WorldWideScience

Sample records for channel current inhibition

  1. Inhibition of Na+ channel currents in rat myoblasts by 4-aminopyridine

    International Nuclear Information System (INIS)

    Lu Boxun; Liu Linyun; Liao Lei; Zhang Zhihong; Mei Yanai

    2005-01-01

    Our previous study revealed that 4-aminopyridine (4-AP), a specific blocker of A-type current, could also inhibit inward Na + currents (I Na ) with a state-independent mechanism in rat cerebellar granule cells. In the present study, we report an inhibitory effect of 4-AP on voltage-gated and tetrodotoxin (TTX)-sensitive I Na recorded from cultured rat myoblasts. 4-AP inhibited I Na amplitude in a dose-dependent manner between the concentrations of 0.5 and 10 mM without significant alteration in the activation or inactivation kinetics of the channel. By comparison to the 4-AP-induced inhibitory effect on cerebellum neurons, the inhibitory effect on myoblasts was enhanced through repetitive pulse and inflected by changing frequency. Specifically, the lower the frequency of pulse, the higher the inhibition observed, suggesting that block manner is inversely use-dependent. Moreover, experiments adding 4-AP to the intracellular solution indicate that the inhibitory effects are localized inside the cell. Additionally, 4-AP significantly modifies the properties of steady-state activation and inactivation kinetics of the channel. Our data suggest that the K + channel blocker 4-AP inhibits both neuron and myoblast Na + channels via different mechanisms. These findings may also provide information regarding 4-AP-induced pharmacological and toxicological effects in clinical use and experimental research

  2. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    International Nuclear Information System (INIS)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes; Hilber, Karlheinz; Sandtner, Walter

    2013-01-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na v 1.5 sodium and Ca v 1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on ion channels are a potential

  3. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  4. Anti-addiction drug ibogaine inhibits voltage-gated ionic currents: A study to assess the drug's cardiac ion channel profile

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Xaver; Kovar, Michael; Rubi, Lena; Mike, Agnes K.; Lukacs, Peter; Gawali, Vaibhavkumar S.; Todt, Hannes [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Hilber, Karlheinz, E-mail: karlheinz.hilber@meduniwien.ac.at [Center for Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, 1090 Vienna (Austria); Sandtner, Walter [Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna (Austria)

    2013-12-01

    The plant alkaloid ibogaine has promising anti-addictive properties. Albeit not licenced as a therapeutic drug, and despite hints that ibogaine may perturb the heart rhythm, this alkaloid is used to treat drug addicts. We have recently reported that ibogaine inhibits human ERG (hERG) potassium channels at concentrations similar to the drugs affinity for several of its known brain targets. Thereby the drug may disturb the heart's electrophysiology. Here, to assess the drug's cardiac ion channel profile in more detail, we studied the effects of ibogaine and its congener 18-Methoxycoronaridine (18-MC) on various cardiac voltage-gated ion channels. We confirmed that heterologously expressed hERG currents are reduced by ibogaine in low micromolar concentrations. Moreover, at higher concentrations, the drug also reduced human Na{sub v}1.5 sodium and Ca{sub v}1.2 calcium currents. Ion currents were as well reduced by 18-MC, yet with diminished potency. Unexpectedly, although blocking hERG channels, ibogaine did not prolong the action potential (AP) in guinea pig cardiomyocytes at low micromolar concentrations. Higher concentrations (≥ 10 μM) even shortened the AP. These findings can be explained by the drug's calcium channel inhibition, which counteracts the AP-prolonging effect generated by hERG blockade. Implementation of ibogaine's inhibitory effects on human ion channels in a computer model of a ventricular cardiomyocyte, on the other hand, suggested that ibogaine does prolong the AP in the human heart. We conclude that therapeutic concentrations of ibogaine have the propensity to prolong the QT interval of the electrocardiogram in humans. In some cases this may lead to cardiac arrhythmias. - Highlights: • We study effects of anti-addiction drug ibogaine on ionic currents in cardiomyocytes. • We assess the cardiac ion channel profile of ibogaine. • Ibogaine inhibits hERG potassium, sodium and calcium channels. • Ibogaine’s effects on

  5. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  6. High Glucose Represses hERG K+ Channel Expression through Trafficking Inhibition

    Directory of Open Access Journals (Sweden)

    Yuan-Qi Shi

    2015-08-01

    Full Text Available Background/Aims: Abnormal QT prolongation is the most prominent cardiac electrical disturbance in patients with diabetes mellitus (DM. It is well known that the human ether-ago-go-related gene (hERG controls the rapid delayed rectifier K+ current (IKr in cardiac cells. The expression of the hERG channel is severely down-regulated in diabetic hearts, and this down-regulation is a critical contributor to the slowing of repolarization and QT prolongation. However, the intracellular mechanisms underlying the diabetes-induced hERG deficiency remain unknown. Methods: The expression of the hERG channel was assessed via western blot analysis, and the hERG current was detected with a patch-clamp technique. Results: The results of our study revealed that the expression of the hERG protein and the hERG current were substantially decreased in high-glucose-treated hERG-HEK cells. Moreover, we demonstrated that the high-glucose-mediated damage to the hERG channel depended on the down-regulation of protein levels but not the alteration of channel kinetics. These discoveries indicated that high glucose likely disrupted hERG channel trafficking. From the western blot and immunoprecipitation analyses, we found that high glucose induced trafficking inhibition through an effect on the expression of Hsp90 and its interaction with hERG. Furthermore, the high-glucose-induced inhibition of hERG channel trafficking could activate the unfolded protein response (UPR by up-regulating the expression levels of activating transcription factor-6 (ATF-6 and the ER chaperone protein calnexin. In addition, we demonstrated that 100 nM insulin up-regulated the expression of the hERG channel and rescued the hERG channel repression caused by high glucose. Conclusion: The results of our study provide the first evidence of a high-glucose-induced hERG channel deficiency resulting from the inhibition of channel trafficking. Furthermore, insulin promotes the expression of the hERG channel

  7. Inhibition of GluR Current in Microvilli of Sensory Neurons via Na+-Microdomain Coupling Among GluR, HCN Channel, and Na+/K+ Pump

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kawasaki

    2018-04-01

    Full Text Available Glutamatergic dendritic EPSPs evoked in cortical pyramidal neurons are depressed by activation of hyperpolarization-activated cyclic nucleotide-gated (HCN channels expressed in dendritic spines. This depression has been attributed to shunting effects of HCN current (Ih on input resistance or Ih deactivation. Primary sensory neurons in the rat mesencephalic trigeminal nucleus (MTN have the somata covered by spine-like microvilli that express HCN channels. In rat MTN neurons, we demonstrated that Ih enhancement apparently diminished the glutamate receptor (GluR current (IGluR evoked by puff application of glutamate/AMPA and enhanced a transient outward current following IGluR (OT-IGluR. This suggests that some outward current opposes inward IGluR. The IGluR inhibition displayed a U-shaped voltage-dependence with a minimal inhibition around the resting membrane potential, suggesting that simple shunting effects or deactivation of Ih cannot explain the U-shaped voltage-dependence. Confocal imaging of Na+ revealed that GluR activation caused an accumulation of Na+ in the microvilli, which can cause a negative shift of the reversal potential for Ih (Eh. Taken together, it was suggested that IGluR evoked in MTN neurons is opposed by a transient decrease or increase in standing inward or outward Ih, respectively, both of which can be caused by negative shifts of Eh, as consistent with the U-shaped voltage-dependence of the IGluR inhibition and the OT-IGluR generation. An electron-microscopic immunohistochemical study revealed the colocalization of HCN channels and glutamatergic synapses in microvilli of MTN neurons, which would provide a morphological basis for the functional interaction between HCN and GluR channels. Mathematical modeling eliminated the possibilities of the involvements of Ih deactivation and/or shunting effect and supported the negative shift of Eh which causes the U-shaped voltage-dependent inhibition of IGluR.

  8. Inhibition of cardiac sodium currents by toluene exposure

    Science.gov (United States)

    Cruz, Silvia L; Orta-Salazar, Gerardo; Gauthereau, Marcia Y; Millan-Perez Peña, Lourdes; Salinas-Stefanón, Eduardo M

    2003-01-01

    Toluene is an industrial solvent widely used as a drug of abuse, which can produce sudden sniffing death due to cardiac arrhythmias. In this paper, we tested the hypothesis that toluene inhibits cardiac sodium channels in Xenopus laevis oocytes transfected with Nav1.5 cDNA and in isolated rat ventricular myocytes. In oocytes, toluene inhibited sodium currents (INa+) in a concentration-dependent manner, with an IC50 of 274 μM (confidence limits: 141–407μM). The inhibition was complete, voltage-independent, and slowly reversible. Toluene had no effect on: (i) the shape of the I–V curves; (ii) the reversal potential of Na+; and (iii) the steady-state inactivation. The slow recovery time constant from inactivation of INa+ decreased with toluene exposure, while the fast recovery time constant remained unchanged. Block of INa+ by toluene was use- and frequency-dependent. In rat cardiac myocytes, 300 μM toluene inhibited the sodium current (INa+) by 62%; this inhibition was voltage independent. These results suggest that toluene binds to cardiac Na+ channels in the open state and unbinds either when channels move between inactivated states or from an inactivated to a closed state. The use- and frequency-dependent block of INa+ by toluene might be responsible, at least in part, for its arrhythmogenic effect. PMID:14534149

  9. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  10. Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium.

    Science.gov (United States)

    Pattnaik, Bikash R; Hughes, Bret A

    2012-03-01

    Recently, we demonstrated the expression of KCNQ1, KCNQ4, and KCNQ5 transcripts in monkey retinal pigment epithelium (RPE) and showed that the M-type current in RPE cells is blocked by the specific KCNQ channel blocker XE991. Using patch-clamp electrophysiology, we investigated the pharmacological sensitivity of the M-type current in isolated monkey RPE cells to elucidate the subunit composition of the channel. Most RPE cells exhibited an M-type current with a voltage for half-maximal activation of approximately -35 mV. The M-type current activation followed a double-exponential time course and was essentially complete within 1 s. The M-type current was inhibited by micromolar concentrations of the nonselective KCNQ channel blockers linopirdine and XE991 but was relatively insensitive to block by 10 μM chromanol 293B or 135 mM tetraethylammonium (TEA), two KCNQ1 channel blockers. The M-type current was activated by 1) 10 μM retigabine, an opener of all KCNQ channels except KCNQ1, 2) 10 μM zinc pyrithione, which augments all KCNQ channels except KCNQ3, and 3) 50 μM N-ethylmaleimide, which activates KCNQ2, KCNQ4, and KCNQ5, but not KCNQ1 or KCNQ3, channels. Application of cAMP, which activates KCNQ1 and KCNQ4 channels, had no significant effect on the M-type current. Finally, diclofenac, which activates KCNQ2/3 and KCNQ4 channels but inhibits KCNQ5 channels, inhibited the M-type current in the majority of RPE cells but activated it in others. The results indicate that the M-type current in monkey RPE is likely mediated by channels encoded by KCNQ4 and KCNQ5 subunits.

  11. Oestrogen directly inhibits the cardiovascular L-type Ca2+ channel Cav1.2

    International Nuclear Information System (INIS)

    Ullrich, Nina D.; Koschak, Alexandra; MacLeod, Kenneth T.

    2007-01-01

    Oestrogen can modify the contractile function of vascular smooth muscle and cardiomyocytes. The negative inotropic actions of oestrogen on the heart and coronary vasculature appear to be mediated by L-type Ca 2+ channel (Ca v 1.2) inhibition, but the underlying mechanisms remain elusive. We tested the hypothesis that oestrogen directly inhibits the cardiovascular L-type Ca 2+ current, I CaL . The effect of oestrogen on I CaL was measured in Ca v 1.2-transfected HEK-293 cells using the whole-cell patch-clamp technique. The current revealed typical activation and inactivation profiles of nifedipine- and cadmium-sensitive I CaL . Oestrogen (50 μM) rapidly reduced I CaL by 50% and shifted voltage-dependent activation and availability to more negative potentials. Furthermore, oestrogen blocked the Ca 2+ channel in a rate-dependent way, exhibiting higher efficiency of block at higher stimulation frequencies. Our data suggest that oestrogen inhibits I CaL through direct interaction of the steroid with the channel protein

  12. Inhibition of HERG potassium channels by celecoxib and its mechanism.

    Directory of Open Access Journals (Sweden)

    Roman V Frolov

    Full Text Available Celecoxib (Celebrex, a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels.Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50 of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action.The above channels play a significant role in drug-induced long QT syndrome (LQTS and short QT syndrome (SQTS. Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.

  13. Short- and long-term inhibition of cardiac inward-rectifier potassium channel current by an antiarrhythmic drug bepridil.

    Science.gov (United States)

    Ma, Fangfang; Takanari, Hiroki; Masuda, Kimiko; Morishima, Masaki; Ono, Katsushige

    2016-07-01

    Bepridil is an effective antiarrhythmic drug on supraventricular and ventricular arrhythmias, and inhibitor of calmodulin. Recent investigations have been elucidating that bepridil exerts antiarrhythmic effects through its acute and chronic application for patients. The aim of this study was to identify the efficacy and the potential mechanism of bepridil on the inward-rectifier potassium channel in neonatal rat cardiomyocytes in acute- and long-term conditions. Bepridil inhibited inward-rectifier potassium current (I K1) as a short-term effect with IC50 of 17 μM. Bepridil also reduced I K1 of neonatal cardiomyocytes when applied for 24 h in the culture medium with IC50 of 2.7 μM. Both a calmodulin inhibitor (W-7) and an inhibitor of calmodulin-kinase II (KN93) reduced I K1 when applied for 24 h as a long-term effect in the same fashion, suggesting that the long-term application of bepridil inhibits I K1 more potently than that of the short-term application through the inhibition of calmodulin kinase II pathway in cardiomyocytes.

  14. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants.

    Directory of Open Access Journals (Sweden)

    Toru Kobayashi

    Full Text Available Various antidepressants are commonly used for the treatment of depression and several other neuropsychiatric disorders. In addition to their primary effects on serotonergic or noradrenergic neurotransmitter systems, antidepressants have been shown to interact with several receptors and ion channels. However, the molecular mechanisms that underlie the effects of antidepressants have not yet been sufficiently clarified. G protein-activated inwardly rectifying K(+ (GIRK, Kir3 channels play an important role in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to have therapeutic potential for several neuropsychiatric disorders and cardiac arrhythmias. In the present study, we investigated the effects of various classes of antidepressants on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2 or GIRK1/GIRK4 subunits, extracellular application of sertraline, duloxetine, and amoxapine effectively reduced GIRK currents, whereas nefazodone, venlafaxine, mianserin, and mirtazapine weakly inhibited GIRK currents even at toxic levels. The inhibitory effects were concentration-dependent, with various degrees of potency and effectiveness. Furthermore, the effects of sertraline were voltage-independent and time-independent during each voltage pulse, whereas the effects of duloxetine were voltage-dependent with weaker inhibition with negative membrane potentials and time-dependent with a gradual decrease in each voltage pulse. However, Kir2.1 channels were insensitive to all of the drugs. Moreover, the GIRK currents induced by ethanol were inhibited by sertraline but not by intracellularly applied sertraline. The present results suggest that GIRK channel inhibition may reveal a novel characteristic of the commonly used antidepressants, particularly sertraline, and contributes to some of the therapeutic effects and adverse effects.

  15. Caffeine inhibits nonselective cationic currents in interstitial cells of Cajal from the murine jejunum.

    Science.gov (United States)

    Jin, Nan Ge; Koh, Sang Don; Sanders, Kenton M

    2009-10-01

    Interstitial cells of Cajal (ICC) discharge unitary potentials in gastrointestinal muscles that constitute the basis for pacemaker activity. Caffeine has been used to block unitary potentials, but the ionic conductance responsible for unitary potentials is controversial. We investigated currents in cultured ICC from murine jejunum that may underlie unitary potentials and studied the effects of caffeine. Networks of ICC generated slow wave events under current clamp, and these events were blocked by caffeine in a concentration-dependent manner. Single ICC generated spontaneous transient inward currents (STICs) under voltage clamp at -60 mV and noisy voltage fluctuations in current clamp. STICs were unaffected when the equilibrium potential for Cl- (ECl) was set to -60 mV (excluding Cl- currents) and reversed at 0 mV, demonstrating that a nonselective cationic conductance, and not a Cl- conductance, is responsible for STICs in ICC. Caffeine inhibited STICs in a concentration-dependent manner. Reduced intracellular Ca2+ and calmidazolium (CMZ; 1 microM) activated persistent inward, nonselective cation currents in ICC. Currents activated by CMZ and by dialysis of cells with 10 mM BAPTA were also inhibited by caffeine. Excised inside-out patches contained channels that exhibited spontaneous openings, and resulting currents reversed at 0 mV. Channel openings were increased by reducing Ca2+ concentration from 10(-6) M to 10(-8) M. CMZ (1 microM) also increased openings of nonselective cation channels. Spontaneous currents and channels activated by CMZ were inhibited by caffeine (5 mM). The findings demonstrate that the Ca2+-inhibited nonselective cation channels that generate STICs in ICC are blocked directly by caffeine. STICs are responsible for unitary potentials in intact muscles, and the block of these events by caffeine is consistent with the idea that a nonselective cation conductance underlies unitary potentials in ICC.

  16. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    International Nuclear Information System (INIS)

    Long, Yan; Lin, Zuoxian; Xia, Menghang; Zheng, Wei; Li, Zhiyuan

    2013-01-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC 50 values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds

  17. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide and benzethonium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Long, Yan; Lin, Zuoxian [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China); Xia, Menghang; Zheng, Wei [National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892 (United States); Li, Zhiyuan, E-mail: li_zhiyuan@gibh.ac.cn [Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530 (China)

    2013-03-01

    Tetra-n-octylammonium bromide and benzethonium chloride are synthetic quaternary ammonium salts that are widely used in hospitals and industries for the disinfection and surface treatment and as the preservative agent. Recently, the activities of HERG channel inhibition by these compounds have been found to have potential risks to induce the long QT syndrome and cardiac arrhythmia, although the mechanism of action is still elusive. This study was conducted to investigate the mechanism of HERG channel inhibition by these compounds by using whole-cell patch clamp experiments in a CHO cell line stably expressing HERG channels. Tetra-n-octylammonium bromide and benzethonium chloride exhibited concentration-dependent inhibitions of HERG channel currents with IC{sub 50} values of 4 nM and 17 nM, respectively, which were also voltage-dependent and use-dependent. Both compounds shifted the channel activation I–V curves in a hyperpolarized direction for 10–15 mV and accelerated channel activation and inactivation processes by 2-fold. In addition, tetra-n-octylammonium bromide shifted the inactivation I–V curve in a hyperpolarized direction for 24.4 mV and slowed the rate of channel deactivation by 2-fold, whereas benzethonium chloride did not. The results indicate that tetra-n-octylammonium bromide and benzethonium chloride are open-channel blockers that inhibit HERG channels in the voltage-dependent, use-dependent and state-dependent manners. - Highlights: ► Tetra-n-octylammonium and benzethonium are potent HERG channel inhibitors. ► Channel activation and inactivation processes are accelerated by the two compounds. ► Both compounds are the open-channel blockers to HERG channels. ► HERG channel inhibition by both compounds is use-, voltage- and state dependent. ► The in vivo risk of QT prolongation needs to be studied for the two compounds.

  18. Insulin reduces neuronal excitability by turning on GABA(A channels that generate tonic current.

    Directory of Open Access Journals (Sweden)

    Zhe Jin

    Full Text Available Insulin signaling to the brain is important not only for metabolic homeostasis but also for higher brain functions such as cognition. GABA (γ-aminobutyric acid decreases neuronal excitability by activating GABA(A channels that generate phasic and tonic currents. The level of tonic inhibition in neurons varies. In the hippocampus, interneurons and dentate gyrus granule cells normally have significant tonic currents under basal conditions in contrast to the CA1 pyramidal neurons where it is minimal. Here we show in acute rat hippocampal slices that insulin (1 nM "turns on" new extrasynaptic GABA(A channels in CA1 pyramidal neurons resulting in decreased frequency of action potential firing. The channels are activated by more than million times lower GABA concentrations than synaptic channels, generate tonic currents and show outward rectification. The single-channel current amplitude is related to the GABA concentration resulting in a single-channel GABA affinity (EC(50 in intact CA1 neurons of 17 pM with the maximal current amplitude reached with 1 nM GABA. They are inhibited by GABA(A antagonists but have novel pharmacology as the benzodiazepine flumazenil and zolpidem are inverse agonists. The results show that tonic rather than synaptic conductances regulate basal neuronal excitability when significant tonic conductance is expressed and demonstrate an unexpected hormonal control of the inhibitory channel subtypes and excitability of hippocampal neurons. The insulin-induced new channels provide a specific target for rescuing cognition in health and disease.

  19. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Shin, Hyewon; Song, Jin-Ho

    2014-09-05

    Microglial dysfunction and neuroinflammation are thought to contribute to the pathogenesis of schizophrenia. Some antipsychotic drugs have anti-inflammatory activity and can reduce the secretion of pro-inflammatory cytokines and reactive oxygen species from activated microglial cells. Voltage-gated proton channels on the microglial cells participate in the generation of reactive oxygen species and neuronal toxicity by supporting NADPH oxidase activity. In the present study, we examined the effects of two typical antipsychotics, chlorpromazine and haloperidol, on proton currents in microglial BV2 cells using the whole-cell patch clamp method. Chlorpromazine and haloperidol potently inhibited proton currents with IC50 values of 2.2 μM and 8.4 μM, respectively. Chlorpromazine and haloperidol are weak bases that can increase the intracellular pH, whereby they reduce the proton gradient and affect channel gating. Although the drugs caused a marginal positive shift of the activation voltage, they did not change the reversal potential. This suggested that proton current inhibition was not due to an alteration of the intracellular pH. Chlorpromazine and haloperidol are strong blockers of dopamine receptors. While dopamine itself did not affect proton currents, it also did not alter proton current inhibition by the two antipsychotics, indicating dopamine receptors are not likely to mediate the proton current inhibition. Given that proton channels are important for the production of reactive oxygen species and possibly pro-inflammatory cytokines, the anti-inflammatory and antipsychotic activities of chlorpromazine and haloperidol may be partly derived from their ability to inhibit microglial proton currents. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The calmodulin inhibitor CGS 9343B inhibits voltage-dependent K{sup +} channels in rabbit coronary arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongliang; Hong, Da Hye; Kim, Han Sol; Kim, Hye Won [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of); Jung, Won-Kyo [Department of Biomedical Engineering, Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan 608-737 (Korea, Republic of); Na, Sung Hun [Institute of Medical Sciences, Department of Obstetrics and Gynecology, Kangwon National University Hospital, School of Medicine, Kangwon National University, Chuncheon, 200-701 (Korea, Republic of); Jung, In Duk; Park, Yeong-Min [Department of Immunology, Lab of Dendritic Cell Differentiation and Regulation, College of Medicine, Konkuk University, Chungju 380-701 (Korea, Republic of); Choi, Il-Whan, E-mail: cihima@inje.ac.kr [Department of Microbiology, Inje University College of Medicine, Busan, 614-735 (Korea, Republic of); Park, Won Sun, E-mail: parkws@kangwon.ac.kr [Institute of Medical Sciences, Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 200-701 (Korea, Republic of)

    2015-06-15

    We investigated the effects of the calmodulin inhibitor CGS 9343B on voltage-dependent K{sup +} (Kv) channels using whole-cell patch clamp technique in freshly isolated rabbit coronary arterial smooth muscle cells. CGS 9343B inhibited Kv currents in a concentration-dependent manner, with a half-maximal inhibitory concentration (IC{sub 50}) value of 0.81 μM. The decay rate of Kv channel inactivation was accelerated by CGS 9343B. The rate constants of association and dissociation for CGS 9343B were 2.77 ± 0.04 μM{sup −1} s{sup −1} and 2.55 ± 1.50 s{sup −1}, respectively. CGS 9343B did not affect the steady-state activation curve, but shifted the inactivation curve toward to a more negative potential. Train pulses (1 or 2 Hz) application progressively increased the CGS 9343B-induced Kv channel inhibition. In addition, the inactivation recovery time constant was increased in the presence of CGS 9343B, suggesting that CGS 9343B-induced inhibition of Kv channel was use-dependent. Another calmodulin inhibitor, W-13, did not affect Kv currents, and did not change the inhibitory effect of CGS 9343B on Kv current. Our results demonstrated that CGS 9343B inhibited Kv currents in a state-, time-, and use-dependent manner, independent of calmodulin inhibition. - Highlights: • We investigated the effects of CGS 9394B on Kv channels. • CGS 9394B inhibited Kv current in a state-, time-, and use-dependent manner. • Caution is required when using CGS 9394B in vascular function studies.

  1. Inhibition of cardiac inward rectifier currents by cationic amphiphilic drugs.

    Science.gov (United States)

    van der Heyden, M A G; Stary-Weinzinger, A; Sanchez-Chapula, J A

    2013-09-01

    Cardiac inward rectifier channels belong to three different classes of the KIR channel protein family. The KIR2.x proteins generate the classical inward rectifier current, IK1, while KIR3 and KIR6 members are responsible for the acetylcholine responsive and ATP sensitive inward rectifier currents IKAch and IKATP, respectively. Aberrant function of these channels has been correlated with severe cardiac arrhythmias, indicating their significant contribution to normal cardiac electrophysiology. A common feature of inward rectifier channels is their dependence on the lipid phosphatidyl-4,5-bisphospate (PIP2) interaction for functional activity. Cationic amphiphilic drugs (CADs) are one of the largest classes of pharmaceutical compounds. Several widely used CADs have been associated with inward rectifier current disturbances, and recent evidence points to interference of the channel-PIP2 interaction as the underlying mechanism of action. Here, we will review how six of these well known drugs, used for treatment in various different conditions, interfere in cardiac inward rectifier functioning. In contrast, KIR channel inhibition by the anionic anesthetic thiopental is achieved by a different mechanism of channel-PIP2 interference. We will discuss the latest basic science insights of functional inward rectifier current characteristics, recently derived KIR channel structures and specific PIP2-receptor interactions at the molecular level and provide insight in how these drugs interfere in the structure-function relationships.

  2. Cationic Polymers Inhibit the Conductance of Lysenin Channels

    Directory of Open Access Journals (Sweden)

    Daniel Fologea

    2013-01-01

    Full Text Available The pore-forming toxin lysenin self-assembles large and stable conductance channels in natural and artificial lipid membranes. The lysenin channels exhibit unique regulation capabilities, which open unexplored possibilities to control the transport of ions and molecules through artificial and natural lipid membranes. Our investigations demonstrate that the positively charged polymers polyethyleneimine and chitosan inhibit the conducting properties of lysenin channels inserted into planar lipid membranes. The preservation of the inhibitory effect following addition of charged polymers on either side of the supporting membrane suggests the presence of multiple binding sites within the channel's structure and a multistep inhibition mechanism that involves binding and trapping. Complete blockage of the binding sites with divalent cations prevents further inhibition in conductance induced by the addition of cationic polymers and supports the hypothesis that the binding sites are identical for both multivalent metal cations and charged polymers. The investigation at the single-channel level has shown distinct complete blockages of each of the inserted channels. These findings reveal key structural characteristics which may provide insight into lysenin’s functionality while opening innovative approaches for the development of applications such as transient cell permeabilization and advanced drug delivery systems.

  3. High potency inhibition of hERG potassium channels by the sodium–calcium exchange inhibitor KB-R7943

    Science.gov (United States)

    Cheng, Hongwei; Zhang, Yihong; Du, Chunyun; Dempsey, Christopher E; Hancox, Jules C

    2012-01-01

    BACKGROUND AND PURPOSE KB-R7943 is an isothiourea derivative that is used widely as a pharmacological inhibitor of sodium–calcium exchange (NCX) in experiments on cardiac and other tissue types. This study investigated KB-R7943 inhibition of hERG (human ether-à-go-go-related gene) K+ channels that underpin the cardiac rapid delayed rectifier potassium current, IKr. EXPERIMENTAL APPROACH Whole-cell patch-clamp measurements were made of hERG current (IhERG) carried by wild-type or mutant hERG channels and of native rabbit ventricular IKr. Docking simulations utilized a hERG homology model built on a MthK-based template. KEY RESULTS KB-R7943 inhibited both IhERG and native IKr rapidly on membrane depolarization with IC50 values of ∼89 and ∼120 nM, respectively, for current tails at −40 mV following depolarizing voltage commands to +20 mV. Marked IhERG inhibition also occurred under ventricular action potential voltage clamp. IhERG inhibition by KB-R7943 exhibited both time- and voltage-dependence but showed no preference for inactivated over activated channels. Results of alanine mutagenesis and docking simulations indicate that KB-R7943 can bind to a pocket formed of the side chains of aromatic residues Y652 and F656, with the compound's nitrobenzyl group orientated towards the cytoplasmic side of the channel pore. The structurally related NCX inhibitor SN-6 also inhibited IhERG, but with a markedly reduced potency. CONCLUSIONS AND IMPLICATIONS KB-R7943 inhibits IhERG/IKr with a potency that exceeds that reported previously for acute cardiac NCX inhibition. Our results also support the feasibility of benzyloxyphenyl-containing NCX inhibitors with reduced potential, in comparison with KB-R7943, to inhibit hERG. PMID:21950687

  4. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  5. TRESK background K(+ channel is inhibited by PAR-1/MARK microtubule affinity-regulating kinases in Xenopus oocytes.

    Directory of Open Access Journals (Sweden)

    Gabriella Braun

    Full Text Available TRESK (TWIK-related spinal cord K(+ channel, KCNK18 is a major background K(+ channel of sensory neurons. Dominant-negative mutation of TRESK is linked to familial migraine. This important two-pore domain K(+ channel is uniquely activated by calcineurin. The calcium/calmodulin-dependent protein phosphatase directly binds to the channel and activates TRESK current several-fold in Xenopus oocytes and HEK293 cells. We have recently shown that the kinase, which is responsible for the basal inhibition of the K(+ current, is sensitive to the adaptor protein 14-3-3. Therefore we have examined the effect of the 14-3-3-inhibited PAR-1/MARK, microtubule-associated-protein/microtubule affinity-regulating kinase on TRESK in the Xenopus oocyte expression system. MARK1, MARK2 and MARK3 accelerated the return of TRESK current to the resting state after the calcium-dependent activation. Several other serine-threonine kinase types, generally involved in the modulation of other ion channels, failed to influence TRESK current recovery. MARK2 phosphorylated the primary determinant of regulation, the cluster of three adjacent serine residues (S274, 276 and 279 in the intracellular loop of mouse TRESK. In contrast, serine 264, the 14-3-3-binding site of TRESK, was not phosphorylated by the kinase. Thus MARK2 selectively inhibits TRESK activity via the S274/276/279 cluster, but does not affect the direct recruitment of 14-3-3 to the channel. TRESK is the first example of an ion channel phosphorylated by the dynamically membrane-localized MARK kinases, also known as general determinants of cellular polarity. These results raise the possibility that microtubule dynamics is coupled to the regulation of excitability in the neurons, which express TRESK background potassium channel.

  6. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  7. Mechanism of inhibition of mouse Slo3 (KCa 5.1) potassium channels by quinine, quinidine and barium.

    Science.gov (United States)

    Wrighton, David C; Muench, Stephen P; Lippiat, Jonathan D

    2015-09-01

    The Slo3 (KCa 5.1) channel is a major component of mammalian KSper (sperm potassium conductance) channels and inhibition of these channels by quinine and barium alters sperm motility. The aim of this investigation was to determine the mechanism by which these drugs inhibit Slo3 channels. Mouse (m) Slo3 (KCa 5.1) channels or mutant forms were expressed in Xenopus oocytes and currents recorded with 2-electrode voltage-clamp. Gain-of-function mSlo3 mutations were used to explore the state-dependence of the inhibition. The interaction between quinidine and mSlo3 channels was modelled by in silico docking. Several drugs known to block KSper also affected mSlo3 channels with similar levels of inhibition. The inhibition induced by extracellular barium was prevented by increasing the extracellular potassium concentration. R196Q and F304Y mutations in the mSlo3 voltage sensor and pore, respectively, both increased channel activity. The F304Y mutation did not alter the effects of barium, but increased the potency of inhibition by both quinine and quinidine approximately 10-fold; this effect was not observed with the R196Q mutation. Block of mSlo3 channels by quinine, quinidine and barium is not state-dependent. Barium inhibits mSlo3 outside the cell by interacting with the selectivity filter, whereas quinine and quinidine act from the inside, by binding in a hydrophobic pocket formed by the S6 segment of each subunit. Furthermore, we propose that the Slo3 channel activation gate lies deep within the pore between F304 in the S6 segment and the selectivity filter. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  8. Citalopram inhibits L-type calcium channel current in rat cardiomyocytes in culture

    Czech Academy of Sciences Publication Activity Database

    Hamplová-Peichlová, J.; Krůšek, Jan; Paclt, I.; Slavíček, J.; Lisá, Věra; Vyskočil, František

    2002-01-01

    Roč. 51, č. 3 (2002), s. 317-321 ISSN 0862-8408 R&D Projects: GA AV ČR IAA7011902; GA ČR GA305/02/1333 Institutional research plan: CEZ:AV0Z5011922 Keywords : citalopram * amitriptyline * L-type calcium channel current Subject RIV: ED - Physiology Impact factor: 0.984, year: 2002

  9. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH rat cerebral arterial muscle cells.

    Directory of Open Access Journals (Sweden)

    Debebe Gebremedhin

    Full Text Available The transient receptor potential vallinoid type 4 (TRPV4 is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR, Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and

  10. Inhibition of G-Protein-Activated Inwardly Rectifying K+ Channels by the Selective Norepinephrine Reuptake Inhibitors Atomoxetine and Reboxetine

    Science.gov (United States)

    Kobayashi, Toru; Washiyama, Kazuo; Ikeda, Kazutaka

    2010-01-01

    Atomoxetine and reboxetine are commonly used as selective norepinephrine reuptake inhibitors (NRIs) for the treatment of attention-deficit/hyperactivity disorder and depression, respectively. Furthermore, recent studies have suggested that NRIs may be useful for the treatment of several other psychiatric disorders. However, the molecular mechanisms underlying the various effects of NRIs have not yet been sufficiently clarified. G-protein-activated inwardly rectifying K+ (GIRK or Kir3) channels have an important function in regulating neuronal excitability and heart rate, and GIRK channel modulation has been suggested to be a potential treatment for several neuropsychiatric disorders and cardiac arrhythmias. In this study, we investigated the effects of atomoxetine and reboxetine on GIRK channels using the Xenopus oocyte expression assay. In oocytes injected with mRNA for GIRK1/GIRK2, GIRK2, or GIRK1/GIRK4 subunits, extracellular application of atomoxetine or reboxetine reversibly reduced GIRK currents. The inhibitory effects were concentration-dependent, but voltage-independent, and time-independent during each voltage pulse. However, Kir1.1 and Kir2.1 channels were insensitive to atomoxetine and reboxetine. Atomoxetine and reboxetine also inhibited GIRK currents induced by activation of cloned A1 adenosine receptors or by intracellularly applied GTPγS, a nonhydrolyzable GTP analogue. Furthermore, the GIRK currents induced by ethanol were concentration-dependently inhibited by extracellularly applied atomoxetine but not by intracellularly applied atomoxetine. The present results suggest that atomoxetine and reboxetine inhibit brain- and cardiac-type GIRK channels, revealing a novel characteristic of clinically used NRIs. GIRK channel inhibition may contribute to some of the therapeutic effects of NRIs and adverse side effects related to nervous system and heart function. PMID:20393461

  11. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Inhibition by acrolein of light-induced stomatal opening through inhibition of inward-rectifying potassium channels in Arabidopsis thaliana.

    Science.gov (United States)

    Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.

  13. Bupivacaine inhibits large conductance, voltage- and Ca2+- activated K+ channels in human umbilical artery smooth muscle cells

    Science.gov (United States)

    Martín, Pedro; Enrique, Nicolás; Palomo, Ana R. Roldán; Rebolledo, Alejandro; Milesi, Veronica

    2012-01-01

    Bupivacaine is a local anesthetic compound belonging to the amino amide group. Its anesthetic effect is commonly related to its inhibitory effect on voltage-gated sodium channels. However, several studies have shown that this drug can also inhibit voltage-operated K+ channels by a different blocking mechanism. This could explain the observed contractile effects of bupivacaine on blood vessels. Up to now, there were no previous reports in the literature about bupivacaine effects on large conductance voltage- and Ca2+-activated K+ channels (BKCa). Using the patch-clamp technique, it is shown that bupivacaine inhibits single-channel and whole-cell K+ currents carried by BKCa channels in smooth muscle cells isolated from human umbilical artery (HUA). At the single-channel level bupivacaine produced, in a concentration- and voltage-dependent manner (IC50 324 µM at +80 mV), a reduction of single-channel current amplitude and induced a flickery mode of the open channel state. Bupivacaine (300 µM) can also block whole-cell K+ currents (~45% blockage) in which, under our working conditions, BKCa is the main component. This study presents a new inhibitory effect of bupivacaine on an ion channel involved in different cell functions. Hence, the inhibitory effect of bupivacaine on BKCa channel activity could affect different physiological functions where these channels are involved. Since bupivacaine is commonly used during labor and delivery, its effects on umbilical arteries, where this channel is highly expressed, should be taken into account. PMID:22688134

  14. Hypotonic stimuli enhance proton-gated currents of acid-sensing ion channel-1b

    International Nuclear Information System (INIS)

    Ugawa, Shinya; Ishida, Yusuke; Ueda, Takashi; Yu, Yong; Shimada, Shoichi

    2008-01-01

    Acid-sensing ion channels (ASICs) are strong candidates for mammalian mechanoreceptors. We investigated whether mouse acid-sensing ion channel-1b (ASIC1b) is sensitive to mechanical stimuli using oocyte electrophysiology, because ASIC1b is located in the mechanosensory stereocilia of cochlear hair cells. Hypotonic stimuli that induced membrane stretch of oocytes evoked no significant current in ASIC1b-expressing oocytes at pH 7.5. However, acid (pH 4.0 or 5.0)-evoked currents in the oocytes were substantially enhanced by the hypotonicity, showing mechanosensitivity of ASIC1b and possible mechanogating of the channel in the presence of other components. Interestingly, the ASIC1b channel was permeable to K + (a principal charge carrier for cochlear sensory transduction) and the affinity of the channel for amiloride (IC 50 (inhibition constant) = approximately 48.3 μM) was quite similar to that described for the mouse hair cell mechanotransducer current. Taken together, these data raise the possibility that ASIC1b participates in cochlear mechanoelectrical transduction

  15. Isoflurane depolarizes bronchopulmonary C neurons by inhibiting transient A-type and delayed rectifier potassium channels.

    Science.gov (United States)

    Zhang, Zhenxiong; Zhuang, Jianguo; Zhang, Cancan; Xu, Fadi

    2013-04-01

    Inhalation of isoflurane (ISO), a widely used volatile anesthetic, can produce clinical tachypnea. In dogs, this response is reportedly mediated by bronchopulmonary C-fibers (PCFs), but the relevant mechanisms remain unclear. Activation of transient A-type potassium current (IA) channels and delayed rectifier potassium current (IK) channels hyperpolarizes neurons, and inhibition of both channels by ISO increases neural firing. Due to the presence of these channels in the cell bodies of rat PCFs, we determined whether ISO could stimulate PCFs to produce tachypnea in anesthetized rats, and, if so, whether this response resulted from ISO-induced depolarization of the pulmonary C neurons via the inhibition of IA and IK. We recorded ventilatory responses to 5% ISO exposure in anesthetized rats before and after blocking PCF conduction and the responses of pulmonary C neurons (extracellularly recorded) to ISO exposure. ISO-induced (1mM) changes in pulmonary C neuron membrane potential and IA/IK were tested using the perforated patch clamp technique. We found that: (1) ISO inhalation evoked a brief tachypnea (∼7s) and that this response disappeared after blocking PCF conduction; (2) the ISO significantly elevated (by 138%) the firing rate of most pulmonary C neurons (17 out of 21) in the nodose ganglion; and (3) ISO perfusion depolarized the pulmonary C neurons in the vitro and inhibited both IA and IK, and this evoked-depolarization was largely diminished after blocking both IA and IK. Our results suggest that ISO is able to stimulate PCFs to elicit tachypnea in rats, at least partly, via inhibiting IA and IK, thereby depolarizing the pulmonary C neurons. Copyright © 2013. Published by Elsevier B.V.

  16. Clofilium inhibits Slick and Slack potassium channels.

    Science.gov (United States)

    de Los Angeles Tejada, Maria; Stolpe, Kathleen; Meinild, Anne-Kristine; Klaerke, Dan A

    2012-01-01

    Slick and Slack high-conductance potassium channels have been recently discovered, and are found in the central nervous system and in the heart. Both channels are activated by Na(+) and Cl(-), and Slick channels are also inhibited by adenosine triphospate (ATP). An important role of setting the resting membrane potential and controlling the basal excitability of neurons has been suggested for these channels. In addition, no specific blockers for these channels are known up to the present. With the purpose of studying the pharmacological characteristics of Slick and Slack channels, the effects of exposure to the antiarrhythmic compound clofilium were evaluated. Clofilium was able to modulate the activity of Slick and Slack channels effectively, with a stronger effect on Slack than Slick channels. In order to evaluate the pharmacological behavior of Slick and Slack channels further, 38 commonly used potassium channel blockers were tested. Screening of these compounds did not reveal any modulators of Slick and Slack channels, except for clofilium. The present study provides a first approach towards elucidating the pharmacological characteristics of Slick and Slack channels and could be the basis for future studies aimed at developing potent and specific blockers and activators for these channels.

  17. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  18. The KCNQ5 potassium channel from mouse: a broadly expressed M-current like potassium channel modulated by zinc, pH, and volume changes

    DEFF Research Database (Denmark)

    Jensen, Henrik Sindal; Callø, Kirstine; Jespersen, Thomas

    2005-01-01

    H-dependent potentiation by Zn2+ (EC50 = 21.8 microM at pH 7.4), inhibition by acidification (IC50 = 0.75 microM; pKa = 6.1), and regulation by small changes in cell volume. Furthermore, the channels are activated by the anti-convulsant drug retigabine (EC50 = 2.0 microM) and inhibited by the M-current blockers...... and hippocampus. This study shows that murine KCNQ5 channels, in addition to sharing biophysical and pharmacological characteristics with the human ortholog, are tightly regulated by physiological stimuli such as changes in extracellular Zn2+, pH, and tonicity, thus adding to the complex regulation...

  19. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose

    DEFF Research Database (Denmark)

    Burdakov, Denis; Jensen, Lise T; Alexopoulos, Haris

    2006-01-01

    Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism...... and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose...... levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself...

  20. Modulation of the transient outward current (Ito) in rat cardiac myocytes and human Kv4.3 channels by mefloquine

    International Nuclear Information System (INIS)

    Perez-Cortes, E.J.; Islas, A.A.; Arevalo, J.P.; Mancilla, C.; Monjaraz, E.; Salinas-Stefanon, E.M.

    2015-01-01

    The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (I to ) and the molecular correlate, the K v 4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular I to and of CHO cells co-transfected with human K v 4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat I to and hK v 4.3 + KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC 50 = 8.9 μM and 10.5 μM for cardiac myocytes and K v 4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hK v 4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP. - Highlights: • Mefloquine inhibited ventricular I to and hK v 4.3 channels. IC 50 = 8.9 and 10.5 μM. • Inactivation and recovery from inactivation in the hK v 4.3 channels were modified by mefloquine. • Mefloquine displayed a higher affinity for the inactivated state. • The binding site for mefloquine may be located in the extracellular side of the channel.

  1. Subtype-specific, bi-component inhibition of SK channels by low internal pH

    DEFF Research Database (Denmark)

    Peitersen, Torben; Jespersen, Thomas; Jorgensen, Nanna K

    2006-01-01

    The effects of low intracellular pH (pH(i) 6.4) on cloned small-conductance Ca2+-activated K+ channel currents of all three subtypes (SK1, SK2, and SK3) were investigated in HEK293 cells using the patch-clamp technique. In 400 nM internal Ca2+ [Ca2+]i, all subtypes were inhibited by pH(i) 6...

  2. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-01-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 ± 8 μM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCα and PKA, but had no effect on p42\\/p44 MAPK and PKCδ. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE (∼65%), an inhibitor of PKCα and to a smaller extent by inhibition of p38 MAPK with SB202190 (∼15%). Berberine treatment induced an increase in association between PKCα and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCα-dependent pathway.

  3. Berberine Reduces cAMP-Induced Chloride Secretion in T84 Human Colonic Carcinoma Cells through Inhibition of Basolateral KCNQ1 Channels.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Berberine is a plant alkaloid with multiple pharmacological actions, including antidiarrhoeal activity and has been shown to inhibit Cl(-) secretion in distal colon. The aims of this study were to determine the molecular signaling mechanisms of action of berberine on Cl(-) secretion and the ion transporter targets. Monolayers of T84 human colonic carcinoma cells grown in permeable supports were placed in Ussing chambers and short-circuit current measured in response to secretagogues and berberine. Whole-cell current recordings were performed in T84 cells using the patch-clamp technique. Berberine decreased forskolin-induced short-circuit current in a concentration-dependent manner (IC(50) 80 +\\/- 8 muM). In apically permeabilized monolayers and whole-cell current recordings, berberine inhibited a cAMP-dependent and chromanol 293B-sensitive basolateral membrane K(+) current by 88%, suggesting inhibition of KCNQ1 K(+) channels. Berberine did not affect either apical Cl(-) conductance or basolateral Na(+)-K(+)-ATPase activity. Berberine stimulated p38 MAPK, PKCalpha and PKA, but had no effect on p42\\/p44 MAPK and PKCdelta. However, berberine pre-treatment prevented stimulation of p42\\/p44 MAPK by epidermal growth factor. The inhibitory effect of berberine on Cl(-) secretion was partially blocked by HBDDE ( approximately 65%), an inhibitor of PKCalpha and to a smaller extent by inhibition of p38 MAPK with SB202190 ( approximately 15%). Berberine treatment induced an increase in association between PKCalpha and PKA with KCNQ1 and produced phosphorylation of the channel. We conclude that berberine exerts its inhibitory effect on colonic Cl(-) secretion through inhibition of basolateral KCNQ1 channels responsible for K(+) recycling via a PKCalpha-dependent pathway.

  4. Modulation of voltage-gated channel currents by harmaline and harmane.

    Science.gov (United States)

    Splettstoesser, Frank; Bonnet, Udo; Wiemann, Martin; Bingmann, Dieter; Büsselberg, Dietrich

    2005-01-01

    Harmala alkaloids are endogenous substances, which are involved in neurodegenerative disorders such as M. Parkinson, but some of them also have neuroprotective effects in the nervous system. While several sites of action at the cellular level (e.g. benzodiazepine receptors, 5-HT and GABA(A) receptors) have been identified, there is no report on how harmala alkaloids interact with voltage-gated membrane channels. The aim of this study was to investigate the effects of harmaline and harmane on voltage-activated calcium- (I(Ca(V))), sodium- (I(Na(V))) and potassium (I(K(V)))-channel currents, using the whole-cell patch-clamp method with cultured dorsal root ganglion neurones of 3-week-old rats. Currents were elicited by voltage steps from the holding potential to different command potentials. Harmaline and harmane reduced I(Ca(V)), I(Na(V)) and I(K(V)) concentration-dependent (10-500 microM) over the voltage range tested. I(Ca(V)) was reduced with an IC(50) of 100.6 microM for harmaline and by a significantly lower concentration of 75.8 microM (P<0.001, t-test) for harmane. The Hill coefficient was close to 1. Threshold concentration was around 10 microM for both substances. The steady state of inhibition of I(Ca(V)) by harmaline or harmane was reached within several minutes. The action was not use-dependent and at least partly reversible. It was mainly due to a reduction in the sustained calcium channel current (I(Ca(L+N))), while the transient voltage-gated calcium channel current (I(Ca(T))) was only partially affected. We conclude that harmaline and harmane are modulators of I(Ca(V)) in vitro. This might be related to their neuroprotective effects.

  5. Mechanisms of Rose Bengal inhibition on SecA ATPase and ion channel activities.

    Science.gov (United States)

    Hsieh, Ying-Hsin; Huang, Ying-Ju; Jin, Jin-Shan; Yu, Liyan; Yang, Hsiuchin; Jiang, Chun; Wang, Binghe; Tai, Phang C

    2014-11-14

    SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A novel toxin from Haplopelma lividum selectively inhibits the NAV1.8 channel and possesses potent analgesic efficacy

    DEFF Research Database (Denmark)

    Meng, Ping; Huang, Honggang; Wang, Gan

    2017-01-01

    Spider venoms are a complex mixture of peptides with a large number of neurotoxins targeting ion channels. Although thousands of peptide toxins have been identified from venoms of numerous species of spiders, many unknown species urgently need to be investigated. In this study, a novel sodium...... channel inhibitor, μ-TRTX-Hl1a, was identified from the venom of Haplopelma lividum. It contained eight cysteines and formed a conserved cysteine pattern of ICK motif. μ-TRTX-Hl1a inhibited the TTX-resistant (TTX-r) sodium channel current rather than the TTX-sensitive (TTX-s) sodium channel current...

  7. K+ channel openers restore verapamil-inhibited lung fluid resolution and transepithelial ion transport

    Directory of Open Access Journals (Sweden)

    Su Xue-Feng

    2010-05-01

    Full Text Available Abstract Background Lung epithelial Na+ channels (ENaC are regulated by cell Ca2+ signal, which may contribute to calcium antagonist-induced noncardiogenic lung edema. Although K+ channel modulators regulate ENaC activity in normal lungs, the therapeutical relevance and the underlying mechanisms have not been completely explored. We hypothesized that K+ channel openers may restore calcium channel blocker-inhibited alveolar fluid clearance (AFC by up-regulating both apical and basolateral ion transport. Methods Verapamil-induced depression of heterologously expressed human αβγ ENaC in Xenopus oocytes, apical and basolateral ion transport in monolayers of human lung epithelial cells (H441, and in vivo alveolar fluid clearance were measured, respectively, using the two-electrode voltage clamp, Ussing chamber, and BSA protein assays. Ca2+ signal in H441 cells was analyzed using Fluo 4AM. Results The rate of in vivo AFC was reduced significantly (40.6 ± 6.3% of control, P Ca3.1 (1-EBIO and KATP (minoxidil channel openers significantly recovered AFC. In addition to short-circuit current (Isc in intact H441 monolayers, both apical and basolateral Isc levels were reduced by verapamil in permeabilized monolayers. Moreover, verapamil significantly altered Ca2+ signal evoked by ionomycin in H441 cells. Depletion of cytosolic Ca2+ in αβγ ENaC-expressing oocytes completely abolished verapamil-induced inhibition. Intriguingly, KV (pyrithione-Na, K Ca3.1 (1-EBIO, and KATP (minoxidil channel openers almost completely restored the verapamil-induced decrease in Isc levels by diversely up-regulating apical and basolateral Na+ and K+ transport pathways. Conclusions Our observations demonstrate that K+ channel openers are capable of rescuing reduced vectorial Na+ transport across lung epithelial cells with impaired Ca2+ signal.

  8. Nicotine inhibits potassium currents in Aplysia bag cell neurons

    Science.gov (United States)

    White, Sean H.; Sturgeon, Raymond M.

    2016-01-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  9. Aluminium and hydrogen ions inhibit a mechanosensory calcium-selective cation channel

    Science.gov (United States)

    Ding, J. P.; Pickard, B. G.

    1993-01-01

    The tension-dependent activity of mechanosensory calcium-selective cation channels in excised plasmalemmal patches from onion bulb scale epidermis is modulated by pH in the physiologically meaningful range between 4.5 and 7.2. It is rapidly lowered by lowering pH and rapidly raised by raising pH. Channel activity is effectively inhibited by low levels of aluminium ions and activity can be partially restored by washing for a few minutes. We suggest that under normal conditions the sensitivity of the mechanosensory channels to pH of the wall free space plays important roles in regulation of plant activities such as growth. We further suggest that, when levels of acid and aluminium ions in the soil solution are high, they might inhibit similar sensory channels in cells of the root tip, thus contributing critically to the acid soil syndrome.

  10. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  11. Chloride channel inhibition by a red wine extract and a synthetic small molecule prevents rotaviral secretory diarrhoea in neonatal mice

    Science.gov (United States)

    Ko, Eun-A; Jin, Byung-Ju; Namkung, Wan; Ma, Tonghui; Thiagarajah, Jay R.; Verkman, A. S.

    2014-01-01

    Background Rotavirus is the most common cause of severe secretory diarrhoea in infants and young children globally. The rotaviral enterotoxin, NSP4, has been proposed to stimulate calcium-activated chloride channels (CaCC) on the apical plasma membrane of intestinal epithelial cells. We previously identified red wine and small molecule CaCC inhibitors. Objective To investigate the efficacy of a red wine extract and a synthetic small molecule, CaCCinh-A01, in inhibiting intestinal CaCCs and rotaviral diarrhoea. Design Inhibition of CaCC-dependent current was measured in T84 cells and mouse ileum. The effectiveness of an orally administered wine extract and CaCCinh-A01 in inhibiting diarrhoea in vivo was determined in a neonatal mouse model of rotaviral infection. Results Screening of ~150 red wines revealed a Cabernet Sauvignon that inhibited CaCC current in T84 cells with IC50 at a ~1:200 dilution, and higher concentrations producing 100% inhibition. A >1 kdalton wine extract prepared by dialysis, which retained full inhibition activity, blocked CaCC current in T84 cells and mouse intestine. In rotavirus-inoculated mice, oral administration of the wine extract prevented diarrhoea by inhibition of intestinal fluid secretion without affecting rotaviral infection. The wine extract did not inhibit the cystic fibrosis chloride channel (CFTR) in cell cultures, nor did it prevent watery stools in neonatal mice administered cholera toxin, which activates CFTR-dependent fluid secretion. CaCCinh-A01 also inhibited rotaviral diarrhoea. Conclusions Our results support a pathogenic role for enterocyte CaCCs in rotaviral diarrhoea and demonstrate the antidiarrhoeal action of CaCC inhibition by an alcohol-free, red wine extract and by a synthetic small molecule. PMID:24052273

  12. Drug-induced Inhibition and Trafficking Disruption of ion Channels: Pathogenesis of QT Abnormalities and Drug-induced Fatal Arrhythmias

    Science.gov (United States)

    Cubeddu, Luigi X.

    2016-01-01

    Risk of severe and fatal ventricular arrhythmias, presenting as Torsade de Pointes (TdP), is increased in congenital and acquired forms of long QT syndromes (LQTS). Drug-induced inhibition of K+ currents, IKs, IKr, IK1, and/or Ito, delay repolarization, prolong QT, and increase the risk of TdP. Drug-induced interference with IKr is the most common cause of acquired LQTS/TdP. Multiple drugs bind to KNCH2-hERG-K+ channels affecting IKr, including antiarrythmics, antibiotics, antivirals, azole-antifungals, antimalarials, anticancer, antiemetics, prokinetics, antipsychotics, and antidepressants. Azithromycin has been recently added to this list. In addition to direct channel inhibition, some drugs interfere with the traffic of channels from the endoplasmic reticulum to the cell membrane, decreasing mature channel membrane density; e.g., pentamidine, geldalamicin, arsenic trioxide, digoxin, and probucol. Other drugs, such as ketoconazole, fluoxetine, norfluoxetine, citalopram, escitalopram, donepezil, tamoxifen, endoxifen, atazanavir, and roxitromycin, induce both direct channel inhibition and impaired channel trafficking. Although many drugs prolong the QT interval, TdP is a rare event. The following conditions increase the risk of drug-induced TdP: a) Disease states/electrolyte levels (heart failure, structural cardiac disease, bradycardia, hypokalemia); b) Pharmacogenomic variables (presence of congenital LQTS, subclinical ion-channel mutations, history of or having a relative with history of drug-induced long QT/TdP); c) Pharmacodynamic and kinetic factors (high doses, women, elderly, metabolism inhibitors, combining two or more QT prolonging drugs, drugs that prolong the QT and increase QT dispersion, and drugs with multiple actions on ion channels). Because most of these conditions are preventable, careful evaluation of risk factors and increased knowledge of drug use associated with repolarization abnormalities are strongly recommended. PMID:26926294

  13. Inhibition by sigma receptor ligand, MS-377, of N-methyl- D-aspartate-induced currents in dopamine neurons of the rat ventral tegmental area.

    Science.gov (United States)

    Yamazaki, Yuu; Ishioka, Miwa; Matsubayashi, Hiroaki; Amano, Taku; Sasa, Masashi

    2002-04-01

    MS-377 [( R)-(+)-1-(4-chlorophenyl)-3-[4-(2-methoxyethyl) piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate] is a novel anti-psychotic drug candidate with high affinity for sigma receptors but devoid of binding affinity for PCP binding site of NMDA receptor/ion channel complex. The effects of MS-377 on NMDA receptor and/or its ion channel complex were examined to elucidate the antipsychotic properties of MS-377. We examined the effect of MS-377 on NMDA ( N-methyl- D-aspartate)-induced current in acutely dissociated dopamine neurons of rat ventral tegmental area (VTA) using patch clamp whole cell recording. MS-377 applied in a bath inhibited the peak current evoked by NMDA applied via the U-tube method for 2 s in a concentration-dependent manner. Other sigma receptor ligands, BD-1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), NE-100 ( N, N-dipropyl-2-[4-methoxy-3-(2-phenylenoxy)-phenyl]-ethylamine monohydrochloride) and haloperidol also inhibited NMDA-induced current in a concentration-dependent manner. Interestingly, concomitant application of MS-377 with BD-1063, NE-100 or haloperidol at concentrations that had no effects on NMDA-induced current, potentiated the MS-377-induced inhibition. The results suggest that MS-377, as well as other sigma receptor ligands, indirectly acts on the sigma receptor to inhibit glutaminergic transmission mediated by NMDA receptor/ion channel complex in VTA dopamine neurons, thereby inhibiting dopamine release in target VTA areas.

