity mediates lysosomal disruption linked to Parkinson disease.

    Science.gov (United States)

    Bové, Jordi; Martínez-Vicente, Marta; Dehay, Benjamin; Perier, Celine; Recasens, Ariadna; Bombrun, Agnes; Antonsson, Bruno; Vila, Miquel

    2014-05-01

    Lysosomal disruption is increasingly regarded as a major pathogenic event in Parkinson disease (PD). A reduced number of intraneuronal lysosomes, decreased levels of lysosomal-associated proteins and accumulation of undegraded autophagosomes (AP) are observed in PD-derived samples, including fibroblasts, induced pluripotent stem cell-derived dopaminergic neurons, and post-mortem brain tissue. Mechanistic studies in toxic and genetic rodent PD models attribute PD-related lysosomal breakdown to abnormal lysosomal membrane permeabilization (LMP). However, the molecular mechanisms underlying PD-linked LMP and subsequent lysosomal defects remain virtually unknown, thereby precluding their potential therapeutic targeting. Here we show that the pro-apoptotic protein BAX (BCL2-associated X protein), which permeabilizes mitochondrial membranes in PD models and is activated in PD patients, translocates and internalizes into lysosomal membranes early following treatment with the parkinsonian neurotoxin MPTP, both in vitro and in vivo, within a time-frame correlating with LMP, lysosomal disruption, and autophagosome accumulation and preceding mitochondrial permeabilization and dopaminergic neurodegeneration. Supporting a direct permeabilizing effect of BAX on lysosomal membranes, recombinant BAX is able to induce LMP in purified mouse brain lysosomes and the latter can be prevented by pharmacological blockade of BAX channel activity. Furthermore, pharmacological BAX channel inhibition is able to prevent LMP, restore lysosomal levels, reverse AP accumulation, and attenuate mitochondrial permeabilization and overall nigrostriatal degeneration caused by MPTP, both in vitro and in vivo. Overall, our results reveal that PD-linked lysosomal impairment relies on BAX-induced LMP, and point to small molecules able to block BAX channel activity as potentially beneficial to attenuate both lysosomal defects and neurodegeneration occurring in PD.

  20. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Farooqahmed S Kittur

    Full Text Available Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P (20 U/ml provides 2-fold better cytoprotection (44% to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M (21%. The cytoprotective effect of the asialo-rhuEPO(P was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2 and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.

  1. Network excitability in a model of chronic temporal lobe epilepsy critically depends on SK channel-mediated AHP currents.

    Science.gov (United States)

    Schulz, Robert; Kirschstein, Timo; Brehme, Hannes; Porath, Katrin; Mikkat, Ulrike; Köhling, Rüdiger

    2012-01-01

    Hippocampal CA1 pyramidal neurons generate an after-hyperpolarization (AHP) whose medium component is thought to be generated by small-conductance Ca(2+)-activated K(+) channels (SK channels). Neuronal excitability is increased in epilepsy, and the AHP in turn is fundamentally involved in regulation of cellular excitability. We therefore investigated the involvement of the SK channel-mediated AHP in controlling cell and network excitability in the pilocarpine model epilepsy. Both acutely isolated CA1 pyramidal cells and isolated hippocampal slices were investigated in terms of the impact of SK channel-mediated AHP on hyperexcitability. Our findings show that pilocarpine-treated chronically epileptic rats exhibit significantly reduced SK channel-mediated hyperpolarizing outward current which was accompanied by a significant decrease in the somatic AHP. Paradoxically, inhibiting SK channels strongly exacerbated 0-Mg(2+)-induced epileptiform activity in slices from pilocarpine-treated animals, while having a significantly smaller effect in control tissue. This suggests that in chronically epileptic tissue, network excitability very critically depends on the remaining SK-channel mediated AHP. Additional real-time RT-PCR and semiquantitative Western blot experiments revealed that both the SK2 channel transcript and protein were significantly downregulated in the epileptic CA1 region. We conclude that SK2 channels are down-regulated in chronic epilepsy underlying the impaired SK channel function in CA1 pyramidal cells, and a further reduction of the remaining critical mass of SK channels results in an acute network decompensation.

  2. Role of mucosal prostaglandins and DNA synthesis in gastric cytoprotection by luminal epidermal growth factor.

    Science.gov (United States)

    Konturek, S J; Brzozowski, T; Piastucki, I; Dembinski, A; Radecki, T; Dembinska-Kiec, A; Zmuda, A; Gregory, H

    1981-01-01

    This study compares the effect of epidermal growth factor and prostaglandins (PGE2 or PGI2), applied topically to gastric mucosa, on gastric secretion and formation of ASA-induced gastric ulcerations in rats. Epidermal growth factor given topically in non-antisecretory doses prevented dose-dependently the formation of ASA-induced ulcers without affecting prostaglandin generation but with a significant rise in DNA synthesis in the oxyntic mucosa. The anti-ulcer effect of topical prostaglandins was also accompanied by an increase in DNA synthesis. This study indicates that topical epidermal growth factor, like PGE2 or PGI2, is cytoprotective and that this cytoprotection is not mediated by the inhibition of gastric secretion or prostaglandin formation but related to the increase in DNA synthesis in oxyntic mucosa. PMID:7030877

  3. Involvement of anion channels in mediating elicitor-induced ATP efflux in Salvia miltiorrhiza hairy roots.

    Science.gov (United States)

    Wu, Shu-Jing; Siu, Ka-Chai; Wu, Jian-Yong

    2011-01-15

    This study examines the roles of anion channels and ATP binding cassette (ABC) protein transporters in mediating elicitor-induced ATP release in Salvia miltiorrhiza hairy root cultures. The elicitor-induced ATP release was effectively blocked by two putative membrane anion channel blockers, niflumic acid and Zn(2+), but not by a specific Cl(-) channel blocker, phenylanthranilic acid. The elicitor-induced ATP release was also significantly suppressed by two ABC inhibitors, glibenclamide and ethacrynic acid. Notable ATP release from the hairy roots was also induced by verapamil (2mM), an ABC activator in animal cells. The verapamil-induced ATP release was effectively blocked by niflumic acid, but only slightly inhibited by the ABC inhibitors. Another notable effect of verapamil was the induction of exocytosis, the secretion of vesicle-like particles to the root surface. The verapamil-induced exocytosis was not inhibited by nifulumic acid and YE did not induce the exocytosis. Overall, the results suggest a significant role of anion channels, a possible involvement of ABC proteins and no significant involvement of exocytosis in mediating the ATP efflux in hairy root cells.

  4. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  5. TRPV3 Channels Mediate Strontium-Induced Mouse-Egg Activation

    Directory of Open Access Journals (Sweden)

    Ingrid Carvacho

    2013-12-01

    Full Text Available In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a transient receptor potential (TRP ion channel current activated by TRP agonists that is absent in TrpV3−/− eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII, the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, because TrpV3−/− eggs failed to conduct Sr2+ or undergo strontium-induced activation. We propose that TRPV3 is a major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation.

  6. ACUPUNCTURE-MOXIBUSTION, HEAT SHOCK PROTEIN 70 AND CYTOPROTECTION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Heat shock protein 70 (HSP70) is a kind of non-specific cytoprotective protein, and its generation can be induced by acupuncture and moxibustion. In the present paper, the authors review the protective actions of HSP70 on the heart, gastric mucosa, liver, brain tissues, kidney, etc., and the relationship among acupuncture/moxibustion, heat shock protein and the cytoprotective actions. It is worth studying the cytoprotective effect of acupuncture and moxibustion by way of the resultant generation of HSP70 in the organism.

  7. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    Science.gov (United States)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2017-03-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s-channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  8. Similar cation channels mediate protection from cerebellar exitotoxicity by exercise and inheritance.

    Science.gov (United States)

    Ben-Ari, Shani; Ofek, Keren; Barbash, Shahar; Meiri, Hanoch; Kovalev, Eugenia; Greenberg, David Samuel; Soreq, Hermona; Shoham, Shai

    2012-03-01

    Exercise and inherited factors both affect recovery from stroke and head injury, but the underlying mechanisms and interconnections between them are yet unknown. Here, we report that similar cation channels mediate the protective effect of exercise and specific genetic background in a kainate injection model of cerebellar stroke. Microinjection to the cerebellum of the glutamatergic agonist, kainate, creates glutamatergic excito\\xE2\\x80\\x90toxicity characteristic of focal stroke, head injury or alcoholism. Inherited protection and prior exercise were both accompanied by higher cerebellar expression levels of the Kir6.1 ATP-dependent potassium channel in adjacent Bergmann glia, and voltage-gated KVbeta2 and cyclic nucleotide-gated cation HCN1 channels in basket cells. Sedentary FVB/N and exercised C57BL/6 mice both expressed higher levels of these cation channels compared to sedentary C57BL/6 mice, and were both found to be less sensitive to glutamate toxicity. Moreover, blocking ATP-dependent potassium channels with Glibenclamide enhanced kainate-induced cell death in cerebellar slices from the resilient sedentary FVB/N mice. Furthermore, exercise increased the number of acetylcholinesterase-positive fibres in the molecular layer, reduced cerebellar cytokine levels and suppressed serum acetylcholinesterase activity, suggesting anti-inflammatory protection by enhanced cholinergic signalling. Our findings demonstrate for the first time that routine exercise and specific genetic backgrounds confer protection from cerebellar glutamatergic damages by similar molecular mechanisms, including elevated expression of cation channels. In addition, our findings highlight the involvement of the cholinergic anti-inflammatory pathway in insult-inducible cerebellar processes. These mechanisms are likely to play similar roles in other brain regions and injuries as well, opening new venues for targeted research efforts.

  9. Blockade of microglial KATP -channel abrogates suppression of inflammatory-mediated inhibition of neural precursor cells.

    Science.gov (United States)

    Ortega, Francisco J; Vukovic, Jana; Rodríguez, Manuel J; Bartlett, Perry F

    2014-02-01

    Microglia positively affect neural progenitor cell physiology through the release of inflammatory mediators or trophic factors. We demonstrated previously that reactive microglia foster K(ATP) -channel expression and that blocking this channel using glibenclamide administration enhances striatal neurogenesis after stroke. In this study, we investigated whether the microglial K(ATP) -channel directly influences the activation of neural precursor cells (NPCs) from the subventricular zone using transgenic Csf1r-GFP mice. In vitro exposure of NPCs to lipopolysaccharide and interferon-gamma resulted in a significant decrease in precursor cell number. The complete removal of microglia from the culture or exposure to enriched microglia culture also decreased the precursor cell number. The addition of glibenclamide rescued the negative effects of enriched microglia on neurosphere formation and promoted a ∼20% improvement in precursor cell number. Similar results were found using microglial-conditioned media from isolated microglia. Using primary mixed glial and pure microglial cultures, glibenclamide specifically targeted reactive microglia to restore neurogenesis and increased the microglial production of the chemokine monocyte chemoattractant protein-1 (MCP-1). These findings provide the first direct evidence that the microglial K(ATP) -channel is a regulator of the proliferation of NPCs under inflammatory conditions.

  10. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins

    Science.gov (United States)

    Meseguer, Victor; Alpizar, Yeranddy A.; Luis, Enoch; Tajada, Sendoa; Denlinger, Bristol; Fajardo, Otto; Manenschijn, Jan-Albert; Fernández-Peña, Carlos; Talavera, Arturo; Kichko, Tatiana; Navia, Belén; Sánchez, Alicia; Señarís, Rosa; Reeh, Peter; Pérez-García, María Teresa; López-López, José Ramón; Voets, Thomas; Belmonte, Carlos; Talavera, Karel; Viana, Félix

    2014-01-01

    Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

  11. Acrolein-mediated conduction loss is partially restored by K⁺ channel blockers.

    Science.gov (United States)

    Yan, Rui; Page, Jessica C; Shi, Riyi

    2016-02-01

    Acrolein-mediated myelin damage is thought to be a critical mechanism leading to conduction failure following neurotrauma and neurodegenerative diseases. The exposure and activation of juxtaparanodal voltage-gated K(+) channels due to myelin damage leads to conduction block, and K(+) channel blockers have long been studied as a means for restoring axonal conduction in spinal cord injury (SCI) and multiple sclerosis (MS). In this study, we have found that 100 μM K(+) channel blockers 4-aminopyridine-3-methanol (4-AP-3-MeOH), and to a lesser degree 4-aminopyridine (4-AP), can significantly restore compound action potential (CAP) conduction in spinal cord tissue following acrolein-mediated myelin damage using a well-established ex vivo SCI model. In addition, 4-AP-3-MeOH can effectively restore CAP conduction in acrolein-damaged axons with a range of concentrations from 0.1 to 100 μM. We have also shown that while both compounds at 100 μM showed no preference of small- and large-caliber axons when restoring CAP conduction, 4-AP-3-MeOH, unlike 4-AP, is able to augment CAP amplitude while causing little change in axonal responsiveness measured in refractory periods and response to repetitive stimuli. In a prior study, we show that 4-AP-3-MeOH was able to functionally rescue mechanically injured axons. In this investigation, we conclude that 4-AP-3-MeOH is an effective K(+) channel blocker in restoring axonal conduction following both primary (physical) and secondary (chemical) insults. These findings also suggest that 4-AP-3-MeOH is a viable alternative of 4-AP for treating myelin damage and improving function following central nervous system trauma and neurodegenerative diseases.

  12. Multiple phytoestrogens inhibit cell growth and confer cytoprotection by inducing manganese superoxide dismutase expression.

    Science.gov (United States)

    Robb, Ellen L; Stuart, Jeffrey A

    2014-01-01

    Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. As data on phytoestrogens continues to accumulate, it is clear that there is significant overlap in the cellular effects elicited by these various compounds. Here, we show that one mechanism by which a number of phytoestrogens achieve their growth inhibitory and cytoprotective effects is via induction of the mitochondrial manganese superoxide dismutase (MnSOD). Eight phytoestrogens, including resveratrol, coumestrol, kaempferol, genistein, daidzein, apigenin, isoliquirtigenin and glycitin, were tested for their ability to induce MnSOD expression in mouse C2C12 and primary myoblasts. Five of these, resveratrol, coumestrol, kaempferol, genistein and daidzein, significantly increased MnSOD expression, slowed proliferative growth and enhanced stress resistance (hydrogen peroxide LD50) . When siRNA was used to prevent the MnSOD induction by genistein, coumestrol or daidzein, none of these compounds exerted any effect on proliferative growth, and only the effect of coumestrol on stress resistance persisted. The estrogen antagonist ICI182780 prevented the increased MnSOD expression and also the changes in cell growth and stress resistance, indicating that these effects are mediated by estrogen receptors (ER). The absence of effects of resveratrol or coumestrol, but not genistein, in ERβ-null cells further indicated that this ER in particular is important in mediating these effects. Thus, an ER-mediated induction of MnSOD expression appears to underlie the growth inhibitory and cytoprotective activities of multiple phytoestrogens.

  13. Glycine receptors contribute to cytoprotection of glycine in myocardial cells

    Institute of Scientific and Technical Information of China (English)

    QI Ren-bin; ZHANG Jun-yan; LU Da-xiang; WANG Hua-dong; WANG Hai-hua; LI Chu-jie

    2007-01-01

    Background The classic glycine receptor (GlyR) in the central nervous system is a ligand-gated membrane-spanning ion channel. Recent studies have provided evidence for the existence of GlyR in endothelial cells, renal proximal tubular cells and most leukocytes. In contrast, no evidence for GlyR in myocardial cells has been found so far. Our recent researches have showed that glycine could protect myocardial cells from the damage induced by lipopolysaccharide (LPS). Further studies suggest that myocardial cells could contain GlyR or binding site of glycine.Methods In isolated rat heart damaged by LPS, the myocardial monophasic action potential (MAP), the heart rate (HR),the myocardial tension and the activities of lactate dehydrogenase (LDH) from the coronary effluent were determined.The concentration of intracellular free calcium ([Ca2+]i) was measured in cardiomyocytes injured by LPS and by hypoxia/reoxygenation (H/R), which excludes the possibility that reduced calcium influx because of LPS neutralized by glycine. Immunohistochemistry was used to detect the GlyR in myocardial tissue. GlyR and its subunit in the purified cultured cardiomyocytes were identified by Western blotting.Results Although significant improvement in the MAP/MAPD20, HR, and reduction in LDH release were observed in glycine + LPS hearts, myocardial tension did not recover. Further studies demonstrated that glycine could prevent rat mycordial cells from LPS and hypoxia/reoxygenation injury (no endotoxin) by attenuating calcium influx.Immunohistochemistry exhibited a positive green-fluorescence signaling along the cardiac muscle fibers. Western blotting shows that the purified cultured cardiomyocytes express GlyR β subunit, but GlyR α1 subunit could not be detected.Conclusions The results suggest that glycine receptor is expressed in cardiomyocytes and participates in cytoprotection from LPS and hypoxia/reoxygenation injury. Glycine could directly activate GlyR on the cardiomyocytes and

  14. Melatonin-mediated cytoprotection against hyperglycemic injury in Muller cells.

    Directory of Open Access Journals (Sweden)

    Tingting Jiang

    Full Text Available Oxidative stress is a contributing factor to the development and progression of diabetic retinopathy, a leading cause of blindness in people at working age worldwide. Recent studies showed that Müller cells play key roles in diabetic retinopathy and produce vascular endothelial growth factor (VEGF that regulates retinal vascular leakage and proliferation. Melatonin is a potent antioxidant capable of protecting variety of retinal cells from oxidative damage. In addition to the pineal gland, the retina produces melatonin. In the current study, we investigated whether melatonin protects against hyperglycemia-induced oxidative injury to Müller cells and explored the potential underlying mechanisms. Our results show that both melatonin membrane receptors, MT1 and MT2, are expressed in cultured primary Müller cells and are upregulated by elevated glucose levels. Both basal and high glucose-induced VEGF production was attenuated by melatonin treatment in a dose-dependent manner. Furthermore, we found that melatonin is a potent activator of Akt in Müller cells. Our findings suggest that in addition to functioning as a direct free radical scavenger, melatonin can elicit cellular signaling pathways that are protective against retinal injury during diabetic retinopathy.

  15. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  16. Ca2+ paradox injury mediated through TRPC channels in mouse ventricular myocytes.

    Science.gov (United States)

    Kojima, Akiko; Kitagawa, Hirotoshi; Omatsu-Kanbe, Mariko; Matsuura, Hiroshi; Nosaka, Shuichi

    2010-12-01

    BACKGROUND AND PURPOSE The Ca(2+) paradox is an important phenomenon associated with Ca(2+) overload-mediated cellular injury in myocardium. The present study was undertaken to elucidate molecular and cellular mechanisms for the development of the Ca(2+) paradox. EXPERIMENTAL APPROACH Fluorescence imaging was performed on fluo-3 loaded quiescent mouse ventricular myocytes using confocal laser scanning microscope. KEY RESULTS The Ca(2+) paradox was readily evoked by restoration of the extracellular Ca(2+) following 10-20 min of nominally Ca(2+)-free superfusion. The Ca(2+) paradox was significantly reduced by blockers of transient receptor potential canonical (TRPC) channels (2-aminoethoxydiphenyl borate, Gd(3+), La(3+)) and anti-TRPC1 antibody. The sarcoplasmic reticulum (SR) Ca(2+) content, assessed by caffeine application, gradually declined during Ca(2+)-free superfusion, which was further accelerated by metabolic inhibition. Block of SR Ca(2+) leak by tetracaine prevented Ca(2+) paradox. The Na(+) /Ca(2+) exchange (NCX) blocker KB-R7943 significantly inhibited Ca(2+) paradox when applied throughout superfusion period, but had little effect when added for a period of 3 min before and during Ca(2+) restoration. The SR Ca(2+) content was better preserved during Ca(2+) depletion by KB-R7943. Immunocytochemistry confirmed the expression of TRPC1, in addition to TRPC3 and TRPC4, in mouse ventricular myocytes. CONCLUSIONS AND IMPLICATIONS These results provide evidence that (i) the Ca(2+) paradox is primarily mediated by Ca(2+) entry through TRPC (probably TRPC1) channels that are presumably activated by SR Ca(2+) depletion; and (ii) reverse mode NCX contributes little to the Ca(2+) paradox, whereas inhibition of NCX during Ca(2+) depletion improves SR Ca(2+) loading, and is associated with reduced incidence of Ca(2+) paradox in mouse ventricular myocytes.

  17. SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes.

    Science.gov (United States)

    Fay, Alex J; Qian, Xiang; Jan, Yuh Nung; Jan, Lily Yeh

    2006-11-14

    Neutrophils are immune cells that bind to, engulf, and destroy bacterial and fungal pathogens in infected tissue, and their clearance by apoptosis is essential for the resolution of inflammation. Killing involves both oxidative and nonoxidative processes, the oxidative pathway requiring electrogenic production of superoxide by the membrane-bound NADPH oxidase complex. A variety of stimuli, from bacterial chemotactic peptides to complement- or IgG-opsonized microbes, can induce the production of reactive oxygen species (ROS) by neutrophils, presumably by means of NADPH oxidase. We report here that 1-ethyl-2-benzimidazolinone (1-EBIO), an activator of Ca2+-activated potassium channels of small conductance (SK) and intermediate conductance (IK), causes production of superoxide and hydrogen peroxide by neutrophils and granulocyte-differentiated PLB-985 cells. This response can be partially inhibited by the SK blocker apamin, which inhibits a Ca2+-activated K+ current in these cells. Analysis of RNA transcripts indicates that channels encoded by the SK3 gene carry this current. The effects of 1-EBIO and apamin are independent of the NADPH oxidase pathway, as demonstrated by using a PLB-985 cell line lacking the gp91phox subunit. Rather, 1-EBIO and apamin modulate mitochondrial ROS production. Consistent with the enhanced ROS production and K+ efflux mediated by 1-EBIO, we found that this SK opener increased apoptosis of PLB-985 cells. Together, these findings suggest a previously uncharacterized mechanism for the regulation of neutrophil ROS production and programmed cell death.

  18. T-type Ca(2+) channels facilitate NO-formation, vasodilatation and NO-mediated modulation of blood pressure

    DEFF Research Database (Denmark)

    Svenningsen, Per; Andersen, Kenneth; Thuesen, Anne D

    2014-01-01

    Voltage-gated calcium channels are involved in the vascular excitation-contraction mechanism and regulation of arterial blood pressure. It was hypothesized that T-type channels promote formation of nitric oxide from the endothelium. The present experiments determine the involvement of T-type chan......Voltage-gated calcium channels are involved in the vascular excitation-contraction mechanism and regulation of arterial blood pressure. It was hypothesized that T-type channels promote formation of nitric oxide from the endothelium. The present experiments determine the involvement of T......-type channels in depolarization-dependent dilatation of mesenteric arteries and blood pressure regulation in Cav3.1 knock-out mice. Nitric oxide-dependent vasodilatation following depolarization-mediated vasoconstriction was reduced significantly in mesenteric arteries from Cav3.1(-/-) compared to wild type...

  19. Slow synaptic transmission mediated by TRPV1 channels in CA3 interneurons of the hippocampus.

    Science.gov (United States)

    Eguchi, Noriomi; Hishimoto, Akitoyo; Sora, Ichiro; Mori, Masahiro

    2016-03-11

    Metabotropic glutamate receptors (mGluRs) modulate various neuronal functions in the central nervous system. Many studies reported that mGluRs have linkages to neuronal disorders such as schizophrenia and autism related disorders, indicating that mGluRs are involved in critical functions of the neuronal circuits. To study this possibility further, we recorded mGluR-induced synaptic responses in the interneurons of the CA3 stratum radiatum using rat hippocampal organotypic slice cultures. Electrical stimulation in the CA3 pyramidal cell layer evoked a slow inward current in the interneurons at a holding potential of -70mV in the presence of antagonists for AMPA/kainate receptors, NMDA receptors, GABAA receptors and GABAB receptors. The slow inward current was blocked in the absence of extracellular calcium, suggesting that this was a synaptic response. The slow excitatory postsynaptic current (EPSC) reversed near 0mV, reflecting an increase in a non-selective cationic conductance. The slow EPSC is mediated by group I mGluRs, as it was blocked by AP3, a group I mGluR antagonist. Neither a calcium chelator BAPTA nor a phospholipase C (PLC) inhibitor U73122 affected the slow EPSC. La(3+), a general TRP channel blocker or capsazepine, a selective TRPV1 channel antagonist significantly suppressed the slow EPSC. DHPG, a selective group I mGluRs agonist induced an inward current, which was suppressed by capsazepine. These results indicate that in the interneurons of the hippocampal CA3 stratum radiatum group I mGluRs activate TRPV1 channels independently of PLC and intracellular Ca(2+), resulting in the slow EPSC in the interneurons.

  20. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels.

    Science.gov (United States)

    Jiang, Shaojuan Amy; Campusano, Jorge M; Su, Hailing; O'Dowd, Diane K

    2005-07-01

    Spontaneous calcium oscillations in mushroom bodies of late stage pupal and adult Drosophila brains have been implicated in memory consolidation during olfactory associative learning. This study explores the cellular mechanisms regulating calcium dynamics in Kenyon cells, principal neurons in mushroom bodies. Fura-2 imaging shows that Kenyon cells cultured from late stage Drosophila pupae generate spontaneous calcium transients in a cell autonomous fashion, at a frequency similar to calcium oscillations in vivo (10-20/h). The expression of calcium transients is up regulated during pupal development. Although the ability to generate transients is a property intrinsic to Kenyon cells, transients can be modulated by bath application of nicotine and GABA. Calcium transients are blocked, and baseline calcium levels reduced, by removal of external calcium, addition of cobalt, or addition of Plectreurys toxin (PLTX), an insect-specific calcium channel antagonist. Transients do not require calcium release from intracellular stores. Whole cell recordings reveal that the majority of voltage-gated calcium channels in Kenyon cells are PLTX-sensitive. Together these data show that influx of calcium through PLTX-sensitive voltage-gated calcium channels mediates spontaneous calcium transients and regulates basal calcium levels in cultured Kenyon cells. The data also suggest that these calcium transients represent cellular events underlying calcium oscillations in the intact mushroom bodies. However, spontaneous calcium transients are not unique to Kenyon cells as they are present in approximately 60% of all cultured central brain neurons. This suggests the calcium transients play a more general role in maturation or function of adult brain neurons.

  1. PDT: loss of autophagic cytoprotection after lysosomal photodamage

    Science.gov (United States)

    Kessel, David; Price, Michael

    2012-02-01

    Photodynamic therapy is known to evoke both autophagy and apoptosis. Apoptosis is an irreversible death pathway while autophagy can serve a cytoprotective function. In this study, we examined two photosensitizing agents that target lysosomes, although they differ in the reactive oxygen species (ROS) formed during irradiation. With both agents, the 'shoulder' on the PDT dose-response curve was substantially attenuated, consistent with loss of a cytoprotective pathway. In contrast, this 'shoulder' is commonly observed when PDT targets mitochondria or the ER. We propose that lysosomal targets may offer the possibility of promoting PDT efficacy by eliminating a potentially protective pathway.

  2. The two-pore channel TPCN2 mediates NAADP-dependent Ca(2+)-release from lysosomal stores.

    Science.gov (United States)

    Zong, Xiangang; Schieder, Michael; Cuny, Hartmut; Fenske, Stefanie; Gruner, Christian; Rötzer, Katrin; Griesbeck, Oliver; Harz, Hartmann; Biel, Martin; Wahl-Schott, Christian

    2009-09-01

    Second messenger-induced Ca(2+)-release from intracellular stores plays a key role in a multitude of physiological processes. In addition to 1,4,5-inositol trisphosphate (IP(3)), Ca(2+), and cyclic ADP ribose (cADPR) that trigger Ca(2+)-release from the endoplasmatic reticulum (ER), nicotinic acid adenine dinucleotide phosphate (NAADP) has been identified as a cellular metabolite that mediates Ca(2+)-release from lysosomal stores. While NAADP-induced Ca(2+)-release has been found in many tissues and cell types, the molecular identity of the channel(s) conferring this release remained elusive so far. Here, we show that TPCN2, a novel member of the two-pore cation channel family, displays the basic properties of native NAADP-dependent Ca(2+)-release channels. TPCN2 transcripts are widely expressed in the body and encode a lysosomal protein forming homomers. TPCN2 mediates intracellular Ca(2+)-release after activation with low-nanomolar concentrations of NAADP while it is desensitized by micromolar concentrations of this second messenger and is insensitive to the NAADP analog nicotinamide adenine dinucleotide phosphate (NADP). Furthermore, TPCN2-mediated Ca(2+)-release is almost completely abolished when the capacity of lysosomes for storing Ca(2+) is pharmacologically blocked. By contrast, TPCN2-specific Ca(2+)-release is unaffected by emptying ER-based Ca(2+) stores. In conclusion, these findings indicate that TPCN2 is a major component of the long-sought lysosomal NAADP-dependent Ca(2+)-release channel.

  3. Gastric anti-ulcer and cytoprotective effect of selenium in rats

    Energy Technology Data Exchange (ETDEWEB)

    Parmar, N.S.; Tariq, M.; Ageel, A.M.

    1988-01-01

    Selenium, a trace element, in the form of sodium selenite has been studied for its ability to protect the gastric mucosa against the injuries caused by hypothermic restraint stress, aspirin, indomethacin, reserpine, dimaprit, and various other gastric mucosal-damaging (necrotizing) agents in rats. The results demonstrate that oral administration of sodium selenite produces a significant inhibition of the gastric mucosal damage induced by all the procedures used in this study. Selenium, in a nonantisecretory dose, produced a marked cytoprotective effect against all the necrotizing agents. The cytoprotective effect of selenium against the effects of 80% ethanol and 0.6 M HCl was significantly reversed by prior treatment with a dose of indomethacin that inhibits prostaglandin biosynthesis. These data indicate that sodium selenite inhibits the formation of these lesions by the mucosal generation of prostaglandins. The concentrations of nonprotein sulfhydryls (NP-SH) were significantly decreased in the gastric mucosa following the administration of necrotizing agents--80% ethanol and 0.6 M HCl. Treatment with sodium selenite, which significantly reduced the intensity of gastric lesions, did not replenish the reduced levels of gastric mucosal NP-SH, thus ruling out the mediation of its protective effect through sulfhydryls. The antisecretory effect of sodium selenite, which becomes evident only in the high dose of 20 mumol/kg, may be responsible for the inhibition of gastric lesions induced by aspirin, indomethacin, reserpine, and dimaprit. Our findings show that selenium possesses significant anti-ulcer and adaptive cytoprotective effects. However, further detailed studies are required to confirm these effects, to establish its mechanism(s) of action, and to determine its role in the prophylaxis and treatment of peptic ulcer disease.

  4. Inhibition of caspase-9 aggravates acute liver injury through suppression of cytoprotective autophagy

    Science.gov (United States)

    Guo, Rui; Lin, Bin; Pan, Jing Fei; Liong, Emily C.; Xu, Ai Min; Youdim, Moussa; Fung, Man Lung; So, Kwok Fai; Tipoe, George L.

    2016-01-01

    Acute liver disease is characterized by inflammation, oxidative stress and necrosis, which can greatly influence the long term clinical outcome and lead to liver failure or cancer. Here, we initially demonstrated the beneficial role of caspase-9-dependent autophagy in acute liver injury. Treatment with caspase-9 inhibitor z-LEHD-FMK in HepG2 cells, AML12 cells and C57BL/b6N mice exacerbated CCl4-induced acute hepatocellular damage, and also down-regulated autophagy markers expression levels, indicating that caspase-9 inhibition may aggravate acute liver damage by suppressing cytoprotective autophagy. CCl4 was used as an acute liver injury inducer which caused oxidative stress and apoptosis through up-regulation of HIF-1α, as well as triggered hepatic inflammation and necroptosis via TLR4/NF-κB pathway. Caspase-9 Thr125 site was firstly phosphorylated by ERK1/2 which subsequently activated the cytoprotective autophagy process to attenuate acute CCl4 injury. Caspase-9 inhibition further aggravated hepatic necroptosis through NF-κB expression, leading to increased pro-inflammatory mediators levels, suggesting a protective role of caspase-9-dependent autophagy in the inflammatory process as well as its possibility being a new therapeutic target for the treatment of acute liver injury. PMID:27580936

  5. TRESK channel as a potential target to treat T-cell mediated immune dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaehee [Medical Research Center for Neural Dysfunction, Department of Physiology, Institute of Health Sciences, Gyeongsang National University, School of Medicine, Jinju 660-751 (Korea, Republic of); Kang, Dawon, E-mail: dawon@gnu.ac.kr [Medical Research Center for Neural Dysfunction, Department of Physiology, Institute of Health Sciences, Gyeongsang National University, School of Medicine, Jinju 660-751 (Korea, Republic of)

    2009-12-25

    In this review, we propose that TRESK background K{sup +} channel could serve as a potential therapeutic target for T-cell mediated immune dysfunction. TRESK has many immune function-related properties. TRESK is abundantly expressed in the thymus, the spleen, and human leukemic T-lymphocytes. TRESK is highly activated by Ca{sup 2+}, calcineurin, acetylcholine, and histamine which induce hypertrophy, whereas TRESK is inhibited by immunosuppressants, such as cyclosporin A and FK506. Cyclosporine A and FK506 target the binding site of nuclear factor of activated T-cells (NFAT) to inhibit calcineurin. Interestingly, TRESK possesses an NFAT-like docking site that is present at its intracellular loop. Calcineurin has been found to interact with TRESK via specific NFAT-like docking site. When the T-cell is activated, calcineurin can bind to the NFAT-docking site of TRESK. The activation of both TRESK and NFAT via Ca{sup 2+}-calcineurin-NFAT/TRESK pathway could modulate the transcription of new genes in addition to regulating several aspects of T-cell function.

  6. Antispasmodic activity of Symplocos paniculata is mediated through opening of ATP-dependent K+ channel

    Directory of Open Access Journals (Sweden)

    Khalid Hussain Janbaz

    2016-06-01

    Full Text Available Symplocos paniculata is a medicinal plant used by native healers to manage gastrointestinal ailments. The crude methanolic extract of S. paniculata was screened pharmacologically both in vitro and in vivo for the validation of its therapeutic potential. It suppressed the spontaneous activity of isolated rabbit jejunum preparations and also caused inhibition of the low K+ (20 mM- induced spastic contractions in isolated rabbit jejunum preparations in a manner comparable to cromakalim. The relaxant effect was found to be blocked following glibenclamide exposure of the isolated tissue preparations similar to cromakalim, suggesting that observed response was likely to be mediated through opening of ATP dependent K+ channels. Following oral administration to mice provided protection against castor oil-induced diarrhea in a manner similar to loperamide. The plant material was found safe in toxicity study up to oral dose of 8 g/kg in mice. Hence, present study provides a scientific basis for the vernacular use of S. paniculata in gastro-intestinal system.

  7. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  8. How to save the WIMP. Global analysis of a dark matter model with two s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Michael; Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schwetz, Thomas; Vogl, Stefan [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. fuer Kernphysik

    2016-06-15

    A reliable comparison of different dark matter (DM) searches requires models that satisfy certain consistency requirements like gauge invariance and perturbative unitarity. As a well-motivated example, we study two-mediator DM (2MDM). The model is based on a spontaneously broken U(1){sup '} gauge symmetry and contains a Majorana DM particle as well as two s-channel mediators, one vector (the Z{sup '}) and one scalar (the dark Higgs). We perform a global scan over the parameters of the model assuming that the DM relic density is obtained by thermal freeze-out in the early Universe and imposing a large set of constraints: direct and indirect DM searches, monojet, dijet and dilepton searches at colliders, Higgs observables, electroweak precision tests and perturbative unitarity. We conclude that thermal DM is only allowed either close to an s-channel resonance or if at least one mediator is lighter than the DM particle. In these cases a thermal DM abundance can be obtained although DM couplings to the Standard Model are tiny. Interestingly, we find that vector-mediated DM-nucleon scattering leads to relevant constraints despite the velocity-suppressed cross section, and that indirect detection can be important if DM annihilations into both mediators are kinematically allowed.

  9. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  10. Decrease of a Current Mediated by Kv1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism

    Directory of Open Access Journals (Sweden)

    Cecilia Tubert

    2016-09-01

    Full Text Available The mechanism underlying a hypercholinergic state in Parkinson’s disease (PD remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels.

  11. Reduced Antioxidant and Cytoprotective Capacity in Allergy and Asthma.

    Science.gov (United States)

    Lutter, René; van Lieshout, Bas; Folisi, Caterina

    2015-11-01

    In asthma, reactive oxygen species induce damage to biomolecules like proteins. This oxidative stress can promote inflammation, but its contribution to asthma pathology is controversial, not in the least because antioxidant interventions have proven rather unsuccessful. Recent studies indicate that the oxidative stress at baseline can be predictive of the fall in FEV1 upon an allergen challenge and of sensitization to an allergen. Interestingly, this baseline oxidative stress correlated with the capacity of antioxidant and cytoprotective responses to deal with reactive oxygen species, but not with inflammatory parameters. These findings have led to several considerations in relation to antioxidant trials that are discussed. Trials should be complemented by in-depth analyses of the failing antioxidant and cytoprotective responses and their consequences for cellular function in asthma.

  12. Membrane coordination of receptors and channels mediating the inhibition of neuronal ion currents by ADP.

    Science.gov (United States)

    Gafar, Hend; Dominguez Rodriguez, Manuel; Chandaka, Giri K; Salzer, Isabella; Boehm, Stefan; Schicker, Klaus

    2016-09-01

    ADP and other nucleotides control ion currents in the nervous system via various P2Y receptors. In this respect, Cav2 and Kv7 channels have been investigated most frequently. The fine tuning of neuronal ion channel gating via G protein coupled receptors frequently relies on the formation of higher order protein complexes that are organized by scaffolding proteins and harbor receptors and channels together with interposed signaling components. However, ion channel complexes containing P2Y receptors have not been described. Therefore, the regulation of Cav2.2 and Kv7.2/7.3 channels via P2Y1 and P2Y12 receptors and the coordination of these ion channels and receptors in the plasma membranes of tsA 201 cells have been investigated here. ADP inhibited currents through Cav2.2 channels via both P2Y1 and P2Y12 receptors with phospholipase C and pertussis toxin-sensitive G proteins being involved, respectively. The nucleotide controlled the gating of Kv7 channels only via P2Y1 and phospholipase C. In fluorescence energy transfer assays using conventional as well as total internal reflection (TIRF) microscopy, both P2Y1 and P2Y12 receptors were found juxtaposed to Cav2.2 channels, but only P2Y1, and not P2Y12, was in close proximity to Kv7 channels. Using fluorescence recovery after photobleaching in TIRF microscopy, evidence for a physical interaction was obtained for the pair P2Y12/Cav2.2, but not for any other receptor/channel combination. These results reveal a membrane juxtaposition of P2Y receptors and ion channels in parallel with the control of neuronal ion currents by ADP. This juxtaposition may even result in apparent physical interactions between receptors and channels.

  13. Cytoprotective, antihyperglycemic and phytochemical properties of Cocos nucifera (L.) inflorescence

    Institute of Scientific and Technical Information of China (English)

    RS Renjith; AM Chikku; T Rajamohan

    2013-01-01

    Objective:To analyze the cytoprotective and antidiabetic activities as well as phytochemical composition of the immature inflorescence ofCocos nucifera belonging to theArecaceaeFamily. Methods:The phytochemical screening of inflorescence was done to determine the major constituents present inCocos nuciferainflorescence.The free radical scavenging potential of inflorescence extracts were evaluated using in vitro radical scavenging assay models.Results:The phytochemical analyses on inflorescence showed the presence of phenolic compounds, flavonoids, resins and alkaloids.The macronutrient analyses, on the other hand, showed the presence of carbohydrate, proteins and fibers.Administration of the methanol extract of coconut inflorescence to the diabetic rats showed dose dependent reduction in hyperglycemia.The cytoprotective property of coconut inflorescence was evidenced from the acute toxicological evaluation.The levels of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase were significantly decreased in the diabetic rats treated with inflorescence when compared with the diabetic control rats.Conclusion:The results obtained from the present study apparently proved the non-toxic nature and the cytoprotective and antihyperglycemic properties of coconut inflorescence.

  14. Characterization of two-pore channel 2 (TPCN2)-mediated Ca2+ currents in isolated lysosomes.

    Science.gov (United States)

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian A

    2010-07-01

    Two-pore channels (TPCNs) have been proposed to form lysosomal Ca(2+) release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca(2+) channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino acid residue in the putative pore region that is crucial for conferring high Ca(2+) selectivity. Our glass chip-based method will provide electrophysiological access not only to lysosomal TPCN channels but also to a broad range of other intracellular ion channels.

  15. Characterization of Two-pore Channel 2 (TPCN2)-mediated Ca2+ Currents in Isolated Lysosomes*

    Science.gov (United States)

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian A.

    2010-01-01

    Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino acid residue in the putative pore region that is crucial for conferring high Ca2+ selectivity. Our glass chip-based method will provide electrophysiological access not only to lysosomal TPCN channels but also to a broad range of other intracellular ion channels. PMID:20495006

  16. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells.

    Science.gov (United States)

    Chen, Pei-Yi; Ho, Yi-Ru; Wu, Ming-Jiuan; Huang, Shun-Ping; Chen, Po-Kong; Tai, Mi-Hsueh; Ho, Chi-Tang; Yen, Jui-Hung

    2015-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol compound of flavonoids, exhibits a broad spectrum of biological activities including anti-oxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The aim of this study is to investigate the cytoprotective effect of fisetin and the underlying molecular mechanism against hypoxia-induced cell death in PC12 cells. The results of this study showed that fisetin significantly restored the cell viability of PC12 cells under both cobalt chloride (CoCl₂)- and low oxygen-induced hypoxic conditions. Treatment with fisetin successfully reduced the CoCl₂-mediated reactive oxygen species (ROS) production, which was accompanied by an increase in the cell viability of PC12 cells. Furthermore, we found that treatment of PC12 cells with fisetin markedly upregulated hypoxia-inducible factor 1α (HIF-1α), its nuclear accumulation and the hypoxia-response element (HRE)-driven transcriptional activation. The fisetin-mediated cytoprotection during CoCl₂ exposure was significantly attenuated through the administration of HIF-1α siRNA. Moreover, we demonstrated that MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK and phosphatidylinositol 3-kinase (PI3 K) inhibitors significantly blocked the increase in cell survival that was induced by fisetin treatment under hypoxic conditions. Consistently, increased phosphorylation of ERK, p38 and Akt proteins was observed in PC12 cells treated with fisetin. However, the fisetin-induced HRE-driven transcription was not affected by inhibition of these kinase signaling pathways. Current results reveal for the first time that fisetin promotes cell survival and protects against hypoxia-induced cell death through ROS scavenging and the activation of HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent signaling pathways in PC12 cells.

  17. Biphasic somatic A-type K channel downregulation mediates intrinsic plasticity in hippocampal CA1 pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Sung-Cherl Jung

    Full Text Available Since its original description, the induction of synaptic long-term potentiation (LTP has been known to be accompanied by a lasting increase in the intrinsic excitability (intrinsic plasticity of hippocampal neurons. Recent evidence shows that dendritic excitability can be enhanced by an activity-dependent decrease in the activity of A-type K(+ channels. In the present manuscript, we examined the role of A-type K(+ channels in regulating intrinsic excitability of CA1 pyramidal neurons of the hippocampus after synapse-specific LTP induction. In electrophysiological recordings we found that LTP induced a potentiation of excitability which was accompanied by a two-phased change in A-type K(+ channel activity recorded in nucleated patches from organotypic slices of rat hippocampus. Induction of LTP resulted in an immediate but short lasting hyperpolarization of the voltage-dependence of steady-state A-type K(+ channel inactivation along with a progressive, long-lasting decrease in peak A-current density. Blocking clathrin-mediated endocytosis prevented the A-current decrease and most measures of intrinsic plasticity. These results suggest that two temporally distinct but overlapping mechanisms of A-channel downregulation together contribute to the plasticity of intrinsic excitability. Finally we show that intrinsic plasticity resulted in a global enhancement of EPSP-spike coupling.

  18. Characterization of Two-pore Channel 2 (TPCN2)-mediated Ca2+ Currents in Isolated Lysosomes*

    OpenAIRE

    Schieder, Michael; Rötzer, Katrin; Brüggemann, Andrea; Biel, Martin; Wahl-Schott, Christian A.

    2010-01-01

    Two-pore channels (TPCNs) have been proposed to form lysosomal Ca2+ release channels that are activated by nicotinic acid adenine dinucleotide phosphate. Here, we employ a glass chip-based method to record for the first time nicotinic acid adenine dinucleotide phosphate -dependent currents through a two-pore channel (TPCN2) from intact lysosomes. We show that TPCN2 is a highly selective Ca2+ channel that is regulated by intralysosomal pH. Using site-directed mutagenesis, we identify an amino ...

  19. The Voltage-dependent Anion Channel 1 Mediates Amyloid β Toxicity and Represents a Potential Target for Alzheimer Disease Therapy.

    Science.gov (United States)

    Smilansky, Angela; Dangoor, Liron; Nakdimon, Itay; Ben-Hail, Danya; Mizrachi, Dario; Shoshan-Barmatz, Varda

    2015-12-25

    The voltage-dependent anion channel 1 (VDAC1), found in the mitochondrial outer membrane, forms the main interface between mitochondrial and cellular metabolisms, mediates the passage of a variety of molecules across the mitochondrial outer membrane, and is central to mitochondria-mediated apoptosis. VDAC1 is overexpressed in post-mortem brains of Alzheimer disease (AD) patients. The development and progress of AD are associated with mitochondrial dysfunction resulting from the cytotoxic effects of accumulated amyloid β (Aβ). In this study we demonstrate the involvement of VDAC1 and a VDAC1 N-terminal peptide (VDAC1-N-Ter) in Aβ cell penetration and cell death induction. Aβ directly interacted with VDAC1 and VDAC1-N-Ter, as monitored by VDAC1 channel conductance, surface plasmon resonance, and microscale thermophoresis. Preincubated Aβ interacted with bilayer-reconstituted VDAC1 and increased its conductance ∼ 2-fold. Incubation of cells with Aβ resulted in mitochondria-mediated apoptotic cell death. However, the presence of non-cell-penetrating VDAC1-N-Ter peptide prevented Aβ cellular entry and Aβ-induced mitochondria-mediated apoptosis. Likewise, silencing VDAC1 expression by specific siRNA prevented Aβ entry into the cytosol as well as Aβ-induced toxicity. Finally, the mode of Aβ-mediated action involves detachment of mitochondria-bound hexokinase, induction of VDAC1 oligomerization, and cytochrome c release, a sequence of events leading to apoptosis. As such, we suggest that Aβ-mediated toxicity involves mitochondrial and plasma membrane VDAC1, leading to mitochondrial dysfunction and apoptosis induction. The VDAC1-N-Ter peptide targeting Aβ cytotoxicity is thus a potential new therapeutic strategy for AD treatment.

  20. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera.

    Science.gov (United States)

    De Angeli, Alexis; Baetz, Ulrike; Francisco, Rita; Zhang, Jingbo; Chaves, Maria Manuela; Regalado, Ana

    2013-08-01

    Vitis vinifera L. represents an economically important fruit species. Grape and wine flavour is made from a complex set of compounds. The acidity of berries is a major parameter in determining grape berry quality for wine making and fruit consumption. Despite the importance of malic and tartaric acid (TA) storage and transport for grape berry acidity, no vacuolar transporter for malate or tartrate has been identified so far. Some members of the aluminium-activated malate transporter (ALMT) anion channel family from Arabidopsis thaliana have been shown to be involved in mediating malate fluxes across the tonoplast. Therefore, we hypothesised that a homologue of these channels could have a similar role in V. vinifera grape berries. We identified homologues of the Arabidopsis vacuolar anion channel AtALMT9 through a TBLASTX search on the V. vinifera genome database. We cloned the closest homologue of AtALMT9 from grape berry cDNA and designated it VvALMT9. The expression profile revealed that VvALMT9 is constitutively expressed in berry mesocarp tissue and that its transcription level increases during fruit maturation. Moreover, we found that VvALMT9 is targeted to the vacuolar membrane. Using patch-clamp analysis, we could show that, besides malate, VvALMT9 mediates tartrate currents which are higher than in its Arabidopsis homologue. In summary, in the present study we provide evidence that VvALMT9 is a vacuolar malate channel expressed in grape berries. Interestingly, in V. vinifera, a tartrate-producing plant, the permeability of the channel is apparently adjusted to TA.

  1. Fps1p channel is the mediator of the major part of glycerol passive diffusion in Saccharomyces cerevisiae : artefacts and re-definitions

    OpenAIRE

    Oliveira, Rui Pedro Soares de; Lages, Fernanda; Graça, Magda Maria Couto da Silva; Lucas, Cândida

    2003-01-01

    Glycerol has been shown to cross Saccharomyces cerevisiae plasma membrane (1) through a H+/symport detected in cells grown on non-fermentable carbon sources, (2) by passive diffusion and (3) through the constitutive Fps1p channel. This has been named a facilitator, for mediating glycerol low affinity transport of the facilitated diffusion type. We present experimental evidence that this kinetics is an artefact created by glycerol kinase activity. Instead, the channel is shown to mediate the m...

  2. Hepatic ATGL mediates PPAR-α signaling and fatty acid channeling through an L-FABP independent mechanism.

    Science.gov (United States)

    Ong, Kuok Teong; Mashek, Mara T; Davidson, Nicholas O; Mashek, Douglas G

    2014-05-01

    Adipose TG lipase (ATGL) catalyzes the rate-limiting step in TG hydrolysis in most tissues. We have shown that hepatic ATGL preferentially channels hydrolyzed FAs to β-oxidation and induces PPAR-α signaling. Previous studies have suggested that liver FA binding protein (L-FABP) transports FAs from lipid droplets to the nucleus for ligand delivery and to the mitochondria for β-oxidation. To determine if L-FABP is involved in ATGL-mediated FA channeling, we used adenovirus-mediated suppression or overexpression of hepatic ATGL in either WT or L-FABP KO mice. Hepatic ATGL knockdown increased liver weight and TG content of overnight fasted mice regardless of genotype. L-FABP deletion did not impair the effects of ATGL overexpression on the oxidation of hydrolyzed FAs in primary hepatocyte cultures or on serum β-hydroxybutyrate concentrations in vivo. Moreover, L-FABP deletion did not influence the effects of ATGL knockdown or overexpression on PPAR-α target gene expression. Taken together, we conclude that L-FABP is not required to channel ATGL-hydrolyzed FAs to mitochondria for β-oxidation or the nucleus for PPAR-α regulation.

  3. The Pyrexia transient receptor potential channel mediates circadian clock synchronization to low temperature cycles in Drosophila melanogaster.

    Science.gov (United States)

    Wolfgang, Werner; Simoni, Alekos; Gentile, Carla; Stanewsky, Ralf

    2013-10-07

    Circadian clocks are endogenous approximately 24 h oscillators that temporally regulate many physiological and behavioural processes. In order to be beneficial for the organism, these clocks must be synchronized with the environmental cycles on a daily basis. Both light : dark and the concomitant daily temperature cycles (TCs) function as Zeitgeber ('time giver') and efficiently entrain circadian clocks. The temperature receptors mediating this synchronization have not been identified. Transient receptor potential (TRP) channels function as thermo-receptors in animals, and here we show that the Pyrexia (Pyx) TRP channel mediates temperature synchronization in Drosophila melanogaster. Pyx is expressed in peripheral sensory organs (chordotonal organs), which previously have been implicated in temperature synchronization. Flies deficient for Pyx function fail to synchronize their behaviour to TCs in the lower range (16-20°C), and this deficit can be partially rescued by introducing a wild-type copy of the pyx gene. Synchronization to higher TCs is not affected, demonstrating a specific role for Pyx at lower temperatures. In addition, pyx mutants speed up their clock after being exposed to TCs. Our results identify the first TRP channel involved in temperature synchronization of circadian clocks.

  4. How to save the WIMP: global analysis of a dark matter model with two s-channel mediators

    CERN Document Server

    Duerr, Michael; Schmidt-Hoberg, Kai; Schwetz, Thomas; Vogl, Stefan

    2016-01-01

    A reliable comparison of different dark matter (DM) searches requires models that satisfy certain consistency requirements like gauge invariance and perturbative unitarity. As a well-motivated example, we study two-mediator DM (2MDM). The model is based on a spontaneously broken $U(1)'$ gauge symmetry and contains a Majorana DM particle as well as two $s$-channel mediators, one vector (the $Z'$) and one scalar (the dark Higgs). We perform a global scan over the parameters of the model assuming that the DM relic density is obtained by thermal freeze-out in the early Universe and imposing a large set of constraints: direct and indirect DM searches, monojet, dijet and dilepton searches at colliders, Higgs observables, electroweak precision tests and perturbative unitarity. We conclude that thermal DM is only allowed either close to an $s$-channel resonance or if at least one mediator is lighter than the DM particle. In these cases a thermal DM abundance can be obtained although DM couplings to the Standard Model...

  5. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1.

    Science.gov (United States)

    Fanger, C M; Ghanshani, S; Logsdon, N J; Rauer, H; Kalman, K; Zhou, J; Beckingham, K; Chandy, K G; Cahalan, M D; Aiyar, J

    1999-02-26

    Small and intermediate conductance Ca2+-activated K+ channels play a crucial role in hyperpolarizing the membrane potential of excitable and nonexcitable cells. These channels are exquisitely sensitive to cytoplasmic Ca2+, yet their protein-coding regions do not contain consensus Ca2+-binding motifs. We investigated the involvement of an accessory protein in the Ca2+-dependent gating of hIKCa1, a human intermediate conductance channel expressed in peripheral tissues. Cal- modulin was found to interact strongly with the cytoplasmic carboxyl (C)-tail of hIKCa1 in a yeast two-hybrid system. Deletion analyses defined a requirement for the first 62 amino acids of the C-tail, and the binding of calmodulin to this region did not require Ca2+. The C-tail of hSKCa3, a human neuronal small conductance channel, also bound calmodulin, whereas that of a voltage-gated K+ channel, mKv1.3, did not. Calmodulin co-precipitated with the channel in cell lines transfected with hIKCa1, but not with mKv1. 3-transfected lines. A mutant calmodulin, defective in Ca2+ sensing but retaining binding to the channel, dramatically reduced current amplitudes when co-expressed with hIKCa1 in mammalian cells. Co-expression with varying amounts of wild-type and mutant calmodulin resulted in a dominant-negative suppression of current, consistent with four calmodulin molecules being associated with the channel. Taken together, our results suggest that Ca2+-calmodulin-induced conformational changes in all four subunits are necessary for the channel to open.

  6. Role of ATP-dependent K channels in the effects of erythropoietin in renal ischaemia injury

    Directory of Open Access Journals (Sweden)

    Tonguç Utku Yilmaz

    2015-01-01

    Interpretation & conclusions: Our results showed that the cell proliferative, cytoprotective and anti-apoptotic effects of EPO were associated with KATP channels in the renal tubular cell culture model under hypoxic/normal conditions.

  7. Opposing effects of the anesthetic propofol at pentameric ligand-gated ion channels mediated by a common site

    DEFF Research Database (Denmark)

    Lynagh, Timothy Peter; Laube, Bodo

    2014-01-01

    Propofol is an intravenous general anesthetic that alters neuronal excitability by modulating agonist responses of pentameric ligand-gated ion channels (pLGICs). Evidence suggests that propofol enhancement of anion-selective pLGICs is mediated by a binding site between adjacent subunits, whereas...... in Xenopus laevis oocytes with electrophysiology. The Haemonchus contortus AVR-14B GluCl was inhibited by propofol with an IC50 value of 252 ± 48 μM, providing the first example of propofol inhibition of an anion-selective pLGIC. Remarkably, inhibition was converted to enhancement by a single I18'S...... substitution in the channel-forming M2 helix (EC50 = 979 ± 88 μM). When a previously identified site between adjacent subunits was disrupted by the M3 G329I substitution, both propofol inhibition and enhancement of GluCls were severely impaired (IC50 and EC50 values could not be calculated). Similarly, when...

  8. Tetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators.

    Science.gov (United States)

    Tan, Zhi-Yong; Piekarz, Andrew D; Priest, Birgit T; Knopp, Kelly L; Krajewski, Jeffrey L; McDermott, Jeff S; Nisenbaum, Eric S; Cummins, Theodore R

    2014-05-21

    Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. Here we report a novel TTX-resistant (TTX-R) resurgent current recorded from rat DRG neurons. The TTX-R resurgent currents are similar to classic TTX-S resurgent currents in many respects, but not all. As with TTX-S resurgent currents, they are activated by membrane repolarization, inhibited by lidocaine, and enhanced by a peptide-mimetic of the β4 sodium channel subunit intracellular domain. However, the TTX-R resurgent currents exhibit much slower kinetics, occur at more depolarized voltages, and are sensitive to the Nav1.8 blocker A803467. Moreover, coimmunoprecipitation experiments from rat DRG lysates indicate the endogenous sodium channel β4 subunits associate with Nav1.8 in DRG neurons. These results suggest that slow TTX-R resurgent currents in DRG neurons are mediated by Nav1.8 and are generated by the same mechanism underlying TTX-S resurgent currents. We also show that both TTX-S and TTX-R resurgent currents in DRG neurons are enhanced by inflammatory mediators. Furthermore, the β4 peptide increased excitability of small DRG neurons in the presence of TTX. We propose that these slow TTX-R resurgent currents contribute to the membrane excitability of nociceptive DRG neurons under normal conditions and that enhancement of both types of resurgent currents by inflammatory mediators could contribute to sensory neuronal hyperexcitability associated with inflammatory pain.

