WorldWideScience

Sample records for channel angular extrusion

  1. Equal Channel Angular Extrusion of AA 6063 Using Conventional Direct Extrusion Press

    Science.gov (United States)

    Liu, Cheng-Hsien; Lin, Hsin-Chih

    2015-11-01

    In the present work, an extrusion-equal channel angular extrusion (Ex-ECAE) process composed of two processes, extrusion and ECAE, is developed. The Ex-ECAE die contains three segments and is used directly in the conventional direct extrusion press to refine the microstructure, specifically the coarse grain layer (CGL) on the surface of the extrudate. The first segment in the die is designed to perform the normal extrusion process and the second and third segments to perform the process of ECAE. The study reveals that the CGL can be eliminated (refined) completely at the macroscale. At the microscale, the original grain is subdivided into subgrain, which contains many smaller cells. The results can be explained by the grain subdivision mechanism. The textures of the Ex-ECAE sample at various segments are measured using EBSD (Electron Backscatter Diffraction). The results reveal that the first segment of the Ex-ECAE sample has a perfect fiber texture which consists of a mixture of strong and weak fiber components. The texture of the second segment is a mixture of strong (1 1 0) [1 -2 1] and weak (0 1 1) [2 -1 0] fiber components. However, the main component of the second segment is a typical texture of the "alloy" or "brass" type. Finally, the texture of the extrudate (the third segment) is reversed to an incomplete fiber texture which consists of strong (0 0 1) [-1 -1 0] and weak (1 1 1) [1 -1 0].

  2. Numerical simulation of temperature field of AZ91D magnesium alloy during equal channel angular extrusion

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The temperature field of AZ91D magnesium alloy extruded by equal channel angular extrusion(ECAE) has been simulated using finite element method(FEM).A series of tests were designed to obtain the simulation parameters:flow stress of AZ91D,friction factor and heat transfer coefficient.The simulated temperature agrees well with the measured one.The evolution of temperature and influencing factor was discussed in details.Furthermore,the extrusion pressure of ECAE was analyzed.

  3. Analysis of Crystallographic Textures in Aluminum Plates Processed by Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Li, Saiyi; Mishin, Oleg

    2014-01-01

    A modeling and experimental investigation has been conducted to explore the effect of processing route on texture evolution during equal channel angular extrusion (ECAE) of aluminum plate samples. It is found that although the textures in the plates develop along orientation fibers previously...

  4. Quantitative Microstructural Characterization of Thick Aluminum Plates Heavily Deformed Using Equal Channel Angular Extrusion

    DEFF Research Database (Denmark)

    Mishin, Oleg; Segal, V.M.; Ferrasse, S.

    2012-01-01

    A detailed quantitative analysis of the microstructure has been performed in three orthogonal planes of 15-mm-thick aluminum plates heavily deformed via two equal channel angular extrusion (ECAE) routes. One route was a conventional route A with no rotation between passes. Another route involved ...

  5. Uniformity and continuity of effective strain in AZ91D processed by multi-pass equal channel angular extrusion

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-hua; LUO Shou-jing; DU Zhi-ming

    2008-01-01

    AZ91D magnesium alloy was processed by equal channel angular extrusion(ECAE). The influence of extrusion temperature, extrusion pass and extrusion route on the ultimate strength of the extruded billet was analyzed. The process of multi-pass extrusion was simulated with the method of finite element analysis, and the continuity and uniformity of effective strain in multi-pass extrusion were investigated. The results show that extrusion pass plays the most important role in improving the ultimate strength of AZ91D magnesium alloy, the extrusion route is the second, and the extrusion temperature is the last. From the numerical simulation, there exists the continuity of the accumulated deformation in multi-pass extrusion and the effective strain increases linearly. The tendency of the strain uniformity is different in multi-pass extrusion with extrusion routes. The results of experiment agree with those of numerical simulation.

  6. Effects of equal channel angular extrusion on microstructure, strength and ballistic performance of AA5754 plates

    DEFF Research Database (Denmark)

    Mishin, Oleg; Hong, Chuanshi; Toftegaard, Helmuth Langmaack

    2014-01-01

    The microstructure, hardness, tensile properties and ballistic performance have been investigated in thick plates of the AA5754 alloy both in a coarse-grained as-received condition and after 4 passes of equal channel angular extrusion (ECAE) conducted at elevated temperatures. It is found that ECAE...... refines the microstructure to an average subgrain size of 0.3 μm, which results in significantly increased hardness and strength. Although ductility decreases due to ECAE, the uniform elongation is still fairly large, ~10%. The ballistic performance of the ECAE-processed material is found...

  7. Effect of Equal Channel Angular Extrusion on the Microstructures and Properties of Two Extruded Al-Mg-Si Alloys

    Institute of Scientific and Technical Information of China (English)

    M. Cai; G. W. Lorimer

    2005-01-01

    The effect of equal channel angular extrusion (ECAE) on the microstructure of two Al-Mg-Si extrusion alloys was investigated by high resolution electron backscattered diffraction (EBSD) using a field emission gun scanning electron microscope (FEG-SEM) and a transmission electron microscope (TEM). Two contrasting alloys: a dilute alloy, based on alloy 6061 and a concentrated alloy, based on alloy 6069 were employed for this research. It has been found that prior ECAE to extrusion promotes high angle grain boundaries (HAGBs) in the extrusions, and the increase in HAGBs ratio is due to the large shear deformation involved in the processof ECAE. Tensile testing results show that a further ageing treatment strengthens the alloys after extrusion and the ECAE processedextrusions are more ductile than conventional extrusions.

  8. Equal channel angular extrusion of ultra-high molecular weight polyethylene.

    Science.gov (United States)

    Reinitz, Steven D; Engler, Alexander J; Carlson, Evan M; Van Citters, Douglas W

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications.

  9. Equal channel angular extrusion of ultra-high molecular weight polyethylene.

    Science.gov (United States)

    Reinitz, Steven D; Engler, Alexander J; Carlson, Evan M; Van Citters, Douglas W

    2016-10-01

    Ultra-high molecular weight polyethylene (UHMWPE), a common bearing surface in total joint arthroplasty, is subject to material property tradeoffs associated with conventional processing techniques. For orthopaedic applications, radiation-induced cross-linking is used to enhance the wear resistance of the material, but cross-linking also restricts relative chain movement in the amorphous regions and hence decreases toughness. Equal Channel Angular Extrusion (ECAE) is proposed as a novel mechanism by which entanglements can be introduced to the polymer bulk during consolidation, with the aim of imparting the same tribological benefits of conventional processing without complete inhibition of chain motion. ECAE processing at temperatures near the crystalline melt for UHMWPE produces (1) increased entanglements compared to control materials; (2) increasing entanglements with increasing temperature; and (3) mechanical properties between values for untreated polyethylene and for cross-linked polyethylene. These results support additional research in ECAE-processed UHMWPE for joint arthroplasty applications. PMID:27287161

  10. An investigation on diffusion bonding of aluminum to copper using equal channel angular extrusion process.

    Science.gov (United States)

    Eslami, P; Taheri, A Karimi

    2011-06-30

    A new method for production of bimetallic rods, utilizing the equal channel angular extrusion (ECAE) process has been introduced before by previous researchers, but no attempt has been made to assess the effect of different temperatures and holding times in order to achieve a diffusional bond between the mating surfaces. In present research copper sheathed aluminum rods have been ECAEed at room temperature and subsequently held at a constant ECAE pressure, at different temperatures and holding times to produce a diffusional bond between the copper sheath and the aluminum core. The bonding quality of the joints was examined by shear strength test and a sound bonding interface was achieved. Based on the results, a bonding temperature of 200 °C and holding time of 60-80 min yielded the highest shear strength value. PMID:21760654

  11. Numerical Investigation of Plastic Deformation in Two-turn Equal Channel Angular Extrusion

    Directory of Open Access Journals (Sweden)

    A. Mitsak

    2014-12-01

    Full Text Available There has been a number of investigations in recent years reporting on the structure and properties of materials deformed to super plastic deformation (SPD. During SPD new textures can be formed and abnormal characteristics are displayed, attracting a growing research interest.¶ Equal channel angular extrusion (ECAE is a method often used to obtain large plastic strains. However, according to experimental results, there is a large tensile stress in the sample during deformation, which may lead in some cases, to cracking in metallic alloys and large curvature in polymeric materials. In order to overcome these drawbacks, the ECAE process can be conducted at high temperatures. But this contributes significantly to a decreased level of plastic deformation induced in the sample. Hence, a tool with multi-pass seems to be a very appropriate solution. In this paper, a new geometry die composed of two elbows has been simulated by finite element method aiming to provide an insight into the mechanisms of deformation and to determine the optimum geometry of the tool. The numerical results show that the length and the section of the second channel play a significant role on the homogeneity of the plastic strain distribution. It has been found that good homogeneity was obtained when the second channel has the same section as that of the entrance and the exit channels and with a length equal to three times of its width.

  12. Simulation of Aluminum Powder in Tube Compaction Using Equal Channel Angular Extrusion

    Science.gov (United States)

    Haghighi, Reza Derakhshandeh; Jahromi, Ahmad Jenabali; Jahromi, Behnam Esfandiar

    2012-02-01

    Aluminum powder in tube compaction with a 25 mm front plug through equal channel angular extrusion (ECAE) at room temperature was modeled using the finite element analysis package ABAQUS. The Gurson model was used in modeling this process. 2-D simulations in a 90° angle die showed better consolidation of powder near the inner edge of the die than the outer edge after one pass of ECAE but almost full densification occurs after two passes. The effect of hydrostatic pressure on densification of the powder was investigated by using two plugs varying in length dimension. The results obtained from the simulations were also compared with experiments conducted to compact aluminum powder with mean particle diameter of 45 μm. Optical microscopy, microhardness test, and density measurements confirmed the simulations. The simulations were extended to powder compaction in a 60° and 120° angle die. It was found that one pass of ECAE is sufficient to consolidate the aluminum powder completely and uniformly in a 60° angle die, whereas the material is still porous in a 120° angle die.

  13. Improvements in the microstructure and fatigue behavior of pure copper using equal channel angular extrusion

    Institute of Scientific and Technical Information of China (English)

    J Nemati; GH Majzoobi; S Sulaiman; BTHT Baharudin; MAAzmah Hanim

    2014-01-01

    In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applied stresses using fatigue tests, fractography, and metallography. The mechanical properties of the extruded material were obtained at a tensile test velocity of 0.5 mm/min. It was found that the maximum increase in strength occurred after the 2nd pass. The total increase in ultimate strength after eight passes was 94%. The results of fatigue tests indicated that a significant improvement in fatigue life occurred after the 2nd pass. In subsequent passes, the fatigue life con-tinued to improve but at a considerably lower rate. The improved fatigue life was dependent on the number of passes and applied stresses. For low stresses (or high-cycle fatigue), a maximum increase in fatigue resistance of approximately 500%was observed for the extruded material after eight passes, whereas a maximum fatigue resistance of 5000%was obtained for high-applied stresses (or low-cycle fatigue). Optical microscopic examinations revealed grain refinements in the range of 32 to 4 µm. A maximum increase in impact energy absorption of 100%was achieved after eight passes. Consistent results were obtained from fractography and metallography examinations of the ex-truded material during fatigue tests.

  14. 半自动等径角挤压模设计%Semi-automatic extrusion die for equal channel angular

    Institute of Scientific and Technical Information of China (English)

    李洪达; 于云程; 徐波

    2013-01-01

    针对传统等径角挤压模结构相对滞后的情况,设计了瓣合式旋转挤压筒、模具自旋转、滑动支撑台等结构,模具一次装夹即可实现材料的多角度多道次挤压,节省了制备超细晶材料的成本和时间。%A semi-automatic extrusion die for equal channel angular was developed in which structures like split type rotary extrusion cylinder, die’s auto-rotating and sliding support-ing platform were applied. In one clamping can the multi-angle and multi-pass extrusion of materials be realized.

  15. Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angular extrusion in semi-solid isothermal treatment

    Institute of Scientific and Technical Information of China (English)

    JIANG Ju-fu; LUO Shou-jing

    2006-01-01

    Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angular extrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that with increasing semi-solid isothermal treatment temperature, the α phase solid grain size of processed Mg-Al-Zn alloy by ECAE increases firstly due to coarsening of α phase solid grains, then decreases due to melting of α phase solid grains. With the increase of extrusion passes during ECAE, the α phase solid grain size in the following semi-solid isothermal treatment decreases. The α phase solid grain size of processed Mg-Al-Zn alloy by ECAE under route BC is the smallest, while the α phase solid grain size of processed material by ECAE under route A is the largest. The primary mechanism of spheroid formation depends on the melting of recrystallizing boundaries and diffusion of solute atoms in the semi-solid state.

  16. Deformation temperature and postdeformation annealing effects on severely deformed TiNi alloy by equal channel angular extrusion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Micron TiNi alloy blocks were fabricated at high temperature by equal channel angular extrusion (ECAE) using hotforged Ti-50.3at%Ni alloy as the raw material and the effects of deformation temperature and postdeformation annealing on the severely deformed TiNi alloy by ECAE were investigated. The results show that the TiNi alloy processed by ECAE undergoes severe plastic deformation, and lowering the deformation temperature and increasing the number of extrusions contribute to grain refinement. When the annealing temperature is below 873 K, static recovery is the main restoration process; when the temperature rises to 973 K, static recrystallization occurs. It is found that fine particles are precipitated when the TiNi alloy processed by ECAE is annealed at 773 K.

  17. Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion

    OpenAIRE

    Higuera Cobos, Oscar Fabián; Cabrera Marrero, José M.

    2013-01-01

    Samples of commercially pure copper (ETP copper) were subjected to equal-channel angular pressing (ECAP) for up to 16 passes at room temperature following route Bc. Microstructural evolution was determined by oriented image microscopy (OIM) and differential scanning calorimetry (DSC) was used to estimate the stored deformation energy and the recrystallization temperature after each ECAP pass. On the other hand, electrical properties were correlated with the associated energy that results from...

  18. Ultrafine grain formation during equal channel angular extrusion in an Al-Mg-Si alloy

    Directory of Open Access Journals (Sweden)

    L. Kander

    2006-02-01

    Full Text Available Purpose: The possibility of including a new methods into classical technologies is one of reasons which for writing this paper.Design/methodology/approach: Microstructural development of aluminium alloy 6082 during equal-channel angular pressing (ECAP. Analysis of structure was made by light microscopy and SEM analysis.Findings: This procedure makes it possible to obtain after 4 passes the grain size of approx. 1 µm. In order to obtain an optimum micro-structure it is necessary to apply more passes with turning of the sample between individual passes by 90° about the longitudinal axis.Research limitations/implications: In this process (ECAP was one of head problems a impossibility of application other shapes material. One of eventuality solving in respect thereof is using DECAP process.Practical implications: Radii of rounding of working edges of extruding channel must correspond to conditions for laminar flow of metal.Originality/value: Aluminium alloy 6082 was used to ECAP process, and found to be that this material can to change substructure structure, mechanical properties, respectively. Achieved quality level of mechanical properties is a function of number of passes as well as used technological route.

  19. Microstructure stability of ultra-fine grained magnesium alloy AZ31 processed by extrusion and equal-channel angular pressing (EX–ECAP)

    Energy Technology Data Exchange (ETDEWEB)

    Stráská, Jitka, E-mail: straska.jitka@gmail.com [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Janeček, Miloš, E-mail: janecek@met.mff.cuni.cz [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Čížek, Jakub, E-mail: jcizek@mbox.troja.mff.cuni.cz [Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Stráský, Josef, E-mail: josef.strasky@gmail.com [Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Hadzima, Branislav, E-mail: branislav.hadzima@fstroj.uniza.sk [University of Žilina, Research Centre, Univerzitná 1, 010 26 Žilina (Slovakia); Department of Materials Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina (Slovakia)

    2014-08-15

    Thermal stability of the ultra-fine grained (UFG) microstructure of magnesium AZ31 alloy was investigated. UFG microstructure was achieved by a combined two-step severe plastic deformation process: the extrusion (EX) and subsequent equal-channel angular pressing (ECAP). This combined process leads to refined microstructure and enhanced microhardness. Specimens with UFG microstructure were annealed isochronally at temperatures 150–500 °C for 1 h. The evolution of microstructure, mechanical properties and dislocation density was studied by electron backscatter diffraction (EBSD), microhardness measurements and positron annihilation spectroscopy (PAS). The coarsening of the fine-grained structure at higher temperatures was accompanied by a gradual decrease of the microhardness and decrease of dislocation density. Mechanism of grain growth was studied by general equation for grain growth and Arrhenius equation. Activation energies for grain growth were calculated to be 115, 33 and 164 kJ/mol in temperature ranges of 170–210 °C, 210–400 °C and 400–500 °C (443–483 K, 483–673 K and 673–773 K), respectively. - Highlights: • Microhardness of UFG AZ31 alloy decreases with increasing annealing temperature. • This fact has two reasons: dislocation annihilations and/or grain growth. • The activation energies for grain growth were calculated for all temperature ranges.

  20. Effect of equal channel angular extrusion on wear and corrosion behavior of the orthopedic Ti-13Nb-13Zr alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, K.S. [Department of Materials. Engineering, Indian Institute of Science, Bangalore 560012 (India); Geetha, M., E-mail: geethamanivasagam@vit.ac.in [School of Mechanical and Building Sciences, VIT University, Vellore (India); Richard, C. [Laboratoire de Mecanique et de Rheologie EA 2640, Polytech' Tours, 37000 Tours (France); Landoulsi, J. [Laboratoire de Reactivite de Surface, UMR 7197 CNRS, Universite Pierre and Marie Curie - Paris VI, 4 Place Jussieu, Case 178, F-75252 Paris (France); Ramasawmy, H. [University of Mauritius, Faculty of Engineering, Reduit (Mauritius); Suwas, S. [Department of Materials. Engineering, Indian Institute of Science, Bangalore 560012 (India); Asokamani, R. [School of Mechanical and Building Sciences, VIT University, Vellore (India)

    2012-05-01

    We report investigations on the texture, corrosion and wear behavior of ultra-fine grained (UFG) Ti-13Nb-Zr alloy, processed by equal channel angular extrusion (ECAE) technique, for biomedical applications. The microstructure obtained was characterized by X-ray line profile analysis, scanning electron microscope (SEM) and electron back scattered diffraction (EBSD). We focus on the corrosion resistance and the fretting behavior, the main considerations for such biomaterials, in simulated body fluid. To this end, potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the UFG alloy in Hanks solution at 37 Degree-Sign C. The fretting wear behavior was carried out against bearing steel in the same conditions. The roughness of the samples was also measured to examine the effect of topography on the wear behavior of the samples. Our results showed that the ECAE process increases noticeably the performance of the alloy as orthopedic implant. Although no significant difference was observed in the fretting wear behavior, the corrosion resistance of the UFG alloy was found to be higher than the non-treated material. Highlights: Black-Right-Pointing-Pointer Relevancy of ECAE process applied to titanium alloy for biomedical applications. Black-Right-Pointing-Pointer Significant improvement of mechanical properties of the surface. Black-Right-Pointing-Pointer Noticeable increase of the corrosion resistance in simulated body fluid.

  1. Effect of extrusion wheel angular velocity on continuous extrusion forming process of copper concave bus bar

    Institute of Scientific and Technical Information of China (English)

    WU Peng-yue; XIE Shui-sheng; LI Hua-qing; YAN Ming; HUANG Guo-jie; CHENG Lei

    2007-01-01

    The continuous extrusion forming process for producing large section copper concave bus bar under different extrusion wheel angular velocities was studied by three-dimensional finite element technology based on software DEFORM-3D. The rigid-viscoplastic constitutive equation was employed in the model. The numerical simulation results show that the deformation body flow velocity in the die orifice increases gradually with the increase of the extrusion wheel angular velocity. But slippage between the rod and extrusion wheel occurs when the extrusion wheel angular velocity is high. The effective stress near the die orifice enhances gradually with increasing extrusion wheel angular velocity. High stress is concentrated in adjacent regions of the flash gap. The effective strain gradient is greater near the abutment than that near the die orifice. The effective strain of the product increases gradually with increasing extrusion wheel angular velocity. In the deformation process, the deformation body temperature increases remarkably due to friction and deformation. So the cooling is necessary in the region of the die and tools.

  2. Properties and Formation of the Structure of Bi2Se0.3Te2.7 Solid Solutions Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Bogomolov, D. I.; Bublik, V. T.; Tabachkova, N. YU.; Tarasova, I. V.

    2016-01-01

    This paper reports an x-ray diffraction, scanning and transmission electron microscopy study of regularities in the formation of defect structures in thermoelectric materials at different stages of plastic flow during equal-channel angular pressing in a three-channel configuration. We show that this deformation setup produces a homogeneous fine-grain structure with a preferential texture in which grain cleavage planes arrange along the extrusion axis. These studies of the structure and properties of thermoelectric materials were used to choose the optimum temperature for equal-channel angular pressing corresponding to lower pre-recrystallization temperatures.

  3. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    OpenAIRE

    M.H. Shaeri; M. Shaeri; M.T. Salehi; S. H Seyyedein; M.R. Abutalebi

    2015-01-01

    The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 °C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens hav...

  4. Analysis of the Alternate Extrusion and Multiaxial Compression Process

    Directory of Open Access Journals (Sweden)

    Kwapisz M.

    2015-04-01

    Full Text Available The paper present the results of numerical simulations of the alternate indirect extrusion and multiaxial compression process, performed using commercial software designed for the thermomechanical analysis of plastic working processes, Forge 2009. The novel method of alternate indirect extrusion and multiaxial compression, proposed by the authors, is characterized by the occurrence of strain states in the material being plastically worked, which are similar to those occurring in the equal channel angular pressing and cyclic extrusion compression processes.

  5. Texture in equal-channel angular pressed aluminum and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, S.C.; Beyerlein, I.J.; Bourke, M.A.M.; Tome, C.N.; Rangaswamy, P. [Los Alamos National Lab., Los Alamos, NM (United States); Xu, C.; Langdon, T.G. [Univ. of Southern California, Los Angeles, CA (United States)

    2002-07-01

    Nano-structured metals with advantageous mechanical properties can be produced using severe plastic deformation techniques such as equal channel angular pressing (ECAP). Metals and alloys processed by ECAP have much higher yield strengths than the equivalent unprocessed material while retaining high ductilities, an extremely attractive combination of properties. Implicit in the process are the introduction of repetitive shear strains of 100% which introduce texture, the modeling of which is challenging. In this work, we present results from a neutron diffraction study on aluminum and nickel samples processed by ECAP. The results are compared to predictions from a visco-plastic self-consistent (VPSC) model. By taking into account grain-grain interactions in the model the agreement between the predicted and measured orientation distributions is improved. The results show also that the initial texture affects the texture evolution, at least up to strains of the order of {proportional_to}1, i.e. one ECAP pass. (orig.)

  6. Low Carbon Steel Processed by Equal Channel Angular Warm Pressing

    Directory of Open Access Journals (Sweden)

    Zrnik, J.

    2007-01-01

    Full Text Available Low carbon steel AISI 10 was subjected to a severe plastic deformation technique called Equal Angular Channel Pressing (ECAP at different increased temperatures. The steel was subjected to ECAP with channel’s angle j = 90°, at different temperature in range of 150 - 300 °C. The number of passes at each temperature was N = 3. Light, scanning electron microscopy (SEM and transmission electron microscopy (TEM of thin foils were used to study the formation of substructure and ultrafine grains in deformed specimens. The size of newly born polygonized grains (subgrains and/or submicrocrystalline grains is in range of 300 - 500 mm. The formation of such of predominant submicrocrystalline structure resulted in significant increase of yield stress [Re] and tensile strength of the steel [Rm].

  7. Exposure of Equal-Channel Angular Extruded Tungsten to Deuterium Plasma

    Science.gov (United States)

    Liu, Feng; Xu, Yuping; Zhou, Haishan; Zhao, Sixiang; Li, Bo; Lyu, Guanghong; Yuan, Yue; Hao, Ting; Luo, Guangnan

    2015-07-01

    Surface morphology and deuterium retention in ultrafine-grained tungsten fabricated by equal-channel angular pressing (ECAP) have been examined after exposure to a low energy, high-flux deuterium (D) plasma at fluences of 3×1024 D/m2 and 1×1025 D/m2 in a temperature range of 100°C-150°C. The methods used were scanning electron microscopy (SEM) and thermal desorption spectroscopy (TDS). Sparse and small blisters (∼0.1 μm) were observed by SEM after D plasma irradiation on every irradiated surface; yet they did not exhibit significant structure or plasma fluence dependence. Larger blisters or protrusions appeared after subsequent TDS heating up to 1000°C. The TDS results showed a single D desorption peak at ∼220°C for all samples and the D retention increased with increasing numbers of extrusion passes, i.e., the decrease of grain sizes. The increased D retention in this low temperature range should be attributed to the faster diffusion of D along the larger volume fraction of grain boundaries introduced by ECAP. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2013GB105001, 2013GB105002, 2015GB109001), National Natural Science Foundation of China (Nos. 11305213, 11405201), Technological Development Grant of Hefei Science Center of CAS (No. 2014TDG-HSC003), and China National Funds for Distinguished Young Scientists (No. 51325103)

  8. Structure and mechanical behavior of Fe–Cr alloy processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Tang, H.Y. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Hao, T., E-mail: hao.ting@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Wang, X.P. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)

    2015-08-15

    Highlights: • The grain size of Fe–Cr alloy can be refined to about 160 nm via ECAP method. • The strength increases monotonously with increasing the number of ECAP passes. • The total elongation (TE) decreases substantially due to ECAP processing. • The lost TE can be regained by an annealing in keeping with a higher strength. - Abstract: The microstructure and mechanical properties of Fe–18(wt)%Cr binary alloy processed by equal channel angular pressing (ECAP) method at room temperature were investigated. The average grain size of this Fe–Cr alloy was refined from several hundred of micrometers to about 160 nm after four passes extrusion. The influence of the number of passes in ECAP on the microstructure and mechanical properties of Fe–Cr alloys was investigated by means of TEM method, tensile tests, Vickers microhardness measurement and X-ray diffraction profile analysis. The ultimate tensile strength (UTS) increases and the total elongation (TE) decreases significantly with increasing the number of ECAP passes. After annealing at 650 °C, the TE of the ECAPed samples was recovered to the value before ECAP process, and at the same time the UTS was 1.2–1.3 times that of the initial sample.

  9. Equal channel angular pressing of pure aluminium—an analysis

    Indian Academy of Sciences (India)

    M Saravanan; R M Pillai; B C Pai; M Brahmakumar; K R Ravi

    2006-12-01

    Equal channel angular pressing (ECAP) is a novel technique for producing ultra fine grain structures in submicron level by introducing a large amount of shear strain into the materials without changing the billet shape or dimensions. This process is well suited for aluminium alloys and is capable of producing ultra fine grain structures with grain sizes falling between 200 and 500 nm. The present study attempts to apply ECAP technique to 99.5% pure aluminium and characterize the resulting aluminium by optical metallography, atomic force microscopy (AFM) and hardness measurement. ECAP of 99.5% pure aluminium produces ultrafine grain structure of about 620 nm after 8 passes. Despite an increase in the hardness from 23 to 47 BHN up to 6 passes, it decreases slightly for seventh and eighth passes. The results are compared with the already existing results available on pure aluminium. Analysis of the results of this investigation with those available in the literature has revealed that the number of passes essential to achieve a homogeneous microstructure in pure Al increases, while the ultimate equilibrium grain size obtained becomes finer with decreasing purity.

  10. Involvement of aquaporin channels in water extrusion from biosilica during maturation of sponge siliceous spicules.

    Science.gov (United States)

    Wang, Xiaohong; Müller, Werner E G

    2015-08-01

    Aquaporins are a family of small, pore-forming, integral cell membrane proteins. This ancient protein family functions as water channels and is found in all kingdoms (including archaea, eubacteria, fungi, plants, and animals). We discovered that in sponges aquaporin plays a novel role during the maturation of spicules, their skeletal elements. Spicules are synthesized enzymatically via silicatein following a polycondensation reaction. During this process, a 1:1 stoichiometric release of water per one Si-O-Si bond formed is produced. The product of silicatein, biosilica, is a fluffy, soft material that must be hardened in order to function as a solid rod. Using the model of the demosponge species Suberites domuncula Olivi, 1792, which expresses aquaporin, cDNA was cloned and the protein was heterologously expressed. The sponge aquaporin is grouped with the type 8 aquaporins. The function of the sponge aquaporin can be blocked by Mn-sulfate (MnSO4) and mercury chloride (HgCl2). Microscopic and functional studies suggest that aquaporin is involved in removal of the reaction water at the site where siliceous spicules are formed. Another molecule that is likely to be involved in biosilica maturation is the mucin/nidogen-like polypeptide. cDNA has also been cloned from S. domuncula. Experimental studies suggest that water extrusion/suctioning from biosilica after enzymatic synthesis during spicule formation involves both aquaporin-mediated water channeling and "polymerization-induced phase separation" facilitated by the mucin/nidogen-like polypeptide.

  11. A note on obtaining symmetrical angular yield curves in MeV ion channeling

    Science.gov (United States)

    Ruan, J.; Townsend, J.; Choyke, W. J.

    1987-11-01

    Planar channeling effects can distort the angular yield (dip) curve measured about an axial channeling direction. Two methods for minimizing distortion due to planar channeling are discussed: 1) varying the angles θ and φ of a two-axis goniometer together during the angular scan, and 2) remounting the sample so that a scan of only θ produces an undistorted symmetric dip curve. In practice, remounting the sample is preferred in order to minimize effects due to the mechanical limitations of the goniometer.

  12. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    Science.gov (United States)

    Lu, Jianxun; Wu, Xiaoyu; Liu, Zhiyuan; Chen, Xiaoqiang; Xu, Bin; Wu, Zhaozhi; Ruan, Shuangchen

    2016-09-01

    We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.

  13. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083) Severely Plastically Deformed through Equal Channel Angular Pressing

    OpenAIRE

    González Crespo, P. A.; C. Luis Pérez; Hughes, Darren J.; Turrillas, X.

    2013-01-01

    Six specimens of an aluminum alloy (AA-5083) extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311) reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the rou...

  14. Strain Mapping and Nanocrystallite Size Determination by Neutron Diffraction in an Aluminum Alloy (AA5083 Severely Plastically Deformed through Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    P. A. González Crespo

    2013-01-01

    Full Text Available Six specimens of an aluminum alloy (AA-5083 extruded by Equal Channel Angular Pressing following two different routes plus a blank sample were examined with a neutron radiation of 1.5448 Å. Macrostrain maps from the (311 reflection were obtained. A clear difference about accumulated macrostrain with the extrusion cycles between the two routes is shown. The diffraction data of annealed specimens did permit to estimate crystallite sizes that range between 89 nm and 115 nm depending on the routes.

  15. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    Directory of Open Access Journals (Sweden)

    M.H. Shaeri

    2015-04-01

    Full Text Available The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 °C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens have been aged at 120 °C for different aging times. Mechanical properties were measured by Vickers microhardness and tensile tests and microstructural observations were undertaken using transmission electron microscopy, X-ray diffractometer as well as optical microscopy. Microstructural investigations showed that ultrafine-grained materials with grain size in the range of 200–350 nm and 300–500 nm could be obtained after three passes of equal channel angular pressing at room temperature and 120 °C, respectively. Equal channel angular pressing of solid solution heat-treated Al-7075 alloy accelerates precipitation rate and subsequently leads to a significant decrease in aging time to attain maximum mechanical properties. Furthermore, it is possible to achieve maximum mechanical properties during equal channel angular pressing at 120 °C as a result of dynamic aging and formation of small ɳ´ phase.

  16. Texture evolution during tensile necking of copper processed by equal channel angular extrusion

    DEFF Research Database (Denmark)

    Pantleon, Wolfgang; Richter, S.; Martin, S.;

    2010-01-01

    Two copper samples, pre-deformed in tension to 5% plastic strain, are subjected to an in situ tensile deformation of 1% plastic strain while X-ray peak profiles from individual bulk grains are obtained. One sample is oriented with the in situ tensile axis parallel to the pre-deformation axis, and...

  17. Effect of equal channel angular pressing on aging treatment of Al-7075 alloy

    Institute of Scientific and Technical Information of China (English)

    M.H. Shaeri; M. Shaeri; M.T. Salehi; S.H. Seyyedein; M.R. Abutalebi

    2015-01-01

    The effect of aging treatment on microstructure and mechanical properties of equal channel angular pressed Al-7075 alloy was examined. Commercial Al-7075 alloy in the solid solution heat-treated condition was processed by equal channel angular pressing through route BC at both the room temperature and 120 1C. Only three passes of equal channel angular pressing was possible due to the low ductility of the alloy at both temperatures. Followed by equal channel angular pressing, the specimens have been aged at 120 1C for different aging times. Mechanical properties were measured by Vickers microhardness and tensile tests and microstructural observations were undertaken using transmission electron microscopy, X-ray diffractometer as well as optical microscopy. Microstructural investigations showed that ultrafine-grained materials with grain size in the range of 200–350 nm and 300–500 nm could be obtained after three passes of equal channel angular pressing at room temperature and 120 1C, respectively. Equal channel angular pressing of solid solution heat-treated Al-7075 alloy accelerates precipitation rate and subsequently leads to a significant decrease in aging time to attain maximum mechanical properties. Furthermore, it is possible to achieve maximum mechanical properties during equal channel angular pressing at 120 1C as a result of dynamic aging and formation of smallɳ´ phase.&2015 Chinese Materials Research Society. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

  18. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    Science.gov (United States)

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea. PMID:21133137

  19. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    Science.gov (United States)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  20. Multi-channel orbital angular momentum detection with metahologram.

    Science.gov (United States)

    Rui, Guanghao; Ma, Yanbao; Gu, Bing; Zhan, Qiwen; Cui, Yiping

    2016-09-15

    Orbital angular momentum (OAM) is an intrinsic property of light that has attracted increasing attention recently. In a wide range of applications that involve OAM, it is often crucial to discern the OAM states with high fidelity. In this Letter, we propose a novel method to extend the detectable range of the OAM states by adopting a multi-sector metahologram. The incident light carrying OAM would be focused by the metahologram into surface plasmon waves with separated propagation directions that are spatially sampled by multiple subwavelength detectors. Through quantizing and mapping the detector signals into a lookup table, a wide range of OAM states could be distinguished. The principle reported in this Letter may find important applications in optical communications and information processing with the OAM states. PMID:27628402

  1. Equal channel angular pressing technique for the formation of ultra-fine grained structures

    Directory of Open Access Journals (Sweden)

    Kazeem O. Sanusi

    2012-10-01

    Full Text Available Equal channel angular pressing is one of the techniques in metal forming processes in which an ultra-large plastic strain is imposed on a bulk material in order to make ultra-fine grained and nanocrystalline metals and alloys. The technique is a viable forming procedure to extrude materials by use of specially designed channel dies without substantially changing the geometry by imposing severe plastic deformation. This technique has the potential for high strain rate superplasticity by effective grain refinement to the level of the submicron-scale or nanoscale. Wereview recent work on new trends in equal channel angular pressing techniques and the manufacturing of die-sets used for the processing of metals and alloys. We also experimented on a copper alloy using the equal channel angular pressing technique to examine the microstructural, mechanical and hardness properties of the ultra-fine grained and nanocrystalline materials produced. After deformation, all samples were subjected to a hardness test and the results showed improved mechanical behaviour of the ultra-fine grained copper alloy that was developed. This research provides an opportunity to examine the significance of the equal channel angular pressing process for metals and alloys. That is, these ultra-fine grained materials can be used in the manufacturing of semi-finished products used in the power, aerospace, medical and automotive industries.

  2. Microstructure and Mechanical Properties of Semi-continuous Equal-channel Angular Extruded Interstitial-free Steel

    Institute of Scientific and Technical Information of China (English)

    Bo YAN; Si-hai JIAO; Dian-hua ZHANG

    2016-01-01

    An innovative method called semi-continuous equal-channel angular extrusion (SC-ECAE)has been devel-oped to produce ultrafine grained steel by inducing severe plastic deformation.In contrast to the external forces that are exerted on specimens in traditional ECAE,the driving forces are applied on the dies in the novel SC-EACE process.Commercial interstitial-free steel sheets with width of 160 mm and thickness of 2 mm were processed re-peatedly to various passes at room temperature using this method.The microstructural evolution was characterized using high-resolution electron backscatter diffraction (EBSD),and the mechanical properties were investigated by tensile testing.The EBSD images indicated that the fraction of high-angle boundaries (HABs)began to increase gradually after four passes;after six passes,elongated HAB structures with nearly submicron-scale average spacings were formed.The tensile testing results showed that strengthening was accompanied by a decrease in tensile ductili-ty,but no significant anisotropy was observed.After 10 passes,a final HAB fraction of about 90% and an overall grain size of 0�55μm,yield strength of 638�7 MPa,an ultimate tensile strength (UTS)of 710�3 MPa,and a total elongation of 1 2�0% were obtained.

  3. Microstructure and texture evolution in a Cu–Ni–Si alloy processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Hadj Larbi, Fayçal; Azzeddine, Hiba [Faculté de Physique, USTHB, BP 32 El-Alia, Dar El Beida, Alger (Algeria); Baudin, Thierry [Université de Paris Sud, ICMMO, UMR CNRS 8182, Laboratoire de physico-chimie de l’état solide, Bâtiment 410, 91405 Orsay Cedex (France); Mathon, Marie-Hélène [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Brisset, François; Helbert, Anne-Laure [Université de Paris Sud, ICMMO, UMR CNRS 8182, Laboratoire de physico-chimie de l’état solide, Bâtiment 410, 91405 Orsay Cedex (France); Kawasaki, Megumi, E-mail: megumi@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Bradai, Djamel [Faculté de Physique, USTHB, BP 32 El-Alia, Dar El Beida, Alger (Algeria); Langdon, Terence G. [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-07-25

    Highlights: • A Cu–Ni–Si alloy is processed by ECAP up to 12 passes at 423 K through route A. • The texture after ECAP is characterized by typical shear components of fcc metals. • ECAP leads to randomization of the texture with increasing numbers of passes. • ECAP through route A rotates the texture positions from the ideal component. - Abstract: Experiments were conducted to evaluate the evolution of microstructure and texture in a commercial Cu–2.5Ni–0.6Si (wt.%) alloy processed by equal-channel angular pressing (ECAP) at 423 K for up to 12 passes. An electron backscatter diffraction (EBSD) analysis shows that ECAP processing leads to microstructural refinement with an average grain size of ∼0.9 μm. The refined grains are inclined to the direction of extrusion and the deformation structure evolves from elongated grains to a duplex microstructure of equiaxed and elongated grains. Detailed measurements demonstrate that the grain boundary misorientations gradually increase with increasing numbers of ECAP passes. The texture was investigated using both EBSD and neutron diffraction. The results show the texture after ECAP is characterized by typical shear components of face-centered cubic metals which deviate from their ideal positions.

  4. X-ray line profile analysis of equal channel angular pressing processed Cu

    Science.gov (United States)

    Jóni, B.; Gonda, V.; Verö, B.; Ungár, T.

    2014-08-01

    The effect of equal channel angular pressing on the microstructure of copper samples was studied by X-ray line profile analysis. Pure Cu samples were processed by equal channel angular pressing with 3 passes in route A. Samples were taken from the vicinity of the channel intersection, and along a profile across the deformation zone, microhardness and XRD measurements were performed. For the high resolution line profile analysis of the diffraction spectra, convolutional-multiple-whole-profile CMWP method was applied, dislocation density and grain size were calculated, furthermore the density of twin boundaries were determined. Results show a rearrangement in the dislocations in the third pass leading to a rise in the density of twin boundaries.

  5. INFLUENCE OF DIE ANGLES ON THE MICROHARDNESS OF ALUMINUM ALLOY PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Ali A Aljubouri

    2010-11-01

    Full Text Available   The die geometry has a massive effect on the plastic deformation behavior during pressing of material processed by equal channel angular pressing (ECAP method; subsequently the properties of the processed material are strongly dependent on it. Two categories of designed and manufactured dies are used for equal channel angular pressing, a 1200 sharp angle and a 900 round –cornered (200 dies, that produce strain per pass through both dies of ~0.7 and ~1.05   respectively. The microhardness developed in Al-Si alloy during ECAP using route BC. The microhardness increased by a factor of >1.5, after only 1 pressing. Subsequently, the hardness increases slightly up to 8 pressings through the 1200 sharp angle die, while it is increased by a factor of ~2.6 after 5 passes by using the 900 round cornered die, comparing with that for the cast workpiece.

  6. Finite Element Method and Upper-Bound Type Analysis of Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    T. A. Fashanu

    2012-10-01

    Full Text Available This work presents the analysis of stresses required for a frictionless equal-channel angular pressing (ECAP of perfectly plastic or strain-hardening materials using finite-element method and upper-bound type analysis. Upper-bound type and FEM analysis were analytical approximations and numerical methods respectively. The two methods used and presented agree well for different ECAP die angles and materials.

  7. DEVELOPMENT BY COMPUTATIONAL SIMULATION AND PERFORMANCE ANALYSIS OF AN EQUAL CHANNEL ANGULAR PRESSING DIE

    OpenAIRE

    Phillip Springer; José Benaque Rubert; Vitor Luiz Sord; Maurizio Ferrante

    2013-01-01

    Critical geometric parameters of an Equal Channel Angular Pressing (ECAP) die suitable to plate processing were optimized by making use of the DEFORM™ software. Following the simulation a die was manufactured and employed in the processing of 7 mm thick Al AA 1050 plates. Software output included the pressing forces and the equivalent deformation distribution within the plates, after one and four ECAP passes. Calculated pressing forces against the punch displacement were compared ...

  8. Microstructural Characterization of a Magnesium Alloy Processed by Equal Channel Angular Pressing

    OpenAIRE

    Florina Diana Dumitru; Mihaela Andreea Moncea; Oscar Fabián Higuera-Cobos

    2014-01-01

    Samples of as-extruded ZK60 magnesium alloy were subjected to 6 passes of equal-channel angular pressing (ECAP) following route A. The processing temperature was decreased with the number of passes. The structural evolution of the deformed samples was analyzed using Electron Backscattered Diffraction (EBSD) and X-Ray Diffraction. The grain boundary misorientation distribution showed a reduction in the grain size accompanied bya large proportion of high angle grain boundaries and the presence ...

  9. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    OpenAIRE

    Atef Korchef; Abdelkrim Kahoul

    2013-01-01

    A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP). The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared wit...

  10. Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing

    OpenAIRE

    Rodríguez Calvillo, Pablo; Cabrera Marrero, José M.