  14. Apelin-13 enhances arcuate POMC neuron activity via inhibiting M-current.

    Directory of Open Access Journals (Sweden)

    Dong Kun Lee

    Full Text Available The hypothalamus is a key element of the neural circuits that control energy homeostasis. Specific neuronal populations within the hypothalamus are sensitive to a variety of homeostatic indicators such as circulating nutrient levels and hormones that signal circulating glucose and body fat content. Central injection of apelin secreted by adipose tissues regulates feeding and glucose homeostasis. However, the precise neuronal populations and cellular mechanisms involved in these physiological processes remain unclear. Here we examine the electrophysiological impact of apelin-13 on proopiomelanocortin (POMC neuron activity. Approximately half of POMC neurons examined respond to apelin-13. Apelin-13 causes a dose-dependent depolarization. This effect is abolished by the apelin (APJ receptor antagonist. POMC neurons from animals pre-treated with pertussis toxin still respond to apelin, whereas the Gβγ signaling inhibitor gallein blocks apelin-mediated depolarization. In addition, the effect of apelin is inhibited by the phospholipase C and protein kinase inhibitors. Furthermore, single-cell qPCR analysis shows that POMC neurons express the APJ receptor, PLC-β isoforms, and KCNQ subunits (2, 3 and 5 which contribute to M-type current. Apelin-13 inhibits M-current that is blocked by the KCNQ channel inhibitor. Therefore, our present data indicate that apelin activates APJ receptors, and the resultant dissociation of the Gαq heterotrimer triggers a Gβγ-dependent activation of PLC-β signaling that inhibits M-current.

  15. Steviol reduces MDCK Cyst formation and growth by inhibiting CFTR channel activity and promoting proteasome-mediated CFTR degradation.

    Directory of Open Access Journals (Sweden)

    Chaowalit Yuajit

    Full Text Available Cyst enlargement in polycystic kidney disease (PKD involves cAMP-activated proliferation of cyst-lining epithelial cells and transepithelial fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR chloride channel. This study aimed to investigate an inhibitory effect and detailed mechanisms of steviol and its derivatives on cyst growth using a cyst model in Madin-Darby canine kidney (MDCK cells. Among 4 steviol-related compounds tested, steviol was found to be the most potent at inhibiting MDCK cyst growth. Steviol inhibition of cyst growth was dose-dependent; steviol (100 microM reversibly inhibited cyst formation and cyst growth by 72.53.6% and 38.2±8.5%, respectively. Steviol at doses up to 200 microM had no effect on MDCK cell viability, proliferation and apoptosis. However, steviol acutely inhibited forskolin-stimulated apical chloride current in MDCK epithelia, measured with the Ussing chamber technique, in a dose-dependent manner. Prolonged treatment (24 h with steviol (100 microM also strongly inhibited forskolin-stimulated apical chloride current, in part by reducing CFTR protein expression in MDCK cells. Interestingly, proteasome inhibitor, MG-132, abolished the effect of steviol on CFTR protein expression. Immunofluorescence studies demonstrated that prolonged treatment (24 h with steviol (100 microM markedly reduced CFTR expression at the plasma membrane. Taken together, the data suggest that steviol retards MDCK cyst progression in two ways: first by directly inhibiting CFTR chloride channel activity and second by reducing CFTR expression, in part, by promoting proteasomal degradation of CFTR. Steviol and related compounds therefore represent drug candidates for treatment of polycystic kidney disease.

  16. High-current discharge channel contraction in high density gas

    International Nuclear Information System (INIS)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.; Budin, A. V.; Leks, A. G.; Pozubenkov, A. A.

    2011-01-01

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of ∼10 10 A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 μs. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where the channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.

  17. A novel CaV2.2 channel inhibition by piracetam in peripheral and central neurons.

    Science.gov (United States)

    Bravo-Martínez, Jorge; Arenas, Isabel; Vivas, Oscar; Rebolledo-Antúnez, Santiago; Vázquez-García, Mario; Larrazolo, Arturo; García, David E

    2012-10-01

    No mechanistic actions for piracetam have been documented to support its nootropic effects. Voltage-gated calcium channels have been proposed as a promising pharmacological target of nootropic drugs. In this study, we investigated the effect of piracetam on Ca(V)2.2 channels in peripheral neurons, using patch-clamp recordings from cultured superior cervical ganglion neurons. In addition, we tested if Ca(V)2.2 channel inhibition could be related with the effects of piracetam on central neurons. We found that piracetam inhibited native Ca(V)2.2 channels in superior cervical ganglion neurons in a dose-dependent manner, with an IC(50) of 3.4 μmol/L and a Hill coefficient of 1.1. GDPβS dialysis did not prevent piracetam-induced inhibition of Ca(V)2.2 channels and G-protein-coupled receptor activation by noradrenaline did not occlude the piracetam effect. Piracetam altered the biophysical characteristics of Ca(V)2.2 channel such as facilitation ratio. In hippocampal slices, piracetam and ω-conotoxin GVIA diminished the frequency of excitatory postsynaptic potentials and action potentials. Our results provide evidence of piracetam's actions on Ca(V)2.2 channels in peripheral neurons, which might explain some of its nootropic effects in central neurons.

  18. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    Science.gov (United States)

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  19. Structure and inhibition of the SARS coronavirus envelope protein ion channel.

    Directory of Open Access Journals (Sweden)

    Konstantin Pervushin

    2009-07-01

    Full Text Available The envelope (E protein from coronaviruses is a small polypeptide that contains at least one alpha-helical transmembrane domain. Absence, or inactivation, of E protein results in attenuated viruses, due to alterations in either virion morphology or tropism. Apart from its morphogenetic properties, protein E has been reported to have membrane permeabilizing activity. Further, the drug hexamethylene amiloride (HMA, but not amiloride, inhibited in vitro ion channel activity of some synthetic coronavirus E proteins, and also viral replication. We have previously shown for the coronavirus species responsible for severe acute respiratory syndrome (SARS-CoV that the transmembrane domain of E protein (ETM forms pentameric alpha-helical bundles that are likely responsible for the observed channel activity. Herein, using solution NMR in dodecylphosphatidylcholine micelles and energy minimization, we have obtained a model of this channel which features regular alpha-helices that form a pentameric left-handed parallel bundle. The drug HMA was found to bind inside the lumen of the channel, at both the C-terminal and the N-terminal openings, and, in contrast to amiloride, induced additional chemical shifts in ETM. Full length SARS-CoV E displayed channel activity when transiently expressed in human embryonic kidney 293 (HEK-293 cells in a whole-cell patch clamp set-up. This activity was significantly reduced by hexamethylene amiloride (HMA, but not by amiloride. The channel structure presented herein provides a possible rationale for inhibition, and a platform for future structure-based drug design of this potential pharmacological target.

  20. Inhibition of transmembrane member 16A calcium-activated chloride channels by natural flavonoids contributes to flavonoid anticancer effects.

    Science.gov (United States)

    Zhang, Xuan; Li, Honglin; Zhang, Huiran; Liu, Yani; Huo, Lifang; Jia, Zhanfeng; Xue, Yucong; Sun, Xiaorun; Zhang, Wei

    2017-07-01

    Natural flavonoids are ubiquitous in dietary plants and vegetables and have been proposed to have antiviral, antioxidant, cardiovascular protective and anticancer effects. Transmembrane member 16A (TMEM16A)-encoded Ca 2+ -activated Cl - channels play a variety of physiological roles in many organs and tissues. Overexpression of TMEM16A is also believed to be associated with cancer progression. Therefore, inhibition of TMEM16A current may be a potential target for cancer therapy. In this study, we screened a broad spectrum of flavonoids for their inhibitory activities on TMEM16A currents. A whole-cell patch technique was used to record the currents. The BrdU assay and transwell technique were used to investigate cell proliferation and migration. At a concentration of 100 μM, 10 of 20 compounds caused significant (>50%) inhibition of TMEM16A currents. The four most potent compounds - luteolin, galangin, quercetin and fisetin - had IC 50 values ranging from 4.5 to 15 μM). To examine the physiological relevance of these findings, we also studied the effects of these flavonoids on endogenous TMEM16A currents in addition to cell proliferation and migration in LA795 cancer cells. Among the flavonoids tested, we detected a highly significant correlation between TMEM16A current inhibition and cell proliferation or reduction of migration. This study demonstrates that flavonoids inhibit TMEM16A currents and suggests that flavonoids could have anticancer effects via this mechanism. © 2017 The British Pharmacological Society.

  1. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  2. Inhibition of protein kinase A and GIRK channel reverses fentanyl-induced respiratory depression.

    Science.gov (United States)

    Liang, Xiaonan; Yong, Zheng; Su, Ruibin

    2018-06-11

    Opioid-induced respiratory depression is a major obstacle to improving the clinical management of moderate to severe chronic pain. Opioids inhibit neuronal activity via various pathways, including calcium channels, adenylyl cyclase, and potassium channels. Currently, the underlying molecular pathway of opioid-induced respiratory depression is only partially understood. This study aimed to investigate the mechanisms of opioid-induced respiratory depression in vivo by examining the effects of different pharmacological agents on fentanyl-induced respiratory depression. Respiratory parameters were detected using whole body plethysmography in conscious rats. We show that pre-treatment with the protein kinase A (PKA) inhibitor H89 reversed the fentanyl-related effects on respiratory rate, inspiratory time, and expiratory time. Pre-treatment with the G protein-gated inwardly rectifying potassium (GIRK) channel blocker Tertiapin-Q dose-dependently reversed the fentanyl-related effects on respiratory rate and inspiratory time. A phosphodiesterase 4 (PDE4) inhibitor and cyclic adenosine monophosphate (cAMP) analogs did not affect fentanyl-induced respiratory depression. These findings suggest that PKA and GIRK may be involved in fentanyl-induced respiratory depression and could represent useful therapeutic targets for the treatment of fentanyl-induced ventilatory depression. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. α-Dendrotoxin inhibits the ASIC current in dorsal root ganglion neurons from rat.

    Science.gov (United States)

    Báez, Adriana; Salceda, Emilio; Fló, Martín; Graña, Martín; Fernández, Cecilia; Vega, Rosario; Soto, Enrique

    2015-10-08

    Dendrotoxins are a group of peptide toxins purified from the venom of several mamba snakes. α-Dendrotoxin (α-DTx, from the Eastern green mamba Dendroaspis angusticeps) is a well-known blocker of voltage-gated K(+) channels and specifically of K(v)1.1, K(v)1.2 and K(v)1.6. In this work we show that α-DTx inhibited the ASIC currents in DRG neurons (IC50=0.8 μM) when continuously perfused during 25 s (including a 5 s pulse to pH 6.1), but not when co-applied with the pH drop. Additionally, we show that α-DTx abolished a transient component of the outward current that, in some experiments, appeared immediately after the end of the acid pulse. Our data indicate that α-DTx inhibits ASICs in the high nM range while some Kv are inhibited in the low nM range. The α-DTx selectivity and its potential interaction with ASICs should be taken in consideration when DTx is used in the high nM range. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    Science.gov (United States)

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  5. Sodium channels as targets for volatile anesthetics

    Directory of Open Access Journals (Sweden)

    Karl F. Herold

    2012-03-01

    Full Text Available The molecular mechanisms of modern inhaled anesthetics although widely used in clinical settings are still poorly understood. Considerable evidence supports effects on membrane proteins such as ligand- and voltage-gated ion channels of excitable cells. Na+ channels are crucial to action potential initiation and propagation, and represent potential targets for volatile anesthetics. Inhibition of presynaptic Na+ channels leads to reduced neurotransmitter release at the synapse and could therefore contribute to the mechanisms by which volatile anesthetics produce their characteristic effects: amnesia, unconsciousness, and immobility. Early studies on crayfish and squid giant axon showed inhibition of Na+ currents by volatile anesthetics. Subsequent studies using native neuronal preparations and heterologous expression systems with various mammalian Na+ channel isoforms implicated inhibition of presynaptic Na+ channels in anesthetic actions. Volatile anesthetics reduce peak Na+ current and shift the voltage of half-maximal steady-state inactivation towards more negative potentials, thus stabilizing the fast-inactivated state. Furthermore recovery from fast-inactivation is slowed together with an enhanced use-dependent block during pulse train protocols. These effects can reduce neurotransmitter release by depressing presynaptic excitability, depolarization and Ca entry, and ultimately transmitter release. This reduction in transmitter release is more portent for glutamatergic vs. GABAergic terminals. Involvement of Na+ channel inhibition in mediating the immobility caused by volatile anesthetics has been demonstrated in animal studies, in which intrathecal infusion of the Na+ channel blocker tetrodotoxin increases volatile anesthetic potency, whereas infusion of the Na+ channels agonist veratridine reduces anesthetic potency. These studies indicate that inhibition of presynaptic Na+ channels by volatile anesthetics is involved in mediating some of

  6. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function

  7. Competitive inhibition of the nondepolarizing muscle relaxant rocuronium on nicotinic acetylcholine receptor channels in the rat superior cervical ganglia.

    Science.gov (United States)

    Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng

    2014-05-01

    A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.

  8. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Jamil, Mohd Fadzly Amar [Clinical Research Center, Hospital Seberang Jaya, Kementerian Kesihatan Malaysia, Pulau Pinang (Malaysia); Kollert, Sina [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Adenan, Mohd Ilham [Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Selangor Darul Ehsan (Malaysia); Wahab, Habibah Abdul [Pharmaceutical Design & Simulation (PhDS) Laboratory, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang (Malaysia); Döring, Frank; Wischmeyer, Erhard [Institute of Physiology, University of Wurzburg, Wurzburg (Germany); Tan, Mei Lan, E-mail: tanml@usm.my [Malaysian Institute of Pharmaceuticals & Nutraceuticals, NIBM, Ministry of Science, Technology & Innovation (MOSTI), Pulau Pinang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, Pulau Pinang (Malaysia)

    2016-08-15

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I{sub Kr} current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I{sub K1}, a Kir current mediated by Kir2.1 channel and I{sub KACh}, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC{sub 50} value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I{sub KACh} current with an IC{sub 50} value of 3.32 μM but has no significant effects on I{sub K1}. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I{sub Kr} in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine

  9. Mitragynine and its potential blocking effects on specific cardiac potassium channels

    International Nuclear Information System (INIS)

    Tay, Yea Lu; Teah, Yi Fan; Chong, Yoong Min; Jamil, Mohd Fadzly Amar; Kollert, Sina; Adenan, Mohd Ilham; Wahab, Habibah Abdul; Döring, Frank; Wischmeyer, Erhard; Tan, Mei Lan

    2016-01-01

    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, I K1 , a Kir current mediated by Kir2.1 channel and I KACh , a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC 50 value of 1.62 μM and 1.15 μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit I KACh current with an IC 50 value of 3.32 μM but has no significant effects on I K1 . Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks. - Highlights: • The potential cardiac potassium channel blocking properties of mitragynine were investigated. • Mitragynine blocks hERG channel and I Kr in hERG-transfected HEK293 cells and hERG cRNA-injected Xenopus oocytes. • Mitragynine inhibits the hERG protein but not the mRNA expression. • Mitragynine inhibits GIRK channel. • Simultaneous

  10. Quasi-equilibrium channel model of an constant current arc

    Directory of Open Access Journals (Sweden)

    Gerasimov Alexander V.

    2003-01-01

    Full Text Available The rather simple method of calculation of electronic and gas temperature in the channel of arc of plasma generator is offered. This method is based on self-consistent two-temperature channel model of an electric arc. The method proposed enables to obtain radial allocation of gas and electronic temperatures in a non-conducting zone of an constant current arc, for prescribed parameters of discharge (current intensity and power of the discharge, with enough good precision. The results obtained can be used in model and engineering calculations to estimate gas and electronic temperatures in the channel of an arc plasma generator.

  11. Molecular basis of inhibition of acid sensing ion channel 1A by diminazene.

    Directory of Open Access Journals (Sweden)

    Aram J Krauson

    Full Text Available Acid-sensing ion channels (ASICs are trimeric proton-gated cation permeable ion channels expressed primarily in neurons. Here we employed site-directed mutagenesis and electrophysiology to investigate the mechanism of inhibition of ASIC1a by diminazene. This compound inhibits mouse ASIC1a with a half-maximal inhibitory concentration (IC50 of 2.4 μM. At first, we examined whether neutralizing mutations of Glu79 and Glu416 alter diminazene block. These residues form a hexagonal array in the lower palm domain that was previously shown to contribute to pore opening in response to extracellular acidification. Significantly, single Gln substitutions at positions 79 and 416 in ASIC1a reduced diminazene apparent affinity by 6-7 fold. This result suggests that diminazene inhibits ASIC1a in part by limiting conformational rearrangement in the lower palm domain. Because diminazene is charged at physiological pHs, we assessed whether it inhibits ASIC1a by blocking the ion channel pore. Consistent with the notion that diminazene binds to a site within the membrane electric field, diminazene block showed a strong dependence with the membrane potential. Moreover, a Gly to Ala mutation at position 438, in the ion conduction pathway of ASIC1a, increased diminazene IC50 by one order of magnitude and eliminated the voltage dependence of block. Taken together, our results indicate that the inhibition of ASIC1a by diminazene involves both allosteric modulation and blocking of ion flow through the conduction pathway. Our findings provide a foundation for the development of more selective and potent ASIC pore blockers.

  12. L-Type Calcium Channel Inhibition Contributes to the Proarrhythmic Effects of Aconitine in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    Full Text Available Aconitine (ACO is well-known for causing lethal ventricular tachyarrhythmias. While cardiac Na+ channel opening during repolarization has long been documented in animal cardiac myocytes, the cellular effects and mechanism of ACO in human remain unexplored. This study aimed to assess the proarrhythmic effects of ACO in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs. ACO concentration-dependently (0.3 ~ 3.0 μM shortened the action potentials (AP durations (APD in ventricular-like hiPSC-CMs by > 40% and induced delayed after-depolarization. Laser-scanning confocal calcium imaging analysis showed that ACO decreased the duration and amplitude of [Ca2+]i transients and increased in the beating frequencies by over 60%. Moreover, ACO was found to markedly reduce the L-type calcium channel (LTCC currents (ICa,L in hiPSC-CMs associated with a positive-shift of activation and a negative shift of inactivation. ACO failed to alter the peak and late Na+ currents (INa in hiPSC-CMs while it drastically increased the late INa in Guinea-pig ventricular myocytes associated with enhanced activation/delayed inactivation of INa at -55 mV~ -85 mV. Further, the effects of ACO on ICa,L, INa and the rapid delayed rectifier potassium current (Ikr were validated in heterologous expression systems by automated voltage-clamping assays and a moderate suppression of Ikr was observed in addition to concentration-dependent ICa,L inhibition. Lastly, increased beating frequency, decreased Ca2+ wave and shortened field potential duration were recorded from hiPSC-CMs by microelectrode arrays assay. In summary, our data demonstrated that LTCC inhibition could play a main role in the proarrhythmic action of ACO in human cardiomyocytes.

  13. Rock Tea extract (Jasonia glutinosa) relaxes rat aortic smooth muscle by inhibition of L-type Ca(2+) channels.

    Science.gov (United States)

    Valero, Marta Sofía; Oliván-Viguera, Aida; Garrido, Irene; Langa, Elisa; Berzosa, César; López, Víctor; Gómez-Rincón, Carlota; Murillo, María Divina; Köhler, Ralf

    2015-12-01

    In traditional herbal medicine, Rock Tea (Jasonia glutinosa) is known for its prophylactic and therapeutic value in various disorders including arterial hypertension. However, the mechanism by which Rock Tea exerts blood pressure-lowering actions has not been elucidated yet. Our aim was to demonstrate vasorelaxing effects of Rock Tea extract and to reveal its possible action mechanism. Isometric myography was conducted on high-K+-precontracted rings from rat thoracic aorta and tested extracts at concentrations of 0.5-5 mg/ml. Whole-cell patch-clamp experiments were performed in rat aortic vascular smooth muscle cells (line A7r5) to determine blocking effects on L-type Ca(2+) channels. Rock Tea extract relaxed the aorta contracted by high [K+] concentration dependently with an EC50 of ≈2.4 mg/ml and produced ≈75 % relaxation at the highest concentration tested. The L-type Ca(2+) channel blocker, verapamil (10(-6) M), had similar effects. Rock Tea extract had no effect in nominally Ca(2+)-free high-K(+) buffer but significantly inhibited contractions to re-addition of Ca(2+). Rock Tea extract inhibited the contractions induced by the L-type Ca(2+) channel activator Bay K 8644 (10(-5) M) and by phenylephrine (10(-6) M). Rock Tea extract and Y-27632 (10(-6) M), Rho-kinase inhibitor, had similar effects and the respective effects were not additive. Patch-clamp experiments demonstrated that Rock Tea extract (2.5 mg/ml) virtually abolished L-type Ca(2+) currents in A7r5. We conclude that Rock Tea extract produced vasorelaxation of rat aorta and that this relaxant effect is mediated by inhibition of L-type Ca(2+) channels. Rock Tea extracts may be of phytomedicinal value for prevention and adjuvant treatment of hypertension and other cardiovascular diseases.

  14. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Phosphatidylinositol (4,5)bisphosphate inhibits K+-efflux channel activity in NT1 tobacco cultured cells.

    Science.gov (United States)

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F; Moran, Nava

    2009-02-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed "cytosolic" Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: "Low PIs" had depressed levels of these PIs, and "High PIs" had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 microM) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5-4 microM), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells.

  16. Fluoxetine-induced inhibition of synaptosomal [3H]5-HT release: Possible Ca2+-channel inhibition

    International Nuclear Information System (INIS)

    Stauderman, K.A.; Gandhi, V.C.; Jones, D.J.

    1992-01-01

    Fluoxetine, a selective 5-Ht uptake inhibitor, inhibited 15 mM K + -induced [ 3 H]5-HT release from rat spinal cord and cortical synaptosomes at concentrations > 0.5 uM. This effect reflected a property shared by another selective 5-HT uptake inhibitor paroxetine but not by less selective uptake inhibitors such as amitriptyline, desipramine, imipramine or nortriptyline. Inhibition of release by fluoxetine was inversely related to both the concentration of K + used to depolarize the synaptosomes and the concentration of external Ca 2+ . Experiments aimed at determining a mechanism of action revealed that fluoxetine did not inhibit voltage-independent release of [ 3 H]5-HT release induced by the Ca 2+ -ionophore A 23187 or Ca 2+ -independent release induced by fenfluramine. Moreover the 5-HT autoreceptor antagonist methiothepin did not reverse the inhibitory actions of fluoxetine on K + -induced release. Further studies examined the effects of fluoxetine on voltage-dependent Ca 2+ channels and Ca 2+ entry

  17. Chloride ions in the pore of glycine and GABA channels shape the time course and voltage dependence of agonist currents

    Science.gov (United States)

    Moroni, Mirko; Biro, Istvan; Giugliano, Michele; Vijayan, Ranjit; Biggin, Philip C.; Beato, Marco; Sivilotti, Lucia G.

    2011-01-01

    In the vertebrate CNS, fast synaptic inhibition is mediated by GABA and glycine receptors. We recently reported that the time course of these synaptic currents is slower when intracellular chloride is high. Here we extend these findings to measure the effects of both extracellular and intracellular chloride on the deactivation of glycine and GABA currents at both negative and positive holding potentials. Currents were elicited by fast agonist application to outside-out patches from HEK293 cells expressing rat glycine or GABA receptors. The slowing effect of high extracellular chloride on current decay was detectable only in low intracellular chloride (4 mM). Our main finding is that glycine and GABA receptors “sense” chloride concentrations because of interactions between the M2 pore-lining domain and the permeating ions. This hypothesis is supported by the observation that the sensitivity of channel gating to intracellular chloride is abolished if the channel is engineered to become cation-selective, or if positive charges in the external pore vestibule are eliminated by mutagenesis. The appropriate interaction between permeating ions and channel pore is also necessary to maintain the channel voltage sensitivity of gating, which prolongs current decay at depolarized potentials. Voltage-dependence is abolished by the same mutations that suppress the effect of intracellular chloride and also by replacing chloride with another permeant ion, thiocyanate. These observations suggest that permeant chloride affects gating by a foot-in-the-door effect, binding to a channel site with asymmetrical access from the intracellular and extracellular sides of the membrane. PMID:21976494

  18. Agmatine suppresses peripheral sympathetic tone by inhibiting N-type Ca(2+) channel activity via imidazoline I2 receptor activation.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2016-08-26

    Agmatine, a putative endogenous ligand of imidazoline receptors, suppresses cardiovascular function by inhibiting peripheral sympathetic tone. However, the molecular identity of imidazoline receptor subtypes and its cellular mechanism underlying the agmatine-induced sympathetic suppression remains unknown. Meanwhile, N-type Ca(2+) channels are important for the regulation of NA release in the peripheral sympathetic nervous system. Therefore, it is possible that agmatine suppresses NA release in peripheral sympathetic nerve terminals by inhibiting Ca(2+) influx through N-type Ca(2+) channels. We tested this hypothesis by investigating agmatine effect on electrical field stimulation (EFS)-evoked contraction and NA release in endothelium-denuded rat superior mesenteric arterial strips. We also investigated the effect of agmatine on the N-type Ca(2+) current in superior cervical ganglion (SCG) neurons in rats. Our study demonstrates that agmatine suppresses peripheral sympathetic outflow via the imidazoline I2 receptor in rat mesenteric arteries. In addition, the agmatine-induced suppression of peripheral vascular sympathetic tone is mediated by modulating voltage-dependent N-type Ca(2+) channels in sympathetic nerve terminals. These results suggest a potential cellular mechanism for the agmatine-induced suppression of peripheral sympathetic tone. Furthermore, they provide basic and theoretical information regarding the development of new agents to treat hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Modeling of Lightning Strokes Using Two-Peaked Channel-Base Currents

    Directory of Open Access Journals (Sweden)

    V. Javor

    2012-01-01

    Full Text Available Lightning electromagnetic field is obtained by using “engineering” models of lightning return strokes and new channel-base current functions and the results are presented in this paper. Experimentally measured channel-base currents are approximated not only with functions having two-peaked waveshapes but also with the one-peaked function so as usually used in the literature. These functions are simple to be applied in any “engineering” or electromagnetic model as well. For the three “engineering” models: transmission line model (without the peak current decay, transmission line model with linear decay, and transmission line model with exponential decay with height, the comparison of electric and magnetic field components at different distances from the lightning channel-base is presented in the case of a perfectly conducting ground. Different heights of lightning channels are also considered. These results enable analysis of advantages/shortages of the used return stroke models according to the electromagnetic field features to be achieved, as obtained by measurements.

  20. Venom-derived peptides inhibiting Kir channels: Past, present, and future.

    Science.gov (United States)

    Doupnik, Craig A

    2017-12-01

    Inwardly rectifying K + (Kir) channels play a significant role in vertebrate and invertebrate biology by regulating the movement of K + ions involved in membrane transport and excitability. Yet unlike other ion channels including their ancestral K + -selective homologs, there are very few venom toxins known to target and inhibit Kir channels with the potency and selectivity found for the Ca 2+ -activated and voltage-gated K + channel families. It is unclear whether this is simply due to a lack of discovery, or instead a consequence of the evolutionary processes that drive the development of venom components towards their targets based on a collective efficacy to 1) elicit pain for defensive purposes, 2) promote paralysis for prey capture, or 3) facilitate delivery of venom components into the circulation. The past two decades of venom screening has yielded three venom peptides with inhibitory activity towards mammalian Kir channels, including the discovery of tertiapin, a high-affinity pore blocker from the venom of the European honey bee Apis mellifera. Venomics and structure-based computational approaches represent exciting new frontiers for venom peptide development, where re-engineering peptide 'scaffolds' such as tertiapin may aid in the quest to expand the palette of potent and selective Kir channel blockers for future research and potentially new therapeutics. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.' Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K+ current of human atria by inhibiting EGF receptor tyrosine kinase.

    Science.gov (United States)

    Xiao, Guo-Sheng; Zhang, Yan-Hui; Wu, Wei; Sun, Hai-Ying; Wang, Yan; Li, Gui-Rong

    2017-03-01

    The ultra-rapidly activating delayed rectifier K + current I Kur (encoded by K v 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial I Kur and hKv1.5 channels stably expressed in HEK 293 cells. Human atrial I Kur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of I Kur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hK v 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced I Kur and hK v 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hK v 1.5 channels and that the decrease was countered by orthovanadate. The PTK inhibitors genistein and AG556 decrease human atrial I Kur and cloned hK v 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases I Kur and hK v 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial I Kur . © 2017 The British Pharmacological Society.

  2. Short-channel drain current model for asymmetric heavily/lightly ...

    Indian Academy of Sciences (India)

    The paper presents a drain current model for double gate metal oxide semiconductor field effect transistors (DG MOSFETs) based on a new velocity saturation model that accounts for short-channel velocity saturation effect independently in the front and the back gate controlled channels under asymmetric front and back ...

  3. Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol.

    Science.gov (United States)

    Naziroğlu, Mustafa; Ozgül, Cemil

    2012-02-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca(2+) gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.

  4. Modulation of ERG channels by XE991

    DEFF Research Database (Denmark)

    Elmedyb, Pernille; Calloe, Kirstine; Schmitt, Nicole

    2007-01-01

    In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known to be stan......In neuronal tissue, KCNQ2-5 channels conduct the physiologically important M-current. In some neurones, the M-current may in addition be conducted partly by ERG potassium channels, which have widely overlapping expression with the KCNQ channel subunits. XE991 and linopiridine are known...... to be standard KCNQ potassium channel blockers. These compounds have been used in many different tissues as specific pharmacological tools to discern native currents conducted by KCNQ channels from other potassium currents. In this article, we demonstrate that ERG1-2 channels are also reversibly inhibited by XE......991 in the micromolar range (EC(50) 107 microM for ERG1). The effect has been characterized in Xenopus laevis oocytes expressing ERG1-2 and in the mammalian HEK293 cell line stably expressing ERG1 channels. The IC(50) values for block of KCNQ channels by XE991 range 1-65 microM. In conclusion, great...

  5. Eddy current and ultrasonic fuel channel inspection at Karachi Nuclear Power Plant

    International Nuclear Information System (INIS)

    Mayo, W.R.; Alam, M.M.

    1997-01-01

    In November of 1993 and in-service inspection was performed on eight fuel channels in the Karachi Nuclear Power Plant (KANUPP) reactor. The workscope included ultrasonic and eddy current volumetric examinations, and eddy current measurement of pressure-to calandria tube gap. This paper briefly discusses the planning strategy of the ultrasonic and eddy current examinations, and describes the equipment developed to meet the requirements, followed by details of the actual channel inspection campaign. The presented nondestructive examinations assisted in determining fitness for service of KANUPP reactor channels in general, and confirmed that the problems associated with channel G12 were not generic in nature. (author)

  6. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo.

    Science.gov (United States)

    Koo, G C; Blake, J T; Talento, A; Nguyen, M; Lin, S; Sirotina, A; Shah, K; Mulvany, K; Hora, D; Cunningham, P; Wunderler, D L; McManus, O B; Slaughter, R; Bugianesi, R; Felix, J; Garcia, M; Williamson, J; Kaczorowski, G; Sigal, N H; Springer, M S; Feeney, W

    1997-06-01

    The voltage activated K+ channel (Kv1.3) has recently been identified as the molecule that sets the resting membrane potential of peripheral human T lymphoid cells. In vitro studies indicate that blockage of Kv1.3 inhibits T cell activation, suggesting that Kv1.3 may be a target for immunosuppression. However, despite the in vitro evidence, there has been no in vivo demonstration that blockade of Kv1.3 will attenuate an immune response. The difficulty is due to species differences, as the channel does not set the membrane potential in rodent peripheral T cells. In this study, we show that the channel is present on peripheral T cells of miniswine. Using the peptidyl Kv1.3 inhibitor, margatoxin, we demonstrate that Kv1.3 also regulates the resting membrane potential, and that blockade of Kv1.3 inhibits, in vivo, both a delayed-type hypersensitivity reaction and an Ab response to an allogeneic challenge. In addition, prolonged Kv1.3 blockade causes reduced thymic cellularity and inhibits the thymic development of T cell subsets. These results provide in vivo evidence that Kv1.3 is a novel target for immunomodulation.

  7. Alkali pH directly activates ATP-sensitive K+ channels and inhibits insulin secretion in beta-cells.

    Science.gov (United States)

    Manning Fox, Jocelyn E; Karaman, Gunce; Wheeler, Michael B

    2006-11-17

    Glucose stimulation of pancreatic beta-cells is reported to lead to sustained alkalization, while extracellular application of weak bases is reported to inhibit electrical activity and decrease insulin secretion. We hypothesize that beta-cell K(ATP) channel activity is modulated by alkaline pH. Using the excised patch-clamp technique, we demonstrate a direct stimulatory action of alkali pH on recombinant SUR1/Kir6.2 channels due to increased open probability. Bath application of alkali pH similarly activates native islet beta-cell K(ATP) channels, leading to an inhibition of action potentials, and hyperpolarization of membrane potential. In situ pancreatic perfusion confirms that these cellular effects of alkali pH are observable at a functional level, resulting in decreases in both phase 1 and phase 2 glucose-stimulated insulin secretion. Our data are the first to report a stimulatory effect of a range of alkali pH on K(ATP) channel activity and link this to downstream effects on islet beta-cell function.

  8. Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors.

    Science.gov (United States)

    Liu, Xueli; Wang, Yuhong; Zhang, Hua; Shen, Li; Xu, Yanfang

    2017-12-01

    Elevated angiotensin II (Ang II) and sympathetic activity contributes to a high risk of ventricular arrhythmias in heart disease. The rapidly activating delayed rectifier K + current (I Kr ) carried by the hERG channels plays a critical role in cardiac repolarization, and decreased I Kr is involved in increased cardiac arrhythmogenicity. Stimulation of α 1A -adrenoreceptors or angiotensin II AT 1 receptors is known to inhibit I Kr via PKC. Here, we have identified the PKC isoenzymes mediating the inhibition of I Kr by activation of these two different GPCRs. The whole-cell patch-clamp technique was used to record I Kr in guinea pig cardiomyocytes and HEK293 cells co-transfected with hERG and α 1A -adrenoreceptor or AT 1 receptor genes. A broad spectrum PKC inhibitor Gö6983 (not inhibiting PKCε), a selective cPKC inhibitor Gö6976 and a PKCα-specific inhibitor peptide, blocked the inhibition of I Kr by the α 1A -adrenoreceptor agonist A61603. However, these inhibitors did not affect the reduction of I Kr by activation of AT 1 receptors, whereas the PKCε-selective inhibitor peptide did block the effect. The effects of angiotensin II and the PKCε activator peptide were inhibited in mutant hERG channels in which 17 of the 18 PKC phosphorylation sites were deleted, whereas a deletion of the N-terminus of the hERG channels selectively prevented the inhibition elicited by A61603 and the cPKC activator peptide. Our results indicated that inhibition of I Kr by activation of α 1A -adrenoreceptors or AT 1 receptors were mediated by PKCα and PKCε isoforms respectively, through different molecular mechanisms. © 2017 The British Pharmacological Society.

  9. Polydisperse particle-driven gravity currents in non-rectangular cross section channels

    Science.gov (United States)

    Zemach, T.

    2018-01-01

    We consider a high-Reynolds-number gravity current generated by polydisperse suspension of n types of particles distributed in a fluid of density ρi. Each class of particles in suspension has a different settling velocity. The current propagates along a channel of non-rectangular cross section into an ambient fluid of constant density ρa. The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general form -f1(z) ≤ y ≤ f2(z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion. We solve the problem by a finite-difference numerical code to present typical height h, velocity u, and mass fractions of particle (concentrations) (ϕ( j), j = 1, …, n) profiles. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged "box" model. We demonstrate that any degree of polydispersivity adds to the runout length of the currents, relative to that of equivalent monodisperse currents with an average settling velocity. The theoretical predictions are supported by the available experimental data. The present approach is a significant generalization of the particle-driven gravity current problem: on the one hand, now the monodisperse current in non-rectangular channels is a particular case of n = 1. On the other hand, the classical formulation of polydisperse currents for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model.

  10. The inhibition of the potassium channel TASK-1 in rat cardiac muscle by endothelin-1 is mediated by phospholipase C.

    Science.gov (United States)

    Schiekel, Julia; Lindner, Moritz; Hetzel, Andrea; Wemhöner, Konstantin; Renigunta, Vijay; Schlichthörl, Günter; Decher, Niels; Oliver, Dominik; Daut, Jürgen

    2013-01-01

    The two-pore-domain potassium channel TASK-1 is robustly inhibited by the activation of receptors coupled to the Gα(q) subgroup of G-proteins, but the signal transduction pathway is still unclear. We have studied the mechanisms by which endothelin receptors inhibit the current carried by TASK-1 channels (I(TASK)) in cardiomyocytes. Patch-clamp measurements were carried out in isolated rat cardiomyocytes. I(TASK) was identified by extracellular acidification to pH 6.0 and by the application of the TASK-1 blockers A293 and A1899. Endothelin-1 completely inhibited I(TASK) with an EC(50) of Application of 20 nM endothelin-1 caused a significant increase in action potential duration under control conditions; this was significantly reduced after pre-incubation of the cardiomyocytes with 200 nM A1899. The inhibition of I(TASK) by endothelin-1 was not affected by inhibitors of protein kinase C or rho kinase, but was strongly reduced by U73122, an inhibitor of phospholipase C (PLC). The ability of endothelin-1 to activate PLC-mediated signalling pathways was examined in mammalian cells transfected with TASK-1 and the endothelin-A receptor using patch-clamp measurements and total internal reflection microscopy. U73122 prevented the inhibition of I(TASK) by endothelin-1 and blocked PLC-mediated signalling, as verified with a fluorescent probe for phosphatidylinositol-(4,5)-bisphosphate hydrolysis. Our results show that I(TASK) in rat cardiomyocytes is controlled by endothelin-1 and suggest that the inhibition of TASK-1 via endothelin receptors is mediated by the activation of PLC. The prolongation of the action potential observed with 20 nM endothelin-1 was mainly due to the inhibition of I(TASK).

  11. An ERG channel inhibitor from the scorpion Buthus eupeus

    DEFF Research Database (Denmark)

    Korolkova, Y.V.; Kozlov, S.A.; Lipkin, A.V.

    2001-01-01

    and the three mutants partly inhibited the native M-like current in NG108-15 at 100 nm. The effect of the recombinant BeKm-1 on different K(+) channels was also studied. BeKm-1 inhibited hERG1 channels with an IC(50) of 3.3 nm, but had no effect at 100 nm on hEAG, hSK1, rSK2, hIK, hBK, KCNQ1/KCNE1, KCNQ2/KCNQ3......, KCNQ4 channels, and minimal effect on rELK1. Thus, BeKm-1 was shown to be a novel specific blocker of hERG1 potassium channels....

  12. Inhibition of Inwardly Rectifying Potassium (Kir 4.1 Channels Facilitates Brain-Derived Neurotrophic Factor (BDNF Expression in Astrocytes

    Directory of Open Access Journals (Sweden)

    Masato Kinboshi

    2017-12-01

    Full Text Available Inwardly rectifying potassium (Kir 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown on expression of brain-derived neurotrophic factor (BDNF, a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

  13. Coexpression of voltage-dependent calcium channels Cav1.2, 2.1a, and 2.1b in vascular myocytes

    DEFF Research Database (Denmark)

    Andreasen, Ditte; Friis, Ulla G; Uhrenholt, Torben R

    2006-01-01

    Voltage-dependent Ca2+ channels Cav1.2 (L type) and Cav2.1 (P/Q type) are expressed in vascular smooth muscle cells (VSMCs) and are important for the contraction of renal resistance vessels. In the present study we examined whether native renal VSMCs coexpress L-, P-, and Q-type Ca2+ currents...... microscopy revealed expression of both channels in all of the smooth muscle cells. Whole-cell patch clamp on single preglomerular VSMCs from mice showed L-, P-, and Q-type currents. Blockade of the L-type currents by calciseptine (20 nmol/L) inhibited 35.6+/-3.9% of the voltage-dependent Ca2+ current......-type and P-type channels inhibited 58.0+/-11.8%, and simultaneous inhibition of L-, P-, and Q-type channels led to blockade (88.7+/-5.6%) of the Ca2+ current. We conclude that aortic and renal preglomerular smooth muscle cells express L-, P-, and Q-type voltage-dependent Ca2+ channels in the rat and mouse....

  14. Arctigenin, a Potential Anti-Arrhythmic Agent, Inhibits Aconitine-Induced Arrhythmia by Regulating Multi-Ion Channels

    Directory of Open Access Journals (Sweden)

    Zhenying Zhao

    2013-11-01

    Full Text Available Background/Aims: Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. Methods: A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD, sodium current (INa, L-type calcium current (ICa, L and transient outward potassium current (Ito were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Results: Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90 were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited INa and ICa,L and attenuated the aconitine-increased INa and ICa,L by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Conclusions: Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, INa, ICa, L, and Ito may be multiple targets of arctigenin, leading to its antiarrhythmic effect.

  15. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.

    Science.gov (United States)

    Kimm, Tilia; Khaliq, Zayd M; Bean, Bruce P

    2015-12-16

    Little is known about the voltage-dependent potassium currents underlying spike repolarization in midbrain dopaminergic neurons. Studying mouse substantia nigra pars compacta dopaminergic neurons both in brain slice and after acute dissociation, we found that BK calcium-activated potassium channels and Kv2 channels both make major contributions to the depolarization-activated potassium current. Inhibiting Kv2 or BK channels had very different effects on spike shape and evoked firing. Inhibiting Kv2 channels increased spike width and decreased the afterhyperpolarization, as expected for loss of an action potential-activated potassium conductance. BK inhibition also increased spike width but paradoxically increased the afterhyperpolarization. Kv2 channel inhibition steeply increased the slope of the frequency-current (f-I) relationship, whereas BK channel inhibition had little effect on the f-I slope or decreased it, sometimes resulting in slowed firing. Action potential clamp experiments showed that both BK and Kv2 current flow during spike repolarization but with very different kinetics, with Kv2 current activating later and deactivating more slowly. Further experiments revealed that inhibiting either BK or Kv2 alone leads to recruitment of additional current through the other channel type during the action potential as a consequence of changes in spike shape. Enhancement of slowly deactivating Kv2 current can account for the increased afterhyperpolarization produced by BK inhibition and likely underlies the very different effects on the f-I relationship. The cross-regulation of BK and Kv2 activation illustrates that the functional role of a channel cannot be defined in isolation but depends critically on the context of the other conductances in the cell. This work shows that BK calcium-activated potassium channels and Kv2 voltage-activated potassium channels both regulate action potentials in dopamine neurons of the substantia nigra pars compacta. Although both

  16. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    International Nuclear Information System (INIS)

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-01-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of [ 35 S]t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 μM. The binding sites of [ 35 S]TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of [ 35 S]TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of [ 35 S]TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel

  17. Apelin-13 inhibits large-conductance Ca2+-activated K+ channels in cerebral artery smooth muscle cells via a PI3-kinase dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Amit Modgil

    Full Text Available Apelin-13 causes vasoconstriction by acting directly on APJ receptors in vascular smooth muscle (VSM cells; however, the ionic mechanisms underlying this action at the cellular level remain unclear. Large-conductance Ca(2+-activated K(+ (BKCa channels in VSM cells are critical regulators of membrane potential and vascular tone. In the present study, we examined the effect of apelin-13 on BK(Ca channel activity in VSM cells, freshly isolated from rat middle cerebral arteries. In whole-cell patch clamp mode, apelin-13 (0.001-1 μM caused concentration-dependent inhibition of BK(Ca in VSM cells. Apelin-13 (0.1 µM significantly decreased BK(Ca current density from 71.25 ± 8.14 pA/pF to 44.52 ± 7.10 pA/pF (n=14 cells, P<0.05. This inhibitory effect of apelin-13 was confirmed by single channel recording in cell-attached patches, in which extracellular application of apelin-13 (0.1 µM decreased the open-state probability (NPo of BK(Ca channels in freshly isolated VSM cells. However, in inside-out patches, extracellular application of apelin-13 (0.1 µM did not alter the NPo of BK(Ca channels, suggesting that the inhibitory effect of apelin-13 on BKCa is not mediated by a direct action on BK(Ca. In whole cell patches, pretreatment of VSM cells with LY-294002, a PI3-kinase inhibitor, markedly attenuated the apelin-13-induced decrease in BK(Ca current density. In addition, treatment of arteries with apelin-13 (0.1 µM significantly increased the ratio of phosphorylated-Akt/total Akt, indicating that apelin-13 significantly increases PI3-kinase activity. Taken together, the data suggest that apelin-13 inhibits BK(Ca channel via a PI3-kinase-dependent signaling pathway in cerebral artery VSM cells, which may contribute to its regulatory action in the control of vascular tone.

  18. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Counter-current flow limited CHF in thin rectangular channels

    International Nuclear Information System (INIS)

    Cheng, L.Y.

    1990-01-01

    An analytical expression for counter-current-flow-limitation (CCFL) was used to predict critical heat flux (CHF) for downward flow in thin vertical rectangular channels which are prototypes of coolant channels in test and research nuclear reactors. Top flooding is the mechanism for counter-current flow limited CHF. The CCFL correlation also was used to determine the circulation and flooding-limited CHF. Good agreements were observed between the period the model predictions and data on the CHF for downflow. The minimum CHF for downflow is lower than the flooding-limited CHF and it is predicted to occur at a liquid flow rate higher than that at the flooding limit. 17 refs., 7 figs

  20. Opioid inhibition of N-type Ca2+ channels and spinal analgesia couple to alternative splicing.

    Science.gov (United States)

    Andrade, Arturo; Denome, Sylvia; Jiang, Yu-Qiu; Marangoudakis, Spiro; Lipscombe, Diane

    2010-10-01

    Alternative pre-mRNA splicing occurs extensively in the nervous systems of complex organisms, including humans, considerably expanding the potential size of the proteome. Cell-specific alternative pre-mRNA splicing is thought to optimize protein function for specialized cellular tasks, but direct evidence for this is limited. Transmission of noxious thermal stimuli relies on the activity of N-type Ca(V)2.2 calcium channels in nociceptors. Using an exon-replacement strategy in mice, we show that mutually exclusive splicing patterns in the Ca(V)2.2 gene modulate N-type channel function in nociceptors, leading to a change in morphine analgesia. Exon 37a (e37a) enhances μ-opioid receptor-mediated inhibition of N-type calcium channels by promoting activity-independent inhibition. In the absence of e37a, spinal morphine analgesia is weakened in vivo but the basal response to noxious thermal stimuli is not altered. Our data suggest that highly specialized, discrete cellular responsiveness in vivo can be attributed to alternative splicing events regulated at the level of individual neurons.

  1. Inhibition of cell proliferation by a selective inhibitor of the Ca{sup 2+}-activated Cl{sup -} channel, Ano1

    Energy Technology Data Exchange (ETDEWEB)

    Mazzone, Amelia; Eisenman, Seth T.; Strege, Peter R. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Yao, Zhen [Laboratory of Molecular Genetics, UCSF, San Francisco, CA (United States); Ordog, Tamas; Gibbons, Simon J. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Farrugia, Gianrico, E-mail: farrugia.gianrico@mayo.edu [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer T16A{sub inh}-A01 blocked Ano1 currents in HEK cells expressing Ano1. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation in ICC primary cultures and CFPAC-1 cell line. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation of ICC in intact smooth muscle strips. -- Abstract: Background: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca{sup 2+}-activated Cl{sup -} channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16A{sub inh}-A01 as a specific inhibitor of Ano1. Aim: To investigate the effect of the T16A{sub inh}-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. Methods: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16A{sub inh}-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. Results: T16A{sub inh}-A01 inhibited Ca{sup 2+}-activated Cl{sup -} currents by 60% at 10 {mu}M in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures

  2. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    Science.gov (United States)

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  3. Sausage instabilities in electron current channels and the problem of fast ignition

    International Nuclear Information System (INIS)

    Das, A.

    2002-01-01

    In the fast ignition concept of laser fusion, an intense picosecond laser pulse incident on an overdense pellet is absorbed by nonlinear mechanisms and gets converted into inward propagating fast electron currents. PIC simulations show that the return shielding currents due to cold plasma interact with the incoming currents and intense Weibel, tearing and coalescence instabilities take place, which organize the current into a few current channels. The stability of these current channels is thus a topic of great interest. We have carried out linear and nonlinear studies of 2 - dimensional sausage instabilities of a slab model of the current channels in the framework of electron magnetohydrodynamic fluid approximation. The analytic calculations and numerical simulations for some simple velocity profiles show the presence of linear instability driven by velocity shear. Nonlinear studies on the saturation of instabilities and their reaction back on the relaxation of the velocity profile have also been made. A discussion of the consequences of such EMHD turbulence induced relaxation and stopping of fast electrons, for the fast ignition concept will be presented. (author)

  4. Molecular Basis for Allosteric Inhibition of Acid-Sensing Ion Channel 1a by Ibuprofen

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Romero-Rojo, José Luis; Lund, Camilla

    2017-01-01

    -clamp fluorometry. Our results show that ibuprofen is an allosteric inhibitor of ASIC1a, which binds to a crucial site in the agonist transduction pathway and causes conformational changes that oppose channel activation. Ibuprofen inhibits several ASIC subtypes, but certain ibuprofen derivatives show some...

  5. Distribution, expression and functional effects of small conductance Ca-activated potassium (SK) channels in rat myometrium.

    Science.gov (United States)

    Noble, Karen; Floyd, Rachel; Shmygol, Andre; Shmygol, Anatoly; Mobasheri, A; Wray, Susan

    2010-01-01

    Calcium-activated potassium channels are important in a variety of smooth muscles, contributing to excitability and contractility. In the myometrium previous work has focussed on the large conductance channels (BK), and the role of small conductance channels (SK) has received scant attention, despite the finding that over-expression of an SK channel isoform (SK3) results in uterine dysfunction and delayed parturition. This study therefore characterises the expression of the three SK channel isoforms (SK1-3) in rat myometrium throughout pregnancy and investigates their effect on cytosolic [Ca] and force and compares this with that of BK channels. Consistent expression of all SK isoform transcripts and clear immunostaining of SK1-3 was found. Inhibition of SK1-3 channels (apamin, scyllatoxin) significantly inhibited outward current, caused membrane depolarisation and elicited action potentials in previously quiescent cells. Apamin or scyllatoxin increased the amplitude of [Ca] and force in spontaneously contracting myometrial strips throughout gestation. The functional effect of SK inhibition was larger than that of BK channel inhibition. Thus we show for the first time that SK1-3 channels are expressed and translated throughout pregnancy and contribute to outward current, regulate membrane potential and hence Ca signals in pregnant rat myometrium. They contribute more to quiescence that BK channels. 2009 Elsevier Ltd. All rights reserved.

  6. Arctigenin, a potential anti-arrhythmic agent, inhibits aconitine-induced arrhythmia by regulating multi-ion channels.

    Science.gov (United States)

    Zhao, Zhenying; Yin, Yongqiang; Wu, Hong; Jiang, Min; Lou, Jianshi; Bai, Gang; Luo, Guo'an

    2013-01-01

    Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD), sodium current (I(Na)), L-type calcium current (I(Ca, L)) and transient outward potassium current (I(to)) were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90) were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited I(Na) and I(Ca,L) and attenuated the aconitine-increased I(Na) and I(Ca,L) by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, I(Na), I(Ca, L), and I(to) may be multiple targets of arctigenin, leading to its antiarrhythmic effect. © 2013 S. Karger AG, Basel.

  7. ASIC-like currents in freshly isolated cerebral artery smooth muscle cells are inhibited by endogenous oxidase activity.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Drummond, Heather A

    2011-01-01

    The aim of this study was to determine if VSMC ASIC-like currents are regulated by oxidative state. We used whole-cell patch clamp of isolated mouse cerebral VSMCs to determine if 1) reducing agents, such as DTT and GSH, and 2) inhibition of endogenous oxidase activity from NADPH and Xanthine oxidases potentiate active currents and activate electrically silent currents. Pretreatment with 2 mM DTT or GSH, increased the mean peak amplitude of ASIC-like currents evoked by pH 6.0 from 0.4 ± 0.1 to 14.9 ± 3.6 pA/pF, and from 0.9 ± 0.3 to 11.3 ± 2.4 pA/pF, respectively. Pretreatment with apocynin, a NADPH oxidase inhibitor, mimics the effect of the reducing agents, with the mean peak current amplitude increased from 0.9 ± 0.5 to 7.0 ± 2.6 pA/pF and from 0.5 ± 0.2 to 26.4 ± 6.8 pA/pF by 50 and 200 μM apocynin, respectively. Pretreatment with allopurinol, a xanthine oxidase inhibitor, also potentiates the VSMC ASIC-like activity. These findings suggest that VSMC ASIC-like channels are regulated by oxidative state and may be inhibited by basal endogenous oxidative sources such as NADPH and xanthine oxidase. Copyright © 2011 S. Karger AG, Basel.

  8. A Gradually Varied Approach to Model Turbidity Currents in Submarine Channels

    Science.gov (United States)

    Bolla Pittaluga, M.; Frascati, A.; Falivene, O.

    2018-01-01

    We develop a one-dimensional model to describe the dynamics of turbidity current flowing in submarine channels. We consider the flow as a steady state polydisperse suspension accounting for water detrainment from the clear water-turbid interface, for spatial variations of the channel width and for water and sediment lateral overspill from the channel levees. Moreover, we account for sediment exchange with the bed extending the model to deal with situations where the current meets a nonerodible bed. Results show that when water detrainment is accounted for, the flow thickness becomes approximately constant proceeding downstream. Similarly, in the presence of channel levees, the flow tends to adjust to channel relief through the lateral loss of water and sediment. As more mud is spilled above the levees relative to sand, the flow becomes more sand rich proceeding downstream when lateral overspill is present. Velocity and flow thickness predicted by the model are then validated by showing good agreement with laboratory observations. Finally, the model is applied to the Monterey Canyon bathymetric data matching satisfactorily the December 2002 event field measurements and predicting a runout length consistent with observations.

  9. Inhibition of acid-sensing ion channels by levo-tetrahydropalmatine in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Liu, Ting-Ting; Qu, Zu-Wei; Qiu, Chun-Yu; Qiu, Fang; Ren, Cuixia; Gan, Xiong; Peng, Fang; Hu, Wang-Ping

    2015-02-01

    Levo-tetrahydropalmatine (l-THP), a main bioactive Chinese herbal constituent from the genera Stephania and Corydalis, has been in use in clinical practice for years in China as a traditional analgesic agent. However, the mechanism underlying the analgesic action of l-THP is poorly understood. This study shows that l-THP can exert an inhibitory effect on the functional activity of native acid-sensing ion channels (ASICs), which are believed to mediate pain caused by extracellular acidification. l-THP dose dependently decreased the amplitude of proton-gated currents mediated by ASICs in rat dorsal root ganglion (DRG) neurons. l-THP shifted the proton concentration-response curve downward, with a decrease of 40.93% ± 8.45% in the maximum current response to protons, with no significant change in the pH0.5 value. Moreover, l-THP can alter the membrane excitability of rat DRG neurons to acid stimuli. It significantly decreased the number of action potentials and the amplitude of the depolarization induced by an extracellular pH drop. Finally, peripherally administered l-THP inhibited the nociceptive response to intraplantar injection of acetic acid in rats. These results indicate that l-THP can inhibit the functional activity of ASICs in dissociated primary sensory neurons and relieve acidosis-evoked pain in vivo, which for the first time provides a novel peripheral mechanism underlying the analgesic action of l-THP. © 2014 Wiley Periodicals, Inc.

  10. Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Yu

    Full Text Available Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear.To test the hypothesis that apamin does not inhibit any major cardiac ion currents.We studied human embryonic kidney (HEK 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration.Ca2+ currents (CACNA1c+CACNB2b were not affected by apamin (500 nM (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS, but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008. Na+ currents (SCN5A were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS, but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018. None of the major K+ currents (IKs, IKr, IK1 and Ito were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]. Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both.Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

  11. Numerical study of gravity currents in a channel

    International Nuclear Information System (INIS)

    Wang, D.

    1985-01-01

    A three-dimensional, primitive-equation model was used to study gravity currents produced by instantaneous releases of a buoyant fluid in a rectangular channel. Without rotation, the gravity current passes through two distinct phases: an initial adjustment phase in which the front speed is constant, and an eventual self-similar phase in which the front speed decreases with time. With rotation, the gravity current is confined to the right-hand wall, forming a coastal jet. The initial front-speed is constant; however, the front speed decreases rapidly due to strong mixing at the horizontal edge of the gravity current. Also, with rotation, part of the buoyant fluid is trapped near the source region, forming an anticyclonic vortex

  12. Skin protective effect of guava leaves against UV-induced melanogenesis via inhibition of ORAI1 channel and tyrosinase activity.

    Science.gov (United States)

    Lee, Dong-Ung; Weon, Kwon Yeon; Nam, Da-Yeong; Nam, Joo Hyun; Kim, Woo Kyung

    2016-12-01

    Ultraviolet (UV) irradiation is a major environmental factor affecting photoageing, which is characterized by skin wrinkle formation and hyperpigmentation. Although many factors are involved in the photoageing process, UV irradiation is thought to play a major role in melanogenesis. Tyrosinase is the key enzyme in melanin synthesis; therefore, many whitening agents target tyrosinase through various mechanisms, such as direct interference of tyrosinase catalytic activity or inhibition of tyrosinase mRNA expression. Furthermore, the highly selective calcium channel ORAI1 has been shown to be associated with UV-induced melanogenesis. Thus, ORAI1 antagonists may have applications in the prevention of melanogenesis. Here, we aimed to identify the antimelanogenesis agents from methanolic extract of guava leaves (Psidium guajava) that can inhibit tyrosinase and ORAI1 channel. The n-butanol (47.47%±7.503% inhibition at 10 μg/mL) and hexane (57.88%±7.09% inhibition at 10 μg/mL) fractions were found to inhibit ORAI1 channel activity. In addition, both fractions showed effective tyrosinase inhibitory activity (68.3%±0.50% and 56.9%±1.53% inhibition, respectively). We also confirmed that the hexane fraction decreased the melanin content induced by UVB irradiation and the ET-1-induced melanogenesis in murine B16F10 melanoma cells. These results suggest that the leaves of P. guajava can be used to protect against direct and indirect UV-induced melanogenesis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The relationship between functional inhibition and binding for K(Ca2 channel blockers.