  9. T Cell Receptor Mediated Calcium Entry Requires Alternatively Spliced Cav1.1 Channels.

    Directory of Open Access Journals (Sweden)

    Didi Matza

    Full Text Available The process of calcium entry in T cells is a multichannel and multi-step process. We have studied the requirement for L-type calcium channels (Cav1.1 α1S subunits during calcium entry after TCR stimulation. High expression levels of Cav1.1 channels were detected in activated T cells. Sequencing and cloning of Cav1.1 channel cDNA from T cells revealed that a single splice variant is expressed. This variant lacks exon 29, which encodes the linker region adjacent to the voltage sensor, but contains five new N-terminal exons that substitute for exons 1 and 2, which are found in the Cav1.1 muscle counterpart. Overexpression studies using cloned T cell Cav1.1 in 293HEK cells (that lack TCR suggest that the gating of these channels was altered. Knockdown of Cav1.1 channels in T cells abrogated calcium entry after TCR stimulation, suggesting that Cav1.1 channels are controlled by TCR signaling.

  10. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case.

    Science.gov (United States)

    Mattelaer, Olivier; Vryonidou, Eleni

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5_aMC@NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons ([Formula: see text]), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower.

  11. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case

    Energy Technology Data Exchange (ETDEWEB)

    Mattelaer, Olivier [Durham University, Institute for Particle Physics Phenomenology (IPPP), Durham (United Kingdom); Vryonidou, Eleni [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium)

    2015-09-15

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5{sub a}MC rate at NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons (γ,Z,H), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower. (orig.)

  12. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired ß-adrenoceptor-mediated relaxation of renal arteries in hypertension

    DEFF Research Database (Denmark)

    Chadha, Preet S; Zunke, Friederike; Zhu, Hai-Lei;

    2012-01-01

    KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown...... strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to ß-adrenoceptor-mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein...... spontaneously hypertensive rats, which was associated with ˜60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to ß-adrenoceptor-mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired ß...

  13. Non-selective cation channels mediate chloroquine-induced relaxation in precontracted mouse airway smooth muscle.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    Full Text Available Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs. In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs precontracted with acetylcholine (ACH. In the presence of nifedipine (10 µM, ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs, and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs were blocked by chloroquine. Pyrazole 3 (Pyr3, an inhibitor of transient receptor potential C3 (TRPC3 channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.

  14. Intracellular ion channel CLIC1: involvement in microglia-mediated β-amyloid peptide(1-42) neurotoxicity.

    Science.gov (United States)

    Skaper, Stephen D; Facci, Laura; Giusti, Pietro

    2013-09-01

    Microglia can exacerbate central nervous system disorders, including stroke and chronic progressive neurodegenerative diseases such as Alzheimer disease. Mounting evidence points to ion channels expressed by microglia as contributing to these neuropathologies. The Chloride Intracellular Channel (CLIC) family represents a class of chloride intracellular channel proteins, most of which are localized to intracellular membranes. CLICs are unusual in that they possess both soluble and integral membrane forms. Amyloid β-peptide (Aβ) accumulation in plaques is a hallmark of familial Alzheimer disease. The truncated Aβ25-35 species was shown previously to increase the expression of CLIC1 chloride conductance in cortical microglia and to provoke microglial neurotoxicity. However, the highly pathogenic and fibrillogenic full-length Aβ1-42 species was not examined, nor was the potential role of CLIC1 in mediating microglial activation and neurotoxicity by other stimuli (e.g. ligands for the Toll-like receptors). In the present study, we utilized a two chamber Transwell™ cell culture system to allow separate treatment of microglia and neurons while examining the effect of pharmacological blockade of CLIC1 in protecting cortical neurons from toxicity caused by Aβ1-42- and lipopolysaccaride-stimulated microglia. Presentation of Aβ1-42 to the upper, microglia-containing chamber resulted in a progressive loss of neurons over 3 days. Neuronal cell injury was prevented by the CLIC1 ion channel blockers IAA-94 [(R(+)-[(6,7-dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-1-oxo-1H-inden-5yl)-oxy] acetic acid)] and niflumic acid (2-{[3-(trifluoromethyl)phenyl]amino}nicotinic acid) when presented to the upper chamber only. Incubation of microglia with lipopolysaccharide plus interferon-γ led to neuronal cell injury which, however, was insensitive to inhibition by the CLIC1 channel blockers, suggesting a degree of selectivity in agents leading to CLIC1 activation.

  15. Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels

    DEFF Research Database (Denmark)

    Sørensen, Mads Vaarby; Sausbier, Matthias; Ruth, Peter

    2010-01-01

    secretory K(+) channel in the apical membrane of the murine distal colon. The BK channel is responsible for both resting and Ca(2+)-activated colonic K(+) secretion and is up-regulated by aldosterone. Agonists (e.g. adrenaline) that elevate cAMP are potent activators of distal colonic K(+) secretion....... However, the secretory K(+) channel responsible for cAMP-induced K(+) secretion remains to be defined. In this study we used the Ussing chamber to identify adrenaline-induced electrogenic K(+) secretion. We found that the adrenaline-induced electrogenic ion secretion is a compound effect dominated...... by anion secretion and a smaller electrically opposing K(+) secretion. Using tissue from (i) BK wildtype (BK(+/+)) and knockout (BK(/)) and (ii) cystic fibrosis transmembrane regulator (CFTR) wildtype (CFTR(+/+)) and knockout (CFTR(/)) mice we were able to isolate the adrenaline-induced K(+) secretion. We...

  16. Ethanol affects network activity in cultured rat hippocampus: mediation by potassium channels.

    Directory of Open Access Journals (Sweden)

    Eduard Korkotian

    Full Text Available The effects of ethanol on neuronal network activity were studied in dissociated cultures of rat hippocampus. Exposure to low (0.25-0.5% ethanol concentrations caused an increase in synchronized network spikes, and a decrease in the duration of individual spikes. Ethanol also caused an increase in rate of miniature spontaneous excitatory postsynaptic currents. Higher concentrations of ethanol eliminated network spikes. These effects were reversible upon wash. The effects of the high, but not the low ethanol were blocked by the GABA antagonist bicuculline. The enhancing action of low ethanol was blocked by apamin, an SK potassium channel antagonist, and mimicked by 1-EBIO, an SK channel opener. It is proposed that in cultured hippocampal networks low concentration of ethanol is associated with SK channel activity, rather than the GABAergic receptor.

  17. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    Science.gov (United States)

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  18. Simplified DM models with the full SM gauge symmetry : the case of $t$-channel colored scalar mediators

    CERN Document Server

    Ko, P; Park, Myeonghun; Yokoya, Hiroshi

    2016-01-01

    The general strategy for dark matter (DM) searches at colliders currently relies on simplified models. In this paper, we propose a new $t$-channel UV-complete simplified model that improves the existing simplified DM models in two important respects: (i) we impose the full SM gauge symmetry including the fact that the left-handed and the right-handed fermions have two independent mediators with two independent couplings, and (ii) we include the renormalization group evolution when we derive the effective Lagrangian for DM-nucleon scattering from the underlying UV complete models by integrating out the $t$-channel mediators. The first improvement will introduce a few more new parameters compared with the existing simplified DM models. In this study we look at the effect this broader set of free parameters has on direct detection and the mono-$X$ + MET ($X$=jet,$W,Z$) signatures at 13 TeV LHC while maintaining gauge invariance of the simplified model under the full SM gauge group. We find that the direct detect...

  19. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Mawatari, Kentarou, E-mail: kentarou.mawatari@vub.ac.be [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050, Brussels (Belgium); Pellen, Mathieu [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany)

    2015-10-07

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  20. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Kraemer, Michael; Pellen, Mathieu [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium)

    2015-10-15

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  1. PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels.

    Science.gov (United States)

    Itsuki, Kyohei; Imai, Yuko; Hase, Hideharu; Okamura, Yasushi; Inoue, Ryuji; Mori, Masayuki X

    2014-02-01

    Transient receptor potential classical (or canonical) (TRPC)3, TRPC6, and TRPC7 are a subfamily of TRPC channels activated by diacylglycerol (DAG) produced through the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) by phospholipase C (PLC). PI(4,5)P2 depletion by a heterologously expressed phosphatase inhibits TRPC3, TRPC6, and TRPC7 activity independently of DAG; however, the physiological role of PI(4,5)P2 reduction on channel activity remains unclear. We used Förster resonance energy transfer (FRET) to measure PI(4,5)P2 or DAG dynamics concurrently with TRPC6 or TRPC7 currents after agonist stimulation of receptors that couple to Gq and thereby activate PLC. Measurements made at different levels of receptor activation revealed a correlation between the kinetics of PI(4,5)P2 reduction and those of receptor-operated TRPC6 and TRPC7 current activation and inactivation. In contrast, DAG production correlated with channel activation but not inactivation; moreover, the time course of channel inactivation was unchanged in protein kinase C-insensitive mutants. These results suggest that inactivation of receptor-operated TRPC currents is primarily mediated by the dissociation of PI(4,5)P2. We determined the functional dissociation constant of PI(4,5)P2 to TRPC channels using FRET of the PLCδ Pleckstrin homology domain (PHd), which binds PI(4,5)P2, and used this constant to fit our experimental data to a model in which channel gating is controlled by PI(4,5)P2 and DAG. This model predicted similar FRET dynamics of the PHd to measured FRET in either human embryonic kidney cells or smooth muscle cells, whereas a model lacking PI(4,5)P2 regulation failed to reproduce the experimental data, confirming the inhibitory role of PI(4,5)P2 depletion on TRPC currents. Our model also explains various PLC-dependent characteristics of channel activity, including limitation of maximum open probability, shortening of the peak time, and the bell-shaped response of total

  2. Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways.

    Directory of Open Access Journals (Sweden)

    David E Shore

    Full Text Available Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60, the ER UPR (hsp-4, ROS response (sod-3, gst-4, and xenobiotic detoxification (gst-4. We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.

  3. Effects of large conductance Ca(2+)-activated K(+) channels on nitroglycerin-mediated vasorelaxation in humans

    DEFF Research Database (Denmark)

    Gruhn, Nicolai; Boesgaard, Søren; Eiberg, Jonas;

    2002-01-01

    /kg/min). Iberiotoxin reduced the vasorelaxant effect of nitroglycerin (E(max)) by 60% in endothelium-intact arteries and 13% in endothelium-denuded arteries (P0.05) and (compared to arterial segments) veins were less sensitive to BK(Ca) channel blockade (30% reduction in E(max)) or endothelial removal. The results...

  4. Contribution of Kv7 channels to natriuretic peptide mediated vasodilation in normal and hypertensive rats

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Barrese, Vincenzo; Jepps, Thomas Andrew;

    2015-01-01

    -cAMP-linked vasodilator pathways has not been investigated. Natriuretic peptides are potent vasodilators, which operate primarily through the activation of a cGMP-dependent signaling pathway. This study investigated the putative role of Kv7 channels in natriuretic peptide-dependent relaxations in the vasculature...

  5. Distance-dependent homeostatic synaptic scaling mediated by A-type potassium channels

    Directory of Open Access Journals (Sweden)

    Hiroshi T Ito

    2009-11-01

    Full Text Available Many lines of evidence suggest that the efficacy of synapses on CA1 pyramidal neuron dendrites increases as a function of distance from the cell body. The strength of an individual synapse is also dynamically modulated by activity-dependent synaptic plasticity, which raises the question as to how a neuron can reconcile individual synaptic changes with the maintenance of the proximal-to-distal gradient of synaptic strength along the dendrites. As the density of A-type potassium channels exhibits a similar gradient from proximal (low-to-distal (high dendrites, the A-current may play a role in coordinating local synaptic changes with the global synaptic strength gradient. Here we describe a form of homeostatic plasticity elicited by conventional activity blockade (with TTX coupled with a block of the A-type potassium channel. Following A-type potassium channel inhibition for 12 hrs, recordings from CA1 somata revealed a significantly higher miniature excitatory postsynaptic current (mEPSC frequency, whereas in dendritic recordings, there was no change in mEPSC frequency. Consistent with mEPSC recordings, we observed a significant increase in AMPA receptor density in stratum pyramidale but not stratum radiatum. Based on these data, we propose that the differential distribution of A-type potassium channels along the apical dendrites may create a proximal-to-distal membrane potential gradient. This gradient may regulate AMPA receptor distribution along the same axis. Taken together, our results indicate that A-type potassium channels play an important role in controlling synaptic strength along the dendrites, which may help to maintain the computational capacity of the neuron.

  6. Phosphorylation mediated structural and functional changes in pentameric ligand-gated ion channels: implications for drug discovery.

    Science.gov (United States)

    Talwar, Sahil; Lynch, Joseph W

    2014-08-01

    Pentameric ligand-gated ion channels (pLGICs) mediate numerous physiological processes, including fast neurotransmission in the brain. They are targeted by a large number of clinically-important drugs and disruptions to their function are associated with many neurological disorders. The phosphorylation of pLGICs can result in a wide range of functional consequences. Indeed, many neurological disorders result from pLGIC phosphorylation. For example, chronic pain is caused by the protein kinase A-mediated phosphorylation of α3 glycine receptors and nicotine addiction is mediated by the phosphorylation of α4- or α7-containing nicotinic receptors. A recent study demonstrated that phosphorylation can induce a global conformational change in a pLGIC that propagates to the neurotransmitter-binding site. Here we present evidence that phosphorylation-induced global conformational changes may be a universal phenomenon in pLGICs. This raises the possibility of designing drugs to specifically treat disease-modified pLGICs. This review summarizes some of the opportunities available in this area.

  7. Computer-mediated communication as a channel for social resistance : The strategic side of SIDE

    NARCIS (Netherlands)

    Spears, R; Lea, M; Corneliussen, RA; Postmes, T; Ter Haar, W

    2002-01-01

    In two studies, the authors tested predictions derived from the social identity model of deindividuation effects (SIDE) concerning the potential of computer-mediated communication (CMC) to serve as a means to resist powerful out-groups. Earlier research using the SIDE model indicates that the anonym

  8. Search for Gauge Mediated Supersymmetry in the gamma gamma missing ET Channel

    Energy Technology Data Exchange (ETDEWEB)

    Kesisoglou, Stilianos Isaak [Brown Univ., Providence, RI (United States)

    2005-05-01

    We present results on a search for Gauge Mediated Supersymmetry in the di-photon final state using Run II data collected by the D0 Experiment at the Fermilab Tevatron Collider. We discuss event selection, Standard Model backgrounds, and the lower limits on the lightest neutralino and chargino masses resulted from this analysis.

  9. Light-activated control of protein channel assembly mediated by membrane mechanics

    Science.gov (United States)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

  10. Ionic channel mechanisms mediating the intrinsic excitability of Kenyon cells in the mushroom body of the cricket brain.

    Science.gov (United States)

    Inoue, Shigeki; Murata, Kaoru; Tanaka, Aiko; Kakuta, Eri; Tanemura, Saori; Hatakeyama, Shiori; Nakamura, Atsunao; Yamamoto, Chihiro; Hasebe, Masaharu; Kosakai, Kumiko; Yoshino, Masami

    2014-09-01

    Intrinsic neurons within the mushroom body of the insect brain, called Kenyon cells, play an important role in olfactory associative learning. In this study, we examined the ionic mechanisms mediating the intrinsic excitability of Kenyon cells in the cricket Gryllus bimaculatus. A perforated whole-cell clamp study using β-escin indicated the existence of several inward and outward currents. Three types of inward currents (INaf, INaP, and ICa) were identified. The transient sodium current (INaf) activated at -40 mV, peaked at -26 mV, and half-inactivated at -46.7 mV. The persistent sodium current (INaP) activated at -51 mV, peaked at -23 mV, and half-inactivated at -30.7 mV. Tetrodotoxin (TTX; 1 μM) completely blocked both INaf and INaP, but 10nM TTX blocked INaf more potently than INaP. Cd(2+) (50 μM) potently blocked INaP with little effect on INaf. Riluzole (>20 μM) nonselectively blocked both INaP and INaf. The voltage-dependent calcium current (ICa) activated at -30 mV, peaked at -11.3 mV, and half-inactivated at -34 mV. The Ca(2+) channel blocker verapamil (100 μM) blocked ICa in a use-dependent manner. Cell-attached patch-clamp recordings showed the presence of a large-conductance Ca(2+)-activated K(+) (BK) channel, and the activity of this channel was decreased by removing the extracellular Ca(2+) or adding verapamil or nifedipine, and increased by adding the Ca(2+) agonist Bay K8644, indicating that Ca(2+) entry via the L-type Ca(2+) channel regulates BK channel activity. Under the current-clamp condition, membrane depolarization generated membrane oscillations in the presence of 10nM TTX or 100 μM riluzole in the bath solution. These membrane oscillations disappeared with 1 μM TTX, 50 μM Cd(2+), replacement of external Na(+) with choline, and blockage of Na(+)-activated K(+) current (IKNa) with 50 μM quinidine, indicating that membrane oscillations are primarily mediated by INaP in cooperation with IKNa. The plateau potentials observed either in

  11. Decrease of a Current Mediated by K(v)1.3 Channels Causes Striatal Cholinergic Interneuron Hyperexcitability in Experimental Parkinsonism

    OpenAIRE

    Cecilia Tubert; Irene R.E. Taravini; Eden Flores-Barrera; Gonzalo M. Sánchez; María Alejandra Prost; María Elena Avale; Kuei Y. Tseng; Lorena Rela; Mario Gustavo Murer

    2016-01-01

    The mechanism underlying a hypercholinergic state in Parkinsons disease (PD) remains uncertain. Here, we show that disruption of the K(v)1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing K(v)1.3 subunits contribute significantly to the orphan potassium current known as I-sAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to d...

  12. AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells.

    Directory of Open Access Journals (Sweden)

    Shaowu Xue

    Full Text Available The Arabidopsis AtHKT1;1 protein was identified as a sodium (Na⁺ transporter by heterologous expression in Xenopus laevis oocytes and Saccharomyces cerevisiae. However, direct comparative in vivo electrophysiological analyses of a plant HKT transporter in wild-type and hkt loss-of-function mutants has not yet been reported and it has been recently argued that heterologous expression systems may alter properties of plant transporters, including HKT transporters. In this report, we analyze several key functions of AtHKT1;1-mediated ion currents in their native root stelar cells, including Na⁺ and K⁺ conductances, AtHKT1;1-mediated outward currents, and shifts in reversal potentials in the presence of defined intracellular and extracellular salt concentrations. Enhancer trap Arabidopsis plants with GFP-labeled root stelar cells were used to investigate AtHKT1;1-dependent ion transport properties using patch clamp electrophysiology in wild-type and athkt1;1 mutant plants. AtHKT1;1-dependent currents were carried by sodium ions and these currents were not observed in athkt1;1 mutant stelar cells. However, K⁺ currents in wild-type and athkt1;1 root stelar cell protoplasts were indistinguishable correlating with the Na⁺ over K⁺ selectivity of AtHKT1;1-mediated transport. Moreover, AtHKT1;1-mediated currents did not show a strong voltage dependence in vivo. Unexpectedly, removal of extracellular Na⁺ caused a reduction in AtHKT1;1-mediated outward currents in Columbia root stelar cells and Xenopus oocytes, indicating a role for external Na⁺ in regulation of AtHKT1;1 activity. Shifting the NaCl gradient in root stelar cells showed a Nernstian shift in the reversal potential providing biophysical evidence for the model that AtHKT1;1 mediates passive Na⁺ channel transport properties.

  13. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiwen [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China); Bijie Pilot Area Research Institute of Bijie University, Bijie 551700 (China); Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009 (China)

    2013-08-16

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity.

  14. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting...... in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal...... of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx...

  15. 980-nm infrared laser modulation of sodium channel kinetics in a neuron cell linearly mediated by photothermal effect

    Science.gov (United States)

    Li, Xinyu; Liu, Jia; Liang, Shanshan; Sun, Changsen

    2014-10-01

    Photothermal effect (PE) plays a major role in the near-infrared laser interaction with biological tissue. But, quite few interactions can be quantitatively depicted. Here, a two-step model is proposed to describe a 980-nm infrared laser interaction with neuron cell in vitro. First, the laser-induced temperature rises in the cell surrounding area were measured by using an open pipette method and also calculated by solving the heat conduction equation. Second, we recorded the modifications on sodium (Na) channel current in neuron cells directly by using a patch clamp to synchronize the 980-nm laser irradiation and obtained how the electrophysiological function of neuron cells respond to the temperature rise. Then, the activation time constants, τm, were extracted by fitting the sodium currents with the Hodgkin-Huxley model. The infrared laser modulation effect on sodium currents kinetics was examined by taking a ratio between the time constants with and without the laser irradiations. The analysis revealed that the averaged ratio at a specific laser exposure could be well related to the temperature properties of the Na channel protein. These results proved that the modulation of sodium current kinetics of a neuron cell in vitro by 980-nm laser with different-irradiation levels was linearly mediated corresponding to the laser-induced PE.

  16. Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels

    Directory of Open Access Journals (Sweden)

    Rémi Peyronnet

    2012-03-01

    Full Text Available How renal epithelial cells respond to increased pressure and the link with kidney disease states remain poorly understood. Pkd1 knockout or expression of a PC2 pathogenic mutant, mimicking the autosomal dominant polycystic kidney disease, dramatically enhances mechanical stress-induced tubular apoptotic cell death. We show the presence of a stretch-activated K+ channel dependent on the TREK-2 K2P subunit in proximal convoluted tubule epithelial cells. Our findings further demonstrate that polycystins protect renal epithelial cells against apoptosis in response to mechanical stress, and this function is mediated through the opening of stretch-activated K2P channels. Thus, to our knowledge, we establish for the first time, both in vitro and in vivo, a functional relationship between mechanotransduction and mechanoprotection. We propose that this mechanism is at play in other important pathologies associated with apoptosis and in which pressure or flow stimulation is altered, including heart failure or atherosclerosis.

  17. Activation of L-type calcium channels is required for gap junction-mediated intercellular calcium signaling in osteoblastic cells

    Science.gov (United States)

    Jorgensen, Niklas Rye; Teilmann, Stefan Cuoni; Henriksen, Zanne; Civitelli, Roberto; Sorensen, Ole Helmer; Steinberg, Thomas H.

    2003-01-01

    The propagation of mechanically induced intercellular calcium waves (ICW) among osteoblastic cells occurs both by activation of P2Y (purinergic) receptors by extracellular nucleotides, resulting in "fast" ICW, and by gap junctional communication in cells that express connexin43 (Cx43), resulting in "slow" ICW. Human osteoblastic cells transmit intercellular calcium signals by both of these mechanisms. In the current studies we have examined the mechanism of slow gap junction-dependent ICW in osteoblastic cells. In ROS rat osteoblastic cells, gap junction-dependent ICW were inhibited by removal of extracellular calcium, plasma membrane depolarization by high extracellular potassium, and the L-type voltage-operated calcium channel inhibitor, nifedipine. In contrast, all these treatments enhanced the spread of P2 receptor-mediated ICW in UMR rat osteoblastic cells. Using UMR cells transfected to express Cx43 (UMR/Cx43) we confirmed that nifedipine sensitivity of ICW required Cx43 expression. In human osteoblastic cells, gap junction-dependent ICW also required activation of L-type calcium channels and influx of extracellular calcium.

  18. [Properties of cholinergic receptor-mediated ion channels on type I vestibular hair cells of guinea pigs].

    Science.gov (United States)

    Zhu, Yun; Kong, Wei-Jia; Xia, Jiao; Zhang, Yu; Cheng, Hua-Mao; Guo, Chang-Kai

    2008-06-25

    To confirm the existence of cholinergic receptors on type I vestibular hair cells (VHCs I) of guinea pigs and to study the properties of the cholinergic receptor-mediated ion channels on VHCs I, electrophysiological responses of isolated VHCs I to external ACh were examined by means of whole-cell patch-clamp recordings. The results showed that 7.5% (21/279) VHCs I were found to be sensitive to ACh (10-1000 μmol/L). ACh generated an outward current in a steady, slow, dose-dependent [EC(50) was (63.78±2.31) μmol/L] and voltage-independent manner. In standard extracellular solution, ACh at the concentration of 100 μmol/L triggered a calcium-dependent current of (170±15) pA at holding potential of -50 mV, and the current amplitude could be depressed by extracellularly added calcium-dependent potassium channel antagonist TEA. The time interval for the next complete activation of ACh-sensitive current was no less than 1 min. The ion channels did not shut off even when they were exposed to ACh for an extended period of time (8 min). The results suggest that dose-dependent, calcium-dependent and voltage-independent cholinergic receptors were located on a few of the VHCs I investibular epithelium of guinea pigs. The cholinergic receptors did not show desensitization to ACh. This work reveals the existence of efferent neurotransmitter receptors on VHCs I and helps in understanding the function of vestibular efferent nervous system, and may provide some useful information on guiding the clinical rehabilitative treatment of vertigo.

  19. Cytoprotective nanoparticles by conjugation of a polyhis tagged annexin V to a nanoparticle drug.

    Science.gov (United States)

    Chen, Howard H; Yuan, Hushan; Cho, Hoonsung; Sosnovik, David E; Josephson, Lee

    2015-02-14

    We synthesized a cytoprotective magnetic nanoparticle by reacting a maleimide functionalized Feraheme (FH) with a disulfide linked dimer of a polyhis tagged annexin V. Following reductive cleavage of disulfide, the resulting annexin-nanoparticle (diameter = 28.0 ± 2.0 nm by laser light scattering, 7.6 annexin's/nanoparticle) was cytoprotective to cells subjected to plasma membrane disrupting chemotherapeutic or mechanical stresses, and significantly more protective than the starting annexin V. Annexin-nanoparticles provide an approach to the design of nanomaterials which antagonize the plasma membrane permeability characteristic of necrosis and which may have applications as cytoprotective agents.

  20. MicroRNA-Mediated Downregulation of the Potassium Channel Kv4.2 Contributes to Seizure Onset

    Directory of Open Access Journals (Sweden)

    Christina Gross

    2016-09-01

    Full Text Available Seizures are bursts of excessive synchronized neuronal activity, suggesting that mechanisms controlling brain excitability are compromised. The voltage-gated potassium channel Kv4.2, a major mediator of hyperpolarizing A-type currents in the brain, is a crucial regulator of neuronal excitability. Kv4.2 expression levels are reduced following seizures and in epilepsy, but the underlying mechanisms remain unclear. Here, we report that Kv4.2 mRNA is recruited to the RNA-induced silencing complex shortly after status epilepticus in mice and after kainic acid treatment of hippocampal neurons, coincident with reduction of Kv4.2 protein. We show that the microRNA miR-324-5p inhibits Kv4.2 protein expression and that antagonizing miR-324-5p is neuroprotective and seizure suppressive. MiR-324-5p inhibition also blocks kainic-acid-induced reduction of Kv4.2 protein in vitro and in vivo and delays kainic-acid-induced seizure onset in wild-type but not in Kcnd2 knockout mice. These results reveal an important role for miR-324-5p-mediated silencing of Kv4.2 in seizure onset.

  1. Modeling CaMKII-mediated regulation of L-type Ca2+ channels and ryanodine receptors in the heart

    Directory of Open Access Journals (Sweden)

    Joseph L Greenstein

    2014-04-01

    Full Text Available Excitation-contraction coupling (ECC in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca2+ transport. Voltage- and Ca2+-dependent L-type Ca2+ channels (LCCs allow for Ca2+ entry into the myocyte, which then binds to nearby ryanodine receptors (RyRs and triggers Ca2+ release from the sarcoplasmic reticulum in a process known as Ca2+-induced Ca2+ release. The highly coordinated Ca2+-mediated interaction between LCCs and RyRs is further regulated by the cardiac isoform of the Ca2+/calmodulin-dependent protein kinase (CaMKII. Because CaMKII targets and modulates the function of many ECC proteins, elucidation of its role in ECC and integrative cellular function is challenging and much insight has been gained through the use of detailed computational models. Multiscale models that can both reconstruct the detailed nature of local signaling events within the cardiac dyad and predict their functional consequences at the level of the whole cell have played an important role in advancing our understanding of CaMKII function in ECC. Here, we review experimentally based models of CaMKII function with a focus on LCC and RyR regulation, and the mechanistic insights that have been gained through their application.

  2. Acid extrusion from human spermatozoa is mediated by flagellar voltage-gated proton channel.

    Science.gov (United States)

    Lishko, Polina V; Botchkina, Inna L; Fedorenko, Andriy; Kirichok, Yuriy

    2010-02-05

    Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patch clamping human spermatozoa, we show that proton channel Hv1 is their dominant proton conductance. Hv1 is confined to the principal piece of the sperm flagellum, where it is expressed at unusually high density. Robust flagellar Hv1-dependent proton conductance is activated by membrane depolarization, an alkaline extracellular environment, endocannabinoid anandamide, and removal of extracellular zinc, a potent Hv1 blocker. Hv1 allows only outward transport of protons and is therefore dedicated to inducing intracellular alkalinization and activating spermatozoa. The importance of Hv1 for sperm activation makes it an attractive target for controlling male fertility.

  3. Upregulation of NF-E2-related factor-2-dependent glutathione by carnosol provokes a cytoprotective response and enhances cell survival

    Institute of Scientific and Technical Information of China (English)

    Chien-chung CHEN; Hui-ling CHEN; Chia-wen HSIEH; Yi-ling YANG; Being-sun WUNG

    2011-01-01

    Aim:To explore whether glutathione (GSH) increased through Nrf-2 activation is involved in the cytoprotective effects of carnosol in HepG2 cells.Methods:Human hepatoma cell line HepG2 were exposed to rosemarry essential oil or carnosol. Cell viability was measured using an Alamar blue assay. The production of intracellular GSH was determined using monochlorobimane. The level of protein or mRNA was examined by Western blotting or RT-PCR, respectively.Results:Rosemarry essential oil (0.005%-0.02%) and carnosol (5 and 10 mol/L) increased the intracellular GSH levels and GSH synthesis enzyme subunit GCLC/GCLM expression. Rosemary essential oil and carnosol increased nuclear accumulation of Nrf2 and enhanced Nrf2-antioxidant responsive element (ARE)-reporter activity. Transfection of the treated cells with an Nrf2 siRNA construct blocks GCLC/GCLM induction. Furthermore, pretreatment of the HepG2 cells with essential oil and carnosol exerted significant cytoprotective effects against H2O2 or alcohol. In TNFα-treated cells, the nuclear translocation and transcriptional activity of NF-KB was abolished for 12 h following carnosol pretreatment. Cotreatment with GSH also suppressed NF-kB nuclear translocation, whereas cotreatment with BSO, a GSH synthesis blocker, blocked the inhibitory effects of carnosol.Conclusion:This study demonstrated that Nrf2 is involved in the cytoprotective effects by carnasol, which were at least partially mediated through increased GSH biosynthesis.

  4. Evaluation of a loop-mediated isothermal amplification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri.

    Science.gov (United States)

    Channel catfish Ictalurus punctatus infected with Edwardsiella ictaluri results in $40 - 50 million annual losses in profits to catfish producers. Early detection of this pathogen is necessary for disease control and reduction of economic loss. In this communication, the loop-mediated isothermal a...

  5. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1.

    Science.gov (United States)

    Inserra, Marco C; Israel, Mathilde R; Caldwell, Ashlee; Castro, Joel; Deuis, Jennifer R; Harrington, Andrea M; Keramidas, Angelo; Garcia-Caraballo, Sonia; Maddern, Jessica; Erickson, Andelain; Grundy, Luke; Rychkov, Grigori Y; Zimmermann, Katharina; Lewis, Richard J; Brierley, Stuart M; Vetter, Irina

    2017-02-22

    Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1-1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation.

  6. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser

    Science.gov (United States)

    Ishii, Atsuhiro; Ariyasu, Kazumasa; Mitsuhashi, Tatsuki; Heinemann, Dag; Heisterkamp, Alexander; Terakawa, Mitsuhiro

    2016-05-01

    The use of small particles has expanded the capability of ultrashort pulsed laser optoinjection technology toward simultaneous treatment of multiple cells. The microfluidic platform is one of the attractive systems that has obtained synergy with laser-based technology for cell manipulation, including optoinjection. We have demonstrated the delivery of molecules into suspended-flowing cells in a microfluidic channel by using biodegradable polymer microspheres and a near-infrared femtosecond laser pulse. The use of polylactic-co-glycolic acid microspheres realized not only a higher optoinjection ratio compared to that with polylactic acid microspheres but also avoids optical damage to the microfluidic chip, which is attributable to its higher optical intensity enhancement at the localized spot under a microsphere. Interestingly, optoinjection ratios to nucleus showed a difference for adhered cells and suspended cells. The use of biodegradable polymer microspheres provides high throughput optoinjection; i.e., multiple cells can be treated in a short time, which is promising for various applications in cell analysis, drug delivery, and ex vivo gene transfection to bone marrow cells and stem cells without concerns about residual microspheres.

  7. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Huawei Sun

    Full Text Available This study investigated the change of transient receptor potential melastatin 7 (TRPM7 expression by high glucose and its role in hyperglycemia induced injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs were incubated in the presence or absence of high concentrations of D-glucose (HG for 72 h. RT-PCR, Real-time PCR, Western blotting, Immunofluorescence staining and whole-cell patch-clamp recordings showed that TRPM7 mRNA, TRPM7 protein expression and TRPM7-like currents were increased in HUVECs following exposure to HG. In contrast to D-glucose, exposure of HUVECs to high concentrations of L-glucose had no effect. HG increased reactive oxygen species (ROS generation, cytotoxicity and decreased endothelial nitric oxide synthase protein expression, which could be attenuated by knockdown of TRPM7 with TRPM7 siRNA. The protective effect of silencing TRPM7 against HG induced endothelial injury was abolished by U0126, an inhibitor of the extracellular signal-regulated kinase signaling pathway. These observations suggest that TRPM7 channels play an important role in hyperglycemia-induced injury of vascular endothelial cells.

  8. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1

    Science.gov (United States)

    Inserra, Marco C.; Israel, Mathilde R.; Caldwell, Ashlee; Castro, Joel; Deuis, Jennifer R.; Harrington, Andrea M.; Keramidas, Angelo; Garcia-Caraballo, Sonia; Maddern, Jessica; Erickson, Andelain; Grundy, Luke; Rychkov, Grigori Y.; Zimmermann, Katharina; Lewis, Richard J.; Brierley, Stuart M.; Vetter, Irina

    2017-01-01

    Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation. PMID:28225079

  9. Phorbol Ester Modulation of Ca2+ Channels Mediates Nociceptive Transmission in Dorsal Horn Neurones

    Directory of Open Access Journals (Sweden)

    Gary J. Stephens

    2013-05-01

    Full Text Available Phorbol esters are analogues of diacylglycerol which activate C1 domain proteins, such as protein kinase C (PKC. Phorbol ester/PKC pathways have been proposed as potential therapeutic targets for chronic pain states, potentially by phosphorylating proteins involved in nociception, such as voltage-dependent Ca2+ channels (VDCCs. In this brief report, we investigate the potential involvement of CaV2 VDCC subtypes in functional effects of the phorbol ester, phorbol 12-myristate 13-acetate (PMA on nociceptive transmission in the spinal cord. Effects of PMA and of selective pharmacological blockers of CaV2 VDCC subtypes on nociceptive transmission at laminae II dorsal horn neurones were examined in mouse spinal cord slices. Experiments were extended to CaV2.3(−/− mice to complement pharmacological studies. PMA increased the mean frequency of spontaneous postsynaptic currents (sPSCs in dorsal horn neurones, without an effect on event amplitude or half-width. sPSC frequency was reduced by selective VDCC blockers, w-agatoxin-IVA (AgTX; CaV2.1, w-conotoxin-GVIA (CTX; CaV2.2 or SNX-482 (CaV2.3. PMA effects were attenuated in the presence of each VDCC blocker and, also, in CaV2.3(−/− mice. These initial data demonstrate that PMA increases nociceptive transmission at dorsal horn neurones via actions on different CaV2 subtypes suggesting potential anti-nociceptive targets in this system.

  10. Channel-mediated lactic acid transport: a novel function for aquaglyceroporins in bacteria.

    Science.gov (United States)

    Bienert, Gerd P; Desguin, Benoît; Chaumont, François; Hols, Pascal

    2013-09-15

    MIPs (major intrinsic proteins), also known as aquaporins, are membrane proteins that channel water and/or uncharged solutes across membranes in all kingdoms of life. Considering the enormous number of different bacteria on earth, functional information on bacterial MIPs is scarce. In the present study, six MIPs [glpF1 (glycerol facilitator 1)-glpF6] were identified in the genome of the Gram-positive lactic acid bacterium Lactobacillus plantarum. Heterologous expression in Xenopus laevis oocytes revealed that GlpF2, GlpF3 and GlpF4 each facilitated the transmembrane diffusion of water, dihydroxyacetone and glycerol. As several lactic acid bacteria have GlpFs in their lactate racemization operon (GlpF1/F4 phylogenetic group), their ability to transport this organic acid was tested. Both GlpF1 and GlpF4 facilitated the diffusion of D/L-lactic acid. Deletion of glpF1 and/or glpF4 in Lb. plantarum showed that both genes were involved in the racemization of lactic acid and, in addition, the double glpF1 glpF4 mutant showed a growth delay under conditions of mild lactic acid stress. This provides further evidence that GlpFs contribute to lactic acid metabolism in this species. This lactic acid transport capacity was shown to be conserved in the GlpF1/F4 group of Lactobacillales. In conclusion, we have functionally analysed the largest set of bacterial MIPs and demonstrated that the lactic acid membrane permeability of bacteria can be regulated by aquaglyceroporins.

  11. The role of DPO-1 and XE991-sensitive potassium channels in perivascular adipose tissue-mediated regulation of vascular tone

    Directory of Open Access Journals (Sweden)

    Dmitry Tsvetkov

    2016-08-01

    Full Text Available The anti-contractile effect of perivascular adipose tissue (PVAT is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated Kv (KCNQ channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular Kv channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca2+ activated BKCa channels and/or voltage-dependent Kv1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1. In this study, we tested whether Kv1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding Kv1.5 and BKCa channels, in helping to identify the nature of K+ channels that could contribute to PVAT-mediated relaxation. XE991 at 30 µM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE in the absence of PVAT. Similar effects were observed for XE991 at 0.3 µM, which is known to almost completely inhibit mesenteric artery VSMC Kv currents. 30 µM XE991 did not affect BKCa currents in VSMCs. Kcna5-/- arteries and wild-type arteries incubated with 1 µM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. Kv current density and inhibition by 30 µM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5-/- mice. We conclude that Kv channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive Kv1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other Kv channels in

  12. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jae Yun [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Seung Sik [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Da Eon [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Bang, Joon Seok [Graduate School of Clinical Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Jung, Young Suk [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  13. Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain

    Directory of Open Access Journals (Sweden)

    Chen Wei-Hsin

    2011-11-01

    Full Text Available Abstract Background Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3 in both carrageenan- and complete Freund's adjuvant (CFA-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation. Methods Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG neurons. Results In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation. Conclusions In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression.

  14. Age-dependent impact of CaV3.2 T-type calcium channel deletion on myogenic tone and flow-mediated vasodilatation in small arteries

    DEFF Research Database (Denmark)

    Mikkelsen, Miriam F.; Björling, Karl; Jensen, Lars Jørn

    2016-01-01

    .2-dependent and -independent effects. No changes in mRNA expression of several important K(+) and Ca(2+) channel genes were induced by CaV3.2 knock-out. However, the expression of the other T-type channel isoform (CaV3.1) was reduced at the mRNA and protein level in mature adult compared to young WT arteries......The myogenic response and flow-mediated vasodilatation are important regulators of local blood perfusion and total peripheral resistance, and are known to entail a calcium influx into vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), respectively. CaV3.2 T-type calcium channels...... are expressed in both VSMCs and ECs of small arteries. The T-type channels are important drug targets but due to the lack of specific antagonists our understanding of the role of CaV3.2 channels in vasomotor tone at various ages is scarce. We evaluated the myogenic response, flow-mediated vasodilatation...

  15. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro

    Science.gov (United States)

    Du, Xixun; Xu, Huamin; Shi, Limin; Jiang, Zhifeng; Song, Ning; Jiang, Hong; Xie, Junxia

    2016-01-01

    Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson’s disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD. Interestingly, activation of KATP channels could induce membrane hyperpolarization. Therefore, it is of vital importance to study the effects of activation of KATP channels on DMT1-mediated iron uptake function. In the present study, activation of KATP channels by diazoxide resulted in the hyperpolarization of the membrane potential and increased DMT1-mediated iron uptake in SK-N-SH cells. This led to an increase in intracellular iron levels and a subsequent decrease in the mitochondrial membrane potential and an increase in ROS production. Delayed inactivation of the Fe2+-evoked currents by diazoxide was recorded by patch clamp in HEK293 cells, which demonstrated that diazoxide could prolonged DMT1-facilitated iron transport. While inhibition of KATP channels by glibenclamide could block ferrous iron influx and the subsequent cell damage. Overexpression of Kir6.2/SUR1 resulted in an increase in iron influx and intracellular iron levels, which was markedly increased after diazoxide treatment. PMID:27646472

  16. Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion.

    Science.gov (United States)

    Babilonia, Elisa; Lin, Daohong; Zhang, Yan; Wei, Yuan; Yue, Peng; Wang, Wen-Hui

    2007-07-01

    Previous study has demonstrated that superoxide and the related products are involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity in the cortical collecting duct (CCD). This study investigated the role of gp91(phox)-containing NADPH oxidase (NOXII) in mediating the effect of low K intake on renal K excretion and ROMK channel activity in gp91(-/-) mice. K depletion increased superoxide levels, phosphorylation of c-Jun, expression of c-Src, and tyrosine phosphorylation of ROMK in renal cortex and outer medulla in wild-type (WT) mice. In contrast, tempol treatment in WT mice abolished whereas deletion of gp91 significantly attenuated the effect of low K intake on superoxide production, c-Jun phosphorylation, c-Src expression, and tyrosine phosphorylation of ROMK. Patch-clamp experiments demonstrated that low K intake decreased mean product of channel number (N) and open probability (P) (NP(o)) of ROMK channels from 1.1 to 0.4 in the CCD. However, the effect of low K intake on ROMK channel activity was significantly attenuated in the CCD from gp91(-/-) mice and completely abolished by tempol treatment. Immunocytochemical staining also was used to examine the ROMK distribution in WT, gp91(-/-), and WT mice with tempol treatment in response to K restriction. K restriction decreased apical staining of ROMK in WT mice. In contrast, a sharp apical ROMK staining was observed in the tempol-treated WT or gp91(-/-) mice. Metabolic cage study further showed that urinary K loss is significantly higher in gp91(-/-) mice than in WT mice. It is concluded that superoxide anions play a key role in suppressing K secretion during K restriction and that NOXII is involved in mediating the effect of low K intake on renal K secretion and ROMK channel activity.

  17. Effects of K+ channel agonists cromakalim and pinacidil on rat basilar artery smooth muscle cells are mediated by Ca(++)-activated K+ channels.

    Science.gov (United States)

    Stockbridge, N; Zhang, H; Weir, B

    1991-11-27

    Whole-cell and cell-free inside-out patch-clamp recording techniques were used to examine the actions of potassium channel openers pinacidil and cromakalim in enzymatically isolated smooth muscle cells of rat basilar artery. Delayed rectifier and calcium-dependent potassium currents were identified from the whole-cell recordings. Only the calcium-dependent potassium current was increased by cromakalim and pinacidil. Recordings from inside-out membrane patches revealed a large conductance voltage- and calcium-dependent potassium channel, which was blocked by charybdotoxin but unaffected by ATP less than 10 mM. Cromakalim and pinacidil increased the open probability of this channel. On the basis of these results, we suggest that such drugs, acting on cerebral arterial smooth muscle cell potassium channels, may be of some benefit in the treatment of cerebral vasospasm following subarachnoid hemorrhage.

  18. Identification of sodium channel isoforms that mediate action potential firing in lamina I/II spinal cord neurons

    Directory of Open Access Journals (Sweden)

    Smith Paula L

    2011-09-01

    Full Text Available Abstract Background Voltage-gated sodium channels play key roles in acute and chronic pain processing. The molecular, biophysical, and pharmacological properties of sodium channel currents have been extensively studied for peripheral nociceptors while the properties of sodium channel currents in dorsal horn spinal cord neurons remain incompletely understood. Thus far, investigations into the roles of sodium channel function in nociceptive signaling have primarily focused on recombinant channels or peripheral nociceptors. Here, we utilize recordings from lamina I/II neurons withdrawn from the surface of spinal cord slices to systematically determine the functional properties of sodium channels expressed within the superficial dorsal horn. Results Sodium channel currents within lamina I/II neurons exhibited relatively hyperpolarized voltage-dependent properties and fast kinetics of both inactivation and recovery from inactivation, enabling small changes in neuronal membrane potentials to have large effects on intrinsic excitability. By combining biophysical and pharmacological channel properties with quantitative real-time PCR results, we demonstrate that functional sodium channel currents within lamina I/II neurons are predominantly composed of the NaV1.2 and NaV1.3 isoforms. Conclusions Overall, lamina I/II neurons express a unique combination of functional sodium channels that are highly divergent from the sodium channel isoforms found within peripheral nociceptors, creating potentially complementary or distinct ion channel targets for future pain therapeutics.

  19. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action.

    Science.gov (United States)

    Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D

    2014-07-05

    Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC.

  20. Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker.

    Science.gov (United States)

    Goldberg, Yigal Paul; Price, Nicola; Namdari, Rostam; Cohen, Charles Jay; Lamers, Mieke H; Winters, Conrad; Price, James; Young, Clint E; Verschoof, Henry; Sherrington, Robin; Pimstone, Simon Neil; Hayden, Michael Reuben

    2012-01-01

    Mutations in the SCN9A gene leading to deficiency of its protein product, Na(v)1.7, cause congenital indifference to pain (CIP). CIP is characterized by the absence of the ability to sense pain associated with noxious stimuli. In contrast, the opposite phenotype to CIP, inherited erythromelalgia (IEM), is a disorder of spontaneous pain caused by missense mutations resulting in gain-of-function in Na(v)1.7 that promote neuronal hyperexcitability. The primary aim of this study was to demonstrate that Na(v)1.7 antagonism could alleviate the pain of IEM, thereby demonstrating the utility of this opposite phenotype model as a tool for rapid proof-of-concept for novel analgesics. An exploratory, randomized, double-blind, 2-period crossover study was conducted in 4 SCN9A mutation-proven IEM patients. In each treatment period (2days), separated by a 2-day washout period, patients were orally administered XEN402 (400mg twice daily) or matching placebo. In 3 patients, pain was induced by heat or exercise during each treatment arm. A fourth patient, in constant severe pain, required no induction. Patient-reported outcomes of pain intensity and/or relief were recorded, and the time taken to induce pain was measured. The ability to induce pain in IEM patients was significantly attenuated by XEN402 compared with placebo. XEN402 increased the time to maximal pain induction and significantly reduced the amount of pain (42% less) after induction (P=.014). This pilot study showed that XEN402 blocks Na(v)1.7-mediated pain associated with IEM, thereby demonstrating target engagement in humans and underscoring the use of rare genetic disorders with mutant target channels as a novel approach to rapid proof-of-concept.

  1. Orai1 mediates the interaction between STIM1 and hTRPC1 and regulates the mode of activation of hTRPC1-forming Ca2+ channels.

    Science.gov (United States)

    Jardin, Isaac; Lopez, José J; Salido, Gines M; Rosado, Juan A

    2008-09-12

    Orai1 and hTRPC1 have been presented as essential components of store-operated channels mediating highly Ca(2+) selective I(CRAC) and relatively Ca(2+) selective I(SOC), respectively. STIM1 has been proposed to communicate the Ca(2+) content of the intracellular Ca(2+) stores to the plasma membrane store-operated Ca(2+) channels. Here we present evidence for the dynamic interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 regulated by depletion of the intracellular Ca(2+) stores, using the pharmacological tools thapsigargin plus ionomycin, or by the physiological agonist thrombin, independently of extracellular Ca(2+). In addition we report that Orai1 mediates the communication between STIM1 and hTRPC1, which is essential for the mode of activation of hTRPC1-forming Ca(2+) permeable channels. Electrotransjection of cells with anti-Orai1 antibody, directed toward the C-terminal region that mediates the interaction with STIM1, and stabilization of an actin cortical barrier with jasplakinolide prevented the interaction between STIM1 and hTRPC1. Under these conditions hTRPC1 was no longer involved in store-operated calcium entry but in diacylglycerol-activated non-capacitative Ca(2+) entry. These findings support the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of store-operated Ca(2+) entry.

  2. Reduced KCNQ4-encoded voltage-dependent potassium channel activity underlies impaired β-adrenoceptor-mediated relaxation of renal arteries in hypertension.

    Science.gov (United States)

    Chadha, Preet S; Zunke, Friederike; Zhu, Hai-Lei; Davis, Alison J; Jepps, Thomas A; Olesen, Søren P; Cole, William C; Moffatt, James D; Greenwood, Iain A

    2012-04-01

    KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to β-adrenoceptor-mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein expression of KCNQ1, KCNQ3, KCNQ4, KCNQ5, and Kv7.1, Kv7.4, and Kv7.5 in rat renal artery. Isoproterenol produced concentration-dependent relaxation of precontracted renal arteries and increased Kv7 channel currents in isolated smooth muscle cells. Application of the Kv7 blocker linopirdine attenuated isoproterenol-induced relaxation and current. Isoproterenol-induced relaxations were also reduced in arteries incubated with small interference RNAs targeted to KCNQ4 that produced a ≈60% decrease in Kv7.4 protein level. Relaxation to isoproterenol and the Kv7 activator S-1 were abolished in arteries from spontaneously hypertensive rats, which was associated with ≈60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to β-adrenoceptor-mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired β-adrenoceptor pathway in spontaneously hypertensive rats. These findings may provide a novel pathogenic link between arterial dysfunction and hypertension.

  3. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Fei-Fei; Ling, Hui; Ang, Xiaohui; Reddy, Shridhivya A.; Lee, Stephanie S-H.; Yang, Hong; Tan, Sock-Hoon [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Hayes, John D. [Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland (United Kingdom); Chui, Wai-Keung [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Chew, Eng-Hui, E-mail: phaceh@nus.edu.sg [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore)

    2013-11-01

    Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E{sub 2} (PGE{sub 2}) in RAW 264.7 macrophage-like cells. Inhibition of cancer cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies. - Highlights:

  4. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  5. Hydrogen Sulfide and Polysulfides as Biological Mediators

    Directory of Open Access Journals (Sweden)

    Hideo Kimura

    2014-10-01

    Full Text Available Hydrogen sulfide (H2S is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS, cystathionine γ-lyase (CSE, and 3-mercaptopyruvate sulfurtransferase (3MST. The activity of CBS is enhanced by S-adenosyl methionine (SAM and glutathionylation, while it is inhibited by nitric oxide (NO and carbon monoxide (CO. The activity of CSE and cysteine aminotransferase (CAT, which produces the 3MST substrate 3-mercaptopyruvate (3MP, is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR, sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1 channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2 to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN by sulfurating (sulfhydrating the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  6. Hydrogen sulfide and polysulfides as biological mediators.

    Science.gov (United States)

    Kimura, Hideo

    2014-10-09

    Hydrogen sulfide (H2S) is recognized as a biological mediator with various roles such as neuromodulation, regulation of the vascular tone, cytoprotection, anti-inflammation, oxygen sensing, angiogenesis, and generation of mitochondrial energy. It is produced by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST). The activity of CBS is enhanced by S-adenosyl methionine (SAM) and glutathionylation, while it is inhibited by nitric oxide (NO) and carbon monoxide (CO). The activity of CSE and cysteine aminotransferase (CAT), which produces the 3MST substrate 3-mercaptopyruvate (3MP), is regulated by Ca2+. H2S is oxidized to thiosulfate in mitochondria through the sequential action of sulfide quinone oxidoreductase (SQR), sulfur dioxygenase, and rhodanese. The rates of the production and clearance of H2S determine its cellular concentration. Polysulfides (H2Sn) have been found to occur in the brain and activate transient receptor potential ankyrin 1 (TRPA1) channels, facilitate the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) to the nucleus, and suppress the activity of phosphatase and tensin homolog (PTEN) by sulfurating (sulfhydrating) the target cysteine residues. A cross talk between H2S and NO also plays an important role in cardioprotection as well as regulation of the vascular tone. H2S, polysulfides, and their cross talk with NO may mediate various physiological and pathophysiological responses.

  7. The Role of Mcl-1 in S. aureus-Induced Cytoprotection of Infected Macrophages

    Directory of Open Access Journals (Sweden)

    Joanna Koziel

    2013-01-01

    cytoprotection of infected cells leading to apoptosis. Increased MCL1 expression in infected cells was associated with enhanced NFκB activation and subsequent IL-6 secretion, since the inhibition of both NFκB and IL-6 signalling pathways abrogated Mcl-1 induction and cytoprotection. Finally, we confirmed our observation in vivo in murine model of septic arthritis showing the association between the severity of arthritis and Mcl-1 expression. Therefore, we propose that S. aureus is hijacking the Mcl-1-dependent inhibition of apoptosis to prevent the elimination of infected host cells, thus allowing the intracellular persistence of the pathogen, its dissemination by infected macrophages, and the progression of staphylococci diseases.

  8. Functional BK channels facilitate the β3-adrenoceptor agonist-mediated relaxation of nerve-evoked contractions in rat urinary bladder smooth muscle isolated strips.

    Science.gov (United States)

    Afeli, Serge A Y; Petkov, Georgi V

    2013-07-05

    The large-conductance voltage- and Ca(2+)-activated K(+) (BK) channel is a major regulator of detrusor smooth muscle (DSM) contractility thus facilitating urinary bladder function. Recent findings suggest that activation of β3-adrenoceptors causes DSM relaxation. However, it is unknown whether the β3-adrenoceptor-mediated DSM relaxation is BK channel-dependent during nerve-evoked contractions. To test this hypothesis, we induced nerve-evoked contractions in rat DSM isolated strips by using a tissue bath system equipped with platinum electrodes for electrical field stimulation (EFS). (±)-(R(*),R(*))-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL37344), a β3-adrenoceptor agonist, significantly decreased the amplitude and muscle force of the 20 Hz EFS-induced DSM contractions in a concentration-dependent manner. The BRL37344 inhibitory effect was significantly antagonized by 1-(2-ethylphenoxy)-3-[[(1S)-1,2,3,4-tetrahydro-1-naphthalenyl]amino]-(2S)-2-propanol hydrochloride (SR59230A), a β3-adrenoceptor antagonist. We further isolated the cholinergic from the purinergic component of the 0.5-50 Hz EFS-induced DSM contractions by using selective inhibitors, atropine as well as suramin and α,β-methylene-ATP. We found that BRL37344 inhibited both the purinergic and cholinergic components of the nerve-evoked contractions in rat DSM isolated strips. The pharmacological blockade of the BK channels with iberiotoxin, a selective BK channel inhibitor, increased the amplitude and muscle force of the 20 Hz EFS-induced contractions in rat DSM isolated strips. In the presence of iberiotoxin, there was a significant reduction in the BRL37344-induced inhibition of the 20 Hz EFS-induced contractions in rat DSM isolated strips. These latter findings suggest that BK channels play a critical role in the β3-adrenoceptor-mediated inhibition of rat DSM nerve-evoked contractions.

  9. Transduction for pheromones in the main olfactory epithelium is mediated by the Ca2+ -activated channel TRPM5.

    Science.gov (United States)

    López, Fabián; Delgado, Ricardo; López, Roberto; Bacigalupo, Juan; Restrepo, Diego

    2014-02-26

    Growing evidence suggests that the main olfactory epithelium contains a subset of olfactory sensory neurons (OSNs) responding to pheromones. One candidate subpopulation expresses the calcium activated cation channel TRPM5 (transient receptor potential channel M5). Using GFP driven by the TRPM5 promoter in mice, we show that this subpopulation responds to putative pheromones, urine, and major histocompatibility complex peptides, but not to regular odors or a pheromone detected by other species. In addition, this subpopulation of TRPM5-GFP+ OSNs uses novel transduction. In regular OSNs, odorants elicit activation of the cyclic nucleotide-gated (CNG) channel, leading to Ca2+ gating of Cl- channels; in TRPM5-GFP+ OSNs, the Ca2+ -activated Cl- ANO2 (anoctamin 2) channel is not expressed, and pheromones elicit activation of the CNG channel leading to Ca2+ gating of TRPM5. In conclusion, we show that OSNs expressing TRPM5 respond to pheromones, but not to regular odors through the opening of CNG channels leading to Ca2+ gating of TRPM5.