    2015-01-01

    A commercially pure (CP) Titanium alloy classified as Grade 1, was processed by Equal Channel Angular Pressing (ECAP) up to 4 passes in the temperature range of 450-150 degrees C.; The resulting microstructures were observed by Electron Back-Scattered Diffraction, revealing a bimodal grain size distribution consisting of small recrystallized grains of submicrometer size, with an average value of 0.3 mu m, and elongated bands of 1.4 mu m with different degree of substructure. Additionally the ...

  11. Texture analysis in ultrafine grained copper processed by equal channel angular pressing

    OpenAIRE

    Higuera Cobos, Oscar Fabián; Cabrera Marrero, José M.

    2013-01-01

    Electrolytic tough pitch (ETP) and fire refined high conductivity (FRHC) copper samples were severely deformed at room temperature by equal channel angular pressing (ECAP) up to 16 passes (e ~ 1 per pass), following route Bc. The effect of the initial texture on the evolution of texture after the ECAP process for both materials was analyzed. The annealed materials present a marked anisotropy, with a texture controlled by the fiber. According to the orientation distribution function (ODF), th...

  12. Development of Nanostructured AA3103 by Equal Channel Angular Pressing and Thermal Treatments

    OpenAIRE

    Luis, C. J.; Luri, R.; León, J.; Puertas, I.; Salcedo, D.; Pérez, I.

    2014-01-01

    This work presents a study related to the achievement of a nanometric structure in AA3103, employing severe plastic deformation processes (SPD), in this case equal channel angular pressing (ECAP). The changes in the mechanical properties and in the microstructure of AA3103 were studied after being processed by ECAP. Subsequently, scanning electron microscopy was used to determine the evolution of the microstructure after different thermal treatments on the material processed by this severe pl...

  13. Texture analysis in ultrafine grained coppers processed by equal channel angular pressing

    OpenAIRE

    Oscar Fabián Higuera; Cabrera, J.M.

    2013-01-01

    Electrolytic tough pitch (ETP) and fire refined high conductivity (FRHC) copper samples were severely deformed at room temperature by equal channel angular pressing (ECAP) up to 16 passes (ε ~ 1 per pass), following route Bc. The effect of the initial texture on the evolution of texture after the ECAP process for both materials was analyzed. The annealed materials present a marked anisotropy, with a texture controlled by the fiber. According to the orientation distribution function (ODF...

  14. Dislocation density of pure copper processed by accumulative roll bonding and equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Yoji, E-mail: miyajima.y.ab@m.titech.ac.jp [Department of Materials Science and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-J2-63, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Okubo, Satoshi; Abe, Hiroki; Okumura, Hiroki [Department of Materials Science and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-J2-63, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Fujii, Toshiyuki [Department of Metallurgy and Ceramics Science, Graduate School of Engineering, Tokyo Institute of Technology, 2-12-1-S8-7, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Onaka, Susumu; Kato, Masaharu [Department of Materials Science and Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259-J2-63, Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-06-15

    The dislocation density of pure copper fabricated by two severe plastic deformation (SPD) processes, i.e., accumulative roll bonding and equal-channel angular pressing, was evaluated using scanning transmission electron microscopy/transmission electron microscopy observations. The dislocation density drastically increased from ~ 10{sup 13} m{sup −} {sup 2} to about 5 × 10{sup 14} m{sup −} {sup 2}, and then saturated, for both SPD processes.

  15. Severe plastic deformation by equal channel angular pressing: product quality and operational details

    Directory of Open Access Journals (Sweden)

    Anibal de Andrade Mendes Filho

    2011-09-01

    Full Text Available As a technique, Equal Channel Angular Pressing (ECAP is simple and inexpensive. However, if die manufacture and operational details are not carefully planned and implemented, difficulties arise, which can interfere with the product characteristics and the pressing operation itself. The present paper offers guidelines on die design and manufacture, emphasizing geometry, material and heat treatment. Further, operational parameters such as lubrication, pressing temperature, deformation routes, die closure procedure and the influence of channel cross section on maximum acceptable load are described. Additionally, the effects of those variables on the product characteristics (deformation level and homogeneity and integrity, plus process control and safety, are discussed.

  16. Reducing the tension–compression yield asymmetry of extruded Mg–Zn–Ca alloy via equal channel angular pressing

    OpenAIRE

    L.B. Tong; M.Y. Zheng; S. Kamado; Zhang, D.P.; Meng, J; L. R. Cheng; Zhang, H. J.

    2015-01-01

    The influence of equal channel angular pressing on the tension–compression yield asymmetry of extruded Mg–5.3 Zn–0.6 Ca (weight percent) alloy has been investigated. The microstructure was obviously refined by the large strain during the equal channel angular pressing, accompanied with very fine Ca2Mg6Zn3 phases with average diameter of 70 nm. The weak tension–compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twin...

  17. The effect of grain size on dynamic tensile extrusion behaviour

    Science.gov (United States)

    Park, Leeju; Kim, Hack Jun; Kim, Seok Bong

    2015-09-01

    Dynamic tensile extrusion (DTE) tests were conducted on coarse grained and ultrafine grained (UFG) OFHC Cu, Interstitial free (IF) Steel, and pure Ta. Equal channel angular pressing (ECAP) of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm) to the conical extrusion die at a speed of ˜500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  18. The effect of grain size on dynamic tensile extrusion behaviour

    OpenAIRE

    Park Leeju; Kim Hack Jun; Kim Seok Bong

    2015-01-01

    Dynamic tensile extrusion (DTE) tests were conducted on coarse grained and ultrafine grained (UFG) OFHC Cu, Interstitial free (IF) Steel, and pure Ta. Equal channel angular pressing (ECAP) of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm) to the conical extrusion die at a speed of ∼500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and com...

  19. Dynamic approach to description of entrance channel effects in angular distributions of fission fragments

    Science.gov (United States)

    Eremenko, D. O.; Drozdov, V. A.; Fotina, O. V.; Platonov, S. Yu.; Yuminov, O. A.

    2016-07-01

    Background: It is well known that the anomalous behavior of angular anisotropies of fission fragments at sub- and near-barrier energies is associated with a memory of conditions in the entrance channel of the heavy-ion reactions, particularly, deformations and spins of colliding nuclei that determine the initial distributions for the components of the total angular momentum over the symmetry axis of the fissioning system and the beam axis. Purpose: We develop a new dynamic approach, which allows the description of the memory effects in the fission fragment angular distributions and provides new information on fusion and fission dynamics. Methods: The approach is based on the dynamic model of the fission fragment angular distributions which takes into account stochastic aspects of nuclear fission and thermal fluctuations for the tilting mode that is characterized by the projection of the total angular momentum onto the symmetry axis of the fissioning system. Another base of our approach is the quantum mechanical method to calculate the initial distributions over the components of the total angular momentum of the nuclear system immediately following complete fusion. Results: A method is suggested for calculating the initial distributions of the total angular momentum projection onto the symmetry axis for the nuclear systems formed in the reactions of complete fusion of deformed nuclei with spins. The angular distributions of fission fragments for the 16O+232Th,12C+235,236,238, and 13C+235U reactions have been analyzed within the dynamic approach over a range of sub- and above-barrier energies. The analysis allowed us to determine the relaxation time for the tilting mode and the fraction of fission events occurring in times not larger than the relaxation time for the tilting mode. Conclusions: It is shown that the memory effects play an important role in the formation of the angular distributions of fission fragments for the reactions induced by heavy ions. The

  20. Effect of equal channel angular pressing (ECAP) on structure and properties of the constructional steel St3

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The objective of this study was to describe two different ways for performing equal channel angular pressing of the constructional steel St3 and the relation between these two ways and steel's structure and properties.

  1. Finite element simulations of deformation behavior in equal channel angular pressing using a rotated die

    Institute of Scientific and Technical Information of China (English)

    Yixuan TAN; Saiyi LI

    2012-01-01

    A new die design for equal channel angular pressing (ECAP) of square cross-section billet was proposed by a 45° rotation of the inlet and outlet channels around the channel axes.ECAP utilizing the rotated and conventional dies was simulated in three dimensions using the finite element method.Conditions with different material properties and friction coefficients were studied.The billet deformation behavior was evaluated in terms of the spatial distribution of equivalent plastic strain,plastic deformation zone and load history.The results show that the rotated die appears to produce billets with a smaller deformation inhomogeneity over the entire crosssection and a greater average of equivalent plastic strain at the cost of a slightly larger working load.The billet deformation enters into a steady state earlier in the case of the rotated die than the conventional die under the condition of a relatively large friction coefficient.

  2. Microstructural Characterization of a Magnesium Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Florina Diana Dumitru

    2014-07-01

    Full Text Available Samples of as-extruded ZK60 magnesium alloy were subjected to 6 passes of equal-channel angular pressing (ECAP following route A. The processing temperature was decreased with the number of passes. The structural evolution of the deformed samples was analyzed using Electron Backscattered Diffraction (EBSD and X-Ray Diffraction. The grain boundary misorientation distribution showed a reduction in the grain size accompanied bya large proportion of high angle grain boundaries and the presence of recrystallization processes. XRD results showed that with the increment of the applied strain the peaks presented a slight variation of the angles.

  3. On the cold rolling of AZ31 Mg alloy after Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Arab

    2014-09-01

    Full Text Available Among the various Severe Plastic Deformation (SPD processes, Equal Channel Angular Pressing (ECAP is one of the most applicable one which improves strength and ductility due to grain refinement and suitable texture development. In this study, cold rolling were carried out on the 4 pass ECAPed (in route A and C strip shaped specimens of AZ31 magnesium alloy to investigate the ECAP effects on the roll-ability. Results showed that reduction in area which can be concerned as an index for roll-ability increased after ECAP. It was also seen that ECAP in route C enhanced roll-ability more than route A.

  4. Achieving superplastic properties in a ZK10 magnesium alloy processed by equal-channel angular pressing

    OpenAIRE

    Figueiredo, Roberto B.; Terence G. Langdon

    2016-01-01

    Equal-channel angular pressing provides an opportunity for refining the grain structure and introducing superplastic properties in magnesium alloys. This report describes the use of this processing technique with a ZK10 (Mg–1.0 wt.% Zn–0.26 wt.% Zr) alloy. The grain structure was successfully refined from ~12.9um to ~5.2um after 4 passes and superplastic elongations were observed when testing at low strain rates at temperatures of 473 and 523 K. An analysis shows that the superplastic behavio...

  5. DEVELOPMENT BY COMPUTATIONAL SIMULATION AND PERFORMANCE ANALYSIS OF AN EQUAL CHANNEL ANGULAR PRESSING DIE

    Directory of Open Access Journals (Sweden)

    Phillip Springer

    2013-06-01

    Full Text Available Critical geometric parameters of an Equal Channel Angular Pressing (ECAP die suitable to plate processing were optimized by making use of the DEFORM™ software. Following the simulation a die was manufactured and employed in the processing of 7 mm thick Al AA 1050 plates. Software output included the pressing forces and the equivalent deformation distribution within the plates, after one and four ECAP passes. Calculated pressing forces against the punch displacement were compared with the actual forces, whilst the deformation distribution is validated by Vickers microhardness measurements. From tensile tests and microstructural observation of the processed plates the die performance was found quite satisfactory.

  6. Grain refinement of commercial purity Magnesium processed by Ecap (Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Flávia Spitale Jacques Poggiali

    2012-04-01

    Full Text Available Grain refinement in magnesium is evaluated in the present paper. Equal Channel Angular Pressing is used to process commercially pure magnesium. Processing was carried out at 523 K which is lower than the temperature used in other papers on the literature. The grain structure was evaluated throughout the deformation zone. The low processing temperature prevents significant grain growth. The evolution of the grain structure is compared to a recent model for mechanism of grain refinement in magnesium. The present results confirm the validity of the model.

  7. Novel deformation structures of pure titanium induced by room temperature equal channel angular pressing

    OpenAIRE

    Y. J. Chen; Li, Y. J.; Xu, X J; Hjelen, J.; Roven, H.J.

    2014-01-01

    Novel deformation structures of commercial pure (CP) Ti induced by equal channel angular pressing (ECAP) at room temperature have been studied by electron backscattering diffraction (EBSD). All the deformation twins occurring in CP Ti, {101?1}, {112?1}, {101?2} and {112?2} have been revealed surprisingly in one original grain as first, secondary or third generation twins. 3 variants of {101?2} twins have been identified. The deformation mechanism of CP-Ti during ECAP at room temperature in co...

  8. Analysis of microstructure and strengthening in CuMg alloys deformed by equal channel angular pressing

    OpenAIRE

    Rodriguez-Calvillo, P.; Cabrera Marrero, José M.

    2015-01-01

    The microstructural and strengthening behavior of two CuMg alloys, with 0.2 and 0.5 m.-% of Mg, were analyzed after severe plastic deformation by Equal Channel Angular Pressing (ECAP). Both alloys were passed through a 90° inner angle ECAP die at room temperature up to 16 passes following route Bc. The EBSD analysis of the deformed microstructure revealed a significant grain refinement after the 2nd pass. Average grain sizes as fine as 0.31 and 0.24 µm for the CuMg0.2 and CuMg0.5, respectivel...

  9. Characterization Of An Equal Channel Angular Pressed Al-Zn-In Alloy

    OpenAIRE

    Banjongprasert C.; Jak-Ra A.; Domrong C.; Patakham U.; Pongsaksawad W.; Chairuangsri T.

    2015-01-01

    Equal channel angular pressing (ECAP) is a technique that creates a high accumulated strain in metals and results in ultrafine-grained structure. In this study, Al-5Zn-0.02In was processed by ECAP at a room temperature using route Bc through an ECAP die (press angle of Φ = 100° and Ψ = 20°). The samples were subjected to ECAP with 1, 2, 3 and 4 passes. The processed specimens were characterized using electron backscatter diffraction (EBSD). The results confirmed the grain refinement of the al...

  10. On the cold rolling of AZ31 Mg alloy after Equal Channel Angular Pressing

    OpenAIRE

    Seyed Mohammad Arab; Abbas Akbarzadeh

    2014-01-01

    Among the various Severe Plastic Deformation (SPD) processes, Equal Channel Angular Pressing (ECAP) is one of the most applicable one which improves strength and ductility due to grain refinement and suitable texture development. In this study, cold rolling were carried out on the 4 pass ECAPed (in route A and C) strip shaped specimens of AZ31 magnesium alloy to investigate the ECAP effects on the roll-ability. Results showed that reduction in area which can be concerned as an index for roll-...

  11. Microstructure of AZ91 alloy deformed by equal channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Braszczynska-Malik, K.N. [Inst. of Materials Engineering, Czestochowa Univ. of Technology, Czestochowa (Poland); Froyen, L. [MTM Dept., Katholieke Univ. Leuven, Leuven-Heverlee (Belgium)

    2005-08-01

    The equal channel angular pressing (ECAP) of the AZ91 magnesium alloy was tested from 553 K to 693 K. The initial grain size of the investigated alloy in homogenized state was about 150 {mu}m. Samples were deformed through a die characterized by an inner contact angle. During the ECAP process the microstructure changed homogeneously and exhibited a decrease of grain size to 10 {mu}m. Transmission electron microscopy allowed the observation of a high dislocation density and large number of twins and shear bands in the deformed material. Some regions in the investigated alloys exhibited a dynamic recrystallisation process. (orig.)

  12. Damage prediction of 7025 aluminum alloy during equal-channel angular pressing

    Science.gov (United States)

    Ebrahimi, M.; Attarilar, Sh.; Gode, C.; Djavanroodi, F.

    2014-10-01

    Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to enhance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical properties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain refinement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°; however, the cracks initiated from the neighborhood of the central regions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.

  13. Damage prediction of 7025 aluminum alloy during equal-channel angular pressing

    Institute of Scientific and Technical Information of China (English)

    M.Ebrahimi; Sh. Attarilar; C.Gode; F.Djavanroodi

    2014-01-01

    Equal-channel angular pressing (ECAP) is a prominent technique that imposes severe plastic deformation into materials to en-hance their mechanical properties. In this research, experimental and numerical approaches were utilized to investigate the mechanical prop-erties, strain behavior, and damage prediction of ECAPed 7025 aluminum alloy in various conditions, such as die channel angle, outer corner angle, and friction coefficient. Experimental results indicate that, after the first pass, the yield strength, ultimate tensile strength, and hardness magnitude are improved by approximately 95%, 28%, and 48.5%, respectively, compared with the annealed state, mainly due to grain re-finement during the deformation. Finite element analysis shows that the influence of die channel angle is more important than that of outer corner angle or friction coefficient on both the strain behavior and the damage prediction. Also, surface cracks are the main cause of damage during the ECAP process for every die channel angle except for 90°;however, the cracks initiated from the neighborhood of the central re-gions are the possible cause of damage in the ECAPed sample with the die channel angle of 90°.

  14. Mechanical properties of copper processed by Equal Channel Angular Pressing – a review

    Directory of Open Access Journals (Sweden)

    Ludvík Kunz

    2012-01-01

    Full Text Available The Equal Channel Angular Pressing is a hardening treatment with which ductile metals can be processed to refine their grain and sub-grain structure. This process enhances the mechanical strength of metals in terms of tensile strength, stress-controlled fatigue strength, and fatigue crack growth resistance. In this paper the authors draw a review of the major results of a wide research activity they carried out on a copper microstructure processed by Equal Channel Angular Pressing. The essential results are that tensile and fatigue strengths of the so obtained refined structure are improved by a factor of two with respect to the original coarse-grained metal. The fatigue crack initiation mechanism and the stability of the refined microstructure under cyclic loading are topics also discussed, evidencing the essential role of the process and of the material parameter, as the content of impurities in the microstructure. In this review, the authors also underline some critical aspects that have to be more investigated.

  15. Mechanical properties of equal channel angular pressed powder extrudates of a rapidly solidified hypereutectic Al-20 wt% Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Chae [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of); Hong, Soon-Jik [Division of Advanced Engineering, Kongju National University, Kongju, 314-701 (Korea, Republic of); Korean Atomic Energy Research Institute, Yuseoung, Daejeon 305-353 (Korea, Republic of); Hong, Sun Ig [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of); Kim, Hyoung Seop [Department of Metallurgical Engineering, Chungnam National University, Yuseoung, Daejeon 305-764 (Korea, Republic of)], E-Mail: hskim@cnu.ac.kr

    2007-03-25

    The processing and mechanical properties of rapidly solidified and consolidated hypereutectic Al-20 wt% Si alloys were studied. A bulk form of rapidly solidified Al-20 wt% Si alloy was prepared by extruding gas atomized powders having a powder size of 106-145 {mu}m. Powder extrudates were subsequently equal channel angular pressed up to eight repetitive route C passes to refine matrix microstructure and Si particles by imposing severe plastic deformation. The microstructures of the gas atomized powders, extrudates and equal channel angular pressed samples were investigated via a scanning electron microscope. The mechanical properties of the bulk samples were measured by compressive tests. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength of the Al-20 wt% Si alloy without deteriorating ductility in a range of experimental strain of up to 30%.

  16. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Hao, T., E-mail: hao.ting@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fan, Z.Q.; Zhang, T. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Luo, G.N. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031 (China); Wang, X.P.; Liu, C.S. [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Fang, Q.F., E-mail: qffang@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China)

    2014-12-15

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  17. Development of Nanostructured AA3103 by Equal Channel Angular Pressing and Thermal Treatments

    Directory of Open Access Journals (Sweden)

    C. J. Luis

    2014-01-01

    Full Text Available This work presents a study related to the achievement of a nanometric structure in AA3103, employing severe plastic deformation processes (SPD, in this case equal channel angular pressing (ECAP. The changes in the mechanical properties and in the microstructure of AA3103 were studied after being processed by ECAP. Subsequently, scanning electron microscopy was used to determine the evolution of the microstructure after different thermal treatments on the material processed by this severe plastic deformation process. Furthermore, a more profound knowledge of the changes in the mechanical properties of this aluminium alloy was obtained. It was demonstrated that with different appropriate combinations of thermal treatments and ECAP processing, it is possible to significantly improve the mechanical properties through obtaining submicrometric grain size structures.

  18. Characterization Of An Equal Channel Angular Pressed Al-Zn-In Alloy

    Directory of Open Access Journals (Sweden)

    Banjongprasert C.

    2015-06-01

    Full Text Available Equal channel angular pressing (ECAP is a technique that creates a high accumulated strain in metals and results in ultrafine-grained structure. In this study, Al-5Zn-0.02In was processed by ECAP at a room temperature using route Bc through an ECAP die (press angle of Φ = 100° and Ψ = 20°. The samples were subjected to ECAP with 1, 2, 3 and 4 passes. The processed specimens were characterized using electron backscatter diffraction (EBSD. The results confirmed the grain refinement of the alloy after ECAP to an average grain size less than 5 μm after 4-pass ECAP. The microhardness test shows that the hardness increased with the number of passes. The hardness of the cross-sectional area of the sample was similar to that tested along the pressing direction.

  19. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing

    Science.gov (United States)

    Hao, T.; Fan, Z. Q.; Zhang, T.; Luo, G. N.; Wang, X. P.; Liu, C. S.; Fang, Q. F.

    2014-12-01

    In this study, equal-channel angular pressing (ECAP) was employed to refine the grain size of tungsten at relatively low temperatures. The small punch (SP) test results show that the ultrafine-grained tungsten appears an evident improvement in both strength and ductility compared with primary coarse-grained tungsten. The analysis results from SP test data indicate that the ductile-to-brittle transition temperature (DBTT) of the ultrafine-grained tungsten decrease to 386 °C and 322 °C due to the ECAP processing at 800 °C and 950 °C, respectively. The reason of the improvement in both strength and ductility of the ultrafine-grained tungsten produced by ECAP is discussed.

  20. Microstructure and Mechanical Properties of Granular Pearlite Steel After Equal Channel Angular Pressing

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Li, Pengyan; Chen, Lufei; Ren, Fengzhang; Volinsky, Alex A.

    2015-07-01

    Equal channel angular pressing (ECAP) of granular pearlite high carbon steel was carried out at room temperature via the Bc route. The microstructure evolution was investigated by means of scanning and transmission electron microscopy, and the mechanical properties of granular pearlite steel were measured by tensile and microhardness testing. After four passes, the microstructure was obviously refined. An ultrafine microduplex structure with 400 nm equiaxed ferrite grains and 200 nm cementite particles were formed. The yield strength, ultimate tensile strength, microhardness, and the ratio of the yield to tensile strength increased with the number of ECAP passes, however, the elongation slightly reduced. The tensile fracture morphology changes gradually from ductile fracture to ductile and quasi-cleavage mixed fracture.

  1. SPOT WELDING COPPER–1%Cr ELECTRODE TIPS PRODUCED VIA EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Luay Bakir Hussain

    2010-09-01

    Full Text Available A sharp 120o Equal channel angular pressing (ECAP following rout Bc was applied at room temperature to refine the grains sizes of pure copper and copper-1%Chromium alloy for spot welding electrode tips application. Initially deformation behavior was investigated with the position using colorful plasticine as work piece followed by copper alloy. It was found the deformation at the central part of the work piece is heavily sheared than the outer part. Optical and Scanning electron microscopy were used to study the progress of grain refining under the influence of rotation and number of passes during pressing. The influnece of elongated fibrous nano graines on electrical conductivity and hardness were discussed. Shear test of spot welded 303 stainless steel indicated that nano structural Cu-1%Cr electrode tips used showed a superior results compared to commercial electrodes

  2. Texture analysis in ultrafine grained coppers processed by equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    Oscar Fabián Higuera

    2013-06-01

    Full Text Available Electrolytic tough pitch (ETP and fire refined high conductivity (FRHC copper samples were severely deformed at room temperature by equal channel angular pressing (ECAP up to 16 passes (ε ~ 1 per pass, following route Bc. The effect of the initial texture on the evolution of texture after the ECAP process for both materials was analyzed. The annealed materials present a marked anisotropy, with a texture controlled by the fiber. According to the orientation distribution function (ODF, this initial behavior allows the presence of a strong C ({001} component after the first two ECAP passes in both coppers. However in the second pass the C component significantly increases in the FRHC copper, whereas the ETP copper presents a much more balanced behavior of the A1* (111[ 2]and A2* (111[11 ]components. The textures obtained for both coppers after each ECAP pass exhibit predominant orientations with continuous distributions along the orientation fiber with simple shear texture.

  3. Corrosion Behavior of Commercial Aluminum Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Atef Korchef

    2013-01-01

    Full Text Available A commercial aluminum alloy was subjected to severe plastic deformation through equal channel angular pressing (ECAP. The alloy contains a low volume fraction of α-AlFeSi located essentially at the grain boundaries. The corrosion behavior of the ECAP’ed alloy was investigated in NaCl solution using potentiodynamic polarization and immersion tests. The effects of scan rate and NaCl concentration on the alloy susceptibility to corrosion were also studied. The results obtained were compared with those of the nonpressed alloy. ECAP leads to an intensive grain refinement accompanied by an increased dislocation density. All electrochemical tests confirm that corrosion resistance of the alloy remarkably diminished with increasing the ECAP number of passes. This is presumably due to the breakdown of the α-AlFeSi after ECAP leading to higher number of galvanic cells and enhanced dissolution of the aluminum matrix.

  4. Direct observation of shear deformation during equal channel angular pressing of pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Shan, A. [Shanghai Jiao Tong Univ. (China); Moon, I.G.; Ko, H.S.; Park, J.W. [Korean Inst. of Science and Technology, Seoul (Korea, Republic of). Div. of Metals

    1999-07-23

    Equal Channel Angular (ECA) pressing is a method through which intense plastic strain can be introduced into materials by simple shear. It is suggested that during ECA pressing, only simple shear deformation is introduced into the specimen. The degree of shear deformation can be well predicted by theory and is assumed to be uniform across the specimen except the top and end part. The theory had been proved to be correct by observation of ECA pressing of plasticine with a transparent plexiglass tool and by finite element modeling. However, direct observation of shear deformation had not yet been conducted in metallic materials. One difficulty in observing the shear deformation is that marks or scratches on the surface of the specimen will be erased or destroyed by severe surface deformation caused by friction. In this research, a special method is employed to eliminate the surface friction effect so that a clear shear deformation figure can be observed.

  5. Effect of Equal Channel Angular Pressing on Microstructure and Mechanical Properties of Commercial Purity Aluminum

    Science.gov (United States)

    Manna, R.; Mukhopadhyay, N. K.; Sastry, G. V. S.

    2008-07-01

    Commercial purity aluminum was deformed by equal channel angular pressing (ECAP) using steel dies producing two different shear strains of either 1.15 or 0.60 in each pass. Two sets of samples were selected for study, of which the first set consists of aluminum billets repeatedly deformed without changing orientation (process A) up to three passes using first die. The second set of samples was equal channel angular pressed (ECAPed) using the second die up to 10 passes adopting process Bc, where samples were rotated by 90 deg between successive passes. The flow patterns were revealed by optical metallography. Tensile strength and hardness were measured. The ECAPed samples were isochronally-annealed and recrystallization behavior was studied by microscopy and Vickers hardness measurements. Refinement of grain size, substructure, and texture was studied by transmission electron microscopy (TEM) and orientation imaging microscopy (OIM). The results show that flow patterns are complex and distinct from simple shear. Strain is higher at the outer surfaces, highest at the bottom surface, and intermediate in the middle of the billet. The work piece strain hardens significantly in first pass with an attendant drop in ductility. The degree of strengthening reduces in subsequent passes. The high defect density introduced during the initial passes leads to grain refinement to an ultrafine level and advantageously the material regains ductility. The refinement in microstructure obtained after two to three passes is stable up to 250 °C. The flow patterns are very similar to those obtained by physical modeling in our earlier studies using plasticine. Equiaxed ultrafine-grained structure (average grain size = 0.53 μm) was obtained after ECAP at an equivalent shear strain of 6.0.

  6. Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, A., E-mail: jager@fzu.cz; Gärtnerova, V.; Tesař, K.

    2015-09-17

    In this work, we report on the anisotropy of the mechanical properties and the results of in-depth microstructural analysis of commercially pure (CP) grade 2 titanium after severe plastic deformation. CP-Ti was successfully processed at room temperature via four consecutive passes of equal channel angular pressing (ECAP) with very high back pressure (BP). An ECAP-BP die with circular channel cross-section, channel angle φ=90° and arc curvature angle ψ=0° was used. A sub-microcrystalline structure with a grain size of ~150 nm exhibits promising mechanical properties, as determined by hardness measurements and tensile and compression tests in different directions. We observed a significant mechanical anisotropy related to the strong texture. Considering the ID, ED and TD to be the insert, extrusion and transverse directions of the ECAP die, respectively, the highest compression strength was attained for samples with the major axis in the ID and in a direction inclined 22.5° from the ID toward the TD (σ{sub max}~1150 MPa). In contrast, the lowest strength was observed in the ED and at 45° from the ID toward the ED (σ{sub max}~940 MPa). Although a fracture occurred during compression of the samples tested along the ID, compression along the ED exhibited perfect plasticity with balanced hardening and softening mechanisms. Transmission electron microscopy (TEM) examination after ECAP-BP revealed a small amount of high-pressure hexagonal ω-phase. The occurrence of this phase was induced by a combination of severe plastic deformation and high pressure.

  7. Microstructure and mechanical properties of ZE10 magnesium alloy prepared by equal channel angular pressing

    Institute of Scientific and Technical Information of China (English)

    Ying Liu; Wei Li; Yuan-yuan Li

    2009-01-01

    ZE10 magnesium alloy was subjected to equal-channel angular pressing (ECAP) up to 12 passes in a die with an angle of 120° between the two channels at 250-300°C. An inhomogeneous microstructure of bimodal grains including fine grains of 1-2 μm as well as coarse grains of about 20 °tm was obtained after the initial 1-4 ECAP passes. The grain size became increasingly homoge-neous with further ECAP processing and the grains were significantly refined to 1-2 μm after 8 passes and further refined to 0.5-1 μm after 12 passes. The alloy's yield strength changed slightly but the ductility improved greatly initially up to 4-6 passes corre-sponding to the bimodal grain microstrueture. And after the subsequent pressing of more than 8 passes, the tensile strength including yield strength improved while the elongation decreased gradually.

  8. Durability and static strength of microcrystalline titanium VT1-0 obtained by equal-channel angular pressing

    Science.gov (United States)

    Betekhtin, V. I.; Dvorak, J.; Kadomtsev, A. G.; Kardashev, B. K.; Narykova, M. V.; Raab, G. K.; Sklenička, V.; Faizova, S. N.

    2015-01-01

    The influence of deformation by equal-channel angular pressing (ECAP) on the durability of titanium (VT1-0 grade) tensile tested under creep conditions has been studied for the first time. It is established that the ECAP-induced transition of titanium to a microcrystalline state leads to a decrease in the durability, while the characteristics of static strength are improved.

  9. Reducing the tension–compression yield asymmetry of extruded Mg–Zn–Ca alloy via equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    L.B. Tong

    2015-12-01

    Full Text Available The influence of equal channel angular pressing on the tension–compression yield asymmetry of extruded Mg–5.3 Zn–0.6 Ca (weight percent alloy has been investigated. The microstructure was obviously refined by the large strain during the equal channel angular pressing, accompanied with very fine Ca2Mg6Zn3 phases with average diameter of 70 nm. The weak tension–compression yield asymmetry after equal channel angular pressing is mainly attributed to the reduced volume fraction of extension twinning during the compression, because the slope (k of twinning in Hall–Petch relationship is higher than that of dislocation slip, and the twinning deformation is difficult to take place with decreasing grain size. The basal slip is more active in the alloy after equal channel angular pressing, due to the non-basal texture components, which hinders the twinning activation and reduces the yield asymmetry. Furthermore, the presence of fine precipitate restricts the twinning activation, which also contributes to the reduction of yield asymmetry.

  10. GRAPHITE EXTRUSIONS

    Science.gov (United States)

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  11. Electrochemical behavior of equal channel angular pressed titanium for biomedical application

    Science.gov (United States)

    Gode, C.; Attarilar, Sh.; Eghbali, B.; Ebrahimi, M.

    2015-03-01

    Equal channel angular pressing method is one of the prominent severe plastic deformation techniques to obtain ultrafine grained and even nanostructured metals and alloys by imposing intense plastic strain. As known, pure titanium can be a suitable candidate for biomedical applications because it does not release any toxic ions into the body fluids and also, its biocompatibility properties. The present investigation deals the corrosion behavior of commercial pure titanium before and after ECAP process up to 10 passes by route BC at the 250°C in the 0.9% NaCl solution. The electrochemical results revealed that the corrosion resistance of titanium sample is improved by adding pass number because of the fabrication of passive oxide layer on the surface of the material. It is found that about 92% reduction at the corrosion rate magnitude and also, approximately 41% improvement at the hardness value have been achieved at the final pass as compared to the annealed condition. Furthermore, it is observed that the passive film on the surface of final pass sample is dense and integral with uniform structure, while the as-received one has some rarefactions and does not have very uniform surface.

  12. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    Science.gov (United States)

    Abushgair, K.

    2015-03-01

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.

  13. Mechanical Spectroscopy Of Equal-Channel Angular Pressed Fe-Cr Alloys And Tungsten

    Directory of Open Access Journals (Sweden)

    Hao Ting

    2015-09-01

    Full Text Available Internal friction technique was used to investigate the microstructural stability of equal-channel angular pressed (ECAP 9Cr1Mo steel (T91, Fe-18wt.%Cr alloy, and pure W. Several non-relaxation internal friction peaks are observed in three ECAP-strained specimens, which are related to the microstructural transition from a severely deformed state to a static recovery state of dislocations, and to recrystallized state. Along with the disappearance of the P1 peak, another relaxation internal friction peak P2 is observed during the second heating run only in Fe-18wt.%Cr alloy, and it does not disappear even during subsequent third heating run. This peak is not observed in T91 steel and W. The P2 peak is likely associated with a process of grain boundary (GB sliding. Unlike T91, no abundant carbide precipitates distribute on GBs to pin GB and repulse GB sliding, thus, the P2 peak only occurs in Fe-18wt.%Cr alloy. It is concluded that high-temperature internal friction measurements are required to detect the grain boundary peak in pure W.

  14. Flow behaviour of magnesium alloy AZ31B processed by equal-channel angular pressing

    Science.gov (United States)

    Arun, M. S.; Chakkingal, U.

    2014-08-01

    Magnesium alloys are characterised by their low density, high specific strength and stiffness. But, the potential application of Mg is limited by its low room-temperature ductility & formability. Formability can be improved by developing an ultrafine grained (UFG) structure. Equal channel angular pressing (ECAP) is a well known process that can be used to develop an ultrafine grained microstructure. The aim of this study was to investigate the flow behaviour of AZ31B magnesium alloy after ECAP. The specimen was subjected to three passes of ECAP with a die angle of 120° using processing route Bc. The processing temperature was 523 K for the first pass and 423 K for the subsequent two passes. The microstructure characterisation was done. Compression tests of ECAPed and annealed specimens were carried out at strain rates of 0.01 - 1s-1 and deformation temperatures of 200 - 300°C using computer servo-controlled Gleeble-3800 system. The value of activation energy Q and the empirical materials constants of A and n were determined. The equations relating flow stress and Zener-Hollomon parameter were proposed. In the case annealed AZ31, the activation energy was determined to be 154 kJ/mol, which was slightly higher than the activation energy of 144 kJ/mol for ECAPed AZ31.

  15. Thermal Properties of SiCp/Al Composites Consolidated by Equal Channel Angular Pressing and Torsion

    Science.gov (United States)

    Qian, Chen-hao; Li, Ping; Xue, Ke-min

    2015-02-01

    Powder mixture of pure Al and oxidized SiC was consolidated into SiCp/Al composites by equal channel angular pressing and torsion (ECAP-T). The influences of several parameters on the thermal expansions, the thermal conductivities, and the recrystallization temperatures of the as-consolidated composites were studied. These parameters are the number of ECAP-T passes (1, 2, and 4), the content of SiC (10, 20, and 40 wt.%), and the fabrication temperature (150, 250, and 350 °C). The results show that increasing the number of ECAP-T passes has a positive effect on depressing the coefficient of thermal expansion (CTE) of the composite within a certain temperature range, since the total variation amplitude of the CTE is enlarged. The CTE can also be decreased by increasing the content of SiC. The number of ECAP-T passes and the contents of SiC in the composites are both positively related with the thermal conductivity of the composites. No direct relationship between the fabrication temperature and the thermal properties was detected. However, the composite fabricated at too low temperature (150 °C) can not obtain full densification, leading to the appearance of low CTE and thermal conductivity. Finally, when the number of ECAP-T passes is elevated from 2 to 4, the recrystallization temperature of the composite has an obvious declination.

  16. Low-cycle fatigue of Fe-20%Cr alloy processed by equal- channel angular pressing

    Science.gov (United States)

    Kaneko, Yoshihisa; Tomita, Ryuji; Vinogradov, Alexei

    2014-08-01

    Low-cycle fatigue properties were investigated on Fe-20%Cr ferritic stainless steel processed by equal channel angular pressing (ECAP). The Fe-20%Cr alloy bullets were processed for one to four passes via Route-Bc. The ECAPed samples were cyclically deformed at the constant plastic strain amplitude ɛpl of 5x10-4 at room temperature in air. After the 1-pass ECAP, low-angle grain boundaries were dominantly formed. During the low-cycle fatigue test, the 1-pass sample revealed the rapid softening which continued until fatigue fracture. Fatigue life of the 1-pass sample was shorter than that of a coarse-grained sample. After the 4-pass ECAP, the average grain size reduced down to about 1.5 μm. At initial stage of the low-cycle fatigue tests, the stress amplitude increased with increasing ECAP passes. At the samples processed for more than 2 passes, the cyclic softening was relatively moderate. It was found that fatigue life of the ECAPed Fe-20%Cr alloy excepting the 1-pass sample was improved as compared to the coarse-grained sample, even under the strain controlled fatigue condition.

  17. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    Energy Technology Data Exchange (ETDEWEB)

    Abushgair, K. [Khaleel. Abu-Shgair, Al-Balqa Applied University, Amman, Jordan. khaleel45@yahoo.com (Jordan)

    2015-03-30

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress.

  18. Microstructure and mechanical properties of Pb-4%Sb alloy processed by equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    Roberto Braga Figueiredo

    2006-03-01

    Full Text Available Equal Channel Angular Pressing (ECAP is the most prominent SPD (Severe Plastic Deformation method for the production of ultrafine and nanostructured metals, and has been extensively employed and analyzed. This technique was applied to a Pb-4%Sb alloy at room temperature, in order to study its effect on a low melting point and multiphase metallic material. The material was subjected to effective strains higher than 9, after 8 passes of processing, where dynamic and static recrystallization are expected during and after each pass. This eliminates any grain refinement and allows the analysis only of the microstructural effects associated with second phase redistribution and eventual precipitate dissolution. ECAP followed route C, which eliminates structural alignment after each even ECAP pass, facilitating the study of the microstructural evolution. It is shown that three ECAP passes are necessary to completely break the lamellar structure of the as cast strucure and that antimony dissolves into the lead rich matrix. Dynamic recrystallization and structural changes reduce the material strength and change the flow curve format.

  19. Development of Texture in Interstitial-Free Steel Processed by Equal-Channel Angular Pressing

    Science.gov (United States)

    Verma, Deepa; Shekhawat, Satish Kumar; Mukhopadhyay, N. K.; Sastry, G. V. S.; Manna, R.

    2016-03-01

    Ti + Nb-stabilised interstitial-free steel is deformed by equal-channel angular pressing (ECAP) adopting a route BC up to an equivalent strain of 24. Upon ECAP the grain size decreases to ultrafine level and it becomes strongly textured. At ɛvm = 0.6-6, components of both {110} fiber, J_{\\uptheta } , bar{J}_{\\uptheta } and of fiber, D 1θ, D 2θ with common components of E θ, bar{E}_{\\uptheta } are existing but after ɛvm ≥9, only fiber components are observed. At large strain, ɛvm = 9-24, fiber texture is recorded with monoclinic symmetry. At ɛvm = 0.6, coarse grains get split into deformation bands. Fragmentation of bands (at ɛvm = 3) suppress bar{J}_{\\uptheta } , J_{\\uptheta } components. At ɛvm = 6, formation of lamellar structures increases intensity of mainly D 1θ, D 2θ. At ɛvm = 9, oriented ribbon grains result in strong D 1θ, D 2θ components with fiber. At ɛvm = 15-24, conversion of ribbon grains to near-equiaxed shaped grains maintains fiber texture with enhanced intensity of D 1θ and D 2θ components.

  20. Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing

    International Nuclear Information System (INIS)

    A commercially pure (CP) Titanium alloy classified as Grade 1, was processed by Equal Channel Angular Pressing (ECAP) up to 4 passes in the temperature range of 450–150 °C. The resulting microstructures were observed by Electron Back-Scattered Diffraction, revealing a bimodal grain size distribution consisting of small recrystallized grains of submicrometer size, with an average value of 0.3 µm, and elongated bands of 1.4 µm with different degree of substructure. Additionally the fraction of restored and deformed grains were evaluated as a function of processing temperature following an internal grain misorientation criterion, leading to an overall fraction of recrystallized grains between 40% and 20% in samples ECAPed at 450 and 150 °C, respectively. The strengthening contributions of the grain size, equivalent oxygen content (Oeq) and Low Angle Grain Boundaries (LAGBs) to the yield stress were identified by the Hall Petch and Taylor equations. The strengthening coefficient k of the Hall–Petch relation was approximately 5 MPa mm−1/2, with an increment of 0.44 MPa mm−1/2 per 0.1 Oeq.-%, while the LAGB strengthening contribution was responsible approximately by half of the experimental yield stress values measured

  1. Equal Channel Angular Deformation (ECAD) of As-Cast AM60 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    Peng LUO; Xiaolin WU; Kenong XIA

    2003-01-01

    As-cast AM60 magnesium alloy ingot with grains coarser than those of as-extruded AZ series is more liable to produce cracks under ECAD with severe shear strain. A feasible scheme of equal channel angular deformation (ECAD) for as-cast AM60 magnesium alloy ingot was proposed in this paper. The tests were conducted on Instron machine with hydraulic back-force machine. Through analysing load vs displacement curves, the effects of ECAD processing conditions on deformability and microstructure of as-cast magnesium AM60 billets were discussed. During testing,the back-force employment was helpful to keep ECAD processing more stable. And with back-force, it was observed that the number of ECAD passes in different routes could tremendously affect the deformability and microstructure of magnesium specimens. It was concluded that ECAD processing is entirely feasible for as-cast magnesium AM60alloy under severe shear strain, and back-force employment, multi-passes deformation and lubrication of graphite paper are the factors primarily beneficial to improvement of deformability and refinement of grained structure. This work provides a way to produce magnesium alloy with fine-grained structure directly from casting ingot by ECAD technique.