    Directory of Open Access Journals (Sweden)

    David Charles Hammond Benton

    Full Text Available Small conductance calcium-activated potassium channels (KCa2.1,2.2,2.3 are blocked with high affinity by both peptide toxins (e.g. apamin and small molecule blockers (e.g. UCL 1848. In electrophysiological experiments, apamin shows subtype selectivity with IC50s of ∼100 pM and ∼1 nM for block KCa2.2 and KCa2.3 respectively. In binding studies, however, apamin appears not to discriminate between KCa2.2 and 2.3 and is reported to have a significantly higher (∼20-200-fold affinity (∼5 pM. This discrepancy between binding and block has been suggested to reflect an unusual mode of action of apamin. However, these binding and electrophysiological block experiments have not been conducted in the same ionic conditions, so it is also possible that the discrepancy arises simply because of differences in experimental conditions. We have now examined this latter possibility. Thus, we measured (125I-apamin binding to intact HEK 293 cells expressing KCa2 channels under the same ionic conditions (i.e. normal physiological conditions that we also used for current block measurements. We find that binding and block experiments agree well if the same ionic conditions are used. Further, the binding of apamin and other blockers showed subtype selectivity when measured in normal physiological solutions (e.g.(125I-apamin bound to KCa2.2 with K L 91±40 pM and to KCa2.3 with K L 711±126 pM, while inhibiting KCa2.2 current at IC50 103±2 pM. We also examined KCa2 channel block in Ca(2+ and Mg(2+ free solutions that mimic conditions reported in the literature for binding experiments. Under these (non-physiological conditions the IC50 for apamin block of KCa2.2 was reduced to 20±3 pM. Our results therefore suggest that the apparent discrepancy between blocking and binding reported in the literature can be largely accounted for by the use of non-physiological ionic conditions in binding experiments.

  14. Galvanically Decoupled Current Source Modules for Multi-Channel Bioimpedance Measurement Systems

    Directory of Open Access Journals (Sweden)

    Roman Kusche

    2017-10-01

    Full Text Available Bioimpedance measurements have become a useful technique in the past several years in biomedical engineering. Especially, multi-channel measurements facilitate new imaging and patient monitoring techniques. While most instrumentation research has focused on signal acquisition and signal processing, this work proposes the design of an excitation current source module that can be easily implemented in existing or upcoming bioimpedance measurement systems. It is galvanically isolated to enable simultaneous multi-channel bioimpedance measurements with a very low channel-coupling. The system is based on a microcontroller in combination with a voltage-controlled current source circuit. It generates selectable sinusoidal excitation signals between 0.12 and 1.5 mA in a frequency range from 12 to 250 kHz, whereas the voltage compliance range is ±3.2 V. The coupling factor between two current sources, experimentally galvanically connected with each other, is measured to be less than −48 dB over the entire intended frequency range. Finally, suggestions for developments in the future are made.

  15. Phosphatidylinositol (4,5)Bisphosphate Inhibits K+-Efflux Channel Activity in NT1 Tobacco Cultured Cells1[W][OA

    Science.gov (United States)

    Ma, Xiaohong; Shor, Oded; Diminshtein, Sofia; Yu, Ling; Im, Yang Ju; Perera, Imara; Lomax, Aaron; Boss, Wendy F.; Moran, Nava

    2009-01-01

    In the animal world, the regulation of ion channels by phosphoinositides (PIs) has been investigated extensively, demonstrating a wide range of channels controlled by phosphatidylinositol (4,5)bisphosphate (PtdInsP2). To understand PI regulation of plant ion channels, we examined the in planta effect of PtdInsP2 on the K+-efflux channel of tobacco (Nicotiana tabacum), NtORK (outward-rectifying K channel). We applied a patch clamp in the whole-cell configuration (with fixed “cytosolic” Ca2+ concentration and pH) to protoplasts isolated from cultured tobacco cells with genetically manipulated plasma membrane levels of PtdInsP2 and cellular inositol (1,4,5)trisphosphate: “Low PIs” had depressed levels of these PIs, and “High PIs” had elevated levels relative to controls. In all of these cells, K channel activity, reflected in the net, steady-state outward K+ currents (IK), was inversely related to the plasma membrane PtdInsP2 level. Consistent with this, short-term manipulations decreasing PtdInsP2 levels in the High PIs, such as pretreatment with the phytohormone abscisic acid (25 μm) or neutralizing the bath solution from pH 5.6 to pH 7, increased IK (i.e. NtORK activity). Moreover, increasing PtdInsP2 levels in controls or in abscisic acid-treated high-PI cells, using the specific PI-phospholipase C inhibitor U73122 (2.5–4 μm), decreased NtORK activity. In all cases, IK decreases stemmed largely from decreased maximum attainable NtORK channel conductance and partly from shifted voltage dependence of channel gating to more positive potentials, making it more difficult to activate the channels. These results are consistent with NtORK inhibition by the negatively charged PtdInsP2 in the internal plasma membrane leaflet. Such effects are likely to underlie PI signaling in intact plant cells. PMID:19052153

  16. Anion-sensitive regions of L-type CaV1.2 calcium channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Norbert Babai

    2010-01-01

    Full Text Available L-type calcium currents (I(Ca are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of I(Ca and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca(2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from approximately 75%-80% to approximately 50% by omitting beta subunits but unaffected by omitting alpha(2delta subunits. Similarly, gluconate inhibition was reduced to approximately 50% by deleting an alpha1 subunit N-terminal region of 15 residues critical for beta subunit interactions regulating open probability. Omitting beta subunits with this mutant alpha1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different beta subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from approximately 75%-80% to approximately 50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to approximately 60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to approximately 25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving beta subunit interactions with the N terminus and a short C terminal region.

  17. Molecular and kinetic determinants of local anaesthetic action on sodium channels.

    Science.gov (United States)

    French, R J; Zamponi, G W; Sierralta, I E

    1998-11-23

    (1) Local anaesthetics (LA) rely for their clinical actions on state-dependent inhibition of voltage-dependent sodium channels. (2) Single, batrachoxin-modified sodium channels in planar lipid bilayers allow direct observation of drug-channel interactions. Two modes of inhibition of single-channel current are observed: fast block of the open channels and prolongation of a long-lived closed state, some of whose properties resemble those of the inactivated state of unmodified channels. (3) Analogues of different parts of the LA molecule separately mimic each blocking mode: amines--fast block, and water-soluble aromatics--closed state prolongation. (4) Interaction between a mu-conotoxin derivative and diethylammonium indicate an intrapore site of fast, open-state block. (5) Site-directed mutagenesis studies suggest that hydrophobic residues in transmembrane segment 6 of repeat domain 4 of sodium channels are critical for both LA binding and stabilization of the inactivated state.

  18. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.

    Science.gov (United States)

    Nanou, Evanthia; Lee, Amy; Catterall, William A

    2018-05-02

    Activity-dependent regulation controls the balance of synaptic excitation to inhibition in neural circuits, and disruption of this regulation impairs learning and memory and causes many neurological disorders. The molecular mechanisms underlying short-term synaptic plasticity are incompletely understood, and their role in inhibitory synapses remains uncertain. Here we show that regulation of voltage-gated calcium (Ca 2+ ) channel type 2.1 (Ca V 2.1) by neuronal Ca 2+ sensor (CaS) proteins controls synaptic plasticity and excitation/inhibition balance in a hippocampal circuit. Prevention of CaS protein regulation by introducing the IM-AA mutation in Ca V 2.1 channels in male and female mice impairs short-term synaptic facilitation at excitatory synapses of CA3 pyramidal neurons onto parvalbumin (PV)-expressing basket cells. In sharp contrast, the IM-AA mutation abolishes rapid synaptic depression in the inhibitory synapses of PV basket cells onto CA1 pyramidal neurons. These results show that CaS protein regulation of facilitation and inactivation of Ca V 2.1 channels controls the direction of short-term plasticity at these two synapses. Deletion of the CaS protein CaBP1/caldendrin also blocks rapid depression at PV-CA1 synapses, implicating its upregulation of inactivation of Ca V 2.1 channels in control of short-term synaptic plasticity at this inhibitory synapse. Studies of local-circuit function revealed reduced inhibition of CA1 pyramidal neurons by the disynaptic pathway from CA3 pyramidal cells via PV basket cells and greatly increased excitation/inhibition ratio of the direct excitatory input versus indirect inhibitory input from CA3 pyramidal neurons to CA1 pyramidal neurons. This striking defect in local-circuit function may contribute to the dramatic impairment of spatial learning and memory in IM-AA mice. SIGNIFICANCE STATEMENT Many forms of short-term synaptic plasticity in neuronal circuits rely on regulation of presynaptic voltage-gated Ca 2+ (Ca V

  19. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition

    DEFF Research Database (Denmark)

    Diness, Jonas Goldin; Skibsbye, Lasse; Jespersen, Thomas

    2011-01-01

    We have shown previously that inhibition of small conductance Ca(2+)-activated K(+) (SK) channels is antiarrhythmic in models of acutely induced atrial fibrillation (AF). These models, however, do not take into account that AF derives from a wide range of predisposing factors, the most prevalent ...

  20. Spontaneous release from mossy fiber terminals inhibits Ni2+-sensitive T-type Ca2+ channels of CA3 pyramidal neurons in the rat organotypic hippocampal slice.

    Science.gov (United States)

    Reid, Christopher A; Xu, Shenghong; Williams, David A

    2008-01-01

    Mossy fibers (axons arising from dentate granule cells) form large synaptic contacts exclusively onto the proximal apical dendrites of CA3 pyramidal neurons. They can generate large synaptic currents that occur in close proximity to the soma. These properties mean that active conductance in the proximal apical dendrite could have a disproportionate influence on CA3 pyramidal neuron excitability. Ni(2+)-sensitive T-type Ca(2+) channels are important modulators of dendritic excitability. Here, we use an optical approach to determine the contribution of Ni(2+) (100 microM)-sensitive Ca(2+) channels to action potential (AP) elicited Ca(2+) flux in the soma, proximal apical and distal apical dendrites. At resting membrane potentials Ni(2+)-sensitive Ca(2+) channels do not contribute to the Ca(2+) signal in the proximal apical dendrite, but do contribute in the other cell regions. Spontaneous release from mossy fiber terminals acting on 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX)-sensitive postsynaptic channels underlies a tonic inhibition of Ni(2+)-sensitive channels. Chelating Zn(2+) with CaEDTA blocks CNQX-sensitive changes in Ca(2+) flux implicating a mechanistic role of this ion in T-type Ca(2+) channel block. To test if this inhibition influenced excitability, progressively larger depolarizing pulses were delivered to CA3 pyramidal neurons. CNQX significantly reduced the size of the depolarizing step required to generate APs and increased the absolute number of APs per depolarizing step. This change in AP firing was completely reversed by the addition of Ni(2+). This mechanism may reduce the impact of T-type Ca(2+) channels in a region where large synaptic events are common.

  1. Effect of Continuous Current during Pauses between Successive Strokes on the Decay of the Lightning Channel

    International Nuclear Information System (INIS)

    Aleksandrov, N.L.; Bazelyan, E.M.; Shneider, M. N.

    2000-01-01

    A one-dimensional model is used to study the dynamics of the hydrodynamic parameters of the lightning channel in the return stroke and after the pulse current is damped. The effect of the continuous residual electric current during pauses between the successive strokes on the plasma cooling in the channel is analyzed. It is shown that a continuous electric current, which is several orders of magnitude lower than the peak current in the return stroke, is capable of maintaining the channel conductivity. This effect cannot be explained merely by Joule heating but is largely governed by the fact that the turbulent heat transport is substantially suppressed. In this case, even a continuous current as low as 50-100 A is capable of maintaining the conductivity of the lightning channel at a level at which only M-components can develop in the channel rather than the dart leader of the subsequent stroke

  2. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2011-05-08

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17β-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17β-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17β-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17β-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17β-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17β-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCδ activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17β-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17β-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCδ-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17β-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.

  3. Estrogen inhibits chloride secretion caused by cholera and Escherichia coli enterotoxins in female rat distal colon.

    LENUS (Irish Health Repository)

    Alzamora, Rodrigo

    2012-02-01

    Excessive Cl(-) secretion is the driving force for secretory diarrhea. 17beta-Estradiol has been shown to inhibit Cl(-) secretion in rat distal colon through a nongenomic pathway. We examined whether 17beta-estradiol inhibits Cl(-) secretion in an animal model of secretory diarrhea and the downstream effectors involved. The effect of 17beta-estradiol on cholera toxin and heat-stable enterotoxin induced Cl(-) secretion in rat colonic mucosal sheets was studied by current-voltage clamping. Selective permeabilization of apical or basolateral membranes with amphotericin B or nystatin was used to isolate basolateral K(+) channel and apical Cl(-) channel activity, respectively. 17beta-Estradiol dose-dependently inhibited secretory responses to both toxins with IC(50) values of approximately 1nM. This effect was female-gender specific, with no inhibition observed in male tissues. 17beta-Estradiol responses were insensitive to the pure anti-estrogen ICI 182,720. 17beta-Estradiol exerted its effects downstream of enterotoxin-induced production of second messengers (cAMP and cGMP) but was dependent on PKCdelta activation. In nystatin-permeabilized tissues, apical Cl(-) currents were unaffected by 17beta-estradiol treatment while basolateral K(+) current was profoundly inhibited by the hormone. This current was sensitive to the specific KCNQ1 channel inhibitors chromanol 293B and HMR-1556. In conclusion, 17beta-estradiol inhibits enterotoxin-induced Cl(-) secretion via a PKCdelta-dependent mechanism involving inhibition of basolateral KCNQ1 channels. These data elucidate mechanisms of 17beta-estradiol inhibition of Cl(-) secretion induced by enterotoxins in intestinal epithelia, which may be relevant for the treatment of diarrheal diseases.

  4. Particle-driven gravity currents in non-rectangular cross section channels

    International Nuclear Information System (INIS)

    Zemach, T.

    2015-01-01

    We consider a high-Reynolds-number gravity current generated by suspension of heavier particles in fluid of density ρ i , propagating along a channel into an ambient fluid of the density ρ a . The bottom and top of the channel are at z = 0, H, and the cross section is given by the quite general −f 1 (z) ≤ y ≤ f 2 (z) for 0 ≤ z ≤ H. The flow is modeled by the one-layer shallow-water equations obtained for the time-dependent motion which is produced by release from rest of a fixed volume of mixture from a lock. We solve the problem by the finite-difference numerical code to present typical height h(x, t), velocity u(x, t), and volume fraction of particles (concentration) ϕ(x, t) profiles. The methodology is illustrated for flow in typical geometries: power-law (f(z) = z α and f(z) = (H − z) α , where α is positive constant), trapezoidal, and circle. In general, the speed of propagation of the flows driven by suspensions decreases compared with those driven by a reduced gravity in homogeneous currents. However, the details depend on the geometry of the cross section. The runout length of suspensions in channels of power-law cross sections is analytically predicted using a simplified depth-averaged “box” model. The present approach is a significant generalization of the classical gravity current problem. The classical formulation for a rectangular channel is now just a particular case, f(z) = const., in the wide domain of cross sections covered by this new model

  5. How to resolve microsecond current fluctuations in single ion channels: The power of beta distributions

    Science.gov (United States)

    Schroeder, Indra

    2015-01-01

    Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656

  6. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations

    NARCIS (Netherlands)

    Janocko, M.; Cartigny, M.J.B.; Nemec, W.; Hansen, E.W.M.

    2013-01-01

    This study explores the relationship between the hydraulics of turbidity currents in erodible sinuous channels and the resulting intra-channel sediment depocentres (channel bars). Four factors are considered to exert critical control on sedimentation in sinuous submarine channels: (1) the

  7. The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Ahern, Christopher A

    2011-01-01

    concentrations (less than 1 mM), QX-314 potently inhibited capsaicin-evoked TRPV1 currents with an IC₅₀ of 8.0 ± 0.6 μM. CONCLUSIONS: The results of this study show that the quaternary lidocaine derivative QX-314 exerts biphasic effects on TRPV1 channels, inhibiting capsaicin-evoked TRPV1 currents at lower...... channels. METHODS: The authors conducted an in vitro laboratory study in which they expressed TRPV1 and TRPV4 channels in Xenopus laevis oocytes and recorded cation currents with the two-electrode voltage clamp method. They used confocal microscopy for Ca²⁺ imaging in TRPV1 transient transfected tsA201...

  8. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    Science.gov (United States)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  9. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta.

    Science.gov (United States)

    Hu, J; DeChon, J; Yan, K C; Liu, Q; Hu, G; Wu, J

    2006-07-31

    Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.

  10. Properties of Single K+ and Cl− Channels in Asclepias tuberosa Protoplasts 1

    Science.gov (United States)

    Schauf, Charles L.; Wilson, Kathryn J.

    1987-01-01

    Potassium and chloride channels were characterized in Asclepias tuberosa suspension cell derived protoplasts by patch voltage-clamp. Whole-cell currents and single channels in excised patches had linear instantaneous current-voltage relations, reversing at the Nernst potentials for K+ and Cl−, respectively. Whole cell K+ currents activated exponentially during step depolarizations, while voltage-dependent Cl− channels were activated by hyperpolarizations. Single K+ channel conductance was 40 ± 5 pS with a mean open time of 4.5 milliseconds at 100 millivolts. Potassium channels were blocked by Cs+ and tetraethylammonium, but were insensitive to 4-aminopyridine. Chloride channels had a single-channel conductance of 100 ± 17 picosiemens, mean open time of 8.8 milliseconds, and were blocked by Zn2+ and ethacrynic acid. Whole-cell Cl− currents were inhibited by abscisic acid, and were unaffected by indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid. Since internal and external composition can be controlled, patch-clamped protoplasts are ideal systems for studying the role of ion channels in plant physiology and development. Images Fig. 5 PMID:16665712

  11. Gravity currents in rotating channels. Part 1. Steady-state theory

    Science.gov (United States)

    Hacker, J. N.; Linden, P. F.

    2002-04-01

    A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g[prime prime or minute]H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g[prime prime or minute]H)[minus sign]1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W [rightward arrow] [infty infinity]. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall

  12. Lowering glucose level elevates [Ca2+]i in hypothalamic arcuate nucleus NPY neurons through P/Q-type Ca2+ channel activation and GSK3β inhibition

    Science.gov (United States)

    Chen, Yu; Zhou, Jun; Xie, Na; Huang, Chao; Zhang, Jun-qi; Hu, Zhuang-li; Ni, Lan; Jin, You; Wang, Fang; Chen, Jian-guo; Long, Li-hong

    2012-01-01

    Aim: To identify the mechanisms underlying the elevation of intracellular Ca2+ level ([Ca2+]i) induced by lowering extracellular glucose in rat hypothalamic arcuate nucleus NPY neurons. Methods: Primary cultures of hypothalamic arcuate nucleus (ARC) neurons were prepared from Sprague-Dawley rats. NPY neurons were identified with immunocytochemical method. [Ca2+]i was measured using fura-2 AM. Ca2+ current was recorded using whole-cell patch clamp recording. AMPK and GSK3β levels were measured using Western blot assay. Results: Lowering glucose level in the medium (from 10 to 1 mmol/L) induced a transient elevation of [Ca2+]i in ARC neurons, but not in hippocampal and cortical neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons depended on extracellular Ca2+, and was blocked by P/Q-type Ca2+channel blocker ω-agatoxin TK (100 nmol/L), but not by L-type Ca2+ channel blocker nifedipine (10 μmol/L) or N-type Ca2+channel blocker ω-conotoxin GVIA (300 nmol/L). Lowering glucose level increased the peak amplitude of high voltage-activated Ca2+ current in ARC neurons. The low-glucose induced elevation of [Ca2+]i in ARC neurons was blocked by the AMPK inhibitor compound C (20 μmol/L), and enhanced by the GSK3β inhibitor LiCl (10 mmol/L). Moreover, lowering glucose level induced the phosphorylation of AMPK and GSK3β, which was inhibited by compound C (20 μmol/L). Conclusion: Lowering glucose level enhances the activity of P/Q type Ca2+channels and elevates [Ca2+]i level in hypothalamic arcuate nucleus neurons via inhibition of GSK3β. PMID:22504905

  13. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert Mitchell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalmas, Dale A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  14. Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes.

    Science.gov (United States)

    Baba, Asuka; Tachi, Masahiro; Maruyama, Yoshio; Kazama, Itsuro

    2015-10-01

    Lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes, and these channels play crucial roles in the lymphocyte activation and proliferation. Since diltiazem and verapamil, which are highly lipophilic Ca(2+) channel blockers (CCBs), exert relatively stronger immunomodulatory effects than the other types of CCBs, they would affect the Kv1.3-channel currents in lymphocytes. Employing the standard patch-clamp whole-cell recording technique in murine thymocytes, we examined the effects of these drugs on the channel currents and the membrane capacitance. Both diltiazem and verapamil significantly suppressed the peak and the pulse-end currents of the channels, although the effects of verapamil were more marked than those of diltiazem. Both drugs significantly lowered the membrane capacitance, indicating the interactions between the drugs and the plasma membranes. This study demonstrated for the first time that CCBs, such as diltiazem and verapamil, exert inhibitory effects on Kv1.3-channels expressed in lymphocytes. The effects of these drugs may be associated with the mechanisms of immunomodulation by which they decrease the production of inflammatory cytokines. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Inhibitory effects and mechanism of dihydroberberine on hERG channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Dahai Yu

    Full Text Available The human ether-a-go-go-related gene (hERG potassium channel conducts rapid delayed rectifier potassium currents (IKr and contributes to phase III cardiac action potential repolarization. Drugs inhibit hERG channels by binding to aromatic residues in hERG helixes. Berberine (BBR has multiple actions, and its hydrogenated derivative dihydroberberine (DHB is a potential candidate for developing new drugs. Previous studies have demonstrated that BBR blocks hERG channels and prolongs action potential duration (APD. Our present study aimed to investigate the effects and mechanism of DHB on hERG channels. Protein expression and the hERG current were analyzed using western blotting and patch-clamp, respectively. DHB inhibited the hERG current concentration-dependently after instantaneous perfusion, accelerated channel inactivation by directly binding tyrosine (Tyr652 and phenylalanine (Phe656, and decreased mature (155-kDa and simultaneously increased immature (135-kDa hERG expression, respectively. This suggests disruption of forward trafficking of hERG channels. Besides, DHB remarkably reduced heat shock protein 90 (Hsp90 expression and its interaction with hERG, indicating that DHB disrupted hERG trafficking by impairing channel folding. Meanwhie, DHB enhanced the expression of cleaved activating transcription factor-6 (ATF-6, a biomarker of unfolded protein response (UPR. Expression of calnexin and calreticulin, chaperones activated by ATF-6 to facilitate channel folding, were also increased, which indicating UPR activation. Additionally, the degradation rate of mature 155-kDa hERG increased following DHB exposure. In conclusion, we demonstrated that DHB acutely blocked hERG channels by binding the aromatic Tyr652 and Phe656. DHB may decrease hERG plasma membrane expression through two pathways involving disruption of forward trafficking of immature hERG channels and enhanced degradation of mature hERG channels. Furthermore, forward trafficking was

  16. Lipid nanocapsules containing the non-ionic surfactant Solutol HS15 inhibit the transport of calcium through hyperforin-activated channels in neuronal cells.

    Science.gov (United States)

    Chauvet, Sylvain; Barras, Alexandre; Boukherroub, Rabah; Bouron, Alexandre

    2015-12-01

    Hyperforin is described as a natural antidepressant inhibiting the reuptake of neurotransmitters and also activating cation channels. However the blood-brain barrier limits the access to the brain of this biomolecule. To circumvent this problem it was envisaged to encapsulate hyperforin into biomimetic lipid nano-carriers like lipid nanocapsules (LNCs). When testing the safety of 25 nm LNCs it appeared that they strongly blocked hyperforin-activated Ca2+ channels of cultured cortical neurons. This inhibition was due to one of their main component: solutol HS15 (polyoxyethylene-660-12-hydroxy stearate), a non-ionic soluble surfactant. Solutol HS15 rapidly depresses in a concentration-dependent manner the entry of Ca2+ through hyperforin-activated channels without influencing store-operated channels. This effect is mimicked by Brij58 but not by PEG600, indicating that the lipid chain of Solutol HS15 is important in determining its effects on the channels. The inhibition of the Ca2+ fluxes depends on the cellular cholesterol content; it is stronger after depleting cholesterol with methyl-β-cyclodextrin and is nearly absent on cells cultured in a cholesterol-rich medium. When chronically applied for 24 h, Solutol HS15 slightly up-regulates the entry of Ca2+ through hyperforin-activated channels. Similar observations were made when testing 25 nm lipid nanocapsules containing the surfactant Solutol HS15. Altogether, this study shows that Solutol HS15 perturbs in a cholesterol-dependent manner the activity of some neuronal channels. This is the first demonstration that LNCs containing this surfactant can influence cellular calcium signaling in the brain, a finding that can have important clinical implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Directory of Open Access Journals (Sweden)

    Rou-Gang Xie

    Full Text Available In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP. The I(NaP is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP, also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs, although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP without affecting the transient sodium current (I(NaT. Taken together, these results demonstrate for the first time that the I(NaP blocker riluzole selectively inhibits I(NaP and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  18. Blockade of persistent sodium currents contributes to the riluzole-induced inhibition of spontaneous activity and oscillations in injured DRG neurons.

    Science.gov (United States)

    Xie, Rou-Gang; Zheng, Da-Wei; Xing, Jun-Ling; Zhang, Xu-Jie; Song, Ying; Xie, Ya-Bin; Kuang, Fang; Dong, Hui; You, Si-Wei; Xu, Hui; Hu, San-Jue

    2011-04-25

    In addition to a fast activating and immediately inactivating inward sodium current, many types of excitable cells possess a noninactivating or slowly inactivating component: the persistent sodium current (I(NaP)). The I(NaP) is found in normal primary sensory neurons where it is mediated by tetrodotoxin-sensitive sodium channels. The dorsal root ganglion (DRG) is the gateway for ectopic impulses that originate in pathological pain signals from the periphery. However, the role of I(NaP) in DRG neurons remains unclear, particularly in neuropathic pain states. Using in vivo recordings from single medium- and large-diameter fibers isolated from the compressed DRG in Sprague-Dawley rats, we show that local application of riluzole, which blocks the I(NaP), also inhibits the spontaneous activity of A-type DRG neurons in a dose-dependent manner. Significantly, riluzole also abolished subthreshold membrane potential oscillations (SMPOs), although DRG neurons still responded to intracellular current injection with a single full-sized spike. In addition, the I(NaP) was enhanced in medium- and large-sized neurons of the compressed DRG, while bath-applied riluzole significantly inhibited the I(NaP) without affecting the transient sodium current (I(NaT)). Taken together, these results demonstrate for the first time that the I(NaP) blocker riluzole selectively inhibits I(NaP) and thereby blocks SMPOs and the ectopic spontaneous activity of injured A-type DRG neurons. This suggests that the I(NaP) of DRG neurons is a potential target for treating neuropathic pain at the peripheral level.

  19. IMPROVING MODEL OF CHANNEL AIRBORN ELECTRICAL POWER SYSTEM OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Yu. P. Artemenko

    2015-01-01

    Full Text Available This article is devoted to math modeling of channel of alternating current airborne electrical power-supply system. Mathematical modeling of generator, voltage regulator, constant speed drive is considered.

  20. Effects of allocryptopine on outward potassium current and slow delayed rectifier potassium current in rabbit myocardium.

    Science.gov (United States)

    Fu, Yi-Cheng; Zhang, Yu; Tian, Liu-Yang; Li, Nan; Chen, Xi; Cai, Zhong-Qi; Zhu, Chao; Li, Yang

    2016-05-01

    Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be anti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (I to) and slow delayed rectifier potassium current (I Ks). The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record I to and I Ks in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of I to and I Ks in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation of I to in M layers and partly inhibit the channel openings of I to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of I Ks channel in Epi and Endo layers without affecting its activation. Our study gives partially explanation about the mechanisms of transmural inhibition of I to and I Ks channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.

  1. The evolution of discharge current and channel radius in cloud-to-ground lightning return stroke process

    Science.gov (United States)

    Fan, Tingting; Yuan, Ping; Wang, Xuejuan; Cen, Jianyong; Chang, Xuan; Zhao, Yanyan

    2017-09-01

    The spectra of two negative cloud-to-ground lightning discharge processes with multi-return strokes are obtained by a slit-less high-speed spectrograph, which the temporal resolution is 110 μs. Combined with the synchronous electrical observation data and theoretical calculation, the physical characteristics during return strokes process are analysed. A positive correlation between discharge current and intensity of ionic lines in the spectra is verified, and based on this feature, the current evolution characteristics during four return strokes are investigated. The results show that the time from peak current to the half-peak value estimated by multi point-fitting is about 101 μs-139 μs. The Joule heat in per unit length of four return strokes channel is in the order of 105J/m-106 J/m. The radius of arc discharge channel is positively related to the discharge current, and the more intense the current is, the greater the radius of channel is. Furthermore, the evolution for radius of arc core channel in the process of return stroke is consistent with the change trend of discharge current after the peak value. Compared with the decay of the current, the temperature decreases more slowly.

  2. Common molecular determinants of tarantula huwentoxin-IV inhibition of Na+ channel voltage sensors in domains II and IV.

    Science.gov (United States)

    Xiao, Yucheng; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2011-08-05

    The voltage sensors of domains II and IV of sodium channels are important determinants of activation and inactivation, respectively. Animal toxins that alter electrophysiological excitability of muscles and neurons often modify sodium channel activation by selectively interacting with domain II and inactivation by selectively interacting with domain IV. This suggests that there may be substantial differences between the toxin-binding sites in these two important domains. Here we explore the ability of the tarantula huwentoxin-IV (HWTX-IV) to inhibit the activity of the domain II and IV voltage sensors. HWTX-IV is specific for domain II, and we identify five residues in the S1-S2 (Glu-753) and S3-S4 (Glu-811, Leu-814, Asp-816, and Glu-818) regions of domain II that are crucial for inhibition of activation by HWTX-IV. These data indicate that a single residue in the S3-S4 linker (Glu-818 in hNav1.7) is crucial for allowing HWTX-IV to interact with the other key residues and trap the voltage sensor in the closed configuration. Mutagenesis analysis indicates that the five corresponding residues in domain IV are all critical for endowing HWTX-IV with the ability to inhibit fast inactivation. Our data suggest that the toxin-binding motif in domain II is conserved in domain IV. Increasing our understanding of the molecular determinants of toxin interactions with voltage-gated sodium channels may permit development of enhanced isoform-specific voltage-gating modifiers.

  3. Shear and loading in channels: Oscillatory shearing and edge currents of superconducting vortices

    Science.gov (United States)

    Wambaugh, J. F.; Marchesoni, F.; Nori, Franco

    2003-04-01

    Via computer simulations we study the motion of quantized magnetic flux-lines, or vortices, confined to a straight pin-free channel in a strong-pinning superconducting sample. We find that, when a constant current is applied across this system, a very unusual oscillatory shearing appears, in which the vortices moving at the edges of the channel periodically trail behind and then suddenly leapfrog past the vortices moving in the inner rows. For small enough driving forces, this oscillatory shearing dynamic phase is replaced by a continuous shearing phase in which the distance between initially-nearby vortices grows in time, quickly destroying the order of the lattice. An animation of this novel “oscillatory leapfrogging shear” effect of the vortex edge currents appears in http://www-personal.engin.umich.edu/˜nori/channel/

  4. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  5. Experimental study of falling water limitation under counter-current flow in the vertical rectangular channel

    International Nuclear Information System (INIS)

    Usui, Tohru; Kaminaga, Masanori; Sudo, Yukio.

    1988-07-01

    Quantitative understanding of critical heat flux (CHF) in the narrow vertical rectangular channel is required for the thermo-hydroulic design and the safety analysis of research reactors in which flat-plate-type fuel is adopted. Especially, critical heat flux under low downward velocity has a close relation with falling water limitation under counter-current flow. Accordingly, CCFL (Counter-current Flow Limitation) experiments were carried out for both vertical rectangular channels and vertical circular tubes varried in their size and configuration of their cross sections, to make clear CCFL characteristics in the vertical rectangular channels. In the experiments, l/de of the rectangular channel was changed from 3.5 to 180. As the results, it was clear that different equivalent hydraulic diameter de, namely width or water gap of channel, gave different CCFL characteristics of rectangular channel. But the influence of channel length l on CCFL characteristics was not observed. Besides, a dimensionless correlation to estimate a relation between upward air velocity and downward water velocity was proposed based on the present experimental results. The difference of CCFL characteristics between rectangular channels and circular tubes was also investigated. Especially for the rectangular channels, dry-patches appearing condition was made clear as a flow-map. (author)

  6. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.

    Science.gov (United States)

    Xiao, Yucheng; Bingham, Jon-Paul; Zhu, Weiguo; Moczydlowski, Edward; Liang, Songping; Cummins, Theodore R

    2008-10-03

    Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC(50) approximately 26 nM). Following application of 1 microm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by approximately 300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion beta-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration.

  7. Novel dimeric bis(7)-tacrine proton-dependently inhibits NMDA-activated currents

    International Nuclear Information System (INIS)

    Luo, Jialie; Li, Wenming; Liu, Yuwei; Zhang, Wei; Fu, Hongjun; Lee, Nelson T.K.; Yu, Hua; Pang, Yuanping; Huang, Pingbo; Xia, Jun; Li, Zhi-Wang; Li, Chaoying; Han, Yifan

    2007-01-01

    Bis(7)-tacrine has been shown to prevent glutamate-induced neuronal apoptosis by blocking NMDA receptors. However, the characteristics of the inhibition have not been fully elucidated. In this study, we further characterize the features of bis(7)-tacrine inhibition of NMDA-activated current in cultured rat hippocampal neurons. The results show that with the increase of extracellular pH, the inhibitory effect decreases dramatically. At pH 8.0, the concentration-response curve of bis(7)-tacrine is shifted rightwards with the IC 50 value increased from 0.19 ± 0.03 μM to 0.41 ± 0.04 μM. In addition, bis(7)-tacrine shifts the proton inhibition curve rightwards. Furthermore, the inhibitory effect of bis(7)-tacrine is not altered by the presence of the NMDA receptor proton sensor shield spermidine. These results indicate that bis(7)-tacrine inhibits NMDA-activated current in a pH-dependent manner by sensitizing NMDA receptors to proton inhibition, rendering it potentially beneficial therapeutic effects under acidic conditions associated with stroke and ischemia

  8. Cav1.2 channel current block by the PKA inhibitor H-89 in rat tail artery myocytes via a PKA-independent mechanism: Electrophysiological, functional, and molecular docking studies.

    Science.gov (United States)

    Fusi, Fabio; Trezza, Alfonso; Spiga, Ottavia; Sgaragli, Giampietro; Bova, Sergio

    2017-09-15

    To characterize the role of cAMP-dependent protein kinase (PKA) in regulating vascular Ca 2+ current through Ca v 1.2 channels [I Ca1.2 ], we have documented a marked capacity of the isoquinoline H-89, widely used as a PKA inhibitor, to reduce current amplitude. We hypothesized that the I Ca1.2 inhibitory activity of H-89 was mediated by mechanisms unrelated to PKA inhibition. To support this, an in-depth analysis of H-89 vascular effects on both I Ca1.2 and contractility was undertaken by performing whole-cell patch-clamp recordings and functional experiments in rat tail main artery single myocytes and rings, respectively. H-89 inhibited I Ca1.2 with a pIC 50 (M) value of about 5.5, even under conditions where PKA activity was either abolished by both the PKA antagonists KT5720 and protein kinase inhibitor fragment 6-22 amide or enhanced by the PKA stimulators 6-Bnz-cAMP and 8-Br-cAMP. Inhibition of I Ca1.2 by H-89 appeared almost irreversible upon washout, was charge carrier- and voltage-dependent, and antagonised by the Ca v 1.2 channel agonist (S)-(-)-Bay K 8644. H-89 did not alter both potency and efficacy of verapamil, did not affect current kinetics or voltage-dependent activation, while shifting to the left the 50% voltage of inactivation in a concentration-dependent manner. H-89 docked at the α 1C subunit in a pocket region close to that of (S)-(-)-Bay K 8644 docking, forming a hydrogen bond with the same, key amino acid residue Tyr-1489. Finally, both high K + - and (S)-(-)-Bay K 8644-induced contractions of rings were fully reverted by H-89. In conclusion, these results indicate that H-89 inhibited vascular I Ca1.2 and, consequently, the contractile function through a PKA-independent mechanism. Therefore, caution is recommended when interpreting experiments where H-89 is used to inhibit vascular smooth muscle PKA. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Application-oriented research on plasma channeling of a large pulsed current

    International Nuclear Information System (INIS)

    Liu Jingye

    2000-01-01

    Utilizing the avalanche effect of plasma produced by the collision of energetic primary electrons with hydrogen molecules in a plasma, channeling of a large pulsed current is achieved, with the plasma acting as the carrier

  10. Involvement of cyclic nucleotide-gated channels in spontaneous activity generated in isolated interstitial cells of Cajal from the rabbit urethra.

    Science.gov (United States)

    Sancho, Maria; Bradley, Eamonn; Garcia-Pascual, Angeles; Triguero, Domingo; Thornbury, Keith D; Hollywood, Mark A; Sergeant, Gerard P

    2017-11-05

    Cyclic nucleotide-gated (CNG) channels are non-selective cation channels that mediate influx of extracellular Na + and Ca 2+ in various cell types. L-cis-Diltiazem, a CNG channel blocker, inhibits contraction of urethral smooth muscle (USM), however the mechanisms underlying this effect are still unclear. We investigated the possibility that CNG channels contribute to spontaneous pacemaker activity in freshly isolated interstitial cells of Cajal (ICC) isolated from the rabbit urethra (RUICC). Using immunocytochemistry, we found intense CNG1-immunoreactivity in vimentin-immunoreactive RUICC, mainly within patches of the cellular body and processes. In contrast, α-actin immunoreactive smooth muscle cells (SMC) did not show significant reactivity to a specific CNGA1 antibody. Freshly isolated RUICC, voltage clamped at -60mV, developed spontaneous transient inward currents (STICs) that were inhibited by L-cis-Diltiazem (50µM). Similarly, L-cis-Diltiazem (50µM) also inhibited Ca 2+ waves in isolated RUICC, recorded using a Nipkow spinning disk confocal microscope. L-cis-Diltiazem (50µM) did not affect caffeine (10mM)-induced Ca 2+ transients, but significantly reduced phenylephrine-evoked Ca 2+ oscillations and inward currents in in RUICC. L-type Ca 2+ current amplitude in isolated SMC was reduced by ~18% in the presence of L-cis-Diltiazem (50µM), however D-cis-Diltiazem, a recognised L-type Ca 2+ channel blocker, abolished L-type Ca 2+ current but did not affect Ca 2+ waves or STICs in RUICC. These results indicate that the effects of L-cis-diltiazem on rabbit USM could be mediated by inhibition of CNG1 channels that are present in urethral ICC and therefore CNG channels contribute to spontaneous activity in these cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale. Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  12. Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea

    Science.gov (United States)

    Namkung, Wan; Thiagarajah, Jay R.; Phuan, Puay-Wah; Verkman, A. S.

    2010-01-01

    TMEM16A was found recently to be a calcium-activated Cl− channel (CaCC). CaCCs perform important functions in cell physiology, including regulation of epithelial secretion, cardiac and neuronal excitability, and smooth muscle contraction. CaCC modulators are of potential utility for treatment of hypertension, diarrhea, and cystic fibrosis. Screening of drug and natural product collections identified tannic acid as an inhibitor of TMEM16A, with IC50 ∼ 6 μM and ∼100% inhibition at higher concentrations. Tannic acid inhibited CaCCs in multiple cell types but did not affect CFTR Cl− channels. Structure-activity analysis indicated the requirement of gallic or digallic acid substituents on a macromolecular scaffold (gallotannins), as are present in green tea and red wine. Other polyphenolic components of teas and wines, including epicatechin, catechin, and malvidin-3-glucoside, poorly inhibited CaCCs. Remarkably, a 1000-fold dilution of red wine and 100-fold dilution of green tea inhibited CaCCs by >50%. Tannic acid, red wine, and green tea inhibited arterial smooth muscle contraction and intestinal Cl− secretion. Gallotannins are thus potent CaCC inhibitors whose biological activity provides a potential molecular basis for the cardioprotective and antisecretory benefits of red wine and green tea.—Namkung, W., Thiagarajah, J. R., Phuan, P.-W., Verkman, A. S. Inhibition of Ca2+-activated Cl− channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. PMID:20581223

  13. Calcium channel blockers inhibit retinal degeneration in the retinal-degeneration-B mutant of Drosophila.

    Science.gov (United States)

    Sahly, I; Bar Nachum, S; Suss-Toby, E; Rom, A; Peretz, A; Kleiman, J; Byk, T; Selinger, Z; Minke, B

    1992-01-01

    Light accelerates degeneration of photoreceptor cells of the retinal degeneration B (rdgB) mutant of Drosophila. During early stages of degeneration, light stimuli evoke spikes from photoreceptors of the mutant fly; no spikes can be recorded from photoreceptors of the wild-type fly. Production of spike potentials from mutant photoreceptors was blocked by diltiazem, verapamil hydrochloride, and cadmium. Little, if any, effect of the (-)-cis isomer or (+)-cis isomer of diltiazem on the light response was seen. Further, the (+)-cis isomer was approximately 50 times more effective than the (-)-cis isomer in blocking the Ca2+ spikes, indicating that diltiazem action on the rdgB eye is mediated by means of blocking voltage-sensitive Ca2+ channels, rather than by blocking the light-sensitive channels. Application of the Ca(2+)-channel blockers (+)-cis-diltiazem and verapamil hydrochloride to the eyes of rdgB flies over a 7-day period largely inhibited light-dependent degeneration of the photoreceptor cells. Pulse labeling with [32P]phosphate showed much greater incorporation into eye proteins of [32P]phosphate in rdgB flies than in wild-type flies. Retarding the light-induced photoreceptor degeneration in the mutant by Ca(2+)-channel blockers, thus, suggests that toxic increase in intracellular Ca2+ by means of voltage-gated Ca2+ channels, possibly secondary to excessive phosphorylation, leads to photoreceptor degeneration in the rdgB mutant. Images PMID:1309615

  14. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  15. Counter-current gas-liquid two-phase flow in a narrow rectangular channel

    International Nuclear Information System (INIS)

    Sohn, Byung Hu; Kim, Byong Joo

    2000-01-01

    A study of counter-current two-phase flow in a narrow rectangular channel has been performed. Two-phase flow patterns and void fractions were experimentally studied in a 760 mm long and 100 mm wide test section with 3.0 mm gap. The resulting data have been compared to previous transition criteria and empirical correlations. The comparison of experimental data to the transition criteria developed by Taitel and Barnea showed good agreement for the bubbly-to-slug transition. For the criteria of Mishima and Ishii to be applicable to the slug to churn transition, a new model seems to be needed for the accurate prediction of the distribution parameter for the counter-current flow in narrow rectangular channels. For the churn-to-annular transition the model of Taitel and Barnea was found to be close to the experimental data. However the model should be improved in conjunction with the channel geometry to accurately predict the counter-current flow limitation and flow transition. It was verified the distribution parameter was well-correlated by the drift-flux model. The distribution parameter for the present study was found to be about 1.2 for all flow regimes except 1.0 for an annular flow. (author)

  16. Modulation of low-frequency oscillations in GaAs MESFETs' channel current by sidegating bias

    Institute of Scientific and Technical Information of China (English)

    DING Yong; LU Shengli; ZHAO Fuchuan

    2005-01-01

    Low-frequency oscillations in channel current are usually observed when measuring the GaAs MESFET's output characteristics. This paper studies the oscillations by testing the MESFET's output characteristics under different sidegate bias conditions. It is shown that the low-frequency oscillations of channel current are directly related to the sidegate bias. In other words, the sidegate bias can modulate the oscillations. Whether the sidegate bias varies positively or negatively, there will inevitably be a threshold voltage after which the low-frequency oscillations disappear. The observation is strongly dependent upon the peculiarities of channel-substrate (C-S) junction and impact ionization of traps-EL2 under high field. This conclusion is of particular pertinence to the design of low-noise GaAs IC's.

  17. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    International Nuclear Information System (INIS)

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D.

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-[ 3 H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity

  18. Vertical structure of extreme currents in the Faroe-Bank Channel

    Directory of Open Access Journals (Sweden)

    C. Carollo

    2005-09-01

    Full Text Available Extreme currents are studied with the aim of understanding their vertical and spatial structures in the Faroe-Bank Channel. Acoustic Doppler Current Profiler time series recorded in 3 deployments in this channel were investigated. To understand the main features of extreme events, the measurements were separated into their components through filtering and tidal analysis before applying the extreme value theory to the surge component. The Generalized Extreme Value (GEV distribution and the Generalized Pareto Distribution (GPD were used to study the variation of surge extremes from near-surface to deep waters. It was found that this component alone is not able to explain the extremes measured in total currents, particularly below 500 m. Here the mean residual flow enhanced by tidal rectification was found to be the component feature dominating extremes. Therefore, it must be taken into consideration when applying the extreme value theory, not to underestimate the return level for total currents. Return value speeds up to 250 cm s–1 for 50/250 years return period were found for deep waters, where the flow is constrained by the topography at bearings near 300/330° It is also found that the UK Meteorological Office FOAM model is unable to reproduce either the magnitude or the form for the extremes, perhaps due to its coarse vertical and horizontal resolution, and is thus not suitable to model extremes on a regional scale.

    Keywords. Oceanography: Physical (Currents; General circulation; General or miscellaneous

  19. Calculating tracer currents through narrow ion channels: Beyond the independent particle model.

    Science.gov (United States)

    Coalson, Rob D; Jasnow, David

    2018-06-01

    Discrete state models of single-file ion permeation through a narrow ion channel pore are employed to analyze the ratio of forward to backward tracer current. Conditions under which the well-known Ussing formula for this ratio hold are explored in systems where ions do not move independently through the channel. Building detailed balance into the rate constants for the model in such a way that under equilibrium conditions (equal rate of forward vs. backward permeation events) the Nernst Equation is satisfied, it is found that in a model where only one ion can occupy the channel at a time, the Ussing formula is always obeyed for any number of binding sites, reservoir concentrations of the ions and electric potential difference across the membrane which the ion channel spans, independent of the internal details of the permeation pathway. However, numerical analysis demonstrates that when multiple ions can occupy the channel at once, the nonequilibrium forward/backward tracer flux ratio deviates from the prediction of the Ussing model. Assuming an appropriate effective potential experienced by ions in the channel, we provide explicit formulae for the rate constants in these models. © 2018 IOP Publishing Ltd.

  20. Spin Coulomb Dragging Inhibition of Spin-Polarized Electric Current Injecting into Organic Semiconductors

    International Nuclear Information System (INIS)

    Jun-Qing, Zhao; Shi-Zhu, Qiao; Zhen-Feng, Jia; Ning-Yu, Zhang; Yan-Ju, Ji; Yan-Tao, Pang; Ying, Chen; Gang, Fu

    2008-01-01

    We introduce a one-dimensional spin injection structure comprising a ferromagnetic metal and a nondegenerate organic semiconductor to model electric current polarizations. With this model we analyse spin Coulomb dragging (SCD) effects on the polarization under various electric fields, interface and conductivity conditions. The results show that the SCD inhibits the current polarization. Thus the SCD inhibition should be well considered for accurate evaluation of current polarization in the design of organic spin devices

  1. Microscopic origin of gating current fluctuations in a potassium channel voltage sensor.

    Science.gov (United States)

    Freites, J Alfredo; Schow, Eric V; White, Stephen H; Tobias, Douglas J

    2012-06-06

    Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  3. Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, Takuya; Noda, Takeshi; Sakuma, Yoshiki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, Hiroyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2015-01-12

    We observe lateral currents induced in an n-AlGaAs/GaAs heterojunction channel of Hall bar geometry, when an asymmetric position of the Schottky metal gate is locally irradiated by a near-infrared laser beam. When the left side of the Schottky gate is illuminated with the laser, the lateral current flows from left to right in the two dimensional electron gas (2DEG) channel. In contrast, the right side illumination leads to the current from right to left. The magnitude of the lateral current is almost linearly dependent on the beam position, the current reaching its maximum for the beam at the edge of the Schottky gate. The experimental findings are well explained by a theory based on the current-continuity equation, where the lateral current in the 2DEG channel is driven by the photocurrent which vertically flows from the 2DEG to the Schottky gate.

  4. The Nav1.2 channel is regulated by GSK3

    Science.gov (United States)

    James, Thomas F.; Nenov, Miroslav N.; Wildburger, Norelle C.; Lichti, Cheryl; Luisi, Jonathan; Vergara, Fernanda; Panova-Electronova, Neli I.; Nilsson, Carol L.; Rudra, Jai; Green, Thomas A.; Labate, Demetrio; Laezza, Fernanda

    2015-01-01

    Background Phosphorylation plays an essential role in regulating the voltage-gated sodium (Nav) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Nav channels. Herein, we posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Nav channels. Methods We used patch-clamp electrophysiology to record sodium currents from Nav1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. Results We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Nav1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Nav1.2-encoded currents. Neither mRNA nor total protein expression were changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Nav1.2 channel indicates that cell surface expression of CD4-Nav1.2-Ctail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T1966 at the C-terminal tail of Nav1.2. Conclusion These findings provide evidence for a new mechanism by which GSK3 modulate Nav channel function via its C-terminal tail. General Significance These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders. PMID:25615535

  5. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Kai [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of Life Science and Technology, Jinan University, Guangzhou (China); Chen, Maoyun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Xiang, Yangfei; Ma, Kaiqi [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Jin, Fujun [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); College of pharmacy, Jinan University, Guangzhou (China); Wang, Xiao [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Wang, Xiaoyan; Wang, Shaoxiang [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China); Wang, Yifei, E-mail: twang-yf@163.com [Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou (China)

    2014-04-18

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.

  6. Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB

    International Nuclear Information System (INIS)

    Zheng, Kai; Chen, Maoyun; Xiang, Yangfei; Ma, Kaiqi; Jin, Fujun; Wang, Xiao; Wang, Xiaoyan; Wang, Shaoxiang; Wang, Yifei

    2014-01-01

    Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections

  7. Calcineurin Dysregulation Underlies Spinal Cord Injury-Induced K+ Channel Dysfunction in DRG Neurons.

    Science.gov (United States)

    Zemel, Benjamin M; Muqeem, Tanziyah; Brown, Eric V; Goulão, Miguel; Urban, Mark W; Tymanskyj, Stephen R; Lepore, Angelo C; Covarrubias, Manuel

    2017-08-23

    Dysfunction of the fast-inactivating Kv3.4 potassium current in dorsal root ganglion (DRG) neurons contributes to the hyperexcitability associated with persistent pain induced by spinal cord injury (SCI). However, the underlying mechanism is not known. In light of our previous work demonstrating modulation of the Kv3.4 channel by phosphorylation, we investigated the role of the phosphatase calcineurin (CaN) using electrophysiological, molecular, and imaging approaches in adult female Sprague Dawley rats. Pharmacological inhibition of CaN in small-diameter DRG neurons slowed repolarization of the somatic action potential (AP) and attenuated the Kv3.4 current. Attenuated Kv3.4 currents also exhibited slowed inactivation. We observed similar effects on the recombinant Kv3.4 channel heterologously expressed in Chinese hamster ovary cells, supporting our findings in DRG neurons. Elucidating the molecular basis of these effects, mutation of four previously characterized serines within the Kv3.4 N-terminal inactivation domain eliminated the effects of CaN inhibition on the Kv3.4 current. SCI similarly induced concurrent Kv3.4 current attenuation and slowing of inactivation. Although there was little change in CaN expression and localization after injury, SCI induced upregulation of the native regulator of CaN 1 (RCAN1) in the DRG at the transcript and protein levels. Consistent with CaN inhibition resulting from RCAN1 upregulation, overexpression of RCAN1 in naive DRG neurons recapitulated the effects of pharmacological CaN inhibition on the Kv3.4 current and the AP. Overall, these results demonstrate a novel regulatory pathway that links CaN, RCAN1, and Kv3.4 in DRG neurons. Dysregulation of this pathway might underlie a peripheral mechanism of pain sensitization induced by SCI. SIGNIFICANCE STATEMENT Pain sensitization associated with spinal cord injury (SCI) involves poorly understood maladaptive modulation of neuronal excitability. Although central mechanisms have

  8. Protein kinase A and C regulate leak potassium currents in freshly isolated vascular myocytes from the aorta.

    Directory of Open Access Journals (Sweden)

    Sébastien Hayoz

    Full Text Available We tested the hypothesis that protein kinase A (PKA inhibits K2P currents activated by protein kinase C (PKC in freshly isolated aortic myocytes. PDBu, the PKC agonist, applied extracellularly, increased the amplitude of the K2P currents in the presence of the "cocktail" of K(+ channel blockers. Gö 6976 significantly reduced the increase of the K2P currents by PDBu suggesting the involvement of either α or β isoenzymes of PKC. We found that forskolin, or membrane permeable cAMP, did not inhibit K2P currents activated by the PKC. However, when PKA agonists were added prior to PDBu, they produced a strong decrease in the K2P current amplitudes activated by PKC. Inhibition of PDBu-elicited K2P currents by cAMP agonists was not prevented by the treatment of vascular smooth muscle cells with PKA antagonists (H-89 and Rp-cAMPs. Zn(2+ and Hg(2+ inhibited K2P currents in one population of cells, produced biphasic responses in another population, and increased the amplitude of the PDBu-elicited K(+ currents in a third population of myocytes, suggesting expression of several K2P channel types. We found that cAMP agonists inhibited biphasic responses and increase of amplitude of the PDBu-elicited K2P currents produced by Zn(2+ and Hg(2. 6-Bnz-cAMp produced a significantly altered pH sensitivity of PDBu-elicited K2P-currents, suggesting the inhibition of alkaline-activated K2P-currents. These results indicate that 6-Bnz-cAMP and other cAMP analogs may inhibit K2P currents through a PKA-independent mechanism. cAMP analogs may interact with unidentified proteins involved in K2P channel regulation. This novel cellular mechanism could provide insights into the interplay between PKC and PKA pathways that regulate vascular tone.

  9. An IP-oriented 11-bit 160 MS/s 2-channel current-steering DAC

    International Nuclear Information System (INIS)

    Xu Ning; Li Fule; Zhang Chun; Wang Zhihua

    2014-01-01

    This paper presents an 11-bit 160 MS/s 2-channel current-steering digital-to-analog converter (DAC) IP. The circuit and layout are carefully designed to optimize its performance and area. A 6-2-3 segmented structure is used for the trade-off among linearity, area and layout complexity. The sizes of current source transistors are calculated out according to the process matching parameter. The unary current cells are placed in a one-dimension distribution to simplify the layout routing, spare area and wiring layer. Their sequences are also carefully designed to reduce integral nonlinearity. The test result presents an SFDR of 72 dBc at 4.88 MHz input signal with DNL ⩽ 0.25 LSB, INL ⩽ 0.8 LSB. The full-scale output current is 5 mA with a 2.5 V analog power supply. The core of each channel occupies 0.08 mm 2 in a 1P-8M 55 nm CMOS process. (semiconductor integrated circuits)

  10. Interannual Variations of Surface Currents and Transports in the Sicily Channel Derived From Coastal Altimetry

    Science.gov (United States)

    Jebri, Fatma; Zakardjian, Bruno; Birol, Florence; Bouffard, Jérôme; Jullion, Loïc.; Sammari, Cherif

    2017-11-01

    A 20 year coastal altimetry data set (X-TRACK) is used, for the first time, to gain insight into the long-term interannual variations of the surface circulation in the Sicily Channel. First, a spectral along with a time/space diagram analysis are applied to the monthly means. They reveal a regionally coherent current patterns from track to track with a marked interannual variability that is unequally shared between the Atlantic Tunisian Current and Atlantic Ionian Stream inflows in the Sicily Channel and the Bifurcation Tyrrhenian Current outflow northeast of Sicily. Second, an empirical altimetry-based transport-like technique is proposed to quantify volume budgets inside the closed boxes formed by the crossing of the altimetry tracks and coastlines over the study area. A set of hydrographic measurements is used to validate the method. The inferred altimetry transports give a well-balanced mean eastward Atlantic Waters baroclinic flow of 0.4 Sv and standard deviations of 0.2 Sv on a yearly basis throughout the Sicily Channel and toward the Ionian Sea, which is fairly coherent with those found in the literature. Furthermore, the analysis allows to quantify the intrusions of Atlantic Waters over the Tunisian Shelf (0.12 ± 0.1 Sv) and highlights two main modes of variability of the main surface waters path over the Sicily Channel through the Bifurcation Atlantic Tunisian Current and Atlantic Ionian Stream systems. Some physical mechanisms are finally discussed with regards to changes in the observed currents and transports.

  11. Is transcranial direct current stimulation a potential method for improving response inhibition?

    Science.gov (United States)

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-04-15

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.

  12. Chloride channels as tools for developing selective insecticides.

    Science.gov (United States)

    Bloomquist, Jeffrey R

    2003-12-01

    Ligand-gated chloride channels underlie inhibition in excitable membranes and are proven target sites for insecticides. The gamma-aminobutyric acid (GABA(1)) receptor/chloride ionophore complex is the primary site of action for a number of currently used insecticides, such as lindane, endosulfan, and fipronil. These compounds act as antagonists by stabilizing nonconducting conformations of the chloride channel. Blockage of the GABA-gated chloride channel reduces neuronal inhibition, which leads to hyperexcitation of the central nervous system, convulsions, and death. We recently investigated the mode of action of the silphinenes, plant-derived natural compounds that structurally resemble picrotoxinin. These materials antagonize the action of GABA on insect neurons and block GABA-mediated chloride uptake into mouse brain synaptoneurosomes in a noncompetitive manner. In mammals, avermectins have a blocking action on the GABA-gated chloride channel consistent with a coarse tremor, whereas at longer times and higher concentrations, activation of the channel suppresses neuronal activity. Invertebrates display ataxia, paralysis, and death as the predominant signs of poisoning, with a glutamate-gated chloride channel playing a major role. Additional target sites for the avermectins or other chloride channel-directed compounds might include receptors gated by histamine, serotonin, or acetylcholine.The voltage-sensitive chloride channels form another large gene family of chloride channels. Voltage-dependent chloride channels are involved in a number of physiological processes including: maintenance of electrical excitability, chloride ion secretion and resorption, intravesicular acidification, and cell volume regulation. A subset of these channels is affected by convulsants and insecticides in mammals, although the role they play in acute lethality in insects is unclear. Given the wide range of functions that they mediate, these channels are also potential targets for

  13. A low-cost, scalable, current-sensing digital headstage for high channel count μECoG

    Science.gov (United States)

    Trumpis, Michael; Insanally, Michele; Zou, Jialin; Elsharif, Ashraf; Ghomashchi, Ali; Sertac Artan, N.; Froemke, Robert C.; Viventi, Jonathan

    2017-04-01

    Objective. High channel count electrode arrays allow for the monitoring of large-scale neural activity at high spatial resolution. Implantable arrays featuring many recording sites require compact, high bandwidth front-end electronics. In the present study, we investigated the use of a small, light weight, and low cost digital current-sensing integrated circuit for acquiring cortical surface signals from a 61-channel micro-electrocorticographic (μECoG) array. Approach. We recorded both acute and chronic μECoG signal from rat auditory cortex using our novel digital current-sensing headstage. For direct comparison, separate recordings were made in the same anesthetized preparations using an analog voltage headstage. A model of electrode impedance explained the transformation between current- and voltage-sensed signals, and was used to reconstruct cortical potential. We evaluated the digital headstage using several metrics of the baseline and response signals. Main results. The digital current headstage recorded neural signal with similar spatiotemporal statistics and auditory frequency tuning compared to the voltage signal. The signal-to-noise ratio of auditory evoked responses (AERs) was significantly stronger in the current signal. Stimulus decoding based on true and reconstructed voltage signals were not significantly different. Recordings from an implanted system showed AERs that were detectable and decodable for 52 d. The reconstruction filter mitigated the thermal current noise of the electrode impedance and enhanced overall SNR. Significance. We developed and validated a novel approach to headstage acquisition that used current-input circuits to independently digitize 61 channels of μECoG measurements of the cortical field. These low-cost circuits, intended to measure photo-currents in digital imaging, not only provided a signal representing the local cortical field with virtually the same sensitivity and specificity as a traditional voltage headstage but

  14. Heteromeric ASIC channels composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death

    Science.gov (United States)

    Sherwood, Thomas W.; Lee, Kirsten G.; Gormley, Matthew G.; Askwith, Candice C.