  10. Kv3.4 potassium channel-mediated electrosignaling controls cell cycle and survival of irradiated leukemia cells.

    Science.gov (United States)

    Palme, Daniela; Misovic, Milan; Schmid, Evi; Klumpp, Dominik; Salih, Helmut R; Rudner, Justine; Huber, Stephan M

    2013-08-01

    Aberrant ion channel expression in the plasma membrane is characteristic for many tumor entities and has been attributed to neoplastic transformation, tumor progression, metastasis, and therapy resistance. The present study aimed to define the function of these "oncogenic" channels for radioresistance of leukemia cells. Chronic myeloid leukemia cells were irradiated (0-6 Gy X ray), ion channel expression and activity, Ca(2+)- and protein signaling, cell cycle progression, and cell survival were assessed by quantitative reverse transcriptase-polymerase chain reaction, patch-clamp recording, fura-2 Ca(2+)-imaging, immunoblotting, flow cytometry, and clonogenic survival assays, respectively. Ionizing radiation-induced G2/M arrest was preceded by activation of Kv3.4-like voltage-gated potassium channels. Channel activation in turn resulted in enhanced Ca(2+) entry and subsequent activation of Ca(2+)/calmodulin-dependent kinase-II, and inactivation of the phosphatase cdc25B and the cyclin-dependent kinase cdc2. Accordingly, channel inhibition by tetraethylammonium and blood-depressing substance-1 and substance-2 or downregulation by RNA interference led to release from radiation-induced G2/M arrest, increased apoptosis, and decreased clonogenic survival. Together, these findings indicate the functional significance of voltage-gated K(+) channels for the radioresistance of myeloid leukemia cells.

  11. Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model

    Directory of Open Access Journals (Sweden)

    Ong John M

    2007-03-01

    Full Text Available Abstract Background The blood-brain tumor barrier (BTB impedes the delivery of therapeutic agents to brain tumors. While adequate delivery of drugs occurs in systemic tumors, the BTB limits delivery of anti-tumor agents into brain metastases. Results In this study, we examined the function and regulation of calcium-activated potassium (KCa channels in a rat metastatic brain tumor model. We showed that intravenous infusion of NS1619, a KCa channel agonist, and bradykinin selectively enhanced BTB permeability in brain tumors, but not in normal brain. Iberiotoxin, a KCa channel antagonist, significantly attenuated NS1619-induced BTB permeability increase. We found KCa channels and bradykinin type 2 receptors (B2R expressed in cultured human metastatic brain tumor cells (CRL-5904, non-small cell lung cancer, metastasized to brain, human brain microvessel endothelial cells (HBMEC and human lung cancer brain metastasis tissues. Potentiometric assays demonstrated the activity of KCa channels in metastatic brain tumor cells and HBMEC. Furthermore, we detected higher expression of KCa channels in the metastatic brain tumor tissue and tumor capillary endothelia as compared to normal brain tissue. Co-culture of metastatic brain tumor cells and brain microvessel endothelial cells showed an upregulation of KCa channels, which may contribute to the overexpression of KCa channels in tumor microvessels and selectivity of BTB opening. Conclusion These findings suggest that KCa channels in metastatic brain tumors may serve as an effective target for biochemical modulation of BTB permeability to enhance selective delivery of chemotherapeutic drugs to metastatic brain tumors.

  12. Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel.

    Directory of Open Access Journals (Sweden)

    Rene Barro-Soria

    Full Text Available Angiotensin II (AngII receptor (ATR is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap, and transient-receptor-potential channel-V2 (TRPV2. AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE cells by AngII results in biphasic increases in intracellular free Ca(2+inhibited by losartan. Xestospongin C (xest C and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca(2+response. RPE cells from Atrap(-/- mice showed smaller AngII-evoked Ca(2+peak (by 22% and loss of sustained Ca(2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD at 15 µM stimulates intracellular Ca(2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor reduced the cannabidiol-induced Ca(2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca(2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca(2+transients in the RPE by releasing Ca(2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca(2+elevation.

  13. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation.

    Science.gov (United States)

    Ordaz, Benito; Tang, Jisen; Xiao, Rui; Salgado, Alfonso; Sampieri, Alicia; Zhu, Michael X; Vaca, Luis

    2005-09-02

    TRPC5 forms Ca2+-permeable nonselective cation channels important for neurite outgrowth and growth cone morphology of hippocampal neurons. Here we studied the activation of mouse TRPC5 expressed in Chinese hamster ovary and human embryonic kidney 293 cells by agonist stimulation of several receptors that couple to the phosphoinositide signaling cascade and the role of calmodulin (CaM) on the activation. We showed that exogenous application of 10 microM CaM through patch pipette accelerated the agonist-induced channel activation by 2.8-fold, with the time constant for half-activation reduced from 4.25 +/- 0.4 to 1.56 +/- 0.85 min. We identified a novel CaM-binding site located at the C terminus of TRPC5, 95 amino acids downstream from the previously determined common CaM/IP3R-binding (CIRB) domain for all TRPC proteins. Deletion of the novel CaM-binding site attenuated the acceleration in channel activation induced by CaM. However, disruption of the CIRB domain from TRPC5 rendered the channel irresponsive to agonist stimulation without affecting the cell surface expression of the channel protein. Furthermore, we showed that high (>5 microM) intracellular free Ca2+ inhibited the current density without affecting the time course of TRPC5 activation by receptor agonists. These results demonstrated that intracellular Ca2+ has dual and opposite effects on the activation of TRPC5. The novel CaM-binding site is important for the Ca2+/CaM-mediated facilitation, whereas the CIRB domain is critical for the overall response of receptor-induced TRPC5 channel activation.

  14. Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries.

    Science.gov (United States)

    Morales-Cano, Daniel; Moreno, Laura; Barreira, Bianca; Briones, Ana M; Pandolfi, Rachele; Moral-Sanz, Javier; Callejo, Maria; Mondejar-Parreño, Gema; Cortijo, Julio; Salaices, Mercedes; Duarte, Juan; Perez-Vizcaino, Francisco; Cogolludo, Angel

    2016-10-01

    PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.

  15. Antioxidant and cytoprotective properties of infusions from leaves and inflorescences of Achillea collina Becker ex Rchb.

    Science.gov (United States)

    Giorgi, Annamaria; Bombelli, Raffaella; Luini, Alessandra; Speranza, Giovanna; Cosentino, Marco; Lecchini, Sergio; Cocucci, Maurizio

    2009-04-01

    Plants are the main source of molecules with antioxidant and radical scavenging properties that aid the natural defence systems of cells and may be involved in the preservation of human health, particularly preventing all the physiopathological conditions where oxidative damage is a hallmark. Achillea collina Becker ex Rchb. is a medicinal plant of the Achillea millefolium aggregate (yarrow) traditionally used, particularly in mountain areas, as an infusion or alcohol extract for its digestive, antiinflammatory, analgesic, antipyretic and wound healing properties. The aim of this study was to investigate the antioxidant capacity and cytoprotective activity against oxidative stress of infusions obtained from the leaves and inflorescences of Achillea collina Becker ex Rchb., assessed by chemical (free radical scavenging activity by DPPH and Folin Ciocalteu assay) and biological assays (in vitro model of cytotoxicity and lipid peroxidation in PC12 cells line). Infusions of leaves had the highest antioxidant properties and cytoprotective activity. The antioxidant capacity was significantly correlated with the total phenolic content but not with the cytoprotective profile. Achillea collina Becker ex Rchb. has good antioxidant and cytoprotective properties, suggesting further investigations on its chemical composition and potential health value, particularly for traditionally prepared infusions of leaves.

  16. 2-(1-Hexyn-1-yl)adenosine-induced intraocular hypertension is mediated via K+ channel opening through adenosine A2A receptor in rabbits.

    Science.gov (United States)

    Konno, Takashi; Uchibori, Takehiro; Nagai, Akihiko; Kogi, Kentaro; Nakahata, Norimichi

    2005-08-22

    The present study was performed to clarify the mechanism of change in intraocular pressure by 2-(1-hexyn-1-yl)adenosine (2-H-Ado), a selective adenosine A2 receptor agonist, in rabbits. 2-H-Ado (0.1%, 50 microl)-induced ocular hypertension (E(max): 7.7 mm Hg) was inhibited by an adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine, ATP-sensitive K+ channel blocker glibenclamide or 5-hydroxydecanoic acid, but not by an adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A2B receptor antagonist alloxazine or a cyclooxygenase inhibitor indomethacin. The outflow facility induced by 2-H-Ado seems to be independent of increase in intraocular pressure or ATP-sensitive K+ channel. In contrast, the recovery rate in intraocular pressure decreased by hypertonic saline was accelerated by 2-H-Ado, and this response was dependent on ATP-sensitive K+ channel. These results suggest that 2-H-Ado-induced ocular hypertension is mediated via K+ channel opening through adenosine A2A receptor, and this is probably due to aqueous formation, but independent of change in outflow facility or prostaglandin production.

  17. Nitric oxide and Kir6.1 potassium channel mediate isoquercitrin-induced endothelium-dependent and independent vasodilation in the mesenteric arterial bed of rats.

    Science.gov (United States)

    Gasparotto Junior, Arquimedes; Dos Reis Piornedo, Renê; Assreuy, Jamil; Da Silva-Santos, José Eduardo

    2016-10-05

    The vascular effect of flavonoid isoquercitrin was investigated in the perfused mesenteric vascular bed of rats. In preparations with functional endothelium isoquercitrin (100, 300 and 1000nmol) dose-dependently reduced the perfusion pressure by 13±2.2, 33±3.9, and 58±3.7mm Hg, respectively. Endothelium removal or inhibition of the nitric oxide synthase enzymes by l-NAME did not change the effects of 100 and 300 nmol isoquercitrin, but reduced by 30-40% the vasodilation induced by 1000 nmol isoquercitrin. Perfusion with nutritive solution containing 40mM KCl abolished the vasodilatory effect of all isoquercitrin doses. Treatment with glibenclamide, a Kir6.1 (ATP-sensitive) potassium channel blocker, inhibited vasodilation induced by 100 and 300 nmol isoquercitrin, but only partially reduced the effect of 1000 nmol isoquercitrin. The non-selective KCa (calcium-activated) potassium channel blocker tetraethylammonium, but not the selective KCa1.1 channel blocker iberiotoxin, reduced by around 60% vasodilation induced by all isoquercitrin doses. In addition, association of tetraethylammonium and glibenclamide, or l-NAME and glibenclamide, fully inhibited isoquercitrin-induced vasodilation. Our study shows that isoquercitrin induces vasodilation in resistance arteries, an effect mediated by K(+) channel opening and endothelial nitric oxide production.

  18. Neuroprotective effects of a mitochondrial K+-ATP channel opener (diazoxide) are mediated by Bcl-2 expression upregulation

    Institute of Scientific and Technical Information of China (English)

    Majid Katebi; Mansooreh Soleimani; Mehdi Mehdizadeh

    2011-01-01

    Mitochondrial K+-ATP (mito-KATP) channels play an important role in cellular function and survival following ischemic stress. The present results revealed that intervention with diazoxide, a mito-KATP channel opener, led to an increase in Bcl-2 expression in the cerebral cortex of rats subjected to cerebral ischemia reperfusion injury. In addition, the intervention also led to clear improvements in neuronal mitochondrial morphology and consciousness post-injury. Glibenclamide, a mito-KATP channel blocker, exhibited the converse effects. Both diazoxide and glibenclamide exerted dose-dependent effects (in particular, at 18 mg/kg diazoxide and 25 mg/kg glibenclamide). These findings suggest that diazoxide exerts a neuroprotective effect on cerebral ischemia reperfusion injury by opening mito-KATP channels and upregulating Bcl-2 expression.

  19. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation

    OpenAIRE

    Erlandson, K. J.; Or, E.; Osborne, A. R.; Rapoport, T A

    2008-01-01

    In bacteria most secretory proteins are transported across the plasma membrane by the interplay of the ATPase SecA with the translocation channel formed by the SecY complex; SecA uses cycles of ATP hydrolysis to "push" consecutive segments of a polypeptide substrate through the channel. Here we have addressed the mechanism of this process by following the fate of stalled translocation intermediates. These were generated by using a polypeptide substrate containing a bulky disulfide-bonded loop...

  20. 酸敏感离子通道参与伤害性感受的研究%Advance in nociception mediated by acid sensing ion channels

    Institute of Scientific and Technical Information of China (English)

    刘鹤; 曹君利

    2013-01-01

    背景 组织酸化是炎症、缺血/缺氧、骨质破坏等多种疼痛条件下的共同病理特征.酸敏感离子通道(acid-sensingion channels,ASICs)是一类兴奋性阳离子通道,表达在神经系统,可直接被细胞外质子激活,介导组织酸化所致的伤害性感受. 目的 以ASICs为疼痛治疗靶标,将为疼痛治疗提供一条新途径. 内容 综述ASICs参与组织酸化所致伤害性感受的相关研究. 趋向 近年来,研究发现ASICs在介导组织酸化所致伤害性感受过程中发挥重要作用,以ASICs为靶点,将为开发新型镇痛药物和疼痛治疗提供新思路.%Background Tissue acidosis is a common pathological feature of many painful conditions including inflammation,ischemia and bone destruction.Acid sensing ion channels (ASICs) are excitatory cation channels directly activated by extracellular protons that are expressed in the nervous system,and mediate nociception indcued by tissue acidosis.Objective It will provide a new approach to take ASICs for pain treatment targets.Content The studies of ASICs in mediating nociception associated with tissue acidosis is reviewed.Trend Recent studies show that ASICs play a key role in mediating nociception associated with tissue acidosis,and it will provide a novel approach for development new analgesic drugs and pain treatment targeted ASICs.

  1. N- and L-type voltage-gated calcium channels mediate fast calcium transients in axonal shafts of mouse peripheral nerve.

    Directory of Open Access Journals (Sweden)

    Ruxandra eBarzan

    2016-06-01

    Full Text Available In the peripheral nervous system a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na+ and K+ channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca2+ ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca2+ channels (VGCCs are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca2+ elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca2+ indicator Oregon Green BAPTA-1, and 2-photon Ca2+ imaging in fast line scan mode (500 Hz. We report that transient increases in intra-axonal Ca2+ concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca2+ transients in peripheral nerves are fast, i.e. occur in a millisecond time-domain. Combining Ca2+ imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca2+ transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca2+ entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca2+ may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system.

  2. N- and L-Type Voltage-Gated Calcium Channels Mediate Fast Calcium Transients in Axonal Shafts of Mouse Peripheral Nerve.

    Science.gov (United States)

    Barzan, Ruxandra; Pfeiffer, Friederike; Kukley, Maria

    2016-01-01

    In the peripheral nervous system (PNS) a vast number of axons are accommodated within fiber bundles that constitute peripheral nerves. A major function of peripheral axons is to propagate action potentials along their length, and hence they are equipped with Na(+) and K(+) channels, which ensure successful generation, conduction and termination of each action potential. However little is known about Ca(2+) ion channels expressed along peripheral axons and their possible functional significance. The goal of the present study was to test whether voltage-gated Ca(2+) channels (VGCCs) are present along peripheral nerve axons in situ and mediate rapid activity-dependent Ca(2+) elevations under physiological circumstances. To address this question we used mouse sciatic nerve slices, Ca(2+) indicator Oregon Green BAPTA-1, and 2-photon Ca(2+) imaging in fast line scan mode (500 Hz). We report that transient increases in intra-axonal Ca(2+) concentration take place along peripheral nerve axons in situ when axons are stimulated electrically with single pulses. Furthermore, we show for the first time that Ca(2+) transients in peripheral nerves are fast, i.e., occur in a millisecond time-domain. Combining Ca(2+) imaging and pharmacology with specific blockers of different VGCCs subtypes we demonstrate that Ca(2+) transients in peripheral nerves are mediated mainly by N-type and L-type VGCCs. Discovery of fast Ca(2+) entry into the axonal shafts through VGCCs in peripheral nerves suggests that Ca(2+) may be involved in regulation of action potential propagation and/or properties in this system, or mediate neurotransmitter release along peripheral axons as it occurs in the optic nerve and white matter of the central nervous system (CNS).

  3. L-type calcium channels and calcium/calmodulin-dependent kinase II differentially mediate behaviors associated with nicotine withdrawal in mice.

    Science.gov (United States)

    Jackson, K J; Damaj, M I

    2009-07-01

    Smoking is a widespread health problem. Because the nicotine withdrawal syndrome is a major contributor to continued smoking and relapse, it is important to understand the molecular and behavioral mechanisms of nicotine withdrawal to generate more effective smoking cessation therapies. Studies suggest a role for calcium-dependent mechanisms, such as L-type calcium channels and calcium/calmodulin-dependent protein kinase II (CaMKII), in the effects of nicotine dependence; however, the role of these mechanisms in nicotine-mediated behaviors is unclear. Thus, the goal of this study was to elucidate the role of L-type calcium channels and CaMKII in nicotine withdrawal behaviors. Using both pharmacological and genetic methods, our results show that L-type calcium channels are involved in physical, but not affective, nicotine withdrawal behaviors. Although our data do provide evidence of a role for CaMKII in nicotine withdrawal behaviors, our pharmacological and genetic assessments yielded different results concerning the specific role of the kinase. Pharmacological data suggest that CaMKII is involved in somatic signs and affective nicotine withdrawal, and activity level is decreased after nicotine withdrawal, whereas the genetic assessments yielded results suggesting that CaMKII is involved only in the anxiety-related response, yet the kinase activity may be increased after nicotine withdrawal; thus, future studies are necessary to clarify the precise behavioral specifics of the relevance of CaMKII in nicotine withdrawal behaviors. Overall, our data show that L-type calcium channels and CaMKII are relevant in nicotine withdrawal and differentially mediate nicotine withdrawal behaviors.

  4. Chemical Characterization and Cytoprotective Effect of the Hydroethanol Extract from Annona coriacea Mart. (Araticum)

    Science.gov (United States)

    Júnior, José G. A. S.; Coutinho, Henrique D. M.; Boris, Ticiana C. C.; Cristo, Janyketchuly S.; Pereira, Nara L. F.; Figueiredo, Fernando G.; Cunha, Francisco A. B.; Aquino, Pedro E. A.; Nascimento, Polyana A. C.; Mesquita, Francisco J. C.; Moreira, Paulo H. F.; Coutinho, Sáskia T. B.; Souza, Ivon T.; Teixeira, Gabriela C.; Ferreira, Najla M. N.; Farina, Eleonora O.; Torres, Cícero M. G.; Holanda, Vanderlan N.; Pereira, Vandbergue S.; Guedes, Maria I. F.

    2016-01-01

    Introduction: Annona coriacea Mart. (araticum) is a widely distributed tree in the cerrado. Its value is attributed principally to the consumption of its fruit which possesses a large nutritive potential. The objective was to identify the chemical profile and evaluate the antimicrobial and cytoprotective activity of the hydroethanol extract of A. coriacea Mart. (HEAC) leaves against the toxicity of mercury chloride. Materials and Methods: The characterization of components was carried out using high-performance liquid chromatography (HPLC). The minimum inhibitory concentration (MIC) was determined by microdilution method in broth with strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. For evaluation of the modulatory and cytoprotective activity of aminoglycoside antibiotics (gentamicin and amikacin) and mercury chloride (HgCl2), the substances were associated with the HEAC at subinhibitory concentrations (MIC/8). Results and Discussion: The HPLC analysis revealed the presence of flavonoids such as Luteolin (1.84%) and Quercetin (1.19%) in elevated concentrations. The HEAC presented an MIC ≥512 μg/mL and significant antagonistic action in aminoglycosides modulation, and it also showed cytoprotective activity to S. aureus (significance P metal with significance, this action being attributed to the chelating properties of the flavonoids found in the chemical identification. Conclusions: The results acquired in this study show that the HEAC presents cytoprotective activity over the tested strains in vitro and can also present antagonistic effect when associated with aminoglycosides, reinforcing the necessity of taking caution when combining natural and pharmaceutical products. SUMMARY The hydroalcoholic extract of A. coriacea Mart. presents in vitro cytoprotective activity against the toxic effect of Hg. Abbreviations Used: HPLC-DAD: High-performance liquid chromatography with a diode array detector; MIC: Minimum inhibitory concentration

  5. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-02-22

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway.

  6. L-type Ca2+ channels in the enteric nervous system mediate oscillatory Cl- secretion in guinea pig colon.

    Science.gov (United States)

    Nishikitani, Mariko; Yasuoka, Yukiko; Kawada, Hideaki; Kawahara, Katsumasa

    2007-02-01

    The enteric nervous system regulates epithelial ion and fluid secretion. Our previous study has shown that the low (0.2-1 mM) concentrations of Ba2+, a K+ channel inhibitor, evoke Ca2+-dependent oscillatory Cl- secretion via activation of submucosal cholinergic neurons in guinea pig distal colon. However, it is still unclear which types of Ca2+ channels are involved in the oscillation at the neuroepithelial junction. We investigated the inhibitory effects of organic and inorganic Ca2+ channel antagonists on the short circuit current (I(sc)) of colonic epithelia (mucosa-submucosa sheets) mounted in Ussing chambers. The amplitude (412 +/- 37 microA cm(-2)) and frequency (2.6 +/- 0.1 cycles min(-1)) of the Ba2+-induced I(sc) in normal (1.8 mM) Ca2+ solution (n = 26) significantly decreased by 37.6% and 38.5%, respectively, in the low (0.1 mM) Ca2+ solution (n = 14). The I(sc) amplitude was reversibly inhibited by either verapamil (an L-type Ca2+ channel antagonist) or divalent cations (Cd2+, Mn2+, Ni2+) in a concentration-dependent manner. The concentration of verapamil for half-maximum inhibition (IC50) was 4 and 2 microM in normal and low Ca2+ solution, respectively. The relative blocking potencies of metal ions were Cd2+ > Mn2+, Ni2+ in normal Ca2+ solution. In contrast, the frequency of I(sc) was unchanged over the range of concentrations of the Ca2+ channel antagonists used. Our results show that the oscillatory I(sc) evoked by Ba2+ involves L-type voltage-gated Ca2+ channels. We conclude that L-type Ca2+ channels play a key role in the oscillation at the neuroepithelial junctions of guinea pig colon.

  7. Retina derived relaxation is mediated by K(ir) channels and the inhibition of Ca(2+) sensitization in isolated bovine retinal arteries.

    Science.gov (United States)

    Takır, Selçuk; Uydeş-Doğan, B Sönmez; Özdemir, Osman

    2015-03-01

    Retinal relaxing factor (RRF) has recently been identified as a novel paracrine regulator of retinal circulation acting differently from well known mediators of the endothelium and the retina. Herein, we aimed to characterize the relaxing mechanism of the retina, i.e. RRF, by evaluating the role of Ca(+2)-dependent and -independent signaling mechanisms as well as inward rectifier K(+) (Kir) channels. Retinal relaxation was determined by placing a piece of retinal tissue just on top of the precontracted bovine retinal arteries mounted in a wire myograph. The retina produced a complete relaxation response, which display a biphasic character, in depolarized arteries contracted by L-type Ca(2+) channel agonist, Bay k 8644. Blockade of L-type Ca(2+) channel by nifedipine, inhibition of sarcoplasmic reticulum Ca(2+)-ATPase by cyclopiazonic acid or removal of extracellular Ca(2+) did not influence the prominent relaxation to the retina. Originally, retinal relaxation was found to be unaffected from the inhibition of myosin light chain kinase by ML7, whereas, completely abolished in the presence of myosin light chain phosphatase (MLCP) inhibitor, Calyculin A. Moreover, the inhibition of Rho kinase by its putative inhibitor, Y-27632 displayed comparable relaxant effects to RRF in retinal arteries precontracted either by prostaglandin F2α or K(+), and augmented the moderate response to the retina in K(+) precontracted arteries. In addition, retinal relaxation was significantly inhibited and lost its biphasic character in the presence of Kir channel blocker, Ba(2+). Our results suggested that inhibition of Ca(2+) sensitization through the activation of MLCP, possibly via interfering with Rho kinase, and the opening of Kir channels are likely to be involved in the inhibitory influence of RRF on the retinal arteries.

  8. Sodium-calcium exchanger and R-type Ca(2+) channels mediate spontaneous [Ca(2+)]i oscillations in magnocellular neurones of the rat supraoptic nucleus.

    Science.gov (United States)

    Kortus, Stepan; Srinivasan, Chinnapaiyan; Forostyak, Oksana; Zapotocky, Martin; Ueta, Yoichi; Sykova, Eva; Chvatal, Alexandr; Verkhratsky, Alexei; Dayanithi, Govindan

    2016-06-01

    Isolated supraoptic neurones generate spontaneous [Ca(2+)]i oscillations in isolated conditions. Here we report in depth analysis of the contribution of plasmalemmal ion channels (Ca(2+), Na(+)), Na(+)/Ca(2+) exchanger (NCX), intracellular Ca(2+) release channels (InsP3Rs and RyRs), Ca(2+) storage organelles, plasma membrane Ca(2+) pump and intracellular signal transduction cascades into spontaneous Ca(2+) activity. While removal of extracellular Ca(2+) or incubation with non-specific voltage-gated Ca(2+) channel (VGCC) blocker Cd(2+) suppressed the oscillations, neither Ni(2+) nor TTA-P2, the T-type VGCC blockers, had an effect. Inhibitors of VGCC nicardipine, ω-conotoxin GVIA, ω-conotoxin MVIIC, ω-agatoxin IVA (for L-, N-, P and P/Q-type channels, respectively) did not affect [Ca(2+)]i oscillations. In contrast, a specific R-type VGCC blocker SNX-482 attenuated [Ca(2+)]i oscillations. Incubation with TTX had no effect, whereas removal of the extracellular Na(+) or application of an inhibitor of the reverse operation mode of Na(+)/Ca(2+) exchanger KB-R7943 blocked the oscillations. The mitochondrial uncoupler CCCP irreversibly blocked spontaneous [Ca(2+)]i activity. Exposure of neurones to Ca(2+) mobilisers (thapsigargin, cyclopiazonic acid, caffeine and ryanodine); 4-aminopyridine (A-type K(+) current blocker); phospholipase C and adenylyl cyclase pathways blockers U-73122, Rp-cAMP, SQ-22536 and H-89 had no effect. Oscillations were blocked by GABA, but not by glutamate, apamin or dynorphin. In conclusion, spontaneous oscillations in magnocellular neurones are mediated by a concerted action of R-type Ca(2+) channels and the NCX fluctuating between forward and reverse modes.

  9. Analysis of Polypeptide movement in the SecY channel during SecA-mediated protein translocation

    OpenAIRE

    Erlandson, K. J.; Or, E.; Osborne, Andrew R.; Rapoport, T A

    2008-01-01

    In bacteria most secretory proteins are transported across the plasma membrane by the interplay of the ATPase SecA with the translocation channel formed by the SecY complex; SecA uses cycles of ATP hydrolysis to “push” consecutive segments of a polypeptide substrate through the channel. Here we have addressed the mechanism of this process by following the fate of stalled translocation intermediates. These were generated by using a polypeptide substrate containing a bulky disulfide-bonded loop...

  10. SUMOylation of NaV1.2 channels mediates the early response to acute hypoxia in central neurons

    Science.gov (United States)

    Plant, Leigh D; Marks, Jeremy D; Goldstein, Steve AN

    2016-01-01

    The mechanism for the earliest response of central neurons to hypoxia—an increase in voltage-gated sodium current (INa)—has been unknown. Here, we show that hypoxia activates the Small Ubiquitin-like Modifier (SUMO) pathway in rat cerebellar granule neurons (CGN) and that SUMOylation of NaV1.2 channels increases INa. The time-course for SUMOylation of single NaV1.2 channels at the cell surface and changes in INa coincide, and both are prevented by mutation of NaV1.2-Lys38 or application of a deSUMOylating enzyme. Within 40 s, hypoxia-induced linkage of SUMO1 to the channels is complete, shifting the voltage-dependence of channel activation so that depolarizing steps evoke larger sodium currents. Given the recognized role of INa in hypoxic brain damage, the SUMO pathway and NaV1.2 are identified as potential targets for neuroprotective interventions. DOI: http://dx.doi.org/10.7554/eLife.20054.001 PMID:28029095

  11. Molecular mechanisms of heme oxygenase-1 mediated cytoprotection in cardiovascular disease

    NARCIS (Netherlands)

    A. Noordeloos (Annemarie)

    2009-01-01

    markdownabstract__Abstract__ The scientific interest in gaseous molecules started in 1980 with the reports of endotheliumdependent vasorelaxation,which led to the unequivocal identification of EDRF as nitric oxide {NO) [1-3]. Since the discovery that NO acts as a potent regulator of many processes,

  12. Transient receptor potential vanilloid 1 activation by dietary capsaicin promotes urinary sodium excretion by inhibiting epithelial sodium channel α subunit-mediated sodium reabsorption.

    Science.gov (United States)

    Li, Li; Wang, Fei; Wei, Xing; Liang, Yi; Cui, Yuanting; Gao, Feng; Zhong, Jian; Pu, Yunfei; Zhao, Yu; Yan, Zhencheng; Arendshorst, William J; Nilius, Bernd; Chen, Jing; Liu, Daoyan; Zhu, Zhiming

    2014-08-01

    High salt (HS) intake contributes to the development of hypertension. Epithelial sodium channels play crucial roles in regulating renal sodium reabsorption and blood pressure. The renal transient receptor potential vanilloid 1 (TRPV1) cation channel can be activated by its agonist capsaicin. However, it is unknown whether dietary factors can act on urinary sodium excretion and renal epithelial sodium channel (ENaC) function. Here, we report that TRPV1 activation by dietary capsaicin increased urinary sodium excretion through reducing sodium reabsorption in wild-type (WT) mice on a HS diet but not in TRPV1(-/-) mice. The effect of capsaicin on urinary sodium excretion was involved in inhibiting αENaC and its related with-no-lysine kinase 1/serum- and glucocorticoid-inducible protein kinase 1 pathway in renal cortical collecting ducts of WT mice. Dietary capsaicin further reduced the increased αENaC activity in WT mice attributed to the HS diet. In contrast, this capsaicin effect was absent in TRPV1(-/-) mice. Immunoprecipitation study indicated αENaC specifically coexpressed and functionally interact with TRPV1 in renal cortical collecting ducts of WT mice. Additionally, ENaC activity and expression were suppressed by capsaicin-mediated TRPV1 activation in cultured M1-cortical collecting duct cells. Long-term dietary capsaicin prevented the development of high blood pressure in WT mice on a HS diet. It concludes that TRPV1 activation in the cortical collecting ducts by capsaicin increases urinary sodium excretion and avoids HS diet-induced hypertension through antagonizing αENaC-mediated urinary sodium reabsorption. Dietary capsaicin may represent a promising lifestyle intervention in populations exposed to a high dietary salt intake.

  13. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    DEFF Research Database (Denmark)

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup of the re......Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...

  14. Neurovascular microcirculatory vasodilation mediated by C-fibers and Transient receptor potential vanilloid-type-1 channels (TRPV 1) is impaired in type 1 diabetes

    Science.gov (United States)

    Marche, P.; Dubois, S.; Abraham, P.; Parot-Schinkel, E.; Gascoin, L.; Humeau-Heurtier, A.; Ducluzeau, PH.; Mahe, G.

    2017-01-01

    Microvascular dysfunction may have an early onset in type 1 diabetes (T1D) and can precede major complications. Our objectives were to assess the endothelial-dependent (acetylcholine, ACh; and post-occlusive hyperemia, PORH), non-endothelial-dependent (sodium nitroprusside, SNP) and neurovascular-dependent (local heating, LH and current induced vasodilation, CIV) microcirculatory vasodilation in T1D patients compared with matched control subjects using a laser speckle contrast imager. Seventeen T1D patients - matched with 17 subjects according to age, gender, Body-Mass-Index, and smoking status - underwent macro- and microvascular investigations. The LH early peak assessed the transient receptor potential vanilloid type 1 channels (TRPV1) mediated vasodilation, whereas the plateau assessed the Nitirc-Oxyde (NO) and endothelium-derived hyperpolarizing factor (EDHF) pathways. PORH explored sensory nerves and (EDHF), while CIV assessed sensory nerves (C-fibers) and prostaglandin-mediated vasodilation. Using neurological investigations, we observed that C-fiber and A-delta fiber functions in T1D patients were similar to control subjects. PORH, CIV, LH peak and plateau vasodilations were significantly decreased in T1D patients compared to controls, whereas there was no difference between the two groups for ACh and SNP vasodilations. Neurovascular microcirculatory vasodilations (C-fibers and TRPV 1-mediated vasodilations) are impaired in TD1 patients whereas no abnormalities were found using clinical neurological investigations. Clinicaltrials: No. NCT02538120. PMID:28287157

  15. Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa fruit.

    Science.gov (United States)

    Zima, Ales; Hosek, Jan; Treml, Jakub; Muselík, Jan; Suchý, Pavel; Prazanová, Gabriela; Lopes, Ana; Zemlicka, Milan

    2010-08-31

    Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb.) Steud. (Scrophulariaceae) have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.

  16. Blockade of IP[subscript 3]-Mediated SK Channel Signaling in the Rat Medial Prefrontal Cortex Improves Spatial Working Memory

    Science.gov (United States)

    Brennan, Avis R.; Dolinsky, Beth; Vu, Mai-Anh T.; Stanley, Marion; Yeckel, Mark F.; Arnsten, Amy F. T.

    2008-01-01

    Planning and directing thought and behavior require the working memory (WM) functions of prefrontal cortex. WM is compromised by stress, which activates phosphatidylinositol (PI)-mediated IP[subscript 3]-PKC intracellular signaling. PKC overactivation impairs WM operations and in vitro studies indicate that IP[subscript 3] receptor (IP[subscript…

  17. Mitochondrial Roles and Cytoprotection in Chronic Liver Injury

    Directory of Open Access Journals (Sweden)

    Davide Degli Esposti

    2012-01-01

    Full Text Available The liver is one of the richest organs in terms of number and density of mitochondria. Most chronic liver diseases are associated with the accumulation of damaged mitochondria. Hepatic mitochondria have unique features compared to other organs' mitochondria, since they are the hub that integrates hepatic metabolism of carbohydrates, lipids and proteins. Mitochondria are also essential in hepatocyte survival as mediator of apoptosis and necrosis. Hepatocytes have developed different mechanisms to keep mitochondrial integrity or to prevent the effects of mitochondrial lesions, in particular regulating organelle biogenesis and degradation. In this paper, we will focus on the role of mitochondria in liver physiology, such as hepatic metabolism, reactive oxygen species homeostasis and cell survival. We will also focus on chronic liver pathologies, especially those linked to alcohol, virus, drugs or metabolic syndrome and we will discuss how mitochondria could provide a promising therapeutic target in these contexts.

  18. Cytoprotective properties of a fullerene derivative against copper

    Energy Technology Data Exchange (ETDEWEB)

    Ratnikova, Tatsiana A; Bebber, Mark J; Larcom, Lyndon L; Ke, Pu Chun [Department of Physics and Astronomy, COMSET, Clemson University, Clemson, SC 29634-0978 (United States); Huang, George, E-mail: pcke11@clemson.edu [Department of Biological Sciences, Clemson University, Clemson, SC 29634-0978 (United States)

    2011-10-07

    To delineate the complexity of the response of cells to nanoparticles we have performed a study on HT-29 human colon carcinoma cells exposed first to a fullerene derivative C{sub 60}(OH){sub 20} and then to physiological copper ions. Our cell viability, proliferation, and intracellular reactive oxygen species (ROS) production assays clearly indicated that C{sub 60}(OH){sub 20} suppressed cell damage as well as ROS production induced by copper, probably through neutralization of the metal ions by C{sub 60}(OH){sub 20} in the extracellular space, as well as by adsorption and uptake of the nanoparticles surface-modified by the biomolecular species in the cell medium. This double-exposure study provides new data on the effects of nanoparticles on cell metabolism and may aid the treatment of oxidant-mediated diseases using nanomedicine.

  19. Chemical characterization and cytoprotective effect of the hydroethanol extract from Annona coriacea Mart. (Araticum

    Directory of Open Access Journals (Sweden)

    Jose G.A.S Junior

    2016-01-01

    Full Text Available Introduction: Annona coriacea Mart. (araticum is a widely distributed tree in the cerrado. Its value is attributed principally to the consumption of its fruit which possesses a large nutritive potential. The objective was to identify the chemical profile and evaluate the antimicrobial and cytoprotective activity of the hydroethanol extract of A. coriacea Mart. (HEAC leaves against the toxicity of mercury chloride. Materials and Methods: The characterization of components was carried out using high-performance liquid chromatography (HPLC. The minimum inhibitory concentration (MIC was determined by microdilution method in broth with strains of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. For evaluation of the modulatory and cytoprotective activity of aminoglycoside antibiotics (gentamicin and amikacin and mercury chloride (HgCl2, the substances were associated with the HEAC at subinhibitory concentrations (MIC/8. Results and Discussion: The HPLC analysis revealed the presence of flavonoids such as Luteolin (1.84% and Quercetin (1.19% in elevated concentrations. The HEAC presented an MIC ≥512 μg/mL and significant antagonistic action in aminoglycosides modulation, and it also showed cytoprotective activity to S. aureus (significance P< 0.0001 and E. coli(significance P< 0.05 bacteria against the mercury chloride heavy metal with significance, this action being attributed to the chelating properties of the flavonoids found in the chemical identification. Conclusions: The results acquired in this study show that the HEAC presents cytoprotective activity over the tested strains in vitro and can also present antagonistic effect when associated with aminoglycosides, reinforcing the necessity of taking caution when combining natural and pharmaceutical products.

  20. Radioprotective and cytoprotective activity of Tinospora cordifolia stem enriched extract containing cordifolioside-A

    Directory of Open Access Journals (Sweden)

    Arti Patel

    2013-01-01

    Full Text Available Objectives: The present study was undertaken to evaluate the radioprotective and cytoprotective potential of cordifolioside-A, a primary active constituent of n-butanol fraction of Tinospora Cordifolia (NBTC against 4 Gy-γ radiation in mice and cyclophosphamide induced genotoxicity. Materials and Methods: Presence of cordifolioside-A in NBTC stem ethanolic extract was confirmed by high performance thin layer chromatography (HPTLC analysis. Radioprotective activity was evaluated at 80 and 120 mg/kg, intraperitoneal (i.p. dose of NBTC administered 15 days prior to whole body radiation exposure by observing survival rate, change in body weight, hematology, spleen colony forming unit (CFU, and micronucleus (MN expression. Cytoprotective activity of NBTC was evaluated at 5, 10, and 15 mg/ml concentrations on Allium cepa root meristem growth against cyclophosphamide. Results: HPTLC analysis of standard cordifolioside A, and NBTC confirmed the presence of cordifolioside-A in NBTC with the retention factor value of 0.86. Administration of NBTC (120 mg/kg, i.p. produced significant protection against radiation in terms of increased survival rate, body weight retention, hematological parameters, spleen CFU assay (P < 0.01, and decreased MN expression (P < 0.01. Cytoprotectivity was observed maximally at 10 mg/ml NBTC concentration with significant increase in root growth (P < 0.01, non-toxic mitotic index (MI (65.9% and lesser chromosomal aberrations (15.4%. NBTC at 10 mg/ml concentration showed very few C-anaphase compared to aberrations like fragmentation, C-anaphase, multipolarity and sticky chromosome in cyclophosphamide alone. Conclusion: The results suggest that enriched NBTC containing cordifolioside-A has a potential in vivo radioprotective effect as well as in vitro cytoprotective activity.

  1. RNAi-mediated knockdown of the voltage gated sodium ion channel TcNav causes mortality in Tribolium castaneum

    Science.gov (United States)

    Abd El Halim, Hesham M.; Alshukri, Baida M. H.; Ahmad, Munawar S.; Nakasu, Erich Y. T.; Awwad, Mohammed H.; Salama, Elham M.; Gatehouse, Angharad M. R.; Edwards, Martin G.

    2016-01-01

    The voltage-gated sodium ion channel (VGSC) belongs to the largest superfamily of ion channels. Since VGSCs play key roles in physiological processes they are major targets for effective insecticides. RNA interference (RNAi) is widely used to analyse gene function, but recently, it has shown potential to contribute to novel strategies for selectively controlling agricultural insect pests. The current study evaluates the delivery of dsRNA targeted to the sodium ion channel paralytic A (TcNav) gene in Tribolium castaneum as a viable means of controlling this insect pest. Delivery of TcNav dsRNA caused severe developmental arrest with larval mortalities up to 73% post injection of dsRNA. Injected larvae showed significant (p < 0.05) knockdown in gene expression between 30–60%. Expression was also significantly (p < 0.05) reduced in pupae following injection causing 30% and 42% knockdown for early and late pupal stages, respectively. Oral delivery of dsRNA caused dose-dependant mortalities of between 19 and 51.34%; this was accompanied by significant (p < 0.05) knockdown in gene expression following 3 days of continuous feeding. The majority of larvae injected with, or fed, dsRNA died during the final larval stage prior to pupation. This work provides evidence of a viable RNAi-based strategy for insect control. PMID:27411529

  2. Oncostatic-Cytoprotective Effect of Melatonin and Other Bioactive Molecules: A Common Target in Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Nicola Pacini

    2016-03-01

    Full Text Available For several years, oncostatic and antiproliferative properties, as well as thoses of cell death induction through 5-methoxy-N-acetiltryptamine or melatonin treatment, have been known. Paradoxically, its remarkable scavenger, cytoprotective and anti-apoptotic characteristics in neurodegeneration models, such as Alzheimer’s disease and Parkinson’s disease are known too. Analogous results have been confirmed by a large literature to be associated to the use of many other bioactive molecules such as resveratrol, tocopherol derivatives or vitamin E and others. It is interesting to note that the two opposite situations, namely the neoplastic pathology and the neurodegeneration, are characterized by deep alterations of the metabolome, of mitochondrial function and of oxygen consumption, so that the oncostatic and cytoprotective action can find a potential rationalization because of the different metabolic and mitochondrial situations, and in the effect that these molecules exercise on the mitochondrial function. In this review we discuss historical and general aspects of melatonin, relations between cancers and the metabolome and between neurodegeneration and the metabolome, and the possible effects of melatonin and of other bioactive molecules on metabolic and mitochondrial dynamics. Finally, we suggest a common general mechanism as responsible for the oncostatic/cytoprotective effect of melatonin and of other molecules examined.

  3. A clinico-radiological phenotype of voltage-gated potassium channel complex antibody-mediated disorder presenting with seizures and basal ganglia changes.

    Science.gov (United States)

    Hacohen, Yael; Wright, Sukhvir; Siddiqui, Ata; Pandya, Nikki; Lin, Jean-Pierre; Vincent, Angela; Lim, Ming

    2012-12-01

    In childhood, central nervous system (CNS) presentations associated with antibodies to voltage-gated potassium channel (VGKC) complex include limbic encephalitis, status epilepticus, epileptic encephalopathy, and autistic regression. We report the cases of two individuals (a 6-year-old male and an 11-year-old female) who presented with an acute-onset explosive seizure disorder with positive VGKC complex antibodies and bilateral basal ganglia changes on magnetic resonance imaging (MRI). Both patients made a complete clinical recovery, without immunotherapy, with resolution of the MRI changes and normalization of the antibody levels. Extended antibody testing, including testing for leucine-rich glioma-inactivated 1 (LGI1), contactin-associated protein 2, and contactin-2 was negative. This could suggest that the clinico-radiological phenotype in our patients may in fact be associated with a novel autoreactive target(s) within the VGKC complex, as may be the case in other children with VGKC complex-mediated CNS disorders.

  4. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis.

    Science.gov (United States)

    Nelson, Michaela; Millican-Slater, Rebecca; Forrest, Lorna C; Brackenbury, William J

    2014-11-15

    Voltage-gated Na(+) channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na(+) current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy.

  5. Dual-channel detection of metallothioneins and mercury based on a mercury-mediated aptamer beacon using thymidine-mercury-thymidine complex as a quencher.

    Science.gov (United States)

    Chen, Si-Han; Wang, Yong-Sheng; Chen, Yun-Sheng; Tang, Xian; Cao, Jin-Xiu; Li, Ming-Hui; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-01-01

    A novel dual-channel strategy for the detection of metallothioneins (MTs) and Hg(2+) has been developed based on a mercury-mediated aptamer beacon (MAB) using thymidine-mercury-thymidine complex as a quencher for the first time. In the presence of Hg(2+), the T-rich oligonucleotide with a 6-carboxyfluorescein (TRO-FAM) can form an aptamer beacon via the formation of T-Hg(2+)-T base pairs, which results in a fluorescence quenching of the sensing system owing to the fluorescence resonance energy transfer (FRET) from the fluorophore of FAM to the terminated T-Hg(2+)-T base pair. The addition of MTs into this solution leads to the disruption of the T-Hg(2+)-T complex, resulting in an increase of the fluorescent signal of the system. In the optimizing condition, ΔF was directly proportional to the concentrations ranging from 5.63 nM to 0.275 μM for MTs, and 14.2 nM to 0.30 μM for Hg(2+) with the detection limits of 1.69 nM and 4.28 nM, respectively. The proposed dual-channel method avoids the label steps of a quencher in common molecular beacon strategies, without tedious procedure or the requirement of sophisticated equipment, and is rapid, inexpensive and sensitive.

  6. Augmented activity of the pelvic nerve afferent mediated by TRP channels in dextran sulfate sodium (DSS)-induced colitis of rats.

    Science.gov (United States)

    Makimura, Yukitoshi; Ito, Koichi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-08-01

    Enteritis has been recognized as a major symptom in domestic animals and human patients suffering from feed and food poisonings. The aim of the present study was to clarify the excitatory mechanism of the pelvic nerve afferent which may influence the occurrence of enteritis in response to nociceptive chemical stimuli of the colon in normal and abnormal rats with colitis induced by dextran sulfate sodium (DSS). The pelvic nerve afferent activity was markedly increased by colonic instillation of solution (0.5 ml) of acetic acid (5-25%) and capsaicin (100 μg/ml). The nerve activity was augmented by colonic instillation of capsaicin to a greater extent in rats with DSS-induced colitis than in normal control rats. This augmented activity by capsaicin was more prominent at one day (DSS-1) than at 8 day (DSS-8) after the administration of DSS. The increased nerve activity caused by capsaicin in DSS-1 and DSS-8 was significantly inhibited by pretreatment with ruthenium red, which is a nonselective inhibitor of TRP channels of unmyelinated C-fibers (nociceptors). In conclusion, it was elucidated that the nociceptive function of the pelvic nerve was largely elevated at one day after DSS-induced colitis and such increased function was mostly mediated by TRP channels.

  7. [Study on the effect of Klotho gene interferred by plasmid-mediated short hairpin RNA (shRNA) on sinoatrial node pacing channel gene].

    Science.gov (United States)

    Cai, Yingying; Wang, Han; Hou, Yanbin; Fang, Chenli; Tian, Peng; Wang, Guihua; Li, Lu; Deng, Juelin

    2013-06-01

    The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4 and HCN2) for studying sick sinus syndrome, with Klotho gene under the interference of Plasmid-mediated short hairpin RNA. Twenty-five C57BL/6J mice were divided into four groups, i. e, plasmid shRNA 24h group, plasmid shRNA 12h group, sodium chloride 24h group and sodium chloride 12h group. Plasmid shRNA 50microL (1microg/microL) and sodium chloride 50microl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group. After 12h or 24h respectively, all mice were executed and their sinoatrial node tissues were cut. The mRNA of Klotho, HCN4 and HCN2 gene were detected by RT-PCR. The results of RT-PCR showed that Klotho, HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval. The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.

  8. The prostaglandin E2/EP4 receptor/cyclic AMP/T-type Ca(2+) channel pathway mediates neuritogenesis in sensory neuron-like ND7/23 cells.

    Science.gov (United States)

    Mitani, Kenji; Sekiguchi, Fumiko; Maeda, Takashi; Tanaka, Yukari; Yoshida, Shigeru; Kawabata, Atsufumi

    2016-03-01

    We investigated mechanisms for the neuritogenesis caused by prostaglandin E2 (PGE2) or intracellular cyclic AMP (cAMP) in sensory neuron-like ND7/23 cells. PGE2 caused neuritogenesis, an effect abolished by an EP4 receptor antagonist or inhibitors of adenylyl cyclase (AC) or protein kinase A (PKA) and mimicked by the AC activator forskolin, dibutyryl cAMP (db-cAMP), and selective activators of PKA or Epac. ND7/23 cells expressed both Cav3.1 and Cav3.2 T-type Ca(2+) channels (T-channels). The neuritogenesis induced by db-cAMP or PGE2 was abolished by T-channel blockers. T-channels were functionally upregulated by db-cAMP. The PGE2/EP4/cAMP/T-channel pathway thus appears to mediate neuritogenesis in sensory neurons.

  9. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor-alpha.

    Science.gov (United States)

    Jin, Xiaochun; Gereau, Robert W

    2006-01-04

    Tumor necrosis factor-alpha (TNFalpha) is a proinflammatory cytokine involved in the development and maintenance of inflammatory and neuropathic pain conditions. TNFalpha can have long-lasting effects by regulating the expression of a variety of inflammatory mediators, including other cytokines and TNFalpha itself. However, the speed with which TNFalpha induces tactile and thermal hypersensitivity suggests that transcriptional regulation cannot fully account for its sensitizing effects, and some recent findings suggest that TNFalpha may act directly on primary afferent neurons to induce pain hypersensitivity. In the present study, we show that peripheral administration of TNFalpha induces thermal hypersensitivity in wild-type mice but not in transient receptor potential vanilloid receptor TRPV1(-/-) mice. In contrast, TNFalpha produced equivalent mechanical hypersensitivity in TRPV1(-/-) mice and wild-type littermates, suggesting a role for TRPV1 in TNFalpha-induced thermal, but not mechanical, hypersensitivity. Because tetrodotoxin (TTX)-resistant Na+ channels are a critical site of modulation underlying mechanical hypersensitivity in inflammatory and neuropathic pain conditions, we tested the effects of TNFalpha on these channels in isolated mouse dorsal root ganglion (DRG) neurons. We report that acute application of TNFalpha rapidly enhances TTX-resistant Na+ currents in isolated DRG neurons. This potentiation of TTX-resistant currents by TNFalpha is dramatically reduced in DRG neurons from TNF receptor 1 (TNFR1) knock-out mice and is blocked by the p38 mitogen-activated protein kinase inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole]. Mechanical hypersensitivity induced by peripherally applied TNFalpha is also significantly reduced by SB202190. These results suggest that TNFalpha may induce acute peripheral mechanical sensitization by acting directly on TNFR1 in primary afferent neurons, resulting in p38-dependent modulation

  10. Epithelial Sodium Channel-Mediated Sodium Transport Is Not Dependent on the Membrane-Bound Serine Protease CAP2/Tmprss4.

    Directory of Open Access Journals (Sweden)

    Anna Keppner

    Full Text Available The membrane-bound serine protease CAP2/Tmprss4 has been previously identified in vitro as a positive regulator of the epithelial sodium channel (ENaC. To study its in vivo implication in ENaC-mediated sodium absorption, we generated a knockout mouse model for CAP2/Tmprss4. Mice deficient in CAP2/Tmprss4 were viable, fertile, and did not show any obvious histological abnormalities. Unexpectedly, when challenged with sodium-deficient diet, these mice did not develop any impairment in renal sodium handling as evidenced by normal plasma and urinary sodium and potassium electrolytes, as well as normal aldosterone levels. Despite minor alterations in ENaC mRNA expression, we found no evidence for altered proteolytic cleavage of ENaC subunits. In consequence, ENaC activity, as monitored by the amiloride-sensitive rectal potential difference (ΔPD, was not altered even under dietary sodium restriction. In summary, ENaC-mediated sodium balance is not affected by lack of CAP2/Tmprss4 expression and thus, does not seem to directly control ENaC expression and activity in vivo.

  11. Vasorelaxant and antihypertensive effects of methanolic extract from roots of Laelia anceps are mediated by calcium-channel antagonism.

    Science.gov (United States)

    Vergara-Galicia, Jorge; Ortiz-Andrade, Rolffy; Rivera-Leyva, Julio; Castillo-España, Patricia; Villalobos-Molina, Rafael; Ibarra-Barajas, Maximiliano; Gallardo-Ortiz, Itzell; Estrada-Soto, Samuel

    2010-07-01

    RMELanc-induced relaxation in aortic rings precontracted with NE, 5-HT and KCl. It also reduced NE-induced transient contraction in Ca(2+)-free solution and inhibited contraction induced by increasing external calcium. Nevertheless, the vasorelaxant effect of RMELanc was not reduced by ODQ, 1-alprenolol, TEA, glibenclamide, and 2-AP. Oral administration of 100 mg/kg of RMELanc exhibited a significant decrease in systolic and diastolic blood pressures in SHR rats. HPLC analysis allowed us to detect the presence of 2,7-dihydroxy-3,4,9-trimethoxyphenantrene (1), which induced a significant relaxation effect. Therefore, our results suggest that RMELanc induces vasorelaxant and antihypertensive effects by blockade of Ca(2+) channels.

  12. A Critical Role of TRPM7 As an Ion Channel Protein in Mediating the Mineralization of the Craniofacial Hard Tissues

    Science.gov (United States)

    Nakano, Yukiko; Le, Michael H.; Abduweli, Dawud; Ho, Sunita P.; Ryazanova, Lillia V.; Hu, Zhixian; Ryazanov, Alexey G.; Den Besten, Pamela K.; Zhang, Yan

    2016-01-01

    Magnesium ion (Mg2+) is the fourth most common cation in the human body, and has a crucial role in many physiological functions. Mg2+ homeostasis is an important contributor to bone development, however, its roles in the development of dental mineralized tissues have not yet been well known. We identified that transient receptor potential cation channel, subfamily M, member 7 (TRPM7), was significantly upregulated in the mature ameloblasts as compared to other ameloblasts through our whole transcript microarray analyses of the ameloblasts. TRPM7, an ion channel for divalent metal cations with an intrinsic serine/threonine protein kinase activity, has been characterized as a key regulator of whole body Mg2+ homeostasis. Semi-quantitative PCR and immunostaining for TRMP7 confirmed its upregulation during the maturation stage of enamel formation, at which ameloblasts direct rapid mineralization of the enamel matrix. The significantly hypomineralized craniofacial structures, including incisors, molars, and cranial bones were demonstrated by microCT analysis, von Kossa and trichrome staining in Trpm7Δkinase∕+ mice. A previously generated heterozygous mouse model with the deletion of the TRPM7 kinase domain. Interestingly, the skeletal phenotype of Trpm7Δkinase∕+ mice resembled those found in the tissue-nonspecific alkaline phosphatase (Alpl) KO mice, thus we further examined whether ALPL protein content and alkaline phosphatase (ALPase) activity in ameloblasts, odontoblasts and osteoblasts were affected in those mice. While ALPL protein in Trpm7Δkinase∕+ mice remained at the similar level as that in wt mice, ALPase activities in the Trpm7Δkinase∕+ mice were almost nonexistent. Supplemented magnesium successfully rescued the activities of ALPase in ameloblasts, odontoblasts and osteoblasts of Trpm7Δkinase∕+ mice. These results suggested that TRPM7 is essential for mineralization of enamel as well as dentin and bone by providing sufficient Mg2+ for the ALPL

  13. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  14. CaV3.2 T-type Ca²⁺ channels in H₂S-mediated hypoxic response of the carotid body.

    Science.gov (United States)

    Makarenko, Vladislav V; Peng, Ying-Jie; Yuan, Guoxiang; Fox, Aaron P; Kumar, Ganesh K; Nanduri, Jayasri; Prabhakar, Nanduri R

    2015-01-15

    Arterial blood O2 levels are detected by specialized sensory organs called carotid bodies. Voltage-gated Ca(2+) channels (VGCCs) are important for carotid body O2 sensing. Given that T-type VGCCs contribute to nociceptive sensation, we hypothesized that they participate in carotid body O2 sensing. The rat carotid body expresses high levels of mRNA encoding the α1H-subunit, and α1H protein is localized to glomus cells, the primary O2-sensing cells in the chemoreceptor tissue, suggesting that CaV3.2 is the major T-type VGCC isoform expressed in the carotid body. Mibefradil and TTA-A2, selective blockers of the T-type VGCC, markedly attenuated elevation of hypoxia-evoked intracellular Ca(2+) concentration, secretion of catecholamines from glomus cells, and sensory excitation of the rat carotid body. Similar results were obtained in the carotid body and glomus cells from CaV3.2 knockout (Cacna1h(-/-)) mice. Since cystathionine-γ-lyase (CSE)-derived H2S is a critical mediator of the carotid body response to hypoxia, the role of T-type VGCCs in H2S-mediated O2 sensing was examined. Like hypoxia, NaHS, a H2S donor, increased intracellular Ca(2+) concentration and augmented carotid body sensory nerve activity in wild-type mice, and these effects were markedly attenuated in Cacna1h(-/-) mice. In wild-type mice, TTA-A2 markedly attenuated glomus cell and carotid body sensory nerve responses to hypoxia, and these effects were absent in CSE knockout mice. These results demonstrate that CaV3.2 T-type VGCCs contribute to the H2S-mediated carotid body response to hypoxia.