  2. Equal channel angular deformation process and its neuro-simulation for fine-grained magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    LUO Peng(罗蓬); HU Qiao-dan(胡侨丹); WU Xiao-lin; XIA Ke-nong

    2004-01-01

    Fine-grained structure of as-cast magnesium AM60 alloy was obtained by means of equal channel angular deformation(ECAD) technique. Through analyzing the relationship between the load and the displacement under different working conditions, it is demonstrated that employment of back-pressure, multi-passages of deformation, and speed of deformation are the main factors representing ECAD working condition. As for ECAD process, a network composed of nonlinear neuro-element based on error back-propagation learning algorithm is launched to set up a processing mapping module for dynamic forecasting of load summit under different working conditions. The experimental results show that back-pressure, multi-passages and deforming speed have strong correlation with ECAD processing characteristics. On the metallographs of AM60 alloy after multi-passes ECAD, a morphology that inter-metallic compound Mg17 Al12 precipites on magnesium matrix without discrepancy, which evolves from coarse casting ingot microstructure, is observed. And the grains are refined significantly under accumulated severe shear strain.The study demonstrates feasibility of ECAD by using as-cast magnesium alloy directly, and launches an intelligent neuro-simulation module for quantitative analysis of its process.

  3. Effect of Equal-Channel Angular Pressing on Pitting Corrosion of Pure Aluminum

    Directory of Open Access Journals (Sweden)

    Injoon Son

    2012-01-01

    Full Text Available The effect of equal-channel angular pressing (ECAP on the pitting corrosion of pure Al was investigated using electrochemical techniques in solutions containing 0.1 m mol·dm−3 of Na2SO4 and 8.46 mol·dm−3 of NaCl (300 ppm Cl− and followed by surface analysis. The potential for pitting corrosion of pure Al was clearly shifted in the noble direction by the ECAP process indicating that this process improves resistance to pitting corrosion. The time dependence of corrosion potential and the anodic potential at 1 A·m−2 revealed that the rate of formation of Al oxide films increased due to a decrease in the grain size of the Al after ECAP. Since there exists a negligible amount of impurity precipitates in pure Al, the improvement in pitting corrosion resistance of pure Al by ECAP appears to be attributable to an increase in the rate of formation of Al oxide films.

  4. Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Calvillo, P., E-mail: pablo.rodriguez@ctm.com.es [Fundació CTM Centre Tecnològic, Plaza de la Ciencia 2, 08243 Manresa (Spain); Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Cabrera, J.M. [Fundació CTM Centre Tecnològic, Plaza de la Ciencia 2, 08243 Manresa (Spain); Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)

    2015-02-11

    A commercially pure (CP) Titanium alloy classified as Grade 1, was processed by Equal Channel Angular Pressing (ECAP) up to 4 passes in the temperature range of 450–150 °C. The resulting microstructures were observed by Electron Back-Scattered Diffraction, revealing a bimodal grain size distribution consisting of small recrystallized grains of submicrometer size, with an average value of 0.3 µm, and elongated bands of 1.4 µm with different degree of substructure. Additionally the fraction of restored and deformed grains were evaluated as a function of processing temperature following an internal grain misorientation criterion, leading to an overall fraction of recrystallized grains between 40% and 20% in samples ECAPed at 450 and 150 °C, respectively. The strengthening contributions of the grain size, equivalent oxygen content (O{sub eq}) and Low Angle Grain Boundaries (LAGBs) to the yield stress were identified by the Hall Petch and Taylor equations. The strengthening coefficient k of the Hall–Petch relation was approximately 5 MPa mm{sup −1/2}, with an increment of 0.44 MPa mm{sup −1/2} per 0.1 O{sub eq}.-%, while the LAGB strengthening contribution was responsible approximately by half of the experimental yield stress values measured.

  5. Friction stir welding of AZ31 magnesium alloys processed by equal channel angular pressing

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bing; YUAN Shouqian; WANG Xunhong

    2008-01-01

    Equal channel angular pressing (ECAP) is an effective thermo-mechanical process to make ultrafine grains.An investigation was carried out on the friction stir welding (FSW) of ECAPed AZ31 magnesium alloys with a thickness of 15 mm.For different process parameters,the optimum FSW conditions of ECAPed AZ31 magnesium alloys were examined.The basic characterization of weld formation and the mechanical properties of the joints were discussed.The results show that the effect of welding parameters on welding quality was evident and welding quality was sensitive to welding speed.Sound joints could be obtained when the welding speed was 37.5 mm/min and the rotation speed of the stir tool was 750 r/min.The maximum tensile strength (270 MPa) of FSW was 91% that of the base materials.The value of microhardness varied between advancing side and retreating side because of the speed field near the pin of the stir tool,which weakened the deformed stress field.The value of microhardness of the welding zone was lower than that of the base materials.The maximum value was located near the heat-affected zone (HAZ).Remarkable ductile character was observed from the fracture morphologies of welded joints.

  6. Angular momentum transfer of Laguerre - Gaussian laser pulses and quasi-static magnetic field generation in plasma channels

    International Nuclear Information System (INIS)

    To generate a strong axial and azimuthal quasi-static magnetic field, we propose to study the interaction of Laguerre-Gaussian laser beams in a parabolic plasma channel. Our study shows that the higher-order modes with orbital angular momentum generate a stronger magnetic field in comparison to the lower-order modes of the laser beam. The contribution of the effective mass of photon on the orbital angular momentum and the polarization state of the beam are analyzed analytically and with 2D Particle in Cell (PIC) simulation. These effects have been put forwarded in analyzing the magnetic field generation. (author)

  7. Microstructural evolution of equal channel angular pressed AZ91D magnesium alloy during semi-solid isothermal heat treatment

    Directory of Open Access Journals (Sweden)

    Lu Guoxiang

    2008-11-01

    Full Text Available The microstructural evolution of AZ91D magnesium alloy processed by equal channel angular pressing during isothermal heat treatment at 570℃ was investigated. The results indicated that the equal channel angular pressing followed by semi-solid isothermal heat treatment was an effective method to prepare semisolid nondendritic slurry of AZ91D magnesium alloy. During this process, its microstructure change underwent four stages, the initial coarsening stage, the structure separation stage, the spheroidization stage and the final coarsening stage. The microstructural spheroidization effect was the best after being heated for 15 min for the alloy pressed for four passes, and the grain size was the smallest. With the further increase of heating time, the grain size and shape factor increased. When the heating time was kept constant, the grain size and shape factor decreased with the increase of pressing passes.

  8. Microstructural evolution of equal channel angular pressed AZ91D magnesium alloy during semi-solid isothermal heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chen Tijun; Lu Guoxiang; Hao Yuan

    2008-01-01

    The microstructural evolution of AZ91D magnesium alloy processed by equal channel angular pressing during isothermal heat treatment at 570℃ was investigated. The results indicated that the equal channel angular pressing followed by semi-solid isothermal heat treatment was an effective method to prepare semi-solid nondendritic slurry of AZ91D magnesium alloy. During this process, its microstructure change underwent four stages, the initial coarsening stage, the structure separation stage, the spheroidization stage and the final coarsening stage. The microstructural spheroidization effect was the best after being heated for 15 min for the alloy pressed for four passes, and the grain size was the smallest. With the further increase of heating time, the grain size and shape factor increased. When the heating time was kept constant, the grain size and shape factor decreased with the increase of pressing passes.

  9. Study of angular momentum variation due to entrance channel effect in heavy ion fusion reactions

    Science.gov (United States)

    Kumar, Ajay

    2014-05-01

    A systematic investigation of the properties of hot nuclei may be studied by detecting the evaporated particles. These emissions reflect the behavior of the nucleus at various stages of the deexcitation cascade. When the nucleus is formed by the collision of a heavy nucleus with a light particle, the statistical model has done a good job of predicting the distribution of evaporated particles when reasonable choices were made for the level densities and yrast lines. Comparison to more specific measurements could, of course, provide a more severe test of the model and enable one to identify the deviations from the statistical model as the signature of other effects not included in the model. Some papers have claimed that experimental evaporation spectra from heavy-ion fusion reactions at higher excitation energies and angular momenta are no longer consistent with the predictions of the standard statistical model. In order to confirm this prediction we have employed two systems, a mass-symmetric (31P+45Sc) and a mass-asymmetric channel (12C+64Zn), leading to the same compound nucleus 76Kr* at the excitation energy of 75 MeV. Neutron energy spectra of the asymmetric system (12C+64Zn) at different angles are well described by the statistical model predictions using the normal value of the level density parameter a = A/8 MeV-1. However, in the case of the symmetric system (31P+45Sc), the statistical model interpretation of the data requires the change in the value of a = A/10 MeV-1. The delayed evolution of the compound system in case of the symmetric 31P+45Sc system may lead to the formation of a temperature equilibrated dinuclear complex, which may be responsible for the neutron emission at higher temperature, while the protons and alpha particles are evaporated after neutron emission when the system is sufficiently cooled down and the higher g-values do not contribute in the formation of the compound nucleus for the symmetric entrance channel in case of charged

  10. Structural and mechanical properties of EN AW 6082 aluminum alloy produced by equal-channel angular pressing

    OpenAIRE

    Greger, Miroslav; Madaj, Michal; Žáček, David

    2014-01-01

    At the VSB-TU Ostrava a piece of equipment was installed for verifying the equal-channel-angular-pressing (ECAP) technology, used for investigating the effect of deformation on the evolution of the structure and mechanical properties of alloy EN AW 6082. This alloy was subjected to ECAP consisting of four passes. During the pressing deformation forces were measured and the pressure in the die was calculated. Higher values of strain hardening were found and a higher pressure was me...

  11. Calorimetric analysis of a Mg-Zn-Zr alloy processed by equal channel angular pressing via route A

    OpenAIRE

    Dumitru, Florina Diana; Ghiban, Brândusa; Cabrera Marrero, José M.; Higuera Cobos, Oscar Fabián; Gurau, Gheorghe; Ghiban, Nicolae

    2014-01-01

    Being the lightest structural element, magnesium a nd its alloys has attracted significant interest in the last years, but because of its hexa gonal close packed structure, magnesium presents relatively low strength and ductility. One of the m ethods to improve the mechanical properties of the processed materials is through Severe Plastic D eformation (SPD). ZK60 magnesium alloy samples were subjected to 4 passes of equal-channel angular pressing (ECAP) at a process...

  12. Evolution of microstructure and mechanical properties of ultra-fine-grained IF steel processed by equal channel angular pressing

    OpenAIRE

    Tomáš Krajňák; Kristián Máthis

    2013-01-01

    Equal channel angular pressing (ECAP) is one of the severe plastic deformation techniques which is widely used for producing metals with ultra-fine-grained microstructures. In the present work the influence of number of pressing by route BC on grain size, evolution of microstructure and mechanical properties of interstitial-free (IF) steel has been investigated by means of optical microscopy, electron back-scattering diffraction (EBSD) and tensile tests. It has been found, that the grain size ...

  13. Improvement in Cold Formability of AZ31 Magnesium Alloy Sheets Processed by Equal Channel Angular Pressing (ECAP)

    OpenAIRE

    Suh, Joung Sik

    2016-01-01

    The present study contributes to enhance the cold formability and competitiveness of magnesium sheet AZ31 as lightweight material using the process equal channel angular pressing (ECAP). The systematic parameter study of ECAP process leads to a fundamental understanding of the interactions between microstructure and texture evolution, activation of deformation mechanisms and mechanical properties of AZ31 sheets. On this basis, the fundamentals are established in order that ECAP process can be...

  14. Shape memory effect of NiTi alloy processed by equal-channel angular pressing followed by post deformation annealing

    OpenAIRE

    Shahmir, Hamed; Nili-Ahmadabadi, Mahmoud; Terence G. Langdon

    2014-01-01

    Processing by Equal-Channel Angular Pressing (ECAP) is generally considered superior to most other SPD techniques because it uses relatively large bulk samples. However, due to their low deformability it has proven almost impossible to successfully process NiTi alloys by ECAP at room temperature and therefore the processing is conducted at elevated temperatures. Recently, a new billet design was introduced and it was used to achieve the successful processing of NiTi shape memory alloys by ECA...

  15. Microstructure influencing physical and mechanical properties of electrolytic tough pitch copper produced by equal channel angular pressing

    OpenAIRE

    Higuera Cobos, Oscar Fabián; Cabrera Marrero, José M.

    2013-01-01

    Samples of electrolytic tough pitch (ETP) copper were subjected to equal-channel angular pressing (ECAP) for up to 16 passes at room temperature following route Bc. The microstructural evolution was followed by Oriented Image Microscopy (OIM) and Differential Scanning Calorimetry (DSC) was used to estimate the activation energy and the recrystallization temperature after each ECAP pass. Also, mechanical properties after each pass were evaluated by tensile tests. Finally, electrical propert...

  16. Grain refinement of bronze alloy by equal-channel angular pressing (ECAP) and its effect on corrosion behaviour

    OpenAIRE

    M.M. Sadawy; Ghanem, M

    2016-01-01

    The corrosion behaviour of bronze alloy prepared by equal channel angular pressing (ECAP) was investigated in 3.5 wt. % NaCl solution. Immersion corrosion tests and different electrochemical techniques were carried out. The results showed that ECAPed bronze samples exhibited higher corrosion resistance compared with the as-cast alloy and the passive current density decreased with increasing number of passes. Moreover, the morphology of alloys indicated that the corrosion damage on the surface...

  17. Grain Refinement and High-Performance of Equal-Channel Angular Pressed Cu-Mg Alloy for Electrical Contact Wire

    OpenAIRE

    Aibin Ma; Chengcheng Zhu; Jianqing Chen; Jinghua Jiang; Dan Song; Shizhan Ni; Qing He

    2014-01-01

    Multi-pass equal-channel angular pressing (EACP) was applied to produce ultrafine-grained (UFG) Cu-0.2wt%Mg alloy contact wire with high mechanical/electric performance, aim to overcome the catenary barrier of high-speed trains by maximizing the tension and improving the power delivery. Microstructure evolution and overall properties of the Cu-Mg alloy after different severe-plastic-deformation (SPD) routes were investigated by microscopic observation, tensile and electric tests. The results ...

  18. Influence of Particulate Reinforcement and Equal-Channel Angular Pressing on Fatigue Crack Growth of an Aluminum Alloy

    OpenAIRE

    Lisa Köhler; Kristin Hockauf; Thomas Lampke

    2015-01-01

    The fatigue crack growth behavior of unreinforced and particulate reinforced Al 2017 alloy, manufactured by powder metallurgy and additional equal-channel angular pressing (ECAP), is investigated. The reinforcement was done with 5 vol % Al2O3 particles with a size fraction of 0.2–2 µm. Our study presents the characterization of these materials by electron microscopy, tensile testing, and fatigue crack growth measurements. Whereas particulate reinforcement leads to a drastic decrease of the gr...

  19. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    Science.gov (United States)

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence. PMID:22859154

  20. Initial porosity impact on equal channel angular pressing (ECAP of Ti–6Al–4V powder material

    Directory of Open Access Journals (Sweden)

    V. A. Andreyachshenko

    2016-10-01

    Full Text Available There is studied the technology of processing Ti-6Al-4V powder material with various initial densities using the method of equal channel angular pressing. The device with the 90, 120 and 135 degree angled joint channels was used for the study. The deformation was carried out at the room temperature. It was found that the most favorable stressed-and-strained state was formed in the instrument where the angle of channel joints was equal to 135 degrees. The maximum compression in the instrument is reached at 90 degree angle of the channel joints, but it needs a larger deformation force. To obtain pressed material it is recommended to use a high ECAP cycle for any configuration.

  1. Food extrusion.

    Science.gov (United States)

    Harper, J M

    1978-01-01

    Extrusion processing has become an important food process in the manufacture of pasta, ready-to-eat cereals, snacks, pet foods, and textured vegetable protein (TVP). An extruder consists of tightly fitting screw rotating within a stationary barrel. Preground and conditioned ingredients enter the screw where they are conveyed, mixed, and heated by a variety of processes. The product exits the extruder through a die where it usually puffs and changes texture from the release of steam and normal forces. Mathematical models for extruder flow and torque have been found useful in describing exclusion operations. Scale-up can be facilitated by the application of these models. A variety of food extruder designs have developed. The differences and similarity of design are discussed. Pertinent literature on the extrusion of cereal/snack products, full-fat soy, TVP, pet foods (dry and semi-moist), pasta, and beverage or other food bases are discussed. In many of these applications, the extruder is a high temperature, short time process which minimizes losses in vitamins and amino acids. Color, flavor, and product shape and texture are also affected by the extrusion process. Extrusion has been widely applied in the production of nutritious foods. Emphasis is placed on the use of extrusion to denature antinutritional factors and the improvement of protein quality and digestibility.

  2. Food extrusion.

    Science.gov (United States)

    Harper, J M

    1978-01-01

    Extrusion processing has become an important food process in the manufacture of pasta, ready-to-eat cereals, snacks, pet foods, and textured vegetable protein (TVP). An extruder consists of tightly fitting screw rotating within a stationary barrel. Preground and conditioned ingredients enter the screw where they are conveyed, mixed, and heated by a variety of processes. The product exits the extruder through a die where it usually puffs and changes texture from the release of steam and normal forces. Mathematical models for extruder flow and torque have been found useful in describing exclusion operations. Scale-up can be facilitated by the application of these models. A variety of food extruder designs have developed. The differences and similarity of design are discussed. Pertinent literature on the extrusion of cereal/snack products, full-fat soy, TVP, pet foods (dry and semi-moist), pasta, and beverage or other food bases are discussed. In many of these applications, the extruder is a high temperature, short time process which minimizes losses in vitamins and amino acids. Color, flavor, and product shape and texture are also affected by the extrusion process. Extrusion has been widely applied in the production of nutritious foods. Emphasis is placed on the use of extrusion to denature antinutritional factors and the improvement of protein quality and digestibility. PMID:378548

  3. Implication of the southern Tethyan Himalaya (Sutlej section, India) for the extrusion of the Higher Himalaya and the geometry of the mid-crustal channel

    Science.gov (United States)

    Mukherjee, Soumyajit

    2013-04-01

    In the last three years, various combinations of channel flow and critical taper mechanisms have been suggested as plausible mechanism for the extrusion of the Higher Himalaya (HH, Beaumont and Jamieson 2010; Chambers et al., 2011; Larson et al., 2011; Corrie et al., 2012; Long et al. 2012; Mukherjee, in press). An alternate and rather less popular model of the HH has been southward droop of the northern boundary of the HH viz. the 'South Tibetan Detachment System-Upper (STDSU)' (Exner et al. 2006). Had the later been true, drag folds with southward vergence would be expected immediately north of the STDSU. In a SW to NE traverse from Morang up to Spillo along the Sutlej river valley (Himachal Pradesh, India), such folds do occur within the southern part of the Tethyan Himalaya. On close observation, the primary shear planes of top-to~S shear are overturned by folds with broad rounded hinges and with ~ NE dipping axial planes and limbs. The shear sense indicated by the sigmoid fabrics matches with the asymmetry of the folds. Northward from Spillo, large-scale folds (antiforms) with down-dip extensional shear in both limbs indicate 'irregular' doming of the Tethyan sediments. One of the best exposures of this shear sense that could be deciphered even from a distance is where the National Highway 22 running along the river valley joins the road to Nasang village. Below the Tethyan sediments, a mid-crustal sub-horizontal channel is widely accepted to allow the Higher Himalayan rock materials to flow from beneath south Tibet. Much north of Spillo, the Leo Pargil granite-gneiss dome has been suggested as an exposure of the channel materials. Thus, this work suggests (i) flap of the STDSU might have triggered the extrusion of the HH; and (ii) doming of a part of the Tethyan Himalaya could be due to the rise of low-density hot, partially molten rocks through the sub-horizontal channel. This would imply that the upper boundary of the sub-horizontal channel was flexible

  4. The effect of grain size on dynamic tensile extrusion behaviour

    Directory of Open Access Journals (Sweden)

    Park Leeju

    2015-01-01

    Full Text Available Dynamic tensile extrusion (DTE tests were conducted on coarse grained and ultrafine grained (UFG OFHC Cu, Interstitial free (IF Steel, and pure Ta. Equal channel angular pressing (ECAP of 16passes with Bc for Cu, IF Steel and 4 passes for Ta was employed to fabricated UFG materials. DTE tests were carried out by launching the sphere samples (Dia. 7.62 mm to the conical extrusion die at a speed of ∼500 m/sec. The fragmentation behavior of the soft-recovered fragments were examined and compared with each other. The DTE fragmentation behavior of CG and UFG was numerically simulated by the LS-DYNA FEM code.

  5. Microstructural and magnetic properties of Nd-Fe-B alloys processed by equal-channel angular pressing

    Science.gov (United States)

    Onal, E.; Lapovok, R.; Kishimoto, H.; Kato, A.; Davies, C. H. J.; Suzuki, K.

    2015-05-01

    Equal-channel angular pressing (ECAP) is a well-established thermo-mechanical processing technique. This technique allows virtually unlimited strain and manipulation of texture by processing route, while the cross-section of the sample remains unchanged during processing. In order to clarify the effectiveness of ECAP on preparing anisotropic permanent magnets, the microstructure and magnetic properties of a melt-spun Nd13.5Fe73.8Co6.7B5.6Ga0.4 alloy processed at 773 K for 300 s by ECAP were investigated. Macrotexture analysis carried out for the exit channel of ECAP shows that the basal plane of the tetragonal Nd2Fe14B crystal aligns parallel to the shear band, i.e., the c-axis texture formation normal to the shear band induced by the ECAP process. Due to this texture formation, the technical magnetization behaviour becomes anisotropic, and the remanent magnetization is clearly enhanced along the direction perpendicular to the shear band. This anisotropic microstructure is realized at a relatively low processing temperature of 773 K, well below the melting point of the Nd-rich intergranular phase. As a consequence of this lower processing temperature, the nanostructure of the melt-spun alloy remains approximately 20 to 30 nm, considerably smaller than the typical grain size obtained after conventional die-upsetting. Our study demonstrates that equal-channel angular pressing has a potential for realising anisotropic nanostructured magnets.

  6. Effect of ECAP and extrusion on particle distribution in Al-nano–Al2O3 composite

    Indian Academy of Sciences (India)

    R Derakhshandeh Haghighi

    2015-09-01

    In this study equal channel angular pressing (ECAP) and conventional extrusion were used as two different techniques for consolidation of attritioned aluminium powder (45 m) with varying concentrations of nanoalumina powders (35 nm). The evolution of the homogeneity of the particle distribution in the material during ECAP and conventional extrusion was investigated by the quadrat method with image analysis software. The frequency histograms of the number of alumina particles per quadrat, q, for each investigated condition were plotted and the effect of particle distribution on fracture surface and wear resistance of the composite was investigated.

  7. Angular correlations in t-channel single top production at the LHC

    CERN Document Server

    Motylinski, Patrick

    2009-01-01

    When a top quark decays there is a large amount of angular correlation, in its rest frame, between its spin orientation and the direction of flight of the charged lepton from its decay. In this letter we investigate the prospects of measuring this angular correlation using the MC@NLO framework. The strength of the correlation is investigated for different spin bases. The robustness against variations of PDF sets and uncertainties, factorization scale dependence, center-of-mass energy, and the jet R-parameter, is also examined.

  8. High Temperature Deformation of Twin-Roll Cast Al-Mn-Based Alloys after Equal Channel Angular Pressing

    OpenAIRE

    Přemysl Málek; Michaela Šlapáková Poková; Miroslav Cieslar

    2015-01-01

    Twin roll cast Al-Mn- and Al-Mn-Zr-based alloys were subjected to four passes of equal channel angular pressing. The resulting grain size of 400 nm contributes to a significant strengthening at room temperature. This microstructure is not fully stable at elevated temperatures and recrystallization and vast grain growth occur at temperatures between 350 and 450 °C. The onset of these microstructure changes depends on chemical and phase composition. Better stability is observed in the Al-Mn-Zr-...

  9. Microstructural and mechanical characteristics of AlSiMnFe alloy processed by equal channel angular pressing

    OpenAIRE

    V. A. Andreyachshenko; Naizabekov, A. B.

    2016-01-01

    In the present research, equal channel angular pressing (ECAP) was conducted. The defectness degree of the alloy for one pass and maximum strain was determined. Ultra fine grained AlSiMnFe alloy was produced by refining grained annealed bulk by multi-pass ECAP at room temperature. The results reveal two regimes: from 1 to 2 passes the microstructure evolves to a equiaxed of ultrafine grains and from 2 to 4 passes there is no strict change in the average grain size.

  10. Microstructural and mechanical characteristics of AlSiMnFe alloy processed by equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    V. A. Andreyachshenko

    2016-07-01

    Full Text Available In the present research, equal channel angular pressing (ECAP was conducted. The defectness degree of the alloy for one pass and maximum strain was determined. Ultra fine grained AlSiMnFe alloy was produced by refining grained annealed bulk by multi-pass ECAP at room temperature. The results reveal two regimes: from 1 to 2 passes the microstructure evolves to a equiaxed of ultrafine grains and from 2 to 4 passes there is no strict change in the average grain size.

  11. Influence of microstructural stability on the creep mechanism of Al-7wt% Si alloy processed by equal channel angular pressing

    OpenAIRE

    Orozco-Caballero, A.; Menon, S.K.; Cepeda-Jiménez, C.M.; Hidalgo-Manrique, P.; McNelley, T.R.; Ruano, O.A.; Carreño, F.

    2014-01-01

    The article of record as published may be located at http://dx.doi.org/10.1016/j.msea.2014.06.017 A Na-modified, as-cast Al-7 wt% Si alloy was processed by equal channel angular pressing (ECAP) up to 8 passes by route A at ambient temperature using a 90 degree square section die, obtaining improved strength ductility and work fracture. From the first pass, porosity is removed, the eutectic constituent is refined and the eutectic silicon particles are partially redistributed...

  12. Influence of Route-R on wrought magnesium AZ61 alloy mechanical properties through equal channel angular pressing

    OpenAIRE

    Muralidhar Avvari; Narendranath, S.

    2014-01-01

    A new fundamental route entitled ‘Route-R’ is introduced to refine the grains in the material through Equal Channel Angular Pressing (ECAP) process. In route R, specimen is inverted to the original position in each ECAP pass. In the present work, AZ61 alloy is processed using ECAP process for three different fundamental routes mainly route A, route Bc, and route R. ECAP experiment is carried out on AZ61 alloy at lower temperature of 483 K up to two passes. Microstructural characterization is ...

  13. Microstructure strengthening mechanisms in an Al–Mg–Si–Sc–Zr equal channel angular pressed aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Cabibbo, Marcello, E-mail: m.cabibbo@univpm.it [Dipartimento di Ingegneria Meccanica e Scienze Matematiche (DIISM), Università Politecnica delle Marche, 60131 Ancona (Italy)

    2013-09-15

    Microstructure dislocation strengthening mechanisms in severely deformed aluminium strongly depend on the different boundary evolutions. Thereafter, models of proof stress determination should take into account the different nature of the boundaries that form during severe plastic deformation. In the last few decades, Hall–Petch modified relationship and other proof stress modelling were extensively discussed. This paper deals with further insights into the Hansen's and other authors approach to the modelling of aluminium poof stress after equal channel angular pressing. The present model is based on a detailed transmission electron microscopy microstructure characterization of the different strengthening contributions in an age-hardened Al–Mg–Si–Sc–Zr alloy.

  14. Stress-Corrosion Cracking Property of Aluminum-Magnesium Alloy Processed by Equal-Channel Angular Pressing

    OpenAIRE

    Hiroaki Nakano; Satoshi Oue; Seiji Taguchi; Shigeo Kobayashi; Zenji Horita

    2012-01-01

    Stress-corrosion cracking property of an aluminum-magnesium alloy processed by equal-channel angular pressing (ECAP) was investigated by a slow strain-rate tensile technique in a 3% NaCl solution of pH 4.2 at 303 K. The maximum stress and elongation of the Al-Mg alloy were lower in the NaCl solution than in air. The stress-corrosion cracking property was evaluated by the decrease ratio of maximum stress and elongation of the Al-Mg alloy with NaCl solution, ( m a x ) and ( ) , respecti...

  15. Grain refinement of bronze alloy by equal-channel angular pressing (ECAP and its effect on corrosion behaviour

    Directory of Open Access Journals (Sweden)

    M.M. Sadawy

    2016-08-01

    Full Text Available The corrosion behaviour of bronze alloy prepared by equal channel angular pressing (ECAP was investigated in 3.5 wt. % NaCl solution. Immersion corrosion tests and different electrochemical techniques were carried out. The results showed that ECAPed bronze samples exhibited higher corrosion resistance compared with the as-cast alloy and the passive current density decreased with increasing number of passes. Moreover, the morphology of alloys indicated that the corrosion damage on the surface of ECAPed bronze was smooth and uniform while the as-cast alloy suffered from selective corrosion.

  16. Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications

    Science.gov (United States)

    Fereshteh-Saniee, Faramarz; Asgari, Mohammad; Fakhar, Naeimeh

    2016-08-01

    Despite valuable electrical characteristics, the use of pure aluminum in different applications has been limited due to its low strength. Non-equal channel angular pressing (NECAP) is a recently proposed severe plastic deformation process with greater induced plastic strain and, consequently, better grain refinement in the product, compared with the well-known equal channel angular pressing technique. This research is concerned with the effects of the process temperature and ram velocity on the mechanical, workability and electrical properties of AA1060 aluminum alloy. Increasing the process temperature can concurrently increase the workability, ductility and electrical conductivity, while it has a reverse influence on the strength of the NECAPed specimen, although the strengths of all the products are higher than the as-received alloy. The influence of the ram speed on the mechanical properties of the processed samples is lower than the process temperature. Finally, a compromised process condition is introduced in order to attain a good combination of workability and strength with well-preserved electrical conductivity for electrical applications of components made of pure aluminum.

  17. Orbital angular momentum in four channel spatial domain multiplexing system for multi-terabit per second communication architectures

    Science.gov (United States)

    Murshid, Syed H.; Muralikrishnan, Hari P.; Kozaitis, Samuel P.

    2012-06-01

    Bandwidth increase has always been an important area of research in communications. A novel multiplexing technique known as Spatial Domain Multiplexing (SDM) has been developed at the Optronics Laboratory of Florida Institute of Technology to increase the bandwidth to T-bits/s range. In this technique, space inside the fiber is used effectively to transmit up to four channels of same wavelength at the same time. Experimental and theoretical analysis shows that these channels follow independent helical paths inside the fiber without interfering with each other. Multiple pigtail laser sources of exactly the same wavelength are used to launch light into a single carrier fiber in a fashion that resulting channels follow independent helical trajectories. These helically propagating light beams form optical vortices inside the fiber and carry their own Orbital Angular Momentum (OAM). The outputs of these beams appear as concentric donut shaped rings when projected on a screen. This endeavor presents the experimental outputs and simulated results for a four channel spatially multiplexed system effectively increasing the system bandwidth by a factor of four.

  18. Development of manufacturing systems for nanocrystalline and ultra-fine grain materials employing indexing equal channel angular pressing

    Science.gov (United States)

    Hester, Michael Wayne

    Nanotechnology offers significant opportunities in providing solutions to existing engineering problems as well as breakthroughs in new fields of science and technology. In order to fully realize benefits from such initiatives, nanomanufacturing methods must be developed to integrate enabling constructs into commercial mainstream. Even though significant advances have been made, widespread industrialization in many areas remains limited. Manufacturing methods, therefore, must continually be developed to bridge gaps between nanoscience discovery and commercialization. A promising technology for integration of top-down nanomanufacturing yet to receive full industrialization is equal channel angular pressing, a process transforming metallic materials into nanostructured or ultra-fine grained materials with significantly improved performance characteristics. To bridge the gap between process potential and actual manufacturing output, a prototype top-down nanomanufacturing system identified as indexing equal channel angular pressing (IX-ECAP) was developed. The unit was designed to capitalize on opportunities of transforming spent or scrap engineering elements into key engineering commodities. A manufacturing system was constructed to impose severe plastic deformation via simple shear in an equal channel angular pressing die on 1100 and 4043 aluminum welding rods. 1/4 fraction factorial split-plot experiments assessed significance of five predictors on the response, microhardness, for the 4043 alloy. Predictor variables included temperature, number of passes, pressing speed, back pressure, and vibration. Main effects were studied employing a resolution III design. Multiple linear regression was used for model development. Initial studies were performed using continuous processing followed by contingency designs involving discrete variable length work pieces. IX-ECAP offered a viable solution in severe plastic deformation processing. Discrete variable length work piece

  19. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing

    Science.gov (United States)

    Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu

    2016-10-01

    A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.

  20. Evolution of microstructure and mechanical properties of ultra-fine-grained IF steel processed by equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    Tomáš Krajňák

    2013-02-01

    Full Text Available Equal channel angular pressing (ECAP is one of the severe plastic deformation techniques which is widely used for producing metals with ultra-fine-grained microstructures. In the present work the influence of number of pressing by route BC on grain size, evolution of microstructure and mechanical properties of interstitial-free (IF steel has been investigated by means of optical microscopy, electron back-scattering diffraction (EBSD and tensile tests. It has been found, that the grain size decreases with increasing number of passes. Simultaneously tensile strength increases. The thermal stability of ECAP-processed microstructures has been also examined. It was found that the degradation of mechanical properties occurs only above 600˚C and 700˚C.

  1. Dynamic Compression Properties of an Ultrafine-Grained Al-26 wt.% Si Alloy Fabricated by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Shi, Jun; Yao, YiHong; Ma, Aibin; Song, Dan; Yang, Donghui; Chen, Jianqing; Lu, Fumin

    2015-05-01

    The grains of a hypereutectic Al-26 wt.% Si alloy were drastically refined by multi-pass equal-channel angular pressing (ECAP). Compression deformation characteristics of the alloy with different microstructure were examined at two dynamic strain rates (700, 1000 s-1) by a split-Hopkinson pressure bar system and at a quasi-static strain rate (0.001 s-1) by a universal testing machine, respectively. The results reveal that the Al-26 wt.% Si alloy is strain-rate sensitive under those compression conditions, i.e., the initial yield stress and the flow stress considerably increase with the strain rate. Grain refinement through ECAP improves the strain-rate sensitivity of the alloy. With rising the ECAP temperature, the yield stress of the ultrafine-grained alloy decreases but the strain value increases during dynamic compression.

  2. Effect of deformation route on the development of low CN Fe-20%Cr alloy by Equal Channel Angular Pressing

    Science.gov (United States)

    Rifai, Muhammad; Miyamoto, Hiroyuki; Fujiwara, Hiroshi

    2014-08-01

    The effect of deformation routes on the microstructure, mechanical, and electrochemical properties of low CN Fe-20%Cr alloys by equal channel angular pressing (ECAP) has been investigated in detail focusing on the anisotropy of the microstructure. This alloy is pressed at 423K up to eight passes via the so-called routes A, Bc and C. The continuous refinement of the microstructure is sustained by ECAP until the sub-grain range. However, the degree of anisotropy of microstructural development was different among the three deformation routes. Materials processed by Route Bc exhibited a comparable micro-hardness value in three orthogonal planes than those processed by routes A and C. Pitting corrosion characteristics of the ECAP processed sample were investigated using an electrochemical potentiodynamic test. The increased pitting potential along with an increased number passes of ECAP were explained by enhanced protective passive layer of ultrafine grain structure, as compared to the coarse grain counterpart.

  3. Texture Evolution as Determined by In situ Neutron Diffraction During Annealing of Iron Deformed by Equal Channel Angular Pressing

    Science.gov (United States)

    Sandim, H. R. Z.; Bolmaro, R. E.; Renzetti, R. A.; Sandim, M. J. R.; Hartwig, K. T.; Vogel, S. C.; Raabe, D.

    2014-09-01

    In situ neutron diffraction experiments were performed to follow the annealing behavior of iron deformed by equal-channel angular pressing at room temperature using route B c to a total von Mises strain of ɛ vM = 9.2. The temperature was varied from room temperature to 1223 K (950 °C), while neutron diffraction data for quantitative texture analysis were collected at a given temperature when holding for 5 minutes. Pole figures and orientation distribution function maps from neutron diffraction and electron backscatter diffraction measurements were used to follow the changes in crystallographic texture and grain size during annealing. In situ neutron diffraction experiments allowed understanding and identifying texture-related changes that occur during recrystallization, grain growth, and phase transformation in iron.

  4. Effect of multidirectional forging and equal channel angular pressing on ultrafine grain formation in a Cu- Cr-Zr alloy

    Science.gov (United States)

    Shakhova, I.; Belyakov, A.; Kaibyshev, R.

    2014-08-01

    The microstructure evolution was investigated in a Cu-0.3%Cr-0.5%Zr alloy subjected to large plastic deformation at temperature of 400 °C. Two methods of large plastic deformation, i.e., equal channel angular pressing (ECAP) and multidirectional forging (MDF) were used. The large plastic deformations resulted in the development of new ultrafine grains. The formation of new ultrafine grains occurred as a result of continuous reaction, i.e., progressive increase in the misorientations of deformation subboundaries. The faster kinetics of microstructure evolution was observed during MDF as compared to ECAP. The MDF to a total strain of 4 resulted in the formation of uniform ultrafine grained structure, while ECAP to the same strain led to the heterogeneous microstructure consisting of new ultrafine grains and coarse remnants of original grains. Corresponding area fractions of ultrafine grains comprised 0.23 and 0.59 in the samples subjected to ECAP and MDF, respectively.

  5. Deformation mechanism at impact test of Al-11% Si alloy processed by equal-channel angular pressing with rotary die

    Institute of Scientific and Technical Information of China (English)

    MA Ai-bin; Y. NISHIDA; JIANG Jing-hua; N. SAITO; I. SHIGEMATSU; A. WATAZU

    2007-01-01

    Al-11%Si (mass fraction) alloy was transformed into a ductile material by equal-channel angular pressing (ECAP) with a rotary die. Two mechanisms at impact test, slip deformation by dislocation motion and grain boundary sliding, were discussed. The ultrafine grains with modified grain boundaries and the high content of fine particles (<1 μm) were necessary for attaining high absorbed energy. The results contradict the condition of slip deformation by dislocation motion and coincide with that of grain boundary sliding. Many fine zigzag lines like a mosaic were observed on the side surface of the tested specimens. These observed lines may show grain boundaries appeared by the sliding of grains.

  6. Turbulence Mitigation Scheme for Optical Communications using Orbital Angular Momentum Multiplexing Based on Channel Coding and Wavefront Correction

    CERN Document Server

    Zhao, Shengmei; Zhou, Li; Gong, Longyan; Cheng, Wenwen; Sheng, Yubo; Zheng, Baoyu

    2014-01-01

    The free-space optical (FSO) communication links with orbital angular momentum (OAM) multiplexing have been demonstrated that they can largely enhance the systems' capacity without a corresponding increase in spectral bandwidth, but the performance of the system is unavoidably disturbed by atmospheric turbulence (AT). Different from the existed AT disturbance, the OAM-multiplexed systems will cause both the burst and random errors for a single OAM state carrier and the `crosstalk' interference between the different OAM states carriers. In this paper, we propose a turbulence mitigation method to improve AT tolerance of OAM-multiplexed FSO communication links. In the proposed scheme, we use channel codes to correct the burst and random errors caused by AT for a single OAM state carrier; And we use wavefront correction method to correct the `crosstalk' interference between the different OAM states carriers. The improvements of AT tolerance are discussed by comparing the performance of OAM-multiplexed FSO communi...

  7. Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing.

    Science.gov (United States)

    Zhang, Junyi; Kang, Zhixin; Wang, Fen

    2016-11-01

    A Mg-Gd-Nd-Zn-Zr alloy was processed by equal channel angular pressing (ECAP) at 375°C. The grain size of Mg-Gd-Nd-Zn-Zr alloy was refined to ~2.5μm with the spherical precipitates (β1 phase) distributing in the matrix. The mechanical properties of ECAPed alloy were significantly improved as a result of the grain refinement and precipitation strengthening. The corrosion rate of the ECAPed magnesium alloy in simulated body fluid dramatically decreased from 0.236mm/a to 0.126mm/a due to the strong basal texture and refined microstructure. This wrought magnesium alloy shows potentials in biomedical application. PMID:27524012

  8. Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing.

    Science.gov (United States)

    Zhang, Junyi; Kang, Zhixin; Wang, Fen

    2016-11-01

    A Mg-Gd-Nd-Zn-Zr alloy was processed by equal channel angular pressing (ECAP) at 375°C. The grain size of Mg-Gd-Nd-Zn-Zr alloy was refined to ~2.5μm with the spherical precipitates (β1 phase) distributing in the matrix. The mechanical properties of ECAPed alloy were significantly improved as a result of the grain refinement and precipitation strengthening. The corrosion rate of the ECAPed magnesium alloy in simulated body fluid dramatically decreased from 0.236mm/a to 0.126mm/a due to the strong basal texture and refined microstructure. This wrought magnesium alloy shows potentials in biomedical application.

  9. Grain Refinement and High-Performance of Equal-Channel Angular Pressed Cu-Mg Alloy for Electrical Contact Wire

    Directory of Open Access Journals (Sweden)

    Aibin Ma

    2014-12-01

    Full Text Available Multi-pass equal-channel angular pressing (EACP was applied to produce ultrafine-grained (UFG Cu-0.2wt%Mg alloy contact wire with high mechanical/electric performance, aim to overcome the catenary barrier of high-speed trains by maximizing the tension and improving the power delivery. Microstructure evolution and overall properties of the Cu-Mg alloy after different severe-plastic-deformation (SPD routes were investigated by microscopic observation, tensile and electric tests. The results show that the Cu-Mg alloy after multi-pass ECAP at 473 K obtains ultrafine grains, higher strength and desired conductivity. More passes of ECAP leads to finer grains and higher strength, but increasing ECAP temperature significantly lower the strength increment of the UFG alloy. Grain refinement via continuous SPD processing can endow the Cu-Mg alloy superior strength and good conductivity characteristics, which are advantageous to high-speed electrification railway systems.

  10. Effect of Equal Channel Angular Pressing on the Microstructure and Mechanical Properties of Al6061-SiCp Composites

    Science.gov (United States)

    Lokesh, T.; Mallik, U. S.