    2011-01-01

    Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the central nervous system and activation of ASIC1a homomeric channels induces neuronal death following local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that co-expression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the non-selective potassium channel blockers tetraethylammonium (TEA) and barium. In addition, steady-state desensitization is induced at more basic pH values and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Further, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury following stroke. PMID:21715637

  15. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels

    Science.gov (United States)

    Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  16. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    Directory of Open Access Journals (Sweden)

    Qijing Chen

    Full Text Available Large conductance Ca2+-activated potassium channels (BK are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α and BK (α+β1 currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1. Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms.

  17. Inhibition of SK4 Potassium Channels Suppresses Cell Proliferation, Migration and the Epithelial-Mesenchymal Transition in Triple-Negative Breast Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Panshi Zhang

    Full Text Available Treatments for triple-negative breast cancer (TNBC are limited; intermediate-conductance calcium-activated potassium (SK4 channels are closely involved in tumor progression, but little is known about these channels in TNBC. We aimed to investigate whether SK4 channels affect TNBC. First, by immunohistochemistry (IHC and western blotting (WB, increased SK4 protein expression in breast tumor tissues was detected relative to that in non-tumor breast tissues, but there was no apparent expression difference between various subtypes of breast cancer (p>0.05. Next, functional SK4 channels were detected in the TNBC cell line MDA-MB-231 using WB, real-time PCR, immunofluorescence and patch-clamp recording. By employing SK4 specific siRNAs and blockers, including TRAM-34 and clotrimazole, in combination with an MTT assay, a colony-formation assay, flow cytometry and a cell motility assay, we found that the suppression of SK4 channels significantly inhibited cell proliferation and migration and promoted apoptosis in MDA-MB-231 cells (p<0.05. Further investigation revealed that treatment with epidermal growth factor (EGF/basic fibroblast growth factor (bFGF caused MDA-MB-231 cells to undergo the epithelial-mesenchymal transition (EMT and to show increased SK4 mRNA expression. In addition, the down-regulation of SK4 expression inhibited the EMT markers Vimentin and Snail1. Collectively, our findings suggest that SK4 channels are expressed in TNBC and are involved in the proliferation, apoptosis, migration and EMT processes of TNBC cells.

  18. ASIC-like, proton-activated currents in rat hippocampal neurons.

    Science.gov (United States)

    Baron, Anne; Waldmann, Rainer; Lazdunski, Michel

    2002-03-01

    The expression of mRNA for acid sensing ion channels (ASIC) subunits ASIC1a, ASIC2a and ASIC2b has been reported in hippocampal neurons, but the presence of functional hippocampal ASIC channels was never assessed. We report here the first characterization of ASIC-like currents in rat hippocampal neurons in primary culture. An extracellular pH drop induces a transient Na(+) current followed by a sustained non-selective cation current. This current is highly sensitive to pH with an activation threshold around pH 6.9 and a pH(0.5) of 6.2. About half of the total peak current is inhibited by the spider toxin PcTX1, which is specific for homomeric ASIC1a channels. The remaining PcTX1-resistant ASIC-like current is increased by 300 microM Zn(2+) and, whereas not fully activated at pH 5, it shows a pH(0.5) of 6.0 between pH 7.4 and 5. We have previously shown that Zn(2+) is a co-activator of ASIC2a-containing channels. Thus, the hippocampal transient ASIC-like current appears to be generated by a mixture of homomeric ASIC1a channels and ASIC2a-containing channels, probably heteromeric ASIC1a+2a channels. The sustained non-selective current suggests the involvement of ASIC2b-containing heteromeric channels. Activation of the hippocampal ASIC-like current by a pH drop to 6.9 or 6.6 induces a transient depolarization which itself triggers an initial action potential (AP) followed by a sustained depolarization and trains of APs. Zn(2+) increases the acid sensitivity of ASIC channels, and consequently neuronal excitability. It is probably an important co-activator of ASIC channels in the central nervous system.

  19. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    Science.gov (United States)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  20. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  1. Escitalopram block of hERG potassium channels.

    Science.gov (United States)

    Chae, Yun Ju; Jeon, Ji Hyun; Lee, Hong Joon; Kim, In-Beom; Choi, Jin-Sung; Sung, Ki-Wug; Hahn, Sang June

    2014-01-01

    Escitalopram, a selective serotonin reuptake inhibitor, is the pharmacologically active S-enantiomer of the racemic mixture of RS-citalopram and is widely used in the treatment of depression. The effects of escitalopram and citalopram on the human ether-a-go-go-related gene (hERG) channels expressed in human embryonic kidney cells were investigated using voltage-clamp and Western blot analyses. Both drugs blocked hERG currents in a concentration-dependent manner with an IC50 value of 2.6 μM for escitalopram and an IC50 value of 3.2 μM for citalopram. The blocking of hERG by escitalopram was voltage-dependent, with a steep increase across the voltage range of channel activation. However, voltage independence was observed over the full range of activation. The blocking by escitalopram was frequency dependent. A rapid application of escitalopram induced a rapid and reversible blocking of the tail current of hERG. The extent of the blocking by escitalopram during the depolarizing pulse was less than that during the repolarizing pulse, suggesting that escitalopram has a high affinity for the open state of the hERG channel, with a relatively lower affinity for the inactivated state. Both escitalopram and citalopram produced a reduction of hERG channel protein trafficking to the plasma membrane but did not affect the short-term internalization of the hERG channel. These results suggest that escitalopram blocked hERG currents at a supratherapeutic concentration and that it did so by preferentially binding to both the open and the inactivated states of the channels and by inhibiting the trafficking of hERG channel protein to the plasma membrane.

  2. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Yunzhao R Ren

    Full Text Available The Kv1.3 potassium channel plays an essential role in effector memory T cells and has been implicated in several important autoimmune diseases including multiple sclerosis, psoriasis and type 1 diabetes. A number of potent small molecule inhibitors of Kv1.3 channel have been reported, some of which were found to be effective in various animal models of autoimmune diseases. We report herein the identification of clofazimine, a known anti-mycobacterial drug, as a novel inhibitor of human Kv1.3. Clofazimine was initially identified as an inhibitor of intracellular T cell receptor-mediated signaling leading to the transcriptional activation of human interleukin-2 gene in T cells from a screen of the Johns Hopkins Drug Library. A systematic mechanistic deconvolution revealed that clofazimine selectively blocked the Kv1.3 channel activity, perturbing the oscillation frequency of the calcium-release activated calcium channel, which in turn led to the inhibition of the calcineurin-NFAT signaling pathway. These effects of clofazimine provide the first line of experimental evidence in support of a causal relationship between Kv1.3 and calcium oscillation in human T cells. Furthermore, clofazimine was found to be effective in blocking human T cell-mediated skin graft rejection in an animal model in vivo. Together, these results suggest that clofazimine is a promising immunomodulatory drug candidate for treating a variety of autoimmune disorders.

  3. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  4. Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels.

    Science.gov (United States)

    Zhang, Yalan; Brown, Maile R; Hyland, Callen; Chen, Yi; Kronengold, Jack; Fleming, Matthew R; Kohn, Andrea B; Moroz, Leonid L; Kaczmarek, Leonard K

    2012-10-31

    Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.

  5. Voltage-Dependent Inhibition of Glycine Receptor Channels by Niflumic Acid

    Directory of Open Access Journals (Sweden)

    Galyna Maleeva

    2017-05-01

    Full Text Available Niflumic acid (NFA is a member of the fenamate class of nonsteroidal anti-inflammatory drugs. This compound and its derivatives are used worldwide clinically for the relief of chronic and acute pain. NFA is also a commonly used blocker of voltage-gated chloride channels. Here we present evidence that NFA is an efficient blocker of chloride-permeable glycine receptors (GlyRs with subunit heterogeneity of action. Using the whole-cell configuration of patch-clamp recordings and molecular modeling, we analyzed the action of NFA on homomeric α1ΔIns, α2B, α3L, and heteromeric α1β and α2β GlyRs expressed in CHO cells. NFA inhibited glycine-induced currents in a voltage-dependent manner and its blocking potency in α2 and α3 GlyRs was higher than that in α1 GlyR. The Woodhull analysis suggests that NFA blocks α1 and α2 GlyRs at the fractional electrical distances of 0.16 and 0.65 from the external membrane surface, respectively. Thus, NFA binding site in α1 GlyR is closer to the external part of the membrane, while in α2 GlyR it is significantly deeper in the pore. Mutation G254A at the cytoplasmic part of the α1 GlyR pore-lining TM2 helix (level 2′ increased the NFA blocking potency, while incorporation of the β subunit did not have a significant effect. The Hill plot analysis suggests that α1 and α2 GlyRs are preferably blocked by two and one NFA molecules, respectively. Molecular modeling using Monte Carlo energy minimizations provides the structural rationale for the experimental data and proposes more than one interaction site along the pore where NFA can suppress the ion permeation.

  6. Current-driven channel switching and colossal positive magnetoresistance in the manganite-based structure

    International Nuclear Information System (INIS)

    Volkov, N V; Eremin, E V; Tsikalov, V S; Patrin, G S; Kim, P D; Seong-Cho, Yu; Kim, Dong-Hyun; Chau, Nguyen

    2009-01-01

    The transport and magnetotransport properties of a newly fabricated tunnel structure manganite/depletion layer/manganese silicide have been studied in the current-in-plane (CIP) geometry. A manganite depletion layer in the structure forms a potential barrier sandwiched between two conducting layers, one of manganite and the other of manganese silicide. The voltage-current characteristics of the structure are nonlinear due to switching conducting channels from an upper manganite film to a bottom, more conductive MnSi layer with an increase in the current applied to the structure. Bias current assists tunnelling of a carrier across the depletion layer; thus, a low-resistance contact between the current-carrying electrodes and the bottom layer is established. Below 30 K, both conducting layers are in the ferromagnetic state (magnetic tunnel junction), which allows control of the resistance of the tunnel junction and, consequently, switching of the conducting channels by the magnetic field. This provides a fundamentally new mechanism of magnetoresistance (MR) implementation in the magnetic layered structure with CIP geometry. MR of the structure under study depends on the bias current and can reach values greater than 400% in a magnetic field lower than 1 kOe. A positive MR value is related to peculiarities of the spin-polarized electronic structures of manganites and manganese silicides.

  7. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila.

    Science.gov (United States)

    Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu

    2014-07-01

    Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.

  8. Properties and function of KCNQ1 K+ channels isolated from the rectal gland of Squalus acanthias.

    Science.gov (United States)

    Kerst, G; Beschorner, U; Unsöld, B; von Hahn, T; Schreiber, R; Greger, R; Gerlach, U; Lang, H J; Kunzelmann, K; Bleich, M

    2001-10-01

    KCNQ1 (KVLQT1) K+ channels play an important role during electrolyte secretion in airways and colon. KCNQ1 was cloned recently from NaCl-secreting shark rectal glands. Here we study the properties and regulation of the cloned sKVLQT1 expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells and compare the results with those obtained from in vitro perfused rectal gland tubules (RGT). The expression of sKCNQ1 induced voltage-dependent, delayed activated K+ currents, which were augmented by an increase in intracellular cAMP and Ca2+. The chromanol derivatives 293B and 526B potently inhibited sKCNQ1 expressed in oocytes and CHO cells, but had little effect on RGT electrolyte transport. Short-circuit currents in RGT were activated by alkalinization and were decreased by acidification. In CHO cells an alkaline pH activated and an acidic pH inhibited 293B-sensitive KCNQ1 currents. Noise analysis of the cell-attached basolateral membrane of RGT indicated the presence of low-conductance (<3 pS) K+ channels, in parallel with other K+ channels. sKCNQ1 generated similar small-conductance K+ channels upon expression in CHO cells and Xenopus oocytes. The results suggest the presence of low-conductance KCNQ1 K+ channels in RGT, which are probably regulated by changes in intracellular cAMP, Ca2+ and pH.

  9. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801

    Directory of Open Access Journals (Sweden)

    Jeong Min Kim

    2015-01-01

    Full Text Available MK801 (dizocilpine, a phencyclidine (PCP derivative, is a potent noncompetitive antagonist of the N-Methyl-D-aspartate receptor (NMDAr. Another PCP derivative, ketamine, was reported to block voltage-gated K+ (Kv channels, which was independent of NMDAr function. Kv currents are major regulators of the membrane potential (Em and excitability of muscles and neurons. Here, we investigated the effect of MK801 on the Kv channels and Em in rat mesenteric arterial smooth muscle cells (RMASMCs. We used the whole-cell patch clamp technique to analyze the effect of MK801 enantiomers on Kv channels and Em. (+MK801 inhibited Kv channels in a concentration-dependent manner (IC50 of 89.1 ± 13.1 μM, Hill coefficient of 1.05 ± 0.08. The inhibition was voltage- and state- independent. (+MK801 didn't influence steady-state activation and inactivation of Kv channels. (+MK801 treatment depolarized Em in a concentration-dependent manner and concomitantly decreased membrane conductance. (−MK801 also similarly inhibited the Kv channels (IC50 of 134.0 ± 17.5 μM, Hill coefficient of 0.87 ± 0.09. These results indicate that MK801 directly inhibits the Kv channel in a state-independent manner in RMASMCs. This MK801-mediated inhibition of Kv channels should be considered when assessing the various pharmacological effects produced by MK801, such as schizophrenia, neuroprotection, and hypertension.

  10. Identification of Distribution Channels to Create Sustainable Vegetable Prices

    Directory of Open Access Journals (Sweden)

    Aflit Nuryulia Praswati

    2017-12-01

    Full Text Available The price of vegetables has a role as a contributor to the rate of inflation. Currently the number of vegetable production in Boyolali region can no longer meet the needs of local communities. The limited amount of vegetable production and the inhibition of the vegetable distribution channel creates a scarcity of vegetables that result in price increases. This study aims to identify the distribution channel and the formation of vegetable prices derived from Boyolali area. The method used in this research is quantitative and qualitative. Respondents from this study consisted of farmers, wholesalers, small trader and end consumers. The type of distribution channel prevailing in Boyolali area are traditional and modern distribution channels. Intermediate distribution channels play a greater role in determining vegetable prices. If farmers want to improve their economic condition, it needs innovation and creativity in the process of planting, harvesting, packaging and marketing vegetable products.

  11. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  12. 5,6-EET potently inhibits T-type calcium channels

    DEFF Research Database (Denmark)

    Cazade, M.; Bidaud, I.; Hansen, Pernille B. Lærkegaard

    2014-01-01

    T-type calcium channels (T-channels) are important actors in neuronal pacemaking, in heart rhythm, and in the control of the vascular tone. T-channels are regulated by several endogenous lipids including the primary eicosanoid arachidonic acid (AA), which display an important role in vasodilation...

  13. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    Science.gov (United States)

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sigma-1 Receptor Plays a Negative Modulation on N-type Calcium Channel

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2017-05-01

    Full Text Available The sigma-1 receptor is a 223 amino acids molecular chaperone with a single transmembrane domain. It is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes. By chaperone-mediated interactions with ion channels, G-protein coupled receptors and cell-signaling molecules, the sigma-1 receptor performs broad physiological and pharmacological functions. Despite sigma-1 receptors have been confirmed to regulate various types of ion channels, the relationship between the sigma-1 receptor and N-type Ca2+ channel is still unclear. Considering both sigma-1 receptors and N-type Ca2+ channels are involved in intracellular calcium homeostasis and neurotransmission, we undertake studies to explore the possible interaction between these two proteins. In the experiment, we confirmed the expression of the sigma-1 receptors and the N-type calcium channels in the cholinergic interneurons (ChIs in rat striatum by using single-cell reverse transcription-polymerase chain reaction (scRT-PCR and immunofluorescence staining. N-type Ca2+ currents recorded from ChIs in the brain slice of rat striatum was depressed when sigma-1 receptor agonists (SKF-10047 and Pre-084 were administrated. The inhibition was completely abolished by sigma-1 receptor antagonist (BD-1063. Co-expression of the sigma-1 receptors and the N-type calcium channels in Xenopus oocytes presented a decrease of N-type Ca2+ current amplitude with an increase of sigma-1 receptor expression. SKF-10047 could further depress N-type Ca2+ currents recorded from oocytes. The fluorescence resonance energy transfer (FRET assays and co-immunoprecipitation (Co-IP demonstrated that sigma-1 receptors and N-type Ca2+ channels formed a protein complex when they were co-expressed in HEK-293T (Human Embryonic Kidney -293T cells. Our results revealed that the sigma-1 receptors played a negative modulation on N-type Ca2+ channels. The mechanism for the inhibition of sigma-1 receptors on

  15. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile

    International Nuclear Information System (INIS)

    Dubey, Sarvesh; Jit, S.; Tiwari Pramod Kumar

    2013-01-01

    An analytic drain current model is presented for doped short-channel double-gate MOSFETs with a Gaussian-like doping profile in the vertical direction of the channel. The present model is valid in linear and saturation regions of device operation. The drain current variation with various device parameters has been demonstrated. The model is made more physical by incorporating the channel length modulation effect. Parameters like transconductance and drain conductance that are important in assessing the analog performance of the device have also been formulated. The model results are validated by numerical simulation results obtained by using the commercially available ATLAS™, a two dimensional device simulator from SILVACO. (semiconductor devices)

  16. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Science.gov (United States)

    Pongkorpsakol, Pawin; Pathomthongtaweechai, Nutthapoom; Srimanote, Potjanee; Soodvilai, Sunhapas; Chatsudthipong, Varanuj; Muanprasat, Chatchai

    2014-09-01

    Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84) cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+)-K(+) ATPases and Na(+)-K(+)-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+) channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+)-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+)-activated basolateral K(+) channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+)-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  17. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera.

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2014-09-01

    Full Text Available Cyclic AMP-activated intestinal Cl- secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl- secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl- secretion in human intestinal epithelial (T84 cells with IC50 of ∼ 20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl- current showed that diclofenac reversibly inhibited CFTR Cl- channel activity (IC50 ∼ 10 µM via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na(+-K(+ ATPases and Na(+-K(+-Cl- cotransporters, but inhibited cAMP-activated basolateral K(+ channels with IC50 of ∼ 3 µM. In addition, diclofenac suppressed Ca(2+-activated Cl- channels, inwardly rectifying Cl- channels, and Ca(2+-activated basolateral K(+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT-induced Cl- secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼ 70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca(2+-activated Cl- secretion by inhibiting both apical Cl- channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal

  18. PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2010-10-20

    Inflammatory mediators through the activation of the protein kinase A (PKA) pathway sensitize primary afferent nociceptors to mechanical, thermal, and osmotic stimuli. However, it is unclear which ion conductances are responsible for PKA-induced nociceptor hyperexcitability. We have previously shown the abundant expression of Slack sodium-activated potassium (K(Na)) channels in nociceptive dorsal root ganglion (DRG) neurons. Here we show using cultured DRG neurons, that of the total potassium current, I(K), the K(Na) current is predominantly inhibited by PKA. We demonstrate that PKA modulation of K(Na) channels does not happen at the level of channel gating but arises from the internal trafficking of Slack channels from DRG membranes. Furthermore, we found that knocking down the Slack subunit by RNA interference causes a loss of firing accommodation analogous to that observed during PKA activation. Our data suggest that the change in nociceptive firing occurring during inflammation is the result of PKA-induced Slack channel trafficking.

  19. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  20. Tidal currents in the Yucatan Channel

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo Gonzalez, Fatima [Centro Universitario de la Costa, Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Ochoa, Jose; Candela, Julio; Badan, Antonio; Sheinbaum; Gonzalez Navarro, Juan Ignacio [Departamento de Oceanografia Fisica, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Ensenada, Baja California (Mexico)

    2007-07-15

    Currents data from a ten-month period at 197 measuring points covering all Yucatan Channel were processed by harmonic analysis to estimate tidal parameters for the O{sub 1}, K{sub 1}, M{sub 2} and S{sub 2} components. The highly detailed coverage confirms the known dominance for the O{sub 1} and K{sub 1} diurnal components, but also showed, for the first time, their intensification in the deep eastern margin of the channel where maximum amplitudes in main axis are 17 and 19 cm.s{sup -}1. The data also confirms weak semi-diurnal components, of which the most intense, M{sub 2} and S{sub 2}, have amplitudes only up to 2 cm.s{sup -}1. The tidal ellipses were elongated (i.e. with eccentricities close to one) in the NNW direction. The O{sub 1}, K{sub 1}, M{sub 2} and S{sub 2} contributions in transport variability through the channel have amplitudes of 11.7, 12.5, 1.2 and 1.0 Sv, all well determined above noise. [Spanish] Se presentan, a detalle sin precedente, las caracteristicas de las corrientes de marea O{sub 1}, K{sub 1}, M{sub 2} y S{sub 2} en el canal de Yucatan. Mapas de los parametros que definen las elipses, como son las amplitudes en los ejes principales, la orientacion, la fase y la razon-senal-ruido se obtienen, por el clasico analisis armonico en mediciones de 10 meses en duracion, en 197 puntos que cubren ampliamente un plano vertical del canal. En acuerdo con reportes anteriores, las senales diurnas O{sub 1} y K{sub 1} dominan, demostrandose aqui que sus amplitudes alcanzan, en la parte profunda y Este, 17 y 19 cm.s{sup -}1. El analisis tambien revela senales semidiurnas M{sub 2} y S{sub 2} muy debiles con amplitudes maximas de 2 y 1cm.s{sup -}1. Las elipses son muy alargadas (i.e. con excentricidad cercana a uno) y orientadas al nornoroeste. Los valores de la razon senal a ruido indican que los parametros de las dos constituyentes diurnas se encuentran bien determinados, mientras que las semidiurnas quedan muy contaminadas por el ruido. El rasgo mas

  1. Direct Pore Binding as a Mechanism for Isoflurane Inhibition of the Pentameric Ligand-gated Ion Channel ELIC.

    Science.gov (United States)

    Chen, Qiang; Kinde, Monica N; Arjunan, Palaniappa; Wells, Marta M; Cohen, Aina E; Xu, Yan; Tang, Pei

    2015-09-08

    Pentameric ligand-gated ion channels (pLGICs) are targets of general anesthetics, but molecular mechanisms underlying anesthetic action remain debatable. We found that ELIC, a pLGIC from Erwinia chrysanthemi, can be functionally inhibited by isoflurane and other anesthetics. Structures of ELIC co-crystallized with isoflurane in the absence or presence of an agonist revealed double isoflurane occupancies inside the pore near T237(6') and A244(13'). A pore-radius contraction near the extracellular entrance was observed upon isoflurane binding. Electrophysiology measurements with a single-point mutation at position 6' or 13' support the notion that binding at these sites renders isoflurane inhibition. Molecular dynamics simulations suggested that isoflurane binding was more stable in the resting than in a desensitized pore conformation. This study presents compelling evidence for a direct pore-binding mechanism of isoflurane inhibition, which has a general implication for inhibitory action of general anesthetics on pLGICs.

  2. Analytical model for subthreshold current and subthreshold swing of short-channel double-material-gate MOSFETs with strained-silicon channel on silicon—germanium substrates

    International Nuclear Information System (INIS)

    Tiwari Pramod Kumar; Saramekala Gopi Krishna; Mukhopadhyay Anand Kumar; Dubey Sarvesh

    2014-01-01

    The present work gives some insight into the subthreshold behaviour of short-channel double-material-gate strained-silicon on silicon—germanium MOSFETs in terms of subthreshold swing and off-current. The formulation of subthreshold current and, thereupon, the subthreshold swing have been done by exploiting the expression of potential distribution in the channel region of the device. The dependence of the subthreshold characteristics on the device parameters, such as Ge mole fraction, gate length ratio, work function of control gate metal and gate length, has been tested in detail. The analytical models have been validated by the numerical simulation results that were obtained from the device simulation software ATLAS™ by Silvaco Inc. (semiconductor devices)

  3. Caffeine-Induced Suppression of GABAergic Inhibition and Calcium-Independent Metaplasticity

    Directory of Open Access Journals (Sweden)

    Masako Isokawa

    2016-01-01

    Full Text Available GABAergic inhibition plays a critical role in the regulation of neuron excitability; thus, it is subject to modulations by many factors. Recent evidence suggests the elevation of intracellular calcium ([Ca2+]i and calcium-dependent signaling molecules underlie the modulations. Caffeine induces a release of calcium from intracellular stores. We tested whether caffeine modulated GABAergic transmission by increasing [Ca2+]i. A brief local puff-application of caffeine to hippocampal CA1 pyramidal cells transiently suppressed GABAergic inhibitory postsynaptic currents (IPSCs by 73.2 ± 6.98%. Time course of suppression and the subsequent recovery of IPSCs resembled DSI (depolarization-induced suppression of inhibition, mediated by endogenous cannabinoids that require a [Ca2+]i rise. However, unlike DSI, caffeine-induced suppression of IPSCs (CSI persisted in the absence of a [Ca2+]i rise. Intracellular applications of BAPTA and ryanodine (which blocks caffeine-induced calcium release from intracellular stores failed to prevent the generation of CSI. Surprisingly, ruthenium red, an inhibitor of multiple calcium permeable/release channels including those of stores, induced metaplasticity by amplifying the magnitude of CSI independently of calcium. This metaplasticity was accompanied with the generation of a large inward current. Although ionic basis of this inward current is undetermined, the present result demonstrates that caffeine has a robust Ca2+-independent inhibitory action on GABAergic inhibition and causes metaplasticity by opening plasma membrane channels.

  4. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    Science.gov (United States)

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  5. Mathematical model of a current of two plastic environments in the forming channel extruders at coextrusion

    Directory of Open Access Journals (Sweden)

    V. N. Vasilenko

    2012-01-01

    Full Text Available On the basis of the classical equations of an isothermal pressure head current of two rheology the various not mixing up viscou- plastic environments in the cylindrical channel, Ostvald-de-Vil submitting to the law, the model of a current of two viscous-plastic environments in the moulding channel extruder is synthesised at co-extrusion on which basis the technique of a choice of diameter of a dosing out branch pipe on the demanded value of the ratio of volume expenditures of two viscous-plastic environments (extrudat and stuffings is offered.

  6. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters

    DEFF Research Database (Denmark)

    Toft-Bertelsen, Trine Lisberg; Ziomkiewicz, Iwona; Houy, Sébastien

    2016-01-01

    expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca(2+) current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca(2+) channels, whereas...... overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca(2+) currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca(2+) current inhibition. We...

  7. Basolateral K+ channels in airway epithelia. II. Role in Cl- secretion and evidence for two types of K+ channel

    International Nuclear Information System (INIS)

    McCann, J.D.; Welsh, M.J.

    1990-01-01

    We previously described a Ca2(+)-activated K+ channel (KCLIC) in airway epithelial cells. To determine whether the KCLIC channel is a basolateral membrane channel and to understand its role in Cl- secretion, we studied airway epithelial cells grown on permeable supports. When cells were stimulated with A23187, charybdotoxin (ChTX) inhibited Cl- secretion and 86Rb efflux at the same concentrations, indicating that the KCLIC channel is required for Ca2(+)-stimulated Cl- secretion. We also investigated the function of K+ channels in adenosine 3',5'-cyclic monophosphate-stimulated secretion. Addition of isoproterenol caused a biphasic increase in Cl- secretion; the time course of the transient component correlated with the time course of the isoproterenol-induced increase in Ca2+ concentration [( Ca2+]c). ChTX inhibited the transient component, but not the prolonged component of secretion; Ba2+ inhibited the sustained component. These results suggest that when cells are grown on permeable supports isoproterenol-induced secretion depends on activation of two types of K+ channel: the KCLIC channel that is stimulated initially and a ChTX-insensitive K+ channel that is stimulated during sustained secretion. This conclusion was supported by measurement of 86Rb efflux from cell monolayers

  8. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  9. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin

    DEFF Research Database (Denmark)

    Fuchs, W; Larsen, Erik Hviid; Lindemann, B

    1977-01-01

    1. The inward facing membranes of in vitro frog skin epithelium were depolarized with solutions of high K concentration. The electrical properties of the epithelium are then expected to be governed by the outward facing, Na-selective membrane.2. In this state, the transepithelial voltage (V...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... of the inward facing membranes but reflects the true behaviour of P(Na).6. The steady-state P(Na) at a given (Na)(o) is smaller than the transient P(Na) observed right after a stepwise increase of (Na)(o) to this value. The time constant of P(Na)-relaxation is in the order of seconds.7. In conclusion, Na...

  10. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    Science.gov (United States)

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  11. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  12. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K

    1999-01-01

    cell activation and proliferation has been investigated by using various blockers of IK channels. The Ca(2+)-activated K(+) current in human T cells is shown by the whole-cell voltage-clamp technique to be highly sensitive to clotrimazole, charybdotoxin, and nitrendipine, but not to ketoconazole...

  13. Computational analysis of the effects of the hERG channel opener NS1643 in a human ventricular cell model

    DEFF Research Database (Denmark)

    Peitersen, Torben; Grunnet, Morten; Benson, Alan P

    2008-01-01

    BACKGROUND: Dysfunction or pharmacologic inhibition of repolarizing cardiac ionic currents can lead to fatal arrhythmias. The hERG potassium channel underlies the repolarizing current I(Kr), and mutations therein can produce both long and short QT syndromes (LQT2 and SQT1). We previously reported...

  14. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  15. The design, fabrication and testing of an iron-core current compensated magnetic channel for cyclotron extraction

    International Nuclear Information System (INIS)

    Laxdale, R.E.; Fong, K.; Houtman, H.

    1994-06-01

    An iron-core current compensated magnetic channel has been built ss part of the TRIUMF 450 MeV H - extraction feasibility project. The channel would operate in the 0.5 T cyclotron field and was designed using the two-dimensional code POISSON. Recent beam tests with the channel installed in the TRIUMF cyclotron confirmed that the electro-mechanical design is reliable and that the effect on the circulating beam is in agreement with calculation. The design and hardware details will be described and the beam test results reported. (author)

  16. Selective activation of heteromeric SK channels contributes to action potential repolarization in mouse atrial myocytes.

    Science.gov (United States)

    Hancock, Jane M; Weatherall, Kate L; Choisy, Stéphanie C; James, Andrew F; Hancox, Jules C; Marrion, Neil V

    2015-05-01

    Activation of small conductance calcium-activated potassium (SK) channels is proposed to contribute to repolarization of the action potential in atrial myocytes. This role is controversial, as these cardiac SK channels appear to exhibit an uncharacteristic pharmacology. The objectives of this study were to resolve whether activation of SK channels contributes to atrial action potential repolarization and to determine the likely subunit composition of the channel. The effect of 2 SK channel inhibitors was assessed on outward current evoked in voltage clamp and on action potential duration in perforated patch and whole-cell current clamp recording from acutely isolated mouse atrial myocytes. The presence of SK channel subunits was assessed using immunocytochemistry. A significant component of outward current was reduced by the SK channel blockers apamin and UCL1684. Block by apamin displayed a sensitivity indicating that this current was carried by homomeric SK2 channels. Action potential duration was significantly prolonged by UCL1684, but not by apamin. This effect was accompanied by an increase in beat-to-beat variability and action potential triangulation. This pharmacology was matched by that of expressed heteromeric SK2-SK3 channels in HEK293 cells. Immunocytochemistry showed that atrial myocytes express both SK2 and SK3 channels with an overlapping expression pattern. Only proposed heteromeric SK2-SK3 channels are physiologically activated to contribute to action potential repolarization, which is indicated by the difference in pharmacology of evoked outward current and prolongation of atrial action potential duration. The effect of blocking this channel on the action potential suggests that SK channel inhibition during cardiac function has the potential to be proarrhythmic. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  17. Ghrelin inhibits proliferation and increases T-type Ca{sup 2+} channel expression in PC-3 human prostate carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico); Sandoval, Alejandro [School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla (Mexico); Monroy, Alma; Felix, Ricardo [Department of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City (Mexico); Monjaraz, Eduardo, E-mail: emguzman@siu.buap.mx [Laboratory of Neuroendocrinology, Institute of Physiology, Autonomous University of Puebla (BUAP), Puebla (Mexico)

    2010-12-03

    Research highlights: {yields} Ghrelin decreases prostate carcinoma PC-3 cells proliferation. {yields} Ghrelin favors apoptosis in PC-3 cells. {yields} Ghrelin increase in intracellular free Ca{sup 2+} levels in PC-3 cells. {yields} Grelin up-regulates expression of T-type Ca{sup 2+} channels in PC-3 cells. {yields} PC-3 cells express T-channels of the Ca{sub V}3.1 and Ca{sub V}3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca{sup 2+} levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca{sup 2+} channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca{sup 2+} channel expression.

  18. Volume regulated anion channel currents of rat hippocampal neurons and their contribution to oxygen-and-glucose deprivation induced neuronal death.

    Directory of Open Access Journals (Sweden)

    Huaqiu Zhang

    2011-02-01

    Full Text Available Volume-regulated anion channels (VRAC are widely expressed chloride channels that are critical for the cell volume regulation. In the mammalian central nervous system, the physiological expression of neuronal VRAC and its role in cerebral ischemia are issues largely unknown. We show that hypoosmotic medium induce an outwardly rectifying chloride conductance in CA1 pyramidal neurons in rat hippocampal slices. The induced chloride conductance was sensitive to some of the VRAC inhibitors, namely, IAA-94 (300 µM and NPPB (100 µM, but not to tamoxifen (10 µM. Using oxygen-and-glucose deprivation (OGD to simulate ischemic conditions in slices, VRAC activation appeared after OGD induced anoxic depolarization (AD that showed a progressive increase in current amplitude over the period of post-OGD reperfusion. The OGD induced VRAC currents were significantly inhibited by inhibitors for glutamate AMPA (30 µM NBQX and NMDA (40 µM AP-5 receptors in the OGD solution, supporting the view that induction of AD requires an excessive Na(+-loading via these receptors that in turn to activate neuronal VRAC. In the presence of NPPB and DCPIB in the post-OGD reperfusion solution, the OGD induced CA1 pyramidal neuron death, as measured by TO-PRO-3-I staining, was significantly reduced, although DCPIB did not appear to be an effective neuronal VRAC blocker. Altogether, we show that rat hippocampal pyramidal neurons express functional VRAC, and ischemic conditions can initial neuronal VRAC activation that may contribute to ischemic neuronal damage.

  19. Single Nisoldipine-Sensitive Calcium Channels in Smooth Muscle Cells Isolated from Rabbit Mesenteric Artery

    Science.gov (United States)

    Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.

    1986-08-01

    Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.

  20. Cell swelling activates cloned Ca(2+)-activated K(+) channels: a role for the F-actin cytoskeleton

    DEFF Research Database (Denmark)

    Jorgensen, Nanna K; Pedersen, Stine F; Rasmussen, Hanne B

    2003-01-01

    Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125......%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced...... by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling...

  1. Hypoxic augmentation of Ca2+ channel currents requires a functional electron transport chain.

    Science.gov (United States)

    Brown, Stephen T; Scragg, Jason L; Boyle, John P; Hudasek, Kristin; Peers, Chris; Fearon, Ian M

    2005-06-10

    The incidence of Alzheimer disease is increased following ischemic episodes, and we previously demonstrated that following chronic hypoxia (CH), amyloid beta (Abeta) peptide-mediated increases in voltage-gated L-type Ca(2+) channel activity contribute to the Ca(2+) dyshomeostasis seen in Alzheimer disease. Because in certain cell types mitochondria are responsible for detecting altered O(2) levels we examined the role of mitochondrial oxidant production in the regulation of recombinant Ca(2+) channel alpha(1C) subunits during CH and exposure to Abeta-(1-40). In wild-type (rho(+)) HEK 293 cells expressing recombinant L-type alpha(1C) subunits, Ca(2+) currents were enhanced by prolonged (24 h) exposure to either CH (6% O(2)) or Abeta-(1-40) (50 nm). By contrast the response to CH was absent in rho(0) cells in which the mitochondrial electron transport chain (ETC) was depleted following long term treatment with ethidium bromide or in rho(+) cells cultured in the presence of 1 microm rotenone. CH was mimicked in rho(0) cells by the exogenous production of O2(-.). by xanthine/xanthine oxidase. Furthermore Abeta-(1-40) enhanced currents in rho(0) cells to a degree similar to that seen in cells with an intact ETC. The antioxidants ascorbate (200 microm) and Trolox (500 microm) ablated the effect of CH in rho(+) cells but were without effect on Abeta-(1-40)-mediated augmentation of Ca(2+) current in rho(0) cells. Thus oxidant production in the mitochondrial ETC is a critical factor, acting upstream of amyloid beta peptide production in the up-regulation of Ca(2+) channels in response to CH.

  2. Rab4GTPase modulates CFTR function by impairing channel expression at plasma membrane

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Kaur, Simarna; George, Constantine

    2006-01-01

    Cystic fibrosis (CF), an autosomal recessive disorder, is caused by the disruption of biosynthesis or the function of a membrane cAMP-activated chloride channel, CFTR. CFTR regulatory mechanisms include recruitment of channel proteins to the cell surface from intracellular pools and by protein-protein interactions. Rab proteins are small GTPases involved in regulated trafficking controlling vesicle docking and fusion. Rab4 controls recycling events from endosome to the plasma membrane, fusion, and degradation. The colorectal cell line HT-29 natively expresses CFTR and responds to cAMP stimulation with an increase in CFTR-mediated currents. Rab4 over-expression in HT-29 cells inhibits both basal and cAMP-stimulated CFTR-mediated currents. GTPase-deficient Rab4Q67L and GDP locked Rab4S22N both inhibit channel activity, which appears characteristically different. Active status of Rab4 was confirmed by GTP overlay assay, while its expression was verified by Western blotting. The pull-down and immunoprecipitation experiments suggest that Rab4 physically interacts with CFTR through protein-protein interaction. Biotinylation with cell impermeant NHS-Sulfo-SS-Biotin implies that Rab4 impairs CFTR expression at cell surface. The enhanced cytosolic CFTR indicates that Rab4 expression restrains CFTR appearance at the cell membrane. The study suggests that Rab4 regulates the channel through multiple mechanisms that include protein-protein interaction, GTP/GDP exchange, and channel protein trafficking. We propose that Rab4 is a dynamic molecule with a significant role in CFTR function

  3. Pharmacological modulation of SK3 channels

    DEFF Research Database (Denmark)

    Grunnet, M; Jespersen, Thomas; Angelo, K

    2001-01-01

    Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adapt...... at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6)....

  4. Phospholipase C-dependent hydrolysis of phosphatidylinositol 4,5-bisphosphate underlies agmatine-induced suppression of N-type Ca2+ channel in rat celiac ganglion neurons.

    Science.gov (United States)

    Kim, Young-Hwan; Jeong, Ji-Hyun; Ahn, Duck-Sun; Chung, Seungsoo

    2017-03-04

    Agmatine suppresses peripheral sympathetic tone by modulating Cav2.2 channels in peripheral sympathetic neurons. However, the detailed cellular signaling mechanism underlying the agmatine-induced Cav2.2 inhibition remains unclear. Therefore, in the present study, we investigated the electrophysiological mechanism for the agmatine-induced inhibition of Cav2.2 current (I Cav2.2 ) in rat celiac ganglion (CG) neurons. Consistent with previous reports, agmatine inhibited I Cav2.2 in a VI manner. The agmatine-induced inhibition of the I Cav2.2 current was also almost completely hindered by the blockade of the imidazoline I 2 receptor (IR 2 ), and an IR 2 agonist mimicked the inhibitory effect of agmatine on I Cav2.2 , implying involvement of IR 2 . The agmatine-induced I Cav2.2 inhibition was significantly hampered by the blockade of G protein or phospholipase C (PLC), but not by the pretreatment with pertussis toxin. In addition, diC8-phosphatidylinositol 4,5-bisphosphate (PIP 2 ) dialysis nearly completely hampered agmatine-induced inhibition, which became irreversible when PIP 2 resynthesis was blocked. These results suggest that in rat peripheral sympathetic neurons, agmatine-induced IR 2 activation suppresses Cav2.2 channel voltage-independently, and that the PLC-dependent PIP 2 hydrolysis is responsible for the agmatine-induced suppression of the Cav2.2 channel. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Sodium current inhibition by nanosecond pulsed electric field (nsPEF)--fact or artifact?

    NARCIS (Netherlands)

    Verkerk, Arie O.; van Ginneken, Antoni C. G.; Wilders, Ronald

    2013-01-01

    In two recent publications in Bioelectromagnetics it has been demonstrated that the voltage-gated sodium current (I(Na)) is inhibited in response to a nanosecond pulsed electric field (nsPEF). At the same time, there was an increase in a non-inactivating "leak" current (I(leak)), which was

  6. From pan-reactive KV7 channel opener to subtype selective opener/inhibitor by addition of a methyl group.

    Directory of Open Access Journals (Sweden)

    Sigrid Marie Blom

    Full Text Available The voltage-gated potassium channels of the KV7 family (KV7.1-5 play important roles in controlling neuronal excitability and are therefore attractive targets for treatment of CNS disorders linked to hyperexcitability. One of the main challenges in developing KV7 channel active drugs has been to identify compounds capable of discriminating between the neuronally expressed subtypes (KV7.2-5, aiding the identification of the subunit composition of KV7 currents in various tissues, and possessing better therapeutic potential for particular indications. By taking advantage of the structure-activity relationship of acrylamide KV7 channel openers and the effects of these compounds on mutant KV7 channels, we have designed and synthesized a novel KV7 channel modulator with a unique profile. The compound, named SMB-1, is an inhibitor of KV7.2 and an activator of KV7.4. SMB-1 inhibits KV7.2 by reducing the current amplitude and increasing the time constant for the slow component of the activation kinetics. The activation of KV7.4 is seen as an increase in the current amplitude and a slowing of the deactivation kinetics. Experiments studying mutant channels with a compromised binding site for the KV7.2-5 opener retigabine indicate that SMB-1 binds within the same pocket as retigabine for both inhibition of KV7.2 and activation of KV7.4. SMB-1 may serve as a valuable tool for KV7 channel research and may be used as a template for further design of better subtype selective KV7 channel modulators. A compound with this profile could hold novel therapeutic potential such as the treatment of both positive and cognitive symptoms in schizophrenia.

  7. A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.

    Science.gov (United States)

    Rigby, J R; Poelzing, S

    2012-04-01

    Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.

  8. Interaction of a dinoflagellate neurotoxin with voltage-activated ion channels in a marine diatom.

    Science.gov (United States)

    Kitchen, Sheila A; Bourdelais, Andrea J; Taylor, Alison R

    2018-01-01

    The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na + ) and calcium (Ca 2+ ) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na + VGCs. We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na + /Ca 2+ VGC of the non-toxic diatom Odontella sinensi s using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na + /Ca 2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na + /Ca 2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na + VGCs, previously identified as the PbTx binding site in animals. Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na + /Ca 2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na + /Ca 2+ VGCs than the 4-domain eukaryote channels

  9. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Science.gov (United States)

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  10. A mother cell-to-forespore channel: current understanding and future challenges.

    Science.gov (United States)

    Crawshaw, Adam D; Serrano, Mónica; Stanley, Will A; Henriques, Adriano O; Salgado, Paula S

    2014-09-01

    Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining. © 2014 The Authors FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  11. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic

    2013-01-01

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium...... channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results...... as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant...

  12. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal.

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2015-04-15

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca(2+)-activated Cl(-) channels. We investigated the hypothesis that the Ca(2+) responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca(2+) stores. ICC, obtained from the small intestine of Kit(+/copGFP) mice, were studied under voltage and current clamp to determine the effects of blocking Ca(2+) uptake into stores and release of Ca(2+) via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca(2+) concentration, suggesting that pacemaker activity depends on Ca(2+) dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca(2+) from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. Copyright © 2015 the American Physiological Society.

  13. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  14. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.

    Science.gov (United States)

    Archer, Stephen L; Wu, Xi-Chen; Thébaud, Bernard; Nsair, Ali; Bonnet, Sebastien; Tyrrell, Ben; McMurtry, M Sean; Hashimoto, Kyoko; Harry, Gwyneth; Michelakis, Evangelos D

    2004-08-06

    Hypoxic pulmonary vasoconstriction (HPV) is initiated by inhibition of O2-sensitive, voltage-gated (Kv) channels in pulmonary arterial smooth muscle cells (PASMCs). Kv inhibition depolarizes membrane potential (E(M)), thereby activating Ca2+ influx via voltage-gated Ca2+ channels. HPV is weak in extrapulmonary, conduit pulmonary arteries (PA) and strong in precapillary resistance arteries. We hypothesized that regional heterogeneity in HPV reflects a longitudinal gradient in the function/expression of PASMC O2-sensitive Kv channels. In adult male Sprague Dawley rats, constrictions to hypoxia, the Kv blocker 4-aminopyridine (4-AP), and correolide, a Kv1.x channel inhibitor, were endothelium-independent and greater in resistance versus conduit PAs. Moreover, HPV was dependent on Kv-inhibition, being completely inhibited by pretreatment with 4-AP. Kv1.2, 1.5, Kv2.1, Kv3.1b, Kv4.3, and Kv9.3. mRNA increased as arterial caliber decreased; however, only Kv1.5 protein expression was greater in resistance PAs. Resistance PASMCs had greater K+ current (I(K)) and a more hyperpolarized E(M) and were uniquely O2- and correolide-sensitive. The O2-sensitive current (active at -65 mV) was resistant to iberiotoxin, with minimal tityustoxin sensitivity. In resistance PASMCs, 4-AP and hypoxia inhibited I(K) 57% and 49%, respectively, versus 34% for correolide. Intracellular administration of anti-Kv1.5 antibodies inhibited correolide's effects. The hypoxia-sensitive, correolide-insensitive I(K) (15%) was conducted by Kv2.1. Anti-Kv1.5 and anti-Kv2.1 caused additive depolarization in resistance PASMCs (Kv1.5>Kv2.1) and inhibited hypoxic depolarization. Heterologously expressed human PASMC Kv1.5 generated an O2- and correolide-sensitive I(K) like that in resistance PASMCs. In conclusion, Kv1.5 and Kv2.1 account for virtually all the O2-sensitive current. HPV occurs in a Kv-enriched resistance zone because resistance PASMCs preferentially express O2-sensitive Kv-channels.

  15. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  16. Interfacial friction factors for air-water co-current stratified flow in inclined channels

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ki Yong; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    The interfacial shear stress is experimentally investigated for co-current air-water stratified flow in inclined rectangular channels having a length of 1854mm, width of 120 mm and height of 40mm at almost atmospheric pressure. Experiments are carried out in several inclinations from 0 deg up to 10 deg. The local film thickness and the wave height are measured at three locations, i.e., L/H = 8,23, and 40. According to the inclination angle, the experimental data are categorized into two groups; nearly horizontal data group (0 deg {<=} {theta} {<=} 0.7 deg), and inclined channel data group (0.7 deg {<=} {theta} {<=} 10 deg ). Experimental observations for nearly horizontal data group show that the flow is not fully developed due to the water level gradient and the hydraulic jump within the channel. For the inclined channel data group, a dimensionless wave height, {Delta}h/h, is empirically correlated in terms of Re{sub G} and h/H. A modified root-mean-square wave height is proposed to consider the effects of the interfacial and wave propagation velocities. It is found that an equivalent roughness has a linear relationship with the modified root-mean-square wave height and its relationship is independent of the inclination. 10 refs., 6 figs., 1 tab. (Author)

  17. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    Science.gov (United States)

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  18. Role of plasma membrane-associated AKAPs for the regulation of cardiac IK1 current by protein kinase A.

    Science.gov (United States)

    Seyler, Claudia; Scherer, Daniel; Köpple, Christoph; Kulzer, Martin; Korkmaz, Sevil; Xynogalos, Panagiotis; Thomas, Dierk; Kaya, Ziya; Scholz, Eberhard; Backs, Johannes; Karle, Christoph; Katus, Hugo A; Zitron, Edgar

    2017-05-01

    The cardiac I K1 current stabilizes the resting membrane potential of cardiomyocytes. Protein kinase A (PKA) induces an inhibition of I K1 current which strongly promotes focal arrhythmogenesis. The molecular mechanisms underlying this regulation have only partially been elucidated yet. Furthermore, the role of A-kinase anchoring proteins (AKAPs) in this regulation has not been examined to date. The objective of this project was to elucidate the molecular mechanisms underlying the inhibition of I K1 by PKA and to identify novel molecular targets for antiarrhythmic therapy downstream β-adrenoreceptors. Patch clamp and voltage clamp experiments were used to record currents and co-immunoprecipitation, and co-localization experiments were performed to show spatial and functional coupling. Activation of PKA inhibited I K1 current in rat cardiomyocytes. This regulation was markedly attenuated by disrupting PKA-binding to AKAPs with the peptide inhibitor AKAP-IS. We observed functional and spatial coupling of the plasma membrane-associated AKAP15 and AKAP79 to Kir2.1 and Kir2.2 channel subunits, but not to Kir2.3 channels. In contrast, AKAPyotiao had no functional effect on the PKA regulation of Kir channels. AKAP15 and AKAP79 co-immunoprecipitated with and co-localized to Kir2.1 and Kir2.2 channel subunits in ventricular cardiomyocytes. In this study, we provide evidence for coupling of cardiac Kir2.1 and Kir2.2 subunits with the plasma membrane-bound AKAPs 15 and 79. Cardiac membrane-associated AKAPs are a functionally essential part of the regulatory cascade determining I K1 current function and may be novel molecular targets for antiarrhythmic therapy downstream from β-adrenoreceptors.

  19. SH Oxidation Stimulates Calcium Release Channels (Ryanodine Receptors From Excitable Cells

    Directory of Open Access Journals (Sweden)

    CECILIA HIDALGO

    2000-01-01

    Full Text Available The effects of redox reagents on the activity of the intracellular calcium release channels (ryanodine receptors of skeletal and cardiac muscle, or brain cortex neurons, was examined. In lipid bilayer experiments, oxidizing agents (2,2'-dithiodipyridine or thimerosal modified the calcium dependence of all single channels studied. After controlled oxidation channels became active at sub µM calcium concentrations and were not inhibited by increasing the calcium concentration to 0.5 mM. Subsequent reduction reversed these effects. Channels purified from amphibian skeletal muscle exhibited the same behavior, indicating that the SH groups responsible for modifying the calcium dependence belong to the channel protein. Parallel experiments that measured calcium release through these channels in sarcoplasmic reticulum vesicles showed that following oxidation, the channels were no longer inhibited by sub mM concentrations of Mg2+. It is proposed that channel redox state controls the high affinity sites responsible for calcium activation as well as the low affinity sites involved in Mg2+ inhibition of channel activity. The possible physiological and pathological implications of these results are discussed

  20. Effects of a current on the redistribution of an ionizing additive over an MHD channel

    International Nuclear Information System (INIS)

    Reznikov, M.B.; Lamden, D.I.; Mostinskii, I.L.

    1983-01-01

    A solution is obtained for the steady-state distribution of an ionizing impurity over the cross section of the channel in an MHD generator. It is assumed that the flow in the channel is turbulent and stabilized. Allowance is made for chemical reactions, nonisothermal flow, and ion current drift. It is shown that ion drift can lead to a substantial redistribution of the additive over the cross section and in particular to a rise in concentration by the cathode and a reduction near the anode

  1. Actions of the pyrethroid insecticide bifenthrin on sodium channels expressed in rat cerebral cortical neurons.

    Science.gov (United States)

    Yang, Lin; Li, Li

    2015-01-01

    Voltage-gated sodium channels are important sites for the neurotoxic actions of pyrethroid insecticides in mammals. Here, we studied the mode of action of bifenthrin on the native sodium channels in cerebral cortical neurons prepared from newborn rat brain, where the toxic effects are largely generated. Bifenthrin caused a pronounced late current that persisted at the end of a depolarizing pulse, a slowly-decaying tail current following repolarization and significant resting modification (25.3% modification at 10 μM). No significant bifenthrin-induced effect was observed at the peak current. Bifenthrin also caused a concentration-dependent hyperpolarizing shift in steady-state activation and inactivation as well as slowed recovery from channel inactivation. Repetitive depolarization increased the potency of bifenthrin with high frequency. There was approximately 64% inhibition of modification upon repetitive activation by 10-Hz trains of depolarizing pulses. These results suggest that bifenthrin binds to and modifies sodium channels in both the closed and open states and exhibits the behavior between type I and type II.

  2. Modulation of T-type Ca2+ channels by Lavender and Rosemary extracts.

    Directory of Open Access Journals (Sweden)

    Chaymae El Alaoui

    Full Text Available Medicinal plants represent a significant reservoir of unexplored substances for early-stage drug discovery. Of interest, two flowering Mediterranean plants have been used for thousands of years for their beneficial effects on nervous disorders, including anxiety and mood. However, the therapeutic potential of these plants regarding their ability to target ion channels and neuronal excitability remains largely unknown. Towards this goal, we have investigated the ability of Lavender and Rosemary to modulate T-type calcium channels (TTCCs. TTCCs play important roles in neuronal excitability, neuroprotection, sensory processes and sleep. These channels are also involved in epilepsy and pain. Using the whole-cell patch-clamp technique, we have characterized how Lavender and Rosemary extracts, as well as their major active compounds Linalool and Rosmarinic acid, modulate the electrophysiological properties of recombinant TTCCs (CaV3.2 expressed in HEK-293T cells. Both the methanolic and essential oil extracts as well as the active compounds of these plants inhibit Cav3.2 current in a concentration-dependent manner. In addition, these products also induce a negative shift of the steady-state inactivation of CaV3.2 current with no change in the activation properties. Taken together, our findings reveal that TTCCs are a molecular target of the Lavender and Rosemary compounds, suggesting that inhibition of TTCCs could contribute to the anxiolytic and the neuroprotective effects of these plants.

  3. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    Science.gov (United States)

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Soft Wall Ion Channel in Continuum Representation with Application to Modeling Ion Currents in α-Hemolysin

    Science.gov (United States)

    Simakov, Nikolay A.

    2010-01-01

    A soft repulsion (SR) model of short range interactions between mobile ions and protein atoms is introduced in the framework of continuum representation of the protein and solvent. The Poisson-Nernst-Plank (PNP) theory of ion transport through biological channels is modified to incorporate this soft wall protein model. Two sets of SR parameters are introduced: the first is parameterized for all essential amino acid residues using all atom molecular dynamic simulations; the second is a truncated Lennard – Jones potential. We have further designed an energy based algorithm for the determination of the ion accessible volume, which is appropriate for a particular system discretization. The effects of these models of short-range interaction were tested by computing current-voltage characteristics of the α-hemolysin channel. The introduced SR potentials significantly improve prediction of channel selectivity. In addition, we studied the effect of choice of some space-dependent diffusion coefficient distributions on the predicted current-voltage properties. We conclude that the diffusion coefficient distributions largely affect total currents and have little effect on rectifications, selectivity or reversal potential. The PNP-SR algorithm is implemented in a new efficient parallel Poisson, Poisson-Boltzman and PNP equation solver, also incorporated in a graphical molecular modeling package HARLEM. PMID:21028776

  5. Arylbenzazepines Are Potent Modulators for the Delayed Rectifier K+ Channel: A Potential Mechanism for Their Neuroprotective Effects

    Science.gov (United States)

    Chen, Xue-Qin; Zhang, Jing; Neumeyer, John L.; Jin, Guo-Zhang; Hu, Guo-Yuan; Zhang, Ao; Zhen, Xuechu

    2009-01-01

    (±) SKF83959, like many other arylbenzazepines, elicits powerful neuroprotection in vitro and in vivo. The neuroprotective action of the compound was found to partially depend on its D1-like dopamine receptor agonistic activity. The precise mechanism for the (±) SKF83959-mediated neuroprotection remains elusive. We report here that (±) SKF83959 is a potent blocker for delayed rectifier K+ channel. (±) SKF83959 inhibited the delayed rectifier K+ current (I K) dose-dependently in rat hippocampal neurons. The IC 50 value for inhibition of I K was 41.9±2.3 µM (Hill coefficient = 1.81±0.13, n = 6), whereas that for inhibition of I A was 307.9±38.5 µM (Hill coefficient = 1.37±0.08, n = 6). Thus, (±) SKF83959 is 7.3-fold more potent in suppressing I K than I A. Moreover, the inhibition of I K by (±) SKF83959 was voltage-dependent and not related to dopamine receptors. The rapidly onset of inhibition and recovery suggests that the inhibition resulted from a direct interaction of (±) SKF83959 with the K+ channel. The intracellular application of (±) SKF83959 had no effects of on I K, indicating that the compound most likely acts at the outer mouth of the pore of K+ channel. We also tested the enantiomers of (±) SKF83959, R-(+) SKF83959 (MCL-201), and S-(−) SKF83959 (MCL-202), as well as SKF38393; all these compounds inhibited I K. However, (±) SKF83959, at either 0.1 or 1 mM, exhibited the strongest inhibition on the currents among all tested drug. The present findings not only revealed a new potent blocker of I K , but also provided a novel mechanism for the neuroprotective action of arylbenzazepines such as (±) SKF83959. PMID:19503734

  6. A novel double gate MOSFET by symmetrical insulator packets with improved short channel effects

    Science.gov (United States)

    Ramezani, Zeinab; Orouji, Ali A.