  15. CaV3.2 T-type Ca2+ channels in H2S-mediated hypoxic response of the carotid body

    Science.gov (United States)

    Makarenko, Vladislav V.; Peng, Ying-Jie; Yuan, Guoxiang; Fox, Aaron P.; Kumar, Ganesh K.; Nanduri, Jayasri

    2014-01-01

    Arterial blood O2 levels are detected by specialized sensory organs called carotid bodies. Voltage-gated Ca2+ channels (VGCCs) are important for carotid body O2 sensing. Given that T-type VGCCs contribute to nociceptive sensation, we hypothesized that they participate in carotid body O2 sensing. The rat carotid body expresses high levels of mRNA encoding the α1H-subunit, and α1H protein is localized to glomus cells, the primary O2-sensing cells in the chemoreceptor tissue, suggesting that CaV3.2 is the major T-type VGCC isoform expressed in the carotid body. Mibefradil and TTA-A2, selective blockers of the T-type VGCC, markedly attenuated elevation of hypoxia-evoked intracellular Ca2+ concentration, secretion of catecholamines from glomus cells, and sensory excitation of the rat carotid body. Similar results were obtained in the carotid body and glomus cells from CaV3.2 knockout (Cacna1h−/−) mice. Since cystathionine-γ-lyase (CSE)-derived H2S is a critical mediator of the carotid body response to hypoxia, the role of T-type VGCCs in H2S-mediated O2 sensing was examined. Like hypoxia, NaHS, a H2S donor, increased intracellular Ca2+ concentration and augmented carotid body sensory nerve activity in wild-type mice, and these effects were markedly attenuated in Cacna1h−/− mice. In wild-type mice, TTA-A2 markedly attenuated glomus cell and carotid body sensory nerve responses to hypoxia, and these effects were absent in CSE knockout mice. These results demonstrate that CaV3.2 T-type VGCCs contribute to the H2S-mediated carotid body response to hypoxia. PMID:25377087

  16. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitine mediated by interaction with voltage-dependent sodium channels.

    Science.gov (United States)

    Ameri, A

    1997-02-01

    The effects of the Aconitum alkaloid 3-acetylaconitine on neuronal activity were investigated in the slice preparation and on cultivated neurons of rat hippocampus by extracellular and patch-clamp recordings, respectively. 3-Acetylaconitine (0.01-1 microM) diminished the orthodromic and antidromic population spike in a concentration-dependent manner. The inhibitory action of the drug was preceded by a transiently enhanced excitability. The latency of onset of the inhibition was accelerated by increased stimulation frequency, whereas recovery during washout of the alkaloid was accelerated by decreased stimulation frequency. Moreover, the inhibitory effect of 3-acetylaconitine was evaluated in two different models of epileptiform activity induced either by blockade of GABA receptors by bicuculline (10 microM) or by a nominal Mg(2+)-free bathing medium. In accordance with the activity-dependent mode of action, this compound abolished the synaptically evoked population spikes in the presence of bicuculline or nominal Mg(2+)-free bathing medium, respectively. Whole-cell patch-clamp recordings revealed an interaction of 3-acetylaconitine with the voltage-dependent sodium channel. At a concentration of 1 microM, 3-acetylaconitine did not affect the peak amplitude of the sodium current, but shifted the current-voltage relationship in the hyperpolarized direction such that sodium currents were already activated at the resting potential.

  17. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death.

    Science.gov (United States)

    Gonçalves, A Pedro; Cordeiro, J Miguel; Monteiro, João; Muñoz, Alberto; Correia-de-Sá, Paulo; Read, Nick D; Videira, Arnaldo

    2014-09-01

    The model organism Neurospora crassa undergoes programmed cell death when exposed to staurosporine. Here, we show that staurosporine causes defined changes in cytosolic free Ca(2+) ([Ca(2+)]c) dynamics and a distinct Ca(2+) signature that involves Ca(2+) influx from the external medium and internal Ca(2+) stores. We investigated the molecular basis of this Ca(2+) response by using [Ca(2+)]c measurements combined with pharmacological and genetic approaches. Phospholipase C was identified as a pivotal player during cell death, because modulation of the phospholipase C signaling pathway and deletion of PLC-2, which we show to be involved in hyphal development, results in an inability to trigger the characteristic staurosporine-induced Ca(2+) signature. Using Δcch-1, Δfig-1 and Δyvc-1 mutants and a range of inhibitors, we show that extracellular Ca(2+) entry does not occur through the hitherto described high- and low-affinity Ca(2+) uptake systems, but through the opening of plasma membrane channels with properties resembling the transient receptor potential (TRP) family. Partial blockage of the response to staurosporine after inhibition of a putative inositol-1,4,5-trisphosphate (IP3) receptor suggests that Ca(2+) release from internal stores following IP3 formation combines with the extracellular Ca(2+) influx.

  18. Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons.

    Science.gov (United States)

    Qian, Kun; Yu, Na; Tucker, Kristal R; Levitan, Edwin S; Canavier, Carmen C

    2014-12-01

    Dopamine neurons in freely moving rats often fire behaviorally relevant high-frequency bursts, but depolarization block limits the maximum steady firing rate of dopamine neurons in vitro to ∼10 Hz. Using a reduced model that faithfully reproduces the sodium current measured in these neurons, we show that adding an additional slow component of sodium channel inactivation, recently observed in these neurons, qualitatively changes in two different ways how the model enters into depolarization block. First, the slow time course of inactivation allows multiple spikes to be elicited during a strong depolarization prior to entry into depolarization block. Second, depolarization block occurs near or below the spike threshold, which ranges from -45 to -30 mV in vitro, because the additional slow component of inactivation negates the sodium window current. In the absence of the additional slow component of inactivation, this window current produces an N-shaped steady-state current-voltage (I-V) curve that prevents depolarization block in the experimentally observed voltage range near -40 mV. The time constant of recovery from slow inactivation during the interspike interval limits the maximum steady firing rate observed prior to entry into depolarization block. These qualitative features of the entry into depolarization block can be reversed experimentally by replacing the native sodium conductance with a virtual conductance lacking the slow component of inactivation. We show that the activation of NMDA and AMPA receptors can affect bursting and depolarization block in different ways, depending upon their relative contributions to depolarization versus to the total linear/nonlinear conductance.

  19. Detection of shrimp Taura syndrome virus by loop-mediated isothermal amplification using a designed portable multi-channel turbidimeter.

    Science.gov (United States)

    Sappat, Assawapong; Jaroenram, Wansadaj; Puthawibool, Teeranart; Lomas, Tanom; Tuantranont, Adisorn; Kiatpathomchai, Wansika

    2011-08-01

    In this study, a portable turbidimetric end-point detection method was devised and tested for the detection of Taura syndrome virus (TSV) using spectroscopic measurement of a loop-mediated isothermal amplification (LAMP) by-product: magnesium pyrophosphate (Mg(2)P(2)O(7)). The device incorporated a heating block that maintained an optimal temperature of 63°C for the duration of the RT-LAMP reaction. Turbidity of the RT-LAMP by-product was measured when light from a light-emitting diode (LED) passed through the tube to reach a light dependent resistance (LDR) detector. Results revealed that turbidity measurement of the RT-LAMP reactions using this device provided the same detection sensitivity as the agarose gel electrophoresis detection of RT-LAMP and nested RT-PCR (IQ2000™) products. Cross reactions with other shrimp viruses were not found, indicating that the RT-LAMP-turbidity measurement was highly specific to TSV. The combination of 10 min for rapid RNA preparation with 30 min for RT-LAMP amplification followed by turbidity measurement resulted in a total assay time of less than 1h compared to 4-8h for the nested RT-PCR method. RT-LAMP plus turbidity measurement constitutes a platform for the development of more rapid and user-friendly detection of TSV in the field.

  20. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls.

    Science.gov (United States)

    Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Smeriglio, Antonella; Trombetta, Domenico; Bellocco, Ersilia

    2016-04-01

    Every year tons of pistachio hulls are separated and eliminated, as waste products, from pistachio seeds. In this study the hulls of ripe pistachios were extracted with two organic solvents (ethanol and methanol) and characterized for phenolic composition, antioxidant power and cytoprotective activity. RP-HPLC-DAD-FLU separation enabled us to identify 20 derivatives, including and by far the most abundant gallic acid, 4-hydroxybenzoic acid, protocatechuic acid, naringin, eriodictyol-7-O-glucoside, isorhamnetin-7-O-glucoside, quercetin-3-O-rutinoside, isorhamnetin-3-O-glucoside and catechin. Methanol extraction gave the highest yields for all classes of compounds and presented a higher scavenging activity in all the antioxidant assays performed. The same was found for cytoprotective activity on lymphocytes, lipid peroxidation and protein degradation. These findings highlight the strong antioxidant and cytoprotective activity of the extract components, and illustrate how a waste product can be used as a source of nutraceuticals to employ in manufacturing industry.

  1. Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells.

    Directory of Open Access Journals (Sweden)

    Gaëlle Gonzalez

    Full Text Available Cell microparticles (MPs released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5, and serotype 35 (HAdV35, respectively. We found that MPs derived from CHO cells (MP-donor cells constitutively expressing CAR (MP-CAR or CD46 (MP-CD46 were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins.

  2. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy

    Science.gov (United States)

    Papalia, Teresa; Barreca, Davide; Panuccio, Maria Rosaria

    2017-01-01

    Jatropha (Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products. PMID:28335473

  3. In Vitro Cytoprotective Effects and Antioxidant Capacity of Phenolic Compounds from the Leaves of Swietenia macrophylla.

    Science.gov (United States)

    Pamplona, Sônia; Sá, Paulo; Lopes, Dielly; Costa, Edmar; Yamada, Elizabeth; e Silva, Consuelo; Arruda, Mara; Souza, Jesus; da Silva, Milton

    2015-10-16

    Swietenia macrophylla (mahogany) is a highly valued timber species, whereas the leaves are considered to be waste product. A total of 27 phenolic compounds were identified in aqueous extracts from mahogany leaves by comparing retention times and mass spectra data with those of authentic standards using LC-ESI-MS/MS. Polyphenols play an important role in plants as defense mechanisms against pests and pathogens and have potent antioxidant properties. In terms of health applications, interest has increased considerably in naturally occurring antioxidant sources, since they can retard the progress of many important neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The antioxidant capacities of two aqueous extracts, M1 (decoction) and M2 (infusion), were measured using TEAC and Folin-Ciocalteau methods. Additionally, M1 was used in order to investigate its potential cytoprotective effects on an in vitro model of neurodegeneration, by using primary cerebellar cultures exposed to methyl mercury (MeHg). Under experimental sub-chronic conditions (72 h), concomitant exposure of the same cultures to MeHg and M1 extract resulted in a statistically significant increase in cell viability in all three concentrations tested (10, 50 and 100 μg/mL), strongly suggesting that due to its high content of antioxidant compounds, the M1 extract provides significant cytoprotection against the MeHg-induced in vitro neurotoxicity.

  4. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract.

    Science.gov (United States)

    Yu, Zhi-Long; Zeng, Wei-Cai

    2013-09-01

    The antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract (LRE) were investigated and the main antioxidant component was isolated and identified. With its high content of phenols and flavonoids, the LRE showed remarkable antioxidant capacity to scavenge free radicals in vitro and to inhibit oil oxidation in a peanut oil system. Moreover, LRE was observed to inhibit tyrosinase action and browning of fresh-cut apple slices effectively. Furthermore, the cytoprotective activity of LRE was evaluated in a human intestine model using Caco-2 cell lines. According to the activity-guided isolation and identification, by using column chromatography, high-performance liquid chromatography, time-of-flight mass spectrometry, and nuclear magnetic resonance analyses, ursolic acid was characterized as the main antioxidant component of LRE; it showed the strongest free radical-scavenging activity. The results suggested that L. robustum (Rxob.) Blume could be a new resource for preparing functional food and nutraceutical products for use in food and pharmacology industries.

  5. Antiradical and Cytoprotective Activities of Several C-Geranyl-substituted Flavanones from Paulownia tomentosa Fruit

    Directory of Open Access Journals (Sweden)

    Ana Lopes

    2010-08-01

    Full Text Available Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb. Steud. (Scrophulariaceae have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.

  6. Cereblon is recruited to aggresome and shows cytoprotective effect against ubiquitin-proteasome system dysfunction.

    Science.gov (United States)

    Sawamura, Naoya; Wakabayashi, Satoru; Matsumoto, Kodai; Yamada, Haruka; Asahi, Toru

    2015-09-04

    Cereblon (CRBN) is encoded by a candidate gene for autosomal recessive nonsyndromic intellectual disability (ID). The nonsense mutation, R419X, causes deletion of 24 amino acids at the C-terminus of CRBN, leading to mild ID. Although abnormal CRBN function may be associated with ID disease onset, its cellular mechanism is still unclear. Here, we examine the role of CRBN in aggresome formation and cytoprotection. In the presence of a proteasome inhibitor, exogenous CRBN formed perinuclear inclusions and co-localized with aggresome markers. Endogenous CRBN also formed perinuclear inclusions under the same condition. Treatment with a microtubule destabilizer or an inhibitor of the E3 ubiquitin ligase activity of CRBN blocked formation of CRBN inclusions. Biochemical analysis showed CRBN containing inclusions were high-molecular weight, ubiquitin-positive. CRBN overexpression in cultured cells suppressed cell death induced by proteasome inhibitor. Furthermore, knockdown of endogenous CRBN in cultured cells increased cell death induced by proteasome inhibitor, compared with control cells. Our results show CRBN is recruited to aggresome and has functional roles in cytoprotection against ubiquitin-proteasome system impaired condition.

  7. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.

    Directory of Open Access Journals (Sweden)

    Lucia Castro-Vazquez

    2016-01-01

    Full Text Available Grapefruit (Citrus paradisi Macf. is an important cultivar of the Citrus genus which contains a number of nutrients beneficial to human health. The objective of the present study was to evaluate changes in bioactive flavonoids, antioxidant behaviour, and in vitro cytoprotective effect of processed white and pink peels after oven-drying (45°C–60°C and freeze-drying treatments. Comparison with fresh grapefruit peels was also assessed. Significant increases in DPPH, FRAPS, and ABTS values were observed in dried grapefruit peel samples in comparison with fresh peels, indicating the suitability of the treatments for use as tools to greatly enhance the antioxidant potential of these natural byproducts. A total of thirteen flavonoids were quantified in grapefruit peel extracts by HPLC-MS/MS. It was found that naringin, followed by isonaringin, was the main flavonoid occurring in fresh, oven-dried, and freeze-dried grapefruit peels. In vivo assay revealed that fresh and oven-dried grapefruit peel extracts (45°C exerted a strong cytoprotective effect on SH-SY5Y neuroblastoma cell lines at concentrations ranging within 0.1–0.25 mg/mL. Our data suggest that grapefruit (Citrus paradisi Macf. peel has considerable potential as a source of natural bioactive flavonoids with outstanding antioxidant activity which can be used as agents in several therapeutic strategies.

  8. Cytoprotective effect against mercury chloride and bioinsecticidal activity of Eugenia jambolana Lam.

    Directory of Open Access Journals (Sweden)

    Celestina E. Sobral-Souza

    2014-01-01

    Full Text Available The fruit fly Drosophila melanogaster is often utilized in genetic research, and in the last decades, it has become one of best organisms for studies of human diseases and toxicological research. Mercury chloride (HgCl2, the main representative of mercury compounds, is the target of numerous investigations, not only because of its intrinsic toxicity but also because it accounts for the toxicity of elemental mercury since the latter is converted to Hg+2 by oxidation. Eugenia jambolana Lam. Myrtaceae, known in Brazil as “jambolão”, is of great interest because of its medicinal applications, especially its leaves and fruits. The aim of this work was to characterize, by CG–MS, the chemical constituents of the essential oil of Eugenia jambolana and to evaluate its bioinsecticidal action in the Drosophila melanogaster model, as well as to determine the cytoprotective and chelating effect of the extract of E. jambolana. The results obtained here point to the potential of essential oils as a source in biological prospecting for bioinsecticides. Because of their biodegradability, essential oils can be important tools in the biological control of pests. The results demonstrated that the extract has an allelopathic effect on lettuce seeds and that its interaction with mercury chloride allows a greater growth of the radicle and plumule of Lactuta sativa seedlings, showing that this plant can provide an alternative solution to the problem of contamination by heavy metals, besides having cytoprotective potential and moderate chelating activity.

  9. Calcium Channels and Oxidative Stress Mediate a Synergistic Disruption of Tight Junctions by Ethanol and Acetaldehyde in Caco-2 Cell Monolayers.

    Science.gov (United States)

    Samak, Geetha; Gangwar, Ruchika; Meena, Avtar S; Rao, Roshan G; Shukla, Pradeep K; Manda, Bhargavi; Narayanan, Damodaran; Jaggar, Jonathan H; Rao, RadhaKrishna

    2016-12-13

    Ethanol is metabolized into acetaldehyde in most tissues. In this study, we investigated the synergistic effect of ethanol and acetaldehyde on the tight junction integrity in Caco-2 cell monolayers. Expression of alcohol dehydrogenase sensitized Caco-2 cells to ethanol-induced tight junction disruption and barrier dysfunction, whereas aldehyde dehydrogenase attenuated acetaldehyde-induced tight junction disruption. Ethanol up to 150 mM did not affect tight junction integrity or barrier function, but it dose-dependently increased acetaldehyde-mediated tight junction disruption and barrier dysfunction. Src kinase and MLCK inhibitors blocked this synergistic effect of ethanol and acetaldehyde on tight junction. Ethanol and acetaldehyde caused a rapid and synergistic elevation of intracellular calcium. Calcium depletion by BAPTA or Ca(2+)-free medium blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. Diltiazem and selective knockdown of TRPV6 or CaV1.3 channels, by shRNA blocked ethanol and acetaldehyde-induced tight junction disruption and barrier dysfunction. Ethanol and acetaldehyde induced a rapid and synergistic increase in reactive oxygen species by a calcium-dependent mechanism. N-acetyl-L-cysteine and cyclosporine A, blocked ethanol and acetaldehyde-induced barrier dysfunction and tight junction disruption. These results demonstrate that ethanol and acetaldehyde synergistically disrupt tight junctions by a mechanism involving calcium, oxidative stress, Src kinase and MLCK.

  10. Cooperative gating between ion channels.

    Science.gov (United States)

    Choi, Kee-Hyun

    2014-01-01

    Cooperative gating between ion channels, i.e. the gating of one channel directly coupled to the gating of neighboring channels, has been observed in diverse channel types at the single-channel level. Positively coupled gating could enhance channel-mediated signaling while negative coupling may effectively reduce channel gating noise. Indeed, the physiological significance of cooperative channel gating in signal transduction has been recognized in several in vivo studies. Moreover, coupled gating of ion channels was reported to be associated with some human disease states. In this review, physiological roles for channel cooperativity and channel clustering observed in vitro and in vivo are introduced, and stimulation-induced channel clustering and direct channel cross linking are suggested as the physical mechanisms of channel assembly. Along with physical clustering, several molecular mechanisms proposed as the molecular basis for functional coupling of neighboring channels are covered: permeant ions as a channel coupling mediator, concerted channel activation through the membrane, and allosteric mechanisms. Also, single-channel analysis methods for cooperative gating such as the binomial analysis, the variance analysis, the conditional dwell time density analysis, and the maximum likelihood fitting analysis are reviewed and discussed.

  11. CaV3.2 T-type Ca2+ channels mediate the augmented calcium influx in carotid body glomus cells by chronic intermittent hypoxia.

    Science.gov (United States)

    Makarenko, Vladislav V; Ahmmed, Gias U; Peng, Ying-Jie; Khan, Shakil A; Nanduri, Jayasri; Kumar, Ganesh K; Fox, Aaron P; Prabhakar, Nanduri R

    2016-01-01

    Chronic intermittent hypoxia (CIH) is a hallmark manifestation of sleep apnea. A heightened carotid body activity and the resulting chemosensory reflex mediate increased sympathetic nerve activity by CIH. However, the mechanisms underlying heightened carotid body activity by CIH are not known. An elevation of intracellular calcium ion concentration ([Ca(2+)]i) in glomus cells, the primary oxygen-sensing cells, is an essential step for carotid body activation by hypoxia. In the present study, we examined the effects of CIH on the glomus cell [Ca(2+)]i response to hypoxia and assessed the underlying mechanisms. Glomus cells were harvested from adult rats or wild-type mice treated with 10 days of either room air (control) or CIH (alternating cycles of 15 s of hypoxia and 5 min of room air; 9 episodes/h; 8 h/day). CIH-treated glomus cells exhibited an enhanced [Ca(2+)]i response to hypoxia, and this effect was absent in the presence of 2-(4-cyclopropylphenyl)-N-((1R)-1-[5-[(2,2,2-trifluoroethyl)oxo]-pyridin-2-yl]ethyl)acetamide (TTA-A2), a specific inhibitor of T-type Ca(2+) channels, and in voltage-gated calcium channel, type 3.2 (CaV3.2), null glomus cells. CaV3.2 knockout mice exhibited an absence of CIH-induced hypersensitivity of the carotid body. CIH increased reactive oxygen species (ROS) levels in glomus cells. A ROS scavenger prevented the exaggerated TTA-A2-sensitive [Ca(2+)]i response to hypoxia. CIH had no effect on CaV3.2 mRNA levels. CIH augmented Ca(2+) currents and increased CaV3.2 protein in plasma membrane fractions of human embryonic kidney-293 cells stably expressing CaV3.2, and either a ROS scavenger or brefeldin-A, an inhibitor of protein trafficking, prevented these effects. These findings suggest that CIH leads to an augmented Ca(2+) influx via ROS-dependent facilitation of CaV3.2 protein trafficking to the plasma membrane.

  12. External bioenergy-induced increases in intracellular free calcium concentrations are mediated by Na+/Ca2+ exchanger and L-type calcium channel.

    Science.gov (United States)

    Kiang, Juliann G; Ives, John A; Jonas, Wayne B

    2005-03-01

    External bioenergy (EBE, energy emitted from a human body) has been shown to increase intracellular calcium concentration ([Ca2+]i, an important factor in signal transduction) and regulate the cellular response to heat stress in cultured human lymphoid Jurkat T cells. In this study, we wanted to elucidate the underlying mechanisms. A bioenergy specialist emitted bioenergy sequentially toward tubes of cultured Jurkat T cells for one 15-minute period in buffers containing different ion compositions or different concentrations of inhibitors. [Ca2+], was measured spectrofluorometrically using the fluorescent probe fura-2. The resting [Ca2+]i in Jurkat T cells was 70 +/- 3 nM (n = 130) in the normal buffer. Removal of external calcium decreased the resting [Ca2+]i to 52 +/- 2 nM (n = 23), indicating that Ca2+ entry from the external source is important for maintaining the basal level of [Ca2+]i. Treatment of Jurkat T cells with EBE for 15 min increased [Ca2+]i by 30 +/- 5% (P EBE did not attenuate [Ca2+]i responsiveness to EBE. Removal of external Ca2+ or Na+, but not Mg2+, inhibited the EBE-induced increase in [Ca2+]i. Dichlorobenzamil, an inhibitor of Na+/Ca2+ exchangers, also inhibited the EBE-induced increase in [Ca2+]i in a concentration-dependent manner with an IC50 of 0.11 +/- 0.02 nM. When external [K+] was increased from 4.5 mM to 25 mM, EBE decreased [Ca2+]i. The EBE-induced increase was also blocked by verapamil, an L-type voltage-gated Ca2+ channel blocker. These results suggest that the EBE-induced [Ca2+]i increase may serve as an objective means for assessing and validating bioenergy effects and those specialists claiming bioenergy capability. The increase in [Ca2+]i is mediated by activation of Na+/Ca2+ exchangers and opening of L-type voltage-gated Ca2+ channels.

  13. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways.

    Science.gov (United States)

    Gan, Fei-Fei; Ling, Hui; Ang, Xiaohui; Reddy, Shridhivya A; Lee, Stephanie S-H; Yang, Hong; Tan, Sock-Hoon; Hayes, John D; Chui, Wai-Keung; Chew, Eng-Hui

    2013-11-01

    Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E2 (PGE2) in RAW 264.7 macrophage-like cells. Inhibition of cancer cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies.

  14. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  15. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  16. Desensitized nicotinic receptors that, however, afford cytoprotection in bovine chromaffin cells.

    Science.gov (United States)

    Egea, Javier; Hernández-Guijo, Jesús Miguel; Olivares, Roman; López, Manuela G; García, Antonio G

    2006-01-01

    Neuronal nicotinic receptors for acetylcholine (nAChRs) are among the ionotropic receptors that suffer the most desensitization upon prolonged exposure to their agonists. This is particularly true for the alpha7 subtype of nAChRs, although alpha3beta4 receptors also suffer quick desensitization. This study was planned to test the hypothesis that even after suffering desensitization, a given nAChR might still afford cell protection against a noxious stimulus. Of the many agonists developed for nAChRs, we selected the poorly desensitizing ligand dimethylphenylpiperazinium (DMPP) (Britt and Brenner, 1997) and the highly desensitizing agent epibatidine (EPB) (Marks et al., 1996). We have measured nAChR currents, catecholamine secretory responses, and changes of [Ca2+]c elicited by stimulation of nAChRs with DMPP or EPB. We have also investigated cytoprotection elicited by DMPP and EPB against the cytotoxic effects of veratridine in bovine chromaffin cells.

  17. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation.

    Science.gov (United States)

    Park, Ji Hun; Kim, Kyunghwan; Lee, Juno; Choi, Ji Yu; Hong, Daewha; Yang, Sung Ho; Caruso, Frank; Lee, Younghoon; Choi, Insung S

    2014-11-10

    Single-cell encapsulation promises the cytoprotection of the encased cells against lethal stressors, reminiscent of the sporulation process in nature. However, the development of a cytocompatible method for chemically mimicking the germination process (i.e., shell degradation on-demand) has been elusive, despite the shell degradation being pivotal for the practical use of functional cells as well as for single cell-based biology. We report that an artificial shell, composed of tannic acid (TA) and Fe(III) , on individual Saccharomyces cerevisiae controllably degrades on-demand, while protecting the yeast from multiple external aggressors, including UV-C irradiation, lytic enzymes, and silver nanoparticles. Cell division is suppressed by the TA-Fe(III) shell, but restored fully upon shell degradation. The formation of a TA-Fe(III) shell would provide a versatile tool for achieving the chemical version of "sporulation and germination".

  18. Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1994-01-01

    - tocopheryl acid succinate, or a-tocopheryl phosphate, or of 1 µM N,N'- diphenyl-1,4-phenylenediamine, was investigated with respect to the agent's ability to prevent lactate dehydrogenase leakage in long-term rat hepatocyte cultures supplemented with 0.5 mM highly unsaturated fatty acids. Formation...... of thiobarbituric acid reactive substances in the cultures was also measured. a-Tocopheryl acid succinate was found to be the most effective cytoprotective compound, followed by N,N'-diphenyl-1,4-phenylenediamine, a- tocopherol, ¿-tocopherol and a-tocopheryl acetate, and a-tocopheryl phosphate was without effect.......When highly unsaturated fatty acids are added to cell cultures, it can become important to include antioxidants in the culture medium to prevent cytotoxic peroxidation. To find an optimal antioxidant for this purpose, the effect of 50 µM a-tocopherol, ¿-tocopherol, a-tocopheryl acetate, a...

  19. Cellular uptake and organ accumulation of amphipolar metallocorroles with cytoprotective and cytotoxic properties.

    Science.gov (United States)

    Okun, Zoya; Kuperschmidt, Lana; Youdim, Moussa B H; Gross, Zeev

    2011-05-01

    We report here an investigation that focuses on the organ distribution of metal complexes that are chelated by the amphipolar corrole whose macrocycle is decorated by two sulphonic acid head groups, which are emerging potential therapeutics against cancer (the cytotoxic Ga chelate) and diseases that are characterized by excessive production of ROS and RNS (the cytoprotective Mn and Fe derivatives). We show that the intraperitoneally injected fluorescent gallium(III) derivative accumulates in tissues sections of the kidney, liver, lung, heart, and pancreas. It also reaches the brain blood vessels, but does not cross the blood brain barrier. These findings are of prime importance for future in vivo studies on disease models, as they point toward a large utility of this kind of corrole chelates for treating cancer, neurodegenerative diseases characterized by "leaking BBB", cardiovascular diseases and diabetes.

  20. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  1. Voltage-Gated R-Type Calcium Channel Inhibition via Human μ-, δ-, and κ-opioid Receptors Is Voltage-Independently Mediated by Gβγ Protein Subunits.

    Science.gov (United States)

    Berecki, Géza; Motin, Leonid; Adams, David J

    2016-01-01

    Elucidating the mechanisms that modulate calcium channels via opioid receptor activation is fundamental to our understanding of both pain perception and how opioids modulate pain. Neuronal voltage-gated N-type calcium channels (Cav2.2) are inhibited by activation of G protein-coupled opioid receptors (ORs). However, inhibition of R-type (Cav2.3) channels by μ- or κ-ORs is poorly defined and has not been reported for δ-ORs. To investigate such interactions, we coexpressed human μ-, δ-, or κ-ORs with human Cav2.3 or Cav2.2 in human embryonic kidney 293 cells and measured depolarization-activated Ba(2+) currents (IBa). Selective agonists of μ-, δ-, and κ-ORs inhibited IBa through Cav2.3 channels by 35%. Cav2.2 channels were inhibited to a similar extent by κ-ORs, but more potently (60%) via μ- and δ-ORs. Antagonists of δ- and κ-ORs potentiated IBa amplitude mediated by Cav2.3 and Cav2.2 channels. Consistent with G protein βγ (Gβγ) interaction, modulation of Cav2.2 was primarily voltage-dependent and transiently relieved by depolarizing prepulses. In contrast, Cav2.3 modulation was voltage-independent and unaffected by depolarizing prepulses. However, Cav2.3 inhibition was sensitive to pertussis toxin and to intracellular application of guanosine 5'-[β-thio]diphosphate trilithium salt and guanosine 5'-[γ-thio]triphosphate tetralithium salt. Coexpression of Gβγ-specific scavengers-namely, the carboxyl terminus of the G protein-coupled receptor kinase 2 or membrane-targeted myristoylated-phosducin-attenuated or abolished Cav2.3 modulation. Our study reveals the diversity of OR-mediated signaling at Cav2 channels and identifies neuronal Cav2.3 channels as potential targets for opioid analgesics. Their novel modulation is dependent on pre-existing OR activity and mediated by membrane-delimited Gβγ subunits in a voltage-independent manner.

  2. Induction of cyto-protective autophagy by paramontroseite VO2 nanocrystals

    Science.gov (United States)

    Zhou, Wei; Miao, Yanyan; Zhang, Yunjiao; Liu, Liang; Lin, Jun; Yang, James Y.; Xie, Yi; Wen, Longping

    2013-04-01

    A variety of inorganic nanomaterials have been shown to induce autophagy, a cellular degradation process critical for the maintenance of cellular homeostasis. The overwhelming majority of autophagic responses elicited by nanomaterials were detrimental to cell fate and contributed to increased cell death. A widely held view is that the inorganic nanoparticles, when encapsulated and trapped by autophagosomes, may compromise the normal autophagic process due to the inability of the cells to degrade these materials and thus they manifest a detrimental effect on the well-being of a cell. Here we show that, contrary to this notion, nano-sized paramontroseite VO2 nanocrystals (P-VO2) induced cyto-protective, rather than death-promoting, autophagy in cultured HeLa cells. P-VO2 also caused up-regulation of heme oxygenase-1 (HO-1), a cellular protein with a demonstrated role in protecting cells against death under stress situations. The autophagy inhibitor 3-methyladenine significantly inhibited HO-1 up-regulation and increased the rate of cell death in cells treated with P-VO2, while the HO-1 inhibitor protoporphyrin IX zinc (II) (ZnPP) enhanced the occurrence of cell death in the P-VO2-treated cells while having no effect on the autophagic response induced by P-VO2. On the other hand, Y2O3 nanocrystals, a control nanomaterial, induced death-promoting autophagy without affecting the level of expression of HO-1, and the pro-death effect of the autophagy induced by Y2O3. Our results represent the first report on a novel nanomaterial-induced cyto-protective autophagy, probably through up-regulation of HO-1, and may point to new possibilities for exploiting nanomaterial-induced autophagy for therapeutic applications.

  3. A genetic screen in Drosophila reveals novel cytoprotective functions of the autophagy-lysosome pathway.

    Directory of Open Access Journals (Sweden)

    Andrew M Arsham

    Full Text Available The highly conserved autophagy-lysosome pathway is the primary mechanism for breakdown and recycling of macromolecular and organellar cargo in the eukaryotic cell. Autophagy has recently been implicated in protection against cancer, neurodegeneration, and infection, and interest is increasing in additional roles of autophagy in human health, disease, and aging. To search for novel cytoprotective features of this pathway, we carried out a genetic mosaic screen for mutations causing increased lysosomal and/or autophagic activity in the Drosophila melanogaster larval fat body. By combining Drosophila genetics with live-cell imaging of the fluorescent dye LysoTracker Red and fixed-cell imaging of autophagy-specific fluorescent protein markers, the screen was designed to identify essential metazoan genes whose disruption causes increased flux through the autophagy-lysosome pathway. The screen identified a large number of genes associated with the protein synthesis and ER-secretory pathways (e.g. aminoacyl tRNA synthetases, Oligosaccharyl transferase, Sec61alpha, and with mitochondrial function and dynamics (e.g. Rieske iron-sulfur protein, Dynamin-related protein 1. We also observed that increased lysosomal and autophagic activity were consistently associated with decreased cell size. Our work demonstrates that disruption of the synthesis, transport, folding, or glycosylation of ER-targeted proteins at any of multiple steps leads to autophagy induction. In addition to illuminating cytoprotective features of autophagy in response to cellular damage, this screen establishes a genetic methodology for investigating cell biological phenotypes in live cells, in the context of viable wild type organisms.

  4. Adaptive cytoprotection through modulation of nitric oxide in ethanol-evoked gastritis

    Institute of Scientific and Technical Information of China (English)

    Joshua Ka-Shun Ko; Chi-Hin Cho; Shiu-Kum Lam

    2004-01-01

    AIM: To assess the mechanisms of protective action by different mild irritants through maintenance of gastric mucosal integrity and modulation of mucosal nitric oxide (NO) in experimental gastritis rats.METHODS: Either 200 ml/L ethanol, 50 g/L NaCl or 0.3 mol/LHCl was pretreated to normal or 800 mL/L ethanol-induced acute gastritis Sprague-Dawley rats before a subsequent challenge with 500 mL/L ethanol. Both macroscopic lesion areas and histological damage scores were determined in the gastric mucosa of each group of animals. Besides,gastric mucosal activities of NO synthase isoforms and of superoxide dismutase, along with mucosal level of leukotriene (LT)C4 were measured.RESULTS: Macroscopic mucosal damages were protected by 200 mL/L ethanol and 50 g/L NaCl in gastritis rats.However, although 200 mL/L ethanol could protect the surface layers of mucosal cells in normal animals (protection attenuated by NG-nitro-L-arginine methyl ester), no cytoprotection against deeper histological damages was found in gastritis rats. Besides, inducible NO synthase activity was increased in the mucosa of gastritis animals and unaltered by mild irritants. Nevertheless, the elevation in mucosal LTC4 level following 500 mL/L ethanol administration and under gastritis condition was significantly reduced by pretreatment of all three mild irritants in both normal and gastritis animals.CONCLUSION: These findings suggest that the aggravated 500 mL/L ethanol-evoked mucosal damages under gastritis condition could be due to increased inducible NO and LTC4 production in the gastric mucosa. Only 200 mL/L ethanol is truly "cytoprotective" at the surface glandular level of nongastritis mucosa. Furthermore, the macroscopic protection of the three mild irritants involves reduction of LTC4 level in both normal and gastritis mucosa, implicating preservation of the vasculature.

  5. H2O2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney.

    Science.gov (United States)

    Lin, Chian-Shiung; Lee, Shang-Hsing; Huang, Ho-Shiang; Chen, Yih-Sharng; Ma, Ming-Chieh

    2015-08-15

    The presence of NADPH oxidase (Nox) in the kidney, especially Nox4, results in H2O2 production, which regulates Na(+) excretion and urine formation. Redox-sensitive transient receptor potential vanilloid 1 channels (TRPV1s) are distributed in mechanosensory fibers of the renal pelvis and monitor changes in intrapelvic pressure (IPP) during urine formation. The present study tested whether H2O2 derived from Nox4 affects TRPV1 function in renal sensory responses. Perfusion of H2O2 into the renal pelvis dose dependently increased afferent renal nerve activity and substance P (SP) release. These responses were attenuated by cotreatment with catalase or TRPV1 blockers. In single unit recordings, H2O2 activated afferent renal nerve activity in response to rising IPP but not high salt. Western blots revealed that Nox2 (gp91(phox)) and Nox4 are both present in the rat kidney, but Nox4 is abundant in the renal pelvis and originates from dorsal root ganglia. This distribution was associated with expression of the Nox4 regulators p22(phox) and polymerase δ-interacting protein 2. Coimmunoprecipitation experiments showed that IPP increases polymerase δ-interacting protein 2 association with Nox4 or p22(phox) in the renal pelvis. Interestingly, immunofluorescence labeling demonstrated that Nox4 colocalizes with TRPV1 in sensory fibers of the renal pelvis, indicating that H2O2 generated from Nox4 may affect TRPV1 activity. Stepwise increases in IPP and saline loading resulted in H2O2 and SP release, sensory activation, diuresis, and natriuresis. These effects, however, were remarkably attenuated by Nox inhibition. Overall, these results suggest that Nox4-positive fibers liberate H2O2 after mechanostimulation, thereby contributing to a renal sensory nerve-mediated diuretic/natriuretic response.

  6. Pannexin Channels Mediate the Acquisition of Myogenic Commitment in C2C12 Reserve Cells Promoted by P2 Receptor Activation

    Directory of Open Access Journals (Sweden)

    Manuel Antonio Riquelme

    2015-05-01

    Full Text Available The acquisition of myoblast commitment to the myogenic linage requires rises in intracellular free Ca2+ concentration ([Ca2+]i. Putative cell membrane pathways involved in these [Ca2+]i increments are P2 receptors (P2Rs as well as connexin (Cx and/or pannexin (Panx hemichannels and channels (Cx HChs and Panx Chs, respectively, which are known to permeate Ca2+. Reserve cells (RCs are uncommitted myoblasts obtained from differentiated C2C12 cell cultures, which acquire commitment upon replating. Regarding these cells, we found that extracellular ATP increases the [Ca2+]i via P2Rs. Moreover, ATP increases the plasma membrane permeability to small molecules and a non-selective membrane current, both of which were inhibited by Cx HCh/Panx1Ch blockers. However, RCs exposed to divalent cation-free saline solution, which is known to activate Cx HChs (but not Panx Chs, did not enhance membrane permeability, thus ruling out the possible involvement of Cx HChs. Moreover, ATP-induced membrane permeability was inhibited with blockers of P2Rs that activate Panx Chs. In addition, exogenous ATP induced the expression of myogenic commitment and increased MyoD levels, which was prevented by the inhibition of P2Rs or knockdown of Panx1 Chs. Similarly, increases in MyoD levels induced by ATP released by RCs were inhibited by Panx Ch/Cx HCh blockers. Myogenic commitment acquisition thus requires a feed-forward mechanism mediated by extracellular ATP, P2Rs and Panx Chs.

  7. Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease.

    Science.gov (United States)

    Kim, Na-Yeon; Han, Byeal-I; Lee, Michael

    2016-01-01

    Previously, we demonstrated the association between autophagy and gossypol-induced growth inhibition of mutant BRAF melanoma cells. Here, we investigate the role of autophagy in ATG5 knockout cell lines generated by the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas-mediated genome editing. The MTT assay revealed that the inhibitory effect of gossypol was weaker on ATG5 knockout cells than that on the wild type (WT) cells. The conversion of non-autophagic LC3-I to autophagic LC3-II and RT-PCR confirmed the functional gene knockout. However, Cyto-ID autophagy assay revealed that gossypol induced ATG5- and LC3-independent autophagy in ATG5 knockout cells. Moreover, gossypol acts as an autophagy inducer in ATG5 knockout cells while blocking the later stages of the autophagy process in WT cells, which was determined by measuring autophagic flux after co-treatment of gossypol with chloroquine (late-stage autophagy inhibitor). On the other hand, inhibition of autophagy with 3-MA or Beclin-1 siRNA caused a partial increase in the sensitivity to gossypol in ATG5 knockout cells, but not in the WT cells. Together, our findings suggest that the resistance to gossypol in ATG5 knockout cells is associated with increased cytoprotective autophagy, independent of ATG5.

  8. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiqing; Chen, Xu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Liu, Cheng [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Gu, Peng; Li, Zhuohang; Wu, Shaoxu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Xu, Kewei [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Lin, Tianxin, E-mail: tianxinl@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Huang, Jian, E-mail: urolhj@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China)

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  9. Cytoprotective Effect of Caffeic Acid Phenethyl Ester (CAPE) and Catechol Ring-Fluorinated CAPE Derivatives Against Menadione-Induced Oxidative Stress in Human Endothelial Cells

    Science.gov (United States)

    2006-03-31

    chlorogenic acid , and rosmari- nic acid did not display any cytoprotective effect in this assay at 15 lM (data not shown). Within the same pas- sage of HUVEC...Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative...accepted 13 March 2006 Available online 31 March 2006 Abstract—Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many

  10. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat.

    Directory of Open Access Journals (Sweden)

    Yuri Kim

    Full Text Available The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors.

  11. Carbon Monoxide Induces Cytoprotection in Rat Orthotopic Lung Transplantation via Anti-Inflammatory and Anti-Apoptotic Effects

    OpenAIRE

    Song, Ruiping; KUBO, Masatoshi; Morse, Danielle; Zhou, Zhihong; Zhang, Xuchen; Dauber, James H.; Fabisiak, James; Alber, Sean M.; Watkins, Simon C.; Zuckerbraun, Brian S.; Otterbein, Leo E.; Ning, Wen; Oury, Tim D; Patty J. Lee; McCurry, Kenneth R.

    2003-01-01

    Successful lung transplantation has been limited by the high incidence of acute graft rejection. There is mounting evidence that the stress response gene heme oxygenase-1 (HO-1) and/or its catalytic by-product carbon monoxide (CO) confers cytoprotection against tissue and cellular injury. This led us to hypothesize that CO may protect against lung transplant rejection via its anti-inflammatory and antiapoptotic effects. Orthotopic left lung transplantation was performed in Lewis rat recipient...

  12. Cytoprotection of Human Endothelial Cells From Menadione Cytotoxicity by Caffeic Acid Phenethyl Ester: The Role of Heme Oxygenase-1

    Science.gov (United States)

    2008-06-08

    cells (HUVEC) to evaluate potential gene expression involvement. CAPE exhibited dose- dependent cytoprotection of HUVEC. A gene screen with...highly induced (8.25-fold) by CAPE compared to DMSO control. To validate this particular microarray screening result, quantitative real-time RT-PCR was...the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of Biological Chemistry 279, 8919–8929. Minami, T

  13. Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells.

    Science.gov (United States)

    Steele, Megan L; Truong, John; Govindaraghavan, Suresh; Ooi, Lezanne; Sucher, Nikolaus J; Münch, Gerald

    2013-04-01

    Age is the leading risk factor for many of the most prevalent and devastating diseases including neurodegenerative diseases. A number of herbal medicines have been used for centuries to ameliorate the deleterious effects of ageing-related diseases and increase longevity. Oxidative stress is believed to play a role in normal ageing as well as in neurodegenerative processes. Since many of the constituents of herbal extracts are known antioxidants, it is believed that restoring oxidative balance may be one of the underlying mechanisms by which medicinal herbs can protect against ageing and cognitive decline. Based on the premise that astrocytes are key modulators in the progression of oxidative stress associated neurodegenerative diseases, 13 herbal extracts purported to possess anti-ageing properties were tested for their ability to protect U373 human astrocytes from hydrogen peroxide induced cell death. To determine the contribution of antioxidant activity to the cytoprotective ability of extracts, total phenol content and radical scavenging capacities of extracts were examined. Polygonum multiflorum, amongst others, was identified as possessing potent antioxidant and cytoprotective properties. Not surprisingly, total phenol content of extracts was strongly correlated with antioxidant capacity. Interestingly, when total phenol content and radical scavenging capacities of extracts were compared to the cytoprotective properties of extracts, only moderately strong correlations were observed. This finding suggests the involvement of multiple protective mechanisms in the beneficial effects of these medicinal herbs.

  14. Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation

    Directory of Open Access Journals (Sweden)

    Hui eZhao

    2015-01-01

    Full Text Available Pregnancy can be defined as a permissible process, where a semi-allogeneic fetus and placenta are allowed to grow and survive within the mother. Similarly, in tumor growth, antigen-specific malignant cells proliferate and evade into normal tissues of the host. The microenvironments of the placenta and tumors are amazingly comparable, sharing similar mechanisms exploited by fetal or cancer cells with regard to surviving in a hypoxic microenvironment, invading tissues via degradation and vasculogenesis, and escaping host attack through immune privilege. Heme oxygease-1 (HO-1 is a stress-response protein that has anti-oxidative, anti-apoptotic, pro-angiogenic, and anti-inflammatory properties. Although a large volume of research has been published in recent years investigating the possible role(s of HO-1 in pregnancy and in cancer development, the molecular mechanisms that regulate these yin-yang processes have still not been fully elucidated. Here, we summarize and compare pregnancy and cancer development, focusing primarily on the function of HO-1 in cellular invasion, cytoprotection, angiogenesis, and immunomodulation. Due to the similarities of both processes, a thorough understanding of the molecular mechanisms of each process may reveal and guide the development of new approaches to prevent not only pregnancy disorders; but also, to study cancer.

  15. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents.

    Science.gov (United States)

    Nam, Joo-Won; Kim, Seo-Young; Yoon, Taesook; Lee, Yoo Jin; Kil, Yun-Seo; Lee, Yun-Sil; Seo, Eun-Kyoung

    2013-07-01

    The barks of Eucommia ulmoides (Eucommiae Cortex, Eucommiaceae) have been used as a traditional medicine in Korea, Japan, and China to treat hypertension, reinforce the muscles and bones, and recover the damaged liver and kidney functions. Among these traditional uses, to establish the recovery effects on the damaged organs on the basis of phytochemistry, the barks of E. ulmoides have been investigated to afford three known phenolic compounds, coniferaldehyde glucoside (1), bartsioside (2), and feretoside (3), which were found in the family Eucommiaceae for the first time. The compounds 1-3 were evaluated for their inducible activities on the heat shock factor 1 (HSF1), and heat shock proteins (HSPs) 27 and 70, along with four compounds, geniposide (4), geniposidic acid (5), pinoresinol diglucoside (6), and liriodendrin (7), which were previously reported from E. ulmoides. Compounds 1-7 increased expression of HSF1 by a factor of 1.214, 1.144, 1.153, 1.114, 1.159, 1.041, and 1.167 at 3 μM, respectively. Coniferaldehyde glucoside (1) showed the most effective increase of HSF1 and induced successive expressions of HSP27 and HSP70 in a dose-dependent manner without cellular cytotoxicity, suggesting a possible application as a HSP inducer to act as cytoprotective agent.

  16. Gastric cytoprotection beyond prostaglandins: cellular and molecular mechanisms of gastroprotective and ulcer healing actions of antacids.

    Science.gov (United States)

    Tarnawski, Andrzej; Ahluwalia, Amrita; Jones, Michael K

    2013-01-01

    This article updates current views on gastric mucosal defense, injury, protection and ulcer healing with a focus on mucosal protective and ulcer healing actions of antacids. The gastric mucosa is continuously exposed to a variety of noxious factors, both endogenous such as: 0.1N hydrochloric acid, pepsin, bile acids, lysolecithin, H. pylori toxins and exogenous such as NSAIDs, ethanol and others. Gastric mucosal integrity is maintained by pre-epithelial, epithelial and post-epithelial defense mechanisms permitting the mucosa to withstand exposure to the above damaging factors. When mucosal defense is weakened or overwhelmed by injurious factors, injury develops in the form of erosions or ulcers. In the late 1970s Andre Robert and coworkers discovered that microgram amounts of a prostaglandin E2 analog protects the gastric mucosa against a variety of ulcerogenic and necrotizing agents - even such strong inducers of injury as 100% ethanol and boiling water. They proposed a new concept of cytoprotection. Subsequently, other compounds, such as sulfhydryls, sucralfate and epidermal growth factor were shown to exert protective action on gastric mucosa. Additionally, some antacids have been shown to exert a potent mucosal protective action against a variety of injurious factors and accelerate healing of erosions and gastric ulcers. These actions of antacids, especially hydrotalcite - the newest and the most extensively studied antacid - are due to activation of prostaglandin synthesis; binding to and inactivation of pepsin, bile acids and H. pylori toxins; induction of heat shock proteins; and, activation of genes encoding growth factors and their receptors.

  17. Inhibition of the Mitochondrial Permeability Transition for Cytoprotection: Direct versus Indirect Mechanisms

    Directory of Open Access Journals (Sweden)

    Cécile Martel

    2012-01-01

    Full Text Available Mitochondria are fascinating organelles, which fulfill multiple cellular functions, as diverse as energy production, fatty acid β oxidation, reactive oxygen species (ROS production and detoxification, and cell death regulation. The coordination of these functions relies on autonomous mitochondrial processes as well as on sustained cross-talk with other organelles and/or the cytosol. Therefore, this implies a tight regulation of mitochondrial functions to ensure cell homeostasis. In many diseases (e.g., cancer, cardiopathies, nonalcoholic fatty liver diseases, and neurodegenerative diseases, mitochondria can receive harmful signals, dysfunction and then, participate to pathogenesis. They can undergo either a decrease of their bioenergetic function or a process called mitochondrial permeability transition (MPT that can coordinate cell death execution. Many studies present evidence that protection of mitochondria limits disease progression and severity. Here, we will review recent strategies to preserve mitochondrial functions via direct or indirect mechanisms of MPT inhibition. Thus, several mitochondrial proteins may be considered for cytoprotective-targeted therapies.

  18. Cytoprotective Effect of Silymarin against Diabetes-Induced Cardiomyocyte Apoptosis in Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    Muobarak J Tuorkey; Nabila I El-Desouki; Rabab A Kamel

    2015-01-01

    Objective The beneficial effects of silymarin have been extensively studied in the context of inflammation and cancer treatment, yet much less is known about its therapeutic effect on diabetes. The present study was aimed to investigate the cytoprotective activity of silymarin against diabetes-induced cardiomyocyte apoptosis. Methods Rats were randomly divided into: control group, untreated diabetes group and diabetes group treated with silymarin (120 mg/kg·d) for 10 d. Rats were sacrificed, and the cardiac muscle specimens and blood samples were collected. The immunoreactivity of caspase-3 and Bcl-2 in the cardiomyocytes was measured. Total proteins, glucose, insulin, creatinine, AST, ALT, cholesterol, and triglycerides levels were estimated. Results Unlike the treated diabetes group, cardiomyocyte apoptosis increased in the untreated rats, as evidenced by enhanced caspase-3 and declined Bcl-2 activities. The levels of glucose, creatinine, AST, ALT, cholesterol, and triglycerides declined in the treated rats. The declined levels of insulin were enhanced again after treatment of diabetic rats with silymarin, reflecting a restoration of the pancreaticβ-cells activity. Conclusion The findings of this study are of great importance, which confirmed for the first time that treatment of diabetic subjects with silymarin may protect cardiomyocytes against apoptosis and promote survival-restoration of the pancreaticβ-cells.

  19. Heme oxygenase-1: a provenance for cytoprotective pathways in the kidney and other tissues.

    Science.gov (United States)

    Nath, K A

    2006-08-01

    Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme, converting heme to biliverdin, during which iron is released and carbon monoxide (CO) is emitted; biliverdin is subsequently converted to bilirubin by biliverdin reductase. At least two isozymes possess HO activity: HO-1 represents the isozyme induced by diverse stressors, including ischemia, nephrotoxins, cytokines, endotoxin, oxidants, and vasoactive substances; HO-2 is the constitutive, glucocorticoid-inducible isozyme. HO-1 is upregulated in the kidney in assorted conditions and diseases. Interest in HO is driven by the capacity of this system to protect the kidney against injury, a capacity likely reflecting, at least in part, the cytoprotective properties of its products: in relatively low concentrations, CO exerts vasorelaxant, antiapoptotic, and anti-inflammatory effects while bile pigments are antioxidant and anti-inflammatory metabolites. This article reviews the HO system and the extent to which it influences the function of the healthy kidney; it summarizes conditions and stimuli that elicit HO-1 in the kidney; and it explores the significance of renal expression of HO-1 as induced by ischemia, nephrotoxins, nephritides, transplantation, angiotensin II, and experimental diabetes. This review also points out the tissue specificity of the HO system, and the capacity of HO-1 to induce renal injury in certain settings. Studies of HO in other tissues are discussed insofar as they aid in elucidating the physiologic and pathophysiologic significance of the HO system in the kidney.

  20. Interaction of Cytotoxic and Cytoprotective Bile Acids with Model Membranes: Influence of the Membrane Composition.

    Science.gov (United States)

    Esteves, M; Ferreira, M J; Kozica, A; Fernandes, A C; Gonçalves da Silva, A; Saramago, B

    2015-08-18

    To understand the role of bile acids (BAs) in cell function, many authors have investigated their effect on biomembrane models which are less complex systems, but there are still many open questions. The present study aims to contribute for the deepening of the knowledge of the interaction between BAs and model membranes, in particular, focusing on the effect of BA mixtures. The cytotoxic deoxycholic acid (DCA), the cytoprotective ursodeoxycholic acid (UDCA), and the equimolar mixture (DCA + UDCA) were investigated. Monolayers and liposomes were taken as model membranes with two lipid compositions: an equimolar mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), sphingomyelin (SM), and cholesterol (Chol)) traditionally associated with the formation of lipid rafts and an equimolar POPC/SM binary mixture. The obtained results showed that DCA causes the fluidization of monolayers and bilayers, leading to the eventual rupture of POPC/SM liposomes at high concentration. UDCA may provide a stabilization of POPC/SM membranes but has a negligible effect on the Chol-containing liposomes. In the case of equimolar mixture DCA/UDCA, the interactions depend not only on the lipid composition but also on the design of the experiment. The BA mixture has a greater impact on the monolayers than do pure BAs, suggesting a cooperative DCA-UDCA interaction that enhances the penetration of UDCA in both POPC/SM and POPC/SM/Chol monolayers. For the bilayers, the presence of UDCA in the mixture decreases the disturbing effect of DCA.

  1. Cytoprotective effect of cytoflavinum in the treatment of thermal injuries of various severity levels

    Directory of Open Access Journals (Sweden)

    Alexey J. Bozhedomov

    2012-12-01

    Full Text Available The research aimed to conduct studying of cytoprotective effect of cytoflavinum in thermal traumas of various severity levels. Material and methods – 169 patients were included into the research with thermal burns and with a favorable outcome and the severity of a thermal injury from 30 to 170 points according Frank index. 28 patients received cytoflavinum in a complex therapy in a standard dosage. Results – During the cytoflavinum usage in patients with the severity of a thermal injury more than 60 points by Frank there had been fixed: the decrease of a systemic inflammatory response syndrome (SIRS, reduction of stab neutrophils content, slower decrease of erythrocytes, smaller activation of thrombopoiesis, decrease of concentration of the vascular endothelial growth factor. In the group of patients with thermal injuries less than 60 points who had been receiving cytoflavinum there had not positive effects been fixed. Conclusion – Cytoflavinum is the most effective when the severity of a thermal trauma is more than 60 points by Frank.

  2. Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels arXiv

    CERN Document Server

    Albert, Andreas; Boveia, Antonio; Buchmueller, Oliver; Busoni, Giorgio; De Roeck,Albert; Doglioni, Caterina; DuPree, Tristan; Fairbairn, Malcolm; Genest, Marie-Hélène; Gori, Stefania; Gustavino, Giuliano; Hahn, Kristian; Haisch, Ulrich; Harris, Philip C.; Hayden, Dan; Ippolito, Valerio; John, Isabelle; Kahlhoefer, Felix; Kulkarni, Suchita; Landsberg, Greg; Lowette, Steven; Mawatari, Kentarou; Riotto, Antonio; Shepherd, William; Tait, Tim M.P.; Tolley, Emma; Tunney, Patrick; Zaldivar, Bryan; Zinser, Markus

    Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar "mono-X" search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. These suggestions include how to extend the spin-1 mediated simplified models already in widespread use to include lepton couplings. This document also provides analytic calculations of the relic density in the simplified models and reports an issue that arose when ATLAS and CMS first began to use preliminary numerical calculations of the dark matter relic density in these models.