    2016-09-01

    In the present study, Aluminium metal matrix composite with Al6061 matrix and SiC (10-30μm) particulate reinforcement of varying composition (2-10wt.%) were prepared by stir casting technique. Significant improvement in tensile strength and hardness was noticed as the wt.% of SiCp increases in as cast Al6061- SiC composites. The cast composites have been subjected to annealing treatment at a temperature of 400oC for 4 hours to homogenize the microstructure. The specimens have been prepared from these composites for Equal Channel Angular Pressing (ECAP). The ECAP process was carried out at room temperature using a die with channel angle of 120° and Bc route was adopted for successive passes. The effect of ECAP on the microstructure and mechanical properties of Al6061 -SiC composite is evaluated. After ECAP process, the size and distribution of the reinforcement particles are not changed but there is a significant reduction in the grain size of the matrix alloy was observed. The hardness and tension tests were conducted at room temperature as per ASTM standards. The results were compared with the base Al6061 material and as cast Al6061-SiC composites. There is a significant improvement in the hardness and the Ultimate tensile strength of ECAP processed composites.

  11. An angular fluidic channel for prism-free surface-plasmon-assisted fluorescence capturing

    Science.gov (United States)

    Nomura, Ken-Ichi; Gopinath, Subash C. B.; Lakshmipriya, Thangavel; Fukuda, Nobuko; Wang, Xiaomin; Fujimaki, Makoto

    2013-12-01

    Surface plasmon excitation provides stronger enhancement of the fluorescence intensity and better sensitivity than other sensing approaches but requires optimal positioning of a prism to ensure optimum output of the incident light. Here we describe a simple, highly sensitive optical sensing system combining surface plasmon excitation and fluorescence to address this limitation. V-shaped fluidic channels are employed to mimic the functions of a prism, sensing plate, and flow channel in a single setup. Superior performance is demonstrated for different biomolecular recognition reactions on a self-assembled monolayer, and the sensitivity reaches 100 fM for biotin-streptavidin interactions. Using an antibody as a probe, we demonstrate the detection of intact influenza viruses at 0.2 HA units ml-1 levels. The convenient sensing system developed here has the advantages of being prism-free and requiring less sample (1-2 μl), making this platform suitable for use in situations requiring low sample volumes.

  12. Investigation of through thickness residual stress distribution in equal channel angular rolled Al 5083 alloy by layer removal technique and X-ray diffraction

    OpenAIRE

    Mahmoodi, M; Sedighi, M.; Tanner, D.A

    2012-01-01

    peer-reviewed The layer removal technique and the X-ray diffraction method have been employed to evaluate the residual stresses through the thickness of aluminum alloy 5083 processed by equal channel angular rolling (ECAR). ECAR is a severe plastic deformation process that introduces shear deformation to sheet metals. The process has been completed on 2 mm thick strips passed three times through die channels in a continuous manner. In this work, the profile of residual stresses was quantit...

  13. Low-temperature superplasticity of ZK40 magne-sium alloy processed using equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    Li LIN

    2004-08-01

    Full Text Available Microstructure evolution and superplastic behaviours of ZK40 magnesium alloy were investigated in the temperature range of 473-623 K. Transmission electron microscopy (TEM was used to study the microstructure changes, twining occurred significantly after being processed by equal channel angular pressing (ECAP for one pass through the die, the mean grain size was 5.6 μm. Finer grains can be obtained after further processing through ECAP, the average grain size of the alloy processed by ECAP for three passes was as low as 0.8 μm; this alloy exhibited low temperature superplasticity at 473-523 k, elongations obtained at the same initial strain rate of 1×10-3 s-1 were 260% at 473 K and 612% at 523 K, respectively. Corresponding values for the ZK40 alloy processed by ECAP for only one pass were 124% at 473 K and 212% at 523 K, respectively; poor superplastic bahavior of this material was related to long -range stresses associated with the non-equilibrium grain boundaries within the coarse grains. The incompatativity between fine and coarse grains was thought to be unfavorable to the improvement of superplasticity.

  14. Influence of Route-R on wrought magnesium AZ61 alloy mechanical properties through equal channel angular pressing

    Directory of Open Access Journals (Sweden)

    Muralidhar Avvari

    2014-06-01

    Full Text Available A new fundamental route entitled ‘Route-R’ is introduced to refine the grains in the material through Equal Channel Angular Pressing (ECAP process. In route R, specimen is inverted to the original position in each ECAP pass. In the present work, AZ61 alloy is processed using ECAP process for three different fundamental routes mainly route A, route Bc, and route R. ECAP experiment is carried out on AZ61 alloy at lower temperature of 483 K up to two passes. Microstructural characterization is evaluated on unECAPed and ECAPed specimens for three routes. Average grain size of the alloy is to be reduced from 66 μm to 16 μm, 14.1 μm and 10 μm for route A routes Bc, and route R respectively. Vickers microhardness of the alloy is found to be 60 HV for as received material. This microhardness of the alloy is increased to 71 HV, 72 HV, and 74 HV for route A, route Bc, and route R respectively. Mechanical properties of the AZ61 alloy are observed to be route R is providing maximum YS, UTS, and percentage elongation than other route A and route Bc. Tensile fracture topography of the specimen is analyzed using three different routes for two passes.

  15. Shape memory effect of NiTi alloy processed by equal-channel angular pressing followed by post deformation annealing

    Science.gov (United States)

    Shahmir, Hamed; Nili-Ahmadabadi, Mahmoud; Langdon, Terence G.

    2014-08-01

    Processing by Equal-Channel Angular Pressing (ECAP) is generally considered superior to most other SPD techniques because it uses relatively large bulk samples. However, due to their low deformability it has proven almost impossible to successfully process NiTi alloys by ECAP at room temperature and therefore the processing is conducted at elevated temperatures. Recently, a new billet design was introduced and it was used to achieve the successful processing of NiTi shape memory alloys by ECAP. In this procedure, a NiTi alloy was inserted as a core within an Fe sheath to give a core-sheath billet. In this research, a NiTi was processed by one pass ECAP with this new billet design at room temperature. The structural evolution during annealing was investigated by X-ray diffraction (XRD) and microhardness measurements. Post deformation annealing (PDA) was carried out at 400°C for 5 to 300 min and the results indicate that the shape memory effect improves by PDA after ECAP.

  16. Influence of Particulate Reinforcement and Equal-Channel Angular Pressing on Fatigue Crack Growth of an Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lisa Köhler

    2015-05-01

    Full Text Available The fatigue crack growth behavior of unreinforced and particulate reinforced Al 2017 alloy, manufactured by powder metallurgy and additional equal-channel angular pressing (ECAP, is investigated. The reinforcement was done with 5 vol % Al2O3 particles with a size fraction of 0.2–2 µm. Our study presents the characterization of these materials by electron microscopy, tensile testing, and fatigue crack growth measurements. Whereas particulate reinforcement leads to a drastic decrease of the grain size, the influence of ECAP processing on the grain size is minor. Both reinforced conditions, with and without additional ECAP processing, exhibit reduced fatigue crack growth thresholds as compared to the matrix material. These results can be ascribed to the well-known effect of the grain size on the crack growth, since crack deflection and closure are directly affected. Despite their small grain size, the thresholds of both reinforced conditions depend strongly on the load ratio: tests at high load ratios reduce the fatigue threshold significantly. It is suggested that the strength of the particle-matrix-interface becomes the critical factor here and that the particle fracture at the interfaces dominates the failure behavior.

  17. Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Somjeet, E-mail: somjeetbiswas@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, F-57045 Metz (France); Brokmeier, H.-G. [Helmholtz Zentrum Geesthacht Max Planck Straße 1, Geb 33, D-21502 Geesthacht (Germany); Fundenberger, J.-J. [Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures (DAMAS), Université de Lorraine, F-57045 Metz (France); Laboratoire d' Étude des Microstructures et de Mécanique des Matériaux, UMR 7239, CNRS/Université de Lorraine, F-57045 Metz (France); Suwas, Satyam [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2015-04-15

    Investigations on texture evolution and through-thickness texture heterogeneity during equal channel angular pressing (ECAP) of pure magnesium at 200 °C, 150 °C and room temperature (RT) was carried out by neutron, high energy synchrotron X-ray and electron back-scatter diffraction. Irrespective of the ECAP temperature, a distinctive basal (B) and pyramidal (C{sub 2}) II type of fibers forms. The texture differs in the bottom 1 mm portion, where the B-fiber is shifted ~ 55° due to negative shear attributed to friction. - Highlights: • ECAP of magnesium was carried out at 200 °C, 150 °C and room temperature. • Microstructure and micro-texture evolution was examined using EBSD in FEG–SEM. • Bulk-texture was studied using neutron diffraction and compared with micro-texture. • Through thickness texture heterogeneity was observed by synchrotron radiation. • Changes in these parameters with respect to deformation temperature are discussed.

  18. Stress-Corrosion Cracking Property of Aluminum-Magnesium Alloy Processed by Equal-Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Hiroaki Nakano

    2012-01-01

    Full Text Available Stress-corrosion cracking property of an aluminum-magnesium alloy processed by equal-channel angular pressing (ECAP was investigated by a slow strain-rate tensile technique in a 3% NaCl solution of pH 4.2 at 303 K. The maximum stress and elongation of the Al-Mg alloy were lower in the NaCl solution than in air. The stress-corrosion cracking property was evaluated by the decrease ratio of maximum stress and elongation of the Al-Mg alloy with NaCl solution, (max and (, respectively. (max and ( were lower with ECAP than without it, showing that the susceptibility of stress-corrosion cracking decreased with ECAP. The polarization curve and time dependence of the anodic current density at constant potential of the Al-Mg alloy in the NaCl solution revealed that the anodic current density was lower with ECAP than without it, or the corrosion resistance of the Al-Mg alloy was improved by ECAP. The decrease in stress-corrosion crack susceptibility of the Al-Mg alloy with ECAP is attributed to an improvement in corrosion resistance afforded by ECAP.

  19. Transformation of Lamellar Structures in Equal Channel Angular Pressing: Geometric Model and Application to Nickel Aluminum Bronze

    Science.gov (United States)

    Barr, Cameron J.; McDonald, Daniel T.; Xia, Kenong

    2015-09-01

    Nickel aluminum bronze (NAB) with a duplex structure was subjected to equal channel angular pressing (ECAP). Samples were pressed for up to four passes at 673 K (400 °C) using routes A, BA, BC, and C, respectively, and the evolution of the microstructures was characterized. A detailed geometric model was developed to enable systematic and quantitative analysis of the transformation of the lamellar structure during ECAP. Depending on their orientations before each ECAP pass, the lamellae were either stretched, leading to fragmentation, or compressed, resulting in buckling and spheroidisation at locations of high curvature. Thanks to the continuous rotation of lamellae into the stretching orientations in route A and the non-plane strain deformation in the two B routes, they are demonstrated to be the most effective in breaking down the lamellar structure. In contrast, partial restoration due to redundant strain in route C makes it least efficient. The model applies generally to materials with a duplex structure, such as NAB and low and medium carbon steels, consisting of a hard and brittle lamellar phase and a softer and ductile matrix phase.

  20. Interfacial Microstructure and Mechanical Properties of Al Alloy/Mg Alloy Laminated Composite Plates Fabricated by Equal Channel Angular Processing

    Institute of Scientific and Technical Information of China (English)

    LI Guorui; ZHAO Dong; ZHAO Yaojiang; ZHOU Bin; WANG Hongxia

    2016-01-01

    KAl (7075) alloy /Mg (AZ31) alloy laminated composite plates were successfully fabricated by the equal channel angular processing (ECAP) by using route A for 1, 2, and 3 passes at 573 K, respectively. After fabrication, the 1-pass ECAPed laminated composite plates were annealed at different temperatures. The microstructure evolution, phase constituent, and bonding strength near the joining interface of Al (7075) alloy /Mg (AZ31) alloy laminated composites plates were evaluated with scanning electron microscopy, X-ray diffraction, and shear tests. The experimental results indicated that a 20 μm diffusion layer was observed at the joining interface of Al (7075) alloy /Mg (AZ31) alloy laminated composites plates fabricated by the 1-pass ECAP, which mainly included Al3Mg2 and Mg17Al12 phases. With the increase of passes, the increase of diffusion layer thickness was not obvious and the form of crack in these processes led to the decrease of bonding strength. For 1-pass ECAPed composites, the thickness of diffusion layer remained unchanged after annealed at 473 K, while the bonding strength reached its maximum value 29.12 MPa. However, after elevating heat treatment temperature to 573 K, the thickness of diffusion layer increased rapidly, and thus the bonding strength decreased.

  1. Structure and properties of Ti-Ni-based alloys after equal-channel angular pressing and high-pressure torsion

    International Nuclear Information System (INIS)

    Structure formation and functional properties of Ti-48.5, 50.0, 50.6 and 50.7 at.% Ni and Ti-47 at.% Ni-3 at.% Fe shape memory alloys under conditions of high-pressure torsion (HPT) and equal-channel angular pressing (ECAP) in dependence on deformation temperature and post-deformation annealing were studied using electron microscopy and mechanical testing methods. The upper limiting deformation temperature for nanocrystalline structure formation under continuous severe deformation in HPT were determined for aging (somewhat higher than 400 deg. C) and non-aging (about 300-350 deg. C) alloys. As a result of ECAP of Ti-Ni and Ti-Ni-Fe alloys at 350-500 deg. C in six to eight passes, a submicrocrystalline structure with the grain size of 0.1-0.2 μm (at 350 deg. C), 0.2-0.4 μm (at 450 deg. C) and 0.3-0.5 μm (at 500 deg. C) was obtained. The highest functional properties of Ti-50.6% Ni alloy which exceed the best results provided by traditional thermomechanical treatment, correspond to the finest submicrocrystalline structure formation after ECAP at 350 deg. C. The low-temperature annealing after ECAP does not deteriorate the functional properties as it does not increase the austenite grain size. For obtaining actual nanocrystalline structure in bulk samples under ECAP conditions, the ECAP temperature should be below 350 deg. C

  2. Development of ultrafine-grained microstructure in Al-Cu-Mg alloy through equal-channel angular pressing

    Science.gov (United States)

    Sai Anuhya, Danam; Gupta, Ashutosh; Nayan, Niraj; Narayana Murty, S. V. S.; Manna, R.; Sastry, G. V. S.

    2014-08-01

    Al-Cu-Mg alloys are extensively used for riveting applications in aerospace industries due to their relatively high shear strength coupled with high plasticity. The significant advantage of using V65 aluminum alloy ((Al-4Cu-0.2Mg) for rivet application also stems from its significantly slower natural aging kinetics, which gives operational flexibility to carryout riveting operation even after 4 days of solution heat treatment, in contrast to its equivalent alloy AA2024.Rivets are usually made by cold heading of wire rods. In order to form a defect free rivet head, grain size control in wire rods is essential at each and every stage of processing right from casting onwards upto the final wire drawing stage. Wire drawing is carried out at room temperature to reduce diameter as well as impart good surface finish. In the present study, different microstructures in V65 alloy bars were produced by rolling at different temperatures (room temperature to 523K) and subsequently deformed by equal channel angular pressing (ECAP) at 423K upto an equivalent strain of 7. ECAP was carried out to study the effect of initial microstructure on grain refinement and degree of deformation on the evolution of ultrafine grain structure. The refinement of V65 alloy by ECAP is significantly influenced by Initial microstructure but amount of deformation strongly affects the evolution processes as revealed by optical microscopy and transmission electron microscopy.

  3. Dependence of deep-inelastic processes on entrance channel asymmetry and excitation energy. [506 to 732 MeV, angular distribution

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, R.P.

    1978-05-01

    The dependence of deep-inelastic processes on entrance channel asymmetry and on excitation energy was investigated. Thin targets of /sup nat/At, /sup 159/Tb, /sup 181/Ta and /sup 197/Au were bombarded with 620 MeV /sup 86/Kr ions. Additional measurements were performed on the reactions /sup nat/Ag + /sup 86/Kr and /sup 197/Au + /sup 86/Kr at 506 and 732 MeV incident energy. The energy spectra, the charge distributions and the angular distributions of these fragments were measured. At 620 MeV the energy spectra show that the distinction between quasi-elastic and deep-inelastic processes diminishes as the target mass is increased. The charge distributions, which are peaked at symmetry for /sup nat/Ag, tend to become increasingly asymmetric for the heavier systems. Likewise, the angular distributions exhibit a strong dependence on the entrance channel asymmetry. For the lightest system, /sup nat/Ag + /sup 86/Kr, the angular distributions are essentially forward peaked, aside from a separable quasi-elastic component. For the heaviest system, /sup 197/Au + /sup 86/Kr, the angular distributions are side-peaked. The transition between these two regimes occurs smoothly with increasing target mass. The results at 506 and 732 MeV show that the widths of the charge distributions are strongly dependent on the excitation energy. The angular distributions for the reaction /sup nat/Ag + /sup 86/Kr become increasingly more forward peaked at higher bombarding energies. The angular distributions for /sup 197/Au + /sup 86/Kr, which are strongly focused at 506 MeV, also tend to be more forward peaked at the highest incident energy. The results are interpreted by assuming that the projectile and target form an intermediate complex and that they exchange mass via a diffusion process. Because of the systematic nature of this study, the data should serve as a guide in the development of models of deep-inelastic processes.

  4. An Analysis on Microstructure and Grain Size of Molybdenum Powder Material Processed by Equal Channel Angular Pressing

    Science.gov (United States)

    Wang, Xue; Li, Ping; Xue, Kemin

    2015-11-01

    Pure molybdenum powder with a body center cubic lattice was processed by equal channel angular pressing (ECAP) for multi-pass at a processing temperature of 673 K, and subsequently, tests of relative density and Vickers microhardness were followed after processing. Additionally, the x-ray diffraction (XRD) was employed to analyze the crystallite size and dislocation density for both as-received powder and ECAP-processed samples. Electron backscatter diffraction (EBSD) was performed to characterize the grain structure and texture for the ECAP-processed samples. The results show that through processing by ECAP, bulk molybdenum sample with ultrafine-grained microstructure was achieved with the relative density of 0.93, the Vickers microhardness of 355 Hv, and the mean grain size of 0.24 μm. XRD profiles based on integral breadth method indicate that the crystallite size and dislocation density in the initial powder are 63.0 nm and 8.45E13 m-2, respectively. After ECAP processing, the crystallite size decreases gradually from 52.7 to 39.1 nm and the dislocation density increases from 3.82E14 to 4.00E14 m-2 after 1 and 2 passes. EBSD measurements show the significant grain refinement after 2 passes of ECAP. Therefore, grain refinement strengthening and dislocation tangling are likely to contribute to the increase of microhardness. The narrow range of grain size distribution after 2 passes of ECAP and the decrease of non-uniformity coefficient of microhardness both indicate the enhanced homogeneity compared with samples after 1 pass. The XRD profiles as well as inverse pole figures reveal that a texture of {110} was developed through processing by ECAP.

  5. In vitro and in vivo studies of biodegradable fine grained AZ31 magnesium alloy produced by equal channel angular pressing.

    Science.gov (United States)

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh; Devi Prasad, V; Raghunath, M

    2016-02-01

    The objective of the present work is to investigate the role of different grain sizes produced by equal channel angular pressing (ECAP) on the degradation behavior of magnesium alloy using in vitro and in vivo studies. Commercially available AZ31 magnesium alloy was selected and processed by ECAP at 300°C for up to four passes using route Bc. Grain refinement from a starting size of 46μm to a grain size distribution of 1-5μm was successfully achieved after the 4th pass. Wettability of ECAPed samples assessed by contact angle measurements was found to increase due to the fine grain structure. In vitro degradation and bioactivity of the samples studied by immersing in super saturated simulated body fluid (SBF 5×) showed rapid mineralization within 24h due to the increased wettability in fine grained AZ31 Mg alloy. Corrosion behavior of the samples assessed by weight loss and electrochemical tests conducted in SBF 5× clearly showed the prominent role of enhanced mineral deposition on ECAPed AZ31 Mg in controlling the abnormal degradation. Cytotoxicity studies by MTT colorimetric assay showed that all the samples are viable. Additionally, cell adhesion was excellent for ECAPed samples particularly for the 3rd and 4th pass samples. In vivo experiments conducted using New Zealand White rabbits clearly showed lower degradation rate for ECAPed sample compared with annealed AZ31 Mg alloy and all the samples showed biocompatibility and no health abnormalities were noticed in the animals after 60days of in vivo studies. These results suggest that the grain size plays an important role in degradation management of magnesium alloys and ECAP technique can be adopted to achieve fine grain structures for developing degradable magnesium alloys for biomedical applications. PMID:26652384

  6. Ultra-High-Strength Interstitial-Free Steel Processed by Equal-Channel Angular Pressing at Large Equivalent Strain

    Science.gov (United States)

    Verma, Deepa; Mukhopadhyay, N. K.; Sastry, G. V. S.; Manna, R.

    2016-04-01

    The billets of interstitial-free (IF) steel are deformed by equal-channel angular pressing (ECAP) at 298 K (25 °C) adopting the route BC up to an equivalent strain ( ɛ vm) of 24. The evolution of microstructures and their effects on the mechanical properties are examined. The microstructural refinement involves the elongation of grains, the subdivision of grains to the bands with high dislocation density, and the splitting of bands into the cell blocks and then cell blocks into the cells. The widths of the bands and the size of cells decrease with strain. The degree of reduction in the grain size is highest at the low strain level. However, most of the boundaries at this stage are of low-angle boundaries (at ɛ vm = 3). Thereafter, the misorientation angle increases by progressive lattice rotation with strain. The coarse bands transform step by step from the lamellar structure to the ribbon-shaped grains and finally to the near-equiaxed grain structures with the subgrains of a saturated low-angle grain boundary fraction of 0.34 at very large strain >15. The as-received coarse-grained microstructure (grain size of 57.6 ± 21 µm) has been refined to 257 ± 48 nm at an equivalent strain of 24. The strength increases considerably up to ɛ vm = 3 due to grain refinement and high dislocation density. However, the strengthening at later stages is mainly due to the increase in misorientation angle and refinement. Initial yield strength of 227 MPa is increased to a record value of 895 MPa on straining up to ɛ vm = 24 at 298 K (25 °C). Uniform elongation decreases drastically at low equivalent strain but it regains marginally later. The ECAPed sample fails by a ductile fracture at ɛ vm = 0.6 to 6 but by a mixed mode of ductile-brittle fracture at larger strain of 9 to 24.

  7. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment

    OpenAIRE

    Jie Xu; Jianwei Li; Xiaocheng Zhu; Guohua Fan; Debin Shan; Bin Guo

    2015-01-01

    Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffr...

  8. EVOLUTION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA-FINE-GRAINED INTERSTITIAL-FREE STEEL PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

    OpenAIRE

    Tomáš Krajňák; Kristián Máthis

    2013-01-01

    Equal channel angular pressing (ECAP) is one of the severe plastic deformation techniques which is widely used for producing metals with ultra-fine-grained microstructures. In the present work the influence of number of pressing by route BC on grain size, evolution of microstructure and mechanical properties of interstitial-free (IF) steel has been investigated by means of optical microscopy, electron back-scattering diffraction (EBSD) and tensile tests. It has been found, that the grain size ...

  9. Simulation and Experimental Investigation for the Homogeneity of Ti49.2Ni50.8 Alloy Processed by Equal Channel Angular Pressing

    OpenAIRE

    Diantao Zhang; Mohamed Osman; Li Li; Yufeng Zheng; Yunxiang Tong

    2016-01-01

    Ti49.2Ni50.8 shape memory alloy (SMA) was processed by equal channel angular pressing (ECAP) for eight passes at 450 °C. The deformation homogeneity was analyzed on various planes across the thickness by Deform-3D software. Strain standard deviation (SSD) was used to quantify deformation homogeneity. The simulation result shows that the strain homogeneity is optimized by the third pass. Deformation homogeneity of ECAP was analyzed experimentally using microhardness measurements. Experimental ...

  10. Dispersion of soft Bi particles and grain refinement of matrix in an Al-Bi alloy by equal channel angular pressing

    OpenAIRE

    Zha, M.; Li, Y.; Mathiesen, R.H.; Roven, H.J.

    2014-01-01

    The deformation behavior of a soft particle containing Al-8Bi hypermonotectic alloy during equal-channel angular pressing was studied. The size, shape and distribution of soft Bi particles are substantially modified via shearing, fragmentation, coalescence and ripening. It is found that the soft Bi particles have a strong influence on promoting refinement of Al grains via particle stimulated continuous dynamic recrystallization. The present work provides an effective methodology to obtain mon...

  11. Modelling of contact and friction in aluminium extrusion

    NARCIS (Netherlands)

    Ma, X.; Rooij, de M.B.; Schipper, D.J.

    2010-01-01

    A physical model capable of predicting the friction and sticking/slipping lengths in the bearing channel during unlubricated aluminium extrusion processes is presented. The model takes into account the pressure build up in the extrusion direction in relation with the bearing–extrudate friction and h

  12. Seafloor classification of the mound and channel provinces of the Porcupine Seabight: An application of the multibeam angular backscatter data

    Digital Repository Service at National Institute of Oceanography (India)

    Beyer, A.; Chakraborty, B.; Schenke, H.W.

    strength. Three major parameters are utilized to classify four different seafloor provinces of the Porcupine Seabight by employing a semi-empirical method to analyse multibeam angular backscatter data. The predicted backscatter response, which has been...

  13. Effect of Annealing on the Pitting Corrosion Resistance of Anodized Aluminum-Magnesium Alloy Processed by Equal Channel Angular Pressing

    Energy Technology Data Exchange (ETDEWEB)

    Son, In Joon; Nakano, Hiroaki; Oue, Satoshi; Fukushima, Hisaaki; Horita, Zenji [Kyushu University, Fukuoka (Japan); Kobayashi, Shigeo [Kyushu Sangyo University, Fukuoka (Japan)

    2007-12-15

    The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of AlCl{sub 3} and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at 100-400 A/m{sup 2} at 293 K in a solution containing 1.53 mol/L of H{sub 2}SO{sub 4} and 0.0185 mol/L of Al{sub 2}(SO{sub 4}){sub 3}. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. however, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy: the stresses remain in the anodic oxide films, increasing the likelihood of cracks. it is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be

  14. The Effect of Multi-pass Equal-Channel Angular Pressing (ECAP) for Consolidation of Aluminum-Nano Alumina Composite Powder on Wear Resistance

    Science.gov (United States)

    Derakhshandeh-Haghighi, Reza; Jenabali Jahromi, Seyed Ahmad

    2016-02-01

    The wear behavior of aluminum matrix composite powder with varying concentration of nano alumina particles, which was consolidated by equal-channel angular pressing (ECAP) at different passes, was determined by applying, 10 and 46 N loads, using a pin-on-disk machine. Optical and electronic microscopy, EDX analysis, and hardness measurement were performed in order to characterize the worn samples. The relative density of the samples after each pass of ECAP was determined using Archimedes principle. Within the studied range of loads, the wear loss decreased by increasing the number of ECAP passes.

  15. Simulation and Experimental Investigation for the Homogeneity of Ti49.2Ni50.8 Alloy Processed by Equal Channel Angular Pressing

    Directory of Open Access Journals (Sweden)

    Diantao Zhang

    2016-02-01

    Full Text Available Ti49.2Ni50.8 shape memory alloy (SMA was processed by equal channel angular pressing (ECAP for eight passes at 450 °C. The deformation homogeneity was analyzed on various planes across the thickness by Deform-3D software. Strain standard deviation (SSD was used to quantify deformation homogeneity. The simulation result shows that the strain homogeneity is optimized by the third pass. Deformation homogeneity of ECAP was analyzed experimentally using microhardness measurements. Experimental results show that the gradual evolution of hardness with increasing numbers of passes existed and the optimum homogeneity was achieved after three passes. This is in good agreement with simulation results.

  16. Mechanical and corrosion properties of ultrafine-grained low C, N Fe-20%Cr steel produced by equal channel angular pressing

    OpenAIRE

    Rifai, Muhammad; リファイ, ムハマド

    2015-01-01

    Equal-channel angular pressing (ECAP) is one of the severe plastic deformation (SPD) to produce ultra-fine grain (UFG) material, and its principle and microstructural developments. The majority of papers on SPD materials have been devoted to the face centered cubic (FCC) structure materials such as Al, Cu and Ni. The UFG of high alloy ECAP processing has been difficult up to now, but we were successful in this study. Fe-20%Cr steel with extremely low C and N has different slip behavior from t...

  17. Microstructure Evolution in a Cu-0.5Cr-0.2Zr Alloy Subjected to Equal Channel Angular Pressing, Rolling or Aging

    Science.gov (United States)

    Alexandrov, Igor V.; Sitdikov, Vil D.; Abramova, Marina M.; Sarkeeva, Elena A.; Wei, Kun Xia; Wei, Wei

    2016-08-01

    The evolution of microstructure in the Cu-0.5%Cr-0.2%Zr alloy subjected to thermomechanical treatment has been studied by means of the x-ray analysis. The workpieces have been subjected to 1, 2, 4 and 8 passes of equal channel angular pressing, plain cold rolling and aging treatment. The results of the XRD investigations reflect the evolution of the lattice parameter, the size of coherently scattering domains, the elastic microdistortions and the dislocation density in Cu matrix. The observed changes in the microstructure are explained by the competition between the developing defects and precipitation of the Cr phase particles from the Cu matrix.

  18. Extrusion die and method

    Science.gov (United States)

    Lipp, G. Daniel

    1994-04-26

    A method and die apparatus for manufacturing a honeycomb body of rhombic cell cross-section by extrusion through an extrusion die of triangular cell discharge slot configuration, the die incorporating feedholes at selected slot intersections only, such that slot segments communicating directly with the feedholes discharge web material and slot segments not so connected do not discharge web material, whereby a rhombic cell cross-section in the extruded body is provided.

  19. Annealing behavior and shape memory effect in NiTi alloy processed by equal-channel angular pressing at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shahmir, Hamed, E-mail: h.shahmir@ut.ac.ir [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Wang, Chuan Ting [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jung, Jai Myun; Kim, Hyoung Seop [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang (Korea, Republic of); Langdon, Terence G. [Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-04-01

    A martensitic NiTi shape memory alloy was processed successfully by equal-channel angular pressing (ECAP) for one pass at room temperature using a core–sheath billet design. The annealing behavior and shape memory effect of the ECAP specimens were studied followed by post-deformation annealing (PDA) at 673 K for various times. The recrystallization and structural evolution during annealing were investigated by differential scanning calorimetry, dilatometry, X-ray diffraction, transmission electron microscopy and microhardness measurements. The results indicate that the shape memory effect improves by PDA after ECAP processing. Annealing for 10 min gives a good shape memory effect which leads to a maximum in recoverable strain of 6.9 pct upon heating where this is more than a 25 pct improvement compared with the initial state.

  20. Effect of heat treatment on diffusion, internal friction, microstructure and mechanical properties of ultra-fine-grained nickel severely deformed by equal-channel angular pressing

    International Nuclear Information System (INIS)

    Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed

  1. Mechanical properties of ferrite-perlite and martensitic Fe-Mn-V-Ti-C steel processed by equal-channel angular pressing and high-temeperature annealing

    Science.gov (United States)

    Zakharova, G. G.; Astafurova, E. G.; Tukeeva, M. S.; Naidenkin, E. V.; Raab, G. I.; Dobatkin, S. V.

    2011-09-01

    Using the method of equal-channel angular pressing (ECAP), submicrocrystalline structure is formed in lowcarbon Fe-Mn-V-Ti-C steel with the average grain size 260 nm in the ferrite-perlite state and 310 nm in the martensitic state. It is established that the ECAP treatment gives rise to improved mechanical properties (Hμ = 2.9 GPa, σ0 = 990 MPa in the ferrite-perlite and Hμ = 3.7 GPa, σ0 = 1125 MPa in martensitic states), decreased plasticity, and results in plastic flow localization under tensile loading. The high strength properties formed by the ECAP are shown to sustain up to the annealing temperature 500°C.

  2. A convergent-beam electron diffraction study of strain homogeneity in severely strained aluminum processed by equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Alhajeri, Saleh N. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Department of Manufacturing Engineering, College of Technological Studies, PAAET, PO Box 42325, Shuwaikh 70654 (Kuwait); Fox, Alan G. [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Mechanical Engineering Department, Asian University, 89 Moo 12, Highway 331, Banglamung, Chon Buri 20260 (Thailand); Langdon, Terence G., E-mail: langdon@usc.edu [Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Departments of Aerospace and Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-1453 (United States)

    2011-11-15

    Aluminum of commercial purity was processed by equal-channel angular pressing (ECAP) through two, four and eight passes at room temperature. A series of [1 1 4] convergent-beam electron diffraction (CBED) zone axis patterns were obtained using an electron probe with a diameter of 20 nm. Observations were recorded both immediately adjacent to the grain boundaries and in the grain interiors. Symmetry breaking of the higher-order Laue zone (HOLZ) lines was observed adjacent to the boundaries after two and four passes but not in the grain interiors. Pattern simulation of the CBED patterns taken from the two- and four-pass samples adjacent to the boundaries revealed a homogeneous strain with compressive and shear components. The presence of these homogeneous strains demonstrates that the internal stresses associated with the deformation of aluminum at room temperature are localized in the close vicinity, to within {approx}20 nm, of the grain boundaries.

  3. Microstructural evolution of Fe-rich particles in an Al-Zn-Mg-Cu alloy during equal-channel angular pressing

    Energy Technology Data Exchange (ETDEWEB)

    Sha, G., E-mail: gang.sha@sydney.edu.au [ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Wang, Y.B.; Liao, X.Z. [School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, NSW 2006 (Australia); Duan, Z.C. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Ringer, S.P. [ARC Centre of Excellence for Design in Light Metals, University of Sydney, NSW 2006 (Australia); Australian Centre for Microscopy and Microanalysis, University of Sydney, NSW 2006 (Australia); Langdon, T.G. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-07-15

    The microstructures of a severely deformed Al-Zn-Mg-Cu (AA7136) alloy have been characterized carefully using transmission electron microscopy and three-dimensional atom probe analysis. The Fe-rich intermetallic particles are predominantly Al{sub 13}Fe{sub 4} type in the as-extruded alloy. Significantly, equal-channel angular pressing (ECAP) at 200 deg. C refines Fe-rich particles from {approx}1 to 2 {mu}m to as small as {approx}50 nm after 4 passes processing, and effectively narrow down their size distribution with the increase of number of ECAP passes. In addition, small Fe-rich particles evolve into spherical morphology and are in a more uniform distribution. The formations of Fe-rich phases in AA7136, the kinetic and thermodynamic effects in relation to the refinement of Fe-rich particles and their morphology evolution during ECAP processing are discussed.

  4. EVOLUTION OF MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ULTRA-FINE-GRAINED INTERSTITIAL-FREE STEEL PROCESSED BY EQUAL CHANNEL ANGULAR PRESSING

    Directory of Open Access Journals (Sweden)

    Tomáš Krajňák

    2013-04-01

    Full Text Available Equal channel angular pressing (ECAP is one of the severe plastic deformation techniques which is widely used for producing metals with ultra-fine-grained microstructures. In the present work the influence of number of pressing by route BC on grain size, evolution of microstructure and mechanical properties of interstitial-free (IF steel has been investigated by means of optical microscopy, electron back-scattering diffraction (EBSD and tensile tests. It has been found, that the grain size decreases with increasing number of passes. Simultaneously tensile strength increases. The thermal stability of ECAP-processed microstructures has been also examined. It was found that the degradation of mechanical properties occurs only above 600 ˚C and 700 ˚C.

  5. Study of CP Symmetry Violation in the Charmonium-K*(892) Channel By a Complete Time Dependent Angular Analysis (BaBar Experiment)

    Energy Technology Data Exchange (ETDEWEB)

    T' Jampens, Stephane; /Orsay

    2006-09-18

    This thesis presents the full-angular time-dependent analysis of the vector-vector channel B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0}. After a review of the CP violation in the B meson system, the phenomenology of the charmonium-K*(892) channels is exposed. The method for the measurement of the transversity amplitudes of the B {yields} J/{psi}K*(892), based on a pseudo-likelihood method, is then exposed. The results from a 81.9 fb{sup -1} of collected data by the BABAR detector at the {Upsilon}(4S) resonance peak are |A{sub 0}|{sup 2} = 0.565 {+-} 0.011 {+-} 0.004, |A{sub {parallel}}|{sup 2} = 0.206 {+-} 0.016 {+-} 0.007, |A{sub {perpendicular}}|{sup 2} = 0.228 {+-} 0.016 {+-} 0.007, {delta}{sub {parallel}} = -2.766 {+-} 0.105 {+-} 0.040 and {delta}{sub {perpendicular}} = 2.935 {+-} 0.067 {+-} 0.040. Note that ({delta}{sub {parallel}}, {delta}{sub {perpendicular}}) {yields} (-{delta}{sub {parallel}}, {pi} - {delta}{sub {perpendicular}}) is also a solution. The strong phases {delta}{sub {parallel}} and {delta}{sub {perpendicular}} are at {approx}> 3{sigma} from {+-}{pi}, signing the presence of final state interactions and the breakdown of the factorization hypothesis. The forward-backward analysis of the K{pi} mass spectrum revealed the presence of a coherent S-wave interfering with the K*(892). It is the first evidence of this wave in the K{pi} system coming from a B meson. The particularity of the B{sub d}{sup 0} {yields} J/{psi}(K{sub S}{sup 0}{pi}{sup 0})*{sup 0} channel is to have a time-dependent but also an angular distribution which allows to measure sin 2{beta} but also cos2{beta}. The results from an unbinned maximum likelihood fit are sin 2{beta} = -0.10 {+-} 0.57 {+-} 0.14 and cos 2{beta} = 3.32{sub -0.96}{sup +0.76} {+-} 0.27 with the transversity amplitudes fixed to the values given above. The other solution for the strong phases flips the sign of cos 2{beta}. Theoretical considerations based on the s-quark helicity

  6. Extrusion cast explosive

    Science.gov (United States)

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  7. Microstructural Evolution at Micro/Meso-Scale in an Ultrafine-Grained Pure Aluminum Processed by Equal-Channel Angular Pressing with Subsequent Annealing Treatment

    Directory of Open Access Journals (Sweden)

    Jie Xu

    2015-11-01

    Full Text Available Micro-forming with ultrafine-grained (UFG materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD and transmission electron microscopy (TEM. The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG materials. A lot of low-angle grain boundaries (LAGBs and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.

  8. Microstructure evolution and mechanical properties of a Ti-35Nb-3Zr-2Ta biomedical alloy processed by equal channel angular pressing (ECAP).

    Science.gov (United States)

    Lin, Zhengjie; Wang, Liqiang; Xue, Xiaobing; Lu, Weijie; Qin, Jining; Zhang, Di

    2013-12-01

    In this paper, an equal channel angular pressing method is employed to refine grains and enhance mechanical properties of a new β Ti-35Nb-3Zr-2Ta biomedical alloy. After the 4th pass, the ultrafine equiaxed grains of approximately 300 nm and 600 nm are obtained at pressing temperatures of 500 and 600°C respectively. The SEM images of billets pressed at 500°C reveal the evolution of shear bands and finally at the 4th pass intersectant networks of shear bands, involving initial band propagation and new band broadening, are formed with the purpose of accommodating large plastic strain. Furthermore, a unique herringbone microstructure of twinned martensitic variants is observed in TEM images. The results of microhardness measurements and uniaxial tensile tests show a significant improvement in microhardness and tensile strength from 534 MPa to 765 MPa, while keeping a good level of ductility (~16%) and low elastic modulus (~59 GPa). The maximum superelastic strain of 1.4% and maximum recovered strain of 2.7% are obtained in the billets pressed at 500°C via the 4th pass, which exhibits an excellent superelastic behavior. Meanwhile, the effects of different accumulative deformations and pressing temperatures on superelasticity of the ECAP-processed alloys are investigated. PMID:24094159

  9. Effect of equal channel angular pressing on structure and superplasticity of non-heat hardenable Al-Mg-Sc-Zr alloy

    Science.gov (United States)

    Mukhametdinova, Oksana; Avtokratova, Elena; Sitdikov, Oleg; Markushev, Michael

    2015-10-01

    Microstructure and superplastic behavior of the aluminum alloy 1570C (Al-5Mg-0.2Sc-0.08Zr) after equal channel angular pressing (ECAP) to the strains of e ˜ 3 and 8 at the temperature of 325°C have been analyzed. ECAP to e ˜ 3 resulted in the partially recrystallized structure with the volume fraction and size of new grains of about 30% and 1-2 µm, consequently. The alloy with such structure exhibited the high-strain rate superplasticity with elongations >2000% at strain rates ˜10-2 s-1 and temperatures 475-520°C. After ECAP to e ˜ 8, the structure became more uniform with ˜70% of grains of ˜1 μm in size. This promoted both low-temperature and high-strain rate superplasticity with maximum elongations ˜1000 and 3300% at 350°C and 1.4×10-2 s-1 and at 475°C and 5.6×10-2 s-1, respectively. The nature of the alloy superplastic behavior is discussed.

  10. Structure, texture, and mechanical properties of an MA2-1hp magnesium alloy after two-stage equal-channel angular pressing and intermediate annealing

    Science.gov (United States)

    Serebryany, V. N.; Perezhogin, V. Yu.; Raab, G. I.; Kopylov, V. I.; Tabachkova, N. Yu.; Sirotinkin, V. P.; Dobatkin, S. V.

    2015-01-01

    The effect of two-stage equal-channel angular pressing (ECAP) on the microstructure, the texture, and the mechanical properties of an MA2-1hp magnesium alloy is analyzed. ECAP leads to the formation of a submicrocrystalline structure with an average grain size of 640 nm, which includes Mg17Al12 phase particles with an average grain size of 240 nm and a volume fracture of 5.5%. A scattered tilted basal texture forms after ECAP, and its experimental pole figures are used for calculating orientation distribution functions and determining the volume fractions of the main orientations and the Schmid factors for different deformation systems. An increased activation of basal slip is found after both the first and the second stages of ECAP. As a result of two-stage ECAP, the strength properties of the alloy that correspond to the minimum acceptable values achieved by direct compression are obtained. Ductility is 44 and 18% after the first stage of ECAP plus subsequent annealing and after the second stage, respectively, which is almost four and two times higher than the initial value. The resulting strength mechanical properties of the alloy after the first and the second ECAP stages are analyzed using the Hall-Petch relation.

  11. Structure and properties of an Mg-0.3% ca magnesium alloy after multiaxial deformation and equal-channel angular pressing

    Science.gov (United States)

    Dobatkin, S. V.; Rokhlin, L. L.; Salishchev, G. A.; Kopylov, V. I.; Serebryany, V. N.; Stepanov, N. D.; Tarytina, I. E.; Kuroshev, I. S.; Martynenko, N. S.