    2018-03-01

    In this article, we study a novel double-gate SOI MOSFET structure incorporating insulator packets (IPs) at the junction between channel and source/drain (S/D) ends. The proposed MOSFET has great strength in inhibiting short channel effects and OFF-state current that are the main problems compared with conventional one due to the significant suppressed penetrations of both the lateral electric field and the carrier diffusion from the S/D into the channel. Improvement of the hot electron reliability, the ON to OFF drain current ratio, drain-induced barrier lowering, gate-induced drain leakage and threshold voltage over conventional double-gate SOI MOSFETs, i.e. without IPs, is displayed with the simulation results. This study is believed to improve the CMOS device reliability and is suitable for the low-power very-large-scale integration circuits.

  7. Moderate hypoxia influences potassium outward currents in adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Mayuri Prasad

    Full Text Available Moderate hypoxic preconditioning of adipose-derived stem cells (ASCs enhances properties such as proliferation and secretion of growth factors, representing a valuable strategy to increase the efficiency of cell-based therapies. In a wide variety of cells potassium (K+ channels are key elements involved in the cellular responses to hypoxia, suggesting that ASCs cultured under low oxygen conditions may display altered electrophysiological properties. Here, the effects of moderate hypoxic culture on proliferation, whole-cell currents, and ion channel expression were investigated using human ASCs cultured at 5% and 20% oxygen. Although cell proliferation was greatly enhanced, the dose-dependent growth inhibition by the K+ channel blocker tetraethylammonium (TEA was not significantly affected by hypoxia. Under both normoxic and hypoxic conditions, ASCs displayed outward K+ currents composed by Ca2+-activated, delayed rectifier, and transient components. Hypoxic culture reduced the slope of the current-voltage curves and caused a negative shift in the voltage activation threshold of the whole-cell currents. However, the TEA-mediated shift of voltage activation threshold was not affected by hypoxia. Semiquantitative real-time RT-PCR revealed that expression of genes encoding for various ion channels subunits related to oxygen sensing and proliferation remained unchanged after hypoxic culture. In conclusion, outward currents are influenced by moderate hypoxia in ASCs through a mechanism that is not likely the result of modulation of TEA-sensitive K+ channels.

  8. Mechanism of Estradiol-Induced Block of Voltage-Gated K+ Currents in Rat Medial Preoptic Neurons

    Science.gov (United States)

    Druzin, Michael; Malinina, Evgenya; Grimsholm, Ola; Johansson, Staffan

    2011-01-01

    The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K+ channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K+ channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-estradiol rapidly (within seconds) and reversibly reduced the K+ currents, showing an EC50 value of 9.7 µM. The effect was slightly voltage dependent, but independent of external Ca2+, and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K+ currents, membrane-impermeant forms of estradiol did not reduce the K+ currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the KV-2-channel blocker r-stromatoxin-1. The time course of K+ current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K+, suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K+ channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K+ currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels. PMID:21625454

  9. Stereoselective inhibition of the hERG1 potassium channel

    Directory of Open Access Journals (Sweden)

    Liliana eSintra Grilo

    2010-11-01

    Full Text Available A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1 channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.

  10. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women.

    Science.gov (United States)

    Reinl, Erin L; Cabeza, Rafael; Gregory, Ismail A; Cahill, Alison G; England, Sarah K

    2015-10-01

    Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca(2+) influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd(3+)-sensitive, Na(+)-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na(+)-dependent leak current in human myometrium and demonstrate that the Na(+)-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca(2+) and K(+) channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd(3+) or by superfusing the cells with a Na(+)-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd(3+)-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Baode; Li, Chenxing [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Sun, Junyi [Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an (China); Department of Periodontology, College of Stomatology, Xi' an Jiaotong University, Xi' an (China); Wang, Xinghui; Liu, Xinling [Basic Medical Experiment Teaching Center, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Yang, Chun [Department of Cardiology, The First Affiliated Hospital, Xi' an Jiaotong University, Xi' an (China); Chen, Lina; Zhou, Jun [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University, Ministry of Education of China, Xi' an (China); Hu, Hao, E-mail: huhao@mail.xjtu.edu.cn [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University, Ministry of Education of China, Xi' an (China)

    2017-05-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I{sub Kv1.5}) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I{sub hERG}). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I{sub Kir2.1}). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I{sub Kv1.5} and I{sub hERG}, which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.

  12. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    International Nuclear Information System (INIS)

    Yang, Baode; Li, Chenxing; Sun, Junyi; Wang, Xinghui; Liu, Xinling; Yang, Chun; Chen, Lina; Zhou, Jun; Hu, Hao

    2017-01-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I Kv1.5 ) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I hERG ). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I Kir2.1 ). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I Kv1.5 and I hERG , which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.

  13. Convergent and reciprocal modulation of a leak K+ current and Ih by an inhalational anaesthetic and neurotransmitters in rat brainstem motoneurones

    Science.gov (United States)

    Sirois, Jay E; Lynch, Carl; Bayliss, Douglas A

    2002-01-01

    Neurotransmitters and volatile anaesthetics have opposing effects on motoneuronal excitability which appear to reflect contrasting modulation of two types of subthreshold currents. Neurotransmitters increase motoneuronal excitability by inhibiting TWIK-related acid-sensitive K+ channels (TASK) and shifting activation of a hyperpolarization-activated cationic current (Ih) to more depolarized potentials; on the other hand, anaesthetics decrease excitability by activating a TASK-like current and inducing a hyperpolarizing shift in Ih activation. Here, we used whole-cell recording from motoneurones in brainstem slices to test if neurotransmitters (serotonin (5-HT) and noradrenaline (NA)) and an anaesthetic (halothane) indeed compete for modulation of the same ion channels - and we determined which prevails. When applied together under current clamp conditions, 5-HT reversed anaesthetic-induced membrane hyperpolarization and increased motoneuronal excitability. Under voltage clamp conditions, 5-HT and NA overcame most, but not all, of the halothane-induced current. When Ih was blocked with ZD 7288, the neurotransmitters completely inhibited the K+ current activated by halothane; the halothane-sensitive neurotransmitter current reversed at the equilibrium potential for potassium (EK) and displayed properties expected of acid-sensitive, open-rectifier TASK channels. To characterize modulation of Ih in relative isolation, effects of 5-HT and halothane were examined in acidified bath solutions that blocked TASK channels. Under these conditions, 5-HT and halothane each caused their characteristic shift in voltage-dependent gating of Ih. When tested concurrently, however, halothane decreased the neurotransmitter-induced depolarizing shift in Ih activation. Thus, halothane and neurotransmitters converge on TASK and Ih channels with opposite effects; transmitter action prevailed over anaesthetic effects on TASK channels, but not over effects on Ih. These data suggest that

  14. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Xi Chu

    Full Text Available Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells, and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV. Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively. Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  15. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells

    Science.gov (United States)

    Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122

  16. Endomorphins potentiate acid-sensing ion channel currents and enhance the lactic acid-mediated increase in arterial blood pressure: effects amplified in hindlimb ischaemia.

    Science.gov (United States)

    Farrag, Mohamed; Drobish, Julie K; Puhl, Henry L; Kim, Joyce S; Herold, Paul B; Kaufman, Marc P; Ruiz-Velasco, Victor

    2017-12-01

    Chronic limb ischaemia, characterized by inflammatory mediator release and a low extracellular pH, leads to acid-sensing ion channel (ASIC) activation and reflexively increases mean arterial pressure; endomorphin release is also increased under inflammatory conditions. We examined the modulation of ASIC currents by endomorphins in sensory neurons from rats with freely perfused and ligated femoral arteries: peripheral artery disease (PAD) model. Endomorphins potentiated sustained ASIC currents in both groups of dorsal root ganglion neurons, independent of mu opioid receptor stimulation or G protein activation. Intra-arterial administration of lactic acid (to simulate exercising muscle and evoke a pressor reflex), endomorphin-2 and naloxone resulted in a significantly greater pressor response than lactic acid alone, while administration of APETx2 inhibited endomorphin's enhancing effect in both groups. These results suggest a novel role for endomorphins in modulating ASIC function to effect lactic acid-mediated reflex increase in arterial pressure in patients with PAD. Chronic muscle ischaemia leads to accumulation of lactic acid and other inflammatory mediators with a subsequent drop in interstitial pH. Acid-sensing ion channels (ASICs), expressed in thin muscle afferents, sense the decrease in pH and evoke a pressor reflex known to increase mean arterial pressure. The naturally occurring endomorphins are also released by primary afferents under ischaemic conditions. We examined whether high affinity mu opioid receptor (MOR) agonists, endomorphin-1 (E-1) and -2 (E-2), modulate ASIC currents and the lactic acid-mediated pressor reflex. In rat dorsal root ganglion (DRG) neurons, exposure to E-2 in acidic solutions significantly potentiated ASIC currents when compared to acidic solutions alone. The potentiation was significantly greater in DRG neurons isolated from rats whose femoral arteries were ligated for 72 h. Sustained ASIC current potentiation was also observed

  17. Numerical Simulation of Density Current Evolution in a Diverging Channel

    Directory of Open Access Journals (Sweden)

    Mitra Javan

    2012-01-01

    Full Text Available When a buoyant inflow of higher density enters a reservoir, it sinks below the ambient water and forms an underflow. Downstream of the plunge point, the flow becomes progressively diluted due to the fluid entrainment. This study seeks to explore the ability of 2D width-averaged unsteady Reynolds-averaged Navier-Stokes (RANS simulation approach for resolving density currents in an inclined diverging channel. 2D width-averaged unsteady RANS equations closed by a buoyancy-modified − turbulence model are integrated in time with a second-order fractional step approach coupled with a direct implicit method and discretized in space on a staggered mesh using a second-order accurate finite volume approach incorporating a high-resolution semi-Lagrangian technique for the convective terms. A series of 2D width-averaged unsteady simulations is carried out for density currents. Comparisons with the experimental measurements and the other numerical simulations show that the predictions of velocity and density field are with reasonable accuracy.

  18. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    Science.gov (United States)

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  19. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    Directory of Open Access Journals (Sweden)

    Luis I Angel-Chavez

    Full Text Available In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV. Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  20. Endothelial epithelial sodium channel inhibition activates endothelial nitric oxide synthase via phosphoinositide 3-kinase/Akt in small-diameter mesenteric arteries.

    Science.gov (United States)

    Pérez, Francisco R; Venegas, Fabiola; González, Magdalena; Andrés, Sergio; Vallejos, Catalina; Riquelme, Gloria; Sierralta, Jimena; Michea, Luis

    2009-06-01

    Recent studies have shown that the epithelial sodium channel (ENaC) is expressed in vascular tissue. However, the role that ENaC may play in the responses to vasoconstrictors and NO production has yet to be addressed. In this study, the contractile responses of perfused pressurized small-diameter rat mesenteric arteries to phenylephrine and serotonin were reduced by ENaC blockade with amiloride (75.1+/-3.2% and 16.9+/-2.3% of control values, respectively; P<0.01) that was dose dependent (EC(50)=88.9+/-1.6 nmol/L). Incubation with benzamil, another ENaC blocker, had similar effects. alpha, beta, and gamma ENaC were identified in small-diameter rat mesenteric arteries using RT-PCR and Western blot with specific antibodies. In situ hybridization and immunohistochemistry localized ENaC expression to the tunica media and endothelium of small-diameter rat mesenteric arteries. Patch-clamp experiments demonstrated that primary cultures of mesenteric artery endothelial cells expressed amiloride-sensitive sodium currents. Mechanical ablation of the endothelium or inhibition of eNOS with N(omega)-nitro-L-arginine inhibited the reduction in contractility caused by ENaC blockers. ENaC inhibitors increased eNOS phosphorylation (Ser 1177) and Akt phosphorylation (Ser 473). The presence of the phosphoinositide 3-kinase inhibitor LY294002 blunted Akt phosphorylation and eNOS phosphorylation and the decrease in the response to phenylephrine caused by blockers of ENaC, indicating that the phosphoinositide 3-kinase/Akt pathway was activated after ENaC inhibition. Finally, we observed that the effects of blockers of ENaC were flow dependent and that the vasodilatory response to shear stress was enhanced by ENaC blockade. Our results identify a previously unappreciated role for ENaC as a negative modulator of eNOS and NO production in resistance arteries.

  1. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel.

    Science.gov (United States)

    Nuwer, Megan O; Picchione, Kelly E; Bhattacharjee, Arin

    2009-09-01

    The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.

  2. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia.

    Science.gov (United States)

    Ma, Liqun; Zhang, Xuexin; Chen, Haijun

    2011-06-07

    Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.

  3. The influence of paleo currents upon the Santaren Channel and the adjacent carbonate platforms, Bahamas.

    Science.gov (United States)

    Paulat, Marco; Lüdmann, Thomas; Betzler, Christian; Eberli, Gregor; Lindhorst, Sebastian

    2015-04-01

    The closure of the Central American Seaway and the reorganization of the ocean currents had a global impact on earth's climate. The sedimentation of the Great Bahama Bank (GBB) and the smaller Cay Sal Bank (CSB) are influenced by the Atlantic North Equatorial Current and the Florida Current. New high-resolution multichannel seismic data sets tied to the IODP leg 166 wells document that the shape of Bahama Banks and the sedimentation processes in the Santaren Channel (SC) between GBB and CSB are strongly related to changes in the strength of these currents. Since the Upper Miocene, the SC is filled up by a huge package of drift sediments, namely the Santaren Drift (SD). The buildup of the SD causes a local high in the recent bathymetry perpendicular to the surrounding steep platform slopes. The SD shows a typical mounded morphology and progrades northwards in direction of the Florida Channel. The SD was established during the late Miocene. Seismic facies and internal configuration indicate an environment of a stable north flowing current with a major depocenter related to the center of the SC. Additionally, a second depocenter at the central eastern flank of CSB established and preserved till early Pleistocene when the slope sedimentation starts to dominate. This depocenter points to a strengthened countercurrent component in the eastern SC. From the lower Pliocene to the upper Pleistocene the volume of the SD expanded, associated with an intensification of the current in the SC along its eastern flank, indicated by deep erosional channels parallel to the margin of GBB in the northern part of the survey area. This trend probably was initiated as a consequence of current reorganization due to the final closure of the Central American Seaway. Lower slope sediments from GBB are eroded or only minor parts are preserved from lower Pliocene to upper Pleistocene. With late Pliocene falling sea-level, gravitational slope sedimentation from GBB into the SC increased with

  4. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  5. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons.

    Science.gov (United States)

    Lazcano-Pérez, Fernando; Castro, Héctor; Arenas, Isabel; García, David E; González-Muñoz, Ricardo; Arreguín-Espinosa, Roberto

    2016-05-05

    The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7), voltage-gated calcium channel (CaV2.2), the A-type transient outward (IA) and delayed rectifier (IDR) currents of KV channels of the superior cervical ganglion (SCG) neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  6. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  7. Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors

    Directory of Open Access Journals (Sweden)

    Thai Phung

    2011-01-01

    Full Text Available To identify materials suitable as membrane supports for ion channel biosensors, six filter materials of varying hydrophobicity, tortuosity, and thickness were examined for their ability to support bilayer lipid membranes as determined by electrical impedance spectroscopy. Bilayers supported by hydrophobic materials (PTFE, polycarbonate, nylon, and silanised silver had optimal resistance (14–19 GΩ and capacitance (0.8–1.6 μF values whereas those with low hydrophobicity did not form BLMs (PVDF or were short-lived (unsilanised silver. The ability of ion channels to function in BLMs was assessed using a method recently reported to improve the efficiency of proteoliposome incorporation into PTFE-supported bilayers. Voltage-gated sodium channel activation by veratridine and inhibition by saxitoxin showed activity for PTFE, nylon, and silanised silver, but not polycarbonate. Bilayers on thicker, more tortuous, and hydrophobic materials produced higher current levels. Bilayers that self-assembled on PTFE filters were the longest lived and produced the most channel activity using this method.

  8. The shaping of two distinct dendritic spikes by A-type voltage-gated K+ channels

    Directory of Open Access Journals (Sweden)

    Sungchil eYang

    2015-12-01

    Full Text Available Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductances coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key contributor to two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the delayed Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer's disease.

  9. 4-Aminopyridine: a pan voltage-gated potassium channel inhibitor that enhances K7.4 currents and inhibits noradrenaline-mediated contraction of rat mesenteric small arteries

    DEFF Research Database (Denmark)

    Khammy, Makhala M; Kim, Sukhan; Bentzen, Bo H

    2018-01-01

    has not been systematically studied. The aim of this study was to investigate the pharmacological activity of 4-AP on Kv7.4 and Kv7.5 channels and characterize the effect of 4-AP on rat resistance arteries. EXPERIMENTAL APPROACH: Voltage clamp experiments were performed on Xenopus laevis oocytes......BACKGROUND AND PURPOSE: Kv7.4 and Kv7.5 channels are regulators of vascular tone. 4-Aminopyridine (4-AP) is considered a broad inhibitor of voltage-gated potassium (KV) channels, with little inhibitory effect on Kv7 family members at mmol concentrations. However, the effect of 4-AP on Kv7 channels...

  10. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H2O2 via Flufenamic Acid-Sensitive Channels and KATP Channels

    Science.gov (United States)

    Lee, Christian R.; Witkovsky, Paul; Rice, Margaret E.

    2011-01-01

    Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels to regulate SNr output. PMID:21503158

  11. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

    DEFF Research Database (Denmark)

    Skibsbye, Lasse; Poulet, Claire; Diness, Jonas Goldin

    2014-01-01

    (+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential......, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue. CONCLUSIONS: SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down...

  12. KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin

    Science.gov (United States)

    Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu; Heldsinger, Andrea; Song, Il; Zhou, Shi-Yi; Owyang, Chung

    2015-01-01

    Abstract Ghrelin is the only known hunger signal derived from the peripheral tissues. Ghrelin overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. The mechanisms by which ghrelin reduces the sensory signals evoked by anorexigenic hormones, which act via the vagus nerve to stimulate feeding, are unknown. Patch clamp recordings of isolated rat vagal neurons show that ghrelin hyperpolarizes neurons by activating K+ conductance. Administering a KATP channel antagonist or silencing Kir6.2, a major subunit of the KATP channel, abolished ghrelin inhibition in vitro and in vivo. Patch clamp studies show that ghrelin inhibits currents evoked by leptin and CCK-8, which operate through independent ionic channels. The inhibitory actions of ghrelin were abolished by treating the vagal ganglia neurons with pertussis toxin, as well as phosphatidylinositol 3-kinase (PI3K) or extracellular signal-regulated kinase 1 and 2 (Erk1/2) small interfering RNA. In vivo gene silencing of PI3K and Erk1/2 in the nodose ganglia prevented ghrelin inhibition of leptin- or CCK-8-evoked vagal firing. Feeding experiments showed that silencing Kir6.2 in the vagal ganglia abolished the orexigenic actions of ghrelin. These data indicate that ghrelin modulates vagal ganglia neuron excitability by activating KATP conductance via the growth hormone secretagogue receptor subtype 1a–Gαi–PI3K–Erk1/2–KATP pathway. The resulting hyperpolarization renders the neurons less responsive to signals evoked by anorexigenic hormones. This provides a mechanism to explain the actions of ghrelin with respect to overcoming anorexigenic signals that act via the vagal afferent pathways. Key points Ghrelin, a hunger signalling peptide derived from the peripheral tissues, overcomes the satiety signals evoked by anorexigenic molecules, such as cholecystokinin (CCK) and leptin, to stimulate feeding. Using in vivo and in vitro electrophysiological

  13. Biphasic response of action potential duration to metabolic inhibition in rabbit and human ventricular myocytes: role of transient outward current and ATP-regulated potassium current

    NARCIS (Netherlands)

    Verkerk, A. O.; Veldkamp, M. W.; van Ginneken, A. C.; Bouman, L. N.

    1996-01-01

    Inhibition of cell metabolism is associated with significant changes in action potential duration. The aim of this study was to investigate the time course of the changes in action potential duration during metabolic inhibition and to determine what changes in membrane currents are responsible. The

  14. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  15. Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition.

    Science.gov (United States)

    Mooney, Ronan A; Cirillo, John; Byblow, Winston D

    2018-06-01

    Primary motor cortex excitability can be modulated by anodal and cathodal transcranial direct current stimulation (tDCS). These neuromodulatory effects may, in part, be dependent on modulation within gamma-aminobutyric acid (GABA)-mediated inhibitory networks. GABAergic function can be quantified non-invasively using adaptive threshold hunting paired-pulse transcranial magnetic stimulation (TMS). The previous studies have used TMS with posterior-anterior (PA) induced current to assess tDCS effects on inhibition. However, TMS with anterior-posterior (AP) induced current in the brain provides a more robust measure of GABA-mediated inhibition. The aim of the present study was to assess the modulation of corticomotor excitability and inhibition after anodal and cathodal tDCS using TMS with PA- and AP-induced current. In 16 young adults (26 ± 1 years), we investigated the response to anodal, cathodal, and sham tDCS in a repeated-measures double-blinded crossover design. Adaptive threshold hunting paired-pulse TMS with PA- and AP-induced current was used to examine separate interneuronal populations within M1 and their influence on corticomotor excitability and short- and long-interval inhibition (SICI and LICI) for up to 60 min after tDCS. Unexpectedly, cathodal tDCS increased corticomotor excitability assessed with AP (P = 0.047) but not PA stimulation (P = 0.74). SICI AP was reduced after anodal tDCS compared with sham (P = 0.040). Pearson's correlations indicated that SICI AP and LICI AP modulation was associated with corticomotor excitability after anodal (P = 0.027) and cathodal tDCS (P = 0.042). The after-effects of tDCS on corticomotor excitability may depend on the direction of the TMS-induced current used to make assessments, and on modulation within GABA-mediated inhibitory circuits.

  16. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Lynch, Joseph W.

    2012-01-01

    Ivermectin is an anthelmintic drug that works by inhibiting neuronal activity and muscular contractility in arthropods and nematodes. It works by activating glutamate-gated chloride channels (GluClRs) at nanomolar concentrations. These receptors, found exclusively in invertebrates, belong to the ...... to the neurotransmitter binding site, thus suggesting a mechanism by which ivermectin potentiates neurotransmitter-gated currents. Together, this information provides new insights into the mechanisms of action of this important drug.......) to its site. Several lines of evidence suggest that ivermectin opens the channel pore via a structural change distinct from that induced by the neurotransmitter agonist. Conformational changes occurring at locations distant from the pore can be probed using voltage-clamp fluorometry (VCF), a technique...

  17. Differential contribution of Ca2+ sources to day and night BK current activation in the circadian clock.

    Science.gov (United States)

    Whitt, Joshua P; McNally, Beth A; Meredith, Andrea L

    2018-02-05

    Large conductance K + (BK) channels are expressed widely in neurons, where their activation is regulated by membrane depolarization and intracellular Ca 2+ (Ca 2+ i ). To enable this regulation, BK channels functionally couple to both voltage-gated Ca 2+ channels (VGCCs) and channels mediating Ca 2+ release from intracellular stores. However, the relationship between BK channels and their specific Ca 2+ source for particular patterns of excitability is not well understood. In neurons within the suprachiasmatic nucleus (SCN)-the brain's circadian clock-BK current, VGCC current, and Ca 2+ i are diurnally regulated, but paradoxically, BK current is greatest at night when VGCC current and Ca 2+ i are reduced. Here, to determine whether diurnal regulation of Ca 2+ is relevant for BK channel activation, we combine pharmacology with day and night patch-clamp recordings in acute slices of SCN. We find that activation of BK current depends primarily on three types of channels but that the relative contribution changes between day and night. BK current can be abrogated with nimodipine during the day but not at night, establishing that L-type Ca 2+ channels (LTCCs) are the primary daytime Ca 2+ source for BK activation. In contrast, dantrolene causes a significant decrease in BK current at night, suggesting that nighttime BK activation is driven by ryanodine receptor (RyR)-mediated Ca 2+ i release. The N- and P/Q-type Ca 2+ channel blocker ω-conotoxin MVIIC causes a smaller reduction of BK current that does not differ between day and night. Finally, inhibition of LTCCs, but not RyRs, eliminates BK inactivation, but the BK β2 subunit was not required for activation of BK current by LTCCs. These data reveal a dynamic coupling strategy between BK channels and their Ca 2+ sources in the SCN, contributing to diurnal regulation of SCN excitability. © 2018 Whitt et al.

  18. Activity of Palythoa caribaeorum Venom on Voltage-Gated Ion Channels in Mammalian Superior Cervical Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Fernando Lazcano-Pérez

    2016-05-01

    Full Text Available The Zoanthids are an order of cnidarians whose venoms and toxins have been poorly studied. Palythoa caribaeorum is a zoanthid commonly found around the Mexican coastline. In this study, we tested the activity of P. caribaeorum venom on voltage-gated sodium channel (NaV1.7, voltage-gated calcium channel (CaV2.2, the A-type transient outward (IA and delayed rectifier (IDR currents of KV channels of the superior cervical ganglion (SCG neurons of the rat. These results showed that the venom reversibly delays the inactivation process of voltage-gated sodium channels and inhibits voltage-gated calcium and potassium channels in this mammalian model. The compounds responsible for these effects seem to be low molecular weight peptides. Together, these results provide evidence for the potential use of zoanthids as a novel source of cnidarian toxins active on voltage-gated ion channels.

  19. Distribution of voltage-dependent and intracellular Ca2+ channels in submucosal neurons from rat distal colon.

    Science.gov (United States)

    Rehn, Matthias; Bader, Sandra; Bell, Anna; Diener, Martin

    2013-09-01

    We recently observed a bradykinin-induced increase in the cytosolic Ca2+ concentration in submucosal neurons of rat colon, an increase inhibited by blockers of voltage-dependent Ca2+ (Ca(v)) channels. As the types of Ca(v) channels used by this part of the enteric nervous system are unknown, the expression of various Ca(v) subunits has been investigated in whole-mount submucosal preparations by immunohistochemistry. Submucosal neurons, identified by a neuronal marker (microtubule-associated protein 2), are immunoreactive for Ca(v)1.2, Ca(v)1.3 and Ca(v)2.2, expression being confirmed by reverse transcription plus the polymerase chain reaction. These data agree with previous observations that the inhibition of L- and N-type Ca2+ currents strongly inhibits the response to bradykinin. However, whole-cell patch-clamp experiments have revealed that bradykinin does not enhance Ca2+ inward currents under voltage-clamp conditions. Consequently, bradykinin does not directly interact with Ca(v) channels. Instead, the kinin-induced Ca2+ influx is caused indirectly by the membrane depolarization evoked by this peptide. As intracellular Ca2+ channels on Ca(2+)-storing organelles can also contribute to Ca2+ signaling, their expression has been investigated by imaging experiments and immunohistochemistry. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) have been functionally demonstrated in submucosal neurons loaded with the Ca(2+)-sensitive fluorescent dye, fura-2. Histamine, a typical agonist coupled to the phospholipase C pathway, induces an increase in the fura-2 signal ratio, which is suppressed by 2-aminophenylborate, a blocker of IP3 receptors. The expression of IP3R1 has been confirmed by immunohistochemistry. In contrast, ryanodine, tested over a wide concentration range, evokes no increase in the cytosolic Ca2+ concentration nor is there immunohistochemical evidence for the expression of ryanodine receptors in these neurons. Thus, rat submucosal neurons are equipped

  20. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    Science.gov (United States)

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  1. Tunneling magnetoresistance of ultra-thin Co-SiO2 granular films with narrow current channels

    International Nuclear Information System (INIS)

    Honda, S.; Hirata, M.; Ishimaru, M.

    2005-01-01

    We have constructed the tunneling magnetoresistance (TMR) junction of AuCr/SiO 2 /Co-SiO 2 /SiO 2 /AuCr with narrow current channels, where the TMR occurs in the Co-SiO 2 layer with 10-50 nm thickness. The magnetic properties are independent of thickness, while the TMR properties depend fairly on thickness. The current (I)-bias voltage (V B ) curve is nonlinear, namely the differential resistivity decreases with increasing V B , and also the magnetoresistance ratio decreases

  2. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Trpv4 Mediates Hypotonic Inhibition of Central Osmosensory Neurons via Taurine Gliotransmission

    Directory of Open Access Journals (Sweden)

    Sorana Ciura

    2018-05-01

    Full Text Available Summary: The maintenance of hydromineral homeostasis requires bidirectional detection of changes in extracellular fluid osmolality by primary osmosensory neurons (ONs in the organum vasculosum laminae terminalis (OVLT. Hypertonicity excites ONs in part through the mechanical activation of a variant transient receptor potential vanilloid-1 channel (dn-Trpv1. However, the mechanism by which local hypotonicity inhibits ONs in the OVLT remains unknown. Here, we show that hypotonicity can reduce the basal activity of dn-Trpv1 channels and hyperpolarize acutely isolated ONs. Surprisingly, we found that mice lacking dn-Trpv1 maintain normal inhibitory responses to hypotonicity when tested in situ. In the intact setting, hypotonicity inhibits ONs through a non-cell-autonomous mechanism that involves glial release of the glycine receptor agonist taurine through hypotonicity activated anion channels (HAAC that are activated subsequent to Ca2+ influx through Trpv4 channels. Our study clarifies how Trpv4 channels contribute to the inhibition of OVLT ONs during hypotonicity in situ. : Ciura et al. show that osmosensory neurons in organum vasculosum lamina terminalis are inhibited by hypotonicity. This effect is triggered by activation of Trpv4 channels and Ca2+ accumulation in astrocytes, causing these cells to release taurine through anion channels. Taurine inhibits firing by activating glycine receptors on the osmosensory neurons. Keywords: hyptonicity, taurine, TRPV, osmosensitive, gliotransmission, swelling

  4. Modulation of TRP channels by resveratrol and other stilbenoids

    Directory of Open Access Journals (Sweden)

    Yu Lina

    2013-02-01

    Full Text Available Abstract Background Resveratrol (3,5,4’ - trihydroxy-trans-stilbene, a widely distributed natural stilbenoid, was proposed to account for the unique effects of red wine on life span and health. It has been reported to possess various biological and pharmacological activities, such as anti-oxidant, anti-inflammatory, and anti-carcinogenic effects. Here, using whole-cell patch-clamp techniques and behavioral analyses, we investigated whether resveratrol and other stilbenoids can modulate TRP channels in sensory neurons in vitro, and have analgesic effects in vivo. Results We found that resveratrol dose-dependently suppressed the allyl isothiocyanate (AITC-induced currents (IAITC in HEK293 cells that express TRPA1, as well as in rat dorsal root ganglion (DRG neurons. Instead, pinosylvin methyl ether (PME, another derivate of stilbene which has a similar structure to resveratrol, dose-dependently blocked the capsaicin-induced currents (ICAP in HEK293 cells that express TRPV1 as well as in DRG neurons. Interestingly, resveratrol had no inhibitory effect on the ICAP, and PME had no effect on the IAITC. Otherwise, trans-stilbene showed no any effect on IAITC or ICAP. The concentration response curve of AITC showed that resveratrol inhibited the action of TRPA1 not by changing the EC50, but by suppressing the AITC-induced maximum response. By contrast, the inhibition of TRPV1 by PME did not change the capsaicin-induced maximum response but did cause a right shift of the EC50. Moreover, pre-administration of resveratrol suppressed intraplantar injections of AITC-evoked nocifensive behaviors, as well as that PME suppressed capsaicin-evoked one. Conclusions These data suggest that resveratrol and other stilbenoids may have an inhibitory effect on TRP channels. In addition, these stilbenoids modulate TRP channel activity in different ways.

  5. High affinity complexes of pannexin channels and L-type calcium channel splice-variants in human lung: Possible role in clevidipine-induced dyspnea relief in acute heart failure

    Directory of Open Access Journals (Sweden)

    Gerhard P. Dahl

    2016-08-01

    Research in Context: Clevidipine lowers blood pressure by inhibiting calcium channels in vascular smooth muscle. In patients with acute heart failure, clevidipine was shown to relieve breathing problems. This was only partially related to the blood pressure lowering actions of clevidipine and not conferred by another calcium channel inhibitor. We here found calcium channel variants in human lung that are more selectively inhibited by clevidipine, especially when associated with pannexin channels. This study gives a possible mechanism for clevidipine's relief of breathing problems and supports future clinical trials testing the role of clevidipine in the treatment of acute heart failure.

  6. Problems of noise modeling in the presence of total current branching in high electron mobility transistor and field-effect transistor channels

    International Nuclear Information System (INIS)

    Shiktorov, P; Starikov, E; Gružinskis, V; Varani, L; Sabatini, G; Marinchio, H; Reggiani, L

    2009-01-01

    In the framework of analytical and hydrodynamic models for the description of carrier transport and noise in high electron mobility transistor/field-effect transistor channels the main features of the intrinsic noise of transistors are investigated under continuous branching of the current between channel and gate. It is shown that the current-noise and voltage-noise spectra at the transistor terminals contain an excess noise related to thermal excitation of plasma wave modes in the dielectric layer between the channel and gate. It is found that the set of modes of excited plasma waves can be governed by the external embedding circuits, thus violating a universal description of noise in terms of Norton and Thevenin noise generators

  7. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits.

    Science.gov (United States)

    Brueggemann, Lioubov I; Mackie, Alexander R; Martin, Jody L; Cribbs, Leanne L; Byron, Kenneth L

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V(0.5) values: -31, -44, and -38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.

  8. Anoctamin 9/TMEM16J is a cation channel activated by cAMP/PKA signal.

    Science.gov (United States)

    Kim, Hyungsup; Kim, Hyesu; Lee, Jesun; Lee, Byeongjun; Kim, Hee-Ryang; Jung, Jooyoung; Lee, Mi-Ock; Oh, Uhtaek

    2018-05-01

    Anoctamins (ANOs) are multifunctional membrane proteins that consist of 10 homologs. ANO1 (TMEM16A) and ANO2 (TMEM16B) are anion channels activated by intracellular calcium that meditate numerous physiological functions. ANO6 is a scramblase that redistributes phospholipids across the cell membrane. The other homologs are not well characterized. We found ANO9/TMEM16J is a cation channel activated by a cAMP-dependent protein kinase A (PKA). Intracellular cAMP-activated robust currents in whole cells expressing ANO9, which were inhibited by a PKA blocker. A cholera toxin that persistently stimulated adenylate cyclase activated ANO9 as did the application of PKA. The cAMP-induced ANO9 currents were permeable to cations. The cAMP-dependent ANO9 currents were augmented by intracellular Ca 2+ . Ano9 transcripts were predominant in the intestines. Human intestinal SW480 cells expressed high levels of Ano9 transcripts and showed PKA inhibitor-reversible cAMP-dependent currents. We conclude that ANO9 is a cation channel activated by a cAMP/PKA pathway and could play a role in intestine function. Copyright © 2017. Published by Elsevier Ltd.

  9. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  10. Ketamine inhibits 45Ca influx and catecholamine secretion by inhibiting 22Na influx in cultured bovine adrenal medullary cells

    International Nuclear Information System (INIS)

    Takara, Hiroshi; Wada, Akihiko; Arita, Masahide; Izumi, Futoshi; Sumikawa, Koji

    1986-01-01

    The effects of ketamine, an intravenous anesthetic, on 22 Na influx, 45 Ca influx and catecholamine secretion were investigated in cultured bovine adrenal medullary cells. Ketamine inhibited carbachol-induced 45 Ca influx and catecholamine secretion in a concentration-dependent manner with a similar potency. Ketamine also reduced veratridine-induced 45 Ca influx and catecholamine secretion. The influx of 22 Na caused by carbachol or by veratridine was suppressed by ketamine with a concentration-inhibition curve similar to that of 45 Ca influx and catecholamine secretion. Inhibition by ketamine of the carbachol-induced influx of 22 Na, 45 Ca and secretion of catecholamines was not reversed by the increased concentrations of carbachol. These observations indicate that ketamine, at clinical concentrations, can inhibit nicotinic receptor-associated ionic channels and that the inhibition of Na influx via the receptor-associated ionic channels is responsible for the inhibition of carbachol-induced Ca influx and catecholamine secretion. (Auth.)

  11. Activation, Permeability, and Inhibition of Astrocytic and Neuronal Large Pore (Hemi)channels

    DEFF Research Database (Denmark)

    Hansen, Daniel Bloch; Ye, Zu-Cheng; Calloe, Kirstine

    2014-01-01

    overlapping sensitivity to the inhibitors Brilliant Blue, gadolinium, and carbenoxolone. These results demonstrated isoform-specific characteristics among the large pore membrane channels; an open (hemi)channel is not a nonselective channel. With these isoform-specific properties in mind, we characterized...

  12. Resveratrol Protects Against Ultraviolet A-Mediated Inhibition of the Phagocytic Function of Human Retinal Pigment Epithelial Cells Via Large-Conductance Calcium-Activated Potassium Channels

    Directory of Open Access Journals (Sweden)

    Shwu-Jiuan Sheu

    2009-07-01

    Full Text Available This study was undertaken to examine the protective effect of resveratrol on human retinal pigment epithelial (RPE cell phagocytosis against ultraviolet irradiation damage. Cultured RPE cells were exposed to ultraviolet A (UVA, 20 minutes irradiation, and treated with meclofenamic acid (30μM, 20 minutes, paxilline (100 μM, 20 minutes or resveratrol (10μM, 20 minutes. Meclofenamic acid and resveratrol were given after exposure to UVA. Pretreatment with meclofenamic acid, resveratrol or paxilline before UVA irradiation was also performed. Fluorescent latex beads were then fed for 4 hours and the phagocytotic function was assessed by flow cytometry. UVA irradiation inhibited the phagocytic function of human RPE cells. The large-conductance calcium-activated potassium channel activator meclofenamic acid ameliorated the damage caused by UVA irradiation. Pretreatment with resveratrol acid also provided protection against damage caused by UVA. Posttreatment with meclofenamic acid offered mild protection, whereas resveratrol did not. In conclusion, the red wine flavonoid resveratrol ameliorated UVA-mediated inhibition of human RPE phagocytosis. The underlying mechanism might involve the large-conductance calcium-activated potassium channels.

  13. Multi-channel counter-current chromatography for high-throughput fractionation of natural products for drug discovery.

    Science.gov (United States)

    Wu, Shihua; Yang, Lu; Gao, Yuan; Liu, Xiaoyue; Liu, Feiyan

    2008-02-08

    A multi-channel counter-current chromatography (CCC) method has been designed and fabricated for the high-throughput fractionation of natural products without complications sometimes encountered with other conventional chromatographic systems, such as irreversible adsorptive constituent losses and deactivation, tailing of solute peaks and contamination. It has multiple independent CCC channels and each channel connects independent separation column(s) by parallel flow tubes, and thus the multi-channel CCC apparatus can achieve simultaneously two or more independent chromatographic processes. Furthermore, a high-throughput CCC fractionation method for natural products has been developed by a combination of a new three-channel CCC apparatus and conventional parallel chromatographic devices including pumps, sample injectors, effluent detectors and collectors, and its performance has been displayed on the fractionation of ethyl acetate extracts of three natural materials Solidago canadensis, Suillus placidus, and Trichosanthes kirilowii, which are found to be potent cytotoxic to tumor cell lines in the course of screening the antitumor candidates. By combination of biological screening programs and preparative high-performance liquid chromatography (HPLC) purification, 22.8 mg 6 beta-angeloyloxykolavenic acid and 29.4 mg 6 beta-tigloyloxykolavenic acid for S. canadensis, 25.3mg suillin for S. placidus, and 6.8 mg 23,24-dihydrocucurbitacin B for T. Kirilowii as their major cytotoxic principles were isolated from each 1000 mg crude ethyl acetate extract. Their chemical structures were characterized by electrospray ionization mass spectrometry, one- and two-dimensional nuclear magnetic resonance. The overall results indicate the multi-channel CCC is very useful for high-throughput fractionation of natural products for drug discovery in spite of the solvent balancing requirement and the lower resolution of the shorter CCC columns.

  14. Current steering and current focusing in cochlear implants: comparison of monopolar, tripolar, and virtual channel electrode configurations.

    Science.gov (United States)

    Berenstein, Carlo K; Mens, Lucas H M; Mulder, Jef J S; Vanpoucke, Filiep J

    2008-04-01

    To compare the effects of Monopole (Mono), Tripole (Tri), and "Virtual channel" (Vchan) electrode configurations on spectral resolution and speech perception in a crossover design. Nine experienced adults who received an Advanced Bionics CII/90K cochlear implant participated in a crossover design using three experimental strategies for 2 wk each. Three strategies were compared: (1) Mono; (2) Tri with current partly returning to adjacent electrodes and partly (25 or 75%) to the extracochlear reference; and (3) a monopolar "Vchan" strategy creating seven intermediate channels between two contacts. Each strategy was a variant of the standard "HiRes" processing strategy using 14 channels and 1105 pulses/sec/ channel, and a pulse duration of 32 microsec/phase. Spectral resolution was measured using broadband noise with a sinusoidally rippled spectral envelope with peaks evenly spaced on a logarithmic frequency scale. Speech perception was measured for monosyllables in quiet and in steady-state and fluctuating noises. Subjective comments on music experience and preferences in everyday use were assessed through questionnaires. Thresholds and most comfortable levels with Mono and Vchan were both significantly lower than levels with Tri. Spectral resolution was significantly higher with Tri than with Mono; spectral resolution with Vchan did not differ significantly from the other configurations. Moderate but significant correlations between word recognition and spectral resolution were found in speech in quiet and fluctuating noise. For speech in quiet, word recognition was best with Mono and worst with Vchan; Tri did not significantly differ from the other configurations. Pooled across the noise conditions, word recognition was best with Tri and worst with Vchan (Mono did not significantly differ from the other configurations). These differences were small and insufficient to result in a clear increase in performance across subjects if the result from the best

  15. Palmitoylethanolamide Inhibits Glutamate Release in Rat Cerebrocortical Nerve Terminals

    Directory of Open Access Journals (Sweden)

    Tzu-Yu Lin

    2015-03-01

    Full Text Available The effect of palmitoylethanolamide (PEA, an endogenous fatty acid amide displaying neuroprotective actions, on glutamate release from rat cerebrocortical nerve terminals (synaptosomes was investigated. PEA inhibited the Ca2+-dependent release of glutamate, which was triggered by exposing synaptosomes to the potassium channel blocker 4-aminopyridine. This release inhibition was concentration dependent, associated with a reduction in cytosolic Ca2+ concentration, and not due to a change in synaptosomal membrane potential. The glutamate release-inhibiting effect of PEA was prevented by the Cav2.1 (P/Q-type channel blocker ω-agatoxin IVA or the protein kinase A inhibitor H89, not affected by the intracellular Ca2+ release inhibitors dantrolene and CGP37157, and partially antagonized by the cannabinoid CB1 receptor antagonist AM281. Based on these results, we suggest that PEA exerts its presynaptic inhibition, likely through a reduction in the Ca2+ influx mediated by Cav2.1 (P/Q-type channels, thereby inhibiting the release of glutamate from rat cortical nerve terminals. This release inhibition might be linked to the activation of presynaptic cannabinoid CB1 receptors and the suppression of the protein kinase A pathway.

  16. Diclofenac Distinguishes among Homomeric and Heteromeric Potassium Channels Composed of KCNQ4 and KCNQ5 SubunitsS⃞

    Science.gov (United States)

    Brueggemann, Lioubov I.; Mackie, Alexander R.; Martin, Jody L.; Cribbs, Leanne L.

    2011-01-01

    KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V0.5 values: −31, −44, and −38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels. PMID:20876743

  17. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor

    Science.gov (United States)

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K.; Shi, Yingtang; Wagner, Paul G.; Pivaroff-Ward, Kendra; Sassic, Jessica K.; Bayliss, Douglas A.

    2013-01-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K+ channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K+ currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K+ channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance–voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn2+. Low pH similarly reduces Mg2+ sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca2+. Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K+ currents observed in vivo. PMID:23712551

  18. External pH modulates EAG superfamily K+ channels through EAG-specific acidic residues in the voltage sensor.

    Science.gov (United States)

    Kazmierczak, Marcin; Zhang, Xiaofei; Chen, Bihan; Mulkey, Daniel K; Shi, Yingtang; Wagner, Paul G; Pivaroff-Ward, Kendra; Sassic, Jessica K; Bayliss, Douglas A; Jegla, Timothy

    2013-06-01

    The Ether-a-go-go (EAG) superfamily of voltage-gated K(+) channels consists of three functionally distinct gene families (Eag, Elk, and Erg) encoding a diverse set of low-threshold K(+) currents that regulate excitability in neurons and muscle. Previous studies indicate that external acidification inhibits activation of three EAG superfamily K(+) channels, Kv10.1 (Eag1), Kv11.1 (Erg1), and Kv12.1 (Elk1). We show here that Kv10.2, Kv12.2, and Kv12.3 are similarly inhibited by external protons, suggesting that high sensitivity to physiological pH changes is a general property of EAG superfamily channels. External acidification depolarizes the conductance-voltage (GV) curves of these channels, reducing low threshold activation. We explored the mechanism of this high pH sensitivity in Kv12.1, Kv10.2, and Kv11.1. We first examined the role of acidic voltage sensor residues that mediate divalent cation block of voltage activation in EAG superfamily channels because protons reduce the sensitivity of Kv12.1 to Zn(2+). Low pH similarly reduces Mg(2+) sensitivity of Kv10.1, and we found that the pH sensitivity of Kv11.1 was greatly attenuated at 1 mM Ca(2+). Individual neutralizations of a pair of EAG-specific acidic residues that have previously been implicated in divalent block of diverse EAG superfamily channels greatly reduced the pH response in Kv12.1, Kv10.2, and Kv11.1. Our results therefore suggest a common mechanism for pH-sensitive voltage activation in EAG superfamily channels. The EAG-specific acidic residues may form the proton-binding site or alternatively are required to hold the voltage sensor in a pH-sensitive conformation. The high pH sensitivity of EAG superfamily channels suggests that they could contribute to pH-sensitive K(+) currents observed in vivo.

  19. Extracellular acidosis activates ASIC-like channels in freshly isolated cerebral artery smooth muscle cells.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Swenson, Alyssa; Barnard, John M; Hamilton, Gina; Chiposi, Rumbidzayi; Drummond, Heather A

    2010-05-01

    Recent studies suggest that certain acid-sensing ion channels (ASIC) are expressed in vascular smooth muscle cells (VSMCs) and are required for VSMC functions. However, electrophysiological evidence of ASIC channels in VSMCs is lacking. The purpose of this study was to test the hypothesis that isolated cerebral artery VSMCs express ASIC-like channels. To address this hypothesis, we used RT-PCR, Western blotting, immunolabeling, and conventional whole cell patch-clamp technique. We found extracellular H(+)-induced inward currents in 46% of cells tested (n = 58 of 126 VSMCs, pH 6.5-5.0). The percentage of responsive cells and the current amplitude increased as the external H(+) concentration increased (pH(6.0), n = 28/65 VSMCs responsive, mean current density = 8.1 +/- 1.2 pA/pF). Extracellular acidosis (pH(6.0)) shifted the whole cell reversal potential toward the Nernst potential of Na(+) (n = 6) and substitution of extracellular Na(+) by N-methyl-d-glucamine abolished the inward current (n = 6), indicating that Na(+) is a major charge carrier. The broad-spectrum ASIC blocker amiloride (20 microM) inhibited proton-induced currents to 16.5 +/- 8.7% of control (n = 6, pH(6.0)). Psalmotoxin 1 (PcTx1), an ASIC1a inhibitor and ASIC1b activator, had mixed effects: PcTx1 either 1) abolished H(+)-induced currents (11% of VSMCs, 5/45), 2) enhanced or promoted activation of H(+)-induced currents (76%, 34/45), or 3) failed to promote H(+) activation in nonresponsive VSMCs (13%, 6/45). These findings suggest that freshly dissociated cerebral artery VSMCs express ASIC-like channels, which are predominantly formed by ASIC1b.

  20. The tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation.

    Science.gov (United States)

    Xiao, Yucheng; Blumenthal, Kenneth; Jackson, James O; Liang, Songping; Cummins, Theodore R

    2010-12-01

    The voltage-gated sodium channel Na(v)1.7 plays a crucial role in pain, and drugs that inhibit hNa(v)1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNa(v)1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both ProTx-II and HWTX-IV have been proposed to preferentially block hNa(v)1.7 activation by trapping the domain II voltage-sensor in the resting configuration, we show that specific residues in the voltage-sensor paddle of domain II play substantially different roles in determining the affinities of these toxins to hNa(v)1.7. The mutation E818C increases ProTx-II's and HWTX-IV's IC(50) for block of hNa(v)1.7 currents by 4- and 400-fold, respectively. In contrast, the mutation F813G decreases ProTx-II affinity by 9-fold but has no effect on HWTX-IV affinity. It is noteworthy that we also show that ProTx-II, but not HWTX-IV, preferentially interacts with hNa(v)1.7 to impede fast inactivation by trapping the domain IV voltage-sensor in the resting configuration. Mutations E1589Q and T1590K in domain IV each decreased ProTx-II's IC(50) for impairment of fast inactivation by ~6-fold. In contrast mutations D1586A and F1592A in domain-IV increased ProTx-II's IC(50) for impairment of fast inactivation by ~4-fold. Our results show that whereas ProTx-II and HWTX-IV binding determinants on domain-II may overlap, domain II plays a much more crucial role for HWTX-IV, and contrary to what has been proposed to be a guiding principle of sodium channel pharmacology, molecules do not have to exclusively target the domain IV voltage-sensor to influence sodium channel inactivation.

  1. State-dependent compound inhibition of Nav1.2 sodium channels using the FLIPR Vm dye: on-target and off-target effects of diverse pharmacological agents.

    Science.gov (United States)

    Benjamin, Elfrida R; Pruthi, Farhana; Olanrewaju, Shakira; Ilyin, Victor I; Crumley, Gregg; Kutlina, Elena; Valenzano, Kenneth J; Woodward, Richard M

    2006-02-01

    Voltage-gated sodium channels (NaChs) are relevant targets for pain, epilepsy, and a variety of neurological and cardiac disorders. Traditionally, it has been difficult to develop structure-activity relationships for NaCh inhibitors due to rapid channel kinetics and state-dependent compound interactions. Membrane potential (Vm) dyes in conjunction with a high-throughput fluorescence imaging plate reader (FLIPR) offer a satisfactory 1st-tier solution. Thus, the authors have developed a FLIPR Vm assay of rat Nav1.2 NaCh. Channels were opened by addition of veratridine, and Vm dye responses were measured. The IC50 values from various structural classes of compounds were compared to the resting state binding constant (Kr)and inactivated state binding constant (Ki)obtained using patch-clamp electrophysiology (EP). The FLIPR values correlated with Ki but not Kr. FLIPRIC50 values fell within 0.1-to 1.5-fold of EP Ki values, indicating that the assay generally reports use-dependent inhibition rather than resting state block. The Library of Pharmacologically Active Compounds (LOPAC, Sigma) was screened. Confirmed hits arose from diverse classes such as dopamine receptor antagonists, serotonin transport inhibitors, and kinase inhibitors. These data suggest that NaCh inhibition is inherent in a diverse set of biologically active molecules and may warrant counterscreening NaChs to avoid unwanted secondary pharmacology.

  2. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Linghan Jia

    Full Text Available Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  3. Modulation of leak K(+) channel in hypoglossal motoneurons of rats by serotonin and/or variation of pH value.

    Science.gov (United States)

    Xu, Xue-Feng; Tsai, Hao-Jan; Li, Lin; Chen, Yi-Fan; Zhang, Cheng; Wang, Guang-Fa

    2009-08-25

    The cloned TWIK-related acid-sensitive K(+) channel (TASK-1) is sensitive to the pH changes within physiological pH range (pK~7.4). Recently, the native TASK-1-like channel was suggested to be the main contributor to the background (or leak) K(+) conductance in the motoneurons of the brain stem. Serotonin (5-HT) and variation of pH value in perfused solution could modulate these currents. Here we aimed to examine the properties and modulation of the currents by serotonin or variation of pH value in hypoglossal motoneurons of rats. Transverse slices were prepared from the brainstem of neonatal Sprague-Dawley rats (postnatal days 7-8). Hypoglossal motoneurons were used for the study. The leak K(+) current (TASK-1-like current) and hyperpolarization-activated cationic current (I(h)) were recorded with the whole-cell patch-clamp technique. The results showed that these currents were inhibited by acidified artificial cerebrospinal fluid (ACSF, pH 6.0) and activated by alkalized ACSF (pH 8.5). 5-HT (10 mumol/L) significantly inhibited both leak K(+) current and I(h) with depolarization of membrane potential and the occurrence of oscillation and/or spikes. Bath application of Ketanserine, an antagonist of 5-HT₂ receptor, reversed or reduced the inhibitory effect of acidified solution on leak K(+) current and I(h). The results suggest that 5-HT₂ receptors mediate the effects of acidified media on leak K(+) current and I(h) in hypoglossal motoneurons.

  4. Single-channel L-type Ca2+ currents in chicken embryo semicircular canal type I and type II hair cells.

    Science.gov (United States)

    Zampini, Valeria; Valli, Paolo; Zucca, Giampiero; Masetto, Sergio

    2006-08-01

    Few data are available concerning single Ca channel properties in inner ear hair cells and particularly none in vestibular type I hair cells. By using the cell-attached configuration of the patch-clamp technique in combination with the semicircular canal crista slice preparation, we determined the elementary properties of voltage-dependent Ca channels in chicken embryo type I and type II hair cells. The pipette solutions included Bay K 8644. With 70 mM Ba(2+) in the patch pipette, Ca channel activity appeared as very brief openings at -60 mV. Ca channel properties were found to be similar in type I and type II hair cells; therefore data were pooled. The mean inward current amplitude was -1.3 +/- 0.1 (SD) pA at - 30 mV (n = 16). The average slope conductance was 21 pS (n = 20). With 5 mM Ba(2+) in the patch pipette, very brief openings were already detectable at -80 mV. The mean inward current amplitude was -0.7 +/- 0.2 pA at -40 mV (n = 9). The average slope conductance was 11 pS (n = 9). The mean open time and the open probability increased significantly with depolarization. Ca channel activity was still present and unaffected when omega-agatoxin IVA (2 microM) and omega-conotoxin GVIA (3.2 microM) were added to the pipette solution. Our results show that types I and II hair cells express L-type Ca channels with similar properties. Moreover, they suggest that in vivo Ca(2+) influx might occur at membrane voltages more negative than -60 mV.

  5. Cardiac actions of phencyclidine in isolated guinea pig and rat heart: possible involvement of slow channels

    International Nuclear Information System (INIS)

    Temma, K.; Akera, T.; Ng, Y.C.

    1985-01-01

    The mechanisms responsible for the positive inotropic effect of phencyclidine were studied in isolated preparations of guinea pig and rat heart. In electrically paced left atrial muscle preparations, phencyclidine increased the force of contraction; rat heart muscle preparations were more sensitive than guinea pig heart muscle preparations. The positive inotropic effect of phencyclidine was not significantly reduced by a combination of phentolamine and nadolol; however, the effect was competitively blocked by verapamil in the presence of phentolamine and nadolol. Inhibition of the outward K+ current by tetraethylammonium chloride also produced a positive inotropic effect; however, the effect of tetraethylammonium was reduced by phentolamine and nadolol, and was almost insensitive to verapamil. The inotropic effect of phencyclidine was associated with a marked prolongation of the action potential duration and a decrease in maximal upstroke velocity of the action potential, with no change in the resting membrane potential. The specific [ 3 H]phencyclidine binding observed with membrane preparations from guinea pig ventricular muscle was saturable with a single class of high-affinity binding site. This binding was inhibited by verapamil, diltiazem, or nitrendipine, but not by ryanodine or tetrodotoxin. These results suggest that the positive inotropic effect of phencyclidine results from enhanced Ca 2+ influx via slow channels, either by stimulation of the channels or secondary to inhibition of outward K + currents

  6. Structural implications of hERG K+ channel block by a high-affinity minimally structured blocker

    Science.gov (United States)

    Helliwell, Matthew V.; Zhang, Yihong; El Harchi, Aziza; Du, Chunyun; Hancox, Jules C.; Dempsey, Christopher E.

    2018-01-01

    Cardiac potassium channels encoded by human ether-à-go-go–related gene (hERG) are major targets for structurally diverse drugs associated with acquired long QT syndrome. This study characterized hERG channel inhibition by a minimally structured high-affinity hERG inhibitor, Cavalli-2, composed of three phenyl groups linked by polymethylene spacers around a central amino group, chosen to probe the spatial arrangement of side chain groups in the high-affinity drug-binding site of the hERG pore. hERG current (IhERG) recorded at physiological temperature from HEK293 cells was inhibited with an IC50 of 35.6 nm with time and voltage dependence characteristic of blockade contingent upon channel gating. Potency of Cavalli-2 action was markedly reduced for attenuated inactivation mutants located near (S620T; 54-fold) and remote from (N588K; 15-fold) the channel pore. The S6 Y652A and F656A mutations decreased inhibitory potency 17- and 75-fold, respectively, whereas T623A and S624A at the base of the selectivity filter also decreased potency (16- and 7-fold, respectively). The S5 helix F557L mutation decreased potency 10-fold, and both F557L and Y652A mutations eliminated voltage dependence of inhibition. Computational docking using the recent cryo-EM structure of an open channel hERG construct could only partially recapitulate experimental data, and the high dependence of Cavalli-2 block on Phe-656 is not readily explainable in that structure. A small clockwise rotation of the inner (S6) helix of the hERG pore from its configuration in the cryo-EM structure may be required to optimize Phe-656 side chain orientations compatible with high-affinity block. PMID:29545312

  7. hERG trafficking inhibition in drug-induced lethal cardiac arrhythmia.

    Science.gov (United States)

    Nogawa, Hisashi; Kawai, Tomoyuki

    2014-10-15

    Acquired long QT syndrome induced by non-cardiovascular drugs can cause lethal cardiac arrhythmia called torsades de points and is a significant problem in drug development. The prolongation of QT interval and cardiac action potential duration are mainly due to reduced physiological function of the rapidly activating voltage-dependent potassium channels encoded by human ether-a-go-go-related gene (hERG). Structurally diverse groups of drugs are known to directly inhibit hERG channel conductance. Therefore, the ability of acute hERG inhibition is routinely assessed at the preclinical stages in pharmaceutical testing. Recent findings indicated that chronic treatment with various drugs not only inhibits hERG channels but also decreases hERG channel expression in the plasma membrane of cardiomyocytes, which has become another concern in safety pharmacology. The mechanisms involve the disruption of hERG trafficking to the surface membrane or the acceleration of hERG protein degradation. From this perspective, we present a brief overview of mechanisms of drug-induced trafficking inhibition and pathological regulation. Understanding of drug-induced hERG trafficking inhibition may provide new strategies for predicting drug-induced QT prolongation and lethal cardiac arrhythmia in pharmaceutical drug development. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Discovery of talatisamine as a novel specific blocker for the delayed rectifier K+ channels in rat hippocampal neurons.