  3. The Cullin 4A/B-DDB1-Cereblon E3 Ubiquitin Ligase Complex Mediates the Degradation of CLC-1 Chloride Channels.

    Science.gov (United States)

    Chen, Yi-An; Peng, Yi-Jheng; Hu, Meng-Chun; Huang, Jing-Jia; Chien, Yun-Chia; Wu, June-Tai; Chen, Tsung-Yu; Tang, Chih-Yung

    2015-05-29

    Voltage-gated CLC-1 chloride channels play a critical role in controlling the membrane excitability of skeletal muscles. Mutations in human CLC-1 channels have been linked to the hereditary muscle disorder myotonia congenita. We have previously demonstrated that disease-associated CLC-1 A531V mutant protein may fail to pass the endoplasmic reticulum quality control system and display enhanced protein degradation as well as defective membrane trafficking. Currently the molecular basis of protein degradation for CLC-1 channels is virtually unknown. Here we aim to identify the E3 ubiquitin ligase of CLC-1 channels. The protein abundance of CLC-1 was notably enhanced in the presence of MLN4924, a specific inhibitor of cullin-RING E3 ligases. Subsequent investigation with dominant-negative constructs against specific subtypes of cullin-RING E3 ligases suggested that CLC-1 seemed to serve as the substrate for cullin 4A (CUL4A) and 4B (CUL4B). Biochemical examinations further indicated that CUL4A/B, damage-specific DNA binding protein 1 (DDB1), and cereblon (CRBN) appeared to co-exist in the same protein complex with CLC-1. Moreover, suppression of CUL4A/B E3 ligase activity significantly enhanced the functional expression of the A531V mutant. Our data are consistent with the idea that the CUL4A/B-DDB1-CRBN complex catalyses the polyubiquitination and thus controls the degradation of CLC-1 channels.

  4. Polarization-mediated Debye-screening of surface potential fluctuations in dual-channel AlN/GaN high electron mobility transistors

    Science.gov (United States)

    Deen, David A.; Miller, Ross A.; Osinsky, Andrei V.; Downey, Brian P.; Storm, David F.; Meyer, David J.; Scott Katzer, D.; Nepal, Neeraj

    2016-12-01

    A dual-channel AlN/GaN/AlN/GaN high electron mobility transistor (HEMT) architecture is proposed, simulated, and demonstrated that suppresses gate lag due to surface-originated trapped charge. Dual two-dimensional electron gas (2DEG) channels are utilized such that the top 2DEG serves as an equipotential that screens potential fluctuations resulting from surface trapped charge. The bottom channel serves as the transistor's modulated channel. Two device modeling approaches have been performed as a means to guide the device design and to elucidate the relationship between the design and performance metrics. The modeling efforts include a self-consistent Poisson-Schrodinger solution for electrostatic simulation as well as hydrodynamic three-dimensional device modeling for three-dimensional electrostatics, steady-state, and transient simulations. Experimental results validated the HEMT design whereby homo-epitaxial growth on free-standing GaN substrates and fabrication of the same-wafer dual-channel and recessed-gate AlN/GaN HEMTs have been demonstrated. Notable pulsed-gate performance has been achieved by the fabricated HEMTs through a gate lag ratio of 0.86 with minimal drain current collapse while maintaining high levels of dc and rf performance.

  5. Effects of Ginkgo biloba extract on cytoprotective factors in rats with duodenal ulcer

    Institute of Scientific and Technical Information of China (English)

    Jane C.-J. Chao; Huei-Chen Hung; Sheng-Hsuan Chen; Chia-Lang Fang

    2004-01-01

    AIM: To investigate the effects of Ginkgo biloba extract on cytoprotective factors in rats with duodenal ulcer.METHODS: Sprague-Dawley rats were randomly divided into four groups: sham operation without ginkgo, sham operation with ginkgo, duodenal ulcer without ginkgo, and duodenal ulcer with ginkgo. Rats with duodenal ulcer were induced by 500 mL/L acetic acid. Rats with ginkgo were intravenously injected with Ginkgo biloba extract from the tail at a dose of 0.5 mg/(kg.d) for 7 and 14 days.RESULTS: Pathological result showed that duodenal ulcer rats with ginkgo improved mucosal healing and inflammation compared with those without ginkgo after 7 d treatment. After 14 d treatment, duodenal ulcer rats with ginkgo significantly increased weight gain (34.0±4.5 g versus 24.5±9.5 g,P<0.05) compared with those without ginkgo. Duodenal ulcer rats significantly increased cell proliferation (27.4l±4.0and 27.8±2.3 BrdU-labeled cells in duodenal ulcer rats with and without ginkgo versus 22.4±3.5 and 20.8±0.5 BrdUlabeled cells in sham operation rats with and without ginkgo,P<0.05) compared with sham operation rats. Mucosal prostaglandin E2 concentration significantly increased by 129% (P<0.05) in duodenal ulcer rats with ginkgo compared with that in those without ginkgo. Duodenal ulcer rats without ginkgo significantly decreased superoxide dismutase activity in the duodenal mucosa and erythrocytes (19.4±6.7 U/mg protein versus 38.1±18.9 U/mg protein in the duodenal mucosa,and 4.87±1.49 U/mg protein versus 7.78±2.16 U/mg protein in erythrocytes, P<0.05) compared with sham operation rats without ginkgo. However, duodenal ulcer rats with ginkgo significantly increased erythrocyte superoxide dismutase activity (8.22±1.92 U/mg protein versus 4.87±1.49 U/mg protein,P<0.05) compared with those without ginkgo. Duodenal ulcer rats without ginkgo significantly increased plasma lipid peroxides (4.18±1. 12 μmol/mL versus 1.60±1.10 μmol/mL and 1.80±0.73

  6. Disrupted chronobiology of sleep and cytoprotection in obesity: possible therapeutic value of melatonin.

    Science.gov (United States)

    Cardinali, Daniel P; Pagano, Eleonora S; Scacchi Bernasconi, Pablo A; Reynoso, Roxana; Scacchi, Pablo

    2011-01-01

    From a physiological perspective the sleep-wake cycle can be envisioned as a sequence of three physiological states (wakefulness, non-rapid eye movement, NREM, sleep and REM sleep) which are defined by a particular neuroendocrine-immune profile regulating the metabolic balance, body weight and inflammatory responses. Sleep deprivation and circadian disruption in contemporary "24/7 Society" lead to the predominance of pro-orexic and proinflammatory mechanisms that contribute to a pandemic metabolic syndrome (MS) including obesity, diabetes and atherosclerotic disease. Thus, a successful management of MS may require a drug that besides antagonizing the trigger factors of MS could also correct a disturbed sleep-wake rhythm. This review deals with the analysis of the therapeutic validity of melatonin in MS. Melatonin is an effective chronobiotic agent changing the phase and amplitude of the sleep/wake rhythm and having cytoprotective and immunomodulatory properties useful to prevent a number of MS sequels. Several studies support that melatonin can prevent hyperadiposity in animal models of obesity. Melatonin at a low dose (2-5 mg/day) has been used for improving sleep in patients with insomnia and circadian rhythm sleep disorders. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects (ramelteon, agomelatine, tasimelteon, TK 301). In clinical trials these analogs were employed in doses considerably higher than those usually employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin doses in the range of 50-100 mg/day are needed to assess its therapeutic value in MS.

  7. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    Directory of Open Access Journals (Sweden)

    Craciunescu Oana

    2012-09-01

    Full Text Available Abstract Background Arnica montana L. and Artemisia absinthium L. (Asteraceae are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders.

  8. The L-Type Voltage-Gated Calcium Channel Ca[subscript v]1.3 Mediates Consolidation, but Not Extinction, of Contextually Conditioned Fear in Mice

    Science.gov (United States)

    McKinney, Brandon C.; Murphy, Geoffrey G.

    2006-01-01

    Using pharmacological techniques, it has been demonstrated that both consolidation and extinction of Pavlovian fear conditioning are dependent to some extent upon L-type voltage-gated calcium channels (LVGCCs). Although these studies have successfully implicated LVGCCs in Pavlovian fear conditioning, they do not provide information about the…

  9. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    Science.gov (United States)

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (Pl-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation.

  10. Administration of a CXCL12 Analog in Endotoxemia Is Associated with Anti-Inflammatory, Anti-Oxidative and Cytoprotective Effects In Vivo.

    Directory of Open Access Journals (Sweden)

    Semjon Seemann

    Full Text Available The chemokine receptor CXCR4 is a multifunctional receptor which is activated by its natural ligand C-X-C motif chemokine 12 (CXCL12. As CXCR4 is part of the lipopolysaccharide sensing complex and CXCL12 analogs are not well characterized in inflammation, we aimed to uncover the systemic effects of a CXCL12 analog in severe systemic inflammation and to evaluate its impact on endotoxin induced organ damages by using a sublethal LPS dose.The plasma stable CXCL12 analog CTCE-0214D was synthesized and administered subcutaneously shortly before LPS treatment. After 24 hours, mice were sacrificed and blood was obtained for TNF alpha, IFN gamma and blood glucose evaluation. Oxidative stress in the liver and spleen was assessed and liver biotransformation capacity was determined. Finally, CXCR4, CXCL12 and TLR4 expression patterns in liver, spleen and thymus tissue as well as the presence of different markers for apoptosis and oxidative stress were determined by means of immunohistochemistry.CTCE-0214D distinctly reduced the LPS mediated effects on TNF alpha, IFN gamma, ALAT and blood glucose levels. It attenuated oxidative stress in the liver and spleen tissue and enhanced liver biotransformation capacity unambiguously. Furthermore, in all three organs investigated, CTCE-0214D diminished the LPS induced expression of CXCR4, CXCL12, TLR4, NF-κB, cleaved caspase-3 and gp91 phox, whereas heme oxygenase 1 expression and activity was induced above average. Additionally, TUNEL staining revealed anti-apoptotic effects of CTCE-0214D.In summary, CTCE-0214D displayed anti-inflammatory, anti-oxidative and cytoprotective features. It attenuated reactive oxygen species, induced heme oxygenase 1 activity and mitigated apoptosis. Thus, the CXCR4/CXCL12 axis seems to be a promising target in the treatment of acute systemic inflammation, especially when accompanied by a hepatic dysfunction and an excessive production of free radicals.

  11. Transient receptor potential cation channel A1 (TRPA1) mediates decrements in cardiac mechanical function and dysrhythmia caused by a single air pollution exposure in mice

    Science.gov (United States)

    This work, which will be presented at SOT 2014, demonstrates that a single exposure to either ozone or acrolein causes decrements in cardiac function and altered electrical activity (i.e. arrhythmia). The results suggest that this effect is mediated by the airway sensor TRPA1. ...

  12. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels.

    Science.gov (United States)

    Yamane, Satoshi; Kanno, Toshio; Nakamura, Hiroyuki; Fujino, Hiromichi; Murayama, Toshihiko

    2014-10-01

    Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.

  13. Lack of correlation between the amplitudes of TRP channel-mediated responses to weak and strong stimuli in intracellular Ca(2+) imaging experiments.

    Science.gov (United States)

    Alpizar, Yeranddy A; Sanchez, Alicia; Radwan, Ahmed; Radwan, Islam; Voets, Thomas; Talavera, Karel

    2013-11-01

    It is often observed in intracellular Ca(2+) imaging experiments that the amplitudes of the Ca(2+) signals elicited by newly characterized TRP agonists do not correlate with the amplitudes of the responses evoked subsequently by a specific potent agonist. We investigated this rather controversial phenomenon by first testing whether it is inherent to the comparison of the effects of weak and strong stimuli. Using five well-characterized TRP channel agonists in commonly used heterologous expression systems we found that the correlation between the amplitudes of the Ca(2+) signals triggered by two sequentially applied stimuli is only high when both stimuli are strong. Using mathematical simulations of intracellular Ca(2+) dynamics we illustrate that the innate heterogeneity in expression and functional properties of Ca(2+) extrusion (e.g. plasma membrane Ca(2+) ATPase) and influx (TRP channels) pathways across a cellular population is a sufficient condition for low correlation between the amplitude of Ca(2+) signals elicited by weak and strong stimuli. Taken together, our data demonstrate that this phenomenon is an expected outcome of intracellular Ca(2+) imaging experiments that cannot be taken as evidence for lack of specificity of low-efficacy stimuli, or as an indicator of the need of other cellular components for channel stimulation.

  14. The Marburg Virus VP24 Protein Interacts with Keap1 to Activate the Cytoprotective Antioxidant Response Pathway

    Directory of Open Access Journals (Sweden)

    Megan R. Edwards

    2014-03-01

    Full Text Available Kelch-like ECH-associated protein 1 (Keap1 is a ubiquitin E3 ligase specificity factor that targets transcription factor nuclear factor (erythroid-derived 2-like 2 (Nrf2 for ubiquitination and degradation. Disrupting Keap1-Nrf2 interaction stabilizes Nrf2, resulting in Nrf2 nuclear accumulation, binding to antioxidant response elements (AREs, and transcription of cytoprotective genes. Marburg virus (MARV is a zoonotic pathogen that likely uses bats as reservoir hosts. We demonstrate that MARV protein VP24 (mVP24 binds the Kelch domain of either human or bat Keap1. This binding is of high affinity and 1:1 stoichiometry and activates Nrf2. Modeling based on the Zaire ebolavirus (EBOV VP24 (eVP24 structure identified in mVP24 an acidic loop (K-loop critical for Keap1 interaction. Transfer of the K-loop to eVP24, which otherwise does not bind Keap1, confers Keap1 binding and Nrf2 activation, and infection by MARV, but not EBOV, activates ARE gene expression. Therefore, MARV targets Keap1 to activate Nrf2-induced cytoprotective responses during infection.

  15. The Marburg virus VP24 protein interacts with Keap1 to activate the cytoprotective antioxidant response pathway.

    Science.gov (United States)

    Edwards, Megan R; Johnson, Britney; Mire, Chad E; Xu, Wei; Shabman, Reed S; Speller, Lauren N; Leung, Daisy W; Geisbert, Thomas W; Amarasinghe, Gaya K; Basler, Christopher F

    2014-03-27

    Kelch-like ECH-associated protein 1 (Keap1) is a ubiquitin E3 ligase specificity factor that targets transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) for ubiquitination and degradation. Disrupting Keap1-Nrf2 interaction stabilizes Nrf2, resulting in Nrf2 nuclear accumulation, binding to antioxidant response elements (AREs), and transcription of cytoprotective genes. Marburg virus (MARV) is a zoonotic pathogen that likely uses bats as reservoir hosts. We demonstrate that MARV protein VP24 (mVP24) binds the Kelch domain of either human or bat Keap1. This binding is of high affinity and 1:1 stoichiometry and activates Nrf2. Modeling based on the Zaire ebolavirus (EBOV) VP24 (eVP24) structure identified in mVP24 an acidic loop (K-loop) critical for Keap1 interaction. Transfer of the K-loop to eVP24, which otherwise does not bind Keap1, confers Keap1 binding and Nrf2 activation, and infection by MARV, but not EBOV, activates ARE gene expression. Therefore, MARV targets Keap1 to activate Nrf2-induced cytoprotective responses during infection.

  16. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    Science.gov (United States)

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts.

  17. Traditional Herbal Medicine, Rikkunshito, Induces HSP60 and Enhances Cytoprotection of Small Intestinal Mucosal Cells as a Nontoxic Chaperone Inducer

    Directory of Open Access Journals (Sweden)

    Kumiko Tamaki

    2012-01-01

    Full Text Available Increasing incidence of small intestinal ulcers associated with nonsteroidal anti-inflammatory drugs (NSAIDs has become a topic with recent advances of endoscopic technology. However, the pathogenesis and therapy are not fully understood. The aim of this study is to examine the effect of Rikkunshito (TJ-43, a traditional herbal medicine, on expression of HSP60 and cytoprotective ability in small intestinal cell line (IEC-6. Effect of TJ-43 on HSP60 expression in IEC-6 cells was evaluated by immunoblot analysis. The effect of TJ-43 on cytoprotective abilities of IEC-6 cells against hydrogen peroxide or indomethacin was studied by MTT assay, LDH-release assay, caspase-8 activity, and TUNEL. HSP60 was significantly induced by TJ-43. Cell necrosis and apoptosis were significantly suppressed in IEC-6 cells pretreated by TJ-43 with overexpression of HSP60. Our results suggested that HSP60 induced by TJ-43 might play an important role in protecting small intestinal epithelial cells from apoptosis and necrosis in vitro.

  18. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee.

    Science.gov (United States)

    Bedoya-Ramírez, Daniel; Cilla, Antonio; Contreras-Calderón, José; Alegría-Torán, Amparo

    2017-03-15

    Antioxidant capacity (AC), total phenolics (TPs), furan compounds (HMF and furfural F) and cytoprotective/cytotoxic effects upon Caco-2 cells (MTT, cell cycle and reactive oxygen species (ROS)) were evaluated in Colombian coffee (2 ground and 4 soluble samples). The AC (ABTS and FRAP), TPs and HMF ranged between 124-722, 95-802μmoles Trolox/g, 21-100mg gallic acid/g and 69-2900mg/kg, respectively. Pretreatment of cells for 24h with lyophilized coffee infusions at the highest dose without cytotoxic effects (500μg/mL) significantly prevented the decrease in cell viability compared to control stress with H2O2 (5mM/2h), recovering viability to values between 34% and 45% and restoring the control values without stress induction in the G1 phase of cell cycle. After exposure to stress, four extracts decreased ROS values significantly to 22.5-24.9%. The coffee samples exerted a cytoprotective effect against oxidative stress, with improvement in cell viability and a reduction of intracellular ROS.

  19. Ion channels regulating mast cell biology.

    Science.gov (United States)

    Ashmole, I; Bradding, P

    2013-05-01

    Mast cells play a central role in the pathophysiology of asthma and related allergic conditions. Mast cell activation leads to the degranulation of preformed mediators such as histamine and the secretion of newly synthesised proinflammatory mediators such as leukotrienes and cytokines. Excess release of these mediators contributes to allergic disease states. An influx of extracellular Ca2+ is essential for mast cell mediator release. From the Ca2+ channels that mediate this influx, to the K+ , Cl- and transient receptor potential channels that set the cell membrane potential and regulate Ca2+ influx, ion channels play a critical role in mast cell biology. In this review we provide an overview of our current knowledge of ion channel expression and function in mast cells with an emphasis on how channels interact to regulate Ca2+ signalling.

  20. Fluid-mediated mass transfer from a paleosubduction channel to its mantle wedge: Evidence from jadeitite and related rocks from the Guatemala Suture Zone

    Science.gov (United States)

    Harlow, George E.; Flores, Kennet E.; Marschall, Horst R.

    2016-08-01

    Jadeitites in serpentinite mélanges are the product of crystallization from and/or metasomatism by aqueous fluids that transfer components from and within a subduction channel-the slab-mantle interaction volume-into discrete rock units, most commonly found within the serpentinized or serpentinizing portion of the channel or the overlying mantle rocks at high pressure (1 to > 2 GPa). Two serpentinite mélanges on either side of the Motagua fault system (MFS) of the Guatemala Suture Zone contain evidence of this process. Whole rock compositional analyses are reported here from 86 samples including jadeitites and the related rocks: omphacitites, albitites and mica rocks. The predominance of a single phase in most of these rocks is reflected in the major element compositions and aspects of the trace elements, such as REE abundances tracking Ca in clinopyroxene. Relative to N-MORB all samples show relative enrichments in the high field strength elements (HFSE) Hf, Zr, U, Th, and the LILE Ba and Cs, contrasted by depletions in K and in some cases Pb or Sr. Most jadeitites are also depleted in the highly compatible elements Cr, Sc and Ni despite their occurrence in serpentinite mélange; however, some omphacitite samples show the opposite. Trace elements in these jadeitite samples show a strong similarity with GLOSS (globally subducted oceanic sediment) and other terrigenous sediments in terms of their trace-element patterns, but are offset to lower abundances. Jadeitites thus incorporate a strong trace-element signature derived from sediments mixed with that from fluid derived from altered oceanic crust. Enrichment in the HFSE argues for mobility of these elements in aqueous fluids at high P/T conditions in the subduction channel and a remarkable lack of fractionation that might otherwise be expected from dissolution and fluid transport.

  1. Demystifying Mechanosensitive Piezo Ion Channels.

    Science.gov (United States)

    Xu, X Z Shawn

    2016-06-01

    Mechanosensitive channels mediate touch, hearing, proprioception, and blood pressure regulation. Piezo proteins, including Piezo1 and Piezo2, represent a new class of mechanosensitive channels that have been reported to play key roles in most, if not all, of these modalities. The structural architecture and molecular mechanisms by which Piezos act as mechanosensitive channels, however, remain mysterious. Two new studies have now provided critical insights into the atomic structure and molecular basis of the ion permeation and mechano-gating properties of the Piezo1 channel.

  2. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  3. The metabolic impact of β-hydroxybutyrate on neurotransmission: Reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity

    DEFF Research Database (Denmark)

    Lund, Trine Meldgaard; Ploug, K.B.; Iversen, Anne

    2015-01-01

    -hydroxybutyrate might change neuronal function as there is a known coupling between metabolism and neurotransmission. The purpose of this study was to shed light on the effects of the ketone body β-hydroxybutyrate on glycolysis and neurotransmission in cultured murine glutamatergic neurons. Previous studies have shown...... an effect of β-hydroxybutyrate on glucose metabolism, and the present study further specified this by showing attenuation of glycolysis when β-hydroxybutyrate was present in these neurons. In addition, the NMDA receptor-induced calcium responses in the neurons were diminished in the presence of β...... to a combination of glucose and R-β-hydroxybutyrate in cultured neurons. Using the latter combination, glycolysis was diminished, NMDA receptor-induced calcium responses were lower, and the KATP channel blocker glibenclamide caused a higher transmitter release....

  4. Drosophila nociceptors mediate larval aversion to dry surface environments utilizing both the painless TRP channel and the DEG/ENaC subunit, PPK1.

    Directory of Open Access Journals (Sweden)

    Wayne A Johnson

    Full Text Available A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class IV multiple-dendritic(mdIV nociceptors are also required for a normal larval aversion to locomotion on to a dry surface environment. Drosophila melanogaster larvae are acutely susceptible to desiccation displaying a strong aversion to locomotion on dry surfaces severely limiting the distance of movement away from a moist food source. Transgenic inactivation of mdIV nociceptor neurons resulted in larvae moving inappropriately into regions of low humidity at the top of the vial reflected as an increased overall pupation height and larval desiccation. This larval lethal desiccation phenotype was not observed in wild-type controls and was completely suppressed by growth in conditions of high humidity. Transgenic hyperactivation of mdIV nociceptors caused a reciprocal hypersensitivity to dry surfaces resulting in drastically decreased pupation height but did not induce the writhing nocifensive response previously associated with mdIV nociceptor activation by noxious heat or harsh mechanical stimuli. Larvae carrying mutations in either the Drosophila TRP channel, Painless, or the degenerin/epithelial sodium channel subunit Pickpocket1(PPK1, both expressed in mdIV nociceptors, showed the same inappropriate increased pupation height and lethal desiccation observed with mdIV nociceptor inactivation. Larval aversion to dry surfaces appears to utilize the same or overlapping sensory transduction pathways activated by noxious heat and harsh mechanical stimulation but with strikingly different sensitivities and disparate physiological responses.

  5. Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol.

    Science.gov (United States)

    Morselli, Eugenia; Galluzzi, Lorenzo; Kepp, Oliver; Criollo, Alfredo; Maiuri, Maria Chiara; Tavernarakis, Nektarios; Madeo, Frank; Kroemer, Guido

    2009-12-23

    Although autophagy has widely been conceived as a self-destructive mechanism that causes cell death, accumulating evidence suggests that autophagy usually mediates cytoprotection, thereby avoiding the apoptotic or necrotic demise of stressed cells. Recent evidence produced by our groups demonstrates that autophagy is also involved in pharmacological manipulations that increase longevity. Exogenous supply of the polyamine spermidine can prolong the lifespan of (while inducing autophagy in) yeast, nematodes and flies. Similarly, resveratrol can trigger autophagy in cells from different organisms, extend lifespan in nematodes, and ameliorate the fitness of human cells undergoing metabolic stress. These beneficial effects are lost when essential autophagy modulators are genetically or pharmacologically inactivated, indicating that autophagy is required for the cytoprotective and/or anti-aging effects of spermidine and resveratrol. Genetic and functional studies indicate that spermidine inhibits histone acetylases, while resveratrol activates the histone deacetylase Sirtuin 1 to confer cytoprotection/longevity. Although it remains elusive whether the same histones (or perhaps other nuclear or cytoplasmic proteins) act as the downstream targets of spermidine and resveratrol, these results point to an essential role of protein hypoacetylation in autophagy control and in the regulation of longevity.

  6. CRMP-2 peptide mediated decrease of high and low voltage-activated calcium channels, attenuation of nociceptor excitability, and anti-nociception in a model of AIDS therapy-induced painful peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Piekarz Andrew D

    2012-07-01

    Full Text Available Abstract Background The ubiquity of protein-protein interactions in biological signaling offers ample opportunities for therapeutic intervention. We previously identified a peptide, designated CBD3, that suppressed inflammatory and neuropathic behavioral hypersensitivity in rodents by inhibiting the ability of collapsin response mediator protein 2 (CRMP-2 to bind to N-type voltage-activated calcium channels (CaV2.2 [Brittain et al. Nature Medicine 17:822–829 (2011]. Results and discussion Here, we utilized SPOTScan analysis to identify an optimized variation of the CBD3 peptide (CBD3A6K that bound with greater affinity to Ca2+ channels. Molecular dynamics simulations demonstrated that the CBD3A6K peptide was more stable and less prone to the unfolding observed with the parent CBD3 peptide. This mutant peptide, conjugated to the cell penetrating motif of the HIV transduction domain protein TAT, exhibited greater anti-nociception in a rodent model of AIDS therapy-induced peripheral neuropathy when compared to the parent TAT-CBD3 peptide. Remarkably, intraperitoneal administration of TAT-CBD3A6K produced none of the minor side effects (i.e. tail kinking, body contortion observed with the parent peptide. Interestingly, excitability of dissociated small diameter sensory neurons isolated from rats was also reduced by TAT-CBD3A6K peptide suggesting that suppression of excitability may be due to inhibition of T- and R-type Ca2+ channels. TAT-CBD3A6K had no effect on depolarization-evoked calcitonin gene related peptide (CGRP release compared to vehicle control. Conclusions Collectively, these results establish TAT-CBD3A6K as a peptide therapeutic with greater efficacy in an AIDS therapy-induced model of peripheral neuropathy than its parent peptide, TAT-CBD3. Structural modifications of the CBD3 scaffold peptide may result in peptides with selectivity against a particular subset of voltage-gated calcium channels resulting in a multipharmacology of

  7. Protein kinase A and mitogen-activated protein kinase pathways mediate cAMP induction of alpha-epithelial Na+ channels (alpha-ENaC).

    Science.gov (United States)

    Mustafa, Shamimunisa B; Castro, Robert; Falck, Alison J; Petershack, Jean A; Henson, Barbara M; Mendoza, Yvonne M; Choudary, Ahsan; Seidner, Steven R

    2008-04-01

    A major mechanism for Na+ transport across epithelia occurs through epithelial Na+ channels (ENaC). ENaC is a multimeric channel consisting of three subunits (alpha, beta, and gamma). The alpha-subunit is critical for ENaC function. In specific culture conditions, the rat submandibular gland epithelial cell line (SMG-C6) demonstrates minimal Na+ transport properties and exposure to dibutyryl cAMP (DbcAMP) for up to 48 h caused an elevation of alpha-ENaC mRNA and protein expression and amiloride-sensitive short-circuit current (I(SC)). Here we examined the early signaling pathways evoked by DbcAMP which contribute to the eventual increase in Na+ transport is present. Treatment with either of the protein kinase A (PKA) inhibitors KT5720 or H-89 followed by exposure to 1 mM DbcAMP for 24 h markedly attenuated DbcAMP-induced alpha-ENaC protein formation and I(SC). Exposure of SMG-C6 cells to 1 mM DbcAMP induced a rapid, transient phosphorylation of the cAMP response element binding protein (CREB). This response was attenuated in the presence of either KT5720 or H-89. Dominant-negative CREB decreased DbcAMP-induced alpha-ENaC expression. Suppression of the extracellular signal-regulated protein kinase (ERK 1,2) with PD98059 or the p38 mitogen-activated protein kinase (MAPK) pathway with SB203580 reduced DbcAMP-induced alpha-ENaC protein levels in SMG-C6 cells. DbcAMP-induced phosphorylation of CREB was markedly attenuated by PD98059 or SB203580. DbcAMP-induced activation of the either the p38 or the ERK 1,2 MAPK pathways was abolished by either of the PKA inhibitors, H-89 or KT5720. Cross talk between these signaling pathways induced by DbcAMP via the activation of CREB appears to contribute to increased levels of alpha-ENaC observed after 24 h of treatment in SMG-C6 epithelial cells.

  8. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva).

    Science.gov (United States)

    Song, Yi; Yang, Yang; Zhang, Yuyu; Duan, Liusheng; Zhou, Chunli; Ni, Yuanying; Liao, Xiaojun; Li, Quanhong; Hu, Xiaosong

    2013-10-15

    Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system.

  9. Cav1.2, but not Cav1.3, L-type calcium channel subtype mediates nicotine-induced conditioned place preference in miceo.

    Science.gov (United States)

    Liu, Yudan; Harding, Meghan; Dore, Jules; Chen, Xihua

    2017-04-03

    Nicotine use is one of the most common forms of drug addiction. Although L-type calcium channels (LTCCs) are involved in nicotine addiction, the contribution of the two primary LTCC subtypes (Cav1.2 and 1.3) is unknown. This study aims to determine the contribution of these two LTCC subtypes to nicotine-induced conditioned place preference (CPP) responses by using transgenic mouse models that do not express Cav1.3 (Cav1.3(-/-)) or contain a mutation in the dihydropyridine (DHP) site of the Cav1.2 (Cav1.2DHP(-/-)). We found a hyperbolic dose dependent nicotine (0.1-1mg/kg; 0.5mg/kg optimum) effect on place preference in wild type (WT) mice, that could be prevented by the DHP LTCC blocker nifedipine pretreatment. Similarly, Cav1.3(-/-) mice showed nicotine-induced place preference which was antagonized by nifedipine. In contrast, nifedipine pretreatment of Cav1.2DHP(-/-) mice had no effect on nicotine-induced CPP responses, suggesting an involvement of Cav1.2 subtype in the nicotine-induced CPP response. Nifedipine alone failed to produce either conditioned place aversion or CPP in WT mice. These results collectively indicate Cav1.2, but not Cav1.3 LTCC subtype regulates, at least in part, the reinforcing effects of nicotine use.

  10. Chloride channels in stroke

    Institute of Scientific and Technical Information of China (English)

    Ya-ping ZHANG; Hao ZHANG; Dayue Darrel DUAN

    2013-01-01

    Vascular remodeling of cerebral arterioles,including proliferation,migration,and apoptosis of vascular smooth muscle cells (VSMCs),is the major cause of changes in the cross-sectional area and diameter of the arteries and sudden interruption of blood flow or hemorrhage in the brain,ie,stroke.Accumulating evidence strongly supports an important role for chloride (Clˉ) channels in vascular remodeling and stroke.At least three Clˉ channel genes are expressed in VSMCs:1) the TMEM16A (or Ano1),which may encode the calcium-activated Clˉ channels (CACCs); 2) the CLC-3 Clˉ channel and Clˉ/H+ antiporter,which is closely related to the volume-regulated Clˉ channels (VRCCs); and 3) the cystic fibrosis transmembrane conductance regulator (CFTR),which encodes the PKA-and PKC-activated Clˉ channels.Activation of the CACCs by agonist-induced increase in intracellular Ca2+ causes membrane depolarization,vasoconstriction,and inhibition of VSMC proliferation.Activation of VRCCs by cell volume increase or membrane stretch promotes the production of reactive oxygen species,induces proliferation and inhibits apoptosis of VSMCs.Activation of CFTR inhibits oxidative stress and may prevent the development of hypertension.In addition,Clˉ current mediated by gammaaminobutyric acid (GABA) receptor has also been implicated a role in ischemic neuron death.This review focuses on the functional roles of Clˉ channels in the development of stroke and provides a perspective on the future directions for research and the potential to develop Clˉ channels as new targets for the prevention and treatment of stroke.

  11. Ion channels in inflammation.

    Science.gov (United States)

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  12. Gaseous mediators in resolution of inflammation.

    Science.gov (United States)

    Wallace, John L; Ianaro, Angela; Flannigan, Kyle L; Cirino, Giuseppe

    2015-05-01

    There are numerous gaseous substances that can act as signaling molecules, but the best characterized of these are nitric oxide, hydrogen sulfide and carbon monoxide. Each has been shown to play important roles in many physiological and pathophysiological processes. This article is focused on the effects of these gasotransmitters in the context of inflammation. There is considerable overlap in the actions of nitric oxide, hydrogen sulfide and carbon monoxide with respect to inflammation, and these mediators appear to act primarily as anti-inflammatory substances, promoting resolution of inflammatory processes. They also have protective and pro-healing effects in some tissues, such as the gastrointestinal tract and lung. Over the past two decades, significant progress has been made in the development of novel anti-inflammatory and cytoprotective drugs that release of one or more of these gaseous mediators.

  13. Antinociception produced by Thalassia testudinum extract BM-21 is mediated by the inhibition of acid sensing ionic channels by the phenolic compound thalassiolin B

    Directory of Open Access Journals (Sweden)

    Thomas Olivier P

    2011-01-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have a significant role in the sensation of pain and constitute an important target for the search of new antinociceptive drugs. In this work we studied the antinociceptive properties of the BM-21 extract, obtained from the sea grass Thalassia testudinum, in chemical and thermal models of nociception in mice. The action of the BM-21 extract and the major phenolic component isolated from this extract, a sulphated flavone glycoside named thalassiolin B, was studied in the chemical nociception test and in the ASIC currents of the dorsal root ganglion (DRG neurons obtained from Wistar rats. Results Behavioral antinociceptive experiments were made on male OF-1 mice. Single oral administration of BM-21 produced a significant inhibition of chemical nociception caused by acetic acid and formalin (specifically during its second phase, and increased the reaction time in the hot plate test. Thalassiolin B reduced the licking behavior during both the phasic and tonic phases in the formalin test. It was also found that BM-21 and thalassiolin B selectively inhibited the fast desensitizing (τ Conclusions To our knowledge, this is the first report of an ASIC-current inhibitor derived of a marine-plant extract, and in a phenolic compound. The antinociceptive effects of BM-21 and thalassiolin B may be partially because of this action on the ASICs. That the active components of the extract are able to cross the blood-brain barrier gives them an additional advantage for future uses as tools to study pain mechanisms with a potential therapeutic application.

  14. Caffeine-mediated inhibition of calcium release channel inositol 1,4,5-trisphosphate receptor subtype 3 blocks glioblastoma invasion and extends survival.

    Science.gov (United States)

    Kang, Sang Soo; Han, Kyung-Seok; Ku, Bo Mi; Lee, Yeon Kyung; Hong, Jinpyo; Shin, Hye Young; Almonte, Antoine G; Woo, Dong Ho; Brat, Daniel J; Hwang, Eun Mi; Yoo, Seung Hyun; Chung, Chun Kee; Park, Sung-Hye; Paek, Sun Ha; Roh, Eun Joo; Lee, Sung Joong; Park, Jae-Yong; Traynelis, Stephen F; Lee, C Justin

    2010-02-01

    Calcium signaling is important in many signaling processes in cancer cell proliferation and motility including in deadly glioblastomas of the brain that aggressively invade neighboring tissue. We hypothesized that disturbing Ca(2+) signaling pathways might decrease the invasive behavior of giloblastoma, extending survival. Evaluating a panel of small-molecule modulators of Ca(2+) signaling, we identified caffeine as an inhibitor of glioblastoma cell motility. Caffeine, which is known to activate ryanodine receptors, paradoxically inhibits Ca(2+) increase by inositol 1,4,5-trisphospate receptor subtype 3 (IP(3)R3), the expression of which is increased in glioblastoma cells. Consequently, by inhibiting IP(3)R3-mediated Ca(2+) release, caffeine inhibited migration of glioblastoma cells in various in vitro assays. Consistent with these effects, caffeine greatly increased mean survival in a mouse xenograft model of glioblastoma. These findings suggest IP(3)R3 as a novel therapeutic target and identify caffeine as a possible adjunct therapy to slow invasive growth of glioblastoma.

  15. Novel phenolic inhibitors of small/intermediate-conductance Ca²⁺-activated K⁺ channels, KCa3.1 and KCa2.3.

    Directory of Open Access Journals (Sweden)

    Aida Oliván-Viguera

    Full Text Available BACKGROUND: KCa3.1 channels are calcium/calmodulin-regulated voltage-independent K(+ channels that produce membrane hyperpolarization and shape Ca(2+-signaling and thereby physiological functions in epithelia, blood vessels, and white and red blood cells. Up-regulation of KCa3.1 is evident in fibrotic and inflamed tissues and some tumors rendering the channel a potential drug target. In the present study, we searched for novel potent small molecule inhibitors of KCa3.1 by testing a series of 20 selected natural and synthetic (polyphenols, synthetic benzoic acids, and non-steroidal anti-inflammatory drugs (NSAIDs, with known cytoprotective, anti-inflammatory, and/or cytostatic activities. METHODOLOGY/PRINCIPAL FINDINGS: In electrophysiological experiments, we identified the natural phenols, caffeic acid (EC50 1.3 µM and resveratrol (EC50 10 µM as KCa3.1 inhibitors with moderate potency. The phenols, vanillic acid, gallic acid, and hydroxytyrosol had weak or no blocking effects. Out of the NSAIDs, flufenamic acid was moderately potent (EC50 1.6 µM, followed by mesalamine (EC50≥10 µM. The synthetic fluoro-trivanillic ester, 13b ([3,5-bis[(3-fluoro-4-hydroxy-benzoyloxymethyl]phenyl]methyl 3-fluoro-4-hydroxy-benzoate, was identified as a potent mixed KCa2/3 channel inhibitor with an EC50 of 19 nM for KCa3.1 and 360 pM for KCa2.3, which affected KCa1.1 and Kv channels only at micromolar concentrations. The KCa3.1/KCa2-activator SKA-31 antagonized the 13b-blockade. In proliferation assays, 13b was not cytotoxic and reduced proliferation of 3T3 fibroblasts as well as caffeic acid. In isometric vessel myography, 13b increased contractions of porcine coronary arteries to serotonin and antagonized endothelium-derived hyperpolarization-mediated vasorelaxation to pharmacological KCa3.1/KCa2.3 activation. CONCLUSIONS/SIGNIFICANCE: We identified the natural phenols, caffeic acid and resveratrol, the NSAID, flufenamic acid, and the polyphenol 13b as novel

  16. Mechanosensitive Channels

    Science.gov (United States)

    Martinac, Boris

    Living cells are exposed to a variety of mechanical stimuli acting throughout the biosphere. The range of the stimuli extends from thermal molecular agitation to potentially destructive cell swelling caused by osmotic pressure gradients. Cellular membranes present a major target for these stimuli. To detect mechanical forces acting upon them cell membranes are equipped with mechanosensitive (MS) ion channels. Functioning as molecular mechanoelectrical transducers of mechanical forces into electrical and/or chemical intracellular signals these channels play a critical role in the physiology of mechanotransduction. Studies of prokaryotic MS channels and recent work on MS channels of eukaryotes have significantly increased our understanding of their gating mechanism, physiological functions, and evolutionary origins as well as their role in the pathology of disease.

  17. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals.

    Science.gov (United States)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-Ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase-Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6.

  18. Global gene expression profiling of endothelium exposed to heme reveals an organ-specific induction of cytoprotective enzymes in sickle cell disease.

    Directory of Open Access Journals (Sweden)

    Samit Ghosh

    Full Text Available BACKGROUND: Sickle cell disease (SCD is characterized by hemolysis, vaso-occlusion and ischemia reperfusion injury. These events cause endothelial dysfunction and vasculopathies in multiple systems. However, the lack of atherosclerotic lesions has led to the idea that there are adaptive mechanisms that protect the endothelium from major vascular insults in SCD patients. The molecular bases for this phenomenon are poorly defined. This study was designed to identify the global profile of genes induced by heme in the endothelium, and assess expression of the heme-inducible cytoprotective enzymes in major organs impacted by SCD. METHODS AND FINDINGS: Total RNA isolated from heme-treated endothelial monolayers was screened with the Affymetrix U133 Plus 2.0 chip, and the microarray data analyzed using multiple bioinformatics software. Hierarchical cluster analysis of significantly differentially expressed genes successfully segregated heme and vehicle-treated endothelium. Validation studies showed that the induction of cytoprotective enzymes by heme was influenced by the origin of endothelial cells, the duration of treatment, as well as the magnitude of induction of individual enzymes. In agreement with these heterogeneities, we found that induction of two major Nrf2-regulated cytoprotective enzymes, heme oxygenase-1 and NAD(PH:quinone oxidoreductase-1 is organ-specific in two transgenic mouse models of SCD. This data was confirmed in the endothelium of post-mortem lung tissues of SCD patients. CONCLUSIONS: Individual organ systems induce unique profiles of cytoprotective enzymes to neutralize heme in SCD. Understanding this heterogeneity may help to develop effective therapies to manage vasculopathies of individual systems.

  19. [Various mechanisms of cytoprotective effect of omeprazole and low intensity laser radiation on the gastroduodenal mucosa in the treatment of patients with duodenal ulcer].

    Science.gov (United States)

    Akhmadkhodzhaev, A M

    2002-01-01

    Clinical studies were made in 130 patients with duodenal ulcer in the phase of exacerbation of the disease. There were 98 men and 32 women who ranged from 17 to 50 years old. Results of examination of 7 essentially healthy subjects were regarded as control. The patients were divided into three groups. Group I patients (n = 48) received a conventional therapy; in group II patients, the adopted therapy was supplemented by omeprazol, 20 mg twice daily, group III patients (n = 43) were (in addition to the above therapeutic regimen) exposed to a session of endoscopic low-intensity laser irradiation (LILI) for 5 min (overall 6 to 8 LILI procedures). It has been ascertained that omeprazol exerts a cytoprotective effect on the mucozal barrier of the gastroduodenal zone brought about by increase in the synthesis of glucoproteins in the mucous membrane, improvement of the water-and-elastic properties, and enhancement of resistance of the mucosal barrier to the action of the aggressive factors. Administration of endoscopic LILI treatments in DU patients has also been found out to have a cytoprotective effect but superior to omeprazol. A protective action of LILI is believed to be caused by stimulation of synthesis of the most important components of glycoproteins. A cytoprotective effect of omeprazol and endoscopic LILI is ccompanied by a significant shortening of time for the clinical symptoms to get dispelled, the ulcer cicatrization frequency increased.

  20. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  1. Increased store-operated and 1-oleoyl-2-acetyl-sn-glycerol-induced calcium influx in monocytes is mediated by transient receptor potential canonical channels in human essential hypertension

    DEFF Research Database (Denmark)

    Liu, Dao Yan; Thilo, Florian; Scholze, Alexandra;

    2007-01-01

    Activation of nonselective cation channels of the transient receptor potential canonical (TRPC) family has been associated with hypertension. Whether store-operated channels, which are activated after depletion of intracellular stores, or second-messenger-operated channels, which are activated by 1......-oleoyl-2-acetyl-sn-glycerol, are affected in essential hypertension is presently unknown....

  2. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation

    Directory of Open Access Journals (Sweden)

    Yuan B

    2016-04-01

    Full Text Available Bo Yuan, Thomas J Webster, Amit K Roy Chemical Engineering Department, College of Engineering, Northeastern University, Boston, MA, USA Abstract: It is a widely accepted fact that environmental factors affect cells by modulating the components of subcellular compartments and altering metabolic enzymes. Factors (such as oxidative stress and heat-shock-induced proteins and heat shock factors, which upregulate stress-response related genes to protect affected cells are commonly altered during changes in environmental conditions. Studies by our group and others have shown that nanoparticles (NPs are able to efficiently attenuate oxidative stress by penetrating into specific tissues or organs. Such findings warrant further investigation on the effects of NPs on heat-shock-induced stress, specifically in cells in the presence or absence (pretreated of NPs. Here, we examined the cytoprotective effects of two different NPs (cerium and selenium on heat-induced cell death for a model cell using dermal fibroblasts. We report for the first time that both ceria and selenium NPs (at 500 µg/mL possess stress-relieving behavior on fibroblasts undergoing heat shock. Such results indicate the need to further develop these NPs as a novel treatment for heat shock. Keywords: ceria, heat shock, nanotechnology, cell death, nanomedicine, protective

  3. Synthesis and evaluation of novologues as C-terminal Hsp90 inhibitors with cytoprotective activity against sensory neuron glucotoxicity.

    Science.gov (United States)

    Kusuma, Bhaskar Reddy; Zhang, Liang; Sundstrom, Teather; Peterson, Laura B; Dobrowsky, Rick T; Blagg, Brian S J

    2012-06-28

    Compound 2 (KU-32) is a first-generation novologue (a novobiocin-based, C-terminal, heat shock protein 90 (Hsp90) inhibitor) that decreases glucose-induced death of primary sensory neurons and reverses numerous clinical indices of diabetic peripheral neuropathy in mice. The current study sought to exploit the C-terminal binding site of Hsp90 to determine whether the optimization of hydrogen bonding and hydrophobic interactions of second-generation novologues could enhance neuroprotective activity. Using a series of substituted phenylboronic acids to replace the coumarin lactone of 2, we identified that electronegative atoms placed at the meta-position of the B-ring exhibit improved cytoprotective activity, which is believed to result from favorable interactions with Lys539 in the Hsp90 C-terminal binding pocket. Consistent with these results, a meta-3-fluorophenyl substituted novologue (13b) exhibited a 14-fold lower ED(50) for protection against glucose-induced toxicity of primary sensory neurons compared to 2.

  4. Investigation into the cyto-protective and wound healing properties of cryptic peptides from bovine Achilles tendon collagen.

    Science.gov (United States)

    Banerjee, Pradipta; Mehta, Alka; Shanthi, C

    2014-03-25

    Many proteins have concealed regions in their amino acid sequences that when liberated or exposed by conformational changes can exhibit bioactivity. Two such cryptic bioactive peptides, C2 (with cell adhesive properties) and E1 (with cell adhesive and antioxidant properties) have been isolated from bovine tendon collagen. This investigation deals with the efficacy of these peptides in countering externally generated stress and imparting cyto-protection in mammalian cell systems. The cell survival activity was studied with two cell lines, viz., HeLa and Vero, with varying concentrations of five oxidative stress-generating agents. The activities of the peptides in supporting cell adhesion and countering stress were determined in their coated and dissolved forms. C2 and E1 coated dishes registered 8 times (poxidative stress than collagen coated dishes. E1 increased stress tolerance levels by >100 times in dissolved form and C2, by 8 times in coated form. The peptides supported faster wound closure than collagen under normal as well as stressed condition. Maximum stress tolerance was observed on C2 coated dishes in the presence of E1 in the medium suggesting that both enhanced cell adhesion and antioxidative activities significantly contribute to the cell survival during stress. The present study emphasizes that collagen peptides, apart from providing a suitable surface for cell adhesion, also confer protection to cells against oxidative stress.

  5. Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2016-08-01

    Full Text Available The pathological changes of Parkinson’s disease (PD are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1 and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2 for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways.

  6. Effects of dosmalfate, a new cytoprotective agent, on acute and chronic trinitrobenzene sulphonic acid-induced colitis in rats.

    Science.gov (United States)

    Villegas, Isabel; La Casa, Carmen; Orjales, Aurelio; Alarcón de la Lastra, Catalina

    2003-01-24

    Activated neutrophils and proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha) are clearly involved in the pathogenesis of bowel disease. Increased expression of epidermal growth factor-receptor (EGF receptor) has been reported for the colon mucosa surrounding areas of ulceration, suggesting a pivotal role in mucosal defence and repair. In this study, we examined the effects of dosmalfate, a new flavonoid derivative compound (diosmin heptakis) with antioxidant and cytoprotective properties, on acute and chronic experimental trinitrobenzene sulphonic acid (TNBS)-induced colitis in rats. The inflammation response was assessed by neutrophil infiltration as evaluated by histology and myeloperoxidase activity. Mucosal TNF-alpha production and histological analysis of the lesions was also carried out. In addition, we studied the expression of the EGF receptor inmunohistochemically during the healing of TNBS-induced chronic colitis. A 2-day treatment with 400 or 800 mg/kg of dosmalfate ameliorated the colon damage score and the incidence of adhesions. It also significantly (P<0.05) decreased myeloperoxidase activity and colonic mucosal production of TNF-alpha. Chronic treatment (14 days) with 800 mg/kg/day of dosmalfate also had significant protective effects on TNBS-induced colitis which were reflected by significant attenuation (P<0.05) of the damage score while the inflammatory indicators were not improved. The chronic beneficial effect of dosmalfate was apparently related to the enhancement of EGF receptor expression. These findings confirm the protective effects of dosmalfate in acute and chronic experimental colitis.

  7. TRP Channels in Skin Biology and Pathophysiology

    OpenAIRE

    2016-01-01

    Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body ...

  8. Cytoprotective effect of American ginseng in a rat ethanol gastric ulcer model.

    Science.gov (United States)

    Huang, Chi-Chang; Chen, Yi-Ming; Wang, Dean-Chuan; Chiu, Chien-Chao; Lin, Wan-Teng; Huang, Chih-Yang; Hsu, Mei-Chich

    2013-12-27

    Panax quinquefolium L. (American Ginseng, AG) is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day) supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n=8 per group): supplementation with water (vehicle) and low-dose (AG-1X), medium-dose (AG-2X) and high-dose (AG-5X) AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg). Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  9. Cytoprotective Effect of American Ginseng in a Rat Ethanol Gastric Ulcer Model

    Directory of Open Access Journals (Sweden)

    Chi-Chang Huang

    2013-12-01

    Full Text Available Panax quinquefolium L. (American Ginseng, AG is one of the most popular herbal medicines in the World. We aimed to investigate whether chronic (28-day supplementation with AG could protect against ethanol-induced ulcer in gastric tissue. Furthermore, we investigated the possible molecular mechanisms leading to AG-mediated gastric mucosal protection. We randomized 32 male Wistar rats into four groups for treatment (n = 8 per group: supplementation with water (vehicle and low-dose (AG-1X, medium-dose (AG-2X and high-dose (AG-5X AG at 0, 250, 500, and 1250 mg/kg, respectively. In the first experiment, animals were fed vehicle or AG treatments for 4 weeks. At day 29, 75% ethanol was given orally to each animal at 10 mL/kg to induce gastric ulceration for 2 h. In a second experiment, animals were pretreated orally with each treatment for 1 hr before a single oral administration of ethanol (70%, 10 mL/kg. Trend analysis revealed that AG treatments inhibited ethanol-induced gastric mucosal damage. AG supplementation dose-dependently decreased the pro-inflammatory levels of interleukin 1β and cyclooxygenase 2 and the expression of pro-apoptotic proteins tBid, cytochrome C, and caspases-9 and -3 and increased the levels of anti-apoptotic proteins Bcl-2, Bcl-xL and p-Bad. AG could have pharmacological potential for treating gastric ulcer.

  10. Pre-exposure to low-power diode laser irradiation promotes cytoprotection in the rat retina.

    Science.gov (United States)

    Sun, Yue; Zhang, Shisheng; Liao, Huaping; Wang, Jing; Wang, Ling

    2015-01-01

    The aim of this study was to investigate whether pre-exposure to low-power laser irradiation can provoke an effect on cellular protection in the rat retina. The right eyes of 40 rats were exposed to a 3-mm diode laser beam for 1 min in different light intensities and different experimental sets: group A low power of 60 mW (34.27 J/cm(2) on the retina in consideration of the energy losses along the optical pathway) prior to high power of 80 mW (44.88 J/cm(2) on the retina in consideration of the energy losses along the optical pathway), group B high power, group C low power, group D (the left eyes from the counterpart of group A) and group E (untreated rat eyes) as controls. Morphological retinal change retinas were assessed using light microscopy and/or transmission electron microscopy. Heat shock protein (Hsp) 70 and cleaved caspase 3 protein expression were analyzed by immunohistochemical staining and Western blot. Cellular injury was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. Hsp 70 expression in the inner plexiform layer and the outer plexiform layer in group A were 73.09 ± 6.49 and 78.03 ± 3.05%, respectively, which was significantly higher (P retina) power laser irradiation stimulates a hyperexpression of Hsp70 together with a hypoexpression of cleaved caspase 3 in rat retina, which may suggest a cellular protective effect.

  11. Cytoprotective effects of hydrogen sulfide in novel rat models of non-erosive esophagitis.

    Directory of Open Access Journals (Sweden)

    Oksana Zayachkivska

    Full Text Available Non-erosive esophagitis is a chronic inflammatory condition of the esophagus and is a form of gastroesophageal reflux disease. There are limited treatment options for non-erosive esophagitis, and it often progresses to Barrett's esophagus and esophageal carcinoma. Hydrogen sulfide has been demonstrated to be a critical mediator of gastric and intestinal mucosal protection and repair. However, roles for H2S in esophageal mucosal defence, inflammation and responses to injury have not been reported. We therefore examined the effects of endogenous and exogenous H2S in rat models of non-erosive esophagitis. Mild- and moderate-severity non-erosive esophagitis was induced in rats through supplementation of drinking water with fructose, plus or minus exposure to water-immersion stress. The effects of inhibitors of H2S synthesis or of an H2S donor on severity of esophagitis was then examined, along with changes in serum levels of a pro- and an anti-inflammatory cytokine (IL-17 and IL-10, respectively. Exposure to water-immersion stress after consumption of the fructose-supplemented water for 28 days resulted in submucosal esophageal edema and neutrophil infiltration and the development of lesions in the muscular lamina and basal cell hyperplasia. Inhibition of H2S synthesis resulted in significant exacerbation of inflammation and injury. Serum levels of IL-17 were significantly elevated, while serum IL-10 levels were reduced. Treatment with an H2S donor significantly reduced the severity of esophageal injury and inflammation and normalized the serum cytokine levels. The rat models used in this study provide novel tools for studying non-erosive esophagitis with a range of severity. H2S contributes significantly to mucosal defence in the esophagus, and H2S donors may have therapeutic value in treating esophageal inflammation and injury.

  12. Brands & Channels

    Institute of Scientific and Technical Information of China (English)

    Alice Yang

    2009-01-01

    @@ "Brands" and "Channels" are the two most important things in Ku-Hai Chen's eyes when doing business with Main-land China. Ku-Hai Chen, Executive Director of the International Trade Institute of Taiwan External Trade Development Council (TAITRA), flies frequently between Chinese Taipei and Mainland China, and was in Beijing earlier this month for his seminar.

  13. Positron Channeling

    CERN Document Server

    Badikyan, Karen

    2016-01-01

    The possibility of channeling the low-energy relativistic positrons around separate crystallographic axes with coaxial symmetry of negative ions in some types of crystals is shown. The process of annihilation of positrons with electrons of medium was studied in detail.

  14. Dark matter annihilation with s-channel internal Higgsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jason; Liao, Jiajun, E-mail: liaoj@hawaii.edu; Marfatia, Danny

    2016-08-10

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  15. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key compon

  16. Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention.

    Science.gov (United States)

    Paonessa, Joseph D; Ding, Yi; Randall, Kristen L; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng

    2011-06-01

    NF-E2-related factor 2 (Nrf2) is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. Although Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2(+/+) mice than in Nrf2(-/-) mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. Although glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, although higher liver UGT activity may protect the liver against ABP, it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further show that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues but does not seem to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2.

  17. Polaprezinc protects human colon cells from oxidative injury induced by hydrogen peroxide: Relevant to cytoprotective heat shock proteins

    Institute of Scientific and Technical Information of China (English)

    Tatsuya Ohkawara; Jun Nishihira; Rika Nagashima; Hiroshi Takeda; Masahiro Asaka

    2006-01-01

    AIM: To investigate the effect of polaprezinc on cellular damage induced by hydrogen peroxide (H2O2) in human colon CaCo2 cells.METHODS: CaCo2 cells were treated with polaprezinc (10-100 μmol/L) for 6 h. After polaprezinc treatment,the cells were incubated with H2O2 (20 μmol/L) for 1 h.Cell viability was measured by MTT assay. Western blot analysis for heat shock protein (HSP) 27 and HSP72 in the cells was performed. Moreover, cells were pretreated with quercetin (200 μmol/L), an inhibitor of HSP synthesis, 2 h before polaprezinc treatment, and cell viability and the expression of HSP27 and 72 were assessed in these cells.RESULTS: Polaprezinc significantly protected CaCo2 cells from cell damage induced by H2O2, and up-regulated the expressions of HSP27 and HSP72 in the cells (10, 30and 100 μmol/L of polaprezinc; 35.0% ± 7.7%, 58.3% ±14.6% and 64.2% ± 8.2%, respectively. P < 0.01 versus polaprezinc-nontreated cells; 6.0% ± 4.4%). Quercetin inhibited the up-regulation of HSP27 and HSP72 by polaprezinc and diminished the protective effect of polaprezinc against H2O2-caused injury in the cells.CONCLUSION: Polaprezinc is a useful therapeutic agent for treatment of colitis and its effects depend on the function of cytoprotective HSP in colon.