    2014-11-01

    Multiaxial deformation (MAD) of an Mg-0.3% Ca alloy is performed when temperature decreases within the ranges 425-375 and 400-325°C. A decrease in the temperature at the end of MAD causes a decrease in the grain size from 7-8 to 0.5-2 μm and the spread of a sharp prismatic texture, which determine a high strength (σu = 194 MPa) and plasticity (δ = 39%). After MAD in the range 425-375°C, the Mg-0.3% Ca alloy is subjected to equal-channel angular pressing (ECAP) at temperatures of 275 and 325°C. ECAP causes a decrease in the grain size from 7-8 μm to 2 and 5 μm, respectively. The texture also changes from prismatic to tilted basal texture. This results in an increase in the strength to 170-160 MPa at plasticity δ = 25-30%. It is shown that MAD can be used as both final and preliminary processing before ECAP to form an ultrafine-grained structure in the Mg-0.3% Ca alloy.

  12. Influence of Intermediate Annealing on the Nanostructure and Mechanical Properties of Pure Copper Processed by Equal Channel Angular Pressing and Cold Rolling

    Science.gov (United States)

    Ranjbar Bahadori, Shahab; Dehghani, Kamran

    2015-07-01

    The effects of intermediate heat treatment on the nanostructure and the mechanical properties of pure copper samples processed by four passes of equal channel angular pressing (ECAP) and cold rolling (CR) with a total reduction of 55 pct were investigated. The annealing treatments were done at 423 K, 463 K, and 523 K (150 °C, 190 °C and 250 °C) for 15 minutes. Microstructural examinations revealed no trace of a recrystallization after annealing at 423 K (150 °C). X-ray diffraction analysis illustrated that employing annealing treatment at 463 K (190 °C) decreased the coherent domain size and, consequently, increased the microstrain value. Moreover, nucleation of the newly formed grains resulted from discontinuous static recrystallization decreased the mean grain size. The yield and the tensile strength were also enhanced due to the reduction of the coherent domain size, the internal stress augmentation, and the presence of the new fine grains. Annealing at 523 K (250 °C) increased the fraction of the recrystallized structure and, consequently, decreased the fraction of the grains created by ECAP. As a result, the typical rolling texture intensified.

  13. Transmission Electron Microscopy Study of Strain-Induced Low- and High-Angle Boundary Development in Equal-Channel Angular-Pressed Commercially Pure Aluminum

    Science.gov (United States)

    Cabibbo, M.; Blum, W.; Evangelista, E.; Kassner, M. E.; Meyers, M. A.

    2008-01-01

    The evolution of the microstructure in a commercially pure aluminum during equal channel angular pressing (ECAP) using route BC was investigated by transmission electron microscopy. Subgrains, or cells, form, which have both high ( ϕ > 15 deg) and low ( ϕ Kikuchi patterns and Moiré fringes. The average cell size and misorientation saturate within the first two passes. Misorientations and spacings of high-angle boundaries decrease with the number of passes. After eight passes, the cell size is ≈1.3 μm and the fraction of high-angle boundaries is ≈0.7. The marked differences in the rate of grain structure evolution per pass are linked to differences in the ability of dislocations introduced in new passes to recombine with the existing ones. With increasing ECAP strain, the distribution of misorientations develops strong deviations from the MacKenzie distribution for statistical grain orientation. This is interpreted as a result of the tendency to form equiaxed grains in a textured grain structure.

  14. Influence of second-phase particles on grain growth in AZ31 magnesium alloy during equal channel angular pressing by phase field simulation

    Science.gov (United States)

    He, Ri; Wang, Mingtao; Zhang, Xiangang; Yaping Zong, Bernie

    2016-06-01

    A phase-field model was established to simulate the refinement effect of different morphological factors of second-phase particles such as Al2O3 on the grain growth of AZ31 magnesium alloy during equal channel angular pressing (ECAP) in realistic spatiotemporal evolution. The simulation results agreed well with limited existing experimental data for the ECAP-processed AZ31 magnesium alloy and were consistent with the law of Zener. Simulations were performed to evaluate the influences of the fraction, size, distribution, and shape of incoherent second-phase particles. The simulation results showed that during high-temperature ECAP processes, the addition of 2 wt.% Al2O3 particles resulted in a strong refinement effect, reducing the grain size by 28.7% compared to that of the alloy without the particles. Nevertheless, when the fraction of particles was greater than 4 wt.%, adding more particles had little effect. In AZ31 Mg alloy, it was found that second-phase particles should have a critical size of 0.5–0.8 μm for the grain refinement effect to occur. If the size is smaller than the critical size, large particles will strongly hinder grain growth; in contrast, if the size is larger than the critical size, large particles will exhibit a weaker hindering effect than small particles. Moreover, the results showed that the refinement effect increased with increasing particle fraction located at grain boundaries with respect to the total particle content. However, the refinement effect was less pronounced when the fraction of particles located at boundaries was greater than 70%. Further simulations indicated that spherical second-phase particles hindered grain growth more than ellipsoid particles and much more than rod-shaped particles when the volume fraction of reinforcing particles was 2%. However, when the volume fraction was greater than 8%, rod-shaped particles best hindered grain growth, and spherical particles exhibited the weakest effect.

  15. Effect of equal-channel angular pressing and aging on the microstructure and mechanical properties of an Al-Cu-Mg-Si alloy

    Science.gov (United States)

    Gazizov, M. R.; Dubina, A. V.; Zhemchuzhnikova, D. A.; Kaibyshev, R. O.

    2015-07-01

    The effect of intermediate equal-channel angular pressing (ECAP) and final aging at 170°C on the mechanical properties and microstructure of aluminum alloy belonging to Al-Cu-Mg-Si system stress with a Cu/Mg ratio (AA2014) is considered. After quenching and aging (treatment T6), the yield stress (σ0.2) and ultimate tensile strength (σu) are ˜415 and ˜450 MPa, respectively; the elongation to fracture (δ) is 4.2%. The precipitation strengthening is reached due to the precipitation of θ″-, θ'-, β″-, and Q'/ C-phase particles. After intermediate ECAP and subsequent aging for 0.5 h, σ0.2 and σu increase to 470 and 535 MPa, respectively; δ increases to ˜9.5%. The plastic deformation leads to the formation of a microstructure that consists of deformation bands characterized by a high density of dislocations. During aging for 0.5 h, the partial decomposition of supersaturated solid solution and formation of segregations within grains and at dislocations and precipitation of the Guinier-Preston zones and β″ phase also occur; all of this ensure the maximum increase in the strength of the AA2014 alloy. As the aging time increases to 8 h, the slight decrease in both σ0.2 and σu to 465 and 515 MPa and δ to ˜6% takes place. It has been shown that the intermediate ECAP does not affect the sequence of the precipitation of main strengthening θ″ and θ' phases during aging. However, in this case, the volume fraction of strengthening particles decreases significantly and their dispersivity increases.

  16. In vitro and in vivo studies on nanocrystalline Ti fabricated by equal channel angular pressing with microcrystalline CP Ti as control.

    Science.gov (United States)

    Nie, F L; Zheng, Y F; Wei, S C; Wang, D S; Yu, Z T; Salimgareeva, G K; Polyakov, A V; Valiev, R Z

    2013-06-01

    Bulk nanocrystalline Ti bars (Grade 4, Φ4 × 3000 mm(3)) were massively fabricated by equal channel angular pressing (ECAP) via follow-up conform scheme with the microcrystalline CP Ti as raw material. Homogeneous nanostructured crystals with the average grain size of 250 nm were identified for the ECAPed Ti, with extremely high tensile/fatigue strength (around 1240/620 MPa) and adorable elongation (more than 5%). Pronounced formation of bonelike apatite for the nanocrystalline Ti group after 14 days static immersion in simulated body fluids (SBF) reveals the prospective in vitro bioactive capability of fast calcification, whereas an estimated 17% increment in protein adsorption represents good bioaffinity of nanocrystalline Ti. The documentation onto the whole life circle of osteoblast cell lines (MG63) revealed the strong interactions and superior cellular functionalization when they are co-incubated with bulk nanocrystalline Ti sample. Moreover, thread-structured specimens were designed and implanted into the tibia of Beagles dogs till 12 weeks to study the in vivo responses between bone and metallic implant made of bulk nanocrystalline Ti, with the microcrystalline Ti as control. For the implanted nanostructured Ti group, neoformed bone around the implants underwent the whole-stage transformation proceeding from originally osteons or immature woven bone to mature lamellar bone (skeletonic trabecular), even with the remodeling being finished till 12 weeks. The phenomenal osseointegration of direct implant-bone contact can be revealed from the group of the ECAPed Ti without fibrous tissue encapsulation in the gap between the implant and autogenous bone. PMID:23184756

  17. Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guang [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zhou, E-mail: lizhou6931@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); State Key Laboratory of Powder Metallurgy, Changsha 410083 (China); Yuan, Yuan [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Lei, Qian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Changsha 410083 (China)

    2015-08-15

    Highlights: • Minor Ce addition can deprive harmful elements and purify the Cu–Mg alloy. • Decrease of Mg content can effectively enhance the conductivity of Cu–Mg alloy. • Ultrafine-grained Cu–Mg–Ce alloy was successfully gained by 8 passes of ECAP. • The strength of Cu–Mg–Ce alloy can be significantly improved by ECAP. • Better comprehensive properties than the commercial Cu–Mg alloy are gained. - Abstract: A Cu–0.3 wt.%Mg–0.05 wt.%Ce alloy was designed and prepared by melting and casting. After hot rolled, the ingot was cut into rod-shape samples for equal channel angular pressing (ECAP) with different passes at room temperature. The microstructure evolutions were investigated using transmission electron microscope (TEM) observation and electron backscatter diffraction (EBSD) analysis. The severe plastic deformation (SPD) caused by ECAP made the grains elongated significantly. With the increase of ECAP passes, the fraction of high-angle boundaries (HABs) (θ ⩾ 15°) increased and the microstructure was refined. Tension testing results indicated that the tensile strength was remarkably improved from 273.4 MPa before ECAP to 587.5 MPa after 8 passes of ECAP, maintaining an appropriate elongation of 11.4% and good electrical conductivity of 73.1%IACS. After annealing treatment at 300 °C for 2 h, the ECAP samples still maintained excellent comprehensive properties: tensile strength was 558.2 MPa, electrical conductivity was 74.7%IACS, and elongation was 13.2%, which showed bright prospect in high-speed railway as a contact wire material.

  18. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  19. Angular Cheilitis

    Science.gov (United States)

    ... A This image displays a frequent location for candida infection (angular cheilitis), the corners of the mouth. Overview ... infection, those affected may also have thrush (oral candidiasis). The areas are generally slightly painful. The condition ...

  20. Angular momentum in subbarrier fusion

    International Nuclear Information System (INIS)

    We have measured the ratio of the isomer to ground-state yields of 137Ce produced in the fusion reactions 128Te(12C,3n), 133Cs(7Li,3n), 136Ba(3He,2n), 136Ba(4He,3n), and 137Ba(3He,3n), from energies above the Coulomb barrier to energies typically 20--30% below the barrier by observing the delayed x- and γ-ray emission. We deduce the average angular momentum, , from the measured isomer ratios with a statistical model. In the first three reactions we observe that the values of exhibit the behavior predicted for low energies and the expected variation with the reduced mass of the entrance channel. We analyze these data and the associated cross sections with a barrier penetration model that includes the coupling of inelastic channels. Measurements of average angular momenta and cross sections made on other systems using the γ-multiplicity and fission-fragment angular correlation techniques are then analyzed in a similar way with this model. The discrepancies with theory for the γ-multiplicity data show correlations in cross section and angular momentum that suggest a valid model can be found. The measurements of angular momentum using the fission fragment angular correlation technique, however, do not appear reconcilable with the energy dependence of the cross sections. This systematic overview suggests, in particular, that our current understanding of the relationship of angular momentum and anisotropy in fission fragment angular correlations is incomplete. 26 refs

  1. Apoptotic regulation of epithelial cellular extrusion

    OpenAIRE

    De Andrade, Daniel,; Rosenblatt, Jody

    2011-01-01

    Cellular extrusion is a mechanism that removes dying cells from epithelial tissues to prevent compromising their barrier function. Extrusion occurs in all observed epithelia in vivo and can be modeled in vitro by inducing apoptosis in cultured epithelial monolayers. We established that actin and myosin form a ring that contracts in the surrounding cells that drives cellular extrusion. It is not clear, however, if all apoptotic pathways lead to extrusion and how apoptosis and extrusion are mol...

  2. The reactive extrusion of thermoplastic polyurethane

    OpenAIRE

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate and optimize the reactive extrusion of thermoplastic polyurethane. • Premixing has a small beneficiary effect on the efficiency of the extrusion process and the quality of the product formed. • The ...

  3. Angular Momentum

    Science.gov (United States)

    Shakur, Asif; Sinatra, Taylor

    2013-01-01

    The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…

  4. A new flapless technique for crown lengthening after orthodontic extrusion.

    Science.gov (United States)

    Braga, Giovanni; Bocchieri, Anna

    2012-02-01

    Orthodontic extrusion (OE), which is performed in many different clinical situations to move a tooth or its periodontal tissues coronally, is often associated with supracrestal fiberotomy and root planing (OEFRP) or followed by surgical crown lengthening. The OEFRP procedure must be carried out every 2 weeks during the entire extrusive orthodontic phase, and precise control of the technique itself can be quite difficult, especially when this approach is to be performed on a limited portion of the root perimeter in teeth affected by angular defects. The aim of this study was to show a new nonsurgical crown-lengthening technique, performed shortly after the completion of OE, to simultaneously achieve proper hard and soft tissue architecture. Three different illustrative situations (periodontal pocket, root fracture, and root perforation) are described.

  5. Application of Equal Channel Angular Extrusion to Semi-solid Processing of AZ91D Magnesium Alloy%等径道角挤压在AZ91D镁合金半固态加工中的应用

    Institute of Scientific and Technical Information of China (English)

    姜巨福; 罗守靖; 邹经湘

    2006-01-01

    将等径道角挤压工艺(ECAE)应用为应变诱导-熔化激活(SIMA)中的应变诱导工序,并且利用半固态等温处理对ECAE挤压的材料实现熔化激活,提出新SIMA制备AZ91D镁合金半固态坯方法.研究结果表明,新SIMA法制备的AZ91D半固态坯的微观组织均匀、晶粒球化程度好、晶粒细小,平均晶粒尺寸在20 μm左右.新SIMA法所制备的半固态坯料半固态触变模锻成形的托弹板的力学性能高,其抗拉强度达到293.5 MPa,延伸率达到14.28%.

  6. 等通道挤压大变形条件下原子的快速扩散行为研究%Study of atomic superdiffusion phenomenon with the method of equal channel_angular pressing severe plastic deformation

    Institute of Scientific and Technical Information of China (English)

    杜柳; 魏艳妮; 李京龙; 熊江涛

    2012-01-01

    In this peper,Equal Channel Angular Pressing is chosen as severe plastic deformation,by comparing the diffusion action of ECAP and equilibrium condition in Ag-Pb immiscible system to study the atom diffusion action under severe plastic deformation condilion.The study results show that;The diffusion coefficient under ECAP condition is one to two orders of magnitude higher than that of the equilibrium,which reveal the exist of superdiffusion in severe plastic deformation.%采用等通道挤压(Equal Channel Angular Pressing,ECAP)作为大变形手段,通过Ag-Pb互不相溶体系在ECAP和平衡态两种条件下原子扩散行为的对比,研究大变形条件下原子扩散行为.结果表明,ECAP条件下原子的热激活扩散系数高出平衡态1~2个数量级,揭示了大变形条件下原子快速扩散行为的存在.

  7. Means of determining extrusion temperatures

    Science.gov (United States)

    McDonald, Robert E.; Canonico, Domenic A.

    1977-01-01

    In an extrusion process comprising the steps of fabricating a metal billet, heating said billet for a predetermined time and at a selected temperature to increase its plasticity and then forcing said heated billet through a small orifice to produce a desired extruded object, the improvement comprising the steps of randomly inserting a plurality of small metallic thermal tabs at different cross sectional depths in said billet as a part of said fabricating step, and examining said extruded object at each thermal tab location for determining the crystal structure at each extruded thermal tab thus revealing the maximum temperature reached during extrusion in each respective tab location section of the extruded object, whereby the thermal profile of said extruded object during extrusion may be determined.

  8. OPTIMIZING AN ALUMINUM EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Mohammed Ali Hajeeh

    2013-01-01

    Full Text Available Minimizing the amount of scrap generated in an aluminum extrusion process. An optimizing model is constructed in order to select the best cutting patterns of aluminum logs and billets of various sizes and shapes. The model applied to real data obtained from an existing extrusion factory in Kuwait. Results from using the suggested model provided substantial reductions in the amount of scrap generated. Using sound mathematical approaches contribute significantly in reducing waste and savings when compared to the existing non scientific techniques.

  9. Extrusion processing : effects on dry canine diets

    NARCIS (Netherlands)

    Tran, Q.D.

    2008-01-01

    Keywords: Extrusion, Canine diet, Protein, Lysine, Starch gelatinization, Palatability, Drying. Extrusion cooking is a useful and economical tool for processing animal feed. This high temperature, short time processing technology causes chemical and physical changes that alter the nutritional and

  10. Turbine airfoil fabricated from tapered extrusions

    Science.gov (United States)

    Marra, John J

    2013-07-16

    An airfoil (30) and fabrication process for turbine blades with cooling channels (26). Tapered tubes (32A-32D) are bonded together in a parallel sequence, forming a leading edge (21), a trailing edge (22), and pressure and suction side walls (23, 24) connected by internal ribs (25). The tapered tubes may be extruded without camber to simplify the extrusion process, then bonded along matching surfaces (34), forming a non-cambered airfoil (28), which may be cambered in a hot forming process and cut (48) to length. The tubes may have tapered walls that are thinner at the blade tip (T1) than at the base (T2), reducing mass. A cap (50) may be attached to the blade tip. A mounting lug (58) may be forged (60) on the airfoil base and then machined, completing the blade for mounting in a turbine rotor disk.

  11. Extrusion processing : effects on dry canine diets

    OpenAIRE

    Tran, Q.D.

    2008-01-01

    Keywords: Extrusion, Canine diet, Protein, Lysine, Starch gelatinization, Palatability, Drying. Extrusion cooking is a useful and economical tool for processing animal feed. This high temperature, short time processing technology causes chemical and physical changes that alter the nutritional and physical quality of the product. Effects of extrusion on the feed quality for other animals than pets have been well recognized. Our studies investigated to what extent extrusion and/or drying of a c...

  12. The reactive extrusion of thermoplastic polyurethane

    NARCIS (Netherlands)

    Verhoeven, Vincent Wilhelmus Andreas

    2006-01-01

    The objective of this thesis was to increase the understanding of the reactive extrusion of thermoplastic polyurethane. Overall, several issues were identified: • Using a relative simple extrusion model, the reactive extrusion process can be described. This model can be used to further investigate a

  13. Effect of extrusion ratio on coating extrusion of Pb-GF composite wire by numerical simulation and experimental investigation

    Institute of Scientific and Technical Information of China (English)

    WANG Xin; SUN Hong-fei; FANG Wen-bin

    2009-01-01

    The extrusion ratio is one of the key parameters for manufacturing the lead-glass fiber (Pb-GF) composite wire by coating extrusion. The effect of extrusion ratio on coating extrusion of Pb-GF composite wire was studied by finite element numerical simulation with the use of the DEFOEM simulation software. The simulation result shows that the higher the extrusion ratio, the higher the effective stress that the glass fiber bears during extrusion. It is also observed that the extrusion force increases with the increase of the extrusion ratio. The extrusion experiment of Pb-GF composite wire reveals that extrusion ratio is changed by changing the quantity of glass fiber and composite diameter. The rule that increasing the extrusion ratio enhances the coating speed limit suggests that the load on the glass fiber increases with increasing extrusion ratio. Both the simulation and the extrusion experiments show that the extrusion force increases with increasing extrusion ratio.

  14. Study of orbital angular momentum entangled photons entanglement in atmospheric channel%大气信道中单光子轨道角动量纠缠特性的研究

    Institute of Scientific and Technical Information of China (English)

    李铁; 谌娟; 柯熙政; 吕宏

    2012-01-01

    In this paper, we describe orbital angular momentum entangled photon pair entanglement in atmospheric channel. The Von Karman spectrum of turbulence is used to create a model of two-photon pair entanglement. The effects of atmospheric turbulence on the entanglement of entangled photon pairs of different orbital angular momentum bases are analyzed. The obtained results are as follows because of the presence of atmospheric turbulence, the entanglement of entangled photon pairs decreases with the increase of the propagation distance z in the atmosphere channel. The entanglement of the entangled photon pairs decreases with the increase of transmission distance. The bigger the turbulence intensity, the faster the entanglement decline and the shorter the propagation distanceis. In the same intensity of atmospheric turbulence of the atmospheric channel, the bigger the orbital angular momentum index, the slower the entanglement decline and the further the propagation distanceis.%本文讨论了大气信道中轨道角动量纠缠光子对的纠缠度,并利用vonKarman大气湍流谱来建立双光子纠缠度的模型,分析了大气湍流对不同轨道角动量纠缠光子对纠缠度的影响.研究表明:在大气信道中,由于大气湍流的存在,纠缠光子对的纠缠度随着传输距离Z的增加而减小;大气湍流强度越大,纠缠光子对的纠缠度下降的越快,纠缠光子对传输的距离越小;在湍流强度相同的大气信道轨道角动量指数越大的纠缠光子对,纠缠度下降得越慢,纠缠光子对传输的距离越远.

  15. Extrusion of ECC-Material

    DEFF Research Database (Denmark)

    Stang, Henrik; Li, Victor C.

    1999-01-01

    An extrusion process especially designed for extrusion of pipes made from fiber reinforced cementitious materials has been developed at Department of Structural Engineering and Materials at the Technical University of DenmarkEngineered Cementitious Composite (ECC) materials have been developed in...... recent years at Department of Civil and Envirionmetal Engineering, University of Michigan. These materials have been developed with the special aim of producing high performance , strain hardening materials with low volume concentrations of short fibers in a cementitious material.ECC material spcimens...... have until now been produced by traditional casting processes. In the present paper results from a recent collaborative reserach project are documented - demonstrating that ECC materials can be extruded in the process referred to above....

  16. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  17. Chemical changes during extrusion cooking. Recent advances.

    Science.gov (United States)

    Camire, M E

    1998-01-01

    Cooking extruders process a variety of foods, feeds, and industrial materials. Greater flexibility in product development with extruders depends upon understanding chemical reactions that occur within the extruder barrel and at the die. Starch gelatinization and protein denautration are the most important reactions during extrusion. Proteins, starches, and non-starch polysaccharides can fragment, creating reactive molecules that may form new linkages not found in nature. Vitamin stability varies with vitamin structure, extrusion conditions, and food matrix composition. Little is known about the effects of extrusion parameters on phytochemical bioavailability and stability. Reactive extrusion to create new flavor, antioxidant and color compounds will be an area of interest in the future.

  18. Effect of extrusion stem speed on extrusion process for a hollow aluminum profile

    International Nuclear Information System (INIS)

    Highlights: ► Extrusion stem speed has significant effects on extrusion process. ► An optimum value of stem speed exists for uniform metal flow distribution. ► A higher stem speed leads to a higher required extrusion force. ► A high stem speed leads to an improved welding quality of aluminum profile. - Abstract: Extrusion stem speed is one of important process parameters during aluminum profile extrusion, which directly influences the profile quality and choice of extrusion equipments. In this paper, the extrusion process of a thin-walled hollow aluminum profile was simulated by means of the HyperXtrude commercial software. Through a serial of numerical simulation, the effects of stem speed on extrusion process, such as metal flow behavior at die exit, temperature distribution, extrusion force, and welding pressure, have been investigated. The numerical results showed that there existed an optimum value of stem speed for flow velocity distribution. With the increasing stem speed, the temperature of the extrudate and required extrusion force increased, and the welding quality of extrudate would be improved. Through comprehensive comparison and analysis, the appropriate stem speed could be determined for practical extrusion production. Thus, the research results could give effective guideline for determining initial billet and die temperature and choosing the proper extrusion press in aluminum profile industry.

  19. A Modification on ECAP Process by Incorporating Twist Channel

    Science.gov (United States)

    Bisadi, Hosein; Mohamadi, Mehdi Rezazadeh; Miyanaji, Hadi; Abdoli, Maryam

    2013-03-01

    In this study, a method that combines the equal channel angular pressing (ECAP) and twist extrusion (TE) techniques has been introduced as a severe plastic deformation process and investigated by means of the three-dimensional finite element analysis. Owing to the form of the mold which is used in this technique, it can be called the symmetrical channels angular pressing (SCAP) method. This method resembles the more common ECAP process for samples with rectangular cross sections, with the difference that, in this method, the entrance and exit channels at the intersecting corner of the mold also have a twist about their longitudinal axis (as in the TE technique). In this study, to show the characteristics of the SCAP method and to compare it with the ECAP technique, the former method has been simulated by the ABAQUS/Explicit software. Also, to validate the obtained results, the SCAP and ECAP methods were practically applied on samples made of pure commercial aluminum (AA1050). To get the strain distribution along the longitudinal and transverse directions of the samples, Vickers hardness was measured on these samples. The results obtained from these hardness measurements indicate that after one pass, the SCAP method can achieve a higher amount of hardness, compared with the ECAP technique. Moreover, the strain distributions obtained from the simulation and from the samples demonstrate that the SCAP method produces a more homogeneous distribution of strain in the workpieces.

  20. Hot-melt extrusion technology and pharmaceutical application.

    Science.gov (United States)

    Wilson, Matthew; Williams, Marcia A; Jones, David S; Andrews, Gavin P

    2012-06-01

    The use of hot-melt extrusion (HME) within the pharmaceutical industry is steadily increasing, due to its proven ability to efficiently manufacture novel products. The process has been utilized readily in the plastics industry for over a century and has been used to manufacture medical devices for several decades. The development of novel drugs with poor solubility and bioavailability brought the application of HME into the realm of drug-delivery systems. This has specifically been shown in the development of drug-delivery systems of both solid dosage forms and transdermal patches. HME involves the application of heat, pressure and agitation through an extrusion channel to mix materials together, and subsequently forcing them out through a die. Twin-screw extruders are most popular in solid dosage form development as it imparts both dispersive and distributive mixing. It blends materials while also imparting high shear to break-up particles and disperse them. HME extrusion has been shown to molecularly disperse poorly soluble drugs in a polymer carrier, increasing dissolution rates and bioavailability. The most common difficulty encountered in producing such dispersions is stabilization of amorphous drugs, which prevents them from recrystallization during storage. Pharmaceutical industrial suppliers, of both materials and equipment, have increased their development of equipment and chemicals for specific use with HME. Clearly, HME has been identified as an important and significant process to further enhance drug solubility and solid-dispersion production. PMID:22838073

  1. Surface quality prediction in aluminum extrusion

    NARCIS (Netherlands)

    Rooij, M.B. de; Ma, X.; Bakker, A.J. den; Werkhoven, R.J.

    2011-01-01

    The surface quality of aluminium extrusion products can be hampered by undesired surface features like die lines and pickups. In particular the presence of pickups is considered as undesirable. Surface pickups appear as intermittent torn marks on the aluminium extrusion products, often terminated wi

  2. Extrusion of ECC: Recent Developments and Applications

    DEFF Research Database (Denmark)

    Stang, Henrik; Fredslund-Hansen, Helge; Puclin, Tony;

    2008-01-01

    demands on the rheological properties of cementitious particulate materials, various methods have been suggested to dewater the particle suspension during extrusion, however practical extrusion of thin-walled cementitious large-scale elements has not been possible until the discovery of the “dewatering......Extrusion of particulate pastes and suspensions in general is difficult and the rheological parameters play a central role in the process when using conventional extruders. More important – the rheological properties of the paste or suspension are subjected to conflicting demands in an extrusion...... process. Extrusion of cementitious (fiber reinforced) materials has proven particularly difficult due to the high inter-particle friction combined with the disastrous effect of static zones in the flow pattern, and to the ease of phase migration or separation. In order to deal with these conflicting...

  3. Search for anomalous couplings in the $Wtb$ vertex from the measurement of double differential angular decay rates of single top quarks produced in the $t$-channel with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-01-01

    The electroweak production and subsequent decay of single top quarks is determined by the properties of the $Wtb$ vertex. This vertex can be described by the complex parameters of an effective Lagrangian. An analysis of angular distributions of the decay products of single top quarks produced in the $t$-channel constrains these parameters simultaneously. The analysis described in this paper uses 4.6 fb$^{-1}$ of proton--proton collision data at $\\sqrt{s}$ = 7 TeV collected with the ATLAS detector at the LHC.Two parameters are measured simultaneously in this analysis. The fraction $f_1$ of decays containing transversely polarised $W$ bosons is measured to be $0.37 \\pm 0.07$ (stat.$\\oplus$syst.). The phase $\\delta_{-}$ between amplitudes for transversely and longitudinally polarised $W$ bosons recoiling against left-handed $b$-quarks is measured to be $-0.14\\pi \\pm 0.036\\pi$ (stat.$\\oplus$syst.).The correlation in the measurement of these parameters is $0.15$. These values result in two-dimensional limits at th...

  4. A finite element model of ultrasonic extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)

    2009-08-01

    Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.

  5. Lubrication in Hot Tube Extrusion of Superalloys and Ti Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tubular products made of superalloys and titanium alloys usually work in high temperature environment and applied heavy loading. Hot extrusion is the best technology to form tubular billets with fine microstructures and good mechanical properties. Lubrication is one of the key techniques in hot extrusion, glass lubricants are most suitable for hot extrusion. Lubrication technique in hot extrusion is dealt with in this paper, the lubrication principle of hot tube extrusion is presented. Experiments of glass lubricated backward tube extrusion of titanium alloys and forward tube extrusion of superalloys are also discussed.

  6. Continuous extrusion and rolling forming technology of copper strip manufacture

    OpenAIRE

    Yun Xinbing; Zhou Mo; Tian Tian; Zhao Ying

    2015-01-01

    Continuous extrusion and rolling technology was proposed as a new strip production technology. It finished hot rolling process using the waste heat of the continuous extrusion forming. The continuous extrusion and rolling forming process was simulated by DEFORM-3DT software. The influence of extrusion wheel velocity and strip size on the continuous extrusion and rolling forming process was analyzed. The experiment was carried out according to optimized results of numerical simulation, the mic...

  7. Professional AngularJS

    CERN Document Server

    Karpov, Valeri

    2015-01-01

    A comprehensive guide to AngularJS, Google's open-source client-side framework for app development. Most of the existing guides to AngularJS struggle to provide simple and understandable explanations for more advanced concepts. As a result, some developers who understand all the basic concepts of AngularJS struggle when it comes to building more complex real-world applications. Professional AngularJS provides a thorough understanding of AngularJS, covering everything from basic concepts, such as directives and data binding, to more advanced concepts like transclusion, build systems, and auto

  8. HIGH ENERGY RATE EXTRUSION OF URANIUM

    Science.gov (United States)

    Lewis, L.

    1963-07-23

    A method of extruding uranium at a high energy rate is described. Conditions during the extrusion are such that the temperature of the metal during extrusion reaches a point above the normal alpha to beta transition, but the metal nevertheless remains in the alpha phase in accordance with the Clausius- Clapeyron equation. Upon exiting from the die, the metal automatically enters the beta phase, after which the metal is permitted to cool. (AEC)

  9. Co-extrusion of piezoelectric ceramic fibres

    OpenAIRE

    Ismael Michen, Marina

    2011-01-01

    The present work successfully developed a methodology for fabricating lead zirconate titanate [PZT] thin solid- and hollow-fibres by the thermoplastic co-extrusion process. The whole process chain, that includes: a) compounding, involving the mixing of ceramic powder with a thermoplastic binder, b) rheological characterizations, c) preform composite fabrication followed by co-extrusion, d) debinding and, finally, e) sintering of the body to near full density, is systematical...

  10. Elaboration de matériaux composites à matrice de Titane et à nanorenfortsTiC et TiB par différents procédés de métallurgie des poudres : frittagepar hydruration/déshydruration et densification par déformation plastiquesévère (Equal Channel Angular Pressing : ECAP)

    OpenAIRE

    Bardet, Matthieu

    2014-01-01

    Titanium based composites using nano-sized reinforcements are goodcandidates for the improvement in mechanical properties without affecting ductility. Thisstudy is dedicated to fabrication and characterisation of Ti-based composites using twodifferent powder metallurgy processes: Densification using severe plastic deformation viaEqual Channel Angular Pressing (ECAP) and Hydrogenation/Dehydrogenation (HDH)sintering processes (pressureless sintering and hot pressing).ECAP is a fast process base...

  11. CNC Extruder for varied section extrusion

    Directory of Open Access Journals (Sweden)

    H.J. Choi

    2008-08-01

    Full Text Available Purpose: The work presented in this paper might be used for basic data in the design of a lot extruded aluminum products using the variable section extrusion process.Design/methodology/approach: The capacity of a CNC extruder was calculated and decided as analyzing the FEM results performed by commercial software DEFORM-2D. CNC extruder and die set for variable section extrusion was invented by field extrusion experts.Findings: CNC extruder had a key role in variable extrusion process. Furthermore there was few die sets with mold feeding parts for aluminum extrusion. To be capable of extruding aluminum products with variable cross section are CNC extruder and the die set.Research limitations/implications: For future research of developed CNC extruder, frame structures of the extruder would be analyzed and designed using FE analysis. In addition CNC extruder would be operated by the control program for variable section as a PC version.Practical implications: Aluminum parts with variable section would increase as utilizing the CNC extruder and cost price of the parts be down. Many industrial products using the variable section extrusion process would be used in diverse fields.Originality/value: Extruded aluminum part with variable section is rarely used since extruders don’t be designed and developed for variable section extrusion. It is important that an extruder with CNC control, which could be easily handled and have accessible software to be operated by field user, are invented. As stated above, CNC extruder is needed for production of industrial products with variable section for today. Therefore design and development of CNC extruder having the die set for mold feeding parts was tackled in this paper as efficient approach using commercial FEM code.

  12. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    Science.gov (United States)

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process. PMID:25574813

  13. On Angular Momentum

    Science.gov (United States)

    Schwinger, J.

    1952-01-26

    The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.

  14. Partonic orbital angular momentum

    Science.gov (United States)

    Arash, Firooz; Taghavi-Shahri, Fatemeh; Shahveh, Abolfazl

    2013-04-01

    Ji's decomposition of nucleon spin is used and the orbital angular momentum of quarks and gluon are calculated. We have utilized the so called valon model description of the nucleon in the next to leading order. It is found that the average orbital angular momentum of quarks is positive, but small, whereas that of gluon is negative and large. Individual quark flavor contributions are also calculated. Some regularities on the total angular momentum of the quarks and gluon are observed.

  15. Quark Orbital Angular Momentum

    OpenAIRE

    Burkardt Matthias

    2015-01-01

    Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asy...

  16. Improvement of Dissolution Behavior for Poorly Water-Soluble Drug by Application of Cyclodextrin in Extrusion Process: Comparison between Melt Extrusion and Wet Extrusion

    OpenAIRE

    Yano, Hideki; Kleinebudde, Peter

    2010-01-01

    The purpose of this study was to improve dissolution behavior of poorly water-soluble drugs by application of cyclodextrin in extrusion processes, which were melt extrusion process and wet extrusion process. Indomethacin (IM) was employed as a model drug. Extrudates containing IM and 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) in 1:1 w/w ratio were manufactured by both melt extrusion process and wet extrusion process. In vitro drug release properties of IM from extrudates and physiochemical pro...

  17. Effect of molybdenum addition on aluminium grain refined by titanium on its metallurgical and mechanical characteristics in the as cast condition and after pressing by the equal angular channel process

    International Nuclear Information System (INIS)

    Aluminium and its alloys are versatile materials which are widely used in industrial and engineering applications due to their attractive characteristics. However, they solidify in columnar structure which tends to reduce their surface quality and mechanical strength. It is therefore, grain refined by grain refiners i.e. titanium or titanium+boron. The equal angular channel pressing, ECAP, process is a recent method for producing severe plastic deformation in materials. In this research work, the effect of addition of molybdenum either alone or in the presence of titanium to commercially pure aluminium on microstructure and mechanical behaviour is investigated in two conditions; first, in the as cast condition, and second after pressing by the ECAP process at room temperature. It was found that addition of Ti alone at a rate of 0.15% weight to commercially pure Al resulted in grain refining of microstructure and a grain size of 91μm was obtained. However, after pressing by the ECAP process further refinement was achieved and the grain size was reduced to 18μm. Addition of Mo alone to aluminium at a rate of 0.1% resulted in grain size of 76μm in the as cast condition and 32μm after pressing by the ECAP process. The combination of the two elements Ti and Mo together resulted in 48μm grain size in the as cast condition, compared to 40μm after pressing by the ECAP process. Furthermore, it was found that in the as cast condition: addition of Ti alone to Al resulted in enhancement of its mechanical behaviour by an increase of 5.2% increase in its flow stress at 20% true strain, whereas addition of Mo either alone or in the presence of Ti resulted in decrease of its flow stress at 20% by 9% and 5.6% respectively. However, after pressing by ECAP: it was found that addition of Ti or Mo either alone or together to Al resulted in increase of its flow stress at 20 % strain by the following percentages 5.49, 4.74 and 10.3% respectively

  18. Extrusion Upsetting Multiple Processing in Sandglass Die

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method of getting ultrafine grain size has been investigated, which is called "Extrusion Upsetting Multiple Processing in Sandglass Die" or "Sandglass Extrusion" (SE). Since the shape of tested billet can remain unchanged after SE, the billet can be extruded repeatedly in order to get large plastic strain. The ultrafine grain size can be obtained in the billet material due to the large plastic strain and the dynamic recrystallization during SE. The experiments on SE of Zn-5%Al alloy have been done. The SE technology, microstructures, microhardness and superplasticity of tested material after SE have been studied. The experimental results show that the equal-axial ultrafine microstructures can be introduced to the bulk test material during sandglass extrusion. The high strain rate superplasticity can be realized.

  19. Study on Extrusion Technological Parametersof Brown Rice

    Institute of Scientific and Technical Information of China (English)

    ZhuYongyi; ZhouXianqing; LingLizhong

    2001-01-01

    Abstract: Extrusion is an efficient measure to improve the texture and physic-chemical properties of brown rice. The polynomial degree two model of extrusiontechnological parameters and gelatinized degree, water absorption index, water solubleindex and moisture content of extruded matter was obtained by methods of single factorand response surface methodology, R2=0.9649, 0.8745, 0.9079, 0.8677. The optimaltechnoiogica! parameters of brown rice extrusion were figured out as follows:moisturecontent of brown rice, 11.42%, speed of screw, 30rpm, feeding speed, and 20rpm.

  20. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Şule ALTUN

    2003-01-01

    Full Text Available Polyethylene terephthalate (PET is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understand degradation processes of PET during melt extrusion.

  1. Modelling the extrusion of preforms for microstructured optical fibres

    Science.gov (United States)

    Tronnolone, Hayden; Stokes, Yvonne; Crowdy, Darren

    2013-11-01

    Owing to a novel design, microstructured optical fibres (MOFs) promise the realisation of fibres with effectively any desired optical properties. MOFs are typically constructed from glass and employ a series of air channels aligned along the fibre axis to form a waveguide. The construction of MOFs by first extruding a preform and then drawing this into the final fibre has the potential to produce fibres on an industrial scale; however, this is hindered by a limited understanding of the fluid flow that arises during this process. We focus on the extrusion stage of fabrication and discuss a model of the fibre evolution based upon complex-variable techniques. The relative influence of the various physical processes involved is discussed, along with limitations of the model.

  2. Scalable Approach for Extrusion and Perfusion of Tubular, Heterotypic Biomaterials

    Science.gov (United States)

    Jeronimo, Mark David

    Soft material tubes are critical in the vasculature of mammalian tissues, forming networks of blood vessels and airways. Homogeneous and heterogeneous hydrogel tubes were extruded in a one-step process using a three layer microfluidic device. Co-axial cylindrical flow of crosslinking solutions and an alginate matrix is generated by a radial arrangement of microfluidic channels at the device's vertical extrusion outlet. The flow is confined and begins a sol-gel transition immediately as it extrudes at velocities upwards of 4 mm/s. This approach allows for predictive control over the dimensions of the rapidly formed tubular structures for outer diameters from 600 microm to 3 mm. A second microfluidic device hosts tube segments for controlled perfusion and pressurization using a reversible vacuum seal. On-chip tube deflection is observed and modeled as a measure of material compliance and circumferential elasticity. I anticipate applications of these devices for perfusion cell culture of cell-laden hydrogel tubes.

  3. FEM study of extrusion complexity and dead metal zone

    OpenAIRE

    S.Z. Qamar

    2009-01-01

    Purpose: Quality of the extruded product and efficiency of the manufacturing process can be seriously affected by inconsistent metal flow through the extrusion die. Metal flow problems can also significantly reduce die life. Various researchers have investigated the effect of profile complexity on extrusion pressure, product quality, die life, etc. However, the relationship between shape complexity and metal flow through the extrusion die has not been studied in detail. Cold extrusion experim...

  4. Properties of seam welds produced with different extrusion parameters

    OpenAIRE

    A. Bozacl; M.S. Keskin; S. Bingol

    2007-01-01

    Purpose: This study focuses to investigate the effects of different extrusion parameters on microstructural properties of seam (longitudinal) welds in aluminum extrusion profiles.Design/methodology/approach: To realize the study, it is studied on a hollow extrusion profile type which has seam weld zones. The experimental profile was produced in different temperatures, billet temperatures and ram speeds by a real extrusion press which has a capacity of 1460 tones. These parameters are some of ...

  5. Extrusion instability in an aramid fibre spinning process

    NARCIS (Netherlands)

    Drost, S.

    2015-01-01

    The efficiency of polymer extrusion processes can be severely limited by the occurrence of viscoelastic extrusion instabilities. In a para-aramid fibre spinning process, for example, a μm-scale extrusion instability is responsible for the waste of tons of polymer per year. At present, a considerab

  6. Developments in finite element simulations of aluminium extrusion

    NARCIS (Netherlands)

    Lof, Joeri

    2000-01-01

    Aluminium extrusion is a forming process used to produce profiles. A large variety of profiles can be made by pressing a billet of hot aluminium through a hole that closely resembles the required cross-section of the profie. At the present time, design of extrusion dies and operation in extrusion co

  7. Effects of extrusion processing on nutrients in dry pet food

    NARCIS (Netherlands)

    Tran, Q.D.; Hendriks, W.H.; Poel, van der A.F.B.