    Science.gov (United States)

    Song, M-K; Liu, H; Jiang, H-L; Yue, J-M; Hu, G-Y; Chen, H-Z

    2008-08-13

    Blocking specific K+ channels has been proposed as a promising strategy for the treatment of neurodegenerative diseases. Using a computational virtual screening approach and electrophysiological testing, we found four Aconitum alkaloids are potent blockers of the delayed rectifier K+ channel in rat hippocampal neurons. In the present study, we first tested the action of the four alkaloids on the voltage-gated K+, Na+ and Ca2+ currents in rat hippocampal neurons, and then identified that talatisamine is a specific blocker for the delayed rectifier K+ channel. External application of talatisamine reversibly inhibited the delayed rectifier K+ current (IK) with an IC50 value of 146.0+/-5.8 microM in a voltage-dependent manner, but exhibited very slight blocking effect on the voltage-gated Na+ and Ca2+ currents even at the high concentration of 1-3 mM. Moreover, talatisamine exerted a significant hyperpolarizing shift of the steady-state activation, but did not influence the steady state inactivation of IK and its recovery from inactivation, suggesting that talatisamine had no allosteric action on IK channel and was a pure blocker binding to the external pore entry of the channel. Our present study made the first discovery of potent and specific IK channel blocker from Aconitum alkaloids. It has been argued that suppressing K+ efflux by blocking IK channel may be favorable for Alzheimer's disease therapy. Talatisamine can therefore be considered as a leading compound worthy of further investigations.

  9. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Directory of Open Access Journals (Sweden)

    Carly A Buckner

    Full Text Available Electromagnetic field (EMF exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+ influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+ channels. Blocking Ca(2+ uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+ influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  10. Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2015-01-01

    Electromagnetic field (EMF) exposures affect many biological systems. The reproducibility of these effects is related to the intensity, duration, frequency, and pattern of the EMF. We have shown that exposure to a specific time-varying EMF can inhibit the growth of malignant cells. Thomas-EMF is a low-intensity, frequency-modulated (25-6 Hz) EMF pattern. Daily, 1 h, exposures to Thomas-EMF inhibited the growth of malignant cell lines including B16-BL6, MDA-MB-231, MCF-7, and HeLa cells but did not affect the growth of non-malignant cells. Thomas-EMF also inhibited B16-BL6 cell proliferation in vivo. B16-BL6 cells implanted in syngeneic C57b mice and exposed daily to Thomas-EMF produced smaller tumours than in sham-treated controls. In vitro studies showed that exposure of malignant cells to Thomas-EMF for > 15 min promoted Ca(2+) influx which could be blocked by inhibitors of voltage-gated T-type Ca(2+) channels. Blocking Ca(2+) uptake also blocked Thomas-EMF-dependent inhibition of cell proliferation. Exposure to Thomas-EMF delayed cell cycle progression and altered cyclin expression consistent with the decrease in cell proliferation. Non-malignant cells did not show any EMF-dependent changes in Ca(2+) influx or cell growth. These data confirm that exposure to a specific EMF pattern can affect cellular processes and that exposure to Thomas-EMF may provide a potential anti-cancer therapy.

  11. NS309 decreases rat detrusor smooth muscle membrane potential and phasic contractions by activating SK3 channels

    Science.gov (United States)

    Parajuli, Shankar P; Hristov, Kiril L; Soder, Rupal P; Kellett, Whitney F; Petkov, Georgi V

    2013-01-01

    Background and Purpose Overactive bladder (OAB) is often associated with abnormally increased detrusor smooth muscle (DSM) contractions. We used NS309, a selective and potent opener of the small or intermediate conductance Ca2+-activated K+ (SK or IK, respectively) channels, to evaluate how SK/IK channel activation modulates DSM function. Experimental Approach We employed single-cell RT-PCR, immunocytochemistry, whole cell patch-clamp in freshly isolated rat DSM cells and isometric tension recordings of isolated DSM strips to explore how the pharmacological activation of SK/IK channels with NS309 modulates DSM function. Key Results We detected SK3 but not SK1, SK2 or IK channels expression at both mRNA and protein levels by RT-PCR and immunocytochemistry in DSM single cells. NS309 (10 μM) significantly increased the whole cell SK currents and hyperpolarized DSM cell resting membrane potential. The NS309 hyperpolarizing effect was blocked by apamin, a selective SK channel inhibitor. NS309 inhibited the spontaneous phasic contraction amplitude, force, frequency, duration and tone of isolated DSM strips in a concentration-dependent manner. The inhibitory effect of NS309 on spontaneous phasic contractions was blocked by apamin but not by TRAM-34, indicating no functional role of the IK channels in rat DSM. NS309 also significantly inhibited the pharmacologically and electrical field stimulation-induced DSM contractions. Conclusions and Implications Our data reveal that SK3 channel is the main SK/IK subtype in rat DSM. Pharmacological activation of SK3 channels with NS309 decreases rat DSM cell excitability and contractility, suggesting that SK3 channels might be potential therapeutic targets to control OAB associated with detrusor overactivity. PMID:23145946

  12. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    Science.gov (United States)

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  13. Attenuation of ischemia/reperfusion-induced inhibition of the rapid component of delayed rectifier potassium current by Isosteviol through scavenging reactive oxygen species.

    Science.gov (United States)

    Yin, Chunxia; Chen, Yaoxu; Wu, Huanlin; Xu, Danping; Tan, Wen

    2017-12-01

    Isosteviol has been demonstrated to play a protective role during ischemia reperfusion (I/R) myocardial infarction. However, the underlying electrophysiological mechanisms of isosteviol are still unknown. Our previous study showed that the rapid component of the delayed rectifier potassium channel (I Kr ) plays an important role in the prolongation of I/R-induced QT interval-related arrhythmia. This study aimed to investigate whether isosteviol could attenuate I/R-induced prolongation of the action potential duration (APD) along with inhibition of I Kr , and we aimed to clarify the electrophysiological mechanism of isosteviol to determine its cardioprotective effects in guinea pigs. We observed that the APD 90 were 298.5±41.6ms in control, 528.6±56.7ms during I/R, and reduced to 327.8±40.5ms after 10μmol/L of isosteviol treatment. The I Kr currents were 1.44±0.06 pA·pF -1 in the control group, 0.50±0.07pA·pF -1 during I/R, and recovered to 1.20±0.12pA·pF -1 after 10μmol/L of isoteviol treatment. Moreover, isosteviol reduced the over-production of reactive oxygen species (ROS) during I/R. Importantly, isosteviol does not affect the I Kr and human ether-a-go-go-related gene currents of normal cardiomyocytes. It attenuated the I/R-induced inhibition of I Kr due to reduced over-production of ROS. Furthermore, isosteviol is safe and has no cardiotoxicity, and it might be beneficial for coronary reperfusion therapy. Copyright © 2017. Published by Elsevier B.V.

  14. Fluoxetine Blocks Nav1.5 Channels via a Mechanism Similar to That of Class 1 Antiarrhythmics

    Science.gov (United States)

    Poulin, Hugo; Bruhova, Iva; Timour, Quadiri; Theriault, Olivier; Beaulieu, Jean-Martin; Frassati, Dominique

    2014-01-01

    The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na+ currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 μM) and its optical isomers had a similar IC50 [40 and 47 μM for the (+) and (−) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 μM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na+ channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders. PMID:25028482

  15. AdE-1, a new inotropic Na(+) channel toxin from Aiptasia diaphana, is similar to, yet distinct from, known anemone Na(+) channel toxins.

    Science.gov (United States)

    Nesher, Nir; Shapira, Eli; Sher, Daniel; Moran, Yehu; Tsveyer, Liora; Turchetti-Maia, Ana Luiza; Horowitz, Michal; Hochner, Binyamin; Zlotkin, Eliahu

    2013-04-01

    Heart failure is one of the most prevalent causes of death in the western world. Sea anemone contains a myriad of short peptide neurotoxins affecting many pharmacological targets, several of which possess cardiotonic activity. In the present study we describe the isolation and characterization of AdE-1 (ion channel modifier), a novel cardiotonic peptide from the sea anemone Aiptasia diaphana, which differs from other cnidarian toxins. Although AdE-1 has the same cysteine residue arrangement as sea anemone type 1 and 2 Na(+) channel toxins, its sequence contains many substitutions in conserved and essential sites and its overall homology to other toxins identified to date is low (Anemonia viridis toxin II), AdE-1 markedly inhibits Na(+) current inactivation with no significant effect on current activation, suggesting a similar mechanism of action. However, its effects on twitch relaxation velocity, action potential amplitude and on the time to peak suggest that this novel toxin affects cardiomyocyte function via a more complex mechanism. Additionally, Av2's characteristic delayed and early after-depolarizations were not observed. Despite its structural differences, AdE-1 physiologic effectiveness is comparable with Av2 with a similar ED(50) value to blowfly larvae. This finding raises questions regarding the extent of the universality of structure-function in sea anemone Na(+) channel toxins.

  16. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    Energy Technology Data Exchange (ETDEWEB)

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  17. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H1 and H2 receptors, Na+ -permeable cation channels, and inward rectifier K+ channels.

    Science.gov (United States)

    Cilz, Nicholas I; Lei, Saobo

    2017-05-01

    In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H 1 , H 2 , and H 3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC 50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca 2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H 1 and H 2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H 1 and H 2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na + -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K + channel, although HA also inhibited the delayed rectifier K + channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

    Science.gov (United States)

    De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge

    2018-03-01

    The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Activity of the anticonvulsant lacosamide in experimental and human epilepsy via selective effects on slow Na+ channel inactivation.

    Science.gov (United States)

    Holtkamp, Dominik; Opitz, Thoralf; Niespodziany, Isabelle; Wolff, Christian; Beck, Heinz

    2017-01-01

    In human epilepsy, pharmacoresistance to antiepileptic drug therapy is a major problem affecting ~30% of patients with epilepsy. Many classical antiepileptic drugs target voltage-gated sodium channels, and their potent activity in inhibiting high-frequency firing has been attributed to their strong use-dependent blocking action. In chronic epilepsy, a loss of use-dependent block has emerged as a potential cellular mechanism of pharmacoresistance for anticonvulsants acting on voltage-gated sodium channels. The anticonvulsant drug lacosamide (LCM) also targets sodium channels, but has been shown to preferentially affect sodium channel slow inactivation processes, in contrast to most other anticonvulsants. We used whole-cell voltage clamp recordings in acutely isolated cells to investigate the effects of LCM on transient Na + currents. Furthermore, we used whole-cell current clamp recordings to assess effects on repetitive action potential firing in hippocampal slices. We show here that LCM exerts its effects primarily via shifting the slow inactivation voltage dependence to more hyperpolarized potentials in hippocampal dentate granule cells from control and epileptic rats, and from patients with epilepsy. It is important to note that this activity of LCM was maintained in chronic experimental and human epilepsy. Furthermore, we demonstrate that the efficacy of LCM in inhibiting high-frequency firing is undiminished in chronic experimental and human epilepsy. Taken together, these results show that LCM exhibits maintained efficacy in chronic epilepsy, in contrast to conventional use-dependent sodium channel blockers such as carbamazepine. They also establish that targeting slow inactivation may be a promising strategy for overcoming target mechanisms of pharmacoresistance. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  20. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  1. Functional characterization of a prokaryotic Kir channel.

    Science.gov (United States)

    Enkvetchakul, Decha; Bhattacharyya, Jaya; Jeliazkova, Iana; Groesbeck, Darcy K; Cukras, Catherine A; Nichols, Colin G

    2004-11-05

    The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.

  2. Scale and material effects on flame characteristics in small heat recirculation combustors of a counter-current channel type

    International Nuclear Information System (INIS)

    Lee, Min Jung; Cho, Sang Moon; Choi, Byung Il; Kim, Nam Il

    2010-01-01

    Small energy sources have been interested with the recent development of small-scale mechanical systems. With the purpose of developing a basic model of micro-combustors of heat recirculation, small combustors of a counter-current channel type were fabricated, and the premixed flame stabilization characteristics were investigated experimentally. Each combustor consists of a combustion space and a pair of counter-current channels for heat recirculation. The channel gap was less than the ordinary quenching distance of a stoichiometric methane-air premixed flame. Depending on the flame locations and structures, flame stabilization was classified into four modes: an ordinary mode, a channel mode, a radiation mode, and a well-stirred reaction mode. Base-scale combustors of stainless steel were initially examined. Additional half-scale combustors of stainless steel and quartz were fabricated and their flame stabilization conditions were compared. Consequently, a change of the material of the combustor significantly affected the flame stabilization compared to the effects of a scale-down design. A half-scale quartz combustor had a wide range of flame stabilization conditions. Surface temperatures and the composition of the emission gas were measured. At a higher flow rate, the combustor temperature increases and the light emission from the middle wall is enhanced to extend the flame stabilization conditions. The combustion efficiency and the composition of emitted gas were feasible. These results provide useful information for the design of small-scale combustors.

  3. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat

    Science.gov (United States)

    Meiri, Noam; Ghelardini, Carla; Tesco, Giuseppina; Galeotti, Nicoletta; Dahl, Dennis; Tomsic, Daniel; Cavallaro, Sebastiano; Quattrone, Alessandro; Capaccioli, Sergio; Bartolini, Alessandro; Alkon, Daniel L.

    1997-01-01

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic “knockouts”. PMID:9114006

  4. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat.

    Science.gov (United States)

    Meiri, N; Ghelardini, C; Tesco, G; Galeotti, N; Dahl, D; Tomsic, D; Cavallaro, S; Quattrone, A; Capaccioli, S; Bartolini, A; Alkon, D L

    1997-04-29

    Long-term memory is thought to be subserved by functional remodeling of neuronal circuits. Changes in the weights of existing synapses in networks might depend on voltage-gated potassium currents. We therefore studied the physiological role of potassium channels in memory, concentrating on the Shaker-like Kv1.1, a late rectifying potassium channel that is highly localized within dendrites of hippocampal CA3 pyramidal and dentate gyrus granular cells. Repeated intracerebroventricular injection of antisense oligodeoxyribonucleotide to Kv1.1 reduces expression of its particular intracellular mRNA target, decreases late rectifying K+ current(s) in dentate granule cells, and impairs memory but not other motor or sensory behaviors, in two different learning paradigms, mouse passive avoidance and rat spatial memory. The latter, hippocampal-dependent memory loss occurred in the absence of long-term potentiation changes recorded both from the dentate gyrus or CA1. The specificity of the reversible antisense targeting of mRNA in adult animal brains may avoid irreversible developmental and genetic background effects that accompany transgenic "knockouts".

  5. Nicorandil directly and cyclic GMP-dependently opens K+ channels in human bypass grafts

    Directory of Open Access Journals (Sweden)

    Marija Marinko

    2015-06-01

    Full Text Available As we previously demonstrated the role of different K+ channels in the action of nicorandil on human saphenous vein (HSV and human internal mammary artery (HIMA, this study aimed to analyse the contribution of the cGMP pathway in nicorandil-induced vasorelaxation and to determine the involvement of cGMP in the K+ channel-activating effect of nicorandil. An inhibitor of soluble guanylate cyclase (GC, ODQ, significantly inhibited nicorandil-induced relaxation, while ODQ plus glibenclamide, a selective ATP-sensitive K+ (KATP channel inhibitor, produced a further inhibition of both vessels. In HSV, ODQ in combination with 4-aminopyridine, a blocker of voltage-gated K+ (KV channels, did not modify the concentration-response to nicorandil compared with ODQ, whereas in HIMA, ODQ plus iberiotoxin, a selective blocker of large-conductance Ca2+-activated K+ (BKCa channels, produced greater inhibition than ODQ alone. We showed that the cGMP pathway plays a significant role in the vasorelaxant effect of nicorandil on HSV and HIMA. It seems that nicorandil directly opens KATP channels in both vessels and BKCa channels in HIMA, although it is possible that stimulation of GC contributes to KATP channels activation in HIMA. Contrary, the activation of KV channels in HSV is probably due to GC activation and increased levels of cGMP.

  6. Determining K+ channel activation curves from K+ channel currents often requires the Goldman-Hodgkin-Katz equation

    Directory of Open Access Journals (Sweden)

    john r Clay

    2009-12-01

    Full Text Available Potassium ion current in nerve membrane, IK, has traditionally been described by IK = gK(V-EK, where gK is the K ion conductance, V is membrane potential, and EK is the K+ Nernst potential. This description has been unchallenged by most investigators in neuroscience since its introduction almost sixty years ago. The problem with the IK ~ (V-EK proportionality is that it is inconsistent with the unequal distribution of K ions in the intra- and extracellular bathing media. Under physiological conditions the intracellular K+ concentraion is significantly higher than the extracellular concentration. Consequently, the slope conductance at potentials positive to EK cannot be the same as that for potentials negative to EK, as the linear proportionality requires. Instead IK has a non-linear dependence on (V-EK which is well described by the Goldman-Hodgkin-Katz equation. The implications of this result for K+ channel gating and membrane excitability are reviewed in this report.

  7. Binding of [125I]iodipine to parathyroid cell membranes: Evidence of a dihydropyridine-sensitive calcium channel

    International Nuclear Information System (INIS)

    Jones, J.I.; Fitzpatrick, L.A.

    1990-01-01

    The parathyroid cell is unusual, in that an increase in extracellular calcium concentrations inhibits PTH release. Calcium channels are glycoproteins that span cell membranes and allow entry of extracellular calcium into cells. We have demonstrated that the calcium channel agonist (+)202-791, which opens calcium channels, inhibits PTH release and that the antagonist (-)202-791, which closes calcium channels, stimulates PTH release. To identify the calcium channels responsible for these effects, we used a radioligand that specifically binds to calcium channels. Bovine parathyroid cell membranes were prepared and incubated under reduced lighting with [125I] iodipine (SA, 2000 Ci/mmol), which recognizes 1,4-dihydropyridine-sensitive calcium channels. Bound ligand was separated from free ligand by rapid filtration through Whatman GF/B filters. Nonspecific binding was measured by the inclusion of nifedipine at 10 microM. Specific binding represented approximately 40% of the total binding. The optimal temperature for [125I] iodipine binding was 4 C, and binding reached equilibrium by 30 min. The equilibrium dissociation constant (Kd) was approximately 550 pM, and the maximum number of binding sites was 780 fmol/mg protein. Both the calcium channel agonist (+)202-791 and antagonist (-)202-791 competitively inhibited [125I] iodipine binding, with 50% inhibition concentrations of 20 and 300 nM, respectively. These data indicate the presence of dihydropyridine-sensitive calcium channels on parathyroid cell membranes

  8. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    2007-06-01

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  9. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans.

    Science.gov (United States)

    Winchester, Wendy J; Gore, Katrina; Glatt, Sophie; Petit, Wendy; Gardiner, Jennifer C; Conlon, Kelly; Postlethwaite, Michael; Saintot, Pierre-Philippe; Roberts, Sonia; Gosset, James R; Matsuura, Tomomi; Andrews, Mark D; Glossop, Paul A; Palmer, Michael J; Clear, Nicola; Collins, Susie; Beaumont, Kevin; Reynolds, David S

    2014-11-01

    The transient receptor potential (subfamily M, member 8; TRPM8) is a nonselective cation channel localized in primary sensory neurons, and is a candidate for cold thermosensing, mediation of cold pain, and bladder overactivity. Studies with TRPM8 knockout mice and selective TRPM8 channel blockers demonstrate a lack of cold sensitivity and reduced cold pain in various rodent models. Furthermore, TRPM8 blockers significantly lower body temperature. We have identified a moderately potent (IC50 = 103 nM), selective TRPM8 antagonist, PF-05105679 [(R)-3-[(1-(4-fluorophenyl)ethyl)(quinolin-3-ylcarbonyl)amino]methylbenzoic acid]. It demonstrated activity in vivo in the guinea pig bladder ice water and menthol challenge tests with an IC50 of 200 nM and reduced core body temperature in the rat (at concentrations >1219 nM). PF-05105679 was suitable for acute administration to humans and was evaluated for effects on core body temperature and experimentally induced cold pain, using the cold pressor test. Unbound plasma concentrations greater than the IC50 were achieved with 600- and 900-mg doses. The compound displayed a significant inhibition of pain in the cold pressor test, with efficacy equivalent to oxycodone (20 mg) at 1.5 hours postdose. No effect on core body temperature was observed. An unexpected adverse event (hot feeling) was reported, predominantly periorally, in 23 and 36% of volunteers (600- and 900-mg dose, respectively), which in two volunteers was nontolerable. In conclusion, this study supports a role for TRPM8 in acute cold pain signaling at doses that do not cause hypothermia. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Current of interacting particles inside a channel of exponential cavities: Application of a modified Fick-Jacobs equation.

    Science.gov (United States)

    Suárez, G; Hoyuelos, M; Mártin, H

    2016-06-01

    Recently a nonlinear Fick-Jacobs equation has been proposed for the description of transport and diffusion of particles interacting through a hard-core potential in tubes or channels of varying cross section [Suárez et al., Phys. Rev. E 91, 012135 (2015)]PLEEE81539-375510.1103/PhysRevE.91.012135. Here we focus on the analysis of the current and mobility when the channel is composed by a chain of asymmetric cavities and a force is applied in one or the opposite direction, for both interacting and noninteracting particles, and compare analytical and Monte Carlo simulation results. We consider a cavity with a shape given by exponential functions; the linear Fick-Jacobs equation for noninteracting particles can be exactly solved in this case. The results of the current difference (when a force is applied in opposite directions) are more accurate for the modified Fick-Jacobs equation for particles with hard-core interaction than for noninteracting ones.

  11. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  12. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  13. Calcium channel blockers inhibit endogenous pyrogen fever in rats and rabbits.

    Science.gov (United States)

    Stitt, J T; Shimada, S G

    1991-09-01

    We have previously shown that febrile responses in both rats and rabbits are elicited by the intravenous injection of a semipurified endogenous pyrogen (EP) prepared from human monocytes. We are now presenting evidence that these febrile responses are mediated via activation of Ca2+ channels by EP. The febrile responses of male New Zealand White rabbits and Sprague-Dawley rats to a standard dose of EP were determined at their respective thermoneutral ambient temperatures. The animals were then treated with Ca2+ channel blocker verapamil (7.5 mg/kg iv) 30-60 min before the EP challenge. In every case the febrile response to EP was markedly attenuated after verapamil pretreatment, while administration of verapamil by itself had no detectable effect on body temperature. Another Ca2+ channel blocker, nifedipine (5 mg/kg iv), was shown to possess antipyretic activity in rats also. To localize where in the fever pathway these Ca2+ channel blockers were acting, we investigated the effect of verapamil at the same dose on fevers that were produced by microinjection of prostaglandin E (PGE) directly into the brain. These PGE fevers were unaffected by verapamil pretreatment, indicating that the antipyretic action of Ca2+ channel blockers occurs before the formation of PGE in response to EP stimulation. The most likely locus of action is the activation of the enzyme phospholipase A2, which regulates the production of arachidonic acid from cellular phospholipids in the prostanoid cascade.

  14. Eddy current detection of spacers in the fuel channels of CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Krause, T.W.; Schankula, J.; Sullivan, S.P.

    2002-01-01

    Garter Spring (GS) spacers in the fuel channels of CANDU nuclear reactors maintain separation between the hot pressure tube and surrounding moderator cooled calandria tube. Eddy current detection of the four GSs provides assurance that spacers are at or close to design positions and are performing their intended function of maintaining a non-zero gap between pressure tube and calandria tube. Pressure tube constrictions, resulting from relatively less diametral creep at end-of-fuel bundle locations, also produce large eddy current signals. Large constrictions, present in higher service pressure tubes, can produce signals that are 10 times larger than GS signals, reducing GS detectability to 30% in standard GS-detect probes. The introduction of field-focussing elements into the design of the standard GS detection eddy current probe has been used to recover the detectability of GS spacers by increasing the signal amplitude obtained from GSs relative to that from constrictions by a factor of 10. The work presented here compares laboratory, modelling and in-reactor measurements of GS and constriction signals obtained from the standard probe with that obtained from field-focussed eddy current probe designs. (author)

  15. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  16. Activation of the Ca2+-sensing receptors increases currents through inward rectifier K+ channels via activation of phosphatidylinositol 4-kinase.

    Science.gov (United States)

    Liu, Chung-Hung; Chang, Hsueh-Kai; Lee, Sue-Ping; Shieh, Ru-Chi

    2016-11-01

    Inward rectifier K + channels are important for maintaining normal electrical function in many cell types. The proper function of these channels requires the presence of membrane phosphoinositide 4,5-bisphosphate (PIP 2 ). Stimulation of the Ca 2+ -sensing receptor CaR, a pleiotropic G protein-coupled receptor, activates both G q/11 , which decreases PIP 2 , and phosphatidylinositol 4-kinase (PI-4-K), which, conversely, increases PIP 2 . How membrane PIP 2 levels are regulated by CaR activation and whether these changes modulate inward rectifier K + are unknown. In this study, we found that activation of CaR by the allosteric agonist, NPSR568, increased inward rectifier K + current (I K1 ) in guinea pig ventricular myocytes and currents mediated by Kir2.1 channels exogenously expressed in HEK293T cells with a similar sensitivity. Moreover, using the fluorescent PIP 2 reporter tubby-R332H-cYFP to monitor PIP 2 levels, we found that CaR activation in HEK293T cells increased membrane PIP 2 concentrations. Pharmacological studies showed that both phospholipase C (PLC) and PI-4-K are activated by CaR stimulation with the latter played a dominant role in regulating membrane PIP 2 and, thus, Kir currents. These results provide the first direct evidence that CaR activation upregulates currents through inward rectifier K + channels by accelerating PIP 2 synthesis. The regulation of I K1 plays a critical role in the stability of the electrical properties of many excitable cells, including cardiac myocytes and neurons. Further, synthetic allosteric modulators that increase CaR activity have been used to treat hyperparathyroidism, and negative CaR modulators are of potential importance in the treatment of osteoporosis. Thus, our results provide further insight into the roles played by CaR in the cardiovascular system and are potentially valuable for heart disease treatment and drug safety.

  17. Experimental results on one-pion neutral current reaction in all channels induced by antineutrinos at CERN PS

    CERN Document Server

    Erriquez, O; Bullock, F W; Cavalli, D; Engel, J P; Fogli-Muciaccia, M T; Gamba, D; Guyonnet, J L; Halsteinslid, A; Henderson, R C W; Huss, D; Jones, T W; Marzari-Chiesa, A; Myklebost, K; Natali, S; Nuzzo, S; Paty, M; Pullia, A; Riccati, L; Riester, J L; Rognebakke, A; Rollier, M; Romero, A

    1980-01-01

    Single pion production, in antineutrino-nucleon interactions via the neutral current, has been studied in the bubble chamber Gargamelle, filled with propane. Complete analysis of the secondaries, including pi /sup 0/'s, has allowed a detailed study of all channels. After background and nuclear corrections, results are obtained which can be interpreted in terms of isospin structure of the neutral weak current and of the Salam-Weinberg angle. Agreement is found with the currently accepted value of sin/sup 2/ theta /sub w/ and the data suggest an important contribution of I=/sup 3///sub 2/ final states. (11 refs).

  18. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  19. Microcontroller based four-channel current readout unit for beam slit monitor

    International Nuclear Information System (INIS)

    Holikatti, A.C.; Puntambekar, T.A.; Pithawa, C.K.

    2009-01-01

    This paper describes the design and development of a microcontroller based four-channel current readout unit for Beam Slit Monitor (BSM) installed in Transport Line-1 of Indus Accelerator Complex. BSM is a diagnostic device consisting of two horizontal and two vertical blades, which can be moved independently in to the beam pipe to cut the beam transversely. The readout unit employs switched integrators with reset, hold and select switches and timing and control unit. It integrates the current output of the four blades of BSM and produces an output corresponding to the beam charge intercepted by the blade. The integrator outputs are then multiplexed and digitized using 12-bit ADC. Acquired digital data from ADC is stored into on-chip RAM of the microcontroller. The readout sequence is synchronized with the Microtron beam-timing signal. The timing of integration, hold and reset cycles is controlled by the microcontroller. The unit is connected on a serial link to the host computer in main control room. This unit has been integrated with the BSM system and is being used to obtain the electron beam profile. (author)

  20. External K+ dependence of strong inward rectifier K+ channel conductance is caused not by K+ but by competitive pore blockade by external Na.

    Science.gov (United States)

    Ishihara, Keiko

    2018-06-15

    Strong inward rectifier K + (sKir) channels determine the membrane potentials of many types of excitable and nonexcitable cells, most notably the resting potentials of cardiac myocytes. They show little outward current during membrane depolarization (i.e., strong inward rectification) because of the channel blockade by cytoplasmic polyamines, which depends on the deviation of the membrane potential from the K + equilibrium potential ( V - E K ) when the extracellular K + concentration ([K + ] out ) is changed. Because their open - channel conductance is apparently proportional to the "square root" of [K + ] out , increases/decreases in [K + ] out enhance/diminish outward currents through sKir channels at membrane potentials near their reversal potential, which also affects, for example, the repolarization and action-potential duration of cardiac myocytes. Despite its importance, however, the mechanism underlying the [K + ] out dependence of the open sKir channel conductance has remained elusive. By studying Kir2.1, the canonical member of the sKir channel family, we first show that the outward currents of Kir2.1 are observed under the external K + -free condition when its inward rectification is reduced and that the complete inhibition of the currents at 0 [K + ] out results solely from pore blockade caused by the polyamines. Moreover, the noted square-root proportionality of the open sKir channel conductance to [K + ] out is mediated by the pore blockade by the external Na + , which is competitive with the external K + Our results show that external K + itself does not activate or facilitate K + permeation through the open sKir channel to mediate the apparent external K + dependence of its open channel conductance. The paradoxical increase/decrease in outward sKir channel currents during alternations in [K + ] out , which is physiologically relevant, is caused by competition from impermeant extracellular Na . © 2018 Ishihara.

  1. Essential Tremor: What We Can Learn from Current Pharmacotherapy

    Directory of Open Access Journals (Sweden)

    William Ondo

    2016-03-01

    Full Text Available Background: The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. Methods: We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Results: Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective, has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. Discussion: To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  2. Essential Tremor: What We Can Learn from Current Pharmacotherapy.

    Science.gov (United States)

    Ondo, William

    2016-01-01

    The pathophysiology of essential tremor, especially at the cellular level, is poorly understood. Although no drug has been specifically designed to treat essential tremor, several medications improve tremor, and others worsen it. Studying the mechanism of actions of these medications can help our understanding of tremor pathophysiology and contribute to future rational drug design. We reviewed literature, concentrating on mechanisms of action, of various medications that mitigate tremor. Many medications have multiple mechanisms of actions, making simple correlations difficult. Medications that increase the duration of opening of gamma-aminobutyric acid (GABA)-A receptors are most consistently associated with tremor improvement. Interestingly, drugs that increase GABA availability have not been associated with improved tremor. Other mechanisms possibly associated with tremor improvement include antagonism of alpha-2 delta subunits associated with calcium channels, inhibition of carbonic anhydrase, and inhibition of the synaptic vesicle protein 2A. Drugs that block voltage-gaited sodium channels do not affect tremor. The ideal beta-adrenergic blocker requires B2 affinity (non-cardiac selective), has no sympathomimetic properties, does not require membrane stabilization properties, and may benefit from good central nervous system penetration. To date, serendipitous observations have provided most of our understanding of tremor cellular physiology. Based on similarities to currently effective drugs or rational approximations and inferences, several currently available agents should be considered for tremor trials.

  3. CaV3.1 isoform of T-type calcium channels supports excitability of rat and mouse ventral tegmental area neurons.

    Science.gov (United States)

    Tracy, Matthew E; Tesic, Vesna; Stamenic, Tamara Timic; Joksimovic, Srdjan M; Busquet, Nicolas; Jevtovic-Todorovic, Vesna; Todorovic, Slobodan M

    2018-03-23

    Recent data have implicated voltage-gated calcium channels in the regulation of the excitability of neurons within the mesolimbic reward system. While the attention of most research has centered on high voltage L-type calcium channel activity, the presence and role of the low voltage-gated T-type calcium channel (T-channels) has not been well explored. Hence, we investigated T-channel properties in the neurons of the ventral tegmental area (VTA) utilizing wild-type (WT) rats and mice, Ca V 3.1 knock-out (KO) mice, and TH-eGFP knock-in (KI) rats in acute horizontal brain slices of adolescent animals. In voltage-clamp experiments, we first assessed T-channel activity in WT rats with characteristic properties of voltage-dependent activation and inactivation, as well as characteristic crisscrossing patterns of macroscopic current kinetics. T-current kinetics were similar in WT mice and WT rats but T-currents were abolished in Ca V 3.1 KO mice. In ensuing current-clamp experiments, we observed the presence of hyperpolarization-induced rebound burst firing in a subset of neurons in WT rats, as well as dopaminergic and non-dopaminergic neurons in TH-eGFP KI rats. Following the application of a pan-selective T-channel blocker TTA-P2, rebound bursting was significantly inhibited in all tested cells. In a behavioral assessment, the acute locomotor increase induced by a MK-801 (Dizocilpine) injection in WT mice was abolished in Ca V 3.1 KO mice, suggesting a tangible role for 3.1 T-type channels in drug response. We conclude that pharmacological targeting of Ca V 3.1 isoform of T-channels may be a novel approach for the treatment of disorders of mesolimbic reward system. Copyright © 2018. Published by Elsevier Ltd.

  4. Attenuated response of L-type calcium current to nitric oxide in atrial fibrillation.

    Science.gov (United States)

    Rozmaritsa, Nadiia; Christ, Torsten; Van Wagoner, David R; Haase, Hannelore; Stasch, Johannes-Peter; Matschke, Klaus; Ravens, Ursula

    2014-03-01

    Nitric oxide (NO) synthesized by cardiomyocytes plays an important role in the regulation of cardiac function. Here, we studied the impact of NO signalling on calcium influx in human right atrial myocytes and its relation to atrial fibrillation (AF). Right atrial appendages (RAAs) were obtained from patients in sinus rhythm (SR) and AF. The biotin-switch technique was used to evaluate endogenous S-nitrosylation of the α1C subunit of L-type calcium channels. Comparing SR to AF, S-nitrosylation of Ca(2+) channels was similar. Direct effects of the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) on L-type calcium current (ICa,L) were studied in cardiomyocytes with standard voltage-clamp techniques. In SR, ICa,L increased with SNAP (100 µM) by 48%, n/N = 117/56, P < 0.001. The SNAP effect on ICa,L involved activation of soluble guanylate cyclase and protein kinase A. Specific inhibition of phosphodiesterase (PDE)3 with cilostamide (1 µM) enhanced ICa,L to a similar extent as SNAP. However, when cAMP was elevated by PDE3 inhibition or β-adrenoceptor stimulation, SNAP reduced ICa,L, pointing to cGMP-cAMP cross-regulation. In AF, the stimulatory effect of SNAP on ICa,L was attenuated, while its inhibitory effect on isoprenaline- or cilostamide-stimulated current was preserved. cGMP elevation with SNAP was comparable between the SR and AF group. Moreover, the expression of PDE3 and soluble guanylate cyclase was not reduced in AF. NO exerts dual effects on ICa,L in SR with an increase of basal and inhibition of cAMP-stimulated current, and in AF NO inhibits only stimulated ICa,L. We conclude that in AF, cGMP regulation of PDE2 is preserved, but regulation of PDE3 is lost.

  5. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  6. A 16-channel receive, forced current excitation dual-transmit coil for breast imaging at 7T.

    Directory of Open Access Journals (Sweden)

    Samantha By

    Full Text Available To enable high spatial and temporal breast imaging resolution via combined use of high field MRI, array coils, and forced current excitation (FCE multi channel transmit.A unilateral 16-channel receive array insert was designed for use in a transmit volume coil optimized for quadrature operation with dual-transmit RF shimming at 7 T. Signal-to-noise ratio (SNR maps, g-factor maps, and high spatial and temporal resolution in vivo images were acquired to demonstrate the utility of the coil architecture.The dual-transmit FCE coil provided homogeneous excitation and the array provided an increase in average SNR of 3.3 times (max 10.8, min 1.5 compared to the volume coil in transmit/receive mode. High resolution accelerated in vivo breast imaging demonstrated the ability to achieve isotropic spatial resolution of 0.5 mm within clinically relevant 90 s scan times, as well as the ability to perform 1.0 mm isotropic resolution imaging, 7 s per dynamics, with the use of bidirectional SENSE acceleration of up to R = 9.The FCE design of the transmit coil easily accommodates the addition of a sixteen channel array coil. The improved spatial and temporal resolution provided by the high-field array coil with FCE dual-channel transmit will ultimately be beneficial in lesion detection and characterization.

  7. Dynamic habitat corridors for marine predators; intensive use of a coastal channel by harbour seals is modulated by tidal currents.

    Science.gov (United States)

    Hastie, Gordon D; Russell, Deborah J F; Benjamins, Steven; Moss, Simon; Wilson, Ben; Thompson, Dave

    2016-01-01

    narrow coastal channel subject to strong tidal currents; results showed that seals spent the majority of their time at the narrowest point of the channel foraging during peak tidal currents. This highlights the importance of narrow channels for marine predators and suggests that this usually wide-ranging predator may restrict its geographic range to forage in the channel as a result of increased prey availability and/or foraging efficiency driven by water movements through the narrow corridor.

  8. The actions of mdivi-1, an inhibitor of mitochondrial fission, on rapidly activating delayed-rectifier K⁺ current and membrane potential in HL-1 murine atrial cardiomyocytes.

    Science.gov (United States)

    So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan

    2012-05-15

    Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes

    Science.gov (United States)

    Sutton, F.; Paul, S. S.; Wang, X. Q.; Assmann, S. M.; Evans, M. L. (Principal Investigator)

    2000-01-01

    Regulation of guard cell ion transport by abscisic acid (ABA) and in particular ABA inhibition of a guard cell inward K(+) current (I(Kin)) is well documented. However, little is known concerning ABA effects on ion transport in other plant cell types. Here we applied patch clamp techniques to mesophyll cell protoplasts of fava bean (Vicia faba cv Long Pod) plants and demonstrated ABA inhibition of an outward K(+) current (I(Kout)). When mesophyll cell protoplast mRNA (mesophyll mRNA) was expressed in Xenopus laevis oocytes, I(Kout) was generated that displayed similar properties to I(Kout) observed from direct analysis of mesophyll cell protoplasts. I(Kout) expressed by mesophyll mRNA-injected oocytes was inhibited by ABA, indicating that the ABA signal transduction pathway observed in mesophyll cells was preserved in the frog oocytes. Co-injection of oocytes with guard cell protoplast mRNA and cRNA for KAT1, an inward K(+) channel expressed in guard cells, resulted in I(Kin) that was similarly inhibited by ABA. However, oocytes co-injected with mesophyll mRNA and KAT1 cRNA produced I(Kin) that was not inhibited by ABA. These results demonstrate that the mesophyll-encoded signaling mechanism could not substitute for the guard cell pathway. These findings indicate that mesophyll cells and guard cells use distinct and different receptor types and/or signal transduction pathways in ABA regulation of K(+) channels.

  10. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Science.gov (United States)

    Rong, Mingqiang; Duan, Zhigui; Chen, Juliang; Li, Jianglin; Xiao, Yuchen; Liang, Songping

    2013-01-01

    Huwentoxin-IV (HWTX-IV), a tetrodotoxin-sensitive (TTX-s) sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV), having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms), mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms). Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  11. Native pyroglutamation of huwentoxin-IV: a post-translational modification that increases the trapping ability to the sodium channel.

    Directory of Open Access Journals (Sweden)

    Mingqiang Rong

    Full Text Available Huwentoxin-IV (HWTX-IV, a tetrodotoxin-sensitive (TTX-s sodium channel antagonist, is found in the venom of the Chinese spider Ornithoctonus huwena. A naturally modified HWTX-IV (mHWTX-IV, having a molecular mass 18 Da lower than HWTX-IV, has also been isolated from the venom of the same spider. By a combination of enzymatic fragmentation and MS/MS de novo sequencing, mHWTX-IV has been shown to have the same amino acid sequence as that of HWTX-IV, except that the N-terminal glutamic acid replaced by pyroglutamic acid. mHWTX-IV inhibited tetrodotoxin-sensitive voltage-gated sodium channels of dorsal root ganglion neurons with an IC50 nearly equal to native HWTX-IV. mHWTX-IV showed the same activation and inactivation kinetics seen for native HWTX-IV. In contrast with HWTX-IV, which dissociates at moderate voltage depolarization voltages (+50 mV, 180000 ms, mHWTX-IV inhibition of TTX-sensitive sodium channels is not reversed by strong depolarization voltages (+200 mV, 500 ms. Recovery of Nav1.7current was voltage-dependent and was induced by extreme depolarization in the presence of HWTX-IV, but no obvious current was elicited after application of mHWTX-IV. Our data indicate that the N-terminal modification of HWTX-IV gives the peptide toxin a greater ability to trap the voltage sensor in the sodium channel. Loss of a negative charge, caused by cyclization at the N-terminus, is a possible reason why the modified toxin binds much stronger. To our knowledge, this is the first report of a pyroglutamic acid residue in a spider toxin; this modification seems to increase the trapping ability of the voltage sensor in the sodium channel.

  12. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  13. Inwardly rectifying potassium channels influence Drosophila wing morphogenesis by regulating Dpp release.

    Science.gov (United States)

    Dahal, Giri Raj; Pradhan, Sarala Joshi; Bates, Emily Anne

    2017-08-01

    Loss of embryonic ion channel function leads to morphological defects, but the underlying reason for these defects remains elusive. Here, we show that inwardly rectifying potassium (Irk) channels regulate release of the Drosophila bone morphogenetic protein Dpp in the developing fly wing and that this is necessary for developmental signaling. Inhibition of Irk channels decreases the incidence of distinct Dpp-GFP release events above baseline fluorescence while leading to a broader distribution of Dpp-GFP. Work by others in different cell types has shown that Irk channels regulate peptide release by modulating membrane potential and calcium levels. We found calcium transients in the developing wing, and inhibition of Irk channels reduces the duration and amplitude of calcium transients. Depolarization with high extracellular potassium evokes Dpp release. Taken together, our data implicate Irk channels as a requirement for regulated release of Dpp, highlighting the importance of the temporal pattern of Dpp presentation for morphogenesis of the wing. © 2017. Published by The Company of Biologists Ltd.

  14. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  15. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    International Nuclear Information System (INIS)

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I R ) in the giant neurons of the marine snail, Aplysia californica. Using [ 3 H]AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A 2 , inhibited this liberation. Indomethacin at 250 μM was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I R in ways which were consistent with their biological effects: TPA inhibited I R , and both BPB and indomethacin stimulated I R . Modulation of I R by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I R ; however, I R in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I R was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I R

  16. The Opening of ATP-Sensitive K+ Channels Protects H9c2 Cardiac Cells Against the High Glucose-Induced Injury and Inflammation by Inhibiting the ROS-TLR4-Necroptosis Pathway

    Directory of Open Access Journals (Sweden)

    Weijie Liang

    2017-02-01

    Full Text Available Background/Aims: Hyperglycemia activates multiple signaling molecules, including reactive oxygen species (ROS, toll-like receptor 4 (TLR4, receptor-interacting protein 3 (RIP3, a kinase promoting necroptosis, which mediate hyperglycemia-induced cardiac injury. This study explored whether inhibition of ROS-TLR4-necroptosis pathway contributed to the protection of ATP-sensitive K+ (KATP channel opening against high glucose-induced cardiac injury and inflammation. Methods: H9c2 cardiac cells were treated with 35 mM glucose (HG to establish a model of HG-induced insults. The expression of RIP3 and TLR4 were tested by western blot. Generation of ROS, cell viability, mitochondrial membrane potential (MMP and secretion of inflammatory cytokines were measured as injury indexes. Results: HG increased the expression of TLR4 and RIP3. Necrostatin-1 (Nec-1, an inhibitor of necroptosis or TAK-242 (an inhibitor of TLR4 co-treatment attenuated HG-induced up-regulation of RIP3. Diazoxide (DZ, a mitochondrial KATP channel opener or pinacidil (Pin, a non-selective KATP channel opener or N-acetyl-L-cysteine (NAC, a ROS scavenger pre-treatment blocked the up-regulation of TLR4 and RIP3. Furthermore, pre-treatment with DZ or Pin or NAC, or co-treatment with TAK-242 or Nec-1 attenuated HG-induced a decrease in cell viability, and increases in ROS generation, MMP loss and inflammatory cytokines secretion. However, 5-hydroxy decanoic acid (5-HD, a mitochondrial KATP channel blocker or glibenclamide (Gli, a non-selective KATP channel blocker pre-treatment did not aggravate HG-induced injury and inflammation. Conclusion: KATP channel opening protects H9c2 cells against HG-induced injury and inflammation by inhibiting ROS-TLR4-necroptosis pathway.

  17. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge

    Science.gov (United States)

    Shmukler, Yuri B.; Nikishin, Denis A.

    2017-01-01

    Ciguatoxins (CTX) and brevetoxins (BTX) are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism. PMID:28726749

  18. Ladder-Shaped Ion Channel Ligands: Current State of Knowledge

    Directory of Open Access Journals (Sweden)

    Yuri B. Shmukler

    2017-07-01

    Full Text Available Ciguatoxins (CTX and brevetoxins (BTX are polycyclic ethereal compounds biosynthesized by the worldwide distributed planktonic and epibenthic dinoflagellates of Gambierdiscus and Karenia genera, correspondingly. Ciguatera, evoked by CTXs, is a type of ichthyosarcotoxism, which involves a variety of gastrointestinal and neurological symptoms, while BTXs cause so-called neurotoxic shellfish poisoning. Both types of toxins are reviewed together because of similar mechanisms of their action. These are the only molecules known to activate voltage-sensitive Na+-channels in mammals through a specific interaction with site 5 of its α-subunit and may compete for it, which results in an increase in neuronal excitability, neurotransmitter release and impairment of synaptic vesicle recycling. Most marine ciguatoxins potentiate Nav channels, but a considerable number of them, such as gambierol and maitotoxin, have been shown to affect another ion channel. Although the extrinsic function of these toxins is probably associated with the function of a feeding deterrent, it was suggested that their intrinsic function is coupled with the regulation of photosynthesis via light-harvesting complex II and thioredoxin. Antagonistic effects of BTXs and brevenal may provide evidence of their participation as positive and negative regulators of this mechanism.

  19. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  20. Orai3 channel is the 2-APB-induced endoplasmic reticulum calcium leak.

    Science.gov (United States)

    Leon-Aparicio, Daniel; Pacheco, Jonathan; Chavez-Reyes, Jesus; Galindo, Jose M; Valdes, Jesus; Vaca, Luis; Guerrero-Hernandez, Agustin

    2017-07-01

    We have studied in HeLa cells the molecular nature of the 2-APB induced ER Ca 2+ leak using synthetic Ca 2+ indicators that report changes in both the cytoplasmic ([Ca 2+ ] i ) and the luminal ER ([Ca 2+ ] ER ) Ca 2+ concentrations. We have tested the hypothesis that Orai channels participate in the 2-APB-induced ER Ca 2+ leak that was characterized in the companion paper. The expression of the dominant negative Orai1 E106A mutant, which has been reported to block the activity of all three types of Orai channels, inhibited the effect of 2-APB on the [Ca 2+ ] ER but did not decrease the ER Ca 2+ leak after thapsigargin (TG). Orai3 channel, but neither Orai1 nor Orai2, colocalizes with expressed IP 3 R and only Orai3 channel supported the 2-APB-induced ER Ca 2+ leak, while Orai1 and Orai2 inhibited this type of ER Ca 2+ leak. Decreasing the expression of Orai3 inhibited the 2-APB-induced ER Ca 2+ leak but did not modify the ER Ca 2+ leak revealed by inhibition of SERCA pumps with TG. However, reducing the expression of Orai3 channel resulted in larger [Ca 2+ ] i response after TG but only when the ER store had been overloaded with Ca 2+ by eliminating the acidic internal Ca 2+ store with bafilomycin. These data suggest that Orai3 channel does not participate in the TG-revealed ER Ca 2+ leak but forms an ER Ca 2+ leak channel that is limiting the overloading with Ca 2+ of the ER store. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  2. Determining k channel activation curves from k channel currents often requires the goldman-hodgkin-katz equation.

    Science.gov (United States)

    Clay, John R

    2009-01-01

    Potassium ion current in nerve membrane, I(K), has traditionally been described by I(K) = g(K)(V - E(K)), where g(K) is the K ion conductance, V is membrane potential and E(K) is the K(+) Nernst potential. This description has been unchallenged by most investigators in neuroscience since its introduction almost 60 years ago. The problem with the I(K) approximately (V - E(K)) proportionality is that it is inconsistent with the unequal distribution of K ions in the intra- and extracellular bathing media. Under physiological conditions the intracellular K(+) concentration is significantly higher than the extracellular concentration. Consequently, the slope conductance at potentials positive to E(K) cannot be the same as that for potentials negative to E(K), as the linear proportionality between I(K) and (V - E(K)) requires. Instead I(K) has a non-linear dependence on (V - E(K)) which is well described by the Goldman-Hodgkin-Katz equation. The implications of this result for K(+) channel gating and membrane excitability are reviewed in this report.

  3. The Role of Ca2+ and BK Channels of Locus Coeruleus (LC) Neurons as a Brake to the CO2 Chemosensitivity Response of Rats.

    Science.gov (United States)

    Imber, Ann N; Patrone, Luis G A; Li, Ke-Yong; Gargaglioni, Luciane H; Putnam, Robert W

    2018-06-15

    The cellular mechanisms by which LC neurons respond to hypercapnia are usually attributed to an "accelerator" whereby hypercapnic acidosis causes an inhibition of K + channels or activation of Na + and Ca +2 channels to depolarize CO 2 -sensitive neurons. Nevertheless, it is still unknown if this "accelerator" mechanism could be controlled by a brake phenomenon. Whole-cell patch clamping, fluorescence imaging microscopy and plethysmography were used to study the chemosensitive response of the LC neurons. Hypercapnic acidosis activates L-type Ca 2+ channels and large conductance Ca-activated K + (BK) channels, which function as a "brake" on the chemosensitive response of LC neurons. Our findings indicate that both Ca 2+ and BK currents develop over the first 2 weeks of postnatal life in rat LC slices and that this brake pathway may cause the developmental decrease in the chemosensitive firing rate response of LC neurons to hypercapnic acidosis. Inhibition of this brake by paxilline (BK channel inhibitor) returns the magnitude of the chemosensitive firing rate response from LC neurons in rats older than P10 to high values similar to those in LC neurons from younger rats. Inhibition of BK channels in LC neurons by bilateral injections of paxilline into the LC results in a significant increase in the hypercapnic ventilatory response of adult rats. Our findings indicate that a BK channel-based braking system helps to determine the chemosensitive respiratory drive of LC neurons and contributes to the hypercapnic ventilatory response. Perhaps, abnormalities of this braking system could result in hypercapnia-induced respiratory disorders and panic responses. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, Trine Meldgaard; Belhage, B

    2001-01-01

    The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... channels were differentially distributed in somata, neurites and nerve terminals. omega-conotoxin MVIIC (omega-CgTx MVIIC) inhibited approximately 40% of the Ca(2+)-rise in both somata and neurites and 60% of the potassium induced [3H]GABA release, indicating that the Q-type channel is the quantitatively...... most important voltage dependent calcium channel in all parts of the neuron. After treatment with thapsigargin the increase in cytosolic calcium was halved, indicating that calcium release from thapsigargin sensitive intracellular calcium stores is an important component of the potassium induced rise...

  5. The action of blocking agents applied to the inner face of Ca(2+)-activated K+ channels from human erythrocytes.

    Science.gov (United States)

    Dunn, P M

    1998-09-15

    The actions of clotrimazole and cetiedil, two drugs known to inhibit the Gardos channel, have been studied on single intermediate conductance calcium-activated potassium (IKCa) channels in inside out patches from human red blood cells, and compared with those of TEA and Ba2+ applied to the cytoplasmic face of the membrane. TEA produced a fast block which was observed as a reduction in the amplitude of the single channel current. This effect was weakly voltage dependent with the fraction of the membrane potential sensed by TEA at its binding site (delta) of 0.18 and a Kd at 0 mV of 20.5 mM. Ba2+ was a very potent blocker of the channel, breaking the single channel activity up into bursts, inter-spersed with silent periods lasting several seconds. The effect of Ba2+ was very voltage sensitive, delta = 0.44, and a Kd at 0 mV of 0.15 microM. Clotrimazole applied to the inner face of the membrane at a concentration block resulting in bursts of channel activity separated by quiescent periods lasting many seconds. The effect of clotrimazole was mimicked by a quaternary derivative UCL 1559, in keeping with an action at the cytoplasmic face of the channel. A high concentration of cetiedil (100 microM) produced only a weak block of the channel. The kinetics of this action were very slow, with burst and inter-burst intervals lasting several minutes. While inhibition of the Gardos channel by cetiedil is unlikely to involve an intracellular site of action, if clotrimazole is able to penetrate the membrane, part of its effect may result from binding to an intracellular site on the channel.

  6. Vortex currents in turbulent superfluid and classical fluid channel flow, the magnus effect, and Goldstone boson fields

    International Nuclear Information System (INIS)

    Huggins, E.R.

    1994-01-01

    Expressing hydrodynamics in terms of the flow of vorticity, using the vortex current tensor, helps unify the picture of turbulent channel flow for viscous fluids and for superfluids. In both, eddy viscosity plays a major role in energy dissipation, and in both there is a similar cross stream flow of vorticity, which in the case of superfluids leads to the Josephson frequency. The vortex current tensor, which was introduced in an earlier paper to derive an exact three dimensional Magnus effect formula, turns out to be the classical hydrodynamic limit of the vortex current that is the source for a classical Goldstone-boson field

  7. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Lu; McVey Neufeld, Karen-Anne; Mao, Yu-Kang; Ahmadzai, Mustafa; Janssen, Luke J; Stanisz, Andrew M; Bienenstock, John; Kunze, Wolfgang A

    2015-01-01

    Abstract Certain bacteria exert visceral antinociceptive activity, but the mechanisms involved are not determined. Lactobacillus reuteri DSM 17938 was examined since it may be antinociceptive in children. Since transient receptor potential vanilloid 1 (TRPV1) channel activity may mediate nociceptive signals, we hypothesized that TRPV1 current is inhibited by DSM. We tested this by examining the effect of DSM on the firing frequency of spinal nerve fibres in murine jejunal mesenteric nerve bundles following serosal application of capsaicin. We also measured the effects of DSM on capsaicin-evoked increase in intracellular Ca2+ or ionic current in dorsal root ganglion (DRG) neurons. Furthermore, we tested the in vivo antinociceptive effects of oral DSM on gastric distension in rats. Live DSM reduced the response of capsaicin- and distension-evoked firing of spinal nerve action potentials (238 ± 27.5% vs. 129 ± 17%). DSM also reduced the capsaicin-evoked TRPV1 ionic current in DRG neuronal primary culture from 83 ± 11% to 41 ± 8% of the initial response to capsaicin only. Another lactobacillus (Lactobacillus rhamnosus JB-1) with known visceral anti-nociceptive activity did not have these effects. DSM also inhibited capsaicin-evoked Ca2+ increase in DRG neurons; an increase in Ca2+ fluorescence intensity ratio of 2.36 ± 0.31 evoked by capsaicin was reduced to 1.25 ± 0.04. DSM releasable products (conditioned medium) mimicked DSM inhibition of capsaicin-evoked excitability. The TRPV1 antagonist 6-iodonordihydrocapsaicin or the use of TRPV1 knock-out mice revealed that TRPV1 channels mediate about 80% of the inhibitory effect of DSM on mesenteric nerve response to high intensity gut distension. Finally, feeding with DSM inhibited perception in rats of painful gastric distension. Our results identify a specific target channel for a probiotic with potential therapeutic properties. Key points Certain probiotic bacteria have been shown to reduce distension

  8. The chloride channel inhibitor NS3736 [corrected] prevents bone resorption in ovariectomized rats without changing bone formation

    DEFF Research Database (Denmark)

    Schaller, Sophie; Henriksen, Kim; Sveigaard, Christina

    2004-01-01

    , appearing mainly in osteoclasts, ovaries, appendix, and Purkinje cells. This highly selective distribution predicts that inhibition of ClC-7 should specifically target osteoclasts in vivo. We suggest that NS3736 is inhibiting ClC-7, leading to a bone-specific effect in vivo. RESULTS AND CONCLUSION......Chloride channel activity is essential for osteoclast function. Consequently, inhibition of the osteoclastic chloride channel should prevent bone resorption. Accordingly, we tested a chloride channel inhibitor on bone turnover and found that it inhibits bone resorption without affecting bone...... for osteoporosis, daily treatment with 30 mg/kg orally protected bone strength and BMD by approximately 50% 6 weeks after surgery. Most interestingly, bone formation assessed by osteocalcin, mineral apposition rate, and mineralized surface index was not inhibited. MATERIALS AND METHODS: Analysis of chloride...

  9. Antibodies to the CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels.

    Science.gov (United States)

    Leonhardt, N; Bazin, I; Richaud, P; Marin, E; Vavasseur, A; Forestier, C

    2001-04-06

    The plasma membrane guard cell slow anion channel is a key element at the basis of water loss control in plants allowing prolonged osmolite efflux necessary for stomatal closure. This channel has been extensively studied by electrophysiological approaches but its molecular identification is still lacking. Recently, we described that this channel was sharing some similarities with the mammalian ATP-binding cassette protein, cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel [Leonhardt, N. et al. (1999) Plant Cell 11, 1141-1151]. Here, using the patch-clamp technique and a bioassay, consisting in the observation of the change in guard cell protoplasts volume, we demonstrated that a functional antibody raised against the mammalian CFTR prevented ABA-induced guard cell protoplasts shrinking and partially inhibited the slow anion current. Moreover, this antibody immunoprecipitated a polypeptide from guard cell protein extracts and immunolabeled stomata in Vicia faba leaf sections. These results indicate that the guard cell slow anion channel is, or is closely controlled by a polypeptide, exhibiting one epitope shared with the mammalian CFTR.

  10. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  11. Closure of multiple types of K+ channels is necessar to induce changes in renal vascular resistance in vivo in rats

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Giese, Isaiah; Braunstein, Thomas Hartig

    2011-01-01

    Inhibition of K(+) channels might mediate renal vasoconstriction. As inhibition of a single type of K(+) channel caused minor or no renal vasoconstriction in vivo in rats, we hypothesized that several classes of K(+) channels must be blocked to elicit renal vasoconstriction. We measured renal blo...