  18. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  19. Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

    Directory of Open Access Journals (Sweden)

    Bhavya B Chandrika

    Full Text Available We examined whether endoplasmic reticulum (ER stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

  20. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil); Borsato, Débora Maria [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Almeida, Martinha Antunes [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Barboza, Fernanda Malaquias [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zawadzki, Sônia Faria [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Kanunfre, Carla Cristine [Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa (Brazil); Farago, Paulo Vitor, E-mail: pvfarago@gmail.com [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zanin, Sandra Maria Warumby [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil)

    2016-07-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  1. Heat Stress Induces Extended Plateau of Hsp70 Accumulation--A Possible Cytoprotection Mechanism in Hepatic Cells.

    Science.gov (United States)

    Miova, Biljana; Dinevska-Kjovkarovska, Suzana; Esplugues, Juan V; Apostolova, Nadezda

    2015-10-01

    The relevance of heat preconditioning resides in its ability to protect cells from different kinds of injury by induction of heat shock proteins, a process in which the intensity of heat stress (HS) and duration of subsequent recovery are vital. This study evaluates the effects of moderate HS (45 min/43°C) and the time-dependent changes during recovery period of HSP70, Bcl-2 and p53 gene and protein expression in HepG2 cells. We also evaluated the effects of 0.4 mM aspirin (ASA) as a potential pharmacological co-inducer of HSP, both alone and in a combination with HS (ASA + HS). HS alone and ASA + HS caused a major up-regulation of HSP70 mRNA in the first 2 h, while HSP70 protein increased gradually and was especially abundant from 2 h to 24 h. Regarding Bcl-2, all treatments rendered similar results: gene expression was down-regulated in the first 2 h, after which there was protein elevation (12-48 h after HS). mRNA expression of p53 in HS- and (ASA + HS)-cells was down-regulated in the first 12 h. The immediate decrease of p53 protein after HS was followed by a biphasic increase. In conclusion, 0.4 mM ASA + HS does not act as a co-inducer of HSP70 in HepG2 cells, but promotes Bcl-2 protein expression during prolonged treatment. Our suggestion is that hepatic cells are most vulnerable in the first 2-6 h, but may have a high capacity for combating stress 12-24 h after HS. Finally, short-term exposure HS might be a "physiological conditioner" for liver cells to accumulate HSP and Bcl-2 proteins and thus obtain cytoprotection against an additional stress.

  2. EFFECT OF CYTOPROTECTION ON THE OXIDATIVE PROCESSES AND ENDOTHELIAL FUNCTION IN ELDERLY PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    A. V. Shabalin

    2006-01-01

    Full Text Available Aim. To investigate the effects of cytoprotection with mildronate (Grindex, Latvia on oxidative processes and endothelial function in elderly patients with ischemic heart disease (IHD. Material and methods. 117 elderly (upwards 60 y.o. patients with IHD were included into controlled study. They were also suffering from heart failure II-III functional class (according to NYHA classification and from arterial hypertension (AH. All patients were randomized into 2 groups: 1 67 patients (75,4±0,5 y. o. were treated with mildronate 500 mg/day simultaneously with basic therapy during 12 weeks (the main group and 2 50 patients (74,0±0,6 y. o. were treated only with basic therapy during 12 weeks (the compare group. Total cholesterol (CH, triglycerides (TG, low density lipoprotein cholesterol (LDL, high density lipoprotein CH (HDL, LDL antioxidant potential (concentration of α-tocopherol and retinol in LDL, initial level of lipid peroxidation (LPO products in LDL, LDL resistance to oxidation and blood level of NO metabolites were determined before and after 4 and 12 weeks of the therapy. Results. Mildronate did not have any effect on the blood lipid profile in elderly patients with IHD. The initial level of LPO products in LDL was decreased by 33% and LDL resistance to oxidation was increased by 26% in the main group after 12 weeks of therapy in comparison with the same parameters before the study and in comparison with control group of patients (p<0,05. The blood level of NO metabolites was 1,4 fold higher in the main group of patients after 12 weeks of therapy in comparison with the same parameters before therapy and in comparison with control group of patients (p<0,05. More prominent growth of LDL resistance to oxidation after 12 week therapy with mildronate was revealed in men than in women, in patients with angina II class than in patients with angina III class, in patients with heart failure II class than in patients with heart failure III class

  3. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  4. TRP Channels in Skin Biology and Pathophysiology

    Science.gov (United States)

    Caterina, Michael J.; Pang, Zixuan

    2016-01-01

    Ion channels of the Transient Receptor Potential (TRP) family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body of evidence implicating abnormal TRP channel function, as a product of excessive or deficient channel activity, in pathological skin conditions such as chronic pain and itch, dermatitis, vitiligo, alopecia, wound healing, skin carcinogenesis, and skin barrier compromise. These diverse functions, coupled with the fact that many TRP channels possess pharmacologically accessible sites, make this family of proteins appealing therapeutic targets for skin disorders. PMID:27983625

  5. TRP Channels in Skin Biology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Michael J. Caterina

    2016-12-01

    Full Text Available Ion channels of the Transient Receptor Potential (TRP family mediate the influx of monovalent and/or divalent cations into cells in response to a host of chemical or physical stimuli. In the skin, TRP channels are expressed in many cell types, including keratinocytes, sensory neurons, melanocytes, and immune/inflammatory cells. Within these diverse cell types, TRP channels participate in physiological processes ranging from sensation to skin homeostasis. In addition, there is a growing body of evidence implicating abnormal TRP channel function, as a product of excessive or deficient channel activity, in pathological skin conditions such as chronic pain and itch, dermatitis, vitiligo, alopecia, wound healing, skin carcinogenesis, and skin barrier compromise. These diverse functions, coupled with the fact that many TRP channels possess pharmacologically accessible sites, make this family of proteins appealing therapeutic targets for skin disorders.

  6. Pore size matters for potassium channel conductance

    Science.gov (United States)

    Moldenhauer, Hans; Pincuntureo, Matías

    2016-01-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K+ channels discriminate K+ over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K+ channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K+ channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K+ channels, accounting for their diversity in unitary conductance. PMID:27619418

  7. Hsp27 binding to the 3'UTR of bim mRNA prevents neuronal death during oxidative stress-induced injury: a novel cytoprotective mechanism.

    Science.gov (United States)

    Dávila, David; Jiménez-Mateos, Eva M; Mooney, Claire M; Velasco, Guillermo; Henshall, David C; Prehn, Jochen H M

    2014-11-01

    Neurons face a changeable microenvironment and therefore need mechanisms that allow rapid switch on/off of their cytoprotective and apoptosis-inducing signaling pathways. Cellular mechanisms that control apoptosis activation include the regulation of pro/antiapoptotic mRNAs through their 3'-untranslated region (UTR). This region holds binding elements for RNA-binding proteins, which can control mRNA translation. Here we demonstrate that heat shock protein 27 (Hsp27) prevents oxidative stress-induced cell death in cerebellar granule neurons by specific regulation of the mRNA for the proapoptotic BH3-only protein, Bim. Hsp27 depletion induced by oxidative stress using hydrogen peroxide (H2O2) correlated with bim gene activation and subsequent neuronal death, whereas enhanced Hsp27 expression prevented these. This effect could not be explained by proteasomal degradation of Bim or bim promoter inhibition; however, it was associated with a specific increase in the levels of bim mRNA and with its binding to Hsp27. Finally, we determined that enhanced Hsp27 expression in neurons exposed to H2O2 or glutamate prevented the translation of a reporter plasmid where bim-3'UTR mRNA sequence was cloned downstream of a luciferase gene. These results suggest that repression of bim mRNA translation through binding to the 3'UTR constitutes a novel cytoprotective mechanism of Hsp27 during stress in neurons.

  8. Cellular Metabolomics Revealed the Cytoprotection of Amentoflavone, a Natural Compound, in Lipopolysaccharide-Induced Injury of Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Weifeng Yao

    2016-09-01

    Full Text Available Amentoflavone is one of the important bioactive flavonoids in the ethylacetate extract of “Cebaiye”, which is a blood cooling and hematostatic herb in traditional Chinese medicine. The previous work in our group has demonstrated that the ethylacetate extract of Cebaiye has a notable antagonistic effect on the injury induced by lipopolysaccharide (LPS to human umbilical vein endothelial cells (HUVECs. The present investigation was designed to assess the effects and possible mechanism of cytoprotection of amentoflavone via metabolomics. Ultra-performance liquid chromatography/quadrupole time of flight-mass spectrometry (UPLC/QTOF-MS coupled with multivariate data analysis was used to characterize the variations in the metabolites of HUVECs in response to exposure to LPS and amentoflavone treatment. Seven putative metabolites (glycine, argininosuccinic acid, putrescine, ornithine, spermidine, 5-oxoproline and dihydrouracil were discovered in cells incubated with LPS and/or amentoflavone. Functional pathway analysis uncovered that the changes of these metabolites related to various significant metabolic pathways (glutathione metabolism, arginine and proline metabolism, β-alanine metabolism and glycine, serine and threonine metabolism, which may explain the potential cytoprotection function of amentoflavone. These findings also demonstrate that cellular metabolomics through UPLC/QTOF-MS is a powerful tool for detecting variations in a range of intracellular compounds upon toxin and/or drug exposure.

  9. Cytoprotection by omega-3 fatty acids as a therapeutic drug vehicle when combined with nephrotoxic drugs in an intravenous emulsion: Effects on intraglomerular mesangial cells

    Directory of Open Access Journals (Sweden)

    Gabriel Alejandro Bonaterra

    2014-01-01

    Full Text Available During therapeutic interventions, blood concentrations of intravenously applied drugs are higher, and their onset of pharmacological action is faster than with other routes of drug administration. However, acute drug therapy often produces nephrotoxic side effects, as commonly seen after treatment with Ketorolac or Gentamicin leading to questions about their use, especially for patients at risk for acute renal failure. Omega-6(n-6 and omega-3(n-3 polyunsaturated fatty acids (PUFA affect eicosanoid metabolism, which plays a role in the regulation of inflammation. Eicosanoids derived from n-6 FA have proinflammatory and immunoactive functions, whereas eicosanoids derived from n-3 PUFA have anti-inflammatory and cytoprotective properties. We hypothesized that providing such injectable drugs with nephrotoxic potential in combination with n3-PUFAs from the outset, might afford rapid cytoprotection of renal cells, given the recent evidence that intravenously administered n3-PUFAs are rapidly incorporated into cell membranes. We used intraglomerular mesangial cells (MES13 that are sensitive to treatment with Ketorolac or Gentamicin instead of proximal tubular cells which do not respond to Ketorolac. We found a significant inhibition of Ketorolac (0.25, 0.5, 1 mM or Gentamicin (2.5, 5 mM induced cytotoxicity after pretreatment of MES13 cells with 0.01% of 20%w/v LipOmega-3 Emulsion 9/1, containing 90:10 wt/wt mixture of fish oil derived triglycerides to medium chain triglycerides.

  10. Calmodulin modulation of ion channels and receptors

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Ion channels and receptors are the structural basis for neural signaling and transmission. Recently, the function of ion channels and receptors has been demonstrated to be modulated by many intracellular and extracellular chemicals and signaling molecules. Increasing evidence indicates that the complexity and plasticity of the function of central nervous system is determined by the modulation of ion channels and receptors. Among various mechanisms, Ca 2+ signaling pathways play important roles in neuronal activity and some pathological changes. Ca 2+ influx through ion channels and receptors can modulate its further influx in a feedback way or modulate other ion channels and receptors. The common feature of the modulation is that Ca 2+ /calmodulin (CaM) is the universal mediator. CaM maintains the coordination among ion channels/receptors and intracellular Ca 2+ homeostasis by feedback modulation of ion channels/receptors activity. This review focuses on the modulating processes of ion channels and receptors mediated by CaM, and further elucidates the mechanisms of Ca 2+ signaling.

  11. Dental enamel cells express functional SOCE channels.

    Science.gov (United States)

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  12. Differential Effects of TRPA and TRPV Channels on Behaviors of Caenorhabditis elegans

    Science.gov (United States)

    Thies, Jennifer; Neutzler, Vanessa; O’Leary, Fidelma; Liu, He

    2016-01-01

    TRPA and TRPV ion channels are members of the transient receptor potential (TRP) cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans, the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation. PMID:27168724

  13. Characterization of neuronal membrane K + and Ca 2+ channels operated under steady magnetic fields exposure

    Science.gov (United States)

    Azanza, María J.

    1990-01-01

    Two populations of ionic channels seem to be involved in the responses elicited on single neurons under static magnetic fields exposure: Ca 2+-dependent-K +-channels and Ca 2+-specific-channels. The application of specific activating and blocking drugs shows that those channels could effectively be the mediators of the electrophysiological responses described.

  14. Actions of Ethanol on Voltage-Sensitive Sodium Channels: Effects on Neurotoxin Binding

    Science.gov (United States)

    1987-01-01

    sodium inhibitory effect of ethanol on channel - mediated sodium influx channels ...Exprnmantal Trherpeutics Ped in I.SA. Actions of Ethanol on Voltage-Sensitive Sodium Channels : Effects on Neurotoxin Binding1 MICHAEL J. MULLIN 2 and... sodium channels . This indirect allosteric mechanism for inhibition of [H]BTX-B binding. effect orethanol was concentration-dependent and was

  15. Prominent role of exopeptidase DPP III in estrogen-mediated protection against hyperoxia in vivo

    Directory of Open Access Journals (Sweden)

    Sandra Sobočanec

    2016-08-01

    We find that DPP III accumulates in the nucleus in response to hyperoxia. Further, we show that combined induction of hyperoxia and E2 administration have an additive effect on the nuclear accumulation of DPP III. The level of nuclear accumulation of DPP III is comparable to nuclear accumulation of Nrf-2 in healthy female mice exposed to hyperoxia. In ovariectomized females exposed to hyperoxia, supplementation of E2 induced upregulation of DPP III, Ho-1, Sirt-1 and downregulation of Ppar-γ. While other cytoprotective mechanisms cannot be excluded, these findings demonstrate a prominent role of DPP III, along with Sirt-1, in the E2-mediated protection against hyperoxia.

  16. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cellsversus cytotoxicity in tumor cells

    Institute of Scientific and Technical Information of China (English)

    Sujit NAIR; Wenge LI; Ah-Ng Tony KONG

    2007-01-01

    Many dietary phytochemicals exhibit health-beneficial effects including preven-tion of diseases such as cancer, as well as neurological, cardiovascular, inflam-matory, and metabolic diseases. Evolutionarily, herbivorous and omnivorous animals have been ingesting plants. This interaction between "animal-plant"ecosystems has resulted in an elaborate system of detoxification and defense mechanisms evolved by animals including humans. Mammalian cells, including human cells, respond to these dietary phytochemicals by "non-classical receptor sensing" mechanisms of electrophilic chemical-stress typified by "thiol-modu-lated" cellular signaling events primarily leading to the gene expression of phar-macologically beneficial effects, but sometimes unwanted cytotoxicity also. Our laboratory has been studying two groups of dietary phytochemical cancer-chemopreventive compounds (isothiocyanates and polyphenols), which are effective in chemical-induced, as well as genetically-induced, animal carcinogen-esis models. These compounds typically generate "cellular stress" and modulate gene expression of phase Ⅱ detoxifying/antioxidant enzymes. Electrophiles, reac-tive oxygen species, and reactive nitrogen species are known to act as second messengers in the modulation of many cellular signaling pathways leading to gene expression changes and pharmacological responses. Redox-sensitive tran-scription factors such as nuclear factor-E2-related factor 2 (Nrf2), AP-1, NF-κB, to cite a few examples, sense and transduce changes in the cellular redox status and modulate gene expression responses to oxidative and electrophilic stresses, pre-sumably via sulfhydryl modification of critical cysteine residues found on these proteins and/or other upstream redox-sensitive molecular targets. In the current review, we will explore dietary cancer chemopreventive phytochemicals, discuss the link between oxidative/electrophilic stresses and the redox circuitry, and con-sider different redox-sensitive transcription factors. We will also discuss the kelch-like erythroid Cap'n'Collar homologue-associated protein 1 (Keap1)-Nrf2axis in redox signaling of induction of phase Ⅱ detoxifying/antioxidant defense mechanisms, an important target and preventive strategy for normal cells against carcinogenesis, and the converse inhibition of cell growth/inflammatory signaling pathways that would confer therapeutic intervention in many types of cancers.Finally, we will summarize the Nrf2 paradigm in gene expression, the pharma-cotoxicogenomic relevance of redox-sensitive Nrf2, and the redox regulation of cell death mechanisms.

  17. Inhibition of lysosomal degradation rescues pentamidine-mediated decreases of K(IR)2.1 ion channel expression but not that of K(v)11.1.

    Science.gov (United States)

    Nalos, Lukas; de Boer, Teun P; Houtman, Marien J C; Rook, Martin B; Vos, Marc A; van der Heyden, Marcel A G

    2011-02-10

    The antiprotozoal drug pentamidine inhibits two types of cardiac rectifier potassium currents, which can precipitate life-threatening arrhythmias. Here, we use pentamidine as a tool to investigate whether a single drug affects trafficking of two structurally different potassium channels by identical or different mechanisms, and whether the adverse drug effect can be suppressed in a channel specific fashion. Whole cell patch clamp, Western blot, real time PCR, and confocal laser scanning microscopy were used to determine potassium current density, ion channel protein levels, mRNA expression levels, and subcellular localization, respectively. We demonstrate that pentamidine inhibits delayed (I(Kr)) and inward (I(K1)) rectifier currents in cultured adult canine cardiomyocytes. In HEK293 cells, pentamidine inhibits functional K(v)11.1 channels, responsible for I(Kr), by interfering at the level of full glycosylation, yielding less mature form of K(v)11.1 at the plasma membrane. In contrast, total K(IR)2.1 expression levels, underlying I(K1), are strongly decreased, which cannot be explained from mRNA expression levels. No changes in molecular size of K(IR)2.1 protein were observed, excluding interference in overt glycosylation. Remaining K(IR)2.1 protein is mainly expressed at the plasma membrane. Inhibition of lysosomal protein degradation is able to partially rescue K(IR)2.1 levels, but not those of K(v)11.1. We conclude that 1) a single drug can interfere in cardiac potassium channel trafficking in a subtype specific mode and 2) adverse drug effects can be corrected in a channel specific manner.

  18. Cell volume-regulated cation channels.

    Science.gov (United States)

    Wehner, Frank

    2006-01-01

    Considering the enormous turnover rates of ion channels when compared to carriers it is quite obvious that channel-mediated ion transport may serve as a rapid and efficient mechanism of cell volume regulation. Whenever studied in a quantitative fashion the hypertonic activation of non-selective cation channels is found to be the main mechanism of regulatory volume increase (RVI). Some channels are inhibited by amiloride (and may be related to the ENaC), others are blocked by Gd(3) and flufenamate (and possibly linked to the group of transient receptor potential (TRP) channels). Nevertheless, the actual architecture of hypertonicity-induced cation channels remains to be defined. In some preparations, hypertonic stress decreases K(+) channel activity so reducing the continuous K(+) leak out of the cell; this is equivalent to a net gain of cell osmolytes facilitating RVI. The hypotonic activation of K(+) selective channels appears to be one of the most common principles of regulatory volume decrease (RVD) and, in most instances, the actual channels involved could be identified on the molecular level. These are BKCa (or maxi K(+)) channels, IK(Ca) and SK(Ca) channels (of intermediate and small conductance, respectively), the group of voltage-gated (Kv) channels including their Beta (or Kv ancilliary) subunits, two-pore K(2P) channels, as well as inwardly rectifying K(+) (Kir) channels (also contributing to K(ATP) channels). In some cells, hypotonicity activates non-selective cation channels. This is surprising, at first sight, because of the inside negative membrane voltage and the sum of driving forces for Na(+) and K(+) diffusion across the cell membrane rather favouring net cation uptake. Some of these channels, however, exhibit a P(K)/P(Na) significantly higher than 1, whereas others are Ca(++) permeable linking hypotonic stress to the activation of Ca(++) dependent ion channels. In particular, the latter holds for the group of TRPs which are specialised in the

  19. The Origins of Transmembrane Ion Channels

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  20. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria

    Science.gov (United States)

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A.; Faria, Miguel; Fontes-Sousa, Ana P.; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type) channels. PMID:27014060

  1. Mechanisms of Nrf2/Keap1-Dependent Phase II Cytoprotective and Detoxifying Gene Expression and Potential Cellular Targets of Chemopreventive Isothiocyanates

    Directory of Open Access Journals (Sweden)

    Biswa Nath Das

    2013-01-01

    Full Text Available Isothiocyanates (ITCs are abundantly found in cruciferous vegetables. Epidemiological studies suggest that chronic consumption of cruciferous vegetables can lower the overall risk of cancer. Natural ITCs are key chemopreventive ingredients of cruciferous vegetables, and one of the prime chemopreventive mechanisms of natural isothiocyanates is the induction of Nrf2/ARE-dependent gene expression that plays a critical role in cellular defense against electrophiles and reactive oxygen species. In the present review, we first discuss the underlying mechanisms how natural ITCs affect the intracellular signaling kinase cascades to regulate the Keap1/Nrf2 activities, thereby inducing phase II cytoprotective and detoxifying enzymes. We also discuss the potential cellular protein targets to which natural ITCs are directly conjugated and how these events aid in the chemopreventive effects of natural ITCs. Finally, we discuss the posttranslational modifications of Keap1 and nucleocytoplasmic trafficking of Nrf2 in response to electrophiles and oxidants.

  2. Metallothionein as an Anti-Inflammatory Mediator

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2009-01-01

    Full Text Available The integration of knowledge concerning the regulation of MT, a highly conserved, low molecular weight, cystein-rich metalloprotein, on its proposed functions is necessary to clarify how MT affects cellular processes. MT expression is induced/enhanced in various tissues by a number of physiological mediators. The cellular accumulation of MT depends on the availability of cellular zinc derived from the diet. MT modulates the binding and exchange/transport of heavy metals such as zinc, cadmium, or copper under physiological conditions and cytoprotection from their toxicities, and the release of gaseous mediators such as hydroxyl radicals or nitric oxide. In addition, MT reportedly affects a number of cellular processes, such as gene expression, apoptosis, proliferation, and differentiation. Given the genetic approach, the apparently healthy status of MT-deficient mice argues against an essential biological role for MT; however, this molecule may be critical in cells/tissues/organs in times of stress, since MT expression is also evoked/enhanced by various stresses. In particular, because metallothionein (MT is induced by inflammatory stress, its roles in inflammation are implied. Also, MT expression in various organs/tissues can be enhanced by inflammatory stimuli, implicating in inflammatory diseases. In this paper, we review the role of MT of various inflammatory conditions.

  3. Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events.

    Science.gov (United States)

    van Rijt, Willem G; van Goor, Harry; Ploeg, Rutger J; Leuvenink, Henri G D

    2014-03-01

    The protective, nonerythropoietic effects of erythropoietin (EPO) have become evident in preclinical models in renal ischaemia/reperfusion injury and kidney transplantation. However, four recently published clinical trials using high-dose EPO treatment following renal transplantation did not reveal any protective effect for short-term renal function and even reported an increased risk of thrombosis. This review focusses on the current status of protective pathways mediated by EPO, the safety concerns using high EPO dosage and discusses the discrepancies between pre-clinical and clinical studies. The protective effects are mediated by binding of EPO to a heteromeric receptor complex consisting of two β-common receptors and two EPO receptors. An important role for the activation of endothelial nitric oxide synthase is proposed. EPO-mediated cytoprotection still has enormous potential. However, only nonerythropoietic EPO derivatives may induce protection without increasing the risk of cardiovascular events. In preclinical models, nonerythropoietic EPO derivatives, such as carbamoylated EPO and ARA290, have been tested. These EPO derivatives improve renal function and do not affect erythropoiesis. Therefore, nonerythropoietic EPO derivatives may be able to render EPO-mediated cytoprotection useful and beneficial for clinical transplantation.

  4. WNK4 kinase-mediated inhibitory effect on expression of BK channel via lysosomal pathway%WNK4激酶通过溶酶体途径抑制BK通道表达

    Institute of Scientific and Technical Information of China (English)

    庄捷秋; 王德选; 张益前; 牛伟辉; 陈方旋; 施珍; 潘殊方; 谷定英

    2012-01-01

    Objective To investigate the mechanism underlying the WNK4 kinasemediated inhibitory effect on BK channel. Methods Cos-7 cells were cotransfected with BK in combination with either CD4 (control group) or wild type WNK4 (WNK4-WT).Immunostaining and confocal microscopy,chemiluminescence,Western blotting analysis were then employed to determine the BK localization in cells,BK surface expression and total protein level,respectively.To further investigate whether the reduction of BK protein expression is due to an increase in degradation through a lysosomal pathway,BK protein level was determined after treated with bafilomycin A1(Baf A1),a proton pump inhibitor affecting lysosomal degradation. Results Immunostaining and confocal microscopic study showed that BK was localized both in plasma membrane and cytosol in the control group.After cells transfected with WNK4-WT,BK expression was markedly reduced.Chemiluminescent assay found that BK surface expression level was 299.9±18.6 in the control group,whereas it was significantly reduced (148.4±13.7,P<0.01) in the WNK4-WT group.Western blotting analysis showed that total BK protein level was markedly reduced in the presence of WNK4-WT compared to the control group.WNK4-WT was shown to significantly reduce the BK total protein level (42.3%±15.2%) compared to the control group (100%) (P<0.01).When the cells was treated with Bafilomycin A1 (Baf A1,0.5 μmol/L),WNK4-mediated reduction in BK protein was reversed (82.2%±12.1%,P<0.05). Conclusions WNK4 inhibits total and surface protein expression of BK in Cos-7 cells whick is likely due to an increase in BK degradation through a lysosomal pathway.%目的 研究WNK4激酶对BK通道的调节作用及机制.方法 将BK和WNK4野生型(WNK4-WT)或CD4(对照)质粒DNA共同转染进Cos-7细胞中,采用免疫染色-共聚焦激光显微镜、化学发光法、Western印迹法检测BK在细胞上的分布、细胞膜表面蛋白和总蛋

  5. Cytoprotective effects of quercetin and its sugar-containing natural congeners in cultured HEK293 cells injured by anoxia/hypoglycemia and the structure-effect relationship thereto

    Institute of Scientific and Technical Information of China (English)

    JIN Yue; LV Yong; HAN Guo-zhu; YU Hong-shan; JIN Feng-xie

    2008-01-01

    Objective To comparatively study anti-free radical and cytoprotective effects of quercetin(Q) and its monoglucoside isoquercetin(I), diglucoside rutin(R), which differs only in glycosyl-substitution at C-3 position of the molecules, using anoxia/hypoglycemia-induced cell injury model and thereby to explore the structure-effect relationship thereto. Methods The cell injury model was established by HEK293 cells cultured in vitro with Na2S2O3 plus sugar-free Earle's fluid as incubation medium; Cell survival rate (CSR), total antioxidant capacity (TAC), SOD and LDH levels were determined; The effect intensity of the 3 flavonoids were compared by means of IC50, the concentration required to achieve 50% inhibition of the changes in the above indices in injured cells. Results Q, I and R all concentration-dependently elevated CSR, TAC and SOD, and reduced LDH level; the all of IC50s for the above indices were ranked in order of IC50,Q < IC50,I< IC50,R, namely, the effect intensity should be Q I R. Conclusions The 3 structurally similar flavoloids all have significant and concentration-dependent anti-free radical and cyto-protective effects with the intensity being in order of aglycone monoglucoside diglucoside; the substitution of -OH by sugar group at C-3 position of flavoloids and increase in the sugar -substituent number are associated with the effect intensity reduced;namely, the intensity of these effects of flavonoids is negatively related the substutution by sugar group at C-3 position.

  6. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy.

    Science.gov (United States)

    He, Jun; Yu, Jing-Jie; Xu, Qing; Wang, Lin; Zheng, Jenny Z; Liu, Ling-Zhi; Jiang, Bing-Hua

    2015-01-01

    Cisplatin is commonly used in ovarian cancer treatment by inducing apoptosis in cancer cells as a result of lethal DNA damage. However, the intrinsic and acquired resistance to cisplatin in cancer cells remains a big challenge for improving overall survival. The cyto-protective functions of autophagy in cancer cells have been suggested as a potential mechanism for chemoresistance. Here, we reported MIR152 as a new autophagy-regulating miRNA that plays a role in cisplatin-resistance. We showed that MIR152 expression was dramatically downregulated in the cisplatin-resistant cell lines A2780/CP70, SKOV3/DDP compared with their respective parental cells, and in ovarian cancer tissues associated with cisplatin-resistance. Overexpression of MIR152 sensitized cisplatin-resistant ovarian cancer cells by reducing cisplatin-induced autophagy, enhancing cisplatin-induced apoptosis and inhibition of cell proliferation. A mouse subcutaneous xenograft tumor model using A2780/CP70 cells with overexpressing MIR152 was established and displayed decreased tumor growth in response to cisplatin. We also identified that ATG14 is a functional target of MIR152 in regulating autophagy inhibition. Furthermore, we found that EGR1 (early growth response 1) regulated the MIR152 gene at the transcriptional level. Ectopic expression of EGR1 enhanced efficacy of chemotherapy in A2780/CP70 cells. More importantly, these findings were relevant to clinical cases. Both EGR1 and MIR152 expression levels were significantly lower in ovarian cancer tissues with high levels of ERCC1 (excision repair cross-complementation group 1), a marker for cisplatin-resistance. Collectively, these data provide insights into novel mechanisms for acquired cisplatin-resistance. Activation of EGR1 and MIR152 may be a useful therapeutic strategy to overcome cisplatin-resistance by preventing cyto-protective autophagy in ovarian cancer.

  7. Hepatoprotective and cytoprotective properties of Hyptis suaveolens against oxidative stress-induced damage by CCl4 and H2O2

    Institute of Scientific and Technical Information of China (English)

    Hadi Ghaffari; Behrouz Jalali Ghassam; HS Prakash

    2012-01-01

    Objective:To investigate capacity of Hyptis suaveolens (H. suaveolens) methanol extract as an antioxidant to protect against carbon tetrachloride (CCl4)-induced oxidative stress, hepatotoxicity in Albino Wistar rats and cytoprotective effect of hydrogen peroxide (H2O2) induced cell death in HepG2 cell line. Methods: Two different doses of methanol extract of H. suaveolens were evaluated for the hepatoprotective activity against carbon tetrachloride (CCl4) induced hepatotoxicity in rats. Animals in Group I: served as control, group II:H. suaveolens (100 mL/kg b.w), group III:H. suaveolens (50 mL/kg b.w) + CCl4 (1 mg/kg), group IV:H. suaveolens (100 mL/kg b.w) + CCl4 (1 mL/kg) and group V: CCl4 (1 mL/kg). Histopathologic changes of liver were also evaluated. Cytotoxicity was also determined by 3, (4,5-dimethylthiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) assay. Results:Oral sigle dose treatment of CCl4 produced a marked elevation in the serum levels of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and Lactate dehydrogenase (LDH). Histopathological analysis of the liver of CCl4-induced rats revealed marked liver cell necrosis with inflammatory collections that were conformed to increase in the levels of SOD, GSH, GST, GR and LPO. Treatment with H2O2 significantly induced death of HepG2 cell. Pretreatment with H. suaveolens methanol extract inhibited or attenuated H2O2 induced cytotoxicity. Conclusions: This study shows that H. suaveolens methanol extract can be proposed to protect the liver against CCl4-induced oxidative damage in rats and protect the cells against H2O2-induced oxidative damage in HepG2 cells. The hepatoprotective and cytoprotective effects might be correlated with its antioxidant and free radical scavenger effects.

  8. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Joydeb Kumar [College of Pharmacy, Keimyung University, Daegu 704-701 (Korea, Republic of); Liu, Lijia; Shin, Jun-Wan [Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Surh, Young-Joon, E-mail: surh@plaza.snu.ac.kr [Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul 151-742 (Korea, Republic of); Cancer Research Institute, Seoul National University, Seoul 110-799 (Korea, Republic of)

    2013-09-06

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  9. Interaction of hydrogen sulfide with ion channels.

    Science.gov (United States)

    Tang, Guanghua; Wu, Lingyun; Wang, Rui

    2010-07-01

    1. Hydrogen sulfide (H(2)S) is a signalling gasotransmitter. It targets different ion channels and receptors, and fulfils its various roles in modulating the functions of different systems. However, the interaction of H(2)S with different types of ion channels and underlying molecular mechanisms has not been reviewed systematically. 2. H(2)S is the first identified endogenous gaseous opener of ATP-sensitive K(+) channels in vascular smooth muscle cells. Through the activation of ATP-sensitive K(+) channels, H(2)S lowers blood pressure, protects the heart from ischemia and reperfusion injury, inhibits insulin secretion in pancreatic beta cells, and exerts anti-inflammatory, anti-nociceptive and anti-apoptotic effects. 3. H(2)S inhibited L-type Ca(2+) channels in cardiomyocytes but stimulated the same channels in neurons, thus regulating intracellular Ca(2+) levels. H(2)S activated small and medium conductance K(Ca) channels but its effect on BK(Ca) channels has not been consistent. 4. H(2)S-induced hyperalgesia and pro-nociception seems to be related to the sensitization of both T-type Ca(2+) channels and TRPV(1) channels. The activation of TRPV(1) and TRPA(1) by H(2)S is believed to result in contraction of nonvascular smooth muscles and increased colonic mucosal Cl(-) secretion. 5. The activation of Cl(-) channel by H(2)S has been shown as a protective mechanism for neurons from oxytosis. H(2)S also potentiates N-methyl-d-aspartic acid receptor-mediated currents that are involved in regulating synaptic plasticity for learning and memory. 6. Given the important modulatory effects of H(2)S on different ion channels, many cellular functions and disease conditions related to homeostatic control of ion fluxes across cell membrane should be re-evaluated.

  10. Familial hemiplegic migraine type 1 mutations W1684R and V1696I alter G protein-mediated regulation of Ca(V)2.1 voltage-gated calcium channels.

    Science.gov (United States)

    Garza-López, Edgar; Sandoval, Alejandro; González-Ramírez, Ricardo; Gandini, María A; Van den Maagdenberg, Arn; De Waard, Michel; Felix, Ricardo

    2012-08-01

    Familial hemiplegic migraine type 1 (FHM-1) is a monogenic form of migraine with aura that is characterized by recurrent attacks of a typical migraine headache with transient hemiparesis during the aura phase. In a subset of patients, additional symptoms such as epilepsy and cerebellar ataxia are part of the clinical phenotype. FHM-1 is caused by missense mutations in the CACNA1A gene that encodes the pore-forming subunit of Ca(V)2.1 voltage-gated Ca(2+) channels. Although the functional effects of an increasing number of FHM-1 mutations have been characterized, knowledge on the influence of most of these mutations on G protein regulation of channel function is lacking. Here, we explored the effects of G protein-dependent modulation on mutations W1684R and V1696I which cause FHM-1 with and without cerebellar ataxia, respectively. Both mutations were introduced into the human Ca(V)2.1α(1) subunit and their functional consequences investigated after heterologous expression in human embryonic kidney 293 (HEK-293) cells using patch-clamp recordings. When co-expressed along with the human μ-opioid receptor, application of the agonist [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) inhibited currents through both wild-type (WT) and mutant Ca(V)2.1 channels, which is consistent with the known modulation of these channels by G protein-coupled receptors. Prepulse facilitation, which is a way to characterize the relief of direct voltage-dependent G protein regulation, was reduced by both FHM-1 mutations. Moreover, the kinetic analysis of the onset and decay of facilitation showed that the W1684R and V1696I mutations affect the apparent dissociation and reassociation rates of the Gβγ dimer from the channel complex, suggesting that the G protein-Ca(2+) channel affinity may be altered by the mutations. These biophysical studies may shed new light on the pathophysiology underlying FHM-1.

  11. Channel incision and water quality

    Science.gov (United States)

    Shields, F. D.

    2009-12-01

    Watershed development often triggers channel incision that leads to radical changes in channel morphology. Although morphologic evolution due to channel incision has been documented and modeled by others, ecological effects, particularly water quality effects, are less well understood. Furthermore, environmental regulatory frameworks for streams frequently focus on stream water quality and underemphasize hydrologic and geomorphic issues. Discharge, basic physical parameters, solids, nutrients (nitrogen and phosphorus), chlorophyll and bacteria were monitored for five years at two sites along a stream in a mixed cover watershed characterized by rapid incision of the entire channel network. Concurrent data were collected from two sites on a nearby stream draining a watershed of similar size and cultivation intensity, but without widespread incision. Data sets describing physical aquatic habitat and fish fauna of each stream were available from other studies. The second stream was impacted by watershed urbanization, but was not incised, so normal channel-floodplain interaction maintained a buffer zone of floodplain wetlands between the study reach and the urban development upstream. The incised stream had mean channel depth and width that were 1.8 and 3.5 times as large as for the nonincised stream, and was characterized by flashier hydrology. The median rise rate for the incised stream was 6.4 times as great as for the nonincised stream. Correlation analyses showed that hydrologic perturbations were associated with water quality degradation, and the incised stream had levels of turbidity and solids that were two to three times higher than the nonincised, urbanizing stream. Total phosphorus, total Kjeldahl N, and chlorophyll a concentrations were significantly higher in the incised stream, while nitrate was significantly greater in the nonincised, urbanizing stream (p Ecological engineering of stream corridors must focus at least as much energy on mediating hydrologic

  12. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  13. The paranodal cytoskeleton clusters Na(+) channels at nodes of Ranvier.

    Science.gov (United States)

    Amor, Veronique; Zhang, Chuansheng; Vainshtein, Anna; Zhang, Ao; Zollinger, Daniel R; Eshed-Eisenbach, Yael; Brophy, Peter J; Rasband, Matthew N; Peles, Elior

    2017-01-30

    A high density of Na(+) channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na(+) channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na(+) channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na(+) channels requires axonal βII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na(+)channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.

  14. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat

    DEFF Research Database (Denmark)

    Stankevicius, Edgaras; Dalsgaard, Thomas; Kroigaard, Christel

    2011-01-01

    mesenteric arteries, NS309 relaxations and NO release were inhibited by both N(G),N(G)-asymmetric dimethyl-l-arginine (ADMA) (300 μM), an inhibitor of NO synthase, and apamin (0.5 μM) plus 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), blockers of SK(Ca) and IK(Ca) channels, respectively...

  15. Vascular potassium channels in NVC.

    Science.gov (United States)

    Yamada, K

    2016-01-01

    It has long been proposed that the external potassium ion ([K(+)]0) works as a potent vasodilator in the dynamic regulation of local cerebral blood flow. Astrocytes may play a central role for producing K(+) outflow possibly through calcium-activated potassium channels on the end feet, responding to a rise in the intracellular Ca(2+) concentration, which might well reflect local neuronal activity. A mild elevation of [K(+)]0 in the end feet/vascular smooth muscle space could activate Na(+)/K(+)-ATPase concomitant with inwardly rectifying potassium (Kir) channels in vascular smooth muscle cells, leading to a hyperpolarization of vascular smooth muscle and relaxation of smooth muscle actin-positive vessels. Also proposed notion is endothelial calcium-activated potassium channels and/or inwardly rectifying potassium channel-mediated hyperpolarization of vascular smooth muscle. A larger elevation of [K(+)]0, which may occur pathophysiologically in such as spreading depression or stroke, can trigger a depolarization of vascular smooth muscle cells and vasoconstriction instead.

  16. Protection of HepG2 cells against acrolein toxicity by 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide via glutathione-mediated mechanism.

    Science.gov (United States)

    Shah, Halley; Speen, Adam M; Saunders, Christina; Brooke, Elizabeth A S; Nallasamy, Palanisamy; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is an environmental toxicant, mainly found in smoke released from incomplete combustion of organic matter. Several studies showed that exposure to acrolein can lead to liver damage. The mechanisms involved in acrolein-induced hepatocellular toxicity, however, are not completely understood. This study examined the cytotoxic mechanisms of acrolein on HepG2 cells. Acrolein at pathophysiological concentrations was shown to cause apoptotic cell death and an increase in levels of protein carbonyl and thiobarbituric acid reactive acid substances. Acrolein also rapidly depleted intracellular glutathione (GSH), GSH-linked glutathione-S-transferases, and aldose reductase, three critical cellular defenses that detoxify reactive aldehydes. Results further showed that depletion of cellular GSH by acrolein preceded the loss of cell viability. To further determine the role of cellular GSH in acrolein-mediated cytotoxicity, buthionine sulfoximine (BSO) was used to inhibit cellular GSH biosynthesis. It was observed that depletion of cellular GSH by BSO led to a marked potentiation of acrolein-mediated cytotoxicity in HepG2 cells. To further assess the contribution of these events to acrolein-induced cytotoxicity, triterpenoid compound 2-cyano-3,12-dioxooleana-1,9-dien-28-imidazolide (CDDO-Im) was used for induction of GSH. Induction of GSH by CDDO-Im afforded cytoprotection against acrolein toxicity in HepG2 cells. Furthermore, BSO significantly inhibited CDDO-Im-mediated induction in cellular GSH levels and also reversed cytoprotective effects of CDDO-Im in HepG2 cells. These results suggest that GSH is a predominant mechanism underlying acrolein-induced cytotoxicity as well as CDDO-Im-mediated cytoprotection. This study may provide understanding on the molecular action of acrolein which may be important to develop novel strategies for the prevention of acrolein-mediated toxicity.

  17. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats.

    Science.gov (United States)

    Kim, Seok-Joo; Eum, Hyun-Ae; Billiar, Timothy R; Lee, Sun-Mee

    2013-04-01

    Hepatocellular apoptosis commonly occurs in ischemia/reperfusion (I/R) injury. The binding of tumor necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to the formation of a death-inducing signaling complex (DISC), which subsequently initiates a caspase cascade resulting in apoptosis. Heme oxygenase 1 (HO-1) confers cytoprotection against cell death in I/R injury and inhibits stress-induced apoptotic pathways in vitro. This study investigated the role of HO-1 in modulating TNF/TNFR1-mediated cell death pathways in hepatic I/R injury. Rats were pretreated with hemin, an HO-1 inducer, and zinc protoporphyrin (ZnPP), an HO-1 inhibitor, before undergoing hepatic I/R. Heme oxygenase 1 activity increased after reperfusion. Ischemia/reperfusion-induced hepatocellular apoptosis was attenuated by hemin, as determined by the caspase-3 and -8 activity assays and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling). Zinc protoporphyrin eliminated the cytoprotective effect of hemin. Hepatic TNFR1 protein expression was unchanged among the experimental groups, whereas mitochondrial TNFR1 protein increased after I/R. Ischemia/reperfusion increased the quantity of DISC components, including TRADD (TNFR1-associated death domain), FADD (Fas-associated death domain), and caspase-8, as well as the assembly of DISCs within the liver. In the mitochondrial fraction, TNFR1-associated caspase-8 was increased after I/R. These increases were attenuated by hemin; zinc protoporphyrin eliminated this effect. Our findings suggest that the cytoprotective effects of HO-1 are mediated by suppression of TNF/TNFR1-mediated apoptotic signaling, specifically by modulating apoptotic DISC formation and mitochondrial TNFR1 translocation during hepatic I/R.

  18. Mobile radio channels

    CERN Document Server

    Pätzold, Matthias

    2011-01-01

    Providing a comprehensive overview of the modelling, analysis and simulation of mobile radio channels, this book gives a detailed understanding of fundamental issues and examines state-of-the-art techniques in mobile radio channel modelling. It analyses several mobile fading channels, including terrestrial and satellite flat-fading channels, various types of wideband channels and advanced MIMO channels, providing a fundamental understanding of the issues currently being investigated in the field. Important classes of narrowband, wideband, and space-time wireless channels are explored in deta

  19. Functional architecture of the CFTR chloride channel.

    Science.gov (United States)

    Linsdell, Paul

    2014-02-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP-binding cassette (ABC) family of membrane transport proteins. CFTR is unique among ABC proteins in that it functions not as an active transporter but as an ATP-gated Cl(-) channel. As an ion channel, the function of the CFTR transmembrane channel pore that mediates Cl(-) movement has been studied in great detail. On the other hand, only low resolution structural data is available on the transmembrane parts of the protein. The structure of the channel pore has, however, been modeled on the known structure of active transporter ABC proteins. Currently, significant barriers exist to building a unified view of CFTR pore structure and function. Reconciling functional data on the channel with indirect structural data based on other proteins with very different transport functions and substrates has proven problematic. This review summarizes current structural and functional models of the CFTR Cl(-) channel pore, including a comprehensive review of previous electrophysiological investigations of channel structure and function. In addition, functional data on the three-dimensional arrangement of pore-lining helices, as well as contemporary hypotheses concerning conformational changes in the pore that occur during channel opening and closing, are discussed. Important similarities and differences between different models of the pore highlight current gaps in our knowledge of CFTR structure and function. In order to fill these gaps, structural and functional models of the membrane-spanning pore need to become better integrated.

  20. Covert attention enhances letter identification without affecting channel tuning.

    Science.gov (United States)

    Talgar, Cigdem P; Pelli, Denis G; Carrasco, Marisa

    2004-02-02

    Directing covert attention to the target location enhances sensitivity, but it is not clear how this enhancement comes about. Knowing that a single spatial frequency channel mediates letter identification, we use the critical-band-masking paradigm to investigate whether covert attention affects the spatial frequency tuning of that channel. We find that directing attention to the target location halves threshold energy without affecting the channel's spatial frequency tuning.

  1. Channel nut tool

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Marvin

    2016-01-12

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  2. Follicle-stimulating hormone receptor-mediated uptake of sup 45 Ca sup 2+ by proteoliposomes and cultured rat sertoli cells: Evidence for involvement of voltage-activated and voltage-independent calcium channels

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, P.; Reichert, L.E. Jr. (Albany Medical College, NY (USA))

    1989-12-01

    We have previously reported incorporation into liposomes of Triton X-100-solubilized FSH receptor-G-protein complexes derived from purified bovine calf testis membranes. In the present study we have used this model system to show that FSH induces flux of 45Ca2+ into such proteoliposomes in a hormone-specific concentration-dependent manner. FSH, inactivated by boiling, had no stimulatory effect on 45Ca2+ flux, nor did isolated alpha- or beta-subunits of FSH. Addition of GTP (or its analogs 5'-guanylylimidodiphosphate and guanosine-5'-O-(3-thiotriphosphate)) or sodium fluoride (in the presence or absence of GTP or its analogs) failed to induce 45Ca2+ flux into proteoliposomes, suggesting that the uptake of 45Ca2+ was receptor, and not G-protein, related. Voltage-independent (ruthenium red and gadolinium chloride) and voltage-activated (methyoxyverapamil and nifedipine) calcium channel-blocking agents reduced FSH-stimulated 45Ca2+ flux into proteoliposomes to control levels. FSH also induced uptake of 45Ca2+ by cultured rat Sertoli cells. Ruthenium red and gadolinium chloride had no effect on basal levels of 45Ca2+ uptake or estradiol secretion by cultured rat Sertoli cells, nor did methoxyverapamil or nifedipine. All four calcium channel blockers, however, were able to reduce FSH-induced 45Ca2+ uptake to basal levels and FSH-stimulated conversion of androstenedione to estradiol by up to 50%, indicating an involvement of Ca2+ in FSH-stimulated steroidogenesis. Our results suggest that the well documented changes in intracellular calcium levels consequent to FSH binding may be due, at least in part, to an influx of calcium through FSH receptor-regulated calcium channels.

  3. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-06-01

    Full Text Available This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoKATP channels and protein kinase C (PKC-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9. The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group or 33% oxygen inhalation (I/R group 24 h before coronary occlusion. The control group (CON and the sevoflurane group (SEVO group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoKATP channel inhibitor 5-hydroxydecanoate (5-HD was given 30 min before sevoflurane preconditioning (5-HD+SWOP group. Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05 in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05 compared with the SWOP group. The results suggest that mitoKATP channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  4. Role of mitochondrial ATP-sensitive potassium channel-mediated PKC-ε in delayed protection against myocardial ischemia/reperfusion injury in isolated hearts of sevoflurane-preconditioned rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Institute of Neuroscience, Soochow University, Suzhou (China); Hu, S.M. [Institute of Neuroscience, Soochow University, Suzhou (China); Xie, H.; Qiao, S.G. [Department of Anesthesiology and Critical Care, The Second Affiliate Hospital, Soochow University, Suzhou (China); Liu, H. [Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Davis, CA (United States); Liu, C.F. [Institute of Neuroscience, Soochow University, Suzhou (China)

    2015-03-27

    This study aimed to determine the role of mitochondrial adenosine triphosphate-sensitive potassium (mitoK{sub ATP}) channels and protein kinase C (PKC)-ε in the delayed protective effects of sevoflurane preconditioning using Langendorff isolated heart perfusion models. Fifty-four isolated perfused rat hearts were randomly divided into 6 groups (n=9). The rats were exposed for 60 min to 2.5% sevoflurane (the second window of protection group, SWOP group) or 33% oxygen inhalation (I/R group) 24 h before coronary occlusion. The control group (CON) and the sevoflurane group (SEVO) group were exposed to 33% oxygen and 2.5% sevoflurane for 60 min, respectively, without coronary occlusion. The mitoK{sub ATP} channel inhibitor 5-hydroxydecanoate (5-HD) was given 30 min before sevoflurane preconditioning (5-HD+SWOP group). Cardiac function indices, infarct sizes, serum cardiac troponin I (cTnI) concentrations, and the expression levels of phosphorylated PKC-ε (p-PKC-ε) and caspase-8 were measured. Cardiac function was unchanged, p-PKC-ε expression was upregulated, caspase-8 expression was downregulated, cTnI concentrations were decreased, and the infarcts were significantly smaller (P<0.05) in the SWOP group compared with the I/R group. Cardiac function was worse, p-PKC-ε expression was downregulated, caspase-8 expression was upregulated, cTnI concentration was increased and infarcts were larger in the 5-HD+SWOP group (P<0.05) compared with the SWOP group. The results suggest that mitoK{sub ATP} channels are involved in the myocardial protective effects of sevoflurane in preconditioning against I/R injury, by regulating PKC-ε phosphorylation before ischemia, and by downregulating caspase-8 during reperfusion.

  5. Mediatized Humanitarianism

    DEFF Research Database (Denmark)

    Vestergaard, Anne

    2014-01-01

    The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts to legiti......The article investigates the implications of mediatization for the legitimation strategies of humanitarian organizations. Based on a (full population) corpus of ~400 pages of brochure material from 1970 to 2007, the micro-textual processes involved in humanitarian organizations' efforts...... legitimation by accountancy, legitimation by institutionalization, and legitimation by compensation. The analysis relates these changes to a problem of trust associated with mediatization through processes of mediation....

  6. Multi-Channel Retailing

    Directory of Open Access Journals (Sweden)

    Dirk Morschett, Dr.,

    2005-01-01

    Full Text Available Multi-channel retailing entails the parallel use by retailing enterprises of several sales channels. The results of an online buyer survey which has been conducted to investigate the impact of multi-channel retailing (i.e. the use of several retail channels by one retail company on consumer behaviour show that the frequently expressed concern that the application of multi-channel systems in retailing would be associated with cannibalization effects, has proven unfounded. Indeed, the appropriate degree of similarity, consistency, integration and agreement achieves the exact opposite. Different channels create different advantages for consumers. Therefore the total benefit an enterprise which has a multi-channel system can offer to its consumers is larger, the greater the number of available channels. The use of multi-channel systems is associated with additional purchases in the different channels. Such systems are thus superior to those offering only one sales channel to their customers. Furthermore, multi-channel systems with integrated channels are superior to those in which the channels are essentially autonomous and independent of one another. In integrated systems, consumers can achieve synergy effects in the use of sales-channel systems. Accordingly, when appropriately formulated, multi-channel systems in retailing impact positively on consumers. They use the channels more frequently, buy more from them and there is a positive customer-loyalty impact. Multi-channel systems are strategic options for achieving customer loyalty, exploiting customer potential and for winning new customers. They are thus well suited for approaching differing and varied target groups.

  7. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  8. Complex Mediation

    DEFF Research Database (Denmark)

    Bødker, Susanne; Andersen, Peter Bøgh

    2005-01-01

    This article has its starting point in a large number of empirical findings regarding computer-mediated work. These empirical findings have challenged our understanding of the role of mediation in such work; on the one hand as an aspect of communication and cooperation at work and on the other hand...... as an aspect of human engagement with instruments of work. On the basis of previous work in activity-theoretical and semiotic human—computer interaction, we propose a model to encompass both of these aspects. In a dialogue with our empirical findings we move on to propose a number of types of mediation...... that have helped to enrich our understanding of mediated work and the design of computer mediation for such work....

  9. USACE Navigation Channels 2012

    Data.gov (United States)

    California Department of Resources — This dataset represents both San Francisco and Los Angeles District navigation channel lines. All San Francisco District channel lines were digitized from CAD files...

  10. Presence and vascular pharmacology of KATP channel subtypes in rat central and peripheral tissues

    DEFF Research Database (Denmark)

    Ploug, Kenneth Beri; Baun, Michael; Hay-Schmidt, Anders

    2010-01-01

    K(ATP) channel openers are vasodilators and induce headache in normal subjects. We previously identified the Kir6.1/SUR2B K(ATP) channel subtype in major cerebral and dural arteries of rat, pig and man. We hypothesized that craniovascular Kir6.1/SUR2B K(ATP) channels mediate the headache-inducing...

  11. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice.

    Science.gov (United States)

    Cui, Min; Li, Qiang; Johnson, Robert; Fleet, James C

    2012-10-01

    Transient receptor potential cation channel, subfamily V, member 6 (TRPV6) is an apical membrane calcium (Ca) channel in the small intestine proposed to be essential for vitamin D-regulated intestinal Ca absorption. Recent studies have challenged the proposed role for TRPV6 in Ca absorption. We directly tested intestinal TRPV6 function in Ca and bone metabolism in wild-type (WT) and vitamin D receptor knockout (VDRKO) mice. TRPV6 transgenic mice (TG) were made with intestinal epithelium-specific expression of a 3X Flag-tagged human TRPV6 protein. TG and VDRKO mice were crossed to make TG-VDRKO mice. Ca and bone metabolism was examined in WT, TG, VDRKO, and TG-VDRKO mice. TG mice developed hypercalcemia and soft tissue calcification on a chow diet. In TG mice fed a 0.25% Ca diet, Ca absorption was more than three-fold higher and femur bone mineral density (BMD) was 26% higher than WT. Renal 1α hydroxylase (CYP27B1) mRNA and intestinal expression of the natural mouse TRPV6 gene were reduced to intestine calbindin-D(9k) expression was elevated >15 times in TG mice. TG-VDRKO mice had high Ca absorption that prevented the low serum Ca, high renal CYP27B1 mRNA, low BMD, and abnormal bone microarchitecture seen in VDRKO mice. In addition, small intestinal calbindin D(9K) mRNA and protein levels were elevated in TG-VDRKO. Transgenic TRPV6 expression in intestine is sufficient to increase Ca absorption and bone density, even in VDRKO mice. VDR-independent upregulation of intestinal calbindin D(9k) in TG-VDRKO suggests this protein may buffer intracellular Ca during Ca absorption. © 2012 American Society for Bone and Mineral Research.

  12. Cell volume and membrane stretch independently control K+ channel activity

    DEFF Research Database (Denmark)

    Bomholtz, Sofia Hammami; Willumsen, Niels J; Olsen, Hervør L;

    2009-01-01

    A number of potassium channels including members of the KCNQ family and the Ca(2+) activated IK and SK, but not BK, are strongly and reversibly regulated by small changes in cell volume. It has been argued that this general regulation is mediated through sensitivity to changes in membrane stretch....... To test this hypothesis we have studied the regulation of KCNQ1 and BK channels after expression in Xenopus oocytes. Results from cell-attached patch clamp studies (approximately 50 microm(2) macropatches) in oocytes expressing BK channels demonstrate that the macroscopic volume-insensitive BK current...... was not affected by membrane stretch. The results indicate that (1) activation of BK channels by local membrane stretch is not mimicked by membrane stress induced by cell swelling, and (2) activation of KCNQ1 channels by cell volume increase is not mediated by local tension in the cell membrane. We conclude...

  13. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  14. Quantum Multiple Access Channel

    Institute of Scientific and Technical Information of China (English)

    侯广; 黄民信; 张永德

    2002-01-01

    We consider the transmission of classical information over a quantum channel by many senders, which is a generalization of the two-sender case. The channel capacity region is shown to be a convex hull bound by the yon Neumann entropy and the conditional yon Neumann entropies. The result allows a reasonable distribution of channel capacity over the senders.

  15. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...

  16. Comparison of cytoprotective effects of saponins isolated from leaves of Aralia elata Seem. (Araliaceae) with synthesized bisdesmosides of oleanoic acid and hederagenin on carbon tetrachloride-induced hepatic injury.