    2008-01-01

    Extrusion cooking is commonly used to produce dry pet foods. As a process involving heat treatment, extrusion cooking can have both beneficial and detrimental effects on the nutritional quality of the product. Desirable effects of extrusion comprise increase in palatability, destruction of undesirab

  8. DVL Angular Velocity Recorder

    Science.gov (United States)

    Liebe, Wolfgang

    1944-01-01

    In many studies, especially of nonstationary flight motion, it is necessary to determine the angular velocities at which the airplane rotates about its various axes. The three-component recorder is designed to serve this purpose. If the angular velocity for one flight attitude is known, other important quantities can be derived from its time rate of change, such as the angular acceleration by differentiations, or - by integration - the angles of position of the airplane - that is, the angles formed by the airplane axes with the axis direction presented at the instant of the beginning of the motion that is to be investigated.

  9. Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Burkardt Matthias

    2015-01-01

    Full Text Available Definitions of orbital angular momentum based on Wigner distributions are used as a framework to discuss the connection between the Ji definition of the quark orbital angular momentum and that of Jaffe and Manohar. We find that the difference between these two definitions can be interpreted as the change in the quark orbital angular momentum as it leaves the target in a DIS experiment. The mechanism responsible for that change is similar to the mechanism that causes transverse single-spin asymmetries in semi-inclusive deep-inelastic scattering.

  10. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta.

    Science.gov (United States)

    Wang, Li; Duan, Wei; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2016-08-01

    This research investigated the effects of extrusion temperature and screw speed on the extrusion system parameters and the qualities of brown rice pasta. The die pressure and motor torque value reached a maximum at 90°C but decreased when the screw speed increased from 80 to 120rpm. The extrusion temperature and screw speed also significantly affected the cooking quality and textural properties of brown rice pasta. The pasta produced at an extrusion temperature of 120°C and screw speed of 120rpm had the best quality with a cooking loss, hardness and adhesiveness of 6.7%, 2387.2g and -7.0g⋅s, respectively, similar to those of pasta made from gluten-free flour. The results indicated that brown rice can be used to produce gluten-free pasta with improved nutrition. PMID:26988508

  11. Effects of extrusion conditions on the extrusion responses and the quality of brown rice pasta.

    Science.gov (United States)

    Wang, Li; Duan, Wei; Zhou, Sumei; Qian, Haifeng; Zhang, Hui; Qi, Xiguang

    2016-08-01

    This research investigated the effects of extrusion temperature and screw speed on the extrusion system parameters and the qualities of brown rice pasta. The die pressure and motor torque value reached a maximum at 90°C but decreased when the screw speed increased from 80 to 120rpm. The extrusion temperature and screw speed also significantly affected the cooking quality and textural properties of brown rice pasta. The pasta produced at an extrusion temperature of 120°C and screw speed of 120rpm had the best quality with a cooking loss, hardness and adhesiveness of 6.7%, 2387.2g and -7.0g⋅s, respectively, similar to those of pasta made from gluten-free flour. The results indicated that brown rice can be used to produce gluten-free pasta with improved nutrition.

  12. Formation of Chromosomal Domains by Loop Extrusion.

    Science.gov (United States)

    Fudenberg, Geoffrey; Imakaev, Maxim; Lu, Carolyn; Goloborodko, Anton; Abdennur, Nezar; Mirny, Leonid A

    2016-05-31

    Topologically associating domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations-including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments-and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes. PMID:27210764

  13. Hydrodynamic modelling of hydrostatic magnesium extrusion

    NARCIS (Netherlands)

    Moodij, E.; Rooij, de M.B.; Schipper, D.J.

    2006-01-01

    Wilson’s hydrodynamic model of the hydrostatic extrusion process is extended to meet the geometry found on residual billets. The transition from inlet to work zone of the process is not considered sharp as in the model of Wilson but as a rounded edge, modelled by a parabolic function. It is shown th

  14. Friction phenomena in hydrostatic extrusion of magnesium

    NARCIS (Netherlands)

    Moodij, Ellen

    2014-01-01

    When magnesium is hydrostatically extruded an inconsistent and sometimes bad surface quality is encountered. In hydrostatic extrusion the billet is surrounded by a lubricant, usually castor oil. The required pressure to deform the material is applied onto this lubricant and not directly to the bill

  15. 75 FR 80527 - Aluminum Extrusions From China

    Science.gov (United States)

    2010-12-22

    ... Republic of China: Postponement of Final Determination of Sales at Less Than Fair Value, 75 FR 73041... Sales at Less Than Fair Value, and Preliminary Determination of Targeted Dumping, 75 FR 69403, November... Affirmative Countervailing Duty Determination, 75 FR 54302, September 7, 2010, and Aluminum Extrusions...

  16. Physical and mathematical modelling of extrusion processes

    DEFF Research Database (Denmark)

    Arentoft, Mogens; Gronostajski, Z.; Niechajowics, A.;

    2000-01-01

    The main objective of the work is to study the extrusion process using physical modelling and to compare the findings of the study with finite element predictions. The possibilities and advantages of the simultaneous application of both of these methods for the analysis of metal forming processes...

  17. Energy aspects in food extrusion-cooking

    NARCIS (Netherlands)

    Janssen, L.P.B.M.; Moscicki, L.; Mitrus, M.

    2002-01-01

    Theoretical and practical energy balance considerations in food extrusion-cooking are presented in the paper. Based on the literature review as well as on own measurement results, the baro-thermal treatment of different vegetable raw materials is discussed together with the engineering aspects of th

  18. Formation of Chromosomal Domains by Loop Extrusion

    Directory of Open Access Journals (Sweden)

    Geoffrey Fudenberg

    2016-05-01

    Full Text Available Topologically associating domains (TADs are fundamental structural and functional building blocks of human interphase chromosomes, yet the mechanisms of TAD formation remain unclear. Here, we propose that loop extrusion underlies TAD formation. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. Using polymer simulations, we show that this model produces TADs and finer-scale features of Hi-C data. Each TAD emerges from multiple loops dynamically formed through extrusion, contrary to typical illustrations of single static loops. Loop extrusion both explains diverse experimental observations—including the preferential orientation of CTCF motifs, enrichments of architectural proteins at TAD boundaries, and boundary deletion experiments—and makes specific predictions for the depletion of CTCF versus cohesin. Finally, loop extrusion has potentially far-ranging consequences for processes such as enhancer-promoter interactions, orientation-specific chromosomal looping, and compaction of mitotic chromosomes.

  19. Study on Hot Deformation Behavior of 7085 Aluminum Alloy during Backward Extrusion Process

    Directory of Open Access Journals (Sweden)

    R. B. Mei

    2015-01-01

    Full Text Available Compression test was carried out and the true stress-strain curves were obtained from the hot compression of 7085 alloy. A numerical simulation on the deformation behavior of 7085 aluminum alloy during the backward extrusion was also performed by finite element method. The results show that dynamic recrystallization occurs in the hot compression of 7085 alloy and the peak stress reaches higher values as the strain rate increases and deformation temperature decreases. The backward extrusion processes include contact deformation, initial deformation, and steady deformation. Severe plastic deformation of shear and compression occurs when the metal flowed into the channel between fillet of punch and wall of die so that the grain size can be refined by backward extrusion. The deformation in the region of top of wall is too small to meet the mechanical properties of requirements and the metal usually needs to be trimmed. The experiments with the same parameters as simulation had been carried out and the experimental cup after extrusion has better quality.

  20. Optical Angular Momentum

    International Nuclear Information System (INIS)

    For many years the Institute of Physics has published books on hot topics based on a collection of reprints from different journals, including some remarks by the editors of each volume. The book on Optical Angular Momentum, edited by L Allen, S M Barnett and M J Padgett, is a recent addition to the series. It reproduces forty four papers originally published in different journals and in a few cases it provides direct access to works not easily accessible to a web navigator. The collection covers nearly a hundred years of progress in physics, starting from an historic 1909 paper by Poynting, and ending with a 2002 paper by Padgett, Barnett and coworkers on the measurement of the orbital angular momentum of a single photon. The field of optical angular momentum has expanded greatly, creating an interdisciplinary attraction for researchers operating in quantum optics, atomic physics, solid state physics, biophysics and quantum information theory. The development of laser optics, especially the control of single mode sources, has made possible the specific design of optical radiation modes with a high degree of control on the light angular momentum. The editors of this book are important figures in the field of angular momentum, having contributed to key progress in the area. L Allen published an historical paper in 1999, he and M J Padgett (together with M Babiker) produced few years ago a long review article which is today still the most complete basic introduction to the angular momentum of light, while S M Barnett has contributed several high quality papers to the progress of this area of physics. The editors' choice provides an excellent overview to all readers, with papers classified into eight different topics, covering the basic principles of the light and spin and orbital angular momentum, the laboratory tools for creating laser beams carrying orbital angular momentum, the optical forces and torques created by laser beams carrying angular momentum on

  1. Average Angular Velocity

    OpenAIRE

    Van Essen, H.

    2004-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to th...

  2. Angular velocity discrimination

    Science.gov (United States)

    Kaiser, Mary K.

    1990-01-01

    Three experiments designed to investigate the ability of naive observers to discriminate rotational velocities of two simultaneously viewed objects are described. Rotations are constrained to occur about the x and y axes, resulting in linear two-dimensional image trajectories. The results indicate that observers can discriminate angular velocities with a competence near that for linear velocities. However, perceived angular rate is influenced by structural aspects of the stimuli.

  3. Controls on extrusion at mid-ocean ridges

    Science.gov (United States)

    Buck, W. Roger; Carbotte, Suzanne M.; Mutter, Carolyn

    1997-10-01

    A magma lens can erupt to form extrusives only if it is under greater pressure than the static pressure in a column of magma reaching from the lens to the surface. The excess pressure results partly from overburden pressure caused by the presence of high- and low-density rocks (dikes and extrusives, respectively) above the lens. The thicker the pile of low-density extrusives, the lower the average overburden density. Thus, extrusion above a lens should be self-regulating, in that thickening the extrusive layer reduces the driving pressure for subsequent eruptions. Flexural stresses may affect extrusion by altering the pressure on a magma chamber. For ridges lacking an axial valley, we predict that deeper magma lenses should correlate with thicker extrusive layers, consistent with recent observations.

  4. Orbital angular momentum photonic quantum interface

    OpenAIRE

    Zhou, Zhi-Yuan; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    Light carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications. Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows, but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths, so a quantum interface to bridge the wavelength gap is necessary. So far, such an interface for ...

  5. IMPORTANT DEGRADATIONS IN POLYETHYLENE TERAPHTALATE EXTRUSION PROCESS

    OpenAIRE

    Şule ALTUN; ULCAY, Yusuf

    2003-01-01

    Polyethylene terephthalate (PET) is one of the most used thermo-plastic polymers. The total consumption of PET has been about 30 million tons in the year 2000. Polyester fibers constitute about 60 % of total synthetic fibers consumption. During extrusion, PET polymer is faced to thermal, thermo-oxidative and hydrolytic degradation, which result in severe reduction in its molecular weight, thereby adversely affecting its subsequent melt processability. Therefore, it is essential to understan...

  6. Extrusion Cooking Systems and Textured Vegetable Proteins

    OpenAIRE

    1985-01-01

    Many fabricated foods are cooked industrially and are given desired textures, shapes, density and rehydration characteristics by an extrusion cooking process. This relatively new process is used in the preparation of “engineered” convenience foods: textured vegetable proteins, breakfast cereals, snacks, infant foods, dry soup mixes, breading, poultry stuffing, croutons, pasta products, beverage powders, hot breakfast gruels, and in the gelatinization of starch or the starchy component of ...

  7. Metamaterial Broadband Angular Selectivity

    CERN Document Server

    Shen, Yichen; Wang, Zhiyu; Wang, Li; Celanovic, Ivan; Ran, Lixin; Joannopoulos, John D; Soljacic, Marin

    2014-01-01

    We demonstrate how broadband angular selectivity can be achieved with stacks of one-dimensionally periodic photonic crystals, each consisting of alternating isotropic layers and effective anisotropic layers, where each effective anisotropic layer is constructed from a multilayered metamaterial. We show that by simply changing the structure of the metamaterials, the selective angle can be tuned to a broad range of angles; and, by increasing the number of stacks, the angular transmission window can be made as narrow as desired. As a proof of principle, we realize the idea experimentally in the microwave regime. The angular selectivity and tunability we report here can have various applications such as in directional control of electromagnetic emitters and detectors.

  8. Fluidic angular velocity sensor

    Science.gov (United States)

    Berdahl, C. M. (Inventor)

    1986-01-01

    A fluidic sensor providing a differential pressure signal proportional to the angular velocity of a rotary input is described. In one embodiment the sensor includes a fluid pump having an impeller coupled to a rotary input. A housing forming a constricting fluid flow chamber is connected to the fluid input of the pump. The housing is provided with a fluid flow restrictive input to the flow chamber and a port communicating with the interior of the flow chamber. The differential pressure signal measured across the flow restrictive input is relatively noise free and proportional to the square of the angular velocity of the impeller. In an alternative embodiment, the flow chamber has a generally cylindrical configuration and plates having flow restrictive apertures are disposed within the chamber downstream from the housing port. In this embodiment, the differential pressure signal is found to be approximately linear with the angular velocity of the impeller.

  9. Angular Scaling In Jets

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

    2012-02-17

    We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

  10. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  11. Heat Treated AZ61 Magnesium Alloy Obtained by Direct Extrusion and Continuous Rotary Extrusion Process

    Directory of Open Access Journals (Sweden)

    Bigaj M.

    2016-03-01

    Full Text Available The results of studies carried out on the heat treated AZ61 magnesium alloy extruded by two methods, i.e. direct extrusion and continuous rotary extrusion, were presented. As part of the work, parameters of the T6 heat treatment were proposed and aging curves were plotted. The solution heat treatment process was accompanied by the grain growth. During artificial aging, due to the decomposition of solid solution, the β-Mg17Al12 phase was precipitated from the supersaturated α solution. It precipitated in a coagulated form at the grain boundaries and in the form of fine-dispersed plates arranged in a preferred direction relative to the grain orientation. Rods obtained by continuous rotary extrusion, unlike those made by the direct process, exhibited a low degree of texturing and lack of anisotropic properties.

  12. Induced Angular Momentum

    Science.gov (United States)

    Parker, G. W.

    1978-01-01

    Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)

  13. Modeling operations back extrusion billets thick-walled anisotropic

    OpenAIRE

    ПЛАТОНОВ В.И.; Яковлев, С. С.

    2014-01-01

    The mathematical model is an inverse extrusion thick-walled tube blanks of material having anisotropic mechanical properties cylindrical. Relations are given to assess the kinematics of course materials la, stress and strain states, power operation modes reverse extrusion. The results of theoretical investigations of power modes. You are the manifest effects of process parameters on the power mode of operation isothermal reverse extrusion billets of high anisotropic materials in the short-ter...

  14. Aluminium extrusion investigated by theory, experiment and FEM-analysis

    OpenAIRE

    Khorasani, Sepinood Torabzadeh

    2015-01-01

    The process of aluminium extrusion has important influence in metal forming industry because of its ability to produce profiles with different shapes, sizes and complicated geometries. The required extrusion load is depending on the process parameters such as the flow stress of the billet material, velocity field, strain rate distribution, and thermal conditions within extrusion. These conditions are so important for industries, and interesting for academia, that research has been...

  15. Hydrodynamic Analysis to Process of Hydrostatic Extrusion for Tungsten Alloy

    Institute of Scientific and Technical Information of China (English)

    Fuchi WANG; Zhaohui ZHANG; Shukui LI

    2001-01-01

    The hydrodynamic analysis to the process of the hydrostatic extrusion for tungsten alloy is carried through the hydrodynamic lubrication theory and Reynolds equation in this paper. The critical velocity equation when the hydrodynamic lubrication conditions appear between the surfaces of the work- piece and the die is obtained, and the relationship between the critical velocity and the extrusion parameters is discussed, which build the theoretical bases to the application of the hydrostatic extrusion for tungsten alloy.

  16. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    OpenAIRE

    José Britti Bacalhau; Fernanda Moreno Rodrigues; Rafael Agnelli Mesquita

    2014-01-01

    Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition ...

  17. Asymmetry in the angular distributions of spectator-nucleons

    International Nuclear Information System (INIS)

    The asymmetry in the angular distributions of spectator-nucleons has been studied in dp interactions, and it has been found that the sign of the asymmetry depends on the reaction channel. It is shown that in the momentum interval 0-200 MeV/c of spectators basic features of the angular distributions can be reproduced in the framework of the spectator model taking into account the energy dependence of the NN cross section and the flux-factor

  18. Continuous extrusion and rolling forming of copper strips

    Directory of Open Access Journals (Sweden)

    Yun Xinbing

    2016-01-01

    Full Text Available Continuous extrusion and rolling technology was proposed as a new strip production technology. It conducts a hot rolling process using waste heat after continuous extrusion. The continuous extrusion and rolling forming was simulated with DEFORM-3DT. Influences of extrusion wheel velocity and rolling reduction on the continuous extrusion and rolling forming were analyzed. It was shown that as extrusion wheel velocity increases, torque of extrusion wheel, chamber force and rolling force, will drop; temperature of the billet in the area of abutment which is highest will increase. As the rolling reduction is increased, torque of the extrusion wheel and force acting on the chamber decrease, while torque and force of the rolls increase. The experimental results showed that a homogeneously distributed and equiaxed grains microstructure can be formed in copper strip billets with an average grain size of about 80 μm, after continuous extrusion. Grains of the copper strips are stretched clearly, during rolling, along the rolling direction, to form a stable orientation. Nevertheless, the grain boundaries are still relatively clear to see.

  19. MODERNIZATION OF TECHNOLOGICAL LINE FOR CELLULAR EXTRUSION PROCESS

    Directory of Open Access Journals (Sweden)

    Tomasz Garbacz

    2014-06-01

    As part of the modernization of the cellular extrusion technology the extrusion head was designed and made. During the designing and modeling of the head the Auto CAD programe was used. After the prototyping the extrusion head was tested. In the article specification of cellular extrusion process of thermoplastics was presented. In the research, the endothermal chemical blowing agents in amount 1,0% by mass were used. The quantity of used blowing agent has a direct influence on density and structure of the extruded product of modified polymers. However, these properties have further influence on porosity, impact strength, hardness, tensile strength and another.

  20. Extrusão dos implantes em portadores de cavidade anoftálmica Anophthalmic cavity and implant extrusion

    Directory of Open Access Journals (Sweden)

    Silvana Artioli Schellini

    2007-10-01

    Full Text Available OBJETIVO: Avaliar as características dos portadores de cavidades anoftálmicas que desenvolveram extrusão do implante. MÉTODOS: Estudo retrospectivo, observacional, tendo sido avaliados 37 portadores de cavidade anoftálmica que tiveram extrusão do implante de cavidade, na Faculdade de Medicina de Botucatu-UNESP. RESULTADOS: As extrusões ocorreram em cavidades enucleadas ou evisceradas, a maioria delas submetidas a cirurgia em decorrência de phthisis bulbi ou trauma, em geral de 1 a 2 anos após a cirurgia inicial. A deiscência precedeu a extrusão em todos os casos, tendo a extrusão ocorrido com todos os tipos de implantes empregados. CONCLUSÃO: Após a colocação de implantes de cavidade podem ocorrer complicações. A deiscência e extrusão das esferas são possibilidades que podem requerer nova intervenção cirúrgica, para a qual o paciente e o oftalmologista devem estar preparados.PURPOSE: To evaluate the characteristics of patients with anophthalmic cavity who developed sphere extrusion. METHODS: A retrospective observational study was done evaluating 37 patients with anophthalmic cavity and sphere extrusion at the "Faculdade de Medicina de Botucatu-UNESP". RESULTS: Extrusion was observed in enucleated and eviscerated cavities. The majority of the patients had the eye removed because of phthisis bulbi or trauma and the extrusion happened 1 or 2 years after the surgery. Extrusion was preceded by conjunctival dehiscence and exposure of the sphere and occurred with all used implants. CONCLUSION: Complications after orbital implant placement are a possibility. Dehiscence and sphere extrusion may happen and another surgery would be necessary. The patient and the ophthalmologist have to be prepared for this.

  1. Extrusion cycles during dome-building eruptions

    Science.gov (United States)

    de' Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2013-06-01

    We identify and quantify controls on the timescales and magnitudes of cyclic (periodic) volcanic eruptions using the numerical model DOMEFLOW (de' Michieli Vitturi et al., 2010) which was developed by the authors for magma systems of intermediate composition. DOMEFLOW treats the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt and assumes a modified Poiseuille form of the viscous term for fully developed laminar flow in a conduit of cylindrical cross-section. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity. Two mechanisms previously proposed to cause periodic eruption behavior have been implemented in the model and their corresponding timescales explored. The first applies a stick-slip model in which motion of a shallow solid plug is resisted by static/dynamic friction, as described in Iverson et al. (2006). For a constant magma supply rate at depth, this mechanism yields cyclic extrusion with timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. The second mechanism does not consider friction but treats the plug as a high-viscosity Newtonian fluid. During viscous resistance, pressure beneath the degassed plug can increase sufficiently to overcome dome overburden, plug weight, and viscous forces, and ultimately drive the plug from the conduit. In this second model cycle periods are on the order of hours, and decrease with increasing magma supply rate until a threshold is reached, at which point periodicity disappears and extrusion rate becomes steady (vanishingly short periods). Magma volatile content for fixed chamber pressure has little effect on cycle timescales, but increasing volatile content increases mass flow rate and cycle magnitude as defined by the difference between maximum and minimum

  2. STRAIN ANALYSIS OF LATERAL EXTRUSION PROCESS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The strain distribution of equal-cross section lateral extrusion(ECSLE) has been simulated by finite element method. Considering the effect of friction and the width of sample, the simulation results are very close to the reality. The simulated results showed that, around the corner of die, the strain is distributed by sharp layers, and the gradient of the layers is very large, which means that the deformation is just plane shear deformation; the larger the width of sample or the smaller the friction, the more uniform the strain distribution is.

  3. Expansion of the whole wheat flour extrusion

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    2008-01-01

    A new model framework is proposed to describe the expansion of extrudates with extruder operating conditions based on dimensional analysis principle. The Buckingham pi dimensional analysis method is applied to form the basic structure of the model from extrusion process operational parameters....... Using the Central Composite Design (CCD) method, whole wheat flour was processed in a twin-screw extruder with 16 trials. The proposed model can well correlate the expansion of the 16 trials using 3 regression parameters. The average deviation of the correlation is 5.9%....

  4. Quantum Heuristics of Angular Momentum

    Science.gov (United States)

    Levy-Leblond, Jean-Marc

    1976-01-01

    Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)

  5. Angular momentum projected semiclassics

    Science.gov (United States)

    Hasse, Rainer W.

    1987-06-01

    By using angular momentum projected plane waves as wave functions, we derive semiclassical expressions for the single-particle propagator, the partition function, the nonlocal density matrix, the single-particle density and the one particle-one hole level density for fixed angular momentum and fixed z-component or summed over the z-components. Other quantities can be deduced from the propagator. In coordinate space ( r, r') the relevant quantities depend on |r-r'| instead of | r- r'| and in Wigner space ( R, P) they become proportional to the angular momentum constraints δ(| R × P|/ h̵-l) and δ( R × P) z/ h̵-m) . As applications we calculate the single-particle and one-particle-one hole level densities for harmonic oscillator and Hill-Wheeler box potentials and the imaginary part of the optical potential and its volume integral with an underlying harmonic oscillator potential and a zero range two-body interaction.

  6. Inline monitoring and a PAT strategy for pharmaceutical hot melt extrusion.

    Science.gov (United States)

    Wahl, Patrick R; Treffer, Daniel; Mohr, Stefan; Roblegg, Eva; Koscher, Gerold; Khinast, Johannes G

    2013-10-15

    Implementation of continuous manufacturing in the pharmaceutical industry requires tight process control. This study focuses on a PAT strategy for hot melt extrusion of vegetable calcium stearate (CaSt) as matrix carrier and paracetamol as active pharmaceutical ingredient (API). The extrusion was monitored using in-line near-infrared (NIR) spectroscopy. A NIR probe was located in the section between the extrusion screws and the die, using a novel design of the die channel. A chemometric model was developed based on premixes at defined concentrations and was implemented in SIPAT for real time API concentration monitoring. Subsequently, step experiments were performed for different API concentrations, screw speeds and screw designs. The predicted API concentration was in good agreement with the pre-set concentrations. The transition from one API plateau to another was a smooth curve due to the mixing behaviour of the extruder. The accuracy of the model was confirmed via offline HPLC analysis. The screw design was determined as the main influential factor on content uniformity (CU). Additionally the influence of multiple feeders had a significant impact on CU. The results demonstrate that in-line NIR measurements is a powerful tool for process development (e.g., mixing characterization), monitoring and further control strategies. PMID:23911343

  7. 75 FR 34482 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2010-06-17

    ... Commission, Washington, DC, and by publishing the notice in the Federal Register of April 6, 2010 (75 FR... COMMISSION Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in... reason of imports from China of certain aluminum extrusions, provided for in subheadings 7604.21,...

  8. 76 FR 29007 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2011-05-19

    ... in the Federal Register on December 22, 2010 (75 FR 80527). The hearing was held in Washington, DC... COMMISSION Certain Aluminum Extrusions From China Determinations On the basis of the record \\1\\ developed in... certain aluminum extrusions from ] China other than finished heat sinks, provided for in subheadings...

  9. CAD implementation of design rules for aluminium extrusion dies

    NARCIS (Netherlands)

    Ouwerkerk, van Gijs

    2009-01-01

    Aluminium extrusion is an industrial forming process that is used to produce long profiles of a constant cross-section. This cross-section is shaped by the opening in a steel tool known as the die. The understanding of the mechanics of the aluminium extrusion process is still limited. The flow of al

  10. Numerical Simulation of Twin-Screw Extrusion with Wall Slip

    Institute of Scientific and Technical Information of China (English)

    胡冬冬; 陈晋南

    2004-01-01

    Wall slip boundary condition is first introduced into twin-screw extrusion with the Navier slip law. Three-dimensional isothermal flow in the twin-screw extruder is simulated by using the finite element package POLYFLOW. Profiles of velocity contours in the screw channel and shear rate distributions in the intermeshing region are presented for different slip coefficients. Curves of axial pressure difference, average shear rate and dispersive mixing index vs. the slip coefficient are plotted and discussed. Comparisons are also made between the wall slip conditions and the non-slip condition. The simulation results indicate that, as the level of wall slip decreases, the axial pressure difference rises, the shear effect is intensified and the axial mixing is also enhanced. All these flow characteristics seem to level off with the increase of the slip coefficient. However, because of the inherent limitation of the Navier slip law, use of an overestimated slip coefficient would predict an over-sticky state between the screw surface and the polymer melt.

  11. Abl suppresses cell extrusion and intercalation during epithelium folding.

    Science.gov (United States)

    Jodoin, Jeanne N; Martin, Adam C

    2016-09-15

    Tissue morphogenesis requires control over cell shape changes and rearrangements. In the Drosophila mesoderm, linked epithelial cells apically constrict, without cell extrusion or intercalation, to fold the epithelium into a tube that will then undergo epithelial-to-mesenchymal transition (EMT). Apical constriction drives tissue folding or cell extrusion in different contexts, but the mechanisms that dictate the specific outcomes are poorly understood. Using live imaging, we found that Abelson (Abl) tyrosine kinase depletion causes apically constricting cells to undergo aberrant basal cell extrusion and cell intercalation. abl depletion disrupted apical-basal polarity and adherens junction organization in mesoderm cells, suggesting that extruding cells undergo premature EMT. The polarity loss was associated with abnormal basolateral contractile actomyosin and Enabled (Ena) accumulation. Depletion of the Abl effector Enabled (Ena) in abl-depleted embryos suppressed the abl phenotype, consistent with cell extrusion resulting from misregulated ena Our work provides new insight into how Abl loss and Ena misregulation promote cell extrusion and EMT.

  12. Preparation of chalcogenide glass fiber using an improved extrusion method

    Science.gov (United States)

    Jiang, Chen; Wang, Xunsi; Zhu, Minming; Xu, Huijuan; Nie, Qiuhua; Dai, Shixun; Tao, Guangming; Shen, Xiang; Cheng, Ci; Zhu, Qingde; Liao, Fangxing; Zhang, Peiquan; Zhang, Peiqing; Liu, Zijun; Zhang, Xianghua

    2016-05-01

    We developed the extrusion method to prepare arsenic-free chalcogenide glass fibers with glass cladding. By using the double nested extrusion molds and the corresponding isolated stacked extrusion method, the utilization rate of glass materials was greatly improved compared with the conventional extrusion method. Fiber preforms with optimal stability of core/cladding ratio throughout the 160 mm length were prepared using the developed extrusion method. Typical fiber structure defects between the core/cladding interface, such as bubbles, cracks, and core diameter variation, were effectively eliminated. Ge-Sb-Se/S chalcogenide glasses were used to form a core/cladding pair and fibers with core/cladding structure were prepared by thermally drawing the extruded preforms. The transmission loss, fiber bending loss, and other optical characters of the fibers were also investigated.

  13. Quark Orbital Angular Momentum

    Science.gov (United States)

    Burkardt, Matthias

    2016-06-01

    Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.

  14. AngularJS directives

    CERN Document Server

    Vanston, Alex

    2013-01-01

    This book uses a practical, step-by-step approach, starting with how to build directives from the ground up before moving on to creating web applications comprised of multiple modules all working together to provide the best user experience possible.This book is intended for intermediate JavaScript developers who are looking to enhance their understanding of single-page web application development with a focus on AngularJS and the JavaScript MVC frameworks.It is expected that readers will understand basic JavaScript patterns and idioms and can recognize JSON formatted data.

  15. A Three-Dimensional Angular Scattering Response Including Path Powers

    OpenAIRE

    Mammasis, Kostantinos; Santi, Paolo; Goulianos, Angelos

    2011-01-01

    In this paper the angular power spectrum exhibited under a three-dimensional (3-D) Gaussian scatter distribution at fixed observation points in space is investigated. Typically, these correspond to the mobile and base units respectively. Unlike other spatial channel models, the derived model accounts for the distance to each scatterer from the observation point and transforms distances into power values under the assumption of free-space propagation. The proposed 3-D spatial channel model fol...

  16. Cyclic expansion-extrusion (CEE): A modified counterpart of cyclic extrusion-compression (CEC)

    International Nuclear Information System (INIS)

    Graphical abstract: Display Omitted Highlights: · Introducing a new severe plastic deformation method. · Imposing high amounts of strains per pass. · Developing well homogenized strain on the cross section of the processed materials. - Abstract: A new method of severe plastic deformation, cyclic expansion-extrusion (CEE), is introduced; CEE is considered as a substitute for the well-known, cyclic extrusion-compression (CEC), by implementing its advantage which is processing samples for the desired number of passes with no need to remove them from the die until the whole number of passes are accomplished. In addition, no external back-pressure system is needed which is the main advantage of this process compared to CEC. This modified process was performed experimentally on aluminum alloy 1050 and was also investigated by finite element analysis. Results reveal that, performing CEE makes it possible to impose large strain values per pass while maintaining a homogeneous hardness distribution in the sample's cross section as well.

  17. Angular momentum evolution of galaxies in EAGLE

    CERN Document Server

    Lagos, Claudia del P; Stevens, Adam R H; Cortese, Luca; Padilla, Nelson D; Davis, Timothy A; Contreras, Sergio; Croton, Darren

    2016-01-01

    We use EAGLE to study the specific angular momentum of galaxies, j, at z1.2, and then increase as lstars~a. Galaxy mergers reduce lstars by a factor of 2-3. These tracks are driven by both the evolution of the total jstars but also its radial distribution. Regardless of the aperture used to measure j, two distinct channels leading to low jstars in galaxies at z=0 are identified: (i) galaxy mergers, and (ii) early formation of most of the stars.

  18. Extrusion Pretreatment of Lignocellulosic Biomass: A Review

    Directory of Open Access Journals (Sweden)

    Jun Zheng

    2014-10-01

    Full Text Available Bioconversion of lignocellulosic biomass to bioethanol has shown environmental, economic and energetic advantages in comparison to bioethanol produced from sugar or starch. However, the pretreatment process for increasing the enzymatic accessibility and improving the digestibility of cellulose is hindered by many physical-chemical, structural and compositional factors, which make these materials difficult to be used as feedstocks for ethanol production. A wide range of pretreatment methods has been developed to alter or remove structural and compositional impediments to (enzymatic hydrolysis over the last few decades; however, only a few of them can be used at commercial scale due to economic feasibility. This paper will give an overview of extrusion pretreatment for bioethanol production with a special focus on twin-screw extruders. An economic assessment of this pretreatment is also discussed to determine its feasibility for future industrial cellulosic ethanol plant designs.

  19. Process Characteristics and Applications of Continuous Variable Cross-section Recycled Extrusion and Equal Channel Angular Pressing%连续变断面循环挤压与等通道转角挤压技术的工艺特征及其应用

    Institute of Scientific and Technical Information of China (English)

    李洁; 刘莹莹; 王庆娟; 尤雪磊; 王坤

    2014-01-01

    分别论述了等通道转角挤压法与连续变断面循环挤压法这两种大塑性变形方法的工艺原理、工艺流程、模具结构、变形特征以及累积应变量与模具结构参数之间的关系;并系统介绍了这两种方法在制备纯铝、镁合金及钛合金细晶材料方面的应用,明确了连续变断面循环挤压法与等通道转角挤压法均是细化合金组织,提高材料强度、塑性等综合性能的有效途径.通过分析对比,提出这两种大塑性变形方法各自的优势和存在的问题,以及未来的发展方向.

  20. Eulerian hydrocode modeling of a dynamic tensile extrusion experiment (u)

    Energy Technology Data Exchange (ETDEWEB)

    Burkett, Michael W [Los Alamos National Laboratory; Clancy, Sean P [Los Alamos National Laboratory

    2009-01-01

    Eulerian hydrocode simulations utilizing the Mechanical Threshold Stress flow stress model were performed to provide insight into a dynamic extrusion experiment. The dynamic extrusion response of copper (three different grain sizes) and tantalum spheres were simulated with MESA, an explicit, 2-D Eulerian continuum mechanics hydrocode and compared with experimental data. The experimental data consisted of high-speed images of the extrusion process, recovered extruded samples, and post test metallography. The hydrocode was developed to predict large-strain and high-strain-rate loading problems. Some of the features of the features of MESA include a high-order advection algorithm, a material interface tracking scheme and a van Leer monotonic advection-limiting. The Mechanical Threshold Stress (MTS) model was utilized to evolve the flow stress as a function of strain, strain rate and temperature for copper and tantalum. Plastic strains exceeding 300% were predicted in the extrusion of copper at 400 m/s, while plastic strains exceeding 800% were predicted for Ta. Quantitative comparisons between the predicted and measured deformation topologies and extrusion rate were made. Additionally, predictions of the texture evolution (based upon the deformation rate history and the rigid body rotations experienced by the copper during the extrusion process) were compared with the orientation imaging microscopy measurements. Finally, comparisons between the calculated and measured influence of the initial texture on the dynamic extrusion response of tantalum was performed.

  1. Optimal design of an extrusion process for a hinge bracket

    Energy Technology Data Exchange (ETDEWEB)

    Na, Geum Ju; Jang, Myung Geun; Kim, Jong Bong [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    This study considers process design in forming a hinge bracket. A thin hinge bracket is typically produced by bending a sheet panel or welding a hollow bar into a sheet panel. However, the hinge bracket made by bending or welding does not have sufficient durability in severe operating conditions because of the stress concentration in the bended region or the low corrosion resistance of the welded region. Therefore, this study uses forming to produce the hinge bracket part of a foldable container and to ensure durability in difficult operating conditions. An extrusion process for a T-shaped hinge bracket is studied using finite element analysis. Preliminary analysis shows that a very high forging load is required to form the bracket by forging. Therefore, extrusion is considered as a candidate process. Producing the part through the extrusion process enables many brackets to be made in a single extrusion and through successive cutting of the extruded part, thereby reducing the manufacturing cost. The design focuses on reducing the extrusion load and on ensuring shape accuracy. An initial billet is designed to reduce the extrusion load and to obtain a geometrically accurate part. The extruded part is bent frequently because of uneven material flow. Thus, extrusion die geometries are designed to obtain straight parts.

  2. Orthodontic extrusion in the transitional dentition: a simple technique.

    LENUS (Irish Health Repository)

    Darby, Laura J

    2009-11-01

    Extrusion of teeth may be necessary in cases of delayed eruption, primary retention, traumatically intruded teeth, or subgingivally fractured teeth. Removable appliances are advantageous, as anchorage is not as tooth-dependant as in the case of fixed appliances. They are cost-effective, operator friendly, and a valuable treatment option to consider in cases where extrusion of anterior teeth in the transitional dentition is necessary. The purpose of this paper was to describe a simple, cost-effective technique using a removable appliance for extrusion of incisors in the transitional dentition.

  3. Calibrator device for the extrusion of cable coatings

    Science.gov (United States)

    Garbacz, Tomasz; Dulebová, Ľudmila; Spišák, Emil; Dulebová, Martina

    2016-05-01

    This paper presents selected results of theoretical and experimental research works on a new calibration device (calibrators) used to produce coatings of electric cables. The aim of this study is to present design solution calibration equipment and present a new calibration machine, which is an important element of the modernized technology extrusion lines for coating cables. As a result of the extrusion process of PVC modified with blowing agents, an extrudate in the form of an electrical cable was obtained. The conditions of the extrusion process were properly selected, which made it possible to obtain a product with solid external surface and cellular core.

  4. Hot extrusion of B2 iron aluminide powders

    Science.gov (United States)

    Strothers, S.; Vedula, K.

    1987-01-01

    The objective of the study was to investigate the effect of powder and processing variables on the microstructure and resultant tensile properties of an extruded FeAlZrB alloy. For a given powder particle size, increasing the extrusion temperature from 1250 to 1450 K is found to increase the grain size and produce a more uniform microstructure. At high extrusion temperatures, where grain boundary mobility is high, powder size is not critical in determining the grain size. The addition of Y2O3 dispersion (1 vol pct) by mechanical alloying makes it possible to obtain very fine-grained materials at low and high extrusion temperatures.

  5. EXTRUSION DIE CAE OF THE STEEL REINFORCED PLASTIC PIPE

    Institute of Scientific and Technical Information of China (English)

    W.Q. Ma; H.Y. Sun; D.C. Kang; K.D. Zhao

    2004-01-01

    The steel reinforced plastic pipe is a new kind of pressure pipe. It is made up with steel wires and plastic. Because reinforced skeleton of the steel wire increase the complexity of plastic flow during the extrusion phase, the traditional design criteria of extrusion die is not suitable. The study on extrusion die of the kind of pipe is very important step in produce development. Using finite element (FE) method in this paper, the flow rule of molten plastic inside the die has been predicted and a group of optimal structural parameters was obtained. These results are helpful for reducing the design cycle and improve the quality of the final product.

  6. Study On Extrusion Technological Parameters Of Brown Rice

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongyi; Zhou Xianqing; Ling Lizhong

    2001-01-01

    Extrusion is an efficient measure to improve the texture and physic-s of brown rice. The polynomial degree two model of extrusion parameters and gelatinized degree, water absorption index, water soluble index and moisture content of extruded matter was obtained by methods of single factor and response surface methodology, R2=0.9649, 0.8745, 0.9079, 0.8677. The optimal parameters of brown rice extrusion were figured out as follows:moisture nrice, 11.42%, speed of screw, 30rpm, feeding speed, and 20rpm.

  7. A new engineering model for understanding extrusion process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    A new engineering method is proposed to understand extrudate expansion and extrusion operation parameters for starch based food extrusion cooking process through dimensional analysis principle, i.e. Buckingham pi theorem. Three dimensionless groups, i.e. pump efficiency, water content...... and temperature, are suggested to describe the extrudate expansion. Using the three dimensionless groups, an equation is derived to express the extrudate expansion. The model has been used to correlate the experimental data for whole wheat flour and fish feed extrusion cooking. The average deviations...

  8. DYNAMIC MODELS FOR HOT-EXTRUSION OF POLYESTER FIBRE

    Directory of Open Access Journals (Sweden)

    G. M. Irapetiants

    2014-01-01

    Full Text Available The paper considers modeling of dynamics on hot extrusion process for polyester fibre. New modifications of nonlinear dynamic models are have been proposed in the paper. The models in contrast with the known ones make it possible to take into account an effect of tensile stress magnitude and duration of its application on temperature of the hot extrusion, in order to achieve the desired values of strength and relative elongations of the polyester fibre. The proposed models are applicable for efficient solution of problems on synthesis of combined control systems for regulation of hot extrusion temperature.

  9. Orbital angular momentum microlaser

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang

    2016-07-01

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.

  10. Orbital angular momentum microlaser.

    Science.gov (United States)

    Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang

    2016-07-29

    Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes. PMID:27471299

  11. Experimental investigation and numerical simulation of large-sized aluminum tube extrusion forming

    Institute of Scientific and Technical Information of China (English)

    吕亚臣; 骆俊廷; 马春荣; 徐岩

    2008-01-01

    Large-sized aluminum tube has big section effect, aspect ratio and thin thickness, so that the extrusion technology is complex and the large specific pressure is generated in extrusion cavity. The temperature variation and velocity effect is difficult to control. The extrusion forming of large-sized aluminum tube was researched and simulated. Three-dimensional thermo-mechanical coupled finite element model was constructed and appropriate boundary conditions were given out. The results show that large-sized aluminum tube can be formed by isothermal extrusion through controlling the extrusion velocity and founding the relationship between extrusion velocity and extrusion temperature.

  12. On the relation between angular momentum and angular velocity

    Science.gov (United States)

    Silva, J. P.; Tavares, J. M.

    2007-01-01

    Students of mechanics usually have difficulties when they learn about the rotation of a rigid body. These difficulties are rooted in the relation between angular momentum and angular velocity, because these vectors are not parallel, and we need in general to utilize a rotating frame of reference or a time dependent inertia tensor. We discuss a series of problems that introduce both difficulties.

  13. Viscoelastic flow modeling in the extrusion of a dough-like fluid

    Science.gov (United States)

    Dhanasekharan, M.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    2000-01-01

    This work attempts to investigate the effect of viscoelasticity and three-dimensional geometry in screw channels. The Phan-Thien Tanner (PTT) constitutive equation with simplified model parameters was solved in conjunction with the flow equations. Polyflow, a commercially available finite element code was used to solve the resulting nonlinear partial differential equations. The PTT model predicted one log scale lower pressure buildup compared to the equivalent Newtonian results. However, the velocity profile did not show significant changes for the chosen PTT model parameters. Past Researchers neglected viscoelastic effects and also the three dimensional nature of the flow in extruder channels. The results of this paper provide a starting point for further simulations using more realistic model parameters, which may enable the food engineer to more accurately scale-up and design extrusion processes.