  12. Comparison between the effects of positive noncatastrophic HMB ESD stress in n-channel and p-channel power MOSFET's

    Science.gov (United States)

    Zupac, Dragan; Kosier, Steven L.; Schrimpf, Ronald D.; Galloway, Kenneth F.; Baum, Keith W.

    1991-10-01

    The effect of noncatastrophic positive human body model (HBM) electrostatic discharge (ESD) stress on n-channel power MOSFETs is radically different from that on p-channel MOSFETs. In n-channel transistors, the stress causes negative shifts of the current-voltage characteristics indicative of positive charge trapping in the gate oxide. In p-channel transistors, the stress increases the drain-to-source leakage current, probably due to localized avalanche electron injection from the p-doped drain.

  13. Effects of endothelin, calcium channel blockade and EDRF inhibition on the contractility of human uteroplacental arteries.

    Science.gov (United States)

    Fried, G; Liu, Y A

    1994-08-01

    In order to examine the possibility that endothelin might be important in the regulation of placental blood flow, human uteroplacental vessels were superfused in vitro to study the contractile effect of endothelin as compared with a known strong contractor of placental blood vessels, serotonin (5-HT). The contractile responses were compared in the presence and absence of calcium channel blocking agents, as well as in the presence of L-NMA, an inhibitor of EDRF/nitric oxide. Endothelin (ET, 10(-10)-10(-6) M) and 5-HT (10(-8)-10(-4) M) induced contractions in the vessels. Maximal contractions in the presence of endothelin were elicited at 10(-7) M, whereas 5-HT elicited maximal contractions at 10(-5) M. At 10(-7) M, ET was more potent than 5-HT. The calcium-channel blocking agents nifedipine, diltiazem and NiCl2 relaxed the vessels by 5-15% from baseline. The contractile response to ET in the presence of nifedipine or diltiazem was reduced by 55 and 67%, respectively. The response of 5-HT in the presence of nifedipine was reduced by 58%. The contractile response to 5-HT as well as ET in the presence of both nifedipine and NiCl2 was not significantly lower than in the presence of nifedipine only. The EDRF-inhibiting agent L-NMA caused a small contractile response at concentrations of 10(-6)-10(-5) M. ET as well as 5-HT added after pretreatment with L-NMA produced a larger contractile response than ET or 5-HT alone. The results show that ET has a strong contractile effect on placental blood vessels at concentrations likely to occur during labor and delivery. The mechanism whereby ET as well as 5-HT contracts placental vessel smooth muscle appears to partly involve nifedipine- and diltiazem-sensitive calcium channels, but almost half of the response depends on mobilization of calcium through other means.

  14. Context-Dependent Modulation of αβγ and αβγ GABAA Receptors by Penicillin: Implications for Phasic and Tonic Inhibition

    OpenAIRE

    Feng, Hua-Jun; Botzolakis, Emmanuel J.; Macdonald, Robert L.

    2008-01-01

    Penicillin, an open-channel blocker of GABAA receptors, was recently reported to inhibit phasic, but not tonic, currents in hippocampal neurons. To distinguish between isoform-specific and context-dependent modulation as possible explanations for this selectivity, the effects of penicillin were evaluated on recombinant GABAA receptors expressed in HEK293T cells. When co-applied with saturating GABA, penicillin decreased peak amplitude, induced rebound, and prolonged deactivation of currents e...

  15. Inhibition of the cardiac ATP-dependent potassium current by KB-R7943.

    Science.gov (United States)

    Abramochkin, Denis V; Vornanen, Matti

    2014-09-01

    KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea) was developed as a specific inhibitor of the sarcolemmal sodium-calcium exchanger (NCX) with potential experimental and therapeutic use. However, in cardiomyocytes KB-R7943 also effectively blocks several K(+) currents including the delayed rectifier, IKr, and background inward rectifier, IK1. In the present study we analyze the effects of KB-R7943 on the ATP-dependent potassium current (IKATP) recorded by whole-cell patch-clamp in ventricular cardiomyocytes from a mammal (mouse) and a fish (crucian carp). IKATP was induced by external application of a mitochondrial uncoupler CCCP (3×10(-7) M) and internal perfusion of the cell with ATP-free pipette solution. A weakly inwardly rectifying current with a large outward component, recorded in the presence of CCCP, was blocked with 10(-5) M glibenclamide by 56.1±4.6% and 56.9±3.6% in crucian carp and mouse ventricular myocytes, respectively. In fish cardiomyocytes IKATP was blocked by KB-R7943 with an IC50 value of 3.14×10(-7) M, while in mammalian cells IC50 was 2.8×10(-6) M (PKB-R7943 inhibited CCCP-induced IKATP by 99.9±0.13% and 97.5±1.2% in crucian carp and mouse ventricular myocytes, respectively. In crucian carp the IKATP is about an order of magnitude more sensitive to KB-R7943 than the background IK1, but in mammals IKATP and IK1 are almost equally sensitive to KB-R7943. Therefore, the ability of KB-R7943 to block IKATP should be taken into account together with INCX inhibition when investigating possible cardioprotective effects of this compound. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels.

    Science.gov (United States)

    Tejada, Maria A; Stople, Kathleen; Hammami Bomholtz, Sofia; Meinild, Anne-Kristine; Poulsen, Asser Nyander; Klaerke, Dan A

    2014-01-01

    Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  17. Rab27a regulates epithelial sodium channel (ENaC) activity through synaptotagmin-like protein (SLP-5) and Munc13-4 effector mechanism

    International Nuclear Information System (INIS)

    Saxena, Sunil K.; Horiuchi, Hisanori; Fukuda, Mitsunori

    2006-01-01

    Liddle's syndrome (excessive absorption of sodium ions) and PHA-1 (pseudohypoaldosteronism type 1) with decreased sodium absorption are caused by the mutations in the amiloride-sensitive epithelial sodium channel ENaC. Rab proteins are small GTPases involved in vesicle transport, docking, and fusion. Earlier, we reported that Rab27a inhibits ENaC-mediated currents through protein-protein interaction in HT-29 cells. We hereby report that Rab27a-dependent inhibition is associated with the GTP/GDP status as constitutively active or GTPase-deficient mutant Q78L inhibits amiloride-sensitive currents whereas GDP-locked inactive mutant T23N showed no effect. In order to further explore the molecular mechanism of this regulation, we performed competitive assays with two Rab27a-binding proteins: synaptotagmin-like protein (SLP-5) and Munc13-4 (a putative priming factor for exocytosis). Both proteins eliminate negative modulation of Rab27a on ENaC function. The SLP-5 reversal of Rab27a effect was restricted to C-terminal C2A/C2B domains assigned for putative phospholipids-binding function while the Rab27a-binding SHD motif imparted higher inhibition. The ENaC-mediated currents remain unaffected by Rab27a though SLP-5 appears to strongly bind it. The immunoprecipitation experiments suggest that in the presence of excessive Munc13-4 and SLP-5 proteins, Rab27a interaction with ENaC is diminished. Munc13-4 and SLP-5 limit the Rab27a availability to ENaC, thus minimizing its effect on channel function. These observations decisively prove that Rab27a inhibits ENaC function through a complex mechanism that involves GTP/GDP status, and protein-protein interactions involving Munc13-4 and SLP-5 effector proteins

  18. Targeting channels and transporters in protozoan parasite infections

    Science.gov (United States)

    Meier, Anna; Erler, Holger; Beitz, Eric

    2018-03-01

    Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e. channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease) and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).

  19. Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium

    Science.gov (United States)

    Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har

    2015-01-01

    Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the

  20. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  1. Research on corrosion mechanism of suspension insulator steel foot of direct current system and measures for corrosion inhibition

    Science.gov (United States)

    Chen, He; Yang, Yueguang; Su, Guolei; Wang, Xiaoqing; Zhang, Hourong; Sun, Xiaoyu; Fan, Youping

    2017-09-01

    There are increasingly serious electrocorrosion phenomena on insulator hardware caused by direct current transmission due to the wide-range popularization of extra high voltage direct current transmission engineering in our country. Steel foot corrosion is the main corrosion for insulators on positive polarity side of transmission lines. On one hand, the corrosion leads to the tapering off of steel foot diameter, having a direct influence on mechanical property of insulators; on the other hand, in condition of corrosion on steel foot wrapped in porcelain ware, the volume of the corrosion product is at least 50% more than that of the original steel foot, leading to bursting of porcelain ware, threatening safe operation of transmission lines. Therefore, it is necessary to conduct research on the phenomenon and propose feasible measures for corrosion inhibition. Starting with the corrosion mechanism, this article proposes two measures for corrosion inhibition, and verifies the inhibition effect in laboratory conditions, providing reference for application in engineering.

  2. Kv4 channels underlie the subthreshold-operating A-type K+-current in nociceptive dorsal root ganglion neurons

    Directory of Open Access Journals (Sweden)

    Thanawath R Na Phuket

    2009-07-01

    Full Text Available The dorsal root ganglion (DRG contains heterogeneous populations of sensory neurons including primary nociceptive neurons and C-fibers implicated in pain signaling.  Recent studies have demonstrated DRG hyperexcitability associated with downregulation of A-type K+ channels; however, the molecular correlate of the corresponding A-type K+ current (IA has remained hypothetical.  Kv4 channels may underlie the IA in DRG neurons.  We combined electrophysiology, molecular biology (whole-tissue and single-cell RT-PCR and immunohistochemistry to investigate the molecular basis of the IA in acutely dissociated DRG neurons from 7-8 day-old rats.  Whole-cell recordings demonstrate a robust tetraethylammonium-resistant (20 mM and 4-aminopyridine-sensitive (5 mM IA.  Matching Kv4 channel properties, activation and inactivation of this IA occur in the subthreshold range of membrane potentials and the rate of recovery from inactivation is rapid and voltage-dependent.  Among Kv4 transcripts, the DRG expresses significant levels of Kv4.1 and Kv4.3 mRNAs.  Also, single small-medium diameter DRG neurons (~30 mm exhibit correlated frequent expression of mRNAs encoding Kv4.1 and Nav1.8, a known nociceptor marker.  In contrast, the expressions of Kv1.4 and Kv4.2 mRNAs at the whole-tissue and single-cell levels are relatively low and infrequent.  Kv4 protein expression in nociceptive DRG neurons was confirmed by immunohistochemistry, which demonstrates colocalization of Kv4.3 and Nav1.8, and negligible expression of Kv4.2.  Furthermore, specific dominant-negative suppression and overexpression strategies confirmed the contribution of Kv4 channels to IA in DRG neurons.  Contrasting the expression patterns of Kv4 channels in the central and peripheral nervous systems, we discuss possible functional roles of these channels in primary sensory neurons.

  3. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  4. The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia

    DEFF Research Database (Denmark)

    Grunnet, Morten; Rasmussen, Hanne B; Hay-Schmidt, Anders

    2003-01-01

    The Shaker-type voltage-gated potassium channel, Kv1.3, is believed to be restricted in distribution to lymphocytes and neurons. In lymphocytes, this channel has gained intense attention since it has been proven that inhibition of Kv1.3 channels compromise T lymphocyte activation. To investigate...

  5. Zebrafish CaV2.1 Calcium Channels Are Tailored for Fast Synchronous Neuromuscular Transmission

    Science.gov (United States)

    Naranjo, David; Wen, Hua; Brehm, Paul

    2015-01-01

    The CaV2.2 (N-type) and CaV2.1 (P/Q-type) voltage-dependent calcium channels are prevalent throughout the nervous system where they mediate synaptic transmission, but the basis for the selective presence at individual synapses still remains an open question. The CaV2.1 channels have been proposed to respond more effectively to brief action potentials (APs), an idea supported by computational modeling. However, the side-by-side comparison of CaV2.1 and CaV2.2 kinetics in intact neurons failed to reveal differences. As an alternative means for direct functional comparison we expressed zebrafish CaV2.1 and CaV2.2 α-subunits, along with their accessory subunits, in HEK293 cells. HEK cells lack calcium currents, thereby circumventing the need for pharmacological inhibition of mixed calcium channel isoforms present in neurons. HEK cells also have a simplified morphology compared to neurons, which improves voltage control. Our measurements revealed faster kinetics and shallower voltage-dependence of activation and deactivation for CaV2.1. Additionally, recordings of calcium current in response to a command waveform based on the motorneuron AP show, directly, more effective activation of CaV2.1. Analysis of calcium currents associated with the AP waveform indicate an approximately fourfold greater open probability (PO) for CaV2.1. The efficient activation of CaV2.1 channels during APs may contribute to the highly reliable transmission at zebrafish neuromuscular junctions. PMID:25650925

  6. The Methanolic Extract from Murraya koenigii L. Inhibits Glutamate-Induced Pain and Involves ATP-Sensitive K+ Channel as Antinociceptive Mechanism

    Directory of Open Access Journals (Sweden)

    Nushrat Sharmin Ani

    2016-01-01

    Full Text Available Murraya koenigii L. is a perennial shrub, belonging to the family Rutaceae. Traditionally, the leaves of this plant are extensively used in treatment of a wide range of diseases and disorders including pain and inflammation. Although researchers have revealed the antinociceptive effects of this plant’s leaves during past few years, the mechanisms underlying these effects are still unknown. Therefore, the present study evaluated some antinociceptive mechanisms of the methanolic extract of M. koenigii (MEMK leaves along with its antinociceptive potential using several animal models. The antinociceptive effects of MEMK were evaluated using formalin-induced licking and acetic acid-induced writhing tests at the doses of 50, 100, and 200 mg/kg. In addition, we also justified the possible participations of glutamatergic system and ATP-sensitive potassium channels in the observed activities. Our results demonstrated that MEMK significantly (p<0.01 inhibited the pain thresholds induced by formalin and acetic acid in a dose-dependent manner. MEMK also significantly (p<0.01 suppressed glutamate-induced pain. Moreover, pretreatment with glibenclamide (an ATP-sensitive potassium channel blocker at 10 mg/kg significantly (p<0.05 reversed the MEMK-mediated antinociception. These revealed that MEMK might have the potential to interact with glutamatergic system and the ATP-sensitive potassium channels to exhibit its antinociceptive activities. Therefore, our results strongly support the antinociceptive effects of M. koenigii leaves and provide scientific basis of their analgesic uses in the traditional medicine.

  7. Opening of the inward rectifier potassium channel alleviates maladaptive tissue repair following myocardial infarction.

    Science.gov (United States)

    Liu, Chengfang; Liu, Enli; Luo, Tiane; Zhang, Weifang; He, Rongli

    2016-08-01

    Activation of the inward rectifier potassium current (IK1) channel has been reported to be associated with suppression of ventricular arrhythmias. In this study, we tested the hypothesis that opening of the IK1 channel with zacopride (ZAC) was involved in the modulation of tissue repair after myocardial infarction. Sprague-Dawley rats were subject to coronary artery ligation and ZAC was administered intraperitoneally (15 µg/kg/day) for 28 days. Compared with the ischemia group, treatment with ZAC significantly reduced the ratio of heart/body weight and the cross-sectional area of cardiomyocytes, suggesting less cardiac hypertrophy. ZAC reduced the accumulation of collagen types I and III, accompanied with decrease of collagen area, which were associated with a reduction of collagen deposition in the fibrotic myocardium. Echocardiography showed improved cardiac function, evidenced by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension, and the increased ejection fraction and fractional shortening in ZAC-treated animals (all P < 0.05 vs. ischemia group). In coincidence with these changes, ZAC up-regulated the protein level of the IK1 channel and down-regulated the phosphorylation of mammalian target of rapamycin (mTOR) and 70-kDa ribosomal protein S6 (p70S6) kinase. Administration of chloroquine alone, an IK1 channel antagonist, had no effect on all the parameters measured, but significantly blocked the beneficial effects of ZAC on cardiac repair. In conclusion, opening of the IK1 channel with ZAC inhibits maladaptive tissue repair and improves cardiac function, potentially mediated by the inhibition of ischemia-activated mTOR-p70S6 signaling pathway via the IK1 channel. So the development of pharmacological agents specifically targeting the activation of the IK1 channel may protect the heart against myocardial ischemia-induced cardiac dysfunction. © The Author 2016. Published by Oxford University Press on behalf of

  8. The TRPC1 Ca2+-permeable channel inhibits exercise-induced protection against high-fat diet-induced obesity and type II diabetes.

    Science.gov (United States)

    Krout, Danielle; Schaar, Anne; Sun, Yuyang; Sukumaran, Pramod; Roemmich, James N; Singh, Brij B; Claycombe-Larson, Kate J

    2017-12-15

    The transient receptor potential canonical channel-1 (TRPC1) is a Ca 2+ -permeable channel found in key metabolic organs and tissues, including the hypothalamus, adipose tissue, and skeletal muscle. Loss of TRPC1 may alter the regulation of cellular energy metabolism resulting in insulin resistance thereby leading to diabetes. Exercise reduces insulin resistance, but it is not known whether TRPC1 is involved in exercise-induced insulin sensitivity. The role of TRPC1 in adiposity and obesity-associated metabolic diseases has not yet been determined. Our results show that TRPC1 functions as a major Ca 2+ entry channel in adipocytes. We have also shown that fat mass and fasting glucose concentrations were lower in TRPC1 KO mice that were fed a high-fat (HF) (45% fat) diet and exercised as compared with WT mice fed a HF diet and exercised. Adipocyte numbers were decreased in both subcutaneous and visceral adipose tissue of TRPC1 KO mice fed a HF diet and exercised. Finally, autophagy markers were decreased and apoptosis markers increased in TRPC1 KO mice fed a HF diet and exercised. Overall, these findings suggest that TRPC1 plays an important role in the regulation of adiposity via autophagy and apoptosis and that TRPC1 inhibits the positive effect of exercise on type II diabetes risk under a HF diet-induced obesity environment.

  9. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored...... during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle...

  10. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels

    DEFF Research Database (Denmark)

    Hansen, P B L

    2013-01-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L......-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular...... vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore...

  11. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions...

  12. Mechanism for modulation of gating of connexin26-containing channels by taurine

    Science.gov (United States)

    Kieken, Fabien; Tao, Liang; Sorgen, Paul L.; Harris, Andrew L.

    2011-01-01

    The mechanisms of action of endogenous modulatory ligands of connexin channels are largely unknown. Previous work showed that protonated aminosulfonates (AS), notably taurine, directly and reversibly inhibit homomeric and heteromeric channels that contain Cx26, a widely distributed connexin, but not homomeric Cx32 channels. The present study investigated the molecular mechanisms of connexin channel modulation by taurine, using hemichannels and junctional channels composed of Cx26 (homomeric) and Cx26/Cx32 (heteromeric). The addition of a 28–amino acid “tag” to the carboxyl-terminal domain (CT) of Cx26 (Cx26T) eliminated taurine sensitivity of homomeric and heteromeric hemichannels in cells and liposomes. Cleavage of all but four residues of the tag (Cx26Tc) resulted in taurine-induced pore narrowing in homomeric hemichannels, and restored taurine inhibition of heteromeric hemichannels (Cx26Tc/Cx32). Taurine actions on junctional channels were fully consistent with those on hemichannels. Taurine-induced inhibition of Cx26/Cx32T and nontagged Cx26 junctional channels was blocked by extracellular HEPES, a blocker of the taurine transporter, confirming that the taurine-sensitive site of Cx26 is cytoplasmic. Nuclear magnetic resonance of peptides corresponding to Cx26 cytoplasmic domains showed that taurine binds to the cytoplasmic loop (CL) and not the CT, and that the CT and CL directly interact. ELISA showed that taurine disrupts a pH-dependent interaction between the CT and the CT-proximal half of the CL. These studies reveal that AS disrupt a pH-driven cytoplasmic interdomain interaction in Cx26-containing channels, causing closure, and that the Cx26CT has a modulatory role in Cx26 function. PMID:21844220

  13. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    International Nuclear Information System (INIS)

    Yashima, N.; Wada, A.; Izumi, F.

    1986-01-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of 45 Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of 45 Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of 45 Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the 45 Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the 45 Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of 45 Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of 45 Ca. Based on these findings, the authors suggest that inhibition of the 45 Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels

  15. Interaction between Ca++-channel antagonists and α2-adrenergic receptors in rabbit ileal cell membrane

    International Nuclear Information System (INIS)

    Homeidan, F.R.; Wicks, J.; Cusolito, S.; El-Sabban, M.E.; Sharp, G.W.G.; Donowitz, M.

    1986-01-01

    An interaction between Ca ++ -channel antagonists and the α 2 -adrenergic receptor on active electrolyte transport was demonstrated in rabbit ileum. Clonidine, an α 2 -agonist, stimulated NaCl absorption apparently by Ca ++ -channel antagonism since it inhibited 45 Ca ++ uptake across the basolateral membrane and decreased total ileal calcium content. This stimulation was inhibited by the Ca ++ -channel antagonists dl- and l-verapamil and cadmium but not by nifedipine. The binding of 3 H-yohimbine, a specific α 2 -adrenergic antagonist, was studied on purified ileal cell membranes using a rapid filtration technique. dl-Verapamil and Cd ++ inhibited the specific binding of 3 H-yohimbine over the same concentration range in which they affected transport. In contrast, nifedipine had no effect on binding, just as it had no effect on clonidine-stimulated NaCl absorption. These data demonstrate that there is an interaction between Ca ++ -channels and α 2 -adrenergic receptors in ileal basolateral membranes. Some Ca ++ -channel antagonists alter α 2 -adrenergic binding to the receptor and α 2 -agonist binding leads to changes in Ca ++ entry. A close spatial relationship between the Ca ++ -channel and the α 2 -receptor could explain the data

  16. Is transcranial direct current stimulation a potential method for improving response inhibition?☆

    OpenAIRE

    Kwon, Yong Hyun; Kwon, Jung Won

    2013-01-01

    Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the tran...

  17. Skyrmion-based multi-channel racetrack

    Science.gov (United States)

    Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Xia, Haiyan; Wang, Jianbo; Liu, Qingfang

    2017-11-01

    Magnetic skyrmions are promising for the application of racetrack memories, logic gates, and other nano-devices, owing to their topologically protected stability, small size, and low driving current. In this work, we propose a skyrmion-based multi-channel racetrack memory where the skyrmion moves in the selected channel by applying voltage-controlled magnetic anisotropy gates. It is demonstrated numerically that a current-dependent skyrmion Hall effect can be restrained by the additional potential of the voltage-controlled region, and the skyrmion velocity and moving channel in the racetrack can be operated by tuning the voltage-controlled magnetic anisotropy, gate position, and current density. Our results offer a potential application of racetrack memory based on skyrmions.

  18. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Directory of Open Access Journals (Sweden)

    Sameera Dharia

    2011-02-01

    Full Text Available Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR K(+ ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+ addition to the external bath. Cu(2+ is known to bind to the ShB-IR ion channel and inhibit Shaker K(+ conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  19. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation.

    Science.gov (United States)

    Dharia, Sameera; Rabbitt, Richard D

    2011-02-28

    Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.

  20. Characterization of hERG1a and hERG1b potassium channels-a possible role for hERG1b in the I (Kr) current

    DEFF Research Database (Denmark)

    Larsen, Anders Peter; Olesen, Søren-Peter; Grunnet, Morten

    2008-01-01

    I (Kr) is the fast component of the delayed rectifier potassium currents responsible for the repolarization of the cardiac muscle. The molecular correlate underlying the I (Kr) current has been identified as the hERG1 channel. Recently, two splice variants of the hERG1 alpha-subunit, hERG1a and hERG......1b, have been shown to be co-expressed in human cardiomyocytes. In this paper, we present the electrophysiological characterization of hERG1a, hERG1b, and co-expressed hERG1a/b channels in a mammalian expression system using the whole-cell patch clamp technique. We also quantified the messenger RNA...... (mRNA) levels of hERG1a and hERG1b in human cardiac tissue, and based on the expressed ratios, we evaluated the resulting currents in Xenopus laevis oocytes. Compared to hERG1a channels, activation was faster for both hERG1b and hERG1a/b channels. The deactivation kinetics was greatly accelerated...

  1. Characteristics of the binding of [3H]nitrendipine to rabbit ventricular membranes: modification by other Ca++ channel antagonists and by the Ca++ channel agonist Bay K 8644

    International Nuclear Information System (INIS)

    Janis, R.A.; Sarmiento, J.G.; Maurer, S.C.; Bolger, G.T.; Triggle, D.J.

    1984-01-01

    This study was carried out to characterize [ 3 H]nitrendipine binding to cardiac membranes and to test the hypothesis that high affinity binding of Ca++ channel antagonists and agonists is to Ca++ channels. Binding was specific, rapid, reversible and stereoselective. The relative order of potency of nifedipine analogs for inhibition of binding was the same as that for inhibition of smooth and cardiac muscle contraction. Results with diltiazem, verapamil and lidoflazine were consistent with the hypothesis that nondihydropyridine Ca++ channel antagonists act at one or more sites allosterically linked to the 1,4-dihydropyridine site in cardiac cells. The Ca++ channel agonist Bay K 8644 [methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate] displaced specifically bound [ 3 H]nitrendipine in an apparently competitive manner with an IC50 value of 5 nM. The results suggest that organic antagonists do not act by physically blocking the Ca++ channel. The data also support the hypothesis that the high affinity binding sites for [ 3 H]nitrendipine in isolated cardiac membranes are associated with Ca++ channels that are inactivated or are otherwise unavailable for opening

  2. APETx4, a Novel Sea Anemone Toxin and a Modulator of the Cancer-Relevant Potassium Channel KV10.1

    Directory of Open Access Journals (Sweden)

    Lien Moreels

    2017-09-01

    Full Text Available The human ether-à-go-go channel (hEag1 or KV10.1 is a cancer-relevant voltage-gated potassium channel that is overexpressed in a majority of human tumors. Peptides that are able to selectively inhibit this channel can be lead compounds in the search for new anticancer drugs. Here, we report the activity-guided purification and electrophysiological characterization of a novel KV10.1 inhibitor from the sea anemone Anthopleura elegantissima. Purified sea anemone fractions were screened for inhibitory activity on KV10.1 by measuring whole-cell currents as expressed in Xenopus laevis oocytes using the two-microelectrode voltage clamp technique. Fractions that showed activity on Kv10.1 were further purified by RP-HPLC. The amino acid sequence of the peptide was determined by a combination of MALDI- LIFT-TOF/TOF MS/MS and CID-ESI-FT-ICR MS/MS and showed a high similarity with APETx1 and APETx3 and was therefore named APETx4. Subsequently, the peptide was electrophysiologically characterized on KV10.1. The selectivity of the toxin was investigated on an array of voltage-gated ion channels, including the cardiac human ether-à-go-go-related gene potassium channel (hERG or Kv11.1. The toxin inhibits KV10.1 with an IC50 value of 1.1 μM. In the presence of a similar toxin concentration, a shift of the activation curve towards more positive potentials was observed. Similar to the effect of the gating modifier toxin APETx1 on hERG, the inhibition of Kv10.1 by the isolated toxin is reduced at more positive voltages and the peptide seems to keep the channel in a closed state. Although the peptide also induces inhibitory effects on other KV and NaV channels, it exhibits no significant effect on hERG. Moreover, APETx4 induces a concentration-dependent cytotoxic and proapoptotic effect in various cancerous and noncancerous cell lines. This newly identified KV10.1 inhibitor can be used as a tool to further characterize the oncogenic channel KV10.1 or as a

  3. Inward rectifier K+ channel and T-type Ca2+ channel contribute to enhancement of GABAergic transmission induced by β1-adrenoceptor in the prefrontal cortex.

    Science.gov (United States)

    Luo, Fei; Zheng, Jian; Sun, Xuan; Tang, Hua

    2017-02-01

    The functions of prefrontal cortex (PFC) are sensitive to norepinephrine (NE). Endogenously released NE influences synaptic transmission through activation of different subtypes of adrenergic receptors in PFC including α 1 , α 2 , β 1 or β 2 -adrenoceptor. Our recent study has revealed that β 1 -adrenoceptor (β 1 -AR) activation modulates glutamatergic transmission in the PFC, whereas the roles of β 1 -AR in GABAergic transmission are elusive. In the current study, we probed the effects of the β 1 -AR agonist dobutamine (Dobu) on GABAergic transmission onto pyramidal neurons in the PFC of juvenile rats. Dobu increased both the frequency and amplitude of miniature IPSCs (mIPSCs). Ca 2+ influx through T-type voltage-gated Ca 2+ channel was required for Dobu-enhanced mIPSC frequency. We also found that Dobu facilitated GABA release probability and the number of releasable vesicles through regulating T-type Ca 2+ channel. Dobu depolarized GABAergic fast-spiking (FS) interneurons with no effects on the firing rate of action potentials (APs) of interneurons. Dobu-induced depolarization of FS interneurons required inward rectifier K + channel (Kir). Our results suggest that Dobu increase GABA release via inhibition of Kir, which further depolarizes FS interneurons resulting in Ca 2+ influx via T-type Ca 2+ channel. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Measuring Method for Lightning Channel Temperature

    Science.gov (United States)

    Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.

    2016-09-01

    In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.

  5. Amplified Cold Transduction in Native Nociceptors by M-Channel Inhibition

    Czech Academy of Sciences Publication Activity Database

    Vetter, I.; Hein, A.; Sattler, S.; Hessler, S.; Touška, Filip; Bressan, E.; Parra, A.; Hager, U.; Leffler, A.; Boukalová, Štěpána; Nissen, M.; Lewis, R. J.; Belmonte, C.; Alzheimer, Ch.; Huth, T.; Vlachová, Viktorie; Reeh, P. W.; Zimmermann, K.

    2013-01-01

    Roč. 33, č. 42 (2013), s. 16627-16641 ISSN 0270-6474 Institutional support: RVO:67985823 Keywords : nociceptor * channels of HEK293T * receptor TRPM8 Subject RIV: ED - Physiology Impact factor: 6.747, year: 2013

  6. Calcium influx through L-type channels attenuates skeletal muscle contraction via inhibition of adenylyl cyclases.

    Science.gov (United States)

    Menezes-Rodrigues, Francisco Sandro; Pires-Oliveira, Marcelo; Duarte, Thiago; Paredes-Gamero, Edgar Julian; Chiavegatti, Tiago; Godinho, Rosely Oliveira

    2013-11-15

    Skeletal muscle contraction is triggered by acetylcholine induced release of Ca(2+) from sarcoplasmic reticulum. Although this signaling pathway is independent of extracellular Ca(2+), L-type voltage-gated calcium channel (Cav) blockers have inotropic effects on frog skeletal muscles which occur by an unknown mechanism. Taking into account that skeletal muscle fiber expresses Ca(+2)-sensitive adenylyl cyclase (AC) isoforms and that cAMP is able to increase skeletal muscle contraction force, we investigated the role of Ca(2+) influx on mouse skeletal muscle contraction and the putative crosstalk between extracellular Ca(2+) and intracellular cAMP signaling pathways. The effects of Cav blockers (verapamil and nifedipine) and extracellular Ca(2+) chelator EGTA were evaluated on isometric contractility of mouse diaphragm muscle under direct electrical stimulus (supramaximal voltage, 2 ms, 0.1 Hz). Production of cAMP was evaluated by radiometric assay while Ca(2+) transients were assessed by confocal microscopy using L6 cells loaded with fluo-4/AM. Ca(2+) channel blockers verapamil and nifedipine had positive inotropic effect, which was mimicked by removal of extracellular Ca(+2) with EGTA or Ca(2+)-free Tyrode. While phosphodiesterase inhibitor IBMX potentiates verapamil positive inotropic effect, it was abolished by AC inhibitors SQ22536 and NYK80. Finally, the inotropic effect of verapamil was associated with increased intracellular cAMP content and mobilization of intracellular Ca(2+), indicating that positive inotropic effects of Ca(2+) blockers depend on cAMP formation. Together, our results show that extracellular Ca(2+) modulates skeletal muscle contraction, through inhibition of Ca(2+)-sensitive AC. The cross-talk between extracellular calcium and cAMP-dependent signaling pathways appears to regulate the extent of skeletal muscle contraction responses. © 2013 Published by Elsevier B.V.

  7. Early-onset epileptic encephalopathy caused by a reduced sensitivity of Kv7.2 potassium channels to phosphatidylinositol 4,5-bisphosphate.

    Science.gov (United States)

    Soldovieri, Maria Virginia; Ambrosino, Paolo; Mosca, Ilaria; De Maria, Michela; Moretto, Edoardo; Miceli, Francesco; Alaimo, Alessandro; Iraci, Nunzio; Manocchio, Laura; Medoro, Alessandro; Passafaro, Maria; Taglialatela, Maurizio

    2016-12-01

    Kv7.2 and Kv7.3 subunits underlie the M-current, a neuronal K + current characterized by an absolute functional requirement for phosphatidylinositol 4,5-bisphosphate (PIP 2 ). Kv7.2 gene mutations cause early-onset neonatal seizures with heterogeneous clinical outcomes, ranging from self-limiting benign familial neonatal seizures to severe early-onset epileptic encephalopathy (Kv7.2-EE). In this study, the biochemical and functional consequences prompted by a recurrent variant (R325G) found independently in four individuals with severe forms of neonatal-onset EE have been investigated. Upon heterologous expression, homomeric Kv7.2 R325G channels were non-functional, despite biotin-capture in Western blots revealed normal plasma membrane subunit expression. Mutant subunits exerted dominant-negative effects when incorporated into heteromeric channels with Kv7.2 and/or Kv7.3 subunits. Increasing cellular PIP 2 levels by co-expression of type 1γ PI(4)P5-kinase (PIP5K) partially recovered homomeric Kv7.2 R325G channel function. Currents carried by heteromeric channels incorporating Kv7.2 R325G subunits were more readily inhibited than wild-type channels upon activation of a voltage-sensitive phosphatase (VSP), and recovered more slowly upon VSP switch-off. These results reveal for the first time that a mutation-induced decrease in current sensitivity to PIP 2 is the primary molecular defect responsible for Kv7.2-EE in individuals carrying the R325G variant, further expanding the range of pathogenetic mechanisms exploitable for personalized treatment of Kv7.2-related epilepsies.

  8. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria - An amazing defence tool against hyperosmotic stress

    Directory of Open Access Journals (Sweden)

    Daniela eTrono

    2015-12-01

    Full Text Available In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about fifteen years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP. Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous and tissues/organs (etiolated and green have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane towards the matrix, so collapsing membrane potential (ΔΨ, the main component of the protonmotive force (Δp in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate

  9. Dynamics of receptor-operated Ca2+ Currents Through TRPC Channels Controlled via the PI(4,5P2-PLC Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Masayuki X Mori

    2015-02-01

    Full Text Available Transient receptor potential canonical (TRPC channels are Ca2+-permeable, nonselective cation channels that carry receptor-operated Ca2+ currents (ROCs triggered by receptor-induced, phospholipase C (PLC-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PI(4,5P2. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5P2 and the possible role of PI(4,5P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5P2 using a model simulation that could explain the complicated effects of PI(4,5P2 on different ROCs.

  10. Dynamics of receptor-operated Ca(2+) currents through TRPC channels controlled via the PI(4,5)P2-PLC signaling pathway.

    Science.gov (United States)

    Mori, Masayuki X; Itsuki, Kyohei; Hase, Hideharu; Sawamura, Seishiro; Kurokawa, Tatsuki; Mori, Yasuo; Inoue, Ryuji

    2015-01-01

    Transient receptor potential canonical (TRPC) channels are Ca(2+)-permeable, nonselective cation channels that carry receptor-operated Ca(2+) currents (ROCs) triggered by receptor-induced, phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Within the vasculature, TRPC channel ROCs contribute to smooth muscle cell depolarization, vasoconstriction, and vascular remodeling. However, TRPC channel ROCs exhibit a variable response to receptor-stimulation, and the regulatory mechanisms governing TRPC channel activity remain obscure. The variability of ROCs may be explained by their complex regulation by PI(4,5)P2 and its metabolites, which differentially affect TRPC channel activity. To resolve the complex regulation of ROCs, the use of voltage-sensing phosphoinositide phosphatases and model simulation have helped to reveal the time-dependent contribution of PI(4,5)P2 and the possible role of PI(4,5)P2 in the regulation of ROCs. These approaches may provide unprecedented insight into the dynamics of PI(4,5)P2 regulation of TRPC channels and the fundamental mechanisms underlying transmembrane ion flow. Within that context, we summarize the regulation of TRPC channels and their coupling to receptor-mediated signaling, as well as the application of voltage-sensing phosphoinositide phosphatases to this research. We also discuss the controversial bidirectional effects of PI(4,5)P2 using a model simulation that could explain the complicated effects of PI(4,5)P2 on different ROCs.

  11. Matagorda Ship Channel, Texas: Jetty Stability Study

    National Research Council Canada - National Science Library

    Kraus, Nicholas C; Lin, Lihwa; Batten, Brian K; Brown, Gary L

    2006-01-01

    .... The current has produced a large area of scour on the bay side of the inlet adjacent to the west jetty, and vessels encountering a strong along-channel and cross-channel current at the entrance...

  12. An inhibitor of K+ channels modulates human endometrial tumor-initiating cells

    Directory of Open Access Journals (Sweden)

    Leslie Kimberly K

    2011-08-01

    Full Text Available Abstract Background Many potassium ion (K+ channels function as oncogenes to sustain growth of solid tumors, but their role in cancer progression is not well understood. Emerging evidence suggests that the early progenitor cancer cell subpopulation, termed tumor initiating cells (TIC, are critical to cancer progression. Results A non-selective antagonist of multiple types of K+ channels, tetraethylammonium (TEA, was found to suppress colony formation in endometrial cancer cells via inhibition of putative TIC. The data also indicated that withdrawal of TEA results in a significant enhancement of tumorigenesis. When the TIC-enriched subpopulation was isolated from the endometrial cancer cells, TEA was also found to inhibit growth in vitro. Conclusions These studies suggest that the activity of potassium channels significantly contributes to the progression of endometrial tumors, and the antagonists of potassium channels are candidate anti-cancer drugs to specifically target tumor initiating cells in endometrial cancer therapy.

  13. Cell volume changes regulate slick (Slo2.1, but not slack (Slo2.2 K+ channels.

    Directory of Open Access Journals (Sweden)

    Maria A Tejada

    Full Text Available Slick (Slo2.1 and Slack (Slo2.2 channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl- and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control by cell swelling and inhibited (57% of control by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.

  14. Procaine rapidly inactivates acetylcholine receptors from Torpedo and competes with agonist for inhibition sites

    International Nuclear Information System (INIS)

    Forman, S.A.; Miller, K.W.

    1989-01-01

    The relationship between the high-affinity procaine channel inhibition site and the agonist self-inhibition site on acetylcholine receptors (AChRs) from Torpedo electroplaque was investigated by using rapid 86 Rb + quenched-flux assays at 4 degree C in native AChR-rich vesicles on which 50-60% of ACh activation sites were blocked with α-bungarotoxin (α-BTX). In the presence of channel-activating acetylcholine (ACh) concentrations alone, AChR undergoes one phase of inactivation in under a second. Addition of procaine produces two-phase inactivation similar to that seen with self-inhibiting ACh concentrations rapid inactivation complete in 30-75 ms is followed by fast desensitization at the same k d observed without procaine. The dependence of k r on [procaine] is consistent with a bimolecular association between procaine and its AChR site. Inhibition of AChR function by mixtures of procaine plus self-inhibiting concentrations of ACh or suberyldicholine was studied by reducing the level of α-BTX block in vesicles. The data support a mechanism where procaine binds preferentially to the open-channel AChR state, since no procaine-induced inactivation is observed without agonist and k r 's dependence on [ACh] in channel-activating range closely parallels that of 86 Rb + flux response to ACh

  15. HIPPI and Fibre Channel

    International Nuclear Information System (INIS)

    Tolmie, D.E.

    1992-01-01

    The High-Performance Parallel Interface (HIPPI) and Fibre Channel are near-gigabit per second data communications interfaces being developed in ANSI standards Task Group X3T9.3. HIPPI is the current interface of choice in the high-end and supercomputer arena, and Fibre Channel is a follow-on effort. HIPPI came from a local area network background, and Fibre Channel came from a mainframe to peripheral interface background

  16. Mechanosensitive Piezo Channels in the Gastrointestinal Tract.

    Science.gov (United States)

    Alcaino, C; Farrugia, G; Beyder, A

    2017-01-01

    Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. An auroral westward flow channel (AWFC and its relationship to field-aligned current, ring current, and plasmapause location determined using multiple spacecraft observations

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2007-02-01

    Full Text Available An auroral westward flow channel (AWFC is a latitudinally narrow channel of unstable F-region plasma with intense westward drift in the dusk-to-midnight sector ionosphere. AWFCs tend to overlap the equatorward edge of the auroral oval, and their life cycle is often synchronised to that of substorms: they commence close to substorm expansion phase onset, intensify during the expansion phase, and then decay during the recovery phase. Here we define for the first time the relationship between an AWFC, large-scale field-aligned current (FAC, the ring current, and plasmapause location. The Tasman International Geospace Environment Radar (TIGER, a Southern Hemisphere HF SuperDARN radar, observed a jet-like AWFC during ~08:35 to 13:28 UT on 7 April 2001. The initiation of the AWFC was preceded by a band of equatorward expanding ionospheric scatter (BEES which conveyed an intense poleward electric field through the inner plasma sheet. Unlike previous AWFCs, this event was not associated with a distinct substorm surge; rather it occurred during an interval of persistent, moderate magnetic activity characterised by AL~−200 nT. The four Cluster spacecraft had perigees within the dusk sector plasmasphere, and their trajectories were magnetically conjugate to the radar observations. The Waves of High frequency and Sounder for Probing Electron density by Relaxation (WHISPER instruments on board Cluster were used to identify the plasmapause location. The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE EUV experiment also provided global-scale observations of the plasmapause. The Cluster fluxgate magnetometers (FGM provided successive measurements specifying the relative location of the ring current and filamentary plasma sheet current. An analysis of Iridium spacecraft magnetometer measurements provided estimates of large-scale ionospheric FAC in relation to the AWFC evolution. Peak flows in the AWFC were located close to the peak of a Region 2

  18. Characteristics of the binding of (/sup 3/H)nitrendipine to rabbit ventricular membranes: modification by other Ca++ channel antagonists and by the Ca++ channel agonist Bay K 8644

    Energy Technology Data Exchange (ETDEWEB)

    Janis, R.A.; Sarmiento, J.G.; Maurer, S.C.; Bolger, G.T.; Triggle, D.J.

    1984-10-01

    This study was carried out to characterize (/sup 3/H)nitrendipine binding to cardiac membranes and to test the hypothesis that high affinity binding of Ca++ channel antagonists and agonists is to Ca++ channels. Binding was specific, rapid, reversible and stereoselective. The relative order of potency of nifedipine analogs for inhibition of binding was the same as that for inhibition of smooth and cardiac muscle contraction. Results with diltiazem, verapamil and lidoflazine were consistent with the hypothesis that nondihydropyridine Ca++ channel antagonists act at one or more sites allosterically linked to the 1,4-dihydropyridine site in cardiac cells. The Ca++ channel agonist Bay K 8644 (methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate) displaced specifically bound (/sup 3/H)nitrendipine in an apparently competitive manner with an IC50 value of 5 nM. The results suggest that organic antagonists do not act by physically blocking the Ca++ channel. The data also support the hypothesis that the high affinity binding sites for (/sup 3/H)nitrendipine in isolated cardiac membranes are associated with Ca++ channels that are inactivated or are otherwise unavailable for opening.

  19. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  20. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat α1β2γ2L GABAA receptor

    Science.gov (United States)

    Li, P; Akk, G

    2008-01-01

    Background and purpose: Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABAA receptors in the brain. In this study, we have examined the modulation of the common brain GABAA receptor subtype by fipronil and its major metabolite, fipronil sulphone. Experimental approach: Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat α1β2γ2L GABAA receptors. Key results: The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The α1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the α1β2γ2L receptor. Conclusions and implications: We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain. PMID:18660823

  1. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  2. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells.

    Directory of Open Access Journals (Sweden)

    Matthew T Dickerson

    Full Text Available Glucose-stimulated insulin secretion (GSIS relies on β-cell Ca2+ influx, which is modulated by the two-pore-domain K+ (K2P channel, TALK-1. A gain-of-function polymorphism in KCNK16, the gene encoding TALK-1, increases risk for developing type-2 diabetes. While TALK-1 serves an important role in modulating GSIS, the regulatory mechanism(s that control β-cell TALK-1 channels are unknown. Therefore, we employed a membrane-specific yeast two-hybrid (MYTH assay to identify TALK-1-interacting proteins in human islets, which will assist in determining signaling modalities that modulate TALK-1 function. Twenty-one proteins from a human islet cDNA library interacted with TALK-1. Some of these interactions increased TALK-1 activity, including intracellular osteopontin (iOPN. Intracellular OPN is highly expressed in β-cells and is upregulated under pre-diabetic conditions to help maintain normal β-cell function; however, the functional role of iOPN in β-cells is poorly understood. We found that iOPN colocalized with TALK-1 in pancreatic sections and coimmunoprecipitated with human islet TALK-1 channels. As human β-cells express two K+ channel-forming variants of TALK-1, regulation of these TALK-1 variants by iOPN was assessed. At physiological voltages iOPN activated TALK-1 transcript variant 3 channels but not TALK-1 transcript variant 2 channels. Activation of TALK-1 channels by iOPN also hyperpolarized resting membrane potential (Vm in HEK293 cells and in primary mouse β-cells. Intracellular OPN was also knocked down in β-cells to test its effect on β-cell TALK-1 channel activity. Reducing β-cell iOPN significantly decreased TALK-1 K+ currents and increased glucose-stimulated Ca2+ influx. Importantly, iOPN did not affect the function of other K2P channels or alter Ca2+ influx into TALK-1 deficient β-cells. These results reveal the first protein interactions with the TALK-1 channel and found that an interaction with iOPN increased

  3. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  4. The Breakdown: Hillslope Sources of Channel Blocks in Bedrock Landscapes

    Science.gov (United States)

    Selander, B.; Anderson, S. P.; Rossi, M.

    2017-12-01

    Block delivery from hillslopes is a poorly understood process that influences bedrock channel incision rates and shapes steep terrain. Previous studies demonstrate that hillslope sediment delivery rate and grain size increases with channel downcutting rate or fracture density (Attal et al., 2015, ESurf). However, blocks that exceed the competence of the channel can inhibit incision. In Boulder Creek, a bedrock channel in the Colorado Front Range, large boulders (>1 m diameter) are most numerous in the steepest channel reaches; their distribution seems to reflect autogenic channel-hillslope feedback between incision rate and block delivery (Shobe et al., 2016, GRL). It is clear that the processes, rates of production, and delivery of large blocks from hillslopes into channels are critical to our understanding of steep terrain evolution. Fundamental questions are 1) whether block production or block delivery is rate limiting, 2) what mechanisms release blocks, and 3) how block production and transport affect slope morphology. As a first step, we map rock outcrops on the granodiorite hillslopes lining Boulder Creek within Boulder Canyon using a high resolution DEM. Our algorithm uses high ranges of curvature values in conjunction with slopes steeper than the angle of repose to quickly identify rock outcrops. We field verified mapped outcrop and sediment-mantled locations on hillslopes above and below the channel knickzone. We find a greater abundance of exposed rock outcrops on steeper hillslopes in Boulder Canyon. Additionally, we find that channel reaches with large in-channel blocks are located at the base of hillslopes with large areas of exposed bedrock, while reaches lacking large in-channel blocks tend to be at the base of predominately soil mantled and forested hillslopes. These observations support the model of block delivery and channel incision of Shobe et al. (2016, GRL). Moreover, these results highlight the conundrum of how rapid channel incision is

  5. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  6. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

    Science.gov (United States)

    Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten

    2012-01-01

    In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca2+-dependent Cl− channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl− channels that are gated by GABA released from HCs. Similar to activation of ICl(Ca), opening of these GABA-gated Cl− channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABAA and GABAC receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca2+-dependent Cl− currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl− current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl− current shunts the current flow in the synaptic cleft. The Ca2+-dependent Cl− current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca2+. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the

  7. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1.

    Science.gov (United States)

    Bertin, Samuel; Aoki-Nonaka, Yukari; Lee, Jihyung; de Jong, Petrus R; Kim, Peter; Han, Tiffany; Yu, Timothy; To, Keith; Takahashi, Naoki; Boland, Brigid S; Chang, John T; Ho, Samuel B; Herdman, Scott; Corr, Maripat; Franco, Alessandra; Sharma, Sonia; Dong, Hui; Akopian, Armen N; Raz, Eyal

    2017-09-01

    Transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-1 (TRPV1) are calcium (Ca 2+ )-permeable ion channels mostly known as pain receptors in sensory neurons. However, growing evidence suggests their crucial involvement in the pathogenesis of IBD. We explored the possible contribution of TRPA1 and TRPV1 to T-cell-mediated colitis. We evaluated the role of Trpa1 gene deletion in two models of experimental colitis (ie, interleukin-10 knockout and T-cell-adoptive transfer models). We performed electrophysiological and Ca 2+ imaging studies to analyse TRPA1 and TRPV1 functions in CD4+ T cells. We used genetic and pharmacological approaches to evaluate TRPV1 contribution to the phenotype of Trpa1 -/- CD4+ T cells. We also analysed TRPA1 and TRPV1 gene expression and TRPA1 + TRPV1 + T cell infiltration in colonic biopsies from patients with IBD. We identified a protective role for TRPA1 in T-cell-mediated colitis. We demonstrated the functional expression of TRPA1 on the plasma membrane of CD4+ T cells and identified that Trpa1 -/- CD4+ T cells have increased T-cell receptor-induced Ca 2+ influx, activation profile and differentiation into Th1-effector cells. This phenotype was abrogated upon genetic deletion or pharmacological inhibition of the TRPV1 channel in mouse and human CD4+ T cells. Finally, we found differential regulation of TRPA1 and TRPV1 gene expression as well as increased infiltration of TRPA1 + TRPV1 + T cells in the colon of patients with IBD. Our study indicates that TRPA1 inhibits TRPV1 channel activity in CD4+ T cells, and consequently restrains CD4+ T-cell activation and colitogenic responses. These findings may therefore have therapeutic implications for human IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  8. The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Science.gov (United States)

    Kopljar, Ivan; Labro, Alain J.; de Block, Tessa; Rainier, Jon D.; Tytgat, Jan

    2013-01-01

    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure

  9. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels.

    Science.gov (United States)

    Hansen, P B L

    2013-04-01

    Calcium channel blockers are widely used to treat hypertension because they inhibit voltage-gated calcium channels that mediate transmembrane calcium influx in, for example, vascular smooth muscle and cardiomyocytes. The calcium channel family consists of several subfamilies, of which the L-type is usually associated with vascular contractility. However, the L-, T- and P-/Q-types of calcium channels are present in the renal vasculature and are differentially involved in controlling vascular contractility, thereby contributing to regulation of kidney function and blood pressure. In the preglomerular vascular bed, all the three channel families are present. However, the T-type channel is the only channel in cortical efferent arterioles which is in contrast to the juxtamedullary efferent arteriole, and that leads to diverse functional effects of L- and T-type channel inhibition. Furthermore, by different mechanisms, T-type channels may contribute to both constriction and dilation of the arterioles. Finally, P-/Q-type channels are involved in the regulation of human intrarenal arterial contractility. The calcium blockers used in the clinic affect not only L-type but also P-/Q- and T-type channels. Therefore, the distinct effect obtained by inhibiting a given subtype or set of channels under experimental settings should be considered when choosing a calcium blocker for treatment. T-type channels seem to be crucial for regulating the GFR and the filtration fraction. Use of blockers is expected to lead to preferential efferent vasodilation, reduction of glomerular pressure and proteinuria. Therefore, renovascular T-type channels might provide novel therapeutic targets, and may have superior renoprotective effects compared to conventional calcium blockers. Acta Physiologica © 2013 Scandinavian Physiological Society.

  10. Wu-Tou Decoction Inhibits Chronic Inflammatory Pain in Mice: Participation of TRPV1 and TRPA1 Ion Channels

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-01-01

    Full Text Available Wu-tou decoction (WTD is a classic traditional Chinese medicine formula and has been used effectively to treat joint diseases clinically. Previous reports indicated that WTD possesses anti-inflammatory activity; however, its actions on pain have not been clarified. Here, we investigated the antinociceptive activity of WTD in CFA-induced mice, and its possible mechanism of the action associated with transient receptor potential (TRP ion channels was also explored. Our results showed that 1.58, 3.15, and 6.30 g/kg WTD significantly attenuated mechanical, cold, and heat hypersensitivities. Moreover, WTD effectively inhibited spontaneous nociceptive responses to intraplantar injections of capsaicin and cinnamaldehyde, respectively. WTD also effectively suppressed jumping and wet-dog-shake behaviors to intraperitoneal injection of icilin. Additionally, WTD significantly reduced protein expression of TRPV1 and TRPA1 in dorsal root ganglia and skins of injured paw. Collectively, our data demonstrate firstly that WTD exerts antinociceptive activity in inflammatory conditions by attenuating mechanical, cold, and heat hypersensitivities. This antinociceptive effect may result in part from inhibiting the activities of TRPV1, TRPA1, and TRPM8, and the suppression of TRPV1 and TRPA1 protein by WTD was also highly effective. These findings suggest that WTD might be an attractive and suitable therapeutic agent for the management of chronic inflammatory pain.

  11. Blade design and performance analysis on the horizontal axis tidal current turbine for low water level channel

    International Nuclear Information System (INIS)

    Chen, C C; Choi, Y D; Yoon, H Y

    2013-01-01

    Most tidal current turbine design are focused on middle and large scale for deep sea, less attention was paid in low water level channel, such as the region around the islands, coastal seas and rivers. This study aims to develop a horizontal axis tidal current turbine rotor blade which is applicable to low water level island region in southwest of Korea. The blade design is made by using BEMT(blade element momentum theory). The section airfoil profile of NACA63-415 is used, which shows good performance of lift coefficient and drag coefficient. Power coefficient, pressure and velocity distributions are investigated according to TSR by CFD analysis

  12. High-current railgap studies

    Science.gov (United States)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-01

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field distortion triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Channel evolution and current division were studied on image converter streak photographs. Transient gas pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance in the channel current sharing and erosion measurements are discussed.

  13. Effectiveness of current disinfection procedures against biofilm on contaminated GI endoscopes.

    Science.gov (United States)

    Neves, Marcelo S; da Silva, Marlei Gomes; Ventura, Grasiella M; Côrtes, Patrícia Barbur; Duarte, Rafael Silva; de Souza, Heitor S

    2016-05-01

    Attention to patient safety has increased recently due to outbreaks of nosocomial infections associated with GI endoscopy. The aim of this study was to evaluate current cleaning and disinfection procedures of endoscope channels with high bioburden and biofilm analysis, including the use of resistant mycobacteria associated with postsurgical infections in Brazil. Twenty-seven original endoscope channels were contaminated with organic soil containing 10(8) colony-forming units/mL of Pseudomonas aeruginosa, Staphylococcus aureus, or Mycobacterium abscessus subsp bolletii. Biofilms with the same microorganisms were developed on the inner surface of channels with the initial inoculum of 10(5) colony-forming units/mL. Channels were reprocessed following current protocol, and samples from cleaning and disinfection steps were analyzed by bioluminescence for adenosine triphosphate, cultures for viable microorganisms, and confocal microscopy. After contamination, adenosine triphosphate levels increased dramatically, and high bacterial growth was observed in all cultures. After cleaning, adenosine triphosphate levels decreased to values comparable to precontamination levels, and bacterial growth was demonstrated in 5 of 27 catheters, 2 with P aeruginosa and 3 with M abscessus. With regard to induced biofilm, a remarkable reduction occurred after cleaning, but significant microbial growth inhibition occurred only after disinfection. Nevertheless, viable microorganisms within the biofilm were still detected by confocal microscopy, more so with glutaraldehyde than with peracetic acid or O-phataladehyde. After the complete disinfection procedure, viable microorganisms could still be detected within the biofilm on endoscope channels. Prevention of biofilm development within endoscope channels should be a priority in disinfection procedures, particularly for ERCP and EUS. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights

  14. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology

    Science.gov (United States)

    Smith, Amy C.; Hristov, Kiril L.; Cheng, Qiuping; Xin, Wenkuan; Parajuli, Shankar P.; Earley, Scott; Malysz, John

    2013-01-01

    Members of the transient receptor potential (TRP) channel superfamily, including the Ca2+-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca2+ imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca2+ imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 μM) significantly reduced the cation current and decreased intracellular Ca2+ levels. 9-Phenanthrol (0.1–30 μM) significantly inhibited spontaneous, 0.1 μM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1–7 μM and 70–80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5–50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling. PMID:23302778

  15. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K+ channels

    International Nuclear Information System (INIS)

    Inanobe, Atsushi; Matsuura, Takanori; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2011-01-01

    Highlights: → We examined allosteric control of K + channel gating. → We identified a high-affinity site for Cd 2+ to inhibit Kir3.2 activity. → The 6-coordination geometry supports the binding. → Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd 2+ as a probe, we examined the structural elements responsible for gating in an inward-rectifier K + channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd 2+ . Crystal structure of its cytoplasmic domain in complex with Cd 2+ reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd 2+ inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.

  16. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed in a human cell line.