    Science.gov (United States)

    Saito, S; Ebashi, J; Sumita, S; Furumoto, T; Nagamura, Y; Nishida, K; Isiguro, I

    1993-08-01

    Glycosylations of 3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl(1-->2)- 3,4-di-O-acetyl-alpha-L-arabinopyranosyl)-23-O-acetylhederageni n (15) with mono- (16), di- (17) and trisaccharide bromide (18) gave the bisdesmoside peracetates 19, 20 and 22, respectively, which were treated with 5% KOH in MeOH to give the bisdesmosides 25-27. Hydrolysis of the glycosides 6 and 9 having beta-D-glucopyranose as a terminal sugar component with beta-glucosidase in acetate buffer (pH 4.7) gave compounds 28 and 29, respectively. Cytoprotective effects of the synthesized triterpenoidal saponins against CCl4-induced hepatic injury were compared with those of saponins isolated from the leaves of Aralia elata Seem. (Araliaceae) using isolated hepatocytes from rat liver. Although the monodesmosides 1-4 having neutral sugar components only at the O-3 position on the aglycones showed no cytoprotective effect, bisdesmosides having sugar components at both the O-3 and O-28 positions on the aglycones had potent effects, even when the species of the sugar components were different. The bisdesmosides 10, 11, and 27 having five monosaccharides in the molecules exhibited the most potent cytoprotective effects.

  17. Calcium channels, neuromuscular synaptic transmission and neurological diseases.

    Science.gov (United States)

    Urbano, Francisco J; Pagani, Mario R; Uchitel, Osvaldo D

    2008-09-15

    Voltage-dependent calcium channels are essential in neuronal signaling and synaptic transmission, and their functional alterations underlie numerous human disorders whether monogenic (e.g., ataxia, migraine, etc.) or autoimmune. We review recent work on Ca(V)2.1 or P/Q channelopathies, mostly using neuromuscular junction preparations, and focus specially on the functional hierarchy among the calcium channels recruited to mediate neurotransmitter release when Ca(V)2.1 channels are mutated or depleted. In either case, synaptic transmission is greatly compromised; evidently, none of the reported functional replacements with other calcium channels compensates fully.

  18. Nrf2 mediates redox adaptations to exercise

    Directory of Open Access Journals (Sweden)

    Aaron J. Done

    2016-12-01

    Full Text Available The primary aim of this review is to summarize the current literature on the effects of acute exercise and regular exercise on nuclear factor erythroid 2-related factor 2 (Nrf2 activity and downstream targets of Nrf2 signaling. Nrf2 (encoded in humans by the NFE2L2 gene is the master regulator of antioxidant defenses, a transcription factor that regulates expression of more than 200 cytoprotective genes. Increasing evidence indicates that Nrf2 signaling plays a key role in how oxidative stress mediates the beneficial effects of exercise. Episodic increases in oxidative stress induced through bouts of acute exercise stimulate Nrf2 activation and when applied repeatedly, as with regular exercise, leads to upregulation of endogenous antioxidant defenses and overall greater ability to counteract the damaging effects of oxidative stress. The evidence of Nrf2 activation in response to exercise across variety of tissues may be an important mechanism of how exercise exerts its well-known systemic effects that are not limited to skeletal muscle and myocardium. Additionally there are emerging data that results from animal studies translate to humans.

  19. Corporate Social Responsibility Behavior and Channel Conflict:The Mediating Effect of Social Network Resources%企业社会责任行为与渠道冲突:社会网络资源的中介作用

    Institute of Scientific and Technical Information of China (English)

    张广玲; 易澄; 胡琴芳

    2015-01-01

    文章以社会网络理论为基础,探讨企业社会责任对渠道冲突的影响作用以及社会网络资源(市场信息获取和规范性影响力)的中介效应,明晰企业社会责任影响渠道冲突的作用机理。实证分析结果表明:企业社会责任行为的两个维度(企业商业实践的社会责任行为和企业慈善的社会责任行为)分别对社会网络资源的两个方面(市场信息获取和规范性影响)有显著的正向作用;企业市场信息获取和规范性影响均能够显著地降低渠道冲突;市场信息获取对商业实践社会责任行为和渠道冲突之间的关系、规范性影响对慈善社会责任行为和渠道冲突之间的关系均具有部分中介效应。文章从企业履行社会责任的内驱力角度强化了中国企业实行社会责任的意识和理念,具有一定的实践指导意义。%Based on social network theory, this paper explores the impact of corporate social responsibility (CSR) on channel conflict and the mediating effect of social network resources (market information acquisition and normative influence), and clar⁃ifies the mechanism of the impact of CSR on channel conflict. The empirical results indicate that:The two dimensions of CSR, which are CSR of business practice and CSR of philanthropy, have a significant positive effect on the two aspects of social net⁃work resources (market information acquisition and normative influence) respectively. Both enterprise market information ac⁃quisition and normative influence can dramatically lower channel conflict. Market information acquisition plays a partial medi⁃ating effect on the relationship between CSR of business practice and channel conflict, whereas normative influence plays a partial mediating effect on the relationship between CSR of philanthropy and channel conflict. The paper, from the perspective of internal driving force, strengthens the consciousness and concept of Chinese

  20. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo.

    Science.gov (United States)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-09-06

    Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.

  1. Ion channels to inactivate neurons in Drosophila

    Directory of Open Access Journals (Sweden)

    James J L Hodge

    2009-08-01

    Full Text Available Ion channels are the determinants of excitability; therefore, manipulation of their levels and properties provides an opportunity for the investigator to modulate neuronal and circuit function. There are a number of ways to suppress electrical activity in Drosophila neurons, for instance, over-expression of potassium channels (i.e. Shaker Kv1, Shaw Kv3, Kir2.1 and DORK that are open at resting membrane potential. This will result in increased potassium efflux and membrane hyperpolarisation setting resting membrane potential below the threshold required to fire action potentials. Alternatively over-expression of other channels, pumps or co-transporters that result in a hyperpolarised membrane potential will also prevent firing. Lastly, neurons can be inactivated by, disrupting or reducing the level of functional voltage-gated sodium (Nav1 paralytic or calcium (Cav2 cacophony channels that mediate the depolarisation phase of action potentials. Similarly, strategies involving the opposite channel manipulation should allow net depolarisation and hyperexcitation in a given neuron. These changes in ion channel expression can be brought about by the versatile transgenic (i.e. Gal4/UAS based systems available in Drosophila allowing fine temporal and spatial control of (channel transgene expression. These systems are making it possible to electrically inactivate (or hyperexcite any neuron or neural circuit in the fly brain, and much like an exquisite lesion experiment, potentially elucidate whatever interesting behaviour or phenotype each network mediates. These techniques are now being used in Drosophila to reprogram electrical activity of well-defined circuits and bring about robust and easily quantifiable changes in behaviour, allowing different models and hypotheses to be rapidly tested.

  2. Protocol channels as a new design alternative of covert channels

    CERN Document Server

    Wendzel, Steffen

    2008-01-01

    Covert channel techniques are used by attackers to transfer hidden data. There are two main categories of covert channels: timing channels and storage channels. This paper introduces a third category called protocol channels. A protocol channel switches one of at least two protocols to send a bit combination to a destination while sent packets include no hidden information themselves.

  3. Surface vacancy channels through ion channeling

    Energy Technology Data Exchange (ETDEWEB)

    Redinger, Alex; Standop, Sebastian; Michely, Thomas [II. Physikalisches Institut, Universitaet Koeln, Zuelpicher Strasse 77, 50937 Koeln (Germany); Rosandi, Yudi; Urbassek, Herbert M. [Fachbereich Physik, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2009-07-01

    Damage patterns of single ion impacts on Pt(111) have been studied by scanning tunneling microscopy (STM) and molecular dynamics simulations (MD). Low temperature experiments, where surface diffusion is absent, have been performed for argon and xenon ions with energies between 1 keV and 15 keV at an angle of incidence of 86 {sup circle} measured with respect to the surface normal. Ions hitting preexisting illuminated step edges penetrate into the crystal and are guided in open crystallographic directions, one or more layers underneath the surface (subsurface channeling). In the case of argon channeling the resulting surface damage consists of adatom and vacancy pairs aligned in ion beam direction. After xenon channeling thin surface vacancy trenches along the ion trajectories - surface vacancy channels - are observed. They result from very efficient sputtering and adatom production along the ion trajectory. This phenomena is well reproduced in molecular dynamics simulations of single ion impacts at 0 K. The damage patterns of Argon and Xenon impacts can be traced back to the different energy losses of the particles in the channel. Channeling distances exceeding 1000 A for 15 keV xenon impacts are observed.

  4. Targeting TRP channels for novel migraine therapeutics.

    Science.gov (United States)

    Dussor, Gregory; Yan, J; Xie, Jennifer Y; Ossipov, Michael H; Dodick, David W; Porreca, Frank

    2014-11-19

    Migraine is increasingly understood to be a disorder of the brain. In susceptible individuals, a variety of "triggers" may influence altered central excitability, resulting in the activation and sensitization of trigeminal nociceptive afferents surrounding blood vessels (i.e., the trigeminovascular system), leading to migraine pain. Transient receptor potential (TRP) channels are expressed in a subset of dural afferents, including those containing calcitonin gene related peptide (CGRP). Activation of TRP channels promotes excitation of nociceptive afferent fibers and potentially lead to pain. In addition to pain, allodynia to mechanical and cold stimuli can result from sensitization of both peripheral afferents and of central pain pathways. TRP channels respond to a variety of endogenous conditions including chemical mediators and low pH. These channels can be activated by exogenous stimuli including a wide range of chemical and environmental irritants, some of which have been demonstrated to trigger migraine in humans. Activation of TRP channels can elicit CGRP release, and blocking the effects of CGRP through receptor antagonism or antibody strategies has been demonstrated to be effective in the treatment of migraine. Identification of approaches that can prevent activation of TRP channels provides an additional novel strategy for discovery of migraine therapeutics.

  5. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  6. Development and Testing of an In-Vitro Assay for Screening of Potential Therapeutic Agents Active against Na Channel Neurotoxins

    Science.gov (United States)

    1988-02-08

    effect to inhibit the binding of [3H]BTX-B is not mediated through an interaction at sodium ...compounds acting at the sodium channel 29 Figure 2. Sodium channel /ot-scorpion toxin sequence homology 30 Figure 3. Effects of nesacaine, benzimidazole...the channel , and alters the single channel conductance. In considering this broad spectrum of effects , one is led to invoke a model for sodium channel

  7. Endogenous ion channel complexes: the NMDA receptor.

    Science.gov (United States)

    Frank, René A W

    2011-06-01

    Ionotropic receptors, including the NMDAR (N-methyl-D-aspartate receptor) mediate fast neurotransmission, neurodevelopment, neuronal excitability and learning. In the present article, the structure and function of the NMDAR is reviewed with the aim to condense our current understanding and highlight frontiers where important questions regarding the biology of this receptor remain unanswered. In the second part of the present review, new biochemical and genetic approaches for the investigation of ion channel receptor complexes will be discussed.

  8. Axion Mediation

    CERN Document Server

    Baryakhtar, Masha; March-Russell, John

    2013-01-01

    We explore the possibility that supersymmetry breaking is mediated to the Standard Model sector through the interactions of a generalized axion multiplet that gains a F-term expectation value. Using an effective field theory framework we enumerate the most general possible set of axion couplings and compute the Standard Model sector soft-supersymmetry-breaking terms. Unusual, non-minimal spectra, such as those of both natural and split supersymmetry are easily implemented. We discuss example models and low-energy spectra, as well as implications of the particularly minimal case of mediation via the QCD axion multiplet. We argue that if the Peccei-Quinn solution to the strong-CP problem is realized in string theory then such axion-mediation is generic, while in a field theory model it is a natural possibility in both DFSZ- and KSVZ-like regimes. Axion mediation can parametrically dominate gravity-mediation and is also cosmologically beneficial as the constraints arising from axino and gravitino overproduction ...

  9. Regulation of voltage gated calcium channels by GPCRs and post-translational modification.

    Science.gov (United States)

    Huang, Junting; Zamponi, Gerald W

    2016-10-18

    Calcium entry via voltage gated calcium channels mediates a wide range of physiological functions, whereas calcium channel dysregulation has been associated with numerous pathophysiological conditions. There are myriad cell signaling pathways that act on voltage gated calcium channels to fine tune their activities and to regulate their cell surface expression. These regulatory mechanisms include the activation of G protein-coupled receptors and downstream phosphorylation events, and their control over calcium channel trafficking through direct physical interactions. Calcium channels also undergo post-translational modifications that alter both function and density of the channels in the plasma membrane. Here we focus on select aspects of these regulatory mechanisms and highlight recent developments.

  10. Quantum broadcast channels

    CERN Document Server

    Yard, J; Devetak, I; Yard, Jon; Hayden, Patrick; Devetak, Igor

    2006-01-01

    We analyze quantum broadcast channels, which are quantum channels with a single sender and many receivers. Focusing on channels with two receivers for simplicity, we generalize a number of results from the network Shannon theory literature which give the rates at which two senders can receive a common message, while a personalized one is sent to one of them. Our first collection of results applies to channels with a classical input and quantum outputs. The second class of theorems we prove concern sending a common classical message over a quantum broadcast channel, while sending quantum information to one of the receivers. The third group of results we obtain concern communication over an isometry, giving the rates at quantum information can be sent to one receiver, while common quantum information is sent to both, in the sense that tripartite GHZ entanglement is established. For each scenario, we provide an additivity proof for an appropriate class of channels, yielding single-letter characterizations of the...

  11. Mediatized Parenthood

    DEFF Research Database (Denmark)

    Sonne Damkjær, Maja

    2017-01-01

    to parenthood? The dissertation explores this question on the basis of a synchronous study within an overall mediatization perspective. The first part of the dissertation focuses on a conceptualization of the relationship between digital media and parenting as well as an exploration of theoretical perspectives...... and methods that make it possible to study the interactions between the two. Concretely, the dissertation builds on a number of key studies within audience research, which have contributed knowledge about the media’s role in the family and the home. This is done by including three approaches to mediatization......) a family-oriented, b) a peer-oriented, c) an oppositional, and d) non-use. Secondary contribution: Based on qualitative audience research and mediatization theory, the dissertation contributes a conceptualization of the relationship between media and parenthood. This is carried out in a study design...

  12. Quantum feedback channels

    CERN Document Server

    Bowen, G

    2002-01-01

    In classical information theory the capacity of a noisy communication channel cannot be increased by the use of feedback. In quantum information theory the no-cloning theorem means that noiseless copying and feedback of quantum information cannot be achieved. In this paper, quantum feedback is defined as the unlimited use of a noiseless quantum channel from receiver to sender. Given such quantum feedback, it is shown to provide no increase in the entanglement-assisted capacities of a noisy quantum channel, in direct analogy to the classical case. It is also shown that in various cases of non-assisted capacities, feedback can increase the capacity of many quantum channels.

  13. Ion channels in asthma.

    Science.gov (United States)

    Valverde, Miguel A; Cantero-Recasens, Gerard; Garcia-Elias, Anna; Jung, Carole; Carreras-Sureda, Amado; Vicente, Rubén

    2011-09-23

    Ion channels are specialized transmembrane proteins that permit the passive flow of ions following their electrochemical gradients. In the airways, ion channels participate in the production of epithelium-based hydroelectrolytic secretions and in the control of intracellular Ca(2+) levels that will ultimately activate almost all lung cells, either resident or circulating. Thus, ion channels have been the center of many studies aiming to understand asthma pathophysiological mechanisms or to identify therapeutic targets for better control of the disease. In this minireview, we focus on molecular, genetic, and animal model studies associating ion channels with asthma.

  14. TRP channels in schistosomes

    Directory of Open Access Journals (Sweden)

    Swarna Bais

    2016-12-01

    Full Text Available Praziquantel (PZQ is effectively the only drug currently available for treatment and control of schistosomiasis, a disease affecting hundreds of millions of people worldwide. Many anthelmintics, likely including PZQ, target ion channels, membrane protein complexes essential for normal functioning of the neuromusculature and other tissues. Despite this fact, only a few classes of parasitic helminth ion channels have been assessed for their pharmacological properties or for their roles in parasite physiology. One such overlooked group of ion channels is the transient receptor potential (TRP channel superfamily. TRP channels share a common core structure, but are widely diverse in their activation mechanisms and ion selectivity. They are critical to transducing sensory signals, responding to a wide range of external stimuli. They are also involved in other functions, such as regulating intracellular calcium and organellar ion homeostasis and trafficking. Here, we review current literature on parasitic helminth TRP channels, focusing on those in schistosomes. We discuss the likely roles of these channels in sensory and locomotor activity, including the possible significance of a class of TRP channels (TRPV that is absent in schistosomes. We also focus on evidence indicating that at least one schistosome TRP channel (SmTRPA has atypical, TRPV1-like pharmacological sensitivities that could potentially be exploited for future therapeutic targeting.

  15. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  16. Mediatized play

    DEFF Research Database (Denmark)

    Johansen, Stine Liv

    Children’s play must nowadays be understood as a mediatized field in society and culture. Media – understood in a very broad sense - holds severe explanatory power in describing and understanding the practice of play, since play happens both with, through and inspired by media of different sorts....... In this presentation the case of ‘playing soccer’ will be outlined through its different mediated manifestations, including soccer games and programs on TV, computer games, magazines, books, YouTube videos and soccer trading cards....

  17. Mesangial cell integrin αvβ8 provides glomerular endothelial cell cytoprotection by sequestering TGF-β and regulating PECAM-1.

    Science.gov (United States)

    Khan, Shenaz; Lakhe-Reddy, Sujata; McCarty, Joseph H; Sorenson, Christine M; Sheibani, Nader; Reichardt, Louis F; Kim, Jane H; Wang, Bingcheng; Sedor, John R; Schelling, Jeffrey R

    2011-02-01

    Integrins are heterodimeric receptors that regulate cell adhesion, migration, and apoptosis. Integrin αvβ8 is most abundantly expressed in kidney and brain, and its major ligand is latent transforming growth factor-β (TGF-β). Kidney αvβ8 localizes to mesangial cells, which appose glomerular endothelial cells and maintain glomerular capillary structure by mechanical and poorly understood paracrine mechanisms. To establish kidney αvβ8 function, mice with homozygous Itgb8 deletion (Itgb8(-/-)) were generated on outbred and C57BL/6 congenic backgrounds. Most Itgb8(-/-) mice died in utero, and surviving Itgb8(-/-) mice failed to gain weight, and rarely survived beyond 6 weeks. A renal glomerular phenotype included azotemia and albuminuria, as well as increased platelet endothelial cell adhesion molecule-1 (PECAM-1) expression, which was surprisingly not associated with conventional functions, such as endothelial cell hyperplasia, hypertrophy, or perivascular inflammation. Itgb8(-/-) mesangial cells demonstrated reduced latent TGF-β binding, resulting in bioactive TGF-β release, which stimulated glomerular endothelial cell apoptosis. Using PECAM-1 gain and loss of function strategies, we show that PECAM-1 provides endothelial cytoprotection against mesangial cell TGF-β. These results clarify a singular mechanism of mesangial-to-endothelial cell cross-talk, whereby mesangial cell αvβ8 homeostatically arbitrates glomerular microvascular integrity by sequestering TGF-β in its latent conformation. Under pathological conditions associated with decreased mesangial cell αvβ8 expression and TGF-β secretion, compensatory PECAM-1 modulation facilitates glomerular endothelial cell survival.

  18. Prohibitin confers cytoprotection against ISO-induced hypertrophy in H9c2 cells via attenuation of oxidative stress and modulation of Akt/Gsk-3β signaling.

    Science.gov (United States)

    Chowdhury, Debabrata; Kumar, Dinesh; Bhadra, Utpal; Devi, Tangutur Anjana; Bhadra, Manika Pal

    2017-01-01

    Numerous hypertrophic stimuli, including β-adrenergic agonists such as isoproterenol (ISO), result in generation of reactive oxygen species (ROS) and alteration in the mitochondrial membrane potential (Δψ) leading to oxidative stress. This process is well associated with phosphorylation of thymoma viral proto-oncogene Akt (Ser473) and glycogen synthase kinase-3β (Gsk-3β) (Ser9), with resultant inactivation of Gsk-3β. In the present study, we found that the protective defensive role of prohibitin (PHB) against ISO-induced hypertrophic response in rat H9c2 cells is via attenuation of oxidative stress-dependent signaling pathways. The intracellular levels of mitochondrial membrane potential along with cellular ROS levels and mitochondrial superoxide generation were determined. In order to understand the regulation of Akt/Gsk-3β signaling pathway, we carried out immmunoblotting for key proteins of the pathway such as PTEN, PI3K, phosphorylated, and unphosphorylated forms of Akt, Gsk-3β, and immunofluorescence experiments of p-Gsk-3β. Enforced expression of PHB in ISO-treated H9c2 cells suppressed cellular ROS production with mitochondrial superoxide generation and enhanced the mitochondrial membrane potential resulting in suppression of oxidative stress which likely offered potent cellular protection, led to the availability of more healthy cells, and also, significant constitutive activation of Gsk-3β via inactivation of Akt was observed. Knockdown of PHB expression using PHB siRNA in control H9c2 cells reversed these effects. Overall, our results demonstrate that PHB confers cytoprotection against oxidative stress in ISO-induced hypertrophy and this process is associated with modulation of Akt/Gsk-3β signaling mechanisms as evident from our PHB overexpression and knockdown experiments.

  19. Amifostine (WR-2721, a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin's lymphomas: a phase II study

    Directory of Open Access Journals (Sweden)

    De Souza C.A.

    2000-01-01

    Full Text Available Clinical trials indicate that amifostine may confer protection on various normal tissues without attenuating anti-tumor response. When administered prior to chemotherapy or radiotherapy, it may provide a broad spectrum of cytoprotection including against alkylating drugs. The mechanism of protection resides in the metabolism at normal tissue site by membrane-bound alkaline phosphatase. Toxicity of this drug is moderate with hypotension, nausea and vomiting, and hypocalcemia being observed. We report a phase II study using amifostine as a protective drug against high-dose cyclophosphamide (HDCY (7 g/m2, used to mobilize peripheral blood progenitor cells (PBPC and to reduce tumor burden. We enrolled 29 patients, 22 (75.9% affected by aggressive and 7 (24.1% by indolent non-Hodgkin's lymphoma (NHL, who were submitted to 58 infusions of amifostine and compared them with a historical group (33 patients affected by aggressive NHL and treated with VACOP-B followed by HDCY. The most important results in favor of amifostine were the reduction of intensity of cardiac, pulmonary and hepatic toxicity, and a significant reduction of frequency and severity of mucositis (P = 0.04. None of the 29 patients died in the protected group, while in the historical group 2/33 patients died because of cardiac or pulmonary toxicity and 2 patients stopped therapy due to toxicity. Amifostine did not prevent the aplastic phase following HDCY. PBPC collection and hematological recovery were adequate in both groups. The number of CFU-GM (colony-forming units-granulocyte/macrophage colonies and mononuclear cells in the apheresis products was significantly higher in the amifostine group (P = 0.02 and 0.01, respectively. Side effects were mild and easily controlled. We conclude that amifostine protection should be useful in HDCY to protect normal tissues, with acceptable side effects.

  20. Na+ channel β subunits: Overachievers of the ion channel family

    Directory of Open Access Journals (Sweden)

    William J Brackenbury

    2011-09-01

    Full Text Available Voltage gated Na+ channels (VGSCs in mammals contain a pore-forming α subunit and one or more β subunits. There are five mammalian β subunits in total: β1, β1B, β2, β3, and β4, encoded by four genes: SCN1B-SCN4B. With the exception of the SCN1B splice variant, β1B, the β subunits are type I topology transmembrane proteins. In contrast, β1B lacks a transmembrane domain and is a secreted protein. A growing body of work shows that VGSC β subunits are multifunctional. While they do not form the ion channel pore, β subunits alter gating, voltage-dependence, and kinetics of VGSC α subunits and thus regulate cellular excitability in vivo. In addition to their roles in channel modulation, β subunits are members of the immunoglobulin (Ig superfamily of cell adhesion molecules (CAMs and regulate cell adhesion and migration. β subunits are also substrates for sequential proteolytic cleavage by secretases. An example of the multifunctional nature of β subunits is β1, encoded by SCN1B, that plays a critical role in neuronal migration and pathfinding during brain development, and whose function is dependent on Na+ current and γ-secretase activity. Functional deletion of SCN1B results in Dravet Syndrome, a severe and intractable pediatric epileptic encephalopathy. β subunits are emerging as key players in a wide variety of pathophysiologies, including epilepsy, cardiac arrhythmia, multiple sclerosis, Huntington’s disease, neuropsychiatric disorders, neuropathic and inflammatory pain, and cancer. β subunits mediate multiple signaling pathways on different timescales, regulating electrical excitability, adhesion, migration, pathfinding, and transcription. Importantly, some β subunit functions may operate independent of α subunits. Thus, β subunits perform critical roles during development and disease. As such, they may prove useful in disease diagnosis and therapy.

  1. SNC-80-induced preconditioning: selective activation of the mitochondrial adenosine triphosphate-gated potassium channel.

    Science.gov (United States)

    Fischbach, Peter S; Barrett, Terrance D; Reed, Nathan J; Lucchesi, Benedict R

    2003-05-01

    Pharmacologic preconditioning by delta-opioid agonists occurs via activation of an adenosine triphosphate (ATP)-gated potassium channel (I(KATP)). Opening of mitochondrial I(KATP) confers pharmacologic preconditioning whereas opening the sarcolemmal I(KATP) shortens action potential duration and is proarrhythmic. This study investigated whether SNC-80, a selective delta-opioid agonist, is associated with development of ventricular arrhythmia due to activation of I(KATP). Rabbit isolated hearts were subjected to 12 min of hypoxia and 40 min of reoxygenation after pretreatment with SNC-80 (1 microM, n = 6), pinacidil (1.25 microM, n = 12), or BMS-191095 (6.0 microM, n = 4). Nine additional hearts served as controls. The cytoprotective effects of SNC-80 at a concentration of 1 microM were confirmed using 30 min of regional ischemia followed by 120 min of reperfusion. Ventricular fibrillation (VF) developed in 11 of 12 pinacidil-treated hearts whereas none of the SNC-80-treated (zero of six) hearts developed VF (P SNC-80 reduced infarct size expressed as a percentage of the area at risk from 33 +/- 4% to 14 +/- 3% (P = 0.004) compared with control. SNC-80, which selectively activates the delta-opioid receptor, provided cytoprotection but did not induce VF after hypoxia reoxygenation. The results indicate that pinacidil-induced nonselective activation of I(KATP) results in proarrhythmia that is dependent on activation of the sarcolemmal I(KATP). Selectivity for the mitochondrial I(KATP) is necessary to prevent induction of a proarrhythmic state.

  2. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  3. Two-pore Domain Potassium Channels in Astrocytes

    Science.gov (United States)

    Ryoo, Kanghyun

    2016-01-01

    Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes. PMID:27790056

  4. Ion channels in toxicology.

    Science.gov (United States)

    Restrepo-Angulo, Iván; De Vizcaya-Ruiz, Andrea; Camacho, Javier

    2010-08-01

    Ion channels play essential roles in human physiology and toxicology. Cardiac contraction, neural transmission, temperature sensing, insulin release, regulation of apoptosis, cellular pH and oxidative stress, as well as detection of active compounds from chilli, are some of the processes in which ion channels have an important role. Regulation of ion channels by several chemicals including those found in air, water and soil represents an interesting potential link between environmental pollution and human diseases; for instance, de novo expression of ion channels in response to exposure to carcinogens is being considered as a potential tool for cancer diagnosis and therapy. Non-specific binding of several drugs to ion channels is responsible for a huge number of undesirable side-effects, and testing guidelines for several drugs now require ion channel screening for pharmaceutical safety. Animal toxins targeting human ion channels have serious effects on the population and have also provided a remarkable tool to study the molecular structure and function of ion channels. In this review, we will summarize the participation of ion channels in biological processes extensively used in toxicological studies, including cardiac function, apoptosis and cell proliferation. Major findings on the adverse effects of drugs on ion channels as well as the regulation of these proteins by different chemicals, including some pesticides, are also reviewed. Association of ion channels and toxicology in several biological processes strongly suggests these proteins to be excellent candidates to follow the toxic effects of xenobiotics, and as potential early indicators of life-threatening situations including chronic degenerative diseases.

  5. Protection of Coronary Endothelial Function during Cardiac Surgery: Potential of Targeting Endothelial Ion Channels in Cardioprotection

    Directory of Open Access Journals (Sweden)

    Qin Yang

    2014-01-01

    Full Text Available Vascular endothelium plays a critical role in the control of blood flow by producing vasoactive factors to regulate vascular tone. Ion channels, in particular, K+ channels and Ca2+-permeable channels in endothelial cells, are essential to the production and function of endothelium-derived vasoactive factors. Impairment of coronary endothelial function occurs in open heart surgery that may result in reduction of coronary blood flow and thus in an inadequate myocardial perfusion. Hyperkalemic exposure and concurrent ischemia-reperfusion during cardioplegic intervention compromise NO and EDHF-mediated function and the impairment involves alterations of K+ channels, that is, KATP and KCa, and Ca2+-permeable TRP channels in endothelial cells. Pharmacological modulation of these channels during ischemia-reperfusion and hyperkalemic exposure show promising results on the preservation of NO and EDHF-mediated endothelial function, which suggests the potential of targeting endothelial K+ and TRP channels for myocardial protection during cardiac surgery.

  6. Athermalized channeled spectropolarimeter enhancement.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Julia Craven; Way, Brandyn Michael; Mercier, Jeffrey Alan; Hunt, Jeffery P.

    2013-09-01

    Channeled spectropolarimetry can measure the complete polarization state of light as a function of wavelength. Typically, a channeled spectropolarimeter uses high order retarders made of uniaxial crystal to amplitude modulate the measured spectrum with the spectrally-dependent Stokes polarization information. A primary limitation of conventional channeled spectropolarimeters is related to the thermal variability of the retarders. Thermal variation often forces frequent system recalibration, particularly for field deployed systems. However, implementing thermally stable retarders, made of biaxial crystal, results in an athermal channeled spectropolarimeter that relieves the need for frequent recalibration. This report presents experimental results for an anthermalized channeled spectropolarimeter prototype produced using potassium titanyl phosphate. The results of this prototype are compared to the current thermal stabilization state of the art. Finally, the application of the technique to the thermal infrared is studied, and the athermalization concept is applied to an infrared imaging spectropolarimeter design.

  7. Cytoprotection of Human Endothelial Cells Against Oxidative Stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of Systems Biology to Understand the Mechanism of Action

    Science.gov (United States)

    2014-04-03

    oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action Xinyu Wang a,n, James A. Bynumb,c, Solomon Stavchansky...2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): Application of systems biology to understand the mechanism of action 5a. CONTRACT...wide systems biology approach. In the study, we examined the cytoprotective effect of CDDO-Im against oxidative stress in HUVEC and compared it to

  8. Development and Testing of an In Vitro Assay for Screening of Potential Therapeutic Agents Active against Na Channel Neurotoxins

    Science.gov (United States)

    1991-04-12

    to produce approximately half-maximal effects mediated through these different sodium channel sites in the assay. Thus, the binding of [3HJBTX-B should...experiments with I3H]STX, yielding the unexpected result that effects of HM-197 are not mediated through the TTX/STX sodium channel binding site. Additional...Scorpion toxin; Screening; nA Pyrethroids; Radioligand binding; Synaptoneurosomes; RA 1 ; nA I ~ I ITherapeutic agents; Sodium channel 19. ABSTRACT

  9. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  10. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  11. Channel Access in Erlang

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J. [Fermilab

    2013-10-13

    We have developed an Erlang language implementation of the Channel Access protocol. Included are low-level functions for encoding and decoding Channel Access protocol network packets as well as higher level functions for monitoring or setting EPICS process variables. This provides access to EPICS process variables for the Fermilab Acnet control system via our Erlang-based front-end architecture without having to interface to C/C++ programs and libraries. Erlang is a functional programming language originally developed for real-time telecommunications applications. Its network programming features and list management functions make it particularly well-suited for the task of managing multiple Channel Access circuits and PV monitors.

  12. Geographic variation in Puget Sound tidal channel planform geometry

    Science.gov (United States)

    Hood, W. Gregory

    2015-02-01

    Tidal channels are central elements of salt marsh hydrodynamics, sediment dynamics, and habitat. To develop allometric models predicting the number and size of tidal channels that could develop following salt marsh restoration, channels were digitized from aerial photographs of Puget Sound river delta marshes. Salt marsh area was the independent variable for all dependent channel planform metrics. Tidal channel allometry showed similar scaling exponents for channel planform metrics throughout Puget Sound, simplifying comparisons between locations. Y-intercepts of allometric relationships showed geographic variation, which multiple-regression indicated was associated with tidal range and storm significant wave height. Channel size and complexity were positively related to tidal range and negatively related to wave height. Four case studies, each with paired regions of similar tidal range and contrasting wave environments, further indicated wave environment affected channel geometry. Wave-mediated sediment delivery may be the mechanism involved, with wave-sheltered areas experiencing relative sediment deficits, such that some salt marshes in Puget Sound are already suffering sea-level rise impacts that are reflected in their channel network geometry.

  13. An Insight to Covert Channels

    OpenAIRE

    Salwan, Nitish; Singh, Sandeep; Arora, Suket; Singh, Amarpreet

    2013-01-01

    This paper presents an overview of different concepts regarding covert channels. It discusses the various classifications and the detailing of various fields used to manipulate for the covert channel execution.Different evaluation criterias are presented for measuring the strength of covert channels. The defenses and prevention schemes for this covert channel will also be discussed. This paper also discuss about an advanced timing channel i.e.Temperature Based Covert Channel.

  14. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered no sys...... no systematic overview exist of channel choice. We present a literature review of channel choice studies in government to citizen context identifying authors, countries, methods, concepts, units of analysis, and theories, and offer suggestionsfor future studies....

  15. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model.

    Directory of Open Access Journals (Sweden)

    Fumihiko Namba

    expression of HO-1 predisposed to long-term abnormal lung cellular proliferation. To maximize HO-1 cytoprotective effects, therapeutic strategies must account for the specific effects of its subcellular localization and expression levels.

  16. Sensing with Ion Channels

    CERN Document Server

    Martinac, Boris

    2008-01-01

    All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input for the existence of life thus justifies the effort made to understand its molecular origins. Sensing with Ion Channels focuses on ion channels as key molecules enabling biological systems to sense and process the physical and chemical stimuli that act upon cells in their living environment. Its aim is to serve as a reference to ion channel specialists and as a source of new information to non specialists who want to learn about the structural and functional diversity of ion channels and their role in sensory physiology.

  17. Covert Channels within IRC

    Science.gov (United States)

    2011-03-24

    Communications ....................................... 2 1.3 Steganography and Covert Channels .......................................................... 3...Internet Relay Chat ..................................................................................... 7 2.2 Steganography ...13 2.2.2 Encrypted Steganographic Systems .............................................. 15 2.2.3 Text-Based Steganography

  18. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  19. Authentication over Noisy Channels

    CERN Document Server

    Lai, Lifeng; Poor, H Vincent

    2008-01-01

    In this work, message authentication over noisy channels is studied. The model developed in this paper is the authentication theory counterpart of Wyner's wiretap channel model. Two types of opponent attacks, namely impersonation attacks and substitution attacks, are investigated for both single message and multiple message authentication scenarios. For each scenario, information theoretic lower and upper bounds on the opponent's success probability are derived. Remarkably, in both scenarios, lower and upper bounds are shown to match, and hence the fundamental limit of message authentication over noisy channels is fully characterized. The opponent's success probability is further shown to be smaller than that derived in the classic authentication model in which the channel is assumed to be noiseless. These results rely on a proposed novel authentication scheme in which key information is used to provide simultaneous protection again both types of attacks.

  20. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    , and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...... by cell swelling, it is possible that CFTR serves RVD/AVD through accumulation of ROS and activation of independent membrane channels such as ANO6. Thus activation of ANO6 will support cell shrinkage and induce additional apoptotic events, such as membrane phospholipid scrambling....

  1. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    - serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...... of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume......, controlled cell death and cellular migration. Volume regulatory mechanisms has long been in focus for regulating cellular proliferation and my thesis work have been focusing on the role of Cl- channels in proliferation with specific emphasis on ICl, swell. Pharmacological blockage of the ubiquitously...

  2. The role of CRAC channel in asthma.

    Science.gov (United States)

    Kaur, Manminder; Birrell, Mark A; Dekkak, Bilel; Reynolds, Sophie; Wong, Sissie; De Alba, Jorge; Raemdonck, Kristof; Hall, Simon; Simpson, Karen; Begg, Malcolm; Belvisi, Maria G; Singh, Dave

    2015-12-01

    Asthma is increasing globally and current treatments only manage a proportion of patients. There is an urgent need to develop new therapies. Lymphocytes are thought to play a central role in the pathophysiology of asthma through the production of inflammatory mediators. This is thought to be via the transcription factor NFAT which in turn can be activated through Ca(2+) release-activated Ca(2+) (CRAC) channels. The aim of this work was to investigate the role of CRAC in clinical and pre-clinical models of allergic asthma. Initial data demonstrated that the NFAT pathway is increased in stimulated lymphocytes from asthmatics. To confirm a role for the channel we showed that a selective inhibitor, Synta 66, blocked mediator production from lymphocytes. Synta 66 inhibited CD2/3/28 induced IL-2, IL-7, IL-13 & IFNΥ in a concentration-dependent manner in healthy and severe asthma donors, with over 60% inhibition observed for all cytokines. NFAT pathway was also increased in a pre-clinical asthma model. In this model we have demonstrated that CRAC played a central role in the airway inflammation and late asthmatic response (LAR). In conclusion, our data provides evidence that suggests targeting CRAC channels could be of therapeutic benefit for asthma sufferers.

  3. Endocytic regulation of voltage-dependent potassium channels in the heart.

    Science.gov (United States)

    Ishii, Kuniaki; Norota, Ikuo; Obara, Yutaro

    2012-01-01

    Understanding the regulation of cardiac ion channels is critical for the prevention of arrhythmia caused by abnormal excitability. Ion channels can be regulated by a change in function (qualitative) and a change in number (quantitative). Functional changes have been extensively investigated for many ion channels including cardiac voltage-dependent potassium channels. By contrast, the regulation of ion channel numbers has not been widely examined, particularly with respect to acute modulation of ion channels. This article briefly summarizes stimulus-induced endocytic regulation of major voltage-dependent potassium channels in the heart. The stimuli known to cause their endocytosis include receptor activation, drugs, and low extracellular [K(+)], following which the potassium channels undergo either clathrin-mediated or caveolin-mediated endocytosis. Receptor-mediated endocytic regulation has been demonstrated for Kv1.2, Kv1.5, KCNQ1 (Kv7.1), and Kv4.3, while drug-induced endocytosis has been demonstrated for Kv1.5 and hERG. Low [K(+)](o)-induced endocytosis might be unique for hERG channels, whose electrophysiological characteristics are known to be under strong influence of [K(+)](o). Although the precise mechanisms have not been elucidated, it is obvious that major cardiac voltage-dependent potassium channels are modulated by endocytosis, which leads to changes in cardiac excitability.

  4. Fracture channel waves

    Science.gov (United States)

    Nihei, Kurt T.; Yi, Weidong; Myer, Larry R.; Cook, Neville G. W.; Schoenberg, Michael

    1999-03-01

    The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A0 mode) and demonstrates the ease with which a fracture channel wave can be generated and detected.

  5. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  6. Anti-free radical and cytoprotective effects of quercetin and its sugar-containing natural congeners in cultured HEK293 cells injured by anoxia/hypoglycemia and the structure-effect relationship thereto

    Institute of Scientific and Technical Information of China (English)

    JIN Yue; LU Yong; HAN Guo-zhu; YU Hong; JING Fong

    2008-01-01

    Objective To comparatively study anti-free radical and cytoprotective effects of quercetin (Q) and its monoglucoside isoquercetin (I), diglucoside rutin (R), which differs only in glycosyl-substitution at C-3 position of the molecules, using anoxia/hypoglycemia-induced cell injury model and thereby to explore the structure-effect relationship thereto. Methods The cell injury model was established by HEK293 cells cultured in vitro with Na2S2O3 plus sugar-free Earle's fluid as incubation medium. Cell survival rate (CSR), total antioxidant capacity (TAC), SOD and LDH levels were determined. The effect intensity of the 3 flavonoids was compared by means of IC50, the concentration required to achieve 50 % inhibition of the changes in the above indices in injured cells. Results Q, I and R all concentration-dependently elevated CSR, TAC and SOD and reduced LDH level. The all of IC50s for the above indices were ranked in order of IC50,QI>R. Conclusions The 3 structurally similar flavoloids all have significant and concentration-dependent anti-free radical and cyto-protective effects with the intensity being in order of aglycone>monoglucoside> diglucoside; the substitution of -OH by sugar group at C-3 position of flavoloids and increase in the sugar-substituent number are associated with the effect intensity reduced;namely, the intensity of these effects of flavonoids is negatively related the substutution by sugar group at C-3 position.

  7. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating

    Directory of Open Access Journals (Sweden)

    Mark Alan Zaydman

    2014-05-01

    Full Text Available Voltage-gated potassium (Kv channels contain voltage-sensing (VSD and pore-gate (PGD structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7 channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2. Recent studies suggest that PIP2 serves as a cofactor to mediate VSD-PGD coupling in KCNQ1 channels. In this review, we put these findings in the context of the current understanding of voltage-dependent gating, lipid modulation of Kv channel activation, and PIP2-regulation of KCNQ channels. We suggest that lipid-mediated coupling of functional domains is a common mechanism among KCNQ channels that may be applicable to other Kv channels and membrane proteins.

  8. PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating.

    Science.gov (United States)

    Zaydman, Mark A; Cui, Jianmin

    2014-01-01

    Voltage-gated potassium (Kv) channels contain voltage-sensing (VSD) and pore-gate (PGD) structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7) channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Recent studies suggest that PIP2 serves as a cofactor to mediate VSD-PGD coupling in KCNQ1 channels. In this review, we put these findings in the context of the current understanding of voltage-dependent gating, lipid modulation of Kv channel activation, and PIP2-regulation of KCNQ channels. We suggest that lipid-mediated coupling of functional domains is a common mechanism among KCNQ channels that may be applicable to other Kv channels and membrane proteins.

  9. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  10. Regulated trafficking of the CFTR chloride channel.

    Science.gov (United States)

    Kleizen, B; Braakman, I; de Jonge, H R

    2000-08-01

    The cystic fibrosis transmembrane conductance regulator (CFTR), the ABC transporter encoded by the cystic fibrosis gene, is localized in the apical membrane of epithelial cells where it functions as a cyclic AMP-regulated chloride channel and as a regulator of other ion channels and transporters. Whereas a key role of cAMP-dependent phosphorylation in CFTR-channel gating has been firmly established, more recent studies have provided clear evidence for the existence of a second level of cAMP regulation, i.e. the exocytotic recruitment of CFFR to the plasma membrane and its endocytotic retrieval. Regulated trafficking of the CFTR Cl- channel has sofar been demonstrated only in a subset of CFTR-expressing cell types. However, with the introduction of more sensitive methods to measure CFTR cycling and submembrane localization, it might turn out to be a more general phenomenon that could contribute importantly to both the regulation of CFTR-mediated chloride transport itself and to the regulation of other transporters and CFTR-modulated cellular functions. This review aims to summarize the present state of knowledge regarding polarized and regulated CFTR trafficking and endosomal recycling in epithelial cells, to discuss present gaps in our understanding of these processes at the cellular and molecular level, and to consider its possible implications for cystic fibrosis.

  11. Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits

    NARCIS (Netherlands)

    Pyott, Sonja J; Meredith, Andrea L; Fodor, Anthony A; Vázquez, Ana E; Yamoah, Ebenezer N; Aldrich, Richard W

    2007-01-01

    Large conductance voltage- and calcium-activated potassium (BK) channels are important for regulating many essential cellular functions, from neuronal action potential shape and firing rate to smooth muscle contractility. In amphibians, reptiles, and birds, BK channels mediate the intrinsic frequenc

  12. Significance of the Centrally Expressed TRP Channel "Painless" in "Drosophila" Courtship Memory

    Science.gov (United States)

    Sakai, Takaomi; Sato, Shoma; Ishimoto, Hiroshi; Kitamoto, Toshihiro

    2013-01-01

    Considerable evidence has demonstrated that transient receptor potential (TRP) channels play vital roles in sensory neurons, mediating responses to various environmental stimuli. In contrast, relatively little is known about how TRP channels exert their effects in the central nervous system to control complex behaviors. This is also true for the…

  13. Voltage-Gated Ion Channels in Nociceptors: Modulation by the cGMP-PKG pathway

    Institute of Scientific and Technical Information of China (English)

    FuHui; L.Liu; T.Yang; S.A.Simon

    2004-01-01

    AIM: Nociceptors contain a variety of ion channels that are modulated by proinflammatory mediators that may arise from tissue or nerve injury. The changes in activity of these channels, which primarily occurs through changes in intracellular pathways, may lead to the pathological states of hyperalgesia and allodynia. METHODS &RESULTS: Whole-cell

  14. KCNMA1 encoded cardiac BK channels afford protection against ischemia-reperfusion injury

    DEFF Research Database (Denmark)

    Soltysinska, Ewa; Bentzen, Bo Hjorth; Barthmes, Maria;

    2014-01-01

    Mitochondrial potassium channels have been implicated in myocardial protection mediated through pre-/postconditioning. Compounds that open the Ca2+- and voltage-activated potassium channel of big-conductance (BK) have a pre-conditioning-like effect on survival of cardiomyocytes after ischemia/rep...

  15. Molecular Basis of Paraltyic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    Science.gov (United States)

    1985-10-14

    of 9,700 daltons isolated from the coral Goni2oora gy. (1). The toxin enhances neurally mediated contraction of blood vessels and taenia coli of the...sites on the solium channel and to identify the site of GPT action within the structure of the sodium channel protein. 2. Site of Action of Brvyetoxin

  16. Hydralazine-induced vasodilation involves opening of high conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Bang, Lone; Nielsen-Kudsk, J E; Gruhn, N;

    1998-01-01

    The purpose of this study was to investigate whether high conductance Ca2+-activated K+ channels (BK(Ca)) are mediating the vasodilator action of hydralazine. In isolated porcine coronary arteries, hydralazine (1-300 microM), like the K+ channel opener levcromakalim, preferentially relaxed...

  17. Tactile Sensitivity of Children: Effects of Frequency, Masking, and the Non-Pacinian I Psychophysical Channel

    Science.gov (United States)

    Guclu, Burak; Oztek, Cigdem

    2007-01-01

    Tactile perception depends on the contributions of four psychophysical tactile channels mediated by four corresponding receptor systems. The sensitivity of the tactile channels is determined by detection thresholds that vary as a function of the stimulus frequency. It has been widely reported that tactile thresholds increase (i.e., sensitivity…

  18. Regions of KCNQ K+ Channels Controlling Functional Expression

    Directory of Open Access Journals (Sweden)

    Frank eChoveau

    2012-10-01

    Full Text Available KCNQ1-5 α-subunits assemble to form K+ channels that play critical roles in the function of numerous tissues. The channels are tetramers of subunits containing six transmembrane domains. Each subunit consists of a pore region (S5-pore-S6 and a voltage sensor domain (S1-S4. Despite similar structures, KCNQ2 and KCNQ3 homomers yield small current amplitudes compared to other KCNQ homomers and KCNQ2/3 heteromers. Two major mechanisms have been suggested as governing functional expression. The first involves control of channel trafficking to the plasma membrane by the distal part of the C-terminus, containing two coiled-coiled domains, required for channel trafficking and assembly. The proximal half of the C-terminus is the crucial region for channel modulation by signaling molecules such as calmodulin, which may mediate C- and N-terminal interactions. The N-terminus of KCNQ channels has also been postulated as critical for channel surface expression. The second mechanism suggests networks of interactions between the pore helix and the selectivity filter, and between the pore helix and the S6 domain that govern KCNQ current amplitudes. Here, we summarize the role of these different regions in expression of functional KCNQ channels.

  19. Molecular cell biology of KATP channels: implications for neonatal diabetes.

    Science.gov (United States)

    Smith, Andrew J; Taneja, Tarvinder K; Mankouri, Jamel; Sivaprasadarao, Asipu

    2007-08-01

    ATP-sensitive potassium (KATP) channels play a key role in the regulation of insulin secretion by coupling glucose metabolism to the electrical activity of pancreatic beta-cells. To generate an electric signal of suitable magnitude, the plasma membrane of the beta-cell must contain an appropriate number of channels. An inadequate number of channels can lead to congenital hyperinsulinism, whereas an excess of channels can result in the opposite condition, neonatal diabetes. KATP channels are made up of four subunits each of Kir6.2 and the sulphonylurea receptor (SUR1), encoded by the genes KCNJ11 and ABCC8, respectively. Following synthesis, the subunits must assemble into an octameric complex to be able to exit the endoplasmic reticulum and reach the plasma membrane. While this biosynthetic pathway ensures supply of channels to the cell surface, an opposite pathway, involving clathrin-mediated endocytosis, removes channels back into the cell. The balance between these two processes, perhaps in conjunction with endocytic recycling, would dictate the channel density at the cell membrane. In this review, we discuss the molecular signals that contribute to this balance, and how an imbalance could lead to a disease state such as neonatal diabetes.

  20. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  1. Requirement for chloride channel function during the hepatitis C virus life cycle

    OpenAIRE

    Igloi, Z; Mohl, BP; Lippiat, JD; Harris, M.; Mankouri, J

    2015-01-01

    Hepatocytes express an array of plasma membrane and intracellular ion channels, yet their role during the hepatitis C virus (HCV) life cycle remains largely undefined. Here, we show that HCV increases intracellular hepatic chloride (Cl−) influx that can be inhibited by selective Cl− channel blockers. Through pharmacological and small interfering RNA (siRNA)-mediated silencing, we demonstrate that Cl− channel inhibition is detrimental to HCV replication. This represents the first observation o...

  2. A role for BK channels in heart rate regulation in rodents.

    Directory of Open Access Journals (Sweden)

    Wendy L Imlach

    Full Text Available The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+ and Ca(2+ and outward K(+ currents. There are a number of K(+ channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK ion channels are not thought to be directly involved in heart function. Here we present evidence that heart rate can be significantly reduced by inhibiting the activity of BK channels. Agents that specifically inhibit BK channel activity, including paxilline and lolitrem B, slowed heart rate in conscious wild-type mice by 30% and 42%, respectively. Heart rate of BK channel knock-out mice (Kcnma1(-/- was not affected by these BK channel inhibitors, suggesting that the changes to heart rate were specifically mediated through BK channels. The possibility that these effects were mediated through BK channels peripheral to the heart was ruled out with experiments using isolated, perfused rat hearts, which showed a significant reduction in heart rate when treated with the BK channel inhibitors paxilline (1 microM, lolitrem B (1 microM, and iberiotoxin (0.23 microM, of 34%, 60%, and 42%, respectively. Furthermore, paxilline was shown to decrease heart rate in a dose-dependent manner. These results implicate BK channels located in the heart to be directly involved in the regulation of heart rate.

  3. TRP channels and pain.

    Science.gov (United States)

    Julius, David

    2013-01-01

    Nociception is the process whereby primary afferent nerve fibers of the somatosensory system detect noxious stimuli. Pungent irritants from pepper, mint, and mustard plants have served as powerful pharmacological tools for identifying molecules and mechanisms underlying this initial step of pain sensation. These natural products have revealed three members of the transient receptor potential (TRP) ion channel family--TRPV1, TRPM8, and TRPA1--as molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce acute or persistent pain. Analysis of TRP channel function and expression has validated the existence of nociceptors as a specialized group of somatosensory neurons devoted to the detection of noxious stimuli. These studies are also providing insight into the coding logic of nociception and how specification of nociceptor subtypes underlies behavioral discrimination of noxious thermal, chemical, and mechanical stimuli. Biophysical and pharmacological characterization of these channels has provided the intellectual and technical foundation for developing new classes of analgesic drugs.

  4. Dequantization Via Quantum Channels

    Science.gov (United States)

    Andersson, Andreas

    2016-10-01

    For a unital completely positive map {Φ} ("quantum channel") governing the time propagation of a quantum system, the Stinespring representation gives an enlarged system evolving unitarily. We argue that the Stinespring representations of each power {Φ^m} of the single map together encode the structure of the original quantum channel and provide an interaction-dependent model for the bath. The same bath model gives a "classical limit" at infinite time {mto∞} in the form of a noncommutative "manifold" determined by the channel. In this way, a simplified analysis of the system can be performed by making the large- m approximation. These constructions are based on a noncommutative generalization of Berezin quantization. The latter is shown to involve very fundamental aspects of quantum-information theory, which are thereby put in a completely new light.

  5. Chaos in quantum channels

    CERN Document Server

    Hosur, Pavan; Roberts, Daniel A; Yoshida, Beni

    2015-01-01

    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling.

  6. BLIND CHANNEL ESTIMATION IN DELAY DIVERSITY FOR FREQUENCY SELECTIVE CHANNELS

    Institute of Scientific and Technical Information of China (English)

    Zhao Zheng; Jia Ying; Yin Qinye

    2003-01-01

    Delay diversity is an effective transmit diversity technique to combat adverse ef-fects of fading. Thus far, previous work in delay diversity assumed that perfect estimates ofcurrent channel fading conditions are available at the receiver and training symbols are requiredto estimate the channel from the transmitter to the receiver. However, increasing the number ofthe antennas increases the required training interval and reduces the available time within whichdata may be transmitted. Learning the channel coefficients becomes increasingly difficult for thefrequency selective channels. In this paper, with the subspace method and the delay character ofdelay diversity, a channel estimation method is proposed, which does not use training symbols. Itaddresses the transmit diversity for a frequency selective channel from a single carrier perspectivein the form of a simple equivalent fiat fading model. Monte Carlo simulations give the perfor-mance of channel estimation and the performance comparison of our channel-estimation-baseddetector with decision feedback equalization, which uses the perfect channel information.

  7. K(v)7 channels: function, pharmacology and channel modulators.

    Science.gov (United States)

    Dalby-Brown, William; Hansen, Henrik H; Korsgaard, Mads P G; Mirza, Naheed; Olesen, Søren-P

    2006-01-01

    K(v)7 channels are unique among K(+) channels, since four out of the five channel subtypes have well-documented roles in the development of human diseases. They have distinct physiological functions in the heart and in the nervous system, which can be ascribed to their voltage-gating properties. The K(v)7 channels also lend themselves to pharmacological modulation, and synthetic openers as well as blockers of the channels, regulating neuronal excitability, have existed even before the K(v)7 channels were identified by cloning. In the present review we give an account on the focused efforts to develop selective modulators, openers as well as blockers, of the K(v)7 channel subtypes, which have been undertaken during recent years, along with a discussion of the K(v)7 ion channel physiology and therapeutic indications for modulators of the neuronal K(v)7 channels.

  8. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  9. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels.

    Science.gov (United States)

    Fanger, C M; Rauer, H; Neben, A L; Miller, M J; Rauer, H; Wulff, H; Rosa, J C; Ganellin, C R; Chandy, K G; Cahalan, M D

    2001-04-13

    To maintain Ca(2+) entry during T lymphocyte activation, a balancing efflux of cations is necessary. Using three approaches, we demonstrate that this cation efflux is mediated by Ca(2+)-activated K(+) (K(Ca)) channels, hSKCa2 in the human leukemic T cell line Jurkat and hIKCa1 in mitogen-activated human T cells. First, several recently developed, selective and potent pharmacological inhibitors of K(Ca) channels but not K(V) channels reduce Ca(2+) entry in Jurkat and in mitogen-activated human T cells. Second, dominant-negative suppression of the native K(Ca) channel in Jurkat T cells by overexpression of a truncated fragment of the cloned hSKCa2 channel decreases Ca(2+) influx. Finally, introduction of the hIKCa1 channel into Jurkat T cells maintains rapid Ca(2+) entry despite pharmacological inhibition of the native small conductance K(Ca) channel. Thus, K(Ca) channels play a vital role in T cell Ca(2+) signaling.

  10. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  11. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available Of the five human KCNQ (Kv7 channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ is a slowly activating and slowly-deactivating K(+ current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine and opener (zinc pyrithione. We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies.

  12. Communicating Under Channel Uncertainty

    CERN Document Server

    Warsi, Naqueeb; Shah, Tapan

    2010-01-01

    For a single transmit and receive antenna system, a new constellation design is proposed to combat errors in the phase estimate of the channel coefficient. The proposed constellation is a combination of PSK and PAM constellations, where PSK is used to provide protection against phase errors, while PAM is used to increase the transmission rate using the knowledge of the magnitude of the channel coefficient. The performance of the proposed constellation is shown to be significantly better than the widely used QAM in terms of probability of error. The proposed strategy can also be extended to systems using multiple transmit and receive antennas.

  13. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Science.gov (United States)

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying p

  14. G-protein-coupled inward rectifier potassium channels involved in corticostriatal presynaptic modulation.

    Science.gov (United States)

    Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime

    2015-09-01

    Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels.