  14. Viscoelastic flow modeling in the extrusion of a dough-like fluid.

    Science.gov (United States)

    Dhanasekharan, M; Kokini, J L

    2000-08-01

    This work attempts to investigate the effect of viscoelasticity and three-dimensional geometry in screw channels. The Phan-Thien Tanner (PTT) constitutive equation with simplified model parameters was solved in conjunction with the flow equations. Polyflow, a commercially available finite element code was used to solve the resulting nonlinear partial differential equations. The PTT model predicted one log scale lower pressure buildup compared to the equivalent Newtonian results. However, the velocity profile did not show significant changes for the chosen PTT model parameters. Past Researchers neglected viscoelastic effects and also the three dimensional nature of the flow in extruder channels. The results of this paper provide a starting point for further simulations using more realistic model parameters, which may enable the food engineer to more accurately scale-up and design extrusion processes.

  15. The friction in rod forward and backward micro extrusion

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-01-01

    Full Text Available Micro parts are increasingly applied in industry because of the trend to miniaturization every day devices. Microforming is a method of manufacturing metal micro elements using a plastic treatment. This kind of production ensures high productivity, shapes and dimensions repeatability and good surface quality. Size effect connected with small dimensions affects changes in treatment processes of micro parts. While forming in micro scale, surface roughness is size independent and does not decrease with decreasing detail dimensions. The article presents schemas for forward and backward extrusion of metal rods. Using FEM, tool’s roughness as a triangle wave has been assumed, taking into account thereby size effect. Influence of roughness on extrusion forces by comparison with traditional flat tools and constant friction shear factor m has been specified. Impact of roughness caused growth of extrusion forces while forward extruding. On the contrary, backward extrusion ensured stable required forces, regardless of a surface structure.

  16. Preparation of Ceramic Composite Pipes Through Paste Extrusion

    Institute of Scientific and Technical Information of China (English)

    Zhongchun Chen; Takenobu Takeda; Keisuke Kikuchi

    2000-01-01

    An experimental investigation was carried out in order to prepare ceramic composite pipes used for tubular solid oxide fuel cells by using a multi-billet extrusion technique. Particular emphasis was given to the forming possibility and extrusion behavior of a two-layer pipe consisting of NiO-YSZ(PSZ) (anode) and YSZ (electrolyte). It is shown that the extrusion pressure and binder content required decrease with increasing the fraction of nickel oxide in the anode layers. The porosity in the anode layers depends on the binder content in pastes. It is feasible to prepare anode/electrolyte composite pipes by means of co-extrusion of different pastes.Furthermore, it is possible to obtain sound sintered pipes even under pressureless sintering conditions.

  17. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    Science.gov (United States)

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  18. Role of Nonmonotonic Constitutive Curves in Extrusion Instabilities

    Directory of Open Access Journals (Sweden)

    Yu Cao

    2015-01-01

    Full Text Available Flow instabilities of non-Newtonian fluids severely hamper the quality of products during various chemical processes, such as fibre spinning, extrusion, and film blowing. The origin of extrusion instability has been studied over many decades. However, no consensus has been reached among the research community so far. In this paper, the possible cause of extrusion instabilities is explored using the finitely extensible nonlinear elastic conformation-dependent (FENE-CD model with a nonmonotonic constitutive curve. Many well-documented experimental phenomena are reproduced in our simulations, and it could be concluded that the nonmonotonic constitutive curve plays an essential role in extrusion instabilities. In addition, the results imply that the die exit singularity may generate or magnify oscillations.

  19. CHARACTERIZATION OF NEW TOOL STEEL FOR ALUMINUM EXTRUSION DIES

    Directory of Open Access Journals (Sweden)

    José Britti Bacalhau

    2014-06-01

    Full Text Available Aluminum extrusion dies are an important segment of application on industrial tools steels, which are manufactured in steels based on AISI H13 steel. The main properties of steels applied to extrusion dies are: wear resistance, impact resistance and tempering resistance. The present work discusses the characteristics of a newly developed hot work steel to be used on aluminum extrusion dies. The effects of Cr and Mo contents with respect to tempering resistance and the Al addition on the nitriding response have been evaluated. From forged steel bars, Charpy impact test and characterization via EPMA have been conducted. The proposed contents of Cr, Mo, and Al have attributed to the new VEX grade a much better tempering resistance than H13, as well as a deeper and harder nitrided layer. Due to the unique characteristics, this new steel provides an interesting alternative to the aluminum extrusion companies to increase their competitiveness.

  20. Production of extremely deep sleeves by backward cold extrusion

    Directory of Open Access Journals (Sweden)

    Labanova Nadja

    2015-01-01

    Full Text Available The production of extremely deep sleeves by backward cold extrusion has drawn significant attention and interest in recent years in metal forming area, due to their unique and superior properties and their economic and technological advantages. This work describes the limitation related to buckling of extrusion punch during backward extrusion process and also represents the design of a new tool concept to avoid such risks of effects. Application of this tool concept for many cases in industry provides new opportunities to produce deep sleeves with ratio of the overall height of a sleeve (H to its inner diameter (d higher than three within one process stage by backward cold extrusion. Developed concept of tool has been supported by previous fundamental and applied research studies.

  1. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.;

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  2. Role of lipids in the extrusion cooking processes

    OpenAIRE

    Berghofe, E.; Schoenlechner, Regine; Ilo, S.

    2000-01-01

    Extrusion is a versatile and very efficient technology that is widely used in food and feed processing. The cooking extruders have found many applications, which include: breakfast cereals, snack foods, other cereal based products, pet food and aquatic foods, texturized vegetable proteins, confectionery products, chemical and biochemical reactions, and oil extraction. Lipids are components that play an important role in most of the extrusion cooking processes. They can act as plastificizers o...

  3. Analysis of the Alternate Extrusion and Multiaxial Compression Process

    OpenAIRE

    Kwapisz M.; Knapiński M.; Dyja H.; Kawałek A.

    2015-01-01

    The paper present the results of numerical simulations of the alternate indirect extrusion and multiaxial compression process, performed using commercial software designed for the thermomechanical analysis of plastic working processes, Forge 2009. The novel method of alternate indirect extrusion and multiaxial compression, proposed by the authors, is characterized by the occurrence of strain states in the material being plastically worked, which are similar to those occurring in the equal cha...

  4. Qualitative modelling of starch products expansion by extrusion

    OpenAIRE

    David, C.

    2014-01-01

    In spite of the versatility, soberness and safety of extrusion process, and of the industrial importance of the area, the design of extruded foods still relies predominantly on empirical approaches. Although tools are available to transfer scientific knowledge, like Ludovic©, a software for simulating twin screw corotative extruder, there is a lack of generic model to predict cellular structure from extrusion and material variables. A bottle-neck with that regard is the modelling of the expan...

  5. Fabrication and properties of binder for powder extrusion molding

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    By optimizing formulation and fabrication methods, a new binder for plasticizing powder extrusion molding ofhard metal, with excellent integrated properties and uniform distribution characters, has been developed. Thermal debond-ing mechanism and the extruding rheological behaviours have been studied. The technology of fabrication of binder andthermal debonding process have also been investigated. Using the novel binder, the hard-metal extrusion-molding rods withdiameter up to 25mm, have been manufactured.

  6. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable of describ...... be controlled by means of the pre-stressing system or the geometry of the die insert. (C) 2000 Elsevier Science B.V. All rights reserved....

  7. Making Ceramic/Polymer Parts By Extrusion Stereolithography

    Science.gov (United States)

    Stuffle, Kevin; Mulligan, A.; Creegan, P.; Boulton, J. M.; Lombardi, J. L.; Calvert, P. D.

    1996-01-01

    Extrusion stereolithography developmental method of computer-controlled manufacturing of objects out of ceramic/polymer composite materials. Computer-aided design/computer-aided manufacturing (CAD/CAM) software used to create image of desired part and translate image into motion commands for combination of mechanisms moving resin dispenser. Extrusion performed in coordination with motion of dispenser so buildup of extruded material takes on size and shape of desired part. Part thermally cured after deposition.

  8. Violation of Angular Momentum Selection Rules in Quantum Gravity

    CERN Document Server

    Datta, A; Melé, Barbara; Datta, Anindya; Gabrielli, Emidio; Mele, Barbara

    2004-01-01

    A simple consequence of the angular momentum conservation in quantum field theories is that the interference of s-channel amplitudes exchanging particles with different spin $J$ vanishes after complete angular integration. We show that, while this rule holds in scattering processes mediated by a massive graviton in Quantum Gravity, a massless graviton s-channel exchange breaks orthogonality when considering its interference with a scalar-particle s-channel exchange, whenever all the external states are massive. To this regard, the Einstein massless graviton propagator behaves as if it was carrying a further scalar degree of freedom. This result reveals new aspects of the well-known van Dam - Veltman - Zakharov discontinuity.

  9. Intrinsic Angular Momentum of Light.

    Science.gov (United States)

    Santarelli, Vincent

    1979-01-01

    Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)

  10. Encapsulation of Liquids Via Extrusion--A Review.

    Science.gov (United States)

    Tackenberg, Markus W; Kleinebudde, Peter

    2015-01-01

    Various encapsulation techniques are known for pharmaceutical applications. Extrusion is of minor importance. However, extrusion is used to obtain granules with encapsulate liquid active ingredients (AI) like essential oils and flavours for food applications since decades. Many of these AIs can be used for agrochemical, home care, and pharmaceutical products, too. Thus, the focus of this review is on the interdisciplinary presentation and evaluation of the available knowledge about the encapsulation process via extrusion. The desired microcapsule structure is discussed at the outset. The microcapsule is compared to the alternative glassy solid solution system, before an overview of suitable excipients is given. In the next section the development of the extrusion technique, used for encapsulation processes, is presented. Thereby, the focus is on encapsulation using twin-screw extruders. Additionally, the influence of the downstream processes on the products is discussed, too. The understanding of the physical processes during extrusion is essential for specifically adjustment of the desired product properties and thus, highlighted in this paper. Unfortunately not all processes, especially the mixing process, are well studied. Suggestions for further studies, to improve process understanding and product quality, are given, too. The last part of this review focuses on the characterization of the obtained granules, especially AI content, encapsulation efficiency, and storage stability. In conclusion, extrusion is a standard technique for flavour encapsulation, but future studies, may lead to more (pharmaceutical) applications and new products.

  11. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  12. Effect of the first hot extrusion temperature on microstructure and magnetic properties of second-extrusion Nd2Fe14B/α-Fe nanocomposite

    International Nuclear Information System (INIS)

    Two hot extrusions were used to fabricate bulk dense permanent magnets of Nd2Fe14B/α-Fe nanocomposite. Effect of the first-extrusion temperature on the microstructure and magnetic properties of second-extrusion magnets was investigated. The second-extrusion magnets featured fine-grained microstructure and good surface quality. The first-extrusion temperature had important effect on the density, microstructure and magnetic properties of second-extrusion magnets. The density and grain size of second-extrusion magnets decrease with the increase of the first-extrusion temperature. When the first-extrusion temperature was 950 °C, the best magnetic properties, including remanence of 1.02 T, coercivity of 308.5 kA/m and maximum energy product of 94.4 kJ/m3, were achieved in the second-extrusion magnets. The refined microstructure and increased density led to the best magnetic properties of the second-extrusion magnets obtained at the first-extrusion of 950 °C as compared to the second-extrusion magnets achieved at other first-extrusion temperatures such as 1000 °C, 1050 °C and 1100 °C. - Highlights: ► Nanocomposite Nd2Fe14B/α-Fe magnets were well fabricated by two hot extrusions. ► High real density and magnetic properties were obtained in the fabricated magnets. ► First-extrusion temperature had a large effect on microstructure and properties

  13. Viscoplastic flow in an extrusion damper

    CERN Document Server

    Syrakos, Alexandros; Georgiou, Georgios C; Tsamopoulos, John

    2016-01-01

    Numerical simulations of the flow in an extrusion damper are performed using a finite volume method. The damper is assumed to consist of a shaft, with or without a spherical bulge, oscillating axially in a containing cylinder filled with a viscoplastic material of Bingham type. The response of the damper to a forced sinusoidal displacement is studied. In the bulgeless case the configuration is the annular analogue of the well-known lid-driven cavity problem, but with a sinusoidal rather than constant lid velocity. Navier slip is applied to the shaft surface in order to bound the reaction force to finite values. Starting from a base case, several problem parameters are varied in turn in order to study the effects of viscoplasticity, slip, damper geometry and oscillation frequency to the damper response. The results show that, compared to Newtonian flow, viscoplasticity causes the damper force to be less sensitive to the shaft velocity; this is often a desirable damper property. The bulge increases the required...

  14. Mitotic chromosome compaction via active loop extrusion

    Science.gov (United States)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  15. Effect of Orbital Angular Momentum on Nondiffracting Ultrashort Optical Pulses.

    Science.gov (United States)

    Ornigotti, Marco; Conti, Claudio; Szameit, Alexander

    2015-09-01

    We introduce a new class of nondiffracting optical pulses possessing orbital angular momentum. By generalizing the X-wave solution of the Maxwell equation, we discover the coupling between angular momentum and the temporal degrees of freedom of ultrashort pulses. The spatial twist of propagation invariant light pulse turns out to be directly related to the number of optical cycles. Our results may trigger the development of novel multilevel classical and quantum transmission channels free of dispersion and diffraction. They may also find application in the manipulation of nanostructured objects by ultrashort pulses and for novel approaches to the spatiotemporal measurements in ultrafast photonics.

  16. A Remark on the Estimation of Angular Power Spectra in the Presence of Foregrounds

    CERN Document Server

    White, M

    1998-01-01

    It is common practice to estimate the errors on the angular power spectrum which could be obtained by an experiment with a given angular resolution and noise level. Several authors have also addressed the question of foreground subtraction using multi-frequency observations. In such observations the angular resolution of the different frequency channels is rarely the same. In this report we point out how the ``effective'' beam size and noise level change with ell in this case, and give an expression for the error on the angular power spectrum as a function of ell.

  17. Angular momentum evolution for galaxies

    CERN Document Server

    Pedrosa, Susana

    2015-01-01

    Using cosmological hydrodynamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation, Mo, Mao & Whiye (1998), but also the spheroidal one, with a gap due to its lost of angular momentum, in agreement with Fall & Romanowsky (2013),. We also found that the galaxy size can plot in one general relation, despite the morphological type, as found by Kravtsov (2013).

  18. AngularJS testing cookbook

    CERN Document Server

    Bailey, Simon

    2015-01-01

    This book is intended for developers who have an understanding of the basic principles behind both AngularJS and test-driven development. You, as a developer, are interested in eliminating the fear related to either introducing tests to an existing codebase or starting out testing on a fresh AngularJS application. If you're a team leader or part of a QA team with the responsibility of ensuring full test coverage of an application, then this book is ideal for you to comprehend the full testing scope required by your developers. Whether you're new to or are well versed with AngularJS, this book

  19. The integration of angular velocity

    OpenAIRE

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical...

  20. Achromatic orbital angular momentum generator

    OpenAIRE

    Bouchard, Frédéric; Mand, Harjaspreet; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming be...

  1. Orbital angular momentum photonic quantum interface

    Institute of Scientific and Technical Information of China (English)

    Zhi-Yuan Zhou; Yan Li; Dong-Sheng Ding; Wei Zhang; Shuai Shi; Bao-Sen Shi; Guang-Can Guo

    2016-01-01

    Light-carrying orbital angular momentum (OAM) has great potential in enhancing the information channel capacity in both classical and quantum optical communications.Long distance optical communication requires the wavelengths of light are situated in the low-loss communication windows,but most quantum memories currently being developed for use in a quantum repeater work at different wavelengths,so a quantum interface to bridge the wavelength gap is necessary.So far,such an interface for OAM-carried light has not been realized yet.Here,we report the first experimental realization of a quantum interface for a heralded single photon carrying OAM using a nonlinear crystal in an optical cavity.The spatial structures of input and output photons exhibit strong similarity.More importantly,single-photon coherence is preserved during up-conversion as demonstrated.

  2. Stress Analysis and Optimum Design of Hot Extrusion Dies

    Institute of Scientific and Technical Information of China (English)

    帅词俊; 肖刚; 倪正顺

    2004-01-01

    A three-dimensional model of a hot extrusion die was developed by using ANSYS software and its second development language-ANSYS parametric design language.A finite element analysis and optimum design were carried out.The three-dimensional stress diagram shows that the stress concentration is rather severe in the bridge of the hot extrusion die, and that the stress distribution is very uneven.The optimum dimensions are obtained.The results show that the optimum height of the extrusion die is 89.596 mm.The optimum radii of diffluence holes are 65.048 mm and 80.065 mm.The stress concentration is reduced by 27%.

  3. The phenomenon of durability variable dies for aluminum extrusion profiles

    Directory of Open Access Journals (Sweden)

    J. Borowski

    2016-04-01

    Full Text Available Extrusion dies are usually regenerated several times (min 4 times. The phenomenon of extended life after each regenerative nitriding process has not been explained. In this work, the regeneration process of dies used in the extrusion of aluminium profiles has been presented. In the article, it was sought to explain the cause of increased die durability after the third or fourth nitriding. Also in this work is presented an analysis of the influence of the parameters of gas nitriding with the ZeroFlow method on hardness of dies. Results were verified under industrial conditions at extrusion company, comparing the durability of the dies nitrided with the ZeroFlow method with so-far-used dies nitrided in the commercial way. An increase of the dies durability was achieved after a single ZeroFlow nitriding.

  4. Instant blend from cassava derivatives produced by extrusion

    Directory of Open Access Journals (Sweden)

    Fernanda Rossi Moretti Trombini

    2016-03-01

    Full Text Available ABSTRACT: The current research aimed to evaluate the effects of extrusion parameters on the physical characteristics of extruded blends of cassava leaf flour and starch. A factorial central composite design with four independent variables and the response surface methodology were used to evaluate the results of color parameters (L*, a*, b*, water absorption index, water solubility index and paste properties, according to the variations in the leaf flour percentage (1.5 to 7.5%, extrusion temperature (60 to 100ºC, screw speed (175 to 231rpm and moisture (20 to 30%. Extrusion conditions affect color, water absorption and water solubility indexes and paste properties of blends. The intermediate tested conditions of variable parameters lead to obtain extruded products with higher cold viscosity and water absorption index and light color, desirable qualities for rapid preparation products.

  5. FEM and FVM compound numerical simulation of aluminum extrusion processes

    Institute of Scientific and Technical Information of China (English)

    周飞; 苏丹; 彭颖红; 阮雪榆

    2003-01-01

    The finite element method (FEM) and the finite volume method (FVM) numerical simulation methods have been widely used in forging industries to improve the quality of products and reduce the costs. Because of very concentrative large deformation during the aluminum extrusion processes, it is very difficult to simulate the whole forming process only by using either FEM or FVM. In order to solve this problem, an FEM and FVM compound simulation method was proposed. The theoretical equations of the compound simulation method were given and the key techniques were studied. Then, the configuration of the compound simulation system was established. The tube extrusion process was simulated successfully so as to prove the validity of this approach for aluminum extrusion processes.

  6. Die land optimization of section extrusion by finite element method

    Institute of Scientific and Technical Information of China (English)

    卫兴华; 田柱平

    2001-01-01

    In the extrusion of sections with flat-faced die, the proper design of die land is critically important in avoid ing geometry defects. A methodology for the design of die land, which consists of a simulation-adjustment iteration, isproposed. The metal flow in extrusion is simulated by the three dimensional finite element method and the die land is adjusted according to the simulation result. The simulation-adjustment iteration is conducted repeatedly until the uniform metal flow in die land exit is obtained. Both the formulae for adjustment of the die land and the criterion for the judgment of proper die land are suggested. The extrusion of a C-section is chosen as the computational example.

  7. NUMERICAL DESIGN OF DIE LAND FOR SHAPE EXTRUSION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the extrusion of shapes with flat-faced die,the proper design of die land is of critical importance in avoiding the generations of geometry defects.A methodology for the design of die land,which consists of a simulation-adjustment iteration,is proposed.The metal flow in extrusion is simulated by the three dimensional finite element method and the die land is adjusted according to the simulation result.Both the formulae for adjustment of the die land and the criterion for the judgment of proper die land are suggested.The extrusion of an L-section shape is chosen as the computational example and the result is compared with the industrial design.

  8. A quality problem in seam welds in aluminum extrusion

    Directory of Open Access Journals (Sweden)

    M.S. Keskin

    2007-07-01

    Full Text Available Purpose: Seam welds occur during the hollow profile extrusion; the billet’s material is divided into separate metal streams by the bridges of the die which support a mandrel, and then these metal streams are welded in welding chamber behind the bridges. When the desired conditions have not been provided, the required quality in seam welds may not occur. One of the possible reasons for this situation is a poor metal feed. In this study, an insufficient pressure problem occurring in seam welds on an aluminum extrusion profile section is investigated.Design/methodology/approach: The study was realized on a hollow extrusion profile type which has seam weld zones. The experimental profile was produced by a real extrusion press which has a capacity of 1460 tones.Findings: The poor metal feed occurring on specimen is shown by microstructural pictures. Microstructure of the main region has a homogenous appearance. In the microstructure, containing seam weld region, only a slight change was observed in seam weld region. However, there was no significant change in near of seam weld regions. This points out that there has been no metallurgical problem. Therefore, the problem is an insufficient pressure problem and this caused poor metal feeding. In the other hand, micro hardness tests are realized on seam weld region, main region and defective region’s surround of specimen’s section. After the micro hardness tests important differences are shown among these regions’ strength. Hardness values of seam weld region were lower than the main material’s hardness values, but higher than the defective region’s.Practical implications: In application, seam welds occur on hollow profiles produced by aluminum extrusion.Originality/value: As a result, this study shows a quality problem in seam welds in aluminum extrusion.

  9. A 3-D Hall Sensor for Precise Angular Position Measurements

    OpenAIRE

    DIMITROV, Konstantin Veselinov

    2007-01-01

    A 3-D silicon Hall effect sensor for precise angular-position measurement over 360° rotation is presented. This vector microtransducer functionally integrates into a common sensor region two parallel-field Hall devices for in-plane components of the magnetic field and one orthogonal Hall version for the perpendicular for the chip magnetic field. The advantages of this magnetometer are its low channel cross-sensitivities, remarkable simplified device design and high spatial resolution.

  10. Proton angular distribution following multiphoton dissociative ionization of H2

    International Nuclear Information System (INIS)

    The angular distribution of protons ejected following resonant (2+1)-photon dissociative ionization of H2 by 193-nm radiation through the E,F state has been obtained. The analysis shows that the Π character of the degenerate continuum states is approximately eight times larger than the Σ character, which is consistent with previous single-photon measurements. The analysis presented here, together with a previous analysis of the proton energy distribution, reveals the ionization channel to be significantly stronger than both the dissociation and dissociative ionization channels

  11. Factors influencing perceived angular velocity

    Science.gov (United States)

    Kaiser, Mary K.; Calderone, Jack B.

    1991-01-01

    Angular velocity perception is examined for rotations both in depth and in the image plane and the influence of several object properties on this motion parameter is explored. Two major object properties are considered, namely, texture density which determines the rate of edge transitions for rotations in depth, i.e., the number of texture elements that pass an object's boundary per unit of time, and object size which determines the tangential linear velocities and 2D image velocities of texture elements for a given angular velocity. Results of experiments show that edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities had an impact on perceived angular velocity; this bias was associated with 2D image velocity rather than 3D tangential velocity. Despite these biases judgements were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter appeared to be good for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).

  12. Effects of processing parameters on the extrusion by continuous variable cross-section direct extrusion with 7A09 aluminium alloy

    Science.gov (United States)

    Li, Feng; Wu, Hongbin; Qin, Minghan

    2016-02-01

    In order to study the effects of processing parameters on the continuous variable cross-section direct extrusion (CVCDE), taking 7A09 aluminium alloy for example, the extrusion speed and forming temperature and the friction factor as key processing parameters are applied to research by finite element (FE) simulation. The research result showed that the extrusion speed had a significant influence on the maximum temperature of the billet, at the same time, both decreasing the friction factor and increasing forming temperature within a certain range were beneficial to reduce extrusion load. Both forming temperature and the extrusion speed were inversely linked to extrusion load, but the friction factor was directly proportional to extrusion load. Forming temperature had a far more important influence on extrusion load by comparison: when forming temperature increased from 380∘ to 430∘C, the peak value of extrusion load decreased by 25.6% and the flow uniformity of extruded product got improved. The process window based on both the press limit and surface defects limit was established and the most reasonable forming temperature was 405∘C under this process condition, which provided theoretical basis for formulation process of 7A09 aluminium alloy on the CVCDE extrusion.

  13. Tether Extrusion from Red Blood Cells: Integral Proteins Unbinding from Cytoskeleton

    OpenAIRE

    Borghi, N.; Brochard-Wyart, F.

    2007-01-01

    We investigate the mechanical strength of adhesion and the dynamics of detachment of the membrane from the cytoskeleton of red blood cells (RBCs). Using hydrodynamical flows, we extract membrane tethers from RBCs locally attached to the tip of a microneedle. We monitor their extrusion and retraction dynamics versus flow velocity (i.e., extrusion force) over successive extrusion-retraction cycles. Membrane tether extrusion is carried out on healthy RBCs and ATP-depleted or -inhibited RBCs. For...

  14. Factors Contributing to Pilot Valve Fuel Seal Extrusion in Orbiter PRCS Thrusters

    Science.gov (United States)

    Waller, J.M.; Saulsberry, R.L.; Albright, John D.

    2000-01-01

    Extrusion of the polytetrafluoroethylene (PTFE) pilot seal used in the monomethylhydrazine (fuel) valve of the Orbiter Primary Reaction Control System (PRCS) thrusters has been implicated in numerous on-orbit thruster failures and on-ground valve failures. Two extrusion mechanisms have been proposed, one or both may be occurring. The first mechanism is attributed to thermal expansion mismatch between adjacent PTFE and metal parts used in the fuel valve, and is referred to as thermal extrusion. The second mechanism is attributed to nitrogen tetroxide (oxidizer) leakage from the adjacent oxidizer valve on the same thruster during ground turnaround, and is referred to as oxidizer-induced extrusion. Model calculations of PTFE pilot seal in an exact pilot valve configuration show that extrusion can be caused by differential thermal expansion, without the intervening influence of oxidizer. Experimental data on semitrapped PTFE and TFM (modified PTFE) specimens simulating a fuel pilot valve configuration show that thermal extrusion 1) is incremental and irreversible, 2) increases with the size of the thermal excursion, 3) decreases with successive thermal cycling, and 4) is accompanied by gap formation. Both PTFE and TFM exhibit a higher affinity for oxidizer than fuel. The property changes associated with oxidizer uptake may explain why oxidizer seals do not exhibit extrusion. Impression replicas of fuel pilot seals removed from the Orbiter fleet show two types of extrusion: extrusion of the entire seal (loaded extrusion), or extrusion of non-sealing surface (unloaded extrusion). Both extrusion types may arise from differences in service history, rather than in failure mechanism. The plausibility oxidizer-induced extrusion was evaluated. Preliminary calculations suggest that enough energy, heat, or gas may be liberated under certain operational scenarios to cause catastrophic extrusion. However, given the lack of supporting data, conclusions implicating oxidizer leakage

  15. Effect of extrusion variables (temperature, moisture) on the antinutrient components of cereal brans

    OpenAIRE

    Kaur, Satinder; Sharma, Savita; Singh, Baljit; Dar, B. N.

    2013-01-01

    The study was carried out, to explore the potentiality of extrusion technology for elimination of antinutritional components of cereal brans. Extrusion variables were moisture content (14, 17 and 20 %) and temperatures (115 °C, 140 °C, 165 °C). Phytic acid, polyphenols, oxalates, trypsin inhibitor, bulk density and color of brans after extrusion were analyzed. All four raw bran samples had high concentration of phytic acid, polyphenols, oxalates and trypsin inhibitors. Extrusion cooking was f...

  16. High-capacity millimetre-wave communications with orbital angular momentum multiplexing.

    Science.gov (United States)

    Yan, Yan; Xie, Guodong; Lavery, Martin P J; Huang, Hao; Ahmed, Nisar; Bao, Changjing; Ren, Yongxiong; Cao, Yinwen; Li, Long; Zhao, Zhe; Molisch, Andreas F; Tur, Moshe; Padgett, Miles J; Willner, Alan E

    2014-09-16

    One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front 'twisting' indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s(-1) millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s(-1) Hz(-1) using four independent orbital-angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10(-3). In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than -12.5 dB and show an 8-Gbit s(-1) link containing two orbital angular momentum beams on each of two polarizations.

  17. High-capacity millimetre-wave communications with orbital angular momentum multiplexing

    Science.gov (United States)

    Yan, Yan; Xie, Guodong; Lavery, Martin P. J.; Huang, Hao; Ahmed, Nisar; Bao, Changjing; Ren, Yongxiong; Cao, Yinwen; Li, Long; Zhao, Zhe; Molisch, Andreas F.; Tur, Moshe; Padgett, Miles J.; Willner, Alan E.

    2014-01-01

    One property of electromagnetic waves that has been recently explored is the ability to multiplex multiple beams, such that each beam has a unique helical phase front. The amount of phase front ‘twisting’ indicates the orbital angular momentum state number, and beams with different orbital angular momentum are orthogonal. Such orbital angular momentum based multiplexing can potentially increase the system capacity and spectral efficiency of millimetre-wave wireless communication links with a single aperture pair by transmitting multiple coaxial data streams. Here we demonstrate a 32-Gbit s−1 millimetre-wave link over 2.5 metres with a spectral efficiency of ~16 bit s−1 Hz−1 using four independent orbital–angular momentum beams on each of two polarizations. All eight orbital angular momentum channels are recovered with bit-error rates below 3.8 × 10−3. In addition, we demonstrate a millimetre-wave orbital angular momentum mode demultiplexer to demultiplex four orbital angular momentum channels with crosstalk less than −12.5 dB and show an 8-Gbit s−1 link containing two orbital angular momentum beams on each of two polarizations. PMID:25224763

  18. Achromatic orbital angular momentum generator

    CERN Document Server

    Bouchard, Frédéric; Mirhosseini, Mohammad; Karimi, Ebrahim; Boyd, Robert W

    2014-01-01

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of \\textit{two glued hollow axicons}, is used to introduce a nonuniform rotation of polarisation into a linearly polarised input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarisation, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of $95\\%$ for these three different wavelengths is observed. %, which confirms its wavelen...

  19. Feed extrusion process description Descrição do processo de extrusão do alimento

    Directory of Open Access Journals (Sweden)

    Galen J. Rokey

    2010-07-01

    Full Text Available The following work discusses the main features of feed extrusion process explaining the expected effects on the final product according to the raw material used as starch, protein, fat and fiber. The selection of processing equipments as feeder, preconditioner and extruder is discussed considering the involved costs and the probability of future expansion. Dryers are also essential in the extrusion process as it reduces the level of moisture in an extrusion cooked product. High moisture levels increase the water activity which favors the bacterial and mold growth so an overview of different kinds of dryers is considered. Guidelines for an economic prediction are shown to determine the potential for profit considering the input of raw material cost, energy cost and capital equipment cost as related to the extrusion module.Este trabalho aborda as principais características do processo de extrusão de alimentos, explicando os efeitos esperados no produto final, em função do tipo de componente utilizado na receita, como amido, proteínas, gorduras e fibras. O dimensionamento dos equipamentos da linha de extrusão, como silo, pré-condicionador e extrusor, é tratado considerando-se os custos envolvidos e a possibilidade de expansões futuras. Secadores também são essenciais no processo de extrusão, pois reduzem o nível de umidade do produto final. Altos níveis de umidade aumentam a atividade de água, favorecendo a proliferação de bactérias e mofo, portanto, uma visão geral de diferentes tipos de secadores é considerada. Orientações para uma previsão econômica são apresentadas para se determinar o potencial de lucro, considerando-se os custos com a matéria-prima, a energia utilizada no processo de fabricação e os equipamentos relacionados ao módulo de extrusão.

  20. 75 FR 34982 - Aluminum Extrusions from the People's Republic of China: Notice of Postponement of Preliminary...

    Science.gov (United States)

    2010-06-21

    ... countervailing duty investigation of aluminum extrusions from the People's Republic of China. See Aluminum Extrusions From the People's Republic of China: Initiation of Countervailing Duty Investigation, 75 FR 22114... International Trade Administration Aluminum Extrusions from the People's Republic of China: Notice...

  1. 40 CFR 467.30 - Applicability; description of the extrusion subcategory.

    Science.gov (United States)

    2010-07-01

    ... extrusion subcategory. 467.30 Section 467.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ALUMINUM FORMING POINT SOURCE CATEGORY Extrusion Subcategory § 467.30 Applicability; description of the extrusion subcategory. This subpart applies to discharges...

  2. Angular momentum in human walking.

    Science.gov (United States)

    Herr, Hugh; Popovic, Marko

    2008-02-01

    Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.

  3. Non-Colinearity of Angular Velocity and Angular Momentum

    Science.gov (United States)

    Burr, A. F.

    1974-01-01

    Discusses the principles, construction, and operation of an apparatus which serves to demonstrate the non-colinearity of the angular velocity and momentum vectors as well as the inertial tensors. Applications of the apparatus to teaching of advanced undergraduate mechanics courses are recommended. (CC)

  4. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers.

    Science.gov (United States)

    Gupta, Simerdeep Singh; Solanki, Nayan; Serajuddin, Abu T M

    2016-02-01

    Most cellulosic polymers cannot be used as carriers for preparing solid dispersion of drugs by hot melt extrusion (HME) due to their high melt viscosity and thermal degradation at high processing temperatures. Three HME-grade hydroxypropyl methylcelluloses, namely Affinisol™ HPMC HME 15 cP, Affinisol™ HPMC HME 100 cP, and Affinisol™ HPMC HME 4 M, have recently been introduced by The Dow Chemical Co. to enable the preparation of solid dispersion at lower and more acceptable processing temperatures. In the present investigation, physicochemical properties of the new polymers relevant to HME were determined and compared with that of Kollidon(®) VA 64. Powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), thermogravimetric analysis (TGA), moisture sorption, rheology, and torque analysis by melt extrusion were applied. PXRD and mDSC showed that the Affinisol™ polymers were amorphous in nature. According to TGA, the onset of degradation for all polymers was >220°C. The Affinisol™ polymers exhibited less hygroscopicity than Kollidon(®) VA 64 and another HPMC polymer, Methocel™ K100LV. The complex viscosity profiles of the Affinisol™ polymers as a function of temperature were similar. The viscosity of the Affinisol™ polymers was highly sensitive to the shear rate applied, and unlike Kollidon(®) VA 64, the viscosity decreased drastically when the angular frequency was increased. Because of the very high shear rate encountered during melt extrusion, Affinisol™ polymers showed capability of being extruded at larger windows of processing temperatures as compared to that of Kollidon(®) VA 64. PMID:26511936

  5. MM98.36 Strain Paths in Extrusion

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    1998-01-01

    The extrusion process has been investigated for different geometries, in order to study the strain path of different material elements during their movements through the plastic zone. This is done by using the FEM code DEFORM and physical simulation with wax togehter with the coefficient method...

  6. Dynamics of the spurt instability in polymer extrusion

    NARCIS (Netherlands)

    Dubbeldam, J.L.A.; Molenaar, J.

    2003-01-01

    A study of a phenomenological model describing the spurt instability in polymer extrusion is presented. Following Georgiou and Crochet [J. Rheol. 38 (1994) 639], we assume a nonmonotonic wall shear stress versus wall slip velocity relation. In this way we obtain a two-dimensional dynamical system fo

  7. 75 FR 17436 - Certain Aluminum Extrusions From China

    Science.gov (United States)

    2010-04-06

    ... amended, 67 FR 68036 (November 8, 2002). Even where electronic filing of a document is permitted, certain... Electronic Filing Procedures, 67 FR 68168, 68173 (November 8, 2002). In accordance with sections 201.16(c... COMMISSION Certain Aluminum Extrusions From China AGENCY: United States International Trade...

  8. MODELING EXTRUSION PROCESSING OF AQUACULTURE FEED INCORPORATING DISTILLERS GRAINS

    Science.gov (United States)

    Three ingredient blends containing 20, 30, and 40% Distillers Dried Grains with Solubles (DDGS), with a net protein adjusted to 28% were prepared. Extrusion studies were conducted at 3 levels of moisture content, 3 levels of barrel temperature profile, and 5 levels of screw speed in a single screw e...

  9. Track with overlapping links for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D

    2014-01-21

    A chain for a particulate material extrusion pump includes a plurality of links, each of the plurality of links having a link body and a link ledge, wherein each link ledge of the plurality of links at least partially overlaps the link body of an adjacent one of the plurality of links.

  10. Load beam unit replaceable inserts for dry coal extrusion pumps

    Science.gov (United States)

    Saunders, Timothy; Brady, John D.

    2012-11-13

    A track assembly for a particulate material extrusion pump according to an exemplary aspect of the present disclosure includes a link assembly with a roller bearing. An insert mounted to a load beam located such that the roller bearing contacts the insert.

  11. Modelling of friction for high temperature extrusion of aluminium alloys

    NARCIS (Netherlands)

    Wang, L.

    2012-01-01

    In recent years, finite-element (FE) simulations have been extensively used in scientific research and industrial practice to analyse the extrusion process. A basic issue of FE simulations is the accuracy of the results, which is mainly determined by the viscoplastic material behaviour of aluminium

  12. Protein Modifications after Foxtail Millet Extrusion: Solubility and Molecular Weight

    Directory of Open Access Journals (Sweden)

    Xuewei Zhao

    2015-03-01

    Full Text Available With the aim of illustrating the effects of extrusion cooking on the solubility of proteins in foxtail millet and their molecular basis, foxtail millet was extruded at five barrel temperature profiles and feed moisture contents. The proteins of raw and extrudate samples were extracted with six solutions sequentially. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE of total protein and Starch Granule-Associate Protein (SGAP was performed. Extrusion caused a significant decrease in globulin, setarin and glutelin fractions with a corresponding increase in SDS- and SDS+2-ME-soluble and residual fractions. Increasing extrusion temperature or moisture content all led to SDS-soluble fraction decrease, while SDS+2-ME-soluble fraction increase. SDS-PAGE demonstrated that disulfide bond cross-linking occurred among glutelin and with setarin subunits. Extrusion had a less pronounced impact on the 60 kDa SGAP than the other middle-high molecular weight subunits. It is the protein-protein interaction shift from electrostatic force to hydrophobic and/or hydrogen forces and covalent disulfide cross-links that contributed to the decreased solubility of protein in foxtail millet extrudates.

  13. Peritoneo-vulvar catheter extrusion after shunt operation.

    Science.gov (United States)

    Nagulic, M; Djordjevic, M; Samardzic, M

    1996-04-01

    We report an unusual case of catheter extrusion through the external genitalia. between the labium majus and the labium minus, in a 6-month-old hydrocephalic baby. The event occurred 5 months after placement of a ventriculoperitoneal shunt. PMID:8739410

  14. Extrusion cooking with glucose supplementation reduced fumonisin concentrations and toxicity

    Science.gov (United States)

    Extrusion cooking involves forcing material through a heated barrel under high pressure using one (single-screw configuration) or two (twin-screw configuration) augers. We previously demonstrated (Bullerman et al., Journal of Agricultural and Food Chemistry 56:2400-2405, 2008; Voss et al., Journal o...

  15. Multiple direct extrusion: A new technique in grain refinement

    Energy Technology Data Exchange (ETDEWEB)

    Zaharia, L.; Chelariu, R. [' Gheorghe Asachi' Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 61A, 700050 Iasi (Romania); Comaneci, R., E-mail: amvric@yahoo.com [' Gheorghe Asachi' Technical University of Iasi, Faculty of Materials Science and Engineering, D. Mangeron 61A, 700050 Iasi (Romania)

    2012-07-30

    Highlights: Black-Right-Pointing-Pointer A new method for grain refinement was applied at room temperature on copper. Black-Right-Pointing-Pointer A possible grain fragmentation mechanism was analyzed. Black-Right-Pointing-Pointer Square bars with uniform microstructure and mechanical properties were obtained. Black-Right-Pointing-Pointer The microstructure and mechanical properties evolution during MDE was studied. - Abstract: A novel high-straining bulk deformation technique based on repeating conventional direct extrusion is presented. This technique, named multiple direct extrusion (MDE), uses a square container with a rectangular die aperture that can achieve a minimum 50% reduction/pass in the cross section of the billet. After extrusion, the new billet is cut perpendicular to the longitudinal axis. The resulting halves are then joined to obtain a square shape again so that the direct extrusion process can be repeated. Two processing routes are possible before reintroducing the billet into the container: no rotation and 90 Degree-Sign rotation around the longitudinal axis. During each cycle, the billets change their geometrical shape and as a result, the cross section area gets smaller. A mechanism of grain fragmentation during MDE based on the analysis of velocity discontinuities along slip lines in the deformation zone is suggested. Four cycles of MDE were applied to commercial copper and the potential for grain refinement, and the improvement in mechanical properties were evaluated.

  16. Olympic Wrestling and Angular Momentum.

    Science.gov (United States)

    Carle, Mark

    1988-01-01

    Reported is the use of a wrestling photograph in a noncalculus introductory physics course. The photograph presents a maneuver that could serve as an example for a discussion on equilibrium, forces, torque, and angular motion. Provided are some qualitative thoughts as well as quantitative calculations. (YP)

  17. Turbodrill rod angular velocity indicator

    Energy Technology Data Exchange (ETDEWEB)

    Rogachev, O.K.; Belozerova, L.P.; Konenkov, A.K.

    1984-01-01

    This paper outlines shortcomings of existing types of telemetry systems which resulted in production of the IChT-1 unit. Unit is intended for control of angular velocity of serially produced turbodrill rods, during drilling of wells up to 5000 m deep, and bottomhole temperatures to 100C. The paper provides a detailed description and diagrams for installing this unit.