    Science.gov (United States)

    Ishihara, Keiko; Ehara, Tsuguhisa

    2004-04-01

    The strong inward rectifier K(+) current, I(K1), shows significant outward current amplitude in the voltage range near the reversal potential and thereby causes rapid repolarization at the final phase of cardiac action potentials. However, the mechanism that generates the outward I(K1) is not well understood. We recorded currents from the inside-out patches of HEK 293T cells that express the strong inward rectifier K(+) channel Kir2.1 and studied the blockage of the currents caused by cytoplasmic polyamines, namely, spermine and spermidine. The outward current-voltage (I-V) relationships of Kir2.1, obtained with 5-10 microm spermine or 10-100 microm spermidine, were similar to the steady-state outward I-V relationship of I(K1), showing a peak at a level that is approximately 20 mV more positive than the reversal potential, with a negative slope at more positive voltages. The relationships exhibited a plateau or a double-hump shape with 1 microm spermine/spermidine or 0.1 microm spermine, respectively. In the chord conductance-voltage relationships, there were extra conductances in the positive voltage range, which could not be described by the Boltzmann relations fitting the major part of the relationships. The extra conductances, which generated most of the outward currents in the presence of 5-10 microm spermine or 10-100 microm spermidine, were quantitatively explained by a model that considered two populations of Kir2.1 channels, which were blocked by polyamines in either a high-affinity mode (Mode 1 channel) or a low-affinity mode (Mode 2 channel). Analysis of the inward tail currents following test pulses indicated that the relief from the spermine block of Kir2.1 consisted of an exponential component and a virtually instantaneous component. The fractions of the two components nearly agreed with the fractions of the blockages in Mode 1 and Mode 2 calculated by the model. The estimated proportion of Mode 1 channels to total channels was 0.9 with 0.1-10 microm

  17. Effect of ciguatoxin 3C on voltage-gated Na+ and K+ currents in mouse taste cells.

    Science.gov (United States)

    Ghiaroni, Valeria; Fuwa, Haruhiko; Inoue, Masayuki; Sasaki, Makoto; Miyazaki, Keisuke; Hirama, Masahiro; Yasumoto, Takeshi; Rossini, Gian Paolo; Scalera, Giuseppe; Bigiani, Albertino

    2006-09-01

    The marine dinoflagellate Gambierdiscus toxicus produces highly lipophilic, polycyclic ether toxins that cause a seafood poisoning called ciguatera. Ciguatoxins (CTXs) and gambierol represent the two major causative agents of ciguatera intoxication, which include taste alterations (dysgeusiae). However, information on the mode of action of ciguatera toxins in taste cells is scarce. Here, we have studied the effect of synthetic CTX3C (a CTX congener) on mouse taste cells. By using the patch-clamp technique to monitor membrane ion currents, we found that CTX3C markedly affected the operation of voltage-gated Na(+) channels but was ineffective on voltage-gated K(+) channels. This result was the exact opposite of what we obtained earlier with gambierol, which inhibits K(+) channels but not Na(+) channels. Thus, CTXs and gambierol affect with high potency the operation of separate classes of voltage-gated ion channels in taste cells. Our data suggest that taste disturbances reported in ciguatera poisoning might be due to the ability of ciguatera toxins to interfere with ion channels in taste buds.

  18. The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat alpha1beta2gamma2L GABA(A) receptor.

    Science.gov (United States)

    Li, P; Akk, G

    2008-11-01

    Fipronil is the active ingredient in a number of widely used insecticides. Human exposure to fipronil leads to symptoms (headache, nausea and seizures) typically associated with the antagonism of GABA(A) receptors in the brain. In this study, we have examined the modulation of the common brain GABA(A) receptor subtype by fipronil and its major metabolite, fipronil sulphone. Whole-cell and single-channel recordings were made from HEK 293 cells transiently expressing rat alpha1beta2gamma2L GABA(A) receptors. The major effect of fipronil was to increase the rate of current decay in macroscopic recordings. In single-channel recordings, the presence of fipronil resulted in shorter cluster durations without affecting the intracluster open and closed time distributions or the single-channel conductance. The alpha1V256S mutation, previously shown alleviate channel inhibition by inhibitory steroids and several insecticides, had a relatively small effect on channel block by fipronil. The mode of action of fipronil sulphone was similar to that of its parent compound but the metabolite was less potent at inhibiting the alpha1beta2gamma2L receptor. We conclude that exposure to fipronil induces accumulation of receptors in a novel, long-lived blocked state. This process proceeds in parallel with and independently of, channel desensitization. The lower potency of fipronil sulphone indicates that the conversion serves as a detoxifying process in mammalian brain.

  19. Contribution of small conductance K+ channels to sinoatrial node pacemaker activity: insights from atrial-specific Na+ /Ca2+ exchange knockout mice.

    Science.gov (United States)

    Torrente, Angelo G; Zhang, Rui; Wang, Heidi; Zaini, Audrey; Kim, Brian; Yue, Xin; Philipson, Kenneth D; Goldhaber, Joshua I

    2017-06-15

    Repolarizing currents through K + channels are essential for proper sinoatrial node (SAN) pacemaking, but the influence of intracellular Ca 2+ on repolarization in the SAN is uncertain. We identified all three isoforms of Ca 2+ -activated small conductance K + (SK) channels in the murine SAN. SK channel blockade slows repolarization and subsequent depolarization of SAN cells. In the atrial-specific Na + /Ca 2+ exchanger (NCX) knockout mouse, cellular Ca 2+ accumulation during spontaneous SAN pacemaker activity produces intermittent hyperactivation of SK channels, leading to arrhythmic pauses alternating with bursts of pacing. These findings suggest that Ca 2+ -sensitive SK channels can translate changes in cellular Ca 2+ into a repolarizing current capable of modulating pacemaking. SK channels are a potential pharmacological target for modulating SAN rate or treating SAN dysfunction, particularly under conditions characterized by abnormal increases in diastolic Ca 2+ . Small conductance K + (SK) channels have been implicated as modulators of spontaneous depolarization and electrical conduction that may be involved in cardiac arrhythmia. However, neither their presence nor their contribution to sinoatrial node (SAN) pacemaker activity has been investigated. Using quantitative PCR (q-PCR), immunostaining and patch clamp recordings of membrane current and voltage, we identified all three SK isoforms (SK1, SK2 and SK3) in mouse SAN. Inhibition of SK channels with the specific blocker apamin prolonged action potentials (APs) in isolated SAN cells. Apamin also slowed diastolic depolarization and reduced pacemaker rate in isolated SAN cells and intact tissue. We investigated whether the Ca 2+ -sensitive nature of SK channels could explain arrhythmic SAN pacemaker activity in the atrial-specific Na + /Ca 2+ exchange (NCX) knockout (KO) mouse, a model of cellular Ca 2+ overload. SAN cells isolated from the NCX KO exhibited higher SK current than wildtype (WT) and apamin

  20. Converging effects of Ginkgo biloba extract at the level of transmitter release, NMDA and sodium currents and dendritic spikes.

    Science.gov (United States)

    Szasz, Bernadett K; Lenkey, Nora; Barth, Albert M; Mike, Arpad; Somogyvari, Zsolt; Farkas, Orsolya; Lendvai, Balazs

    2008-08-01

    In this study, an attempt was made to integrate the effects of GINKGO BILOBA extract (GBE) in different experimental systems (IN VITRO cochlea, brain slice preparations and cortical cell culture) to elucidate whether these processes converge to promote neuroprotection or interfere with normal neural function. GBE increased the release of dopamine in the cochlea. NMDA-evoked currents were dose-dependently inhibited by rapid GBE application in cultured cortical cells. GBE moderately inhibited Na+ channels at depolarised holding potential in cortical cells. These inhibitory effects by GBE may sufficiently contribute to the prevention of excitotoxic damage in neurons. However, these channels also interact with memory formation at the cellular level. The lack of effect by GBE on dendritic spike initiation in neocortical layer 5 pyramidal neurons indicates that the integrative functions may remain intact during the inhibitory actions of GBE.

  1. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco

    2015-03-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and

  2. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels.

    Directory of Open Access Journals (Sweden)

    Vesna Cvetkovic-Lopes

    Full Text Available In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs could be involved. As canonical transient receptor channels (TRPCs are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90% of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.

  3. Slack, Slick, and Sodium-Activated Potassium Channels

    Science.gov (United States)

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  4. High-density expression of Ca2+-permeable ASIC1a channels in NG2 glia of rat hippocampus.

    Directory of Open Access Journals (Sweden)

    Yen-Chu Lin

    Full Text Available NG2 cells, a fourth type of glial cell in the mammalian CNS, undergo reactive changes in response to a wide variety of brain insults. Recent studies have demonstrated that neuronally expressed acid-sensing ion channels (ASICs are implicated in various neurological disorders including brain ischemia and seizures. Acidosis is a common feature of acute neurological conditions. It is postulated that a drop in pH may be the link between the pathological process and activation of NG2 cells. Such postulate immediately prompts the following questions: Do NG2 cells express ASICs? If so, what are their functional properties and subunit composition? Here, using a combination of electrophysiology, Ca2+ imaging and immunocytochemistry, we present evidence to demonstrate that NG2 cells of the rat hippocampus express high density of Ca2+-permeable ASIC1a channels compared with several types of hippocampal neurons. First, nucleated patch recordings from NG2 cells revealed high density of proton-activated currents. The magnitude of proton-activated current was pH dependent, with a pH for half-maximal activation of 6.3. Second, the current-voltage relationship showed a reversal close to the equilibrium potential for Na+. Third, psalmotoxin 1, a blocker specific for the ASIC1a channel, largely inhibited proton-activated currents. Fourth, Ca2+ imaging showed that activation of proton-activated channels led to an increase of [Ca2+]i. Finally, immunocytochemistry showed co-localization of ASIC1a and NG2 proteins in the hippocampus. Thus the acid chemosensor, the ASIC1a channel, may serve for inducing membrane depolarization and Ca2+ influx, thereby playing a crucial role in the NG2 cell response to injury following ischemia.

  5. Eddy current monitoring of spacers in coolant channel assemblies of nuclear reactor

    International Nuclear Information System (INIS)

    Bhole, V.M.; Rastogi, P.K.; Kulkarni, P.G.; Vijayaraghavan, R.

    1993-01-01

    An eddy current testing method has been standardised for monitoring spacer springs which are used in coolant channel assemblies of pressurised heavy water nuclear reactors (PHWRs). The standard bobbin coil probe used for monitoring the spacer spring detects only the location but does not monitor the tilt orientation and tilt angle of a tilted spacer spring. The knowledge of location along with the tilt orientation of the spacer spring greatly improves the performance of repositioning methods. A modified probe with angular windings has been developed in laboratory tests for monitoring the location as well as the tilt orientation of the spacer springs. Experimental results are presented showing excellent performance of the modified probe in monitoring the exact location as well as tilt orientation of a spacer spring. The modified probe has also been used successfully in the field during repositioning of spacer springs in PHWRs before commissioning. (Author)

  6. Analytical admittance characterization of high mobility channel

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, A. M.; Mahi, F. Z., E-mail: fati-zo-mahi2002@yahoo.fr [Institute of Science and Technology, University of Bechar (Algeria); Varani, L. [Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier (France)

    2015-03-30

    In this contribution, we investigate the small-signal admittance of the high electron mobility transistors field-effect channels under a continuation branching of the current between channel and gate by using an analytical model. The analytical approach takes into account the linearization of the 2D Poisson equation and the drift current along the channel. The analytical equations discuss the frequency dependence of the admittance at source and drain terminals on the geometrical transistor parameters.

  7. Fast, non-competitive and reversible inhibition of NMDA-activated currents by 2-BFI confers neuroprotection.

    Directory of Open Access Journals (Sweden)

    Zhao Han

    Full Text Available Excessive activation of the N-methyl-D-aspartic acid (NMDA type glutamate receptors (NMDARs causes excitotoxicity, a process important in stroke-induced neuronal death. Drugs that inhibit NMDA receptor-mediated [Ca(2+]i influx are potential leads for development to treat excitotoxicity-induced brain damage. Our previous studies showed that 2-(2-benzofu-ranyl-2-imidazoline (2-BFI, an immidazoline receptor ligand, dose-dependently protects rodent brains from cerebral ischemia injury. However, the molecular mechanisms remain unclear. In this study, we found that 2-BFI transiently and reversibly inhibits NMDA, but not AMPA currents, in a dose-dependent manner in cultured rat cortical neurons. The mechanism of 2-BFI inhibition of NMDAR is through a noncompetitive fashion with a faster on (Kon = 2.19±0.33×10(-9 M(-1 sec(-1 and off rate (Koff = 0.67±0.02 sec(-1 than those of memantine, a gold standard for therapeutic inhibition NMDAR-induced excitotoxicity. 2-BFI also transiently and reversibly blocked NMDA receptor-mediated calcium entry to cultured neurons and provided long-term neuroprotection against NMDA toxicity in vitro. Collectively, these studies demonstrated a potential mechanism of 2-BFI-mediated neuroprotection and indicated that 2-BFI is an excellent candidate for repositioning as a drug for stroke treatment.

  8. Side-gated ultrathin-channel nanopore FET sensors

    International Nuclear Information System (INIS)

    Yanagi, Itaru; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi; Oura, Takeshi

    2016-01-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore. (paper)

  9. High-current railgap studies

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.; Gordon, L.; Hofer, W.; Wilson, M.

    1983-06-03

    Characteristics of a 40-kV, 750-kA, multichannel rail gap are presented. The gap is a three electrode, field-distortion-triggered design, with a total switch inductance of less than 10 nH. At maximum ratings, the gap typically switches 10 C per shot, at 700 kA, with a jitter of less than 2 ns. Image-converter streak photographs were used to study channel evolution and current division. Transient gas-pressure measurements were made to investigate the arc generated shocks and to detect single channel failure. Channel current sharing and simultaneity are described and their effects on the switch inductance and lifetime are discussed. Lifetime tests of the rail gap were performed. Degradation in the channel current-sharing and erosion measurements are discussed.

  10. Two-dimensional model for subthreshold current and subthreshold swing of graded-channel dual-material double-gate (GCDMDG) MOSFETs

    Science.gov (United States)

    Goel, Ekta; Kumar, Sanjay; Singh, Balraj; Singh, Kunal; Jit, Satyabrata

    2017-06-01

    The subthreshold performance of graded-channel dual-material double-gate (GCDMDG) MOSFETs is examined through two-dimensional (2D) analytical modeling of subthreshold-current (SC) and subthreshold-swing (SS). The potential function obtained by using the parabolic approach to solve the 2D Poisson's equation, has been used to formulate SC and SS characteristics of the device. The variations of SS against different device parameters have been obtained with the help of effective conduction path parameter. The SC and SS characteristics of the GCDMDG MOS transistor have been compared with those of the dual-material double-gate (DMDG) and simple graded-channel double-gate (GCDG) MOS structures to show its better subthreshold characteristics over the latter two devices. The results of the developed model are well-agreed with the commercially available SILVACO ATLAS™ simulator data.

  11. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  12. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels.

    Science.gov (United States)

    Ozoe, Yoshihisa; Asahi, Miho; Ozoe, Fumiyo; Nakahira, Kunimitsu; Mita, Takeshi

    2010-01-01

    A structurally unique isoxazoline class compound, A1443, exhibits antiparasitic activity against cat fleas and dog ticks comparable to that of the commercial ectoparasiticide fipronil. This isoxazoline compound inhibits specific binding of the gamma-aminobutyric acid (GABA) receptor channel blocker [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB) to housefly-head membranes, with an IC(50) value of 455pM. In contrast, the IC(50) value in rat-brain membranes is>10muM. To study the mode of action of this isoxazoline, we utilized MdGBCl and MdGluCl cDNAs, which encode the subunits of housefly GABA- and glutamate-gated chloride channels, respectively. Two-electrode voltage clamp electrophysiology was used to confirm that A1443 blocks GABA- and glutamate-induced chloride currents in Xenopus oocytes expressing MdGBCl or MdGluCl channels, with IC(50) values of 5.32 and 79.9 nM, respectively. Blockade by A1443 was observed in A2'S-MdGBCl and S2'A-MdGluCl mutant channels at levels similar to those of the respective wild-types, and houseflies expressing A2'S-MdGBCl channels were as susceptible to A1443 as standard houseflies. These findings indicate that A1443 is a novel and specific blocker of insect ligand-gated chloride channels. Copyright 2009 Elsevier Inc. All rights reserved.

  13. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  14. Behavioral inhibition and obsessive-compulsive disorder.

    Science.gov (United States)

    Coles, Meredith E; Schofield, Casey A; Pietrefesa, Ashley S

    2006-01-01

    Behavioral inhibition is frequently cited as a vulnerability factor for development of anxiety. However, few studies have examined the unique relationship between behavioral inhibition and obsessive-compulsive disorder (OCD). Therefore, the current study addressed the relationship between behavioral inhibition and OCD in a number of ways. In a large unselected student sample, frequency of current OC symptoms was significantly correlated with retrospective self-reports of total levels of childhood behavioral inhibition. In addition, frequency of current OC symptoms was also significantly correlated with both social and nonsocial components of behavioral inhibition. Further, there was evidence for a unique relationship between behavioral inhibition and OC symptoms beyond the relationship of behavioral inhibition and social anxiety. In addition, results showed that reports of childhood levels of behavioral inhibition significantly predicted levels of OCD symptoms in adulthood. Finally, preliminary evidence suggested that behavioral inhibition may be more strongly associated with some types of OC symptoms than others, and that overprotective parenting may moderate the impact of behavioral inhibition on OC symptoms. The current findings suggest the utility of additional research examining the role of behavioral inhibition in the etiology of OCD.

  15. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  16. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury.

    Science.gov (United States)

    Mazzone, Graciela L; Veeraraghavan, Priyadharishini; Gonzalez-Inchauspe, Carlota; Nistri, Andrea; Uchitel, Osvaldo D

    2017-02-20

    In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Pharmacological analysis of the activation and receptor properties of the tonic GABA(CR current in retinal bipolar cell terminals.

    Directory of Open Access Journals (Sweden)

    Stefanie M Jones

    Full Text Available GABAergic inhibition in the central nervous system (CNS can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A receptors (GABA(ARs respectively. Retinal bipolar cells (BCs exhibit a tonic current mediated by GABA(CRs in their axon terminal, in addition to synaptic GABA(AR and GABA(CR currents, which strongly regulate BC output. The tonic GABA(CR current in BC terminals (BCTs is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(CRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(CR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(CRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(CR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(CRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(CRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(ARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(CR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.

  18. The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr) and human ether-a-go-go-related gene (hERG) expression.

    Science.gov (United States)

    Teah, Yi Fan; Abduraman, Muhammad Asyraf; Amanah, Azimah; Adenan, Mohd Ilham; Sulaiman, Shaida Fariza; Tan, Mei Lan

    2017-09-01

    Elephantopus scaber Linn and its major bioactive component, deoxyelephantopin are known for their medicinal properties and are often reported to have various cytotoxic and antitumor activities. This plant is widely used as folk medicine for a plethora of indications although its safety profile remains unknown. Human ether-a-go-go-related gene (hERG) encodes the cardiac I Kr current which is a determinant of the duration of ventricular action potentials and QT interval. The hERG potassium channel is an important antitarget in cardiotoxicity evaluation. This study investigated the effects of deoxyelephantopin on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells. The hERG tail currents following depolarization pulses were insignificantly affected by deoxyelephantopin in the transfected cell line. Current reduction was less than 40% as compared with baseline at the highest concentration of 50 μM. The results were consistent with the molecular docking simulation and hERG surface protein expression. Interestingly, it does not affect the hERG expression at both transcriptional and translational level at most concentrations, although higher concentration at 10 μM caused protein accumulation. In conclusion, deoxyelephantopin is unlikely a clinically significant hERG channel and I kr blocker. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Conductance of Ion Channels - Theory vs. Experiment

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael; Mijajlovic, Milan

    2013-01-01

    Transmembrane ion channels mediate a number of essential physiological processes in a cell ranging from regulating osmotic pressure to transmission of neural signals. Kinetics and selectivity of ion transport is of critical importance to a cell and, not surprisingly, it is a subject of numerous experimental and theoretical studies. In this presentation we will analyze in detail computer simulations of two simple channels from fungi - antiamoebin and trichotoxin. Each of these channels is made of an alpha-helical bundle of small, nongenomically synthesized peptides containing a number of rare amino acids and exhibits strong antimicrobial activity. We will focus on calculating ionic conductance defined as the ratio of ionic current through the channel to applied voltage. From molecular dynamics simulations, conductance can be calculated in at least two ways, each involving different approximations. Specifically, the current, given as the number of charges transferred through the channel per unit of time, can be obtained from the number of events in which ions cross the channel during the simulation. This method works well for large currents (high conductance values and/or applied voltages). If the number of crossing events is small, reliable estimates of current are difficult to achieve. Alternatively, conductance can be estimated assuming that ion transport can be well approximated as diffusion in the external potential given by the free energy profile. Then, the current can be calculated by solving the one-dimensional diffusion equation in this external potential and applied voltage (the generalized Nernst-Planck equation). To do so three ingredients are needed: the free energy profile, the position-dependent diffusion coefficient and the diffusive flux of ions into the channel. All these quantities can be obtained from molecular dynamics simulations. An important advantage of this method is that it can be used equally well to estimating large and small currents

  20. A novel assessment of nefazodone-induced hERG inhibition by electrophysiological and stereochemical method

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dae-Seop; Park, Myoung Joo [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Hyang-Ae [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Lee, Joo Yun; Chung, Hee-Chung; Yoo, Dae Seok; Chae, Chong Hak [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang-Joon [College of Veterinary Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kim, Ki-Suk [Korea Institute of Toxicology, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Bae, Myung Ae, E-mail: mbae@krict.re.kr [Drug Discovery Platform Technology Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of)

    2014-02-01

    Nefazodone was used widely as an antidepressant until it was withdrawn from the U.S. market in 2004 due to hepatotoxicity. We have investigated methods to predict various toxic effects of drug candidates to reduce the failure rate of drug discovery. An electrophysiological method was used to assess the cardiotoxicity of drug candidates. Small molecules, including withdrawn drugs, were evaluated using a patch-clamp method to establish a database of hERG inhibition. Nefazodone inhibited hERG channel activity in our system. However, nefazodone-induced hERG inhibition indicated only a theoretical risk of cardiotoxicity. Nefazodone inhibited the hERG channel in a concentration-dependent manner with an IC{sub 50} of 45.3 nM in HEK-293 cells. Nefazodone accelerated both the recovery from inactivation and its onset. Nefazodone also accelerated steady-state inactivation, although it did not modify the voltage-dependent character. Alanine mutants of hERG S6 and pore region residues were used to identify the nefazodone-binding site on hERG. The hERG S6 point mutants Y652A and F656A largely abolished the inhibition by nefazodone. The pore region mutant S624A mildly reduced the inhibition by nefazodone but T623A had little effect. A docking study showed that the aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions, while an amine interacted with the S624 residue in the pore region. In conclusion, Y652 and F656 in the S6 domain play critical roles in nefazodone binding. - Highlights: • Nefazodone inhibits hERG channels with an IC{sub 50} of 45.3 nM in HEK-293 cells. • Nefazodone blocks hERG channels by binding to the open channels. • Y652 and F656 are important for binding of nefazodone. • The aromatic rings of nefazodone interact with Y652 and F656 via π–π interactions.

  1. Nonlinear State of Sausage-like Instability of Electron Current Channels in Fast Ignition Concept of Inertial Fusion

    International Nuclear Information System (INIS)

    Jain, Neeraj; Das, Amita; Kaw, Predhiman; Sengupta, Sudip

    2003-01-01

    This paper deals with a detailed fluid simulation study of linear and nonlinear aspects of the velocity shear modes in electron current channels in a two dimensional geometry. Simulation results clearly show the flattening of flow profile and the development of sausage like structures (kink structures, which are intrinsically three dimensional excitations, are ruled out in the present simulations) which grow linearly and eventually saturate by nonlinear effects. An analytic understanding of the nonlinear saturation mechanism is also provided

  2. Single channel recording of a mitochondrial calcium uniporter.

    Science.gov (United States)

    Wu, Guangyan; Li, Shunjin; Zong, Guangning; Liu, Xiaofen; Fei, Shuang; Shen, Linda; Guan, Xiangchen; Yang, Xue; Shen, Yuequan

    2018-01-29

    Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca 2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca 2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  4. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Science.gov (United States)

    Qi, Yanmei; Mair, Norbert; Kummer, Kai K.; Leitner, Michael G.; Camprubí-Robles, María; Langeslag, Michiel; Kress, Michaela

    2018-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception. PMID:29479306

  5. Identification of Chloride Channels CLCN3 and CLCN5 Mediating the Excitatory Cl− Currents Activated by Sphingosine-1-Phosphate in Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Yanmei Qi

    2018-02-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive sphingolipid involved in numerous physiological and pathophysiological processes. We have previously reported a S1P-induced nocifensive response in mice by excitation of sensory neurons via activation of an excitatory chloride current. The underlying molecular mechanism for the S1P-induced chloride conductance remains elusive. In the present study, we identified two CLCN voltage-gated chloride channels, CLCN3 and CLCN5, which mediated a S1P-induced excitatory Cl− current in sensory neurons by combining RNA-seq, adenovirus-based gene silencing and whole-cell electrophysiological voltage-clamp recordings. Downregulation of CLCN3 and CLCN5 channels by adenovirus-mediated delivery of shRNA dramatically reduced S1P-induced Cl− current and membrane depolarization in sensory neurons. The mechanism of S1P-induced activation of the chloride current involved Rho GTPase but not Rho-associated protein kinase. Although S1P-induced potentiation of TRPV1-mediated ionic currents also involved Rho-dependent process, the lack of correlation of the S1P-activated Cl− current and the potentiation of TRPV1 by S1P suggests that CLCN3 and CLCN5 are necessary components for S1P-induced excitatory Cl− currents but not for the amplification of TRPV1-mediated currents in sensory neurons. This study provides a novel mechanistic insight into the importance of bioactive sphingolipids in nociception.

  6. The M2 Channel

    DEFF Research Database (Denmark)

    Santner, Paul

    Drug resistance of Influenza A against antivirals is an increasing problem. No effective Influenza A drugs targeting the crucial viral protein, the proton transporter M2 are available anymore due to widespread resistance. Thanks to research efforts elucidating M2 protein structure, function and i...... resistance escape routes from drug inhibition. We thereby were hopefully able to provide a platform for the large-scale evaluation of M2 channel activity, inhibitors and resistance....

  7. Investigations on contribution of glial inwardly-rectifying K+ current to membrane potential and ion flux: An experimental and theoretical study

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2015-01-01

    Full Text Available The inwardly rectifying K+ current [IK(IR] allows large inward K+ currents at potentials negative to K+ equilibrium potential (EK and it becomes small outward K+ currents at those positive to EK. How changes of such currents enriched in glial cells can influence the functions of glial cell, neurons, or both is not clearly defined, although mutations of Kir4.1 channels have been demonstrated to cause serious neurological disorders. In this study, we identified the presence of IK(IR in human glioma cells (U373 and U87 cells. The amplitude of IK(IR in U373 cells was subject to inhibition by amitriptyline, arecoline, or BaCl2. The activity of inwardly rectifying K+ channels was also clearly detected, and single-channel conductance of these channels was calculated to be around 23 pS. Moreover, based on a simulation model derived from neuron–glial interaction mediated by ion flux, we further found out that incorporation of glial IK(IR conductance into the model can significantly contribute to regulation of extracellular K+ concentrations and glial resting potential, particularly during high-frequency stimulation. Glial cells and neurons can mutually modulate their expression of ion channels through K+ ions released into the extracellular space. It is thus anticipated that glial IK(IR may be a potential target utilized to influence the activity of neuronal and glial cells as well as their interaction.

  8. Differential effects of temperature on acid-activated currents mediated by TRPV1 and ASIC channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Neelands, Torben R; Zhang, Xu-Feng; McDonald, Heath; Puttfarcken, Pamela

    2010-05-06

    Elevated temperature and decreased extracellular pH are hallmarks of inflammatory pain states. Dorsal root ganglia (DRG) neurons are integral in transferring painful stimuli from the periphery to central sites. This study investigated the effect of elevated temperatures on the response of DRG neurons to acute application of acidic solutions. At room temperature (22 degrees C), in response to pH 5.5, there were a variety of kinetic responses consistent with differential expression of TRPV1 and ASIC channels. Increasing the temperature resulted in a significant increase in the peak and total current mediated by TRPV1 in response to an acidic solution. In contrast, the amplitude of a fast activating, rapidly inactivating ASIC1-like current was not affected by increasing the temperature but did result in an increased rate of desensitization that reduced the total current level. This effect on the rate of desensitization was temperature-dependent and could be reversed by returning to 22 degrees C. Likewise, cells exhibiting slowly inactivating ASIC2-like responses also had temperature-dependent increase in the rate of desensitization. The ASIC2-like responses and the TRPV1 responses tended to decrease in amplitude with repetitive application of pH 5.5 even at 22 degrees C. The rate of desensitization of ASIC-like currents activated by less acidic solutions (pH 6.8) was also increased in a temperature-dependent manner. Finally, acidic pH reduced threshold to trigger action potentials, however, the pattern of action potential firing was shaped by the distribution of ASIC and TRPV1 channels. These results indicate that the ambient temperature at which acidosis occurs has a profound effect on the contribution of ASIC and TRPV1 channels, therefore, altering the neuronal excitability. Copyright 2010 Elsevier B.V. All rights reserved.

  9. The K+ channel KCa3.1 as a novel target for idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Katy M Roach

    Full Text Available Idiopathic pulmonary fibrosis (IPF is a common, progressive and invariably lethal interstitial lung disease with no effective therapy. We hypothesised that K(Ca3.1 K(+ channel-dependent cell processes contribute to IPF pathophysiology.K(Ca3.1 expression in primary human lung myofibroblasts was examined using RT-PCR, western blot, immunofluorescence and patch-clamp electrophysiology. The role of K(Ca3.1 channels in myofibroblast proliferation, wound healing, collagen secretion and contraction was examined using two specific and distinct K(Ca3.1 blockers (TRAM-34 and ICA-17043 [Senicapoc].Both healthy non fibrotic control and IPF-derived human lung myofibroblasts expressed K(Ca3.1 channel mRNA and protein. K(Ca3.1 ion currents were elicited more frequently and were larger in IPF-derived myofibroblasts compared to controls. K(Ca3.1 currents were increased in myofibroblasts by TGFβ1 and basic FGF. K(Ca3.1 was expressed strongly in IPF tissue. K(Ca3.1 pharmacological blockade attenuated human myofibroblast proliferation, wound healing, collagen secretion and contractility in vitro, and this was associated with inhibition of TGFβ1-dependent increases in intracellular free Ca(2+.K(Ca3.1 activity promotes pro-fibrotic human lung myofibroblast function. Blocking K(Ca3.1 may offer a novel approach to treating IPF with the potential for rapid translation to the clinic.

  10. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  11. Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury.

    Directory of Open Access Journals (Sweden)

    Zhan Gao

    Full Text Available The search for new approaches to treatment and prevention of heart failure is a major challenge in medicine. The adenosine triphosphate-sensitive potassium (KATP channel has been long associated with the ability to preserve myocardial function and viability under stress. High surface expression of membrane KATP channels ensures a rapid energy-sparing reduction in action potential duration (APD in response to metabolic challenges, while cellular signaling that reduces surface KATP channel expression blunts APD shortening, thus sacrificing energetic efficiency in exchange for greater cellular calcium entry and increased contractile force. In healthy hearts, calcium/calmodulin-dependent protein kinase II (CaMKII phosphorylates the Kir6.2 KATP channel subunit initiating a cascade responsible for KATP channel endocytosis. Here, activation of CaMKII in a transaortic banding (TAB model of heart failure is coupled with a 35-40% reduction in surface expression of KATP channels compared to hearts from sham-operated mice. Linkage between KATP channel expression and CaMKII is verified in isolated cardiomyocytes in which activation of CaMKII results in downregulation of KATP channel current. Accordingly, shortening of monophasic APD is slowed in response to hypoxia or heart rate acceleration in failing compared to non-failing hearts, a phenomenon previously shown to result in significant increases in oxygen consumption. Even in the absence of coronary artery disease, failing myocardium can be further injured by ischemia due to a mismatch between metabolic supply and demand. Ischemia-reperfusion injury, following ischemic preconditioning, is diminished in hearts with CaMKII inhibition compared to wild-type hearts and this advantage is largely eliminated when myocardial KATP channel expression is absent, supporting that the myocardial protective benefit of CaMKII inhibition in heart failure may be substantially mediated by KATP channels. Recognition of Ca

  12. Light-controlled inhibition of malignant glioma by opsin gene transfer

    Science.gov (United States)

    Yang, F; Tu, J; Pan, J-Q; Luo, H-L; Liu, Y-H; Wan, J; Zhang, J; Wei, P-F; Jiang, T; Chen, Y-H; Wang, L-P

    2013-01-01

    Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. PMID:24176851

  13. Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Darbon Pascal

    2009-11-01

    Full Text Available Abstract Background Growing evidence in the literature shows that oxytocin (OT has a strong spinal anti-nociceptive action. Oxytocinergic axons originating from a subpopulation of paraventricular hypothalamic neurons establish synaptic contacts with lamina II interneurons but little is known about the functional role of OT with respect to neuronal firing and excitability. Results Using the patch-clamp technique, we have recorded lamina II interneurons in acute transverse lumbar spinal cord slices of rats (15 to 30 days old and analyzed the OT effects on action potential firing ability. In the current clamp mode, we found that bath application of a selective OT-receptor agonist (TGOT reduced firing in the majority of lamina II interneurons exhibiting a bursting firing profile, but never in those exhibiting a single spike discharge upon depolarization. Interestingly, OT-induced reduction in spike frequency and increase of firing threshold were often observed, leading to a conversion of the firing profile from repetitive and delayed profiles into phasic ones and sometimes further into single spike profile. The observed effects following OT-receptor activation were completely abolished when the OT-receptor agonist was co-applied with a selective OT-receptor antagonist. In current and voltage clamp modes, we show that these changes in firing are strongly controlled by voltage-gated potassium currents. More precisely, transient IA currents and delayed-rectifier currents were reduced in amplitude and transient IA current was predominantly inactivated after OT bath application. Conclusion This effect of OT on the firing profile of lamina II neurons is in good agreement with the antinociceptive and analgesic properties of OT described in vivo.

  14. Molecular Basis of Cardiac Delayed Rectifier Potassium Channel Function and Pharmacology.

    Science.gov (United States)

    Wu, Wei; Sanguinetti, Michael C

    2016-06-01

    Human cardiomyocytes express 3 distinct types of delayed rectifier potassium channels. Human ether-a-go-go-related gene (hERG) channels conduct the rapidly activating current IKr; KCNQ1/KCNE1 channels conduct the slowly activating current IKs; and Kv1.5 channels conduct an ultrarapid activating current IKur. Here the authors provide a general overview of the mechanistic and structural basis of ion selectivity, gating, and pharmacology of the 3 types of cardiac delayed rectifier potassium ion channels. Most blockers bind to S6 residues that line the central cavity of the channel, whereas activators interact with the channel at 4 symmetric binding sites outside the cavity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  16. In Vitro Contractile Response of Rabbit Myometrium to BKCa and KATP Potassium Channel Openers

    Directory of Open Access Journals (Sweden)

    Soňa Fraňová

    2009-01-01

    Full Text Available The aim of the study was to evaluate the participation of ligand-sensitive potassium large conductance calcium-activated channels (BKCa and ATP-sensitive potassium channels in uterine smooth muscle reactivity during different stages of the experimentally induced proliferatory and secretory phase in the sexual cycle in ovariectomised rabbits in vitro. The myometrial reactivity to oxytocin (10-6 mol l-1 was investigated by an in vitro method in female rabbits 14 days after ovariectomy treated with 17β-estradiol - 1 mg/kg/day i.m. for 7 days, or with a combination of progesterone 2 mg/kg/day s.c. for 7 days and 17β-estradiol - 0.2 mg/ kg/day (day 3–7. The strips of myometrial smooth muscle were incubated with a specific opener (NS 1619 and an antagonist (TEA of potassium large conductance calcium-activated channel, or with a specific opener (pinacidil and an antagonist (glybenclamide of ATP-sensitive potassium channels before the administration of oxytocin. NS1619 produced more potent inhibition of the oxytocin-induced contraction during the gestagen dominance (experimental secretory phase than the one observed during the oestrogen dominance (experimental proliferatory phase. TEA antagonized the NS1619 induced inhibition of the myometrial contraction. In the matter of KATP potassium channels, after the administration of pinacidil we observed a similar situation in the changes of myometrial contractility. Pinacidil produced more pronounced inhibition of oxytocin-induced contraction during the secretory phase, and its effect was abolished by the selective inhibitor glybenclamide. Our experimental results indicate that both potassium large conductance calcium-activated channels and ATP-sensitive potassium channels significantly participate in the regulation of myometrial oxytocin-induced contractions and the activity of these channels is probably influenced by the levels of oestrogens and gestagens.

  17. K-ATP channel expression and pharmacological in vivo and in vitro studies of the K-ATP channel blocker PNU-37883A in rat middle meningeal arteries

    DEFF Research Database (Denmark)

    Ploug, K.B.; Boni, L.J.; Baun, M.

    2008-01-01

    closed cranial window model and in myograph baths, respectively. Key results: Expression studies indicate that inwardly rectifying K+ (Kir)6.1/sulphonylurea receptor (SUR) 2B is the major K-ATP channel complex in rat MMA. PNU-37883A (0.5 mg kg(-1)) significantly inhibited the in vivo dilatory effect...... of levcromakalim (0.025 mg kg(-1)), pinacidil (0.38 mg kg(-1)) and P-1075 (0.016 mg kg(-1)) in rat MMA. In vitro PNU-37883A significantly inhibited the dilatory responses of the three K-ATP channel openers in rat MMA at 10(-7) and 3 x 10(-7) M. Conclusions and implications: We suggest that Kir6.1/SUR2B...

  18. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  19. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. (Univ. of Saskatchewan, Saskatoon (Canada))

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  20. Cloning and characterization of BmK86, a novel K+-channel blocker from scorpion venom

    International Nuclear Information System (INIS)

    Mao, Xin; Cao, Zhijian; Yin, Shijin; Ma, Yibao; Wu, Yingliang; Li, Wenxin

    2007-01-01

    Scorpion venom represents a tremendous hitherto unexplored resource for understanding ion channels. BmK86 is a novel K + -channel toxin gene isolated from a cDNA library of Mesobuthus martensii Karsch, which encodes a signal peptide of 22 amino acid residues and a mature toxin of 35 residues with three disulfide bridges. The genomic sequence of BmK86 consists of two exons disrupted by an intron of 72 bp. Comparison with the other scorpion toxins BmK86 shows low sequence similarity. The GST-BmK86 fusion protein was successfully expressed in Escherichia coli. The fusion protein was cleaved by enterokinase and the recombinant BmK86 was purified by HPLC. Using whole-cell patch-clamp recording, the recombinant BmK86 was found to inhibit the potassium current of mKv1.3 channel expressed in COS7 cells. These results indicated that BmK86 belongs to a representative member of a novel subfamily of α-KTxs. The systematic number assigned to BmK86 is α-KTx26.1

  1. Reductions in the Cardiac Transient Outward K+ Current Ito Caused by Chronic β-Adrenergic Receptor Stimulation Are Partly Rescued by Inhibition of Nuclear Factor κB.

    Science.gov (United States)

    Panama, Brian K; Korogyi, Adam S; Aschar-Sobbi, Roozbeh; Oh, Yena; Gray, Charles B B; Gang, Hongying; Brown, Joan Heller; Kirshenbaum, Lorrie A; Backx, Peter H

    2016-02-19

    The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory β-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of β-adrenergic receptors (β-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic β-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic β-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by β-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as β-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic β-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Local anesthetic interaction with human ether-a-go-go-related gene (HERG) channels: role of aromatic amino acids Y652 and F656

    DEFF Research Database (Denmark)

    Siebrands, Cornelia C; Schmitt, Nicole; Friederich, Patrick

    2005-01-01

    was to determine the effect of the mutations Y652A and F656A in the putative drug binding region of HERG on the inhibition by bupivacaine, ropivacaine, and mepivacaine. METHODS: The authors examined the inhibition of wild-type and mutant HERG channels, transiently expressed in Chinese hamster ovary cells...... by bupivacaine, ropivacaine, and mepivacaine. Whole cell patch clamp recordings were performed at room temperature. RESULTS: Inhibition of HERG wild-type and mutant channels by the different local anesthetics was concentration dependent, stereoselective, and reversible. The sensitivity decreased in the order...... bupivacaine > ropivacaine > mepivacaine for wild-type and mutant channels. The mutant channels were approximately 4-30 times less sensitive to the inhibitory action of the different local anesthetics than the wild-type channel. The concentration-response data were described by Hill functions (bupivacaine...

  3. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.

    Science.gov (United States)

    Lin, C S; Boltz, R C; Blake, J T; Nguyen, M; Talento, A; Fischer, P A; Springer, M S; Sigal, N H; Slaughter, R S; Garcia, M L

    1993-03-01

    The role that potassium channels play in human T lymphocyte activation has been investigated by using specific potassium channel probes. Charybdotoxin (ChTX), a blocker of small conductance Ca(2+)-activated potassium channels (PK,Ca) and voltage-gated potassium channels (PK,V) that are present in human T cells, inhibits the activation of these cells. ChTX blocks T cell activation induced by signals (e.g., anti-CD2, anti-CD3, ionomycin) that elicit a rise in intracellular calcium ([Ca2+]i) by preventing the elevation of [Ca2+]i in a dose-dependent manner. However, ChTX has no effect on the activation pathways (e.g., anti-CD28, interleukin 2 [IL-2]) that are independent of a rise in [Ca2+]i. In the former case, both proliferative response and lymphokine production (IL-2 and interferon gamma) are inhibited by ChTX. The inhibitory effect of ChTX can be demonstrated when added simultaneously, or up to 4 h after the addition of the stimulants. Since ChTX inhibits both PK,Ca and PK,V, we investigated which channel is responsible for these immunosuppressive effects with the use of two other peptides, noxiustoxin (NxTX) and margatoxin (MgTX), which are specific for PK,V. These studies demonstrate that, similar to ChTX, both NxTX and MgTX inhibit lymphokine production and the rise in [Ca2+]i. Taken together, these data provide evidence that blockade of PK,V affects the Ca(2+)-dependent pathways involved in T lymphocyte proliferation and lymphokine production by diminishing the rise in [Ca2+]i that occurs upon T cell activation.

  4. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    Science.gov (United States)

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    2017-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. KIR channels tune electrical communication in cerebral arteries

    DEFF Research Database (Denmark)

    Sancho, Maria; Samson, Nina C; Hald, Bjorn O

    2017-01-01

    The conducted vasomotor response reflects electrical communication in the arterial wall and the distance signals spread is regulated by three factors including resident ion channels. This study defined the role of inward-rectifying K(+) channels (KIR) in governing electrical communication along...... hamster cerebral arteries. Focal KCl application induced a vasoconstriction that conducted robustly, indicative of electrical communication among cells. Inhibiting dominant K(+) conductances had no attenuating effect, the exception being Ba(2+) blockade of KIR Electrophysiology and Q-PCR analysis...... and the increased feedback arising from voltage-dependent-K(+) channels. In summary, this study shows that two KIR populations work collaboratively to govern electrical communication and the spread of vasomotor responses along cerebral arteries....

  6. MITOCHONDRIAL BKCa CHANNEL

    Directory of Open Access Journals (Sweden)

    Enrique eBalderas

    2015-03-01

    Full Text Available Since its discovery in a glioma cell line 15 years ago, mitochondrial BKCa channel (mitoBKCa has been studied in brain cells and cardiomyocytes sharing general biophysical properties such as high K+ conductance (~300 pS, voltage-dependency and Ca2+-sensitivity. Main advances in deciphering the molecular composition of mitoBKCa have included establishing that it is encoded by the Kcnma1 gene, that a C-terminal splice insert confers mitoBKCa ability to be targeted to cardiac mitochondria, and evidence for its potential coassembly with β subunits. Notoriously, β1 subunit directly interacts with cytochrome c oxidase and mitoBKCa can be modulated by substrates of the respiratory chain. mitoBKCa channel has a central role in protecting the heart from ischemia, where pharmacological activation of the channel impacts the generation of reactive oxygen species and mitochondrial Ca2+ preventing cell death likely by impeding uncontrolled opening of the mitochondrial transition pore. Supporting this view, inhibition of mitoBKCa with Iberiotoxin, enhances cytochrome c release from glioma mitochondria. Many tantalizing questions remain. Some of them are: how is mitoBKCa coupled to the respiratory chain? Does mitoBKCa play non-conduction roles in mitochondria physiology? Which are the functional partners of mitoBKCa? What are the roles of mitoBKCa in other cell types? Answers to these questions are essential to define the impact of mitoBKCa channel in mitochondria biology and disease.

  7. Drifting plasmons in open two-dimensional channels: modal analysis

    International Nuclear Information System (INIS)

    Sydoruk, O

    2013-01-01

    Understanding the properties of plasmons in two-dimensional channels is important for developing methods of terahertz generation. This paper presents a modal analysis of plasmonic reflection in open channels supporting dc currents. As it shows, the plasmons can be amplified upon reflection if a dc current flows away from a conducting boundary; de-amplification occurs for the opposite current direction. The problem is solved analytically, based on a perturbation calculation, and numerically, and agreement between the methods is demonstrated. The power radiated by a channel is found to be negligible, and plasmon reflection in open channels is shown to be similar to that in closed channels. Based on this similarity, the oscillator designs developed earlier for closed channels could be applicable also for open ones. The results develop the modal-decomposition technique further as an instrument for the design of terahertz plasmonic sources. (paper)

  8. Proton and non-proton activation of ASIC channels.

    Directory of Open Access Journals (Sweden)

    Ivan Gautschi

    Full Text Available The Acid-Sensing Ion Channels (ASIC exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  9. Proton and non-proton activation of ASIC channels.

    Science.gov (United States)

    Gautschi, Ivan; van Bemmelen, Miguel Xavier; Schild, Laurent

    2017-01-01

    The Acid-Sensing Ion Channels (ASIC) exhibit a fast desensitizing current when activated by pH values below 7.0. By contrast, non-proton ligands are able to trigger sustained ASIC currents at physiological pHs. To analyze the functional basis of the ASIC desensitizing and sustained currents, we have used ASIC1a and ASIC2a mutants with a cysteine in the pore vestibule for covalent binding of different sulfhydryl reagents. We found that ASIC1a and ASIC2a exhibit two distinct currents, a proton-induced desensitizing current and a sustained current triggered by sulfhydryl reagents. These currents differ in their pH dependency, their sensitivity to the sulfhydryl reagents, their ionic selectivity and their relative magnitude. We propose a model for ASIC1 and ASIC2 activity where the channels can function in two distinct modes, a desensitizing mode and a sustained mode depending on the activating ligands. The pore vestibule of the channel represents a functional site for binding non-proton ligands to activate ASIC1 and ASIC2 at neutral pH and to prevent channel desensitization.

  10. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics

    Science.gov (United States)

    Hughes Clarke, John E.

    2016-01-01

    Field observations of turbidity currents remain scarce, and thus there is continued debate about their internal structure and how they modify underlying bedforms. Here, I present the results of a new imaging method that examines multiple surge-like turbidity currents within a delta front channel, as they pass over crescent-shaped bedforms. Seven discrete flows over a 2-h period vary in speed from 0.5 to 3.0 ms−1. Only flows that exhibit a distinct acoustically attenuating layer at the base, appear to cause bedform migration. That layer thickens abruptly downstream of the bottom of the lee slope of the bedform, and the upper surface of the layer fluctuates rapidly at that point. The basal layer is inferred to reflect a strong near-bed gradient in density and the thickening is interpreted as a hydraulic jump. These results represent field-scale flow observations in support of a cyclic step origin of crescent-shaped bedforms. PMID:27283503

  11. Contribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia

    Directory of Open Access Journals (Sweden)

    Samira Abbasi

    2016-01-01

    Discussion: Therefore, inhibition of SK channel in DCN can cause cerebellar ataxia, and SK channel openers can have a therapeutic effect on cerebellar ataxia. In addition, the location of SK channels could be important in therapeutic goals. Dendritic SK channels can be a more effective target compared to somatic SK channels

  12. Vitamin K3 inhibits mouse uterine contraction in vitro via interference with the calcium transfer and the potassium channels.

    Science.gov (United States)

    Zhang, Xian-Xia; Lu, Li-Min; Wang, Li

    2016-08-05

    Previous studies have demonstrated vitamin K3 had a great relief to smooth muscle spastic disorders, but no researches have yet pinpointed its possible anti-contractile activity in the uterus. Here, we evaluated the effect of vitamin K3 on myometrial contractility and explored the possible mechanisms of vitamin K3 action. Myograph apparatus were used to record the changes in contractility of isolated mouse uterine strips in a tissue bath. Uterine strips were exposed to vitamin K3 or vehicle. Vitamin K3 suppressed spontaneous contractions in a concentration dependent manner. It significantly decreased the contractile frequency induced by PGF2ɑ but not their amplitude (expect 58.0 μM). Prior incubation with vitamin K3 reduced the effectiveness of PGF2ɑ-induced contraction. The antispasmodic effect of vitamin K3 was also sensitive to potassium channel blockers, such as tetraethylammonium, 4-aminopyridine, iberiotoxin) but not to the nitric oxide related pathway blockers. High concentrations (29.0, 58.0 μM) of vitamin K3 weakened the Ca(2+) dose response and inhibited phase 1 contraction (intracellular stored calcium release). These dates suggest that vitamin K3 specifically suppresses myometrial contractility by affecting calcium and potassium channels; thus, this approach has potential therapy for uterine contractile activity related disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Perceived quality of channel zapping

    NARCIS (Netherlands)

    Kooij, R.E.; Ahmed, K.; Brunnström, K.

    2006-01-01

    The end user experience of service quality is critical to the success of a service provider's IPTV deployment program. A key element involved in validating IPTV quality of experience (QoE) is how quickly and reliably users can change TV channels, often referred to as channel zapping. Currently there

  14. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  15. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities.

    Science.gov (United States)

    Lian, Yi-Tian; Yang, Xiao-Fang; Wang, Zhao-Hui; Yang, Yong; Yang, Ying; Shu, Yan-Wen; Cheng, Long-Xian; Liu, Kun

    2013-09-01

    Curcumin, the principal active component of turmeric, has long been used to treat various diseases in India and China. Recent studies show that curcumin can serve as a therapeutic agent for autoimmune diseases via a variety of mechanisms. Effector memory T cells (T(EM), CCR7⁻ CD45RO⁺ T lymphocyte) have been demonstrated to play a crucial role in the pathogenesis of T cell-mediated autoimmune diseases, such as multiple sclerosis (MS) or rheumatoid arthritis (RA). Kv1.3 channels are predominantly expressed in T(EM) cells and control T(EM) activities. In the present study, we examined the effect of curcumin on human Kv1.3 (hKv1.3) channels stably expressed in HEK-293 cells and its ability to inhibit proliferation and cytokine secretion of T(EM) cells isolated from patients with MS or RA. Curcumin exhibited a direct blockage of hKv1.3 channels in a time-dependent and concentration-dependent manner. Moreover, the activation curve was shifted to a more positive potential, which was consistent with an open-channel blockade. Paralleling hKv1.3 inhibition, curcumin significantly inhibited proliferation and interferon-γ secretion of T(EM) cells. Our findings demonstrate that curcumin is able to inhibit proliferation and proinflammatory cytokine secretion of T(EM) cells probably through inhibition of hKv1.3 channels, which contributes to the potency of curcumin for the treatment of autoimmune diseases. This is probably one of pharmacological mechanisms of curcumin used to treat autoimmune diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Gynura procumbens Merr. decreases blood pressure in rats by vasodilatation via inhibition of calcium channels

    Directory of Open Access Journals (Sweden)

    See-Ziau Hoe

    2011-01-01

    Full Text Available INTRODUCTION: Gynura procumbens has been shown to decrease blood pressure via inhibition of the angiotensinconverting enzyme. However, other mechanisms that may contribute to the hypotensive effect have not been studied. OBJECTIVES: To investigate the cardiovascular effects of a butanolic fraction of Gynura procumbens in rats. METHODS: Anaesthetized rats were given intravenous bolus injections of butanolic fraction at doses of 2.5-20 mg/kg in vivo. The effect of butanolic fraction on vascular reactivity was recorded in isolated rat aortic rings in vitro. RESULTS: Intravenous administrations of butanolic fraction elicited significant (p<0.001 and dose-dependent decreases in the mean arterial pressure. However, a significant (p<0.05 decrease in the heart rate was observed only at the higher doses (10 and 20 mg/kg. In isolated preparations of rat aortic rings, phenylephrine (1×10-6 M- or potassium chloride (8×10-2 M-precontracted endothelium-intact and -denuded tissue; butanolic fraction (1×10-6-1×10-1 g/ml induced similar concentration-dependent relaxation of the vessels. In the presence of 2.5×10-3 and 5.0×10-3 g/ml butanolic fraction, the contractions induced by phenylephrine (1×10-9-3×10-5 M and potassium chloride (1×10-2-8×10-2 M were significantly antagonized. The calcium-induced vasocontractions (1×10-4-1×10-2 M were antagonized by butanolic fraction concentration-dependently in calcium-free and high potassium (6×10-2 M medium, as well as in calcium- and potassium-free medium containing 1×10-6 M phenylephrine. However, the contractions induced by noradrenaline (1×10-6 M and caffeine (4.5×10-2 M were not affected by butanolic fraction. CONCLUSION: Butanolic fraction contains putative hypotensive compounds that appear to inhibit calcium influx via receptor-operated and/or voltage-dependent calcium channels to cause vasodilation and a consequent fall in blood pressure.

  17. The gastric H,K-ATPase blocker lansoprazole is an inhibitor of chloride channels

    Science.gov (United States)

    Schmarda, Andreas; Dinkhauser, Patrick; Gschwentner, Martin; Ritter, Markus; Fürst, Johannes; Scandella, Elke; Wöll, Ewald; Laich, Andreas; Rossmann, Heidi; Seidler, Ursula; Lang, Florian; Paulmichl, Markus

    2000-01-01

    It was postulated that swelling dependent chloride channels are involved in the proton secretion of parietal cells. Since omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 are structurally related to phenol derivatives known to block swelling dependent chloride channels, we set out to test, whether these substances – which are known to block the H,K-ATPase – could also lead to an inhibition of swelling-dependent chloride channels. Swelling-dependent chloride channels – characterized in many different cell types – show highly conserved biophysical and pharmacological features, therefore we investigated the effect of omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 on swelling-dependent chloride channels elicited in fibroblasts, after the reduction of the extracellular osmolarity. Omeprazole, lansoprazole and its acid activated sulphenamide form AG2000 are able to block swelling-dependent chloride channels (IClswell). Lansoprazole and its protonated metabolite AG2000 act on at least two different sites of the IClswell protein: on an extracellular site which seems to be in a functional proximity to the nucleotide binding site, and on an intracellular site which allows the formation of disulfide-bridges. The inhibition of the proton pump and the simultaneous blocking of chloride channels by omeprazole, lansoprazole and its acid activated sulphenamide form AG2000, as described here could be an effective mode to restrict proton secretion in parietal cells. PMID:10711360

  18. Finite element analysis of BWR fuel channel buckling during a seismic event

    International Nuclear Information System (INIS)

    Kinoshita, Mika; Iwamoto, Yuji; Ledford, Kevin; Cantonwine, Paul

    2014-01-01

    This paper documents the predicted response of three BWR fuel channel designs in bending using a typical moment profile for GNF fuel designs. The bending performance of the fuel channel is predicted using ANSYS, a finite element modeling tool. Specifically, linear and non-linear buckling analyses were performed to determine the onset of elastic buckling, which causes a wavy structure on the compression face in bending that might also increase channel – control blade friction, and to determine to onset of channel collapse, which causes permanent deformation and would inhibit control rod insertion. The three channel designs considered in this paper are the 0.080 inch uniform channel, the 0.100 inch uniform channel and the 0.120 inch uniform channel at the beginning of fuel life (BOL) and at the end of fuel life (EOL). (author)

  19. Two distinct voltage-sensing domains control voltage sensitivity and kinetics of current activation in CaV1.1 calcium channels.

    Science.gov (United States)

    Tuluc, Petronel; Benedetti, Bruno; Coste de Bagneaux, Pierre; Grabner, Manfred; Flucher, Bernhard E

    2016-06-01

    Alternative splicing of the skeletal muscle CaV1.1 voltage-gated calcium channel gives rise to two channel variants with very different gating properties. The currents of both channels activate slowly; however, insertion of exon 29 in the adult splice variant CaV1.1a causes an ∼30-mV right shift in the voltage dependence of activation. Existing evidence suggests that the S3-S4 linker in repeat IV (containing exon 29) regulates voltage sensitivity in this voltage-sensing domain (VSD) by modulating interactions between the adjacent transmembrane segments IVS3 and IVS4. However, activation kinetics are thought to be determined by corresponding structures in repeat I. Here, we use patch-clamp analysis of dysgenic (CaV1.1 null) myotubes reconstituted with CaV1.1 mutants and chimeras to identify the specific roles of these regions in regulating channel gating properties. Using site-directed mutagenesis, we demonstrate that the structure and/or hydrophobicity of the IVS3-S4 linker is critical for regulating voltage sensitivity in the IV VSD, but by itself cannot modulate voltage sensitivity in the I VSD. Swapping sequence domains between the I and the IV VSDs reveals that IVS4 plus the IVS3-S4 linker is sufficient to confer CaV1.1a-like voltage dependence to the I VSD and that the IS3-S4 linker plus IS4 is sufficient to transfer CaV1.1e-like voltage dependence to the IV VSD. Any mismatch of transmembrane helices S3 and S4 from the I and IV VSDs causes a right shift of voltage sensitivity, indicating that regulation of voltage sensitivity by the IVS3-S4 linker requires specific interaction of IVS4 with its corresponding IVS3 segment. In contrast, slow current kinetics are perturbed by any heterologous sequences inserted into the I VSD and cannot be transferred by moving VSD I sequences to VSD IV. Thus, CaV1.1 calcium channels are organized in a modular manner, and control of voltage sensitivity and activation kinetics is accomplished by specific molecular mechanisms

  20. Inverse agonist-like action of cadmium on G-protein-gated inward-rectifier K{sup +} channels

    Energy Technology Data Exchange (ETDEWEB)

    Inanobe, Atsushi, E-mail: inanobe@pharma2.med.osaka-u.ac.jp [Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka (Japan); Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka (Japan); Matsuura, Takanori [Laboratory of Protein Informatics, Institute for Protein Research, Osaka University, Osaka (Japan); Nakagawa, Atsushi [Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Osaka (Japan); Kurachi, Yoshihisa, E-mail: ykurachi@pharma2.med.osaka-u.ac.jp [Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka (Japan); Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka (Japan)

    2011-04-08

    Highlights: {yields} We examined allosteric control of K{sup +} channel gating. {yields} We identified a high-affinity site for Cd{sup 2+} to inhibit Kir3.2 activity. {yields} The 6-coordination geometry supports the binding. {yields} Cd{sup 2+} inhibits Kir3.2 by trapping the conformation in the closed state. -- Abstract: The gate at the pore-forming domain of potassium channels is allosterically controlled by a stimulus-sensing domain. Using Cd{sup 2+} as a probe, we examined the structural elements responsible for gating in an inward-rectifier K{sup +} channel (Kir3.2). One of four endogenous cysteines facing the cytoplasm contributes to a high-affinity site for inhibition by internal Cd{sup 2+}. Crystal structure of its cytoplasmic domain in complex with Cd{sup 2+} reveals that octahedral coordination geometry supports the high-affinity binding. This mode of action causes the tethering of the N-terminus to CD loop in the stimulus-sensing domain, suggesting that their conformational changes participate in gating and Cd{sup 2+} inhibits Kir3.2 by trapping the conformation in the closed state like 'inverse agonist'.