  15. Terapêutica citoprotetora em pacientes tratados com quimio e/ou radioterapia anti neoplásica Cytoprotective therapy in patients treated with chemotherapy and/or antineoplasic radiotherapy

    Directory of Open Access Journals (Sweden)

    Cármino A. Souza

    2000-08-01

    Full Text Available Nos últimos anos, vários agentes citoprotetores têm sido desenvolvidos para proteger células normais dos efeitos tóxicos da quimioterapia e radioterapia. O agente citoprotetor ideal seria aquele capaz de permitir a intensificação da dose dos quimioterápicos; proteger um amplo espectro de órgãos e tecidos quando do tratamento com diversos fármacos quimioterápicos; conferir proteção específica aos tecidos normais; preservar o efeito anti-tumoral e ter pequena e/ou controlável toxicidade e efeitos colaterais. Um citoprotetor deve ser administrado antes da quimioterapia citotóxica, ao contrário dos fatores estimuladores de colônia e do Leucovorin, que são administrados após quimioterapia como resgate à medula óssea e estimular a sua recuperação. Do ponto de vista prático existem três agentes citoprotetores: dois citoprotetores quimio-específicos (Dexrazoxane e Mesna e um citoprotetor de amplo espectro (Amifostina. Os autores discutem as principais propriedades e utilidades destas drogas utilizadas em Onco Hematologia.In recent years, cytoprotective agents have been developed to protect normal cells from the toxic effects of chemotherapy and radiotherapy. The ideal cytoprotectant is that which is able to allow intensification of chemotherapy; protects a broad spectrum of normal tissues and organs when used with a variety of chemotherapeutic agents; confers specific protection for normal tissues; preserves anti tumour activity and has little or manageable toxicity of its own. A cytoprotectant is administered prior to cytotoxic therapy, in contrast to the colony stimulant factors and Leucovorin, which are administered after chemotherapy to rescue the bone marrow and stimulate haematological recovery. Currently there are three cytoprotectors: two chemotherapy-specific (Dexrazoxane and Mesna and one broad-spectrum (Amifostine. The authors discuss the main properties and usefulness of these drugs in Oncohematology.

  16. All channels open

    NARCIS (Netherlands)

    Frank Huysmans; Jos de Haan

    2010-01-01

    Original title: Alle kanalen staan open. The rapid changes taking place in the media landscape in the Netherlands - characterised by digitisation and convergence of media technologies - raise the question of how the Dutch are dealing with the many new opportunities that have opened up. All channels

  17. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  18. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  19. Ion Channels in Leukocytes

    Science.gov (United States)

    1991-07-01

    muscle k142), heart muscle (80), bo- are released. In recent years much has been learned vine pulmonar arter endothelial cells (251), and rat about the...channel analysbib of Lt. Potassium permeability in HeLa cancer BioL Chem. 265: 142416-141263, 1990. cells. evidence for a calcium-a’tivated potassium

  20. Intermittency and exotic channels

    CERN Document Server

    Bialas, A

    1994-01-01

    It is pointed out that accurate measurements of short-range two-particle correlations in like-charge K\\pi and in \\pi^ 0\\pi^ 0 channels should be very helpful in determining the origin of the \\lq\\lq intermittency\\rq\\rq\\ phenomenon observed recently for the like-charge pion pairs.

  1. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  2. Bidirectional effects of hydrogen sulfide via ATP-sensitive K(+) channels and transient receptor potential A1 channels in RIN14B cells.

    Science.gov (United States)

    Ujike, Ayako; Otsuguro, Ken-ichi; Miyamoto, Ryo; Yamaguchi, Soichiro; Ito, Shigeo

    2015-10-05

    Hydrogen sulfide (H2S) reportedly acts as a gasotransmitter because it mediates various cellular responses through several ion channels including ATP-sensitive K(+) (KATP) channels and transient receptor potential (TRP) A1 channels. H2S can activate both KATP and TRPA1 channels at a similar concentration range. In a single cell expressing both channels, however, it remains unknown what happens when both channels are simultaneously activated by H2S. In this study, we examined the effects of H2S on RIN14B cells that express both KATP and TRPA1 channels. RIN14B cells showed several intracellular Ca(2+) concentration ([Ca(2+)]i) responses to NaHS (300 µM), an H2S donor, i.e., inhibition of spontaneous Ca(2+) oscillations (37%), inhibition followed by [Ca(2+)]i increase (24%), and a rapid increase in [Ca(2+)]i (25%). KATP channel blockers, glibenclamide or tolbutamide, abolished any inhibitory effects of NaHS and enhanced NaHS-mediated [Ca(2+)]i increases, which were inhibited by extracellular Ca(2+) removal, HC030031 (a TRPA1 antagonist), and disulfide bond-reducing agents. NaHS induced 5-hydroxytryptamine (5-HT) release from RIN14B cells, which was also inhibited by TRPA1 antagonists. These results indicate that H2S has both inhibitory and excitatory effects by opening KATP and TRPA1 channels, respectively, in RIN14B cells, suggesting potential bidirectional modulation of secretory functions.

  3. 质粒shRNA体内干扰Klotho基因对窦房结通道基因的影响%Study on the Effect of Klotho Gene Interferred by Plasmid-mediated Short Hairpin RNA (shRNA) on Sinoatrial Node Pacing Channel Gene

    Institute of Scientific and Technical Information of China (English)

    蔡盈盈; 汪汉; 侯言彬; 房晨鹂; 田鹏; 王贵华; 李璐; 邓珏琳

    2013-01-01

    通过质粒shRNA体内干扰,研究Klotho基因与窦房结起搏通道相关基因HCN4及HCN2之间的关系,为病窦综合征的研究提供新思路.取C57BL/6J小鼠20只,分为4组,每组5只,分别为:质粒shRNA 24 h组、质粒shRNA 12 h组、生理盐水24 h组、生理盐水12h组.质粒shRNA组经尾静脉注射质粒shRNA 50 μL(1 μg质粒/μL),生理盐水组经尾静脉注射生理盐水50 μL.分别于注射12h及24 h后取窦房结周围组织,行RT-PCR检测各组小鼠的Klotho、HCN2、HCN4基因的mRNA水平.RT-PCR结果显示:与生理盐水12h组比较,shRNA 12 h组的klotho、HCN4和HCN2的mRNA表达量明显降低,均有统计学差异(P<0.05).以上结果提示,小鼠Klotho基因和窦房结起搏基因可能存在一定关系.%The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4and HCN2) for studying sick sinus syndrome,with Klotho gene under the interference of Plasmid-mediated short hairpin RNA.Twenty-five C57BL/6J mice were divided into four groups,i.e,plasmid shRNA 24h group,plasmid shRNA 12h group,sodium chloride 24h group and sodium chloride 12h group.Plasmid shRNA 50μL (1μg/μL) and sodium chloride 50μl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group.After 12h or 24h respectively,all mice were executed and their sinoatrial node tissues were cut.The mRNA of Klotho,HCN4 and HCN2 gene were detected by RT-PCR.The results of RT-PCR showed that Klotho,HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval.The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.

  4. Functional coupling between heterologously expressed dopamine D(2) receptors and KCNQ channels

    DEFF Research Database (Denmark)

    Ljungstrom, Trine; Grunnet, Morten; Jensen, Bo Skaaning

    2003-01-01

    Activation of KCNQ potassium channels by stimulation of co-expressed dopamine D(2) receptors was studied electrophysiologically in Xenopus laevis oocytes and in mammalian cells. To address the specificity of the interaction between D(2)-like receptors and KCNQ channels, combinations of KCNQ1...... activation of the KCNQ channels was confirmed by co-expression of other neuronal K(+) channels (BK, K(V)1.1, and K(V)4.3) with the D(2L) receptor in Xenopus oocytes. None of these K(+) channels responded to stimulation of the D(2L) receptor. In the mammalian brain, dopamine D(2) receptors and KCNQ channels...... co-localise postsynaptically in several brain regions, so modulation of neuronal excitability by dopamine release could in part be mediated via an effect on KCNQ channels....

  5. A New Covert Channel over Cellular Voice Channel in Smartphones

    OpenAIRE

    Aloraini, Bushra; Johnson, Daryl; Stackpole, Bill; Mishra, Sumita

    2015-01-01

    Investigating network covert channels in smartphones has become increasingly important as smartphones have recently replaced the role of traditional computers. Smartphones are subject to traditional computer network covert channel techniques. Smartphones also introduce new sets of covert channel techniques as they add more capabilities and multiple network connections. This work presents a new network covert channel in smartphones. The research studies the ability to leak information from the...

  6. INCREASE IN ACTIVATED PROTEIN C MEDIATES ACUTE TRAUMATIC COAGULOPATHY IN MICE

    Science.gov (United States)

    Chesebro, Brian B.; Rahn, Pamela; Carles, Michel; Esmon, Charles T.; Xu, Jun; Brohi, Karim; Frith, Daniel; Pittet, Jean-François; Cohen, Mitchell J.

    2013-01-01

    In severely injured and hypoperfused trauma patients, endogenous acute coagulopathy (EAC) is associated with an increased morbidity and mortality. Recent human data correlate this coagulopathy with activation of the protein C pathway. To examine the mechanistic role of protein C in the development of EAC, we used a mouse model of trauma and hemorrhagic shock, characterized by the combination of tissue injury and severe metabolic acidosis. Mice were subjected to one of four treatment groups: 1) C, control; 2) T, trauma (laparotomy); 3) H, hemorrhage (MAP, 35 mmHg × 60 min); 4) TH, trauma + hemorrhage. After 60 min, blood was drawn for analysis. Compared with C mice, the TH mice had a significantly elevated activated partial thromboplastin time (23.3 vs. 34.5 s) and significantly increased levels of activated protein C (aPC; 2.30 vs. 13.58 ng/mL). In contrast, T and H mice did not develop an elevated activated partial thromboplastin time or increased aPC. Selective inhibition of the anticoagulant property of aPC prevented the coagulopathy seen in response to trauma/hemorrhage (23.5 vs. 38.6 s [inhibitory vs. control monoclonal antibody]) with no impact on survival during the shock period. However, complete blockade of both the anticoagulant and cytoprotective functions of aPC caused 100% mortality within 45 min of shock, with histopathology evidence of pulmonary thrombosis and perivascular hemorrhage. These results indicate that our unique mouse model of T/H shock mimics our previous observations in trauma patients and demonstrates that EAC is mediated by the activation of the protein C pathway. In addition, the cytoprotective effect of protein C activation seems to be necessary for survival of the initial shock injury. PMID:19333141

  7. Radar channel balancing with commutation

    Energy Technology Data Exchange (ETDEWEB)

    Doerry, Armin Walter

    2014-02-01

    When multiple channels are employed in a pulse-Doppler radar, achieving and maintaining balance between the channels is problematic. In some circumstances the channels may be commutated to achieve adequate balance. Commutation is the switching, trading, toggling, or multiplexing of the channels between signal paths. Commutation allows modulating the imbalance energy away from the balanced energy in Doppler, where it can be mitigated with filtering.

  8. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  9. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  10. ``Just Another Distribution Channel?''

    Science.gov (United States)

    Lemstra, Wolter; de Leeuw, Gerd-Jan; van de Kar, Els; Brand, Paul

    The telecommunications-centric business model of mobile operators is under attack due to technological convergence in the communication and content industries. This has resulted in a plethora of academic contributions on the design of new business models and service platform architectures. However, a discussion of the challenges that operators are facing in adopting these models is lacking. We assess these challenges by considering the mobile network as part of the value system of the content industry. We will argue that from the perspective of a content provider the mobile network is ‘just another’ distribution channel. Strategic options available for the mobile communication operators are to deliver an excellent distribution channel for content delivery or to move upwards in the value chain by becoming a content aggregator. To become a mobile content aggregator operators will have to develop or acquire complementary resources and capabilities. Whether this strategic option is sustainable remains open.

  11. Mucolipins: Intracellular TRPML1-3 channels.

    Science.gov (United States)

    Cheng, Xiping; Shen, Dongbiao; Samie, Mohammad; Xu, Haoxing

    2010-05-17

    The mucolipin family of Transient Receptor Potential (TRPML) proteins is predicted to encode ion channels expressed in intracellular endosomes and lysosomes. Loss-of-function mutations of human TRPML1 cause type IV mucolipidosis (ML4), a childhood neurodegenerative disease. Meanwhile, gain-of-function mutations in the mouse TRPML3 result in the varitint-waddler (Va) phenotype with hearing and pigmentation defects. The broad spectrum phenotypes of ML4 and Va appear to result from certain aspects of endosomal/lysosomal dysfunction. Lysosomes, traditionally believed to be the terminal "recycling center" for biological "garbage", are now known to play indispensable roles in intracellular signal transduction and membrane trafficking. Studies employing animal models and cell lines in which TRPML genes have been genetically disrupted or depleted have uncovered roles of TRPMLs in multiple cellular functions including membrane trafficking, signal transduction, and organellar ion homeostasis. Physiological assays of mammalian cell lines in which TRPMLs are heterologously overexpressed have revealed the channel properties of TRPMLs in mediating cation (Ca(2+)/Fe(2+)) efflux from endosomes and lysosomes in response to unidentified cellular cues. This review aims to summarize these recent advances in the TRPML field and to correlate the channel properties of endolysosomal TRPMLs with their biological functions. We will also discuss the potential cellular mechanisms by which TRPML deficiency leads to neurodegeneration.

  12. DMT of weighted Parallel Channels: Application to Broadcast Channel

    CERN Document Server

    Mroueh, Lina; Othman, Ghaya Rekaya-Ben; Belfiore, Jean-Claude

    2008-01-01

    In a broadcast channel with random packet arrival and transmission queues, the stability of the system is achieved by maximizing a weighted sum rate capacity with suitable weights that depend on the queue size. The weighted sum rate capacity using Dirty Paper Coding (DPC) and Zero Forcing (ZF) is asymptotically equivalent to the weighted sum capacity over parallel single-channels. In this paper, we study the Diversity Multiplexing Tradeoff (DMT) of the fading broadcast channel under a fixed weighted sum rate capacity constraint. The DMT of both identical and different parallel weighted MISO channels is first derived. Finally, we deduce the DMT of a broadcast channel using DPC and ZF precoders.

  13. STIM and calcium channel complexes in cancer.

    Science.gov (United States)

    Jardin, Isaac; Rosado, Juan A

    2016-06-01

    The ion Ca(2+) is a ubiquitous second messenger that mediates a variety of cellular functions. Dysfunction of the mechanisms involved in Ca(2+) homeostasis underlies a number of pathological processes, including cancer. Store-operated Ca(2+) entry (SOCE) is a major mechanism for Ca(2+) entry modulated by the intracellular Ca(2+) stores. The Ca(2+)-selective store-operated current (ICRAC) is mediated by the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and the store-operated Ca(2+) (SOC) channel Orai1, while other non-selective cation currents (ISOC) involves the participation of members of the canonical transient receptor potential (TRPC) channel family, including TRPC1. Distinct isoforms of the key components of SOCE have been described in mammalian cells, STIM1 and 2, Orai1-3 and TRPC1-7. In cancer cells, SOCE has been reported to play an important role in cell cycle progression and proliferation, migration, metastasis and evasion of apoptosis. Changes in the expression of the key elements of SOCE and Ca(2+) homeostasis remodeling have been account to play important roles in the phenotypic changes observed in transformed cells. Despite there are differences in the expression level of the molecular components of SOCE, as well as in the relevance of the STIM, Orai and TRPC isoforms in SOCE and tumorigenesis among cancer cell types, there is a body of evidence supporting an important role for SOCE underlying the phenotypic modifications of cancer cells that propose STIM and the SOC channels as suitable candidate targets for future prognostic or therapeutic strategies. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.

  14. On partially entanglement breaking channels

    CERN Document Server

    Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej

    2005-01-01

    Using well known duality between quantum maps and states of composite systems we introduce the notion of Schmidt number of a quantum channel. It enables one to define classes of quantum channels which partially break quantum entanglement. These classes generalize the well known class of entanglement breaking channels.

  15. Ion channeling revisited

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Corona, Aldo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nguyen, Anh [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    A MS Excel program has been written that calculates accidental, or unintentional, ion channeling in cubic bcc, fcc and diamond lattice crystals or polycrystalline materials. This becomes an important issue when simulating the creation by energetic neutrons of point displacement damage and extended defects using beams of ions. All of the tables and graphs in the three Ion Beam Analysis Handbooks that previously had to be manually looked up and read from were programed into Excel in handy lookup tables, or parameterized, for the case of the graphs, using rather simple exponential functions with different powers of the argument. The program then offers an extremely convenient way to calculate axial and planar half-angles and minimum yield or dechanneling probabilities, effects on half-angles of amorphous overlayers, accidental channeling probabilities for randomly oriented crystals or crystallites, and finally a way to automatically generate stereographic projections of axial and planar channeling half-angles. The program can generate these projections and calculate these probabilities for axes and [hkl] planes up to (555).

  16. Ion Channels and Zinc: Mechanisms of Neurotoxicity and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Deborah R. Morris

    2012-01-01

    Full Text Available Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.

  17. Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels.

    Science.gov (United States)

    Yamaguchi, Soichiro; Jha, Archana; Li, Qin; Soyombo, Abigail A; Dickinson, George D; Churamani, Dev; Brailoiu, Eugen; Patel, Sandip; Muallem, Shmuel

    2011-07-01

    NAADP is a potent second messenger that mobilizes Ca(2+) from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca(2+) release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca(2+)-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca(2+) influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca(2+) signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca(2+) signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca(2+) oscillations in pancreatic acinar cells were identical in wild-type and TRPML1(-/-) cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP.

  18. Signal processing by T-type calcium channel interactions in the cerebellum

    Science.gov (United States)

    Engbers, Jordan D. T.; Anderson, Dustin; Zamponi, Gerald W.; Turner, Ray W.

    2013-01-01

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT) and hyperpolarization-activated cation current (IH) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  19. Signal processing by T-type calcium channel interactions in the cerebellum

    Directory of Open Access Journals (Sweden)

    Jordan D.T. Engbers

    2013-11-01

    Full Text Available T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs. In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (IT and hyperpolarization-activated cation current (IH are activated during trains of IPSPs. These currents have distinct, and yet synergistic, roles in the subthreshold domain with IT generating a rebound burst and IH controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing IH to increase the efficacy of IT, and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect effects on

  20. Signal processing by T-type calcium channel interactions in the cerebellum.

    Science.gov (United States)

    Engbers, Jordan D T; Anderson, Dustin; Zamponi, Gerald W; Turner, Ray W

    2013-11-27

    T-type calcium channels of the Cav3 family are unique among voltage-gated calcium channels due to their low activation voltage, rapid inactivation, and small single channel conductance. These special properties allow Cav3 calcium channels to regulate neuronal processing in the subthreshold voltage range. Here, we review two different subthreshold ion channel interactions involving Cav3 channels and explore the ability of these interactions to expand the functional roles of Cav3 channels. In cerebellar Purkinje cells, Cav3 and intermediate conductance calcium-activated potassium (IKCa) channels form a novel complex which creates a low voltage-activated, transient outward current capable of suppressing temporal summation of excitatory postsynaptic potentials (EPSPs). In large diameter neurons of the deep cerebellar nuclei, Cav3-mediated calcium current (I T) and hyperpolarization-activated cation current (I H) are activated during trains of inhibitory postsynaptic potentials. These currents have distinct, and yet synergistic, roles in the subthreshold domain with I T generating a rebound burst and I H controlling first spike latency and rebound spike precision. However, by shortening the membrane time constant the membrane returns towards resting value at a faster rate, allowing I H to increase the efficacy of I T and increase the range of burst frequencies that can be generated. The net effect of Cav3 channels thus depends on the channels with which they are paired. When expressed in a complex with a KCa channel, Cav3 channels reduce excitability when processing excitatory inputs. If functionally coupled with an HCN channel, the depolarizing effect of Cav3 channels is accentuated, allowing for efficient inversion of inhibitory inputs to generate a rebound burst output. Therefore, signal processing relies not only on the activity of individual subtypes of channels but also on complex interactions between ion channels whether based on a physical complex or by indirect

  1. Ion Channels in Neurological Disorders.

    Science.gov (United States)

    Kumar, Pravir; Kumar, Dhiraj; Jha, Saurabh Kumar; Jha, Niraj Kumar; Ambasta, Rashmi K

    2016-01-01

    The convergent endeavors of the neuroscientist to establish a link between clinical neurology, genetics, loss of function of an important protein, and channelopathies behind neurological disorders are quite intriguing. Growing evidence reveals the impact of ion channels dysfunctioning in neurodegenerative disorders (NDDs). Many neurological/neuromuscular disorders, viz, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, and age-related disorders are caused due to altered function or mutation in ion channels. To maintain cell homeostasis, ion channels are playing a crucial role which is a large transmembrane protein. Further, these channels are important as it determines the membrane potential and playing critically in the secretion of neurotransmitter. Behind NDDs, losses of pathological proteins and defective ion channels have been reported and are found to aggravate the disease symptoms. Moreover, ion channel dysfunctions are eliciting a range of symptoms, including memory loss, movement disabilities, neuromuscular sprains, and strokes. Since the possible mechanistic role played by aberrant ion channels, their receptor and associated factors in neurodegeneration remained elusive; therefore, it is a challenging task for the neuroscientist to implement the therapeutics for targeting NDDs. This chapter reviews the potential role of the ion channels in membrane physiology and brain homeostasis, where ion channels and their associated factors have been characterized with their functional consequences in neurological diseases. Moreover, mechanistic role of perturbed ion channels has been identified in various NDDs, and finally, ion channel modulators have been investigated for their therapeutic intervention in treating common NDDs.

  2. HCN Channels and Heart Rate

    Directory of Open Access Journals (Sweden)

    Ilaria Dentamaro

    2012-04-01

    Full Text Available Hyperpolarization and Cyclic Nucleotide (HCN -gated channels represent the molecular correlates of the “funny” pacemaker current (If, a current activated by hyperpolarization and considered able to influence the sinus node function in generating cardiac impulses. HCN channels are a family of six transmembrane domain, single pore-loop, hyperpolarization activated, non-selective cation channels. This channel family comprises four members: HCN1-4, but there is a general agreement to consider HCN4 as the main isoform able to control heart rate. This review aims to summarize advanced insights into the structure, function and cellular regulation of HCN channels in order to better understand the role of such channels in regulating heart rate and heart function in normal and pathological conditions. Therefore, we evaluated the possible therapeutic application of the selective HCN channels blockers in heart rate control.

  3. TCA cycle-mediated generation of ROS is a key mediator for HeR-MRSA survival under β-lactam antibiotic exposure.

    Directory of Open Access Journals (Sweden)

    Roberto R Rosato

    Full Text Available Methicillin-resistant Staphylococcus aureus (MRSA is a major multidrug resistant pathogen responsible for several difficult-to-treat infections in humans. Clinical Hetero-resistant (HeR MRSA strains, mostly associated with persistent infections, are composed of mixed cell populations that contain organisms with low levels of resistance (hetero-resistant HeR and those that display high levels of drug resistance (homo-resistant HoR. However, the full understanding of β-lactam-mediated HeR/HoR selection remains to be completed. In previous studies we demonstrated that acquisition of the HoR phenotype during exposure to β-lactam antibiotics depended on two key elements: (1 activation of the SOS response, a conserved regulatory network in bacteria that is induced in response to DNA damage, resulting in increased mutation rates, and (2 adaptive metabolic changes redirecting HeR-MRSA metabolism to the tricarboxylic acid (TCA cycle in order to increase the energy supply for cell-wall synthesis. In the present work, we identified that both main mechanistic components are associated through TCA cycle-mediated reactive oxygen species (ROS production, which temporally affects DNA integrity and triggers activation of the SOS response resulting in enhanced mutagenesis. The present work brings new insights into a role of ROS generation on the development of resistance to β-lactam antibiotics in a model of natural occurrence, emphasizing the cytoprotective role in HeR-MRSA survival mechanism.

  4. Swelling-Activated Anion Channels Are Essential for Volume Regulation of Mouse Thymocytes

    Directory of Open Access Journals (Sweden)

    Ravshan Z. Sabirov

    2011-12-01

    Full Text Available Channel-mediated trans-membrane chloride movement is a key process in the active cell volume regulation under osmotic stress in most cells. However, thymocytes were hypothesized to regulate their volume by activating a coupled K-Cl cotransport mechanism. Under the patch-clamp, we found that osmotic swelling activates two types of macroscopic anion conductance with different voltage-dependence and pharmacology. At the single-channel level, we identified two types of events: one corresponded to the maxi-anion channel, and the other one had characteristics of the volume-sensitive outwardly rectifying (VSOR chloride channel of intermediate conductance. A VSOR inhibitor, phloretin, significantly suppressed both macroscopic VSOR-type conductance and single-channel activity of intermediate amplitude. The maxi-anion channel activity was largely suppressed by Gd3+ ions but not by phloretin. Surprisingly, [(dihydroindenyloxy] alkanoic acid (DIOA, a known antagonist of K-Cl cotransporter, was found to significantly suppress the activity of the VSOR-type single-channel events with no effect on the maxi-anion channels at 10 μM. The regulatory volume decrease (RVD phase of cellular response to hypotonicity was mildly suppressed by Gd3+ ions and was completely abolished by phloretin suggesting a major impact of the VSOR chloride channel and modulatory role of the maxi-anion channel. The inhibitory effect of DIOA was also strong, and, most likely, it occurred via blocking the VSOR Cl− channels.

  5. Functional expression of T-type Ca2+ channels in spinal motoneurons of the adult turtle.

    Directory of Open Access Journals (Sweden)

    Martha Canto-Bustos

    Full Text Available Voltage-gated Ca2+ (CaV channels are transmembrane proteins comprising three subfamilies named CaV1, CaV2 and CaV3. The CaV3 channel subfamily groups the low-voltage activated Ca2+ channels (LVA or T-type a significant role in regulating neuronal excitability. CaV3 channel activity may lead to the generation of complex patterns of action potential firing such as the postinhibitory rebound (PIR. In the adult spinal cord, these channels have been found in dorsal horn interneurons where they control physiological events near the resting potential and participate in determining excitability. In motoneurons, CaV3 channels have been found during development, but their functional expression has not yet been reported in adult animals. Here, we show evidence for the presence of CaV3 channel-mediated PIR in motoneurons of the adult turtle spinal cord. Our results indicate that Ni2+ and NNC55-0396, two antagonists of CaV3 channel activity, inhibited PIR in the adult turtle spinal cord. Molecular biology and biochemical assays revealed the expression of the CaV3.1 channel isotype and its localization in motoneurons. Together, these results provide evidence for the expression of CaV3.1 channels in the spinal cord of adult animals and show also that these channels may contribute to determine the excitability of motoneurons.

  6. Piezo2 is the principal mechanotransduction channel for proprioception.

    Science.gov (United States)

    Woo, Seung-Hyun; Lukacs, Viktor; de Nooij, Joriene C; Zaytseva, Dasha; Criddle, Connor R; Francisco, Allain; Jessell, Thomas M; Wilkinson, Katherine A; Patapoutian, Ardem

    2015-12-01

    Proprioception, the perception of body and limb position, is mediated by proprioceptors, specialized mechanosensory neurons that convey information about the stretch and tension experienced by muscles, tendons, skin and joints. In mammals, the molecular identity of the stretch-sensitive channel that mediates proprioception is unknown. We found that the mechanically activated nonselective cation channel Piezo2 was expressed in sensory endings of proprioceptors innervating muscle spindles and Golgi tendon organs in mice. Two independent mouse lines that lack Piezo2 in proprioceptive neurons showed severely uncoordinated body movements and abnormal limb positions. Moreover, the mechanosensitivity of parvalbumin-expressing neurons that predominantly mark proprioceptors was dependent on Piezo2 expression in vitro, and the stretch-induced firing of proprioceptors in muscle-nerve recordings was markedly reduced in Piezo2-deficient mice. Together, our results indicate that Piezo2 is the major mechanotransducer of mammalian proprioceptors.

  7. Cholesterol binding to ion channels

    Directory of Open Access Journals (Sweden)

    Irena eLevitan

    2014-02-01

    Full Text Available Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions.

  8. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells.

    Science.gov (United States)

    Wu, Pei-Shan; Yen, Jui-Hung; Kou, Mei-Chun; Wu, Ming-Jiuan

    2015-01-01

    Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity.

  9. {delta}-Opioid receptor-stimulated Akt signaling in neuroblastoma x glioma (NG108-15) hybrid cells involves receptor tyrosine kinase-mediated PI3K activation

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Anika; Ammer, Hermann [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany); Eisinger, Daniela A., E-mail: eisinger@pharmtox.vetmed.uni-muenchen.de [Institute of Pharmacology, Toxicology and Pharmacy Ludwig-Maximilians-University of Munich Koeniginstrasse 16 80539 Muenchen Federal Republic of Germany (Germany)

    2009-07-15

    {delta}-Opioid receptor (DOR) agonists possess cytoprotective properties, an effect associated with activation of the 'pro-survival' kinase Akt. Here we delineate the signal transduction pathway by which opioids induce Akt activation in neuroblastoma x glioma (NG108-15) hybrid cells. Exposure of the cells to both [D-Pen{sup 2,5}]enkephalin and etorphine resulted in a time- and dose-dependent increase in Akt activity, as measured by means of an activation-specific antibody recognizing phosphoserine-473. DOR-mediated Akt signaling is blocked by the opioid antagonist naloxone and involves inhibitory G{sub i/o} proteins, because pre-treatment with pertussis toxin, but not over-expression of the G{sub q/11} scavengers EBP50 and GRK2-K220R, prevented this effect. Further studies with Wortmannin and LY294002 revealed that phophoinositol-3-kinase (PI3K) plays a central role in opioid-induced Akt activation. Opioids stimulate Akt activity through transactivation of receptor tyrosine kinases (RTK), because pre-treatment of the cells with inhibitors for neurotrophin receptor tyrosine kinases (AG879) and the insulin-like growth factor receptor IGF-1 (AG1024), but not over-expression of the G{beta}{gamma} scavenger phosducin, abolished this effect. Activated Akt translocates to the nuclear membrane, where it promotes GSK3 phosphorylation and prevents caspase-3 cleavage, two key events mediating inhibition of cell apoptosis and enhancement of cell survival. Taken together, these results demonstrate that in NG108-15 hybrid cells DOR agonists possess cytoprotective properties mediated by activation of the RTK/PI3K/Akt signaling pathway.

  10. The S4-S5 linker couples voltage sensing and activation of pacemaker channels.

    Science.gov (United States)

    Chen, J; Mitcheson, J S; Tristani-Firouzi, M; Lin, M; Sanguinetti, M C

    2001-09-25

    Voltage-gated channels are normally opened by depolarization and closed by repolarization of the membrane. Despite sharing significant sequence homology with voltage-gated K(+) channels, the gating of hyperpolarization-activated, cyclic-nucleotide-gated (HCN) pacemaker channels has the opposite dependence on membrane potential: hyperpolarization opens, whereas depolarization closes, these channels. The mechanism and structural basis of the process that couples voltage sensor movement to HCN channel opening and closing is not understood. On the basis of our previous studies of a mutant HERG (human ether-a-go-go-related gene) channel, we hypothesized that the intracellular linker that connects the fourth and fifth transmembrane domains (S4-S5 linker) of HCN channels might be important for channel gating. Here, we used alanine-scanning mutagenesis of the HCN2 S4-S5 linker to identify three residues, E324, Y331, and R339, that when mutated disrupted normal channel closing. Mutation of a basic residue in the S4 domain (R318Q) prevented channel opening, presumably by disrupting S4 movement. However, channels with R318Q and Y331S mutations were constitutively open, suggesting that these channels can open without a functioning S4 domain. We conclude that the S4-S5 linker mediates coupling between voltage sensing and HCN channel activation. Our findings also suggest that opening of HCN and related channels corresponds to activation of a gate located near the inner pore, rather than recovery of channels from a C-type inactivated state.

  11. Channel Wall Landslides

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation. Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Multiuser MIMO Channel Estimation

    Directory of Open Access Journals (Sweden)

    G.Indumathi

    2016-05-01

    Full Text Available In this paper, three beamforming design are considered for multi user MIMO system. First, transmit beamformers are fixed and the receive (RX beamformers are calculated. Transmit beamformer (TX-BFis projectedas a null space of appropriate channels. It reduces the interference for each user. Then the receiver beamformer is determined which maximize the SNR. This beamforming design provides less computation time. The second case is joint TX and RX beamformer for SNR maximization. In this transmitter and receiver beamformer are calculated using extended alternating optimization (EAO algorithm. The third one is joint transmitter and receiver beamforming for SNR and SINR maximization using EAO algorithm. This algorithm provides better error performance and sum rate performance. All the design cases are simulated by using standard multipath channel model. Our simulation results illustrate that compared to the least square design and zero forcing design, the joint TX and RX beamforming design using EAO algorithm provides faster beamforming and improved error performance and sum rate.

  13. A Micromechanical RF Channelizer

    Science.gov (United States)

    Akgul, Mehmet

    The power consumption of a radio generally goes as the number and strength of the RF signals it must process. In particular, a radio receiver would consume much less power if the signal presented to its electronics contained only the desired signal in a tiny percent bandwidth frequency channel, rather than the typical mix of signals containing unwanted energy outside the desired channel. Unfortunately, a lack of filters capable of selecting single channel bandwidths at RF forces the front-ends of contemporary receivers to accept unwanted signals, and thus, to operate with sub-optimal efficiency. This dissertation focuses on the degree to which capacitive-gap transduced micromechanical resonators can achieve the aforementioned RF channel-selecting filters. It aims to first show theoretically that with appropriate scaling capacitive-gap transducers are strong enough to meet the needed coupling requirements; and second, to fully detail an architecture and design procedure needed to realize said filters. Finally, this dissertation provides an actual experimentally demonstrated RF channel-select filter designed using the developed procedures and confirming theoretical predictions. Specifically, this dissertation introduces four methods that make possible the design and fabrication of RF channel-select filters. The first of these introduces a small-signal equivalent circuit for parallel-plate capacitive-gap transduced micromechanical resonators that employs negative capacitance to model the dependence of resonance frequency on electrical stiffness in a way that facilitates the analysis of micromechanical circuits loaded with arbitrary electrical impedances. The new circuit model not only correctly predicts the dependence of electrical stiffness on the impedances loading the input and output electrodes of parallel-plate capacitive-gap transduced micromechanical device, but does so in a visually intuitive way that identifies current drive as most appropriate for

  14. Ion channels on microglia: therapeutic targets for neuroprotection.

    Science.gov (United States)

    Skaper, Stephen D

    2011-02-01

    Under pathological conditions microglia (resident CNS immune cells) become activated, and produce reactive oxygen and nitrogen species and pro-inflammatory cytokines: molecules that can contribute to axon demyelination and neuron death. Because some microglia functions can exacerbate CNS disorders, including stroke, traumatic brain injury, progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis, and several retinal diseases, controlling their activation might ameliorate immune-mediated CNS disorders. A growing body of evidence now points to ion channels on microglia as contributing to the above neuropathologies. For example, the ATP-gated P2X7 purinergic receptor cation channel is up-regulated around amyloid β-peptide plaques in transgenic mouse models of Alzheimer's disease and co-localizes to microglia and astrocytes. Upregulation of the P2X7 receptor subtype on microglia occurs also following spinal cord injury and after ischemia in the cerebral cortex of rats, while P2X7 receptor-like immunoreactivity is increased in activated microglial cells of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. Utilizing neuron/microglia co-cultures as an in vitro model for neuroinflammation, P2X7 receptor activation on microglia appears necessary for microglial cell-mediated injury of neurons. A second example can be found in the chloride intracellular channel 1 (CLIC1), whose expression is related to macrophage activation, undergoes translocation from the cytosol to the plasma membrane (activation) of microglia exposed to amyloid β-peptide, and participates in amyloid β-peptide-induced neurotoxicity through the generation of reactive oxygen species. A final example is the small-conductance Ca2+/calmodulin-activated K+ channel KCNN4/KCa3.1/SK4/IK1, which is highly expressed in rat microglia. Lipopolysaccharide-activated microglia are capable of killing adjacent neurons

  15. Ion channels-related diseases.

    Science.gov (United States)

    Dworakowska, B; Dołowy, K

    2000-01-01

    There are many diseases related to ion channels. Mutations in muscle voltage-gated sodium, potassium, calcium and chloride channels, and acetylcholine-gated channel may lead to such physiological disorders as hyper- and hypokalemic periodic paralysis, myotonias, long QT syndrome, Brugada syndrome, malignant hyperthermia and myasthenia. Neuronal disorders, e.g., epilepsy, episodic ataxia, familial hemiplegic migraine, Lambert-Eaton myasthenic syndrome, Alzheimer's disease, Parkinson's disease, schizophrenia, hyperekplexia may result from dysfunction of voltage-gated sodium, potassium and calcium channels, or acetylcholine- and glycine-gated channels. Some kidney disorders, e.g., Bartter's syndrome, policystic kidney disease and Dent's disease, secretion disorders, e.g., hyperinsulinemic hypoglycemia of infancy and cystic fibrosis, vision disorders, e.g., congenital stationary night blindness and total colour-blindness may also be linked to mutations in ion channels.

  16. Unifying Theories of Mobile Channels

    Directory of Open Access Journals (Sweden)

    Gerard Ekembe Ngondi

    2016-06-01

    Full Text Available In this paper we present the denotational semantics for channel mobility in the Unifying Theories of Programming (UTP semantics framework. The basis for the model is the UTP theory of reactive processes (precisely, the UTP semantics for Communicating Sequential Processes (CSP, which is slightly extended to allow the mobility of channels: the set of actions in which a process is authorised to participate, originally static or constant (set during the process's definition, is now made dynamic or variable: it can change during the process's execution. A channel is thus moved around by communicating it via other channels and then allowing the receiving process to extend its alphabet with the received channel. New healthiness conditions are stated to ensure an appropriate use of mobile channels.

  17. Carbon monoxide stimulates the Ca2(+)-activated big conductance k channels in cultured human endothelial cells.

    Science.gov (United States)

    Dong, De-Li; Zhang, Yan; Lin, Dao-Hong; Chen, Jun; Patschan, Susann; Goligorsky, Michael S; Nasjletti, Alberto; Yang, Bao-Feng; Wang, Wen-Hui

    2007-10-01

    We used the whole-cell patch-clamp technique to study K channels in the human umbilical vein endothelial cells and identified a 201 pS K channel, which was blocked by tetraethylammonium and iberiotoxin but not by TRAM34 and apamin. This suggests that the Ca(2+)-activated big-conductance K channel (BK) is expressed in endothelial cells. Application of carbon monoxide (CO) or tricarbonylchloro(glycinato)ruthenium(II), a water soluble CO donor, stimulated the BK channels. Moreover, application of hemin, a substrate of heme oxygenase, mimicked the effect of CO and increased the BK channel activity. The stimulatory effect of hemin was significantly diminished by tin mesoporphyrin, an inhibitor of heme oxygenase. To determine whether the stimulatory effect of CO on the BK channel was mediated by NO and the cGMP-dependent pathway, we examined the effect of CO on BK channels in cells treated with, N(G)-nitro-l-arginine methyl ester, 1H(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one, an inhibitor of soluble guanylate cyclase, or KT5823, an inhibitor of protein kinase G. Addition of either diethylamine NONOate or sodium nitroprusside significantly increased BK channel activity. Inhibition of endogenous NO synthesis with N(G)-nitro-l-arginine methyl ester, blocking soluble guanylate cyclase or protein kinase G, delayed but did not prevent the CO-induced activation of BK channels. Finally, application of an antioxidant agent, ebselen, had no effect on CO-mediated stimulation of BK channels in human umbilical vein endothelial cells. We conclude that BK channels are expressed in human umbilical vein endothelial cells and that they are activated by both CO and NO. CO activates BK channels directly, as well as via a mechanism involving NO or the cGMP-dependent pathway.

  18. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    Directory of Open Access Journals (Sweden)

    Kurt T Laha

    Full Text Available Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs. Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC and Gloeobacter violaceus (GLIC in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover

  19. Kv1 channels and neural processing in vestibular calyx afferents

    Directory of Open Access Journals (Sweden)

    Frances L Meredith

    2015-06-01

    Full Text Available Potassium-selective ion channels are important for accurate transmission of signals from auditory and vestibular sensory end organs to their targets in the central nervous system. During different gravity conditions, astronauts experience altered input signals from the peripheral vestibular system resulting in sensorimotor dysfunction. Adaptation to altered sensory input occurs, but it is not explicitly known whether this involves synaptic modifications within the vestibular epithelia. Future investigations of such potential plasticity require a better understanding of the electrophysiological mechanisms underlying the known heterogeneity of afferent discharge under normal conditions. This study advances this understanding by examining the role of the Kv1 potassium channel family in mediating action potentials in specialized vestibular afferent calyx endings in the gerbil crista and utricle. Pharmacological agents selective for different sub-types of Kv1 channels were tested on membrane responses in whole cell recordings in the crista. Kv1 channels sensitive to α-dendrotoxin and dendrotoxin-K were found to prevail in the central regions, whereas K+ channels sensitive to margatoxin, which blocks Kv1.3 and 1.6 channels, were more prominent in peripheral regions. Margatoxin-sensitive currents showed voltage-dependent inactivation. Dendrotoxin-sensitive currents showed no inactivation and dampened excitability in calyces in central neuroepithelial regions. The differential distribution of Kv1 potassium channels in vestibular afferents supports their importance in accurately relaying gravitational and head movement signals through specialized lines to the central nervous system. Pharmacological modulation of specific groups of K+ channels could help alleviate vestibular dysfunction on earth and in space.

  20. Calcium ion channel and epilepsy

    Institute of Scientific and Technical Information of China (English)

    Yudan Lü; Weihong Lin; Dihui Ma

    2006-01-01

    OBJECTIVE: To review the relationship between calcium ion channel and epilepsy for well investigating the pathogenesis of epilepsy and probing into the new therapeutic pathway of epilepsy.DATA SOURCES: A computer-based online research Calcium ion channel and epilepsy related articles published between January 1994 and December 2006 in the CKNI and Wanfang database with the key words of "calcium influxion, epilepsy, calcium-channel blocker". The language was limited to Chinese. At the same time,related articles published between January 1993 and December 2006 in Pubmed were searched for on online with the key words of "calcium influxion, epilepsy" in English.STUDY SELECTION: The materials were selected firstly. Inclusive criteria: ① Studies related to calcium ion channel and the pat1hogenesis of epilepsy. ② Studies on the application of calcium ion channel blocker in the treatment of epilepsy. Exclusive criteria: repetitive or irrelated studies.DATA EXTRACTION: According to the criteria, 123 articles were retrieved and 93 were excluded due to repetitive or irrelated studies. Altogether 30 articles met the inclusive criteria, 11 of them were about the structure and characters of calcium ion channel, 10 about calcium ion channel and the pathogenesis of epilepsy and 9 about calcium blocker and the treatment of epilepsy.DATA SYNTHESIS: Calcium ion channels mainly consist of voltage dependent calcium channel and receptor operated calcium channel. Depolarization caused by voltage gating channel-induced influxion is the pathological basis of epileptic attack, and it is found in many studies that many anti-epileptic drugs have potential and direct effect to rivalizing voltage-dependent calcium ion channel.CONCLUSION: Calcium influxion plays an important role in the seizure of epilepsy. Some calcium antagonists seen commonly are being tried in the clinical therapy of epilepsy that is being explored, not applied in clinical practice. If there are enough evidences to

  1. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  2. The Epithelial Sodium Channel and the Processes of Wound Healing

    Directory of Open Access Journals (Sweden)

    Silvia Chifflet

    2016-01-01

    Full Text Available The epithelial sodium channel (ENaC mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation.

  3. Regulation of Connexin-Based Channels by Fatty Acids.

    Science.gov (United States)

    Puebla, Carlos; Retamal, Mauricio A; Acuña, Rodrigo; Sáez, Juan C

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood.

  4. Regulation of Connexin-Based Channels by Fatty Acids

    Science.gov (United States)

    Puebla, Carlos; Retamal, Mauricio A.; Acuña, Rodrigo; Sáez, Juan C.

    2017-01-01

    In this mini-review, we briefly summarize the current knowledge about the effects of fatty acids (FAs) on connexin-based channels, as well as discuss the limited information about the impact FAs may have on pannexins (Panxs). FAs regulate diverse cellular functions, some of which are explained by changes in the activity of channels constituted by connexins (Cxs) or Panxs, which are known to play critical roles in maintaining the functional integrity of diverse organs and tissues. Cxs are transmembrane proteins that oligomerize into hexamers to form hemichannels (HCs), which in turn can assemble into dodecamers to form gap junction channels (GJCs). While GJCs communicate the cytoplasm of contacting cells, HCs serve as pathways for the exchange of ions and small molecules between the intra and extracellular milieu. Panxs, as well as Cx HCs, form channels at the plasma membrane that enable the interchange of molecules between the intra and extracellular spaces. Both Cx- and Panx-based channels are controlled by several post-translational modifications. However, the mechanism of action of FAs on these channels has not been described in detail. It has been shown however that FAs frequently decrease GJC-mediated cell-cell communication. The opposite effect also has been described for HC or Panx-dependent intercellular communication, where, the acute FA effect can be reversed upon washout. Additionally, changes in GJCs mediated by FAs have been associated with post-translational modifications (e.g., phosphorylation), and seem to be directly related to chemical properties of FAs (e.g., length of carbon chain and/or degree of saturation), but this possible link remains poorly understood. PMID:28174541

  5. Geometric pumping in autophoretic channels

    CERN Document Server

    Michelin, Sebastien; De Canio, Gabriele; Lobato-Dauzier, Nicolas; Lauga, Eric

    2015-01-01

    Many microfluidic devices use macroscopic pressure differentials to overcome viscous friction and generate flows in microchannels. In this work, we investigate how the chemical and geometric properties of the channel walls can drive a net flow by exploiting the autophoretic slip flows induced along active walls by local concentration gradients of a solute species. We show that chemical patterning of the wall is not required to generate and control a net flux within the channel, rather channel geometry alone is sufficient. Using numerical simulations, we determine how geometric characteristics of the wall influence channel flow rate, and confirm our results analytically in the asymptotic limit of lubrication theory.

  6. Genetic Control of Potassium Channels.

    Science.gov (United States)

    Amin, Ahmad S; Wilde, Arthur A M

    2016-06-01

    Approximately 80 genes in the human genome code for pore-forming subunits of potassium (K(+)) channels. Rare variants (mutations) in K(+) channel-encoding genes may cause heritable arrhythmia syndromes. Not all rare variants in K(+) channel-encoding genes are necessarily disease-causing mutations. Common variants in K(+) channel-encoding genes are increasingly recognized as modifiers of phenotype in heritable arrhythmia syndromes and in the general population. Although difficult, distinguishing pathogenic variants from benign variants is of utmost importance to avoid false designations of genetic variants as disease-causing mutations.

  7. TRP channels and psychiatric disorders.

    Science.gov (United States)

    Chahl, Loris A

    2011-01-01

    Depression and schizophrenia are major psychiatric disorders that cause much human suffering. Current treatments have major limitations and new drug targets are eagerly sought. Study of transient receptor potential (TRP) channels in these disorders is at an early stage and the potential of agents that activate or inhibit these channels remains speculative. The findings that TRPC6 channels promote dendritic growth and are selectively activated by hyperforin, the key constitutent of St John's wort, suggest that TRPC6 channels might prove to be a new target for antidepressant drug development. There is now considerable evidence that TRPV1 antagonists have anxiolytic activity but there is no direct evidence that they have antidepressant activity. There is also no direct evidence that TRP channels play a role in schizophrenia. However, the findings that TRPC channels are involved in neuronal development and fundamental synaptic mechanisms, and that TRPV1 channels play a role in central dopaminergic and cannabinoid mechanisms is suggestive of potential roles of these channels in schizophrenia. Investigation of TRP channels in psychiatric disorders holds the promise of yielding further understanding of the aetiology of psychiatric disorders and the development of new drug treatments.

  8. Capacities of quantum amplifier channels

    Science.gov (United States)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  9. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Directory of Open Access Journals (Sweden)

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  10. Beyond the Manual Channel

    DEFF Research Database (Denmark)

    , the main focus there is on spoken languages in their written and spoken forms. This series of workshops, however, offers a forum for researchers focussing on sign languages. For the fourth time, the workshop had sign language corpora as its main topic. This time, the focus was on any aspect beyond......This collection of papers stems from the Sixth Workshop on the Representation and Processing of Sign Languages, held in May 2014 as a satellite to the Language Resources and Evaluation Conference in Reykjavik. While there has been occasional attention for sign languages at the main LREC conference...... the manual channel. Not surprisingly, most papers deal with non-manuals on the face. Once again, the papers at this workshop clearly identify the potentials of even closer cooperation between sign linguists and sign language engineers, and we think it is events like this that contribute a lot to a better...

  11. The Role of Canonical Transient Receptor Potential Channels in Seizure and Excitotoxicity

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2014-04-01

    Full Text Available Canonical transient receptor potential (TRPC channels are a family of polymodal cation channels with some degree of Ca2+ permeability. Although initially thought to be channels mediating store-operated Ca2+ influx, TRPC channels can be activated by stimulation of Gq-coupled G-protein coupled receptors, or by an increase in intracellular free Ca2+ concentration. Thus, activation of TRPC channels could be a common downstream event of many signaling pathways that contribute to seizure and excitotoxicity, such as N-methyl-D-aspartate (NMDA receptor-mediated Ca2+ influx, or metabotropic glutamate receptor activation. Recent studies with genetic ablation of various TRPC family members have demonstrated that TRPC channels, in particular heteromeric TRPC1/4 channels and homomeric TRPC5 channels, play a critical role in both pilocarpine-induced acute seizures and neuronal cell death. However, exact underlying mechanisms remain to be fully elucidated, and selective TRPC modulators and antibodies with better specificity are urgently needed for future research.

  12. Channel Floor Yardangs

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 19 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. The yardangs in this image are forming in channel floor deposits. The channel itself is funneling the wind to cause the erosion. Image information: VIS instrument. Latitude 4.5, Longitude 229.7 East (133.3 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from

  13. Negative particle planar and axial channeling and channeling collimation

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, Richard A., Jr.; /Fermilab

    2009-12-01

    While information exists on high energy negative particle channeling there has been little study of the challenges of negative particle bending and channeling collimation. Partly this is because negative dechanneling lengths are relatively much shorter. Electrons are not particularly useful for investigating negative particle channeling effects because their material interactions are dominated by channeling radiation. Another important factor is that the current central challenge in channeling collimation is the proton-proton Large Hadron Collider (LHC) where both beams are positive. On the other hand in the future the collimation question might reemerge for electon-positron or muon colliders. Dechanneling lengths increase at higher energies so that part of the negative particle experimental challenge diminishes. In the article different approaches to determining negative dechanneling lengths are reviewed. The more complicated case for axial channeling is also discussed. Muon channeling as a tool to investigate dechanneling is also discussed. While it is now possible to study muon channeling it will probably not illuminate the study of negative dechanneling.

  14. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    van de Lageweg, W.I.; Schuurman, F.; Cohen, K.M.; van Dijk, W. M.; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  15. CHANNEL ESTIMATION FOR ITERATIVE DECODING OVER FADING CHANNELS

    Institute of Scientific and Technical Information of China (English)

    K. H. Sayhood; Wu Lenan

    2002-01-01

    A method of coherent detection and channel estimation for punctured convolutional coded binary Quadrature Amplitude Modulation (QAM) signals transmitted over a frequency-flat Rayleigh fading channels used for a digital radio broadcasting transmission is presented. Some known symbols are inserted in the encoded data stream to enhance the channel estimation process.The pilot symbols are used to replace the existing parity symbols so no bandwidth expansion is required. An iterative algorithm that uses decoding information as well as the information contained in the known symbols is used to improve the channel parameter estimate. The scheme complexity grows exponentially with the channel estimation filter length. The performance of the system is compared for a normalized fading rate with both perfect coherent detection (corresponding to a perfect knowledge of the fading process and noise variance) and differential detection of Differential Amplitude Phase Shift Keying (DAPSK). The tradeoff between simplicity of implementation and bit-error-rate performance of different techniques is also compared.

  16. Mirrored serpentine flow channels for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Rock, Jeffrey Allan (Rochester, NY)

    2000-08-08

    A PEM fuel cell having serpentine flow field channels wherein the input/inlet legs of each channel border the input/inlet legs of the next adjacent channels in the same flow field, and the output/exit legs of each channel border the output/exit legs of the next adjacent channels in the same flow field. The serpentine fuel flow channels may be longer, and may contain more medial legs, than the serpentine oxidant flow channels.

  17. Isoform composition of connexin channels determines selectivity among second messengers and uncharged molecules.

    Science.gov (United States)

    Bevans, C G; Kordel, M; Rhee, S K; Harris, A L

    1998-01-30

    Intercellular connexin channels (gap junction channels) have long been thought to mediate molecular signaling between cells, but the nature of the signaling has been unclear. This study shows that connexin channels from native tissue have selective permeabilities, partially based on pore diameter, that discriminate among cytoplasmic second messenger molecules. Permeability was assessed by measurement of selective loss/retention of tracers from liposomes containing reconstituted connexin channels. The tracers employed were tritiated cyclic nucleotides and a series of oligomaltosaccharides derivatized with a small uncharged fluorescent moiety. The data define different size cut-off limits for permeability through homomeric connexin-32 channels and through heteromeric connexin-32/connexin-26 channels. Connexin-26 contributes to a narrowed pore. Both cAMP and cGMP were permeable through the homomeric connexin-32 channels. cAMP was permeable through only a fraction of the heteromeric channels. Surprisingly, cGMP was permeable through a substantially greater fraction of the heteromeric channels than was cAMP. The data suggest that isoform stoichiometry and/or arrangement within a connexin channel determines whether cyclic nucleotides can permeate, and which ones. This is the first evidence for connexin-specific selectivity among biological signaling molecules.

  18. Oxaliplatin neurotoxicity – no general ion channel surface-charge effect

    Directory of Open Access Journals (Sweden)

    Ehrsson Hans

    2009-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapeutic drug. Neurotoxicity is the dose-limiting side effect. Previous investigations have reported that acute neurotoxicity could be mediated via voltage-gated ion channels. A possible mechanism for some of the effects is a modification of surface charges around the ion channel, either because of chelation of extracellular Ca2+, or because of binding of a charged biotransformation product of oxaliplatin to the channel. To elucidate the molecular mechanism, we investigated the effects of oxaliplatin and its chloride complex [Pt(dachoxCl]- on the voltage-gated Shaker K channel expressed in Xenopus oocytes. The recordings were made with the two-electrode and the cut-open oocyte voltage clamp techniques. Conclusion To our surprise, we did not see any effects on the current amplitudes, on the current time courses, or on the voltage dependence of the Shaker wild-type channel. Oxaliplatin is expected to bind to cysteines. Therefore, we explored if there could be a specific effect on single (E418C and double-cysteine (R362C/F416C mutated Shaker channels previously shown to be sensitive to cysteine-specific reagents. Neither of these channels were affected by oxaliplatin. The clear lack of effect on the Shaker K channel suggests that oxaliplatin or its monochloro complex has no general surface-charge effect on the channels, as has been suggested before, but rather a specific effect to the channels previously shown to be affected.

  19. mediation: R Package for Causal Mediation Analysis

    Directory of Open Access Journals (Sweden)

    Dustin Tingley

    2014-09-01

    Full Text Available In this paper, we describe the R package mediation for conducting causal mediation analysis in applied empirical research. In many scientific disciplines, the goal of researchers is not only estimating causal effects of a treatment but also understanding the process in which the treatment causally affects the outcome. Causal mediation analysis is frequently used to assess potential causal mechanisms. The mediation package implements a comprehensive suite of statistical tools for conducting such an analysis. The package is organized into two distinct approaches. Using the model-based approach, researchers can estimate causal mediation effects and conduct sensitivity analysis under the standard research design. Furthermore, the design-based approach provides several analysis tools that are applicable under different experimental designs. This approach requires weaker assumptions than the model-based approach. We also implement a statistical method for dealing with multiple (causally dependent mediators, which are often encountered in practice. Finally, the package also offers a methodology for assessing causal mediation in the presence of treatment noncompliance, a common problem in randomized trials.

  20. Littoral steering of deltaic channels

    Science.gov (United States)

    Nienhuis, Jaap H.; Ashton, Andrew D.; Giosan, Liviu

    2016-11-01

    The typically single-threaded channels on wave-influenced deltas show striking differences in their orientations, with some channels oriented into the incoming waves (e.g., Ombrone, Krishna), and others oriented away from the waves (e.g., Godavari, Sao Francisco). Understanding the controls on channel orientation is important as the channel location greatly influences deltaic morphology and sedimentology, both subaerially and subaqueously. Here, we explore channel orientation and consequent feedbacks with local shoreline dynamics using a plan-form numerical model of delta evolution. The model treats fluvial sediment delivery to a wave-dominated coast in two ways: 1) channels are assumed to prograde in a direction perpendicular to the local shoreline orientation and 2) a controlled fraction of littoral sediment transport can bypass the river mouth. Model results suggest that channels migrate downdrift when there is a significant net littoral transport and alongshore transport bypassing of the river mouth is limited. In contrast, river channels tend to orient themselves into the waves when fluvial sediment flux is relatively large, causing the shoreline of the downdrift delta flank to attain the orientation of maximum potential sediment transport for the incoming wave climate. Using model results, we develop a framework to estimate channel orientations for wave-influenced deltas that shows good agreement with natural examples. An increase in fluvial sediment input can cause a channel to reorient itself into incoming waves, behavior observed, for example, in the Ombrone delta in Italy. Our results can inform paleoclimate studies by linking channel orientation to fluvial sediment flux and wave energy. In particular, our approach provides a means to quantify past wave directions, which are notoriously difficult to constrain.