  18. The angular power spectrum of radio emission at 2.3 GHz

    CERN Document Server

    Giardino, G; Fosalba, P; Górski, K M; Jonas, J L; O'Mullane, W; Tauber, J A

    2001-01-01

    We have analysed the Rhodes/HartRAO survey at 2326 MHz and derived the global angular power spectrum of Galactic continuum emission. In order to measure the angular power spectrum of the diffuse component, point sources were removed from the map by median filtering. A least-square fit to the angular power spectrum of the entire survey with a power law spectrum C_l proportional to l^{-alpha}, gives alpha = 2.43 +/- 0.01 for l = 2-100. The angular power spectrum of radio emission appears to steepen at high Galactic latitudes and for observed regions with |b| > 20 deg, the fitted spectral index is alpha = 2.92 +/- 0.07. We have extrapolated this result to 30 GHz (the lowest frequency channel of Planck) and estimate that no significant contribution to the sky temperature fluctuation is likely to come from synchrotron at degree-angular scales

  19. Ram speed profile design for isothermal extrusion of AZ31 magnesium alloy by using FEM simulation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In the conventional hot extrusion of metallic materials,the temperature of the workpiece varies during the whole extrusion process,leading to the non-uniformity of the product dimension,microstructure and properties.In the present research,a simulation model based on the principle of PID control was developed to establish ram speed profiles that can suppress the temperature evolution during the process to allow for isothermaI extrusion.With this simulation model,the real-time extrusion ram speed was adjusted according to the simulated exit temperature.The results show that temperature homogeneity is significantly improved not only along the extrudate length but also on its cross section in the case of extrusion in the isothermal mode with a designed ram speed profile in the extrusion process of AZ31 magnesium.In addition,die temperature varies over a more narrow range in comparison with extrusion in the conventional iso-speed mode.

  20. Microstructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-jun; WANG Qu-dong; LIN Jin-bao; ZHANG Lu-jun; ZHAI Chun-quan

    2006-01-01

    The microstructure and mechanical properties of AZ31 Mg alloy processed by high ratio extrusion (HRE) were investigated. General extrusion with extrusion ratio of 7 and high ratio extrusion with extrusion ratio 100 were contrastively conducted at 250, 300 and 350 ℃. The results show that HRE process may be applied successfully to AZ31 Mg alloy at temperatures of 250, 300 and 350 ℃ and this leads to obvious grain refinement during HRE process. The strength of HRE process is improved obviously compared with that of general extrusion. The grain refining mechanism of HRE process was also discussed. The current results imply that the simple high ratio extrusion method might be a feasible and effective processing means for refining the microstructure and improving the mechanical properties of AZ31 Mg alloy.

  1. Three-dimensional analysis of extrusion process utilizing the physical modeling technique

    Energy Technology Data Exchange (ETDEWEB)

    Sofuoglu, H. (Technical Univ., Trabzon (Turkey)); Rasty, J. (Texas Tech Univ., Lubbock (United States))

    1993-03-01

    The purpose of this study was to simulate the metal extrusion processes via three-dimensional physical modeling technique. Plasticine was utilized as the modeling material, while plexiglass was incorporated in the design and fabrication of a lab scale extrusion apparatus. The extrusion setup was designed to accommodate dies of different semi-cone angle while also making it possible to change the extrusion ratio R. Cylindrical billets were prepared utilizing alternating layers of two colors of plasticine. Extrusion of cylindrical billets was conducted at three different reduction ratios and three different die angles for each reduction ratio. Dissection of the extruded billets along a centroidal plane revealed the internal deformation patterns which were subsequently utilized for determining the effect of the die angle and extrusion ratio on the state of strain in the final product as well as the required extrusion loads.

  2. Angular Approach Scanning Ion Conductance Microscopy.

    Science.gov (United States)

    Shevchuk, Andrew; Tokar, Sergiy; Gopal, Sahana; Sanchez-Alonso, Jose L; Tarasov, Andrei I; Vélez-Ortega, A Catalina; Chiappini, Ciro; Rorsman, Patrik; Stevens, Molly M; Gorelik, Julia; Frolenkov, Gregory I; Klenerman, David; Korchev, Yuri E

    2016-05-24

    Scanning ion conductance microscopy (SICM) is a super-resolution live imaging technique that uses a glass nanopipette as an imaging probe to produce three-dimensional (3D) images of cell surface. SICM can be used to analyze cell morphology at nanoscale, follow membrane dynamics, precisely position an imaging nanopipette close to a structure of interest, and use it to obtain ion channel recordings or locally apply stimuli or drugs. Practical implementations of these SICM advantages, however, are often complicated due to the limitations of currently available SICM systems that inherited their design from other scanning probe microscopes in which the scan assembly is placed right above the specimen. Such arrangement makes the setting of optimal illumination necessary for phase contrast or the use of high magnification upright optics difficult. Here, we describe the designs that allow mounting SICM scan head on a standard patch-clamp micromanipulator and imaging the sample at an adjustable approach angle. This angle could be as shallow as the approach angle of a patch-clamp pipette between a water immersion objective and the specimen. Using this angular approach SICM, we obtained topographical images of cells grown on nontransparent nanoneedle arrays, of islets of Langerhans, and of hippocampal neurons under upright optical microscope. We also imaged previously inaccessible areas of cells such as the side surfaces of the hair cell stereocilia and the intercalated disks of isolated cardiac myocytes, and performed targeted patch-clamp recordings from the latter. Thus, our new, to our knowledge, angular approach SICM allows imaging of living cells on nontransparent substrates and a seamless integration with most patch-clamp setups on either inverted or upright microscopes, which would facilitate research in cell biophysics and physiology. PMID:27224490

  3. Plate tectonics conserves angular momentum

    Directory of Open Access Journals (Sweden)

    C. Bowin

    2009-03-01

    Full Text Available A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4 E+27 kgm2s−1. Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates. Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth. The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant velocity on the crests of convection cells driven by rising heat. These results imply that spreading centers are primarily passive reactive

  4. AngularJS test-driven development

    CERN Document Server

    Chaplin, Tim

    2015-01-01

    This book is for developers who want to learn about AngularJS development by applying testing techniques. You are assumed to have a basic knowledge and understanding of HTML, JavaScript, and AngularJS.

  5. Orbital angular momentum in phase space

    OpenAIRE

    Rigas, I.; Sanchez-Soto, L. L.; Klimov, A. B.; Rehacek, J.; Hradil, Z.

    2010-01-01

    A comprehensive theory of the Weyl-Wigner formalism for the canonical pair angle-angular momentum is presented. Special attention is paid to the problems linked to rotational periodicity and angular-momentum discreteness.

  6. Phonons with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Ayub, M. K. [Theoretical Plasma Physics Division, PINSTECH, P. O. Nilore, Islamabad (Pakistan); National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, Shahdra Valley Road, Quaid-i-Azam University Campus, Islamabad 44000 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2011-10-15

    Ion accoustic waves or phonon modes are studied with orbital angular momentum (OAM) in an unmagnetized collissionless uniform plasma, whose constituents are the Boltzmann electrons and inertial ions. For this purpose, we have employed the fluid equations to obtain a paraxial equation in terms of ion density perturbations and discussed its Gaussian beam and Laguerre-Gauss (LG) beam solutions. Furthermore, an approximate solution for the electrostatic potential problem is presented, allowing to express the components of the electric field in terms of LG potential perturbations. The energy flux due to phonons is also calculated and the corresponding OAM is derived. Numerically, it is shown that the parameters such as azimuthal angle, radial and angular mode numbers, and beam waist, strongly modify the profiles of the phonon LG potential. The present results should be helpful in understanding the phonon mode excitations produced by Brillouin backscattering of laser beams in a uniform plasma.

  7. On Dunkl angular momenta algebra

    Science.gov (United States)

    Feigin, Misha; Hakobyan, Tigran

    2015-11-01

    We consider the quantum angular momentum generators, deformed by means of the Dunkl operators. Together with the reflection operators they generate a subalgebra in the rational Cherednik algebra associated with a finite real reflection group. We find all the defining relations of the algebra, which appear to be quadratic, and we show that the algebra is of Poincaré-Birkhoff-Witt (PBW) type. We show that this algebra contains the angular part of the Calogero-Moser Hamiltonian and that together with constants it generates the centre of the algebra. We also consider the gl( N ) version of the subalge-bra of the rational Cherednik algebra and show that it is a non-homogeneous quadratic algebra of PBW type as well. In this case the central generator can be identified with the usual Calogero-Moser Hamiltonian associated with the Coxeter group in the harmonic confinement.

  8. Angular momentum in QGP holography

    Directory of Open Access Journals (Sweden)

    Brett McInnes

    2014-10-01

    Full Text Available The quark chemical potential is one of the fundamental parameters describing the quark–gluon plasma produced by sufficiently energetic heavy-ion collisions. It is not large at the extremely high temperatures probed by the LHC, but it plays a key role in discussions of the beam energy scan programmes at the RHIC and other facilities. On the other hand, collisions at such energies typically (that is, in peripheral collisions give rise to very high values of the angular momentum density. Here we explain that holographic estimates of the quark chemical potential of a rotating sample of plasma can be very considerably improved by taking the angular momentum into account.

  9. The integration of angular velocity

    CERN Document Server

    Boyle, Michael

    2016-01-01

    A common problem in physics and engineering is determination of the orientation of an object given its angular velocity. When the direction of the angular velocity changes in time, this is a nontrivial problem involving coupled differential equations. Several possible approaches are examined, along with various improvements over previous efforts. These are then evaluated numerically by comparison to a complicated but analytically known rotation that is motivated by the important astrophysical problem of precessing black-hole binaries. It is shown that a straightforward solution directly using quaternions is most efficient and accurate, and that the norm of the quaternion is irrelevant. Integration of the generator of the rotation can also be made roughly as efficient as integration of the rotation. Both methods will typically be twice as efficient naive vector- or matrix-based methods. Implementation by means of standard general-purpose numerical integrators is stable and efficient, so that such problems can ...

  10. Integrating rotation from angular velocity

    OpenAIRE

    Zupan, Eva; Saje, Miran

    2011-01-01

    Abstract The integration of the rotation from a given angular velocity is often required in practice. The present paper explores how the choice of the parametrization of rotation, when employed in conjuction with different numerical time-integration schemes, effects the accuracy and the computational efficiency. Three rotation parametrizations – the rotational vector, the Argyris tangential vector and the rotational quaternion – are combined with three different numerical time-integration ...

  11. The Effects of Process Parameters on Evolutions of Thermodynamics and Microstructures for Composite Extrusion of Magnesium Alloy

    OpenAIRE

    H.-J. Hu

    2013-01-01

    To research the effects of process parameters on evolutions of extrusion force and temperature rise and microstructures for composite extrusion of magnesium alloy which includes initial extrusion and shearing process subsequently and is shortened for “ES” in this paper, the ES extrusion process has been researched by using finite element modeling (FEM) technology. The rules of temperature rise and the extrusion force varying with process parameters have been developed. The thermal-mechanical ...

  12. Orbital angular momentum is dependent on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that originates from the former part is spin, and the angular momentum that originates from the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin and or...

  13. Achromatic orbital angular momentum generator

    International Nuclear Information System (INIS)

    We describe a novel approach for generating light beams that carry orbital angular momentum (OAM) by means of total internal reflection in an isotropic medium. A continuous space-varying cylindrically symmetric reflector, in the form of two glued hollow axicons, is used to introduce a nonuniform rotation of polarization into a linearly polarized input beam. This device acts as a full spin-to-orbital angular momentum convertor. It functions by switching the helicity of the incoming beam's polarization, and by conservation of total angular momentum thereby generates a well-defined value of OAM. Our device is broadband, since the phase shift due to total internal reflection is nearly independent of wavelength. We verify the broad-band behaviour by measuring the conversion efficiency of the device for three different wavelengths corresponding to the RGB colours, red, green and blue. An average conversion efficiency of 95% for these three different wavelengths is observed. This device may find applications in imaging from micro- to astronomical systems where a white vortex beam is needed. (paper)

  14. HA/UHMWPE Nanocomposite Produced by Twin-screw Extrusion

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The HA/UHMWPE nanocomposite is compounded by twin-screw extrusion of the HA and UHMWPE powder mixture in paraffin oil and then compression molded to a sheet form. TGA measurement shows the HA weight loss after processing is about 1%-2% . FTIR spectra indicate the paraffin oil residue is trivial and UHMWPE is not oxidized. SEM reveals the HA nano particles are homogeneously dispersed by twin- screw extrusion and the inter-particle spaces are penetrated with UHMWPE fibrils by swelling treatment. HRTEM image indicates the HA particles and UHMWPE are intimately contacted by mechanical interlocking. Compared with the unfilled UHMWPE, stiffness of the composite with the HA volume fraction 0.23 was significantly enhanced to 9 times without detriment of the yield strength and the ductility.

  15. Extrusion process optimization for toughness in balloon films

    Science.gov (United States)

    Cantor, K. M.; Harrison, I. R.

    1993-01-01

    An experimental optimization process for blown film extrusion is described and examined in terms of the effects of the technique on the toughness of balloon films. The optimization technique by Cantor (1990) is employed which involves the identification of key process variables including screw speed, nip speed, bubble diameter, and frost-line height for analysis to optimize the merit function. The procedure is employed in the extrusion of a low-density polyethylene polymer, and the resulting optimized materials are toughness- and puncture-tested. Balloon toughness is optimized in the analytical relationship, and the process parameters are modified to attain optimal toughness. The film produced is shown to have an average toughness of 24.5 MPa which is a good value for this key property of balloon materials for high-altitude flights.

  16. Functionalization of whey proteins by reactive supercritical fluid extrusion

    Directory of Open Access Journals (Sweden)

    Khanitta Ruttarattanamongkol

    2012-09-01

    Full Text Available Whey protein, a by-product from cheese-making, is often used in a variety of food formulations due to its unsurpassednutritional quality and inherent functional properties. However, the possibilities for the improvement and upgrading of wheyprotein utilization still need to be explored. Reactive supercritical fluid extrusion (SCFX is a novel technique that has beenrecently reported to successfully functionalize commercially available whey proteins into a product with enhanced functionalproperties. The specific goal of this review is to provide fundamental understanding of the reinforcement mechanism andprocessing of protein functionalization by reactive SCFX process. The superimposed extrusion variables and their interactionmechanism affect the physico-chemical properties of whey proteins. By understanding the structure, functional properties andprocessing relationships of such materials, the rational design criteria for novel functionalized proteins could be developedand effectively utilized in food systems.

  17. AngularJS web application development

    CERN Document Server

    Darwin, Peter Bacon

    2013-01-01

    The book will be a step-by-step guide showing the readers how to build a complete web app with AngularJSJavaScript developers who want to learn AngularJS for developing web apps. Knowledge of JavaScript and HTML is expected. No knowledge of AngularJS is required.

  18. An integrated study on the effect of pre-and post-extrusion heat treatments and surface treatment on the filiform corrosion properties of an aluminium extrusion alloy

    NARCIS (Netherlands)

    Mol, J.M.C.; Langkruis, J. van de; Wit, J.H.W. de; Zwaag, S. van der

    2005-01-01

    The effect of pre- and post-extrusion heat treatments on the filiform corrosion behaviour of a well-known aluminium extrusion alloy AA6063 is studied by a combination of accelerated filiform corrosion exposure tests and potentiodynamic polarisation measurements for four different surface treatments.

  19. RFI channels

    Science.gov (United States)

    Mceliece, R. J.

    1980-01-01

    A class of channel models is presented which exhibit varying burst error severity much like channels encountered in practice. An information-theoretic analysis of these channel models is made, and conclusions are drawn that may aid in the design of coded communication systems for realistic noisy channels.

  20. Spontaneous Regression of a Large Lumbar Disc Extrusion

    OpenAIRE

    Ryu, Sung-Joo; Kim, In Soo

    2010-01-01

    Although the spontaneous disappearance or decrease in size of a herniated disc is well known, that of a large extruded disc has rarely been reported. This paper reports a case of a spontaneous regression of a large lumbar disc extrusion. The disc regressed spontaneously with clinical improvement and was documented on a follow up MRI study 6 months later. The literature is reviewed and the possible mechanisms of spontaneous disc regression are discussed.

  1. Extrusion-Cooking of Pea Flour: Structural and Immunocytochemical Aspects

    OpenAIRE

    Ben-Hdech, Hassane; Gallant, Daniel J.; Bouchet, Brigitte; Gueguen, Jacques; Melcion, Jean-Pierre

    1991-01-01

    Pea flour was submitted to extrusion-cooking under various conditions. The progressive structural transformation was investigated by light microscopy and immuno- gold transmission electron microscopy. Each of the three major compounds, i.e., starch granules, protein bodies, and cell wall fragments, develop a specific, independent structure. Protein bodies aggregate and fuse giving a protein matrix. Starch granules swell, deform, come into contact with each other, and ultimately also fuse toge...

  2. Emulsifiers and thickeners on extrusion-cooked instant rice product

    OpenAIRE

    Wang, Jin Peng; An, Hong Zhou; Jin, Zheng Yu; Xie, Zheng Jun; Zhuang, Hai Ning; Kim, Jin Moon

    2011-01-01

    Extrusion-cooked instant rice was prepared by optimizing the formulation with emulsifiers, glycerol monostearate (GMS), soybean lecithin (LC), and sodiumstearoyl lactylate (SSL), and thickeners, gum Arabic (GA), sodium alginate (SA), and sticky rice (SR). The emulsifiers addition caused increase of degree of gelatinization (DG), and decrease of water soluble carbohydrate (WSC), α-amylase sensitivity, water soluble index (WAI) and adhesive for extrudates, while the thickeners addition increase...

  3. Application of Electrostatic Extrusion – Flavour Encapsulation and Controlled Release

    OpenAIRE

    Manojlovic, Verica; Rajic, Nevenka; Djonlagic, Jasna; Obradovic, Bojana; Nedovic, Viktor; Bugarski, Branko

    2008-01-01

    The subject of this study was the development of flavour alginate formulations aimed for thermally processed foods. Ethyl vanilline was used as the model flavour compound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline in alginate gel microbeads. The obtained microbeads with approx. 10 % w/w of ethyl vanilline encapsulated in about 2 % w/w alginate were uniformly sized spheres of about 450 μm. Chemical characterization by H-NMR spectroscopy revealed that the algi...

  4. Elastic and inelastic angular distributions of the 7Li+120Sn system for energies near the Coulomb barrier

    Science.gov (United States)

    Zagatto, V. A. B.; Oliveira, J. R. B.; Gasques, L. R.; Alcántara-Núñez, J. A.; Duarte, J. G.; Aguiar, V. P.; Medina, N. H.; Seale, W. A.; Pires, K. C. C.; Freitas, A.; Lubian, J.; Shorto, J. M. B.; Genezini, F. A.; Rossi, E. S., Jr.

    2016-06-01

    The reaction of 7Li+120Sn has been measured at bombarding energies of 21, 24 and 27 MeV. The {2}+\\to {0}+ γ -ray transition in 120Sn was observed and the angular distribution for the 2+ excited state was obtained. Coupled channels and coupled-reaction channels calculations, including the dynamical polarization potential due to the projectile break-up, obtained from continuum discretized coupled channel calculations, were performed. The comparison between the existing experimental elastic angular distribution with the coupled-reaction channels calculations indicates that the 1n stripping transfer is the most intense channel to be coupled and the 2n stripping reaction occurs sequentially rather than directly, however, further data must be analyzed to confirm this indication. The experimental elastic and inelastic scattering data were well described by the calculations, but some discrepancies in these channels may indicate the need for corrections to the nuclear potential and/or the necessity to incorporate further channels.

  5. Formation of chromosomal domains in interphase by loop extrusion

    Science.gov (United States)

    Fudenberg, Geoffrey

    While genomes are often considered as one-dimensional sequences, interphase chromosomes are organized in three dimensions with an essential role for regulating gene expression. Recent studies have shown that Topologically Associating Domains (TADs) are fundamental structural and functional building blocks of human interphase chromosomes. Despite observations that architectural proteins, including CTCF, demarcate and maintain the borders of TADs, the mechanisms underlying TAD formation remain unknown. Here we propose that loop extrusion underlies the formation TADs. In this process, cis-acting loop-extruding factors, likely cohesins, form progressively larger loops, but stall at TAD boundaries due to interactions with boundary proteins, including CTCF. This process dynamically forms loops of various sizes within but not between TADs. Using polymer simulations, we find that loop extrusion can produce TADs as determined by our analyses of the highest-resolution experimental data. Moreover, we find that loop extrusion can explain many diverse experimental observations, including: the preferential orientation of CTCF motifs and enrichments of architectural proteins at TAD boundaries; TAD boundary deletion experiments; and experiments with knockdown or depletion of CTCF, cohesin, and cohesin-loading factors. Together, the emerging picture from our work is that TADs are formed by rapidly associating, growing, and dissociating loops, presenting a clear framework for understanding interphase chromosomal organization.

  6. Recent Developments in Mechanochemical Materials Synthesis by Extrusion.

    Science.gov (United States)

    Crawford, Deborah E; Casaban, José

    2016-07-01

    Mechanochemical synthesis, i.e., reactions conducted by grinding solid reactants together with no or minimal solvent, has been demonstrated as an excellent technique for the formation of both organic and inorganic compounds. Mechanochemistry is viewed as an alternative approach to chemical synthesis and is not always considered when developing manufacturing processes of fine chemicals. Here, recent advances are highlighted regarding mechanochemical synthesis, by utilizing a well-developed continuous technique - extrusion, and the advantages it offers to further support its use in the manufacturing of these chemicals. To put this work into context, it is shown how extrusion plays a vital role for manufacturing in the food, polymer, and pharmaceutical industries, and how the research carried out by these respective industrialists provides great insight and understanding of the technique, with the results being applicable in the chemical industry. The synthesis of metal-organic frameworks (MOFs) is highlighted herein as an excellent example showcasing the advantages that extrusion provides to the manufacture of these materials, one advantage being the exceptional space time yields (STYs) reported for these processes, at three orders of magnitude greater than conventional (solvothermal) synthesis. PMID:26932541

  7. Extrusion of metal oxide superconducting wire, tube or ribbon

    Science.gov (United States)

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  8. Resilience of hybrid optical angular momentum qubits to turbulence.

    Science.gov (United States)

    Farías, Osvaldo Jiménez; D'Ambrosio, Vincenzo; Taballione, Caterina; Bisesto, Fabrizio; Slussarenko, Sergei; Aolita, Leandro; Marrucci, Lorenzo; Walborn, Stephen P; Sciarrino, Fabio

    2015-02-12

    Recent schemes to encode quantum information into the total angular momentum of light, defining rotation-invariant hybrid qubits composed of the polarization and orbital angular momentum degrees of freedom, present interesting applications for quantum information technology. However, there remains the question as to how detrimental effects such as random spatial perturbations affect these encodings. Here, we demonstrate that alignment-free quantum communication through a turbulent channel based on hybrid qubits can be achieved with unit transmission fidelity. In our experiment, alignment-free qubits are produced with q-plates and sent through a homemade turbulence chamber. The decoding procedure, also realized with q-plates, relies on both degrees of freedom and renders an intrinsic error-filtering mechanism that maps errors into losses.

  9. Effect of the heat treatment prior to extrusion on the direct hot-extrusion of aluminium powder compacts

    Energy Technology Data Exchange (ETDEWEB)

    Zubizarreta, C.; Gimenez, S.; Martin, J.M. [CEIT and TECNUN, Po Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Iturriza, I. [CEIT and TECNUN, Po Manuel de Lardizabal 15, 20018 San Sebastian (Spain)], E-mail: iiturriza@ceit.es

    2009-01-07

    Powder compacts from a premixed commercial aluminium powder Al-4.5Cu-0.5Mg-0.2Si (wt%) grade have been densified by direct hot-extrusion. The effect of the heat treatment prior to extrusion on the microstructural evolution of the extruded compacts has been investigated by means of light optical microscopy (LOM), scanning electron microscopy (SEM), and electron backscattered diffraction (EBSD). The interdiffusion of chemical species has demonstrated to have a pronounced influence on the hardening-softening mechanisms taking place during the thermomechanical process. Moreover, the degree of strain attained at different regions (centre and periphery) of the specimens also affects significantly to the mechanisms involved. Grain refinement, intermetallic precipitation, dynamic recovery, and recrystallization have been identified.

  10. Dependency injection with AngularJS

    CERN Document Server

    Knol, Alex

    2013-01-01

    This book is a practical, hands-on approach to using dependency injection and implementing test-driven development using AngularJS. Dependency Injection with AngularJS is aimed at developers who are aware of AngularJS but need to get started with using it in real life applications. Also, developers who want to get into test-driven development with AngularJS can use this book as practical guide. Even if you know about dependency injection, it can serve as a good reference on how it is used within AngularJS. Readers are expected to have some experience with JavaScript.

  11. Porthole Extrusion Process Design for Magnesium-Alloy Bumper Back Beam by Using FE Analysis and Extrusion Limit Diagram

    OpenAIRE

    Lee, Sung-Yun; Ko, Dae-Cheol; Lee, Sang-Kon; Lee, In-Kyu; Joeng, Myeong-Sik; Kim, Da Hye; Cho, Yong-Jae

    2014-01-01

    In recent years, several studies with focus on developing state-of-the-art manufacturing technologies have been conducted to produce light vehicles by employing parts made of light materials such as aluminum and magnesium. Of such materials, magnesium has been found to pose numerous issues, because it cannot be deformed (plastic deformation) easily at low temperatures. Furthermore, oxidation on the surface of manganese occurs at high temperatures. This study analyzes the extrusion process for...

  12. Temperature window effect and its application in extrusion of ultrahigh molecular weight polyethylene

    Directory of Open Access Journals (Sweden)

    2011-08-01

    Full Text Available Ultrahigh molecular weight polyethylene (UHMWPE was ram extruded using a temperature window effect. The extrusion pressure abruptly drops at a very narrow extrusion temperature window which is about 10°C higher than the theoretical melting point of orthorhombic polyethylene crystals under quiescent and equilibrium states. The correlation between extrusion pressure and parameters such as extrusion temperature, annealing condition, thermal history, piston velocity, L/D ratio of the die, and molecular weight of UHMWPE, was studied. The temperature window increases with molecular weight and is unaffected by thermal history and annealing. The stable extrusion pressure and the critical piston velocity decrease with the rise in the extrusion temperature. The flow resistance reversely depends on the L/D ratio of the die. This phenomenon is attributed to an extensional flow-induced chain alignment along the streamline, which results in the formation of a metastable mesophase with higher chain mobility.

  13. Influence of hot extrusion on microstructure and mechanical properties of AZ31 magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    WANG Ling; TIAN Su-gui; MENG Fan-lai; DU Hong-qiang

    2006-01-01

    Extrusion treatment is a common method to refine the grain size and improve the mechanical properties of metal material. The influence of hot extrusion on microstructure and mechanical properties of AZ31 magnesium alloy was investigated. The results show that the mechanical properties of AZ31 alloy are obviously improved by extrusion treatment. The ultimate tensile strength (UTS) of AZ31 alloy at room temperature is measured to be 222 MPa, and is enhanced to 265.8 MPa after extrusion at 420℃. The yield tensile strength (YTS) of AZ31 alloy at room temperature is measured to be 84 MPa, and is enhanced to 201 MPa after extrusion at 420℃. The effective improvements on mechanical properties result from the formation of the finer grains during extrusion and the finer particles precipitated by age treatment. The features of the microstructure evolution during hot extruded of AZ31 alloy are dislocation slipping on the matrix and occurrence of the dynamic recrystallization.

  14. High strength Al–Al2O3p composites: Optimization of extrusion parameters

    DEFF Research Database (Denmark)

    Luan, B.F.; Hansen, Niels; Godfrey, A.;

    2011-01-01

    Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters. The...... investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion and a...... precipitation hardening treatment. For the extrusion step optimized processing parameters have been determined as: (i) extrusion temperature=500°C–560°C; (ii) extrusion rate=5mm/s; (iii) extrusion ratio=10:1....

  15. Matter waves with angular momentum

    CERN Document Server

    Bracher, C; Kleber, M; Bracher, Christian; Kramer, Tobias; Kleber, Manfred

    2003-01-01

    An alternative description of quantum scattering processes rests on inhomogeneous terms amended to the Schr\\"odinger equation. We detail the structure of sources that give rise to multipole scattering waves of definite angular momentum, and introduce pointlike multipole sources as their limiting case. Partial wave theory is recovered for freely propagating particles. We obtain novel results for ballistic scattering in an external uniform force field, where we provide analytical solutions for both the scattering waves and the integrated particle flux. As an illustration of the theory, we predict some properties of vortex-bearing atom laser beams outcoupled from a rotating Bose--Einstein condensate under the influence of gravity.

  16. EXTRUSION DIE PROFILE DESIGN USING SIMULATED ANNEALING ALGORITHM AND PARTICLE SWARM OPTIMIZATION

    OpenAIRE

    R.VENKETESAN

    2010-01-01

    In this paper a new method has been proposed for optimum shape design of extrusion die. The Design problem is formulated as an unconstrained optimization problem. Here nontraditional optimization techniques likeSimulated Annealing Algorithm and Particle Swarm Optimization are used to minimize the extrusion force by optimizing the extrusion ratio and die cone angle. Internal power of deformation is also calculated and results are compared.

  17. NUMERICAL SIMULATION OF EXTRUSION OF COMPOSITE POWDERS PREPARED BY HIGH ENERGY MILLING

    Institute of Scientific and Technical Information of China (English)

    X.Q. Li; W.P. Chen; W. Xia; Q.L. Zhu; Y.Y. Li; E.D. Wang

    2004-01-01

    Based on the characteristic of high energy milling and the micromechanics of composite material, a plastic constitutive equation is implemented for milled composite powders. To check the equation, the extrusion of Ti/Al composite powders prepared by high energy milling was simulated. It was from the numerical analysis that the predicted extrusion pressure mounted up with milling time and extrusion ratio increasing,which was perfect agreement with experimental results.

  18. Computer aided design of extrusion forming tools for complex geometry profiles

    OpenAIRE

    Gonçalves, Nelson Daniel Ferreira

    2014-01-01

    Tese de doutoramento em Science and Polymer Engineering and Composites In the profile extrusion, the experience of the die designer is crucial for obtaining good results. In industry, it is quite usual the need of several experimental trials for a specific extrusion die before a balanced flow distribution is obtained. This experimental based trial-and-error procedure is time and money consuming, but, it works, and most of the profile extrusion companies rely on such method. How...

  19. Effect of Extrusion Cooking on Bioactive Compounds in Encapsulated Red Cactus Pear Powder

    OpenAIRE

    Ruiz-Gutiérrez, Martha G.; Carlos A. Amaya-Guerra; Armando Quintero-Ramos; Esther Pérez-Carrillo; Teresita de J. Ruiz-Anchondo; Juan G. Báez-González; Meléndez-Pizarro, Carmen O.

    2015-01-01

    Red cactus pear has significant antioxidant activity and potential as a colorant in food, due to the presence of betalains. However, the betalains are highly thermolabile, and their application in thermal process, as extrusion cooking, should be evaluated. The aim of this study was to evaluate the effect of extrusion conditions on the chemical components of red cactus pear encapsulated powder. Cornstarch and encapsulated powder (2.5% w/w) were mixed and processed by extrusion at different bar...

  20. EXTRUSION DIE PROFILE DESIGN USING SIMULATED ANNEALING ALGORITHM AND PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    R.VENKETESAN

    2010-08-01

    Full Text Available In this paper a new method has been proposed for optimum shape design of extrusion die. The Design problem is formulated as an unconstrained optimization problem. Here nontraditional optimization techniques likeSimulated Annealing Algorithm and Particle Swarm Optimization are used to minimize the extrusion force by optimizing the extrusion ratio and die cone angle. Internal power of deformation is also calculated and results are compared.

  1. FEM Modeling of Extrusion of Square Billet to Square Product Through Cosine Dies

    Science.gov (United States)

    Rout, Akshaya Kumar; Maity, Kalipada; Sahoo, Susanta Kumar

    2016-06-01

    The die profile plays an important role in reduction of extrusion load, evolution of uniform micro-structure and overall improvement of surface integrity of reproduct. In the present investigation, a numerical FEM approach has been carried out for extrusion through cosine die profile using DEFORM-3D software for steady state deformation using rigid plastic material. The extrusion load has been predicted. The comparison made with the experimental results. To show the validity and effectiveness of the result, experiments on hot extrusion were performed, and the results of computation are found to be in good agreement with those of the experiments.

  2. Controlling neutron orbital angular momentum.

    Science.gov (United States)

    Clark, Charles W; Barankov, Roman; Huber, Michael G; Arif, Muhammad; Cory, David G; Pushin, Dmitry A

    2015-09-24

    The quantized orbital angular momentum (OAM) of photons offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications ranging from studies of quantum entanglement and quantum information science to imaging. The OAM states of electron beams have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals. However, although neutrons--as massive, penetrating and neutral particles--are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a 'twist' to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science, the foundations of quantum mechanics, and scattering and imaging of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies. PMID:26399831

  3. 等通道转角挤压制备7075Al/AZ31复合板界面组织及结合强度%Interfacial microstructure and bonding strength of 7075Al/AZ31 composite plates fabricated by equal channel angular pressing

    Institute of Scientific and Technical Information of China (English)

    任广笑; 王红霞; 周斌; 刘一鸣; 王斌兵

    2016-01-01

    在573 K,通过等通道转角挤压成功制备了7075 Al/AZ31复合板,并采用SEM、EDS、XRD和剪切实验研究了挤压道次及退火温度对复合板界面层组织和性能的影响及剪切断裂面的组成.结果表明:1道次等通道转角挤压制备的复合板界面处形成厚度为20μm均匀致密的扩散层,由Al3Mg2相和Mg17Al12相组成,Al3 Mg2相层厚(17 μm)是Mg17Al12相层厚(3μm)的5.6倍.2道次等通道挤压后,扩散层厚度无变化,但是出现了裂纹,剪切强度大幅下降,剪切断裂面发生在Al3Mg3相层.复合板界面层在473 K退火,扩散层厚度无变化,裂纹无改善,剪切强度略有提高;573 K退火,复合板扩散层中的Al3 Mg2相层和β-Mg17Al12相层均急剧增厚,微裂纹被焊合,剪切强度均大幅下降.在相同处理状态下,1道次ECAP复合板剪切强度均高于2道次ECAP复合板,473 K退火处理后,强度高出30.11%.573 K退火处理后,强度高出12.4%.故利用等通道转角挤压法制备7075Al/AZ31复合板,1道次比较合适,扩散层退火温度不宜超过473 K.%7075Al/AZ31 laminated composites were successfully fabricated by equal channel angular processing (ECAP) at 573 K.The effect of ECAP passes arid annealing temperature on microstructure evolution,phase constituent and bonding strength near the joining interface of the laminated composites was studied by means of scanning electron microscopy,X-ray diffraction and shear tests.The results indicate that diffusion layer with thickness of 20 μm is observed at the joining interface of the laminated composites prepared by one ECAP pass.The diffusion layer is mainly composed of Al3Mg2 and β-Mg17Al12 phases.After two ECAP passes,the change of the diffusion layer thickness is not obvious,while the formation of crack in the diffusion layer leads to the bonding strength decreasing.After annealing at 473 K,the thickness of the diffusion layer and the crack remains unchange,while the bonding strength increass

  4. Building disc structure and galaxy properties through angular momentum: The DARK SAGE semi-analytic model

    CERN Document Server

    Stevens, Adam R H; Mutch, Simon J

    2016-01-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find the discs naturally build a pseduobulge-like component. Our main results are focussed on predictions relating to the integrated mass--specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequenc...

  5. Beyond Higgs couplings: probing the Higgs with angular observables at future e + e - colliders

    Science.gov (United States)

    Craig, Nathaniel; Gu, Jiayin; Liu, Zhen; Wang, Kechen

    2016-03-01

    We study angular observables in the {e}+{e}-to ZHto {ell}+{ell}-boverline{b} channel at future circular e + e - colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy sqrt{s}=240 GeV and 5 (30) ab-1 integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for he Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the HZγ coupling and constraining the "blind spot" in indirect limits on supersymmetric scalar top partners.

  6. Beyond Higgs Couplings: Probing the Higgs with Angular Observables at Future $e^+ e^-$ Colliders

    CERN Document Server

    Craig, Nathaniel; Liu, Zhen; Wang, Kechen

    2015-01-01

    We study angular observables in the $e^+e^-\\to Z H\\to \\ell^+ \\ell^-\\,b\\bar{b}$ channel at future circular $e^+ e^-$ colliders such as CEPC and FCC-ee. Taking into account the impact of realistic cut acceptance and detector effects, we forecast the precision of six angular asymmetries at CEPC (FCC-ee) with center-of-mass energy $\\sqrt{s} =$ 240 GeV and 5 (30) ${\\rm ab}^{-1}$ integrated luminosity. We then determine the projected sensitivity to a range of operators relevant for the Higgs-strahlung process in the dimension-6 Higgs EFT. Our results show that angular observables provide complementary sensitivity to rate measurements when constraining various tensor structures arising from new physics. We further find that angular asymmetries provide a novel means of both probing BSM corrections to the $H Z \\gamma$ coupling and constraining the "blind spot" in indirect limits on supersymmetric scalar top partners.

  7. Role of lipids in the extrusion cooking processes

    Directory of Open Access Journals (Sweden)

    Berghofe, E.

    2000-04-01

    Full Text Available Extrusion is a versatile and very efficient technology that is widely used in food and feed processing. The cooking extruders have found many applications, which include: breakfast cereals, snack foods, other cereal based products, pet food and aquatic foods, texturized vegetable proteins, confectionery products, chemical and biochemical reactions, and oil extraction. Lipids are components that play an important role in most of the extrusion cooking processes. They can act as plastificizers or emulsifiers, and affect more significantly texture and stickiness of the extrudate. This paper reviews effect of oils and other lipids reactions during extrusion cooking as well as the effects of amylase-lipid complexation on extrudate quality.La extrusión es, en general, una tecnología versátil y muy eficiente, que se aplica ampliamente en la elaboración de alimentos y piensos. Los equipos de cocción-extrusión tienen numerosas aplicaciones, entre las que pueden incluirse: los cereales de desayuno listos para comer, los aperitivos, diferentes productos basados en cereales, los piensos para animales domésticos y peces, proteínas vegetales texturizadas, productos de pastelería, reacciones químicas y bioquímicas, y la extracción de aceites. Los lípidos son componentes que juegan un papel importante en la mayoría de los procesos de cocción-extrusión. Pueden actuar como plastificantes o como emulsionantes, suministrando lubricación. En este artículo se revisan con detalle los efectos de las reacciones de los aceites y otros lípidos durante el proceso de cocción-extrucción así como el efecto de la formación de complejos amilasa-lípidos sobre la calidad de los extrudados.

  8. Repetitive fracturing during spine extrusion at Unzen volcano, Japan

    Science.gov (United States)

    Lamb, O. D.; De Angelis, S.; Umakoshi, K.; Hornby, A. J.; Kendrick, J. E.; Lavallée, Y.

    2015-12-01

    Rhythmic seismicity associated with spine extrusion is a well-documented phenomenon at a number of dome-forming volcanic systems. At Unzen volcano, Japan, a 4-year dome-forming eruption concluded with the emplacement of a spine from October 1994 to February 1995, offering a valuable opportunity to further investigate seismogenic processes at dome-forming volcanoes. Using continuous data recorded at a seismic station located close to the dome, this study explores trends in the seismic activity during the extrusion of the spine. We identify a total of 12 208 volcano-seismic events in the period between October 1994 and February 1995. Hourly event counts indicate cyclic activity with periods of ∼ 40 to ∼ 100 h, attributed to pulsatory ascent defined by strain localisation and faulting at the conduit margins. Waveform correlation revealed two strong clusters (a.k.a. multiplets, families) which are attributed to fracturing along the margins of the shallow, ascending spine. Further analysis indicates variable seismic velocities during the spine extrusion as well as migration of the cluster sources along the spine margins. Our interpretation of the results from seismic data analyses is supported by previously published field and experimental observations, suggesting that the spine was extruded along an inclined conduit with brittle and ductile deformation occurring along the margins. We infer that changes in stress conditions acting on the upper and lower spine margins led to deepening and shallowing of the faulting sources, respectively. We demonstrate that the combination of geophysical, field and experimental evidence can help improve physical models of shallow conduit processes.

  9. Microemulsion extrusion technique: a new method to produce lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jesus, Marcelo Bispo de, E-mail: dejesusmb@gmail.com; Radaic, Allan [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil); Zuhorn, Inge S. [University of Groningen, Department of Membrane Cell Biology, University Medical Center (Netherlands); Paula, Eneida de [University of Campinas-UNICAMP, Department of Biochemistry, Institute of Biology (Brazil)

    2013-10-15

    Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles' in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis)

  10. Impact of processing prior to thermomechanical extrusion of starchy materials

    OpenAIRE

    Lopez, Linda

    2003-01-01

    Dry pet foods are composed of cereal, proteins, fats, fibres and other minor components. The manufacturing process comprises a first step where the dry ingredients are ground to a suitable particle size and blended, a second step where the dry powder is mixed with water and steam in a preconditioner and then extruded and a final step where the product is dried and coated. The aim of this work was to study the effects of the unit operations prior to thermos mechanical extrusion in the dry p...

  11. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    Science.gov (United States)

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  12. Pellet manufacturing by extrusion-spheronization using process analytical technology

    DEFF Research Database (Denmark)

    Sandler, Niklas; Rantanen, Jukka; Heinämäki, Jyrki;

    2005-01-01

    The aim of this study was to investigate the phase transitions occurring in nitrofurantoin and theophylline formulations during pelletization by extrusion-spheronization. An at-line process analytical technology (PAT) approach was used to increase the understanding of the solid-state behavior...... hydrate (nitrofurantoin), dehydration was observed at higher temperatures. To reach an understanding of the process and to find the critical process parameters, the use of complementary analytical techniques are absolutely necessary when signals from APIs and different excipients overlap each other....

  13. The decay of massive closed superstrings with maximum angular momentum

    International Nuclear Information System (INIS)

    We study the decay of a very massive closed superstring (i.e. α'M2 >> 1) in the unique state of maximum angular momentum. This is done in flat ten-dimensional spacetime and in the regime of weak string coupling, where the dominant decay channel is into two states of masses M1, M2. We find that the lifetime surprisingly grows with the first power of the mass M: T=cα'M. We also compute the decay rate for each values of M1, M2. We find that, for large M, the dynamics selects only special channels of decay: modulo processes which are exponentially suppressed, for every decay into a state of given mass M1, the mass M2 of the other state is uniquely determined. (author)

  14. The difficulty of measuring orbital angular momentum

    OpenAIRE

    Preece, D; Nieminen, T. A.; Asavei, T.; Heckenberg, N. R.; Rubinsztein-Dunlop, H.

    2011-01-01

    Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  15. The difficulty of measuring orbital angular momentum

    Directory of Open Access Journals (Sweden)

    D. Preece

    2011-09-01

    Full Text Available Light can carry angular momentum as well as energy and momentum; the transfer of this angular momentum to an object results in an optical torque. The development of a rotational analogue to the force measurement capability of optical tweezers is hampered by the difficulty of optical measurement of orbital angular momentum. We present an experiment with encouraging results, but emphasise the difficulty of the task.

  16. Orbital angular momentum and the parton model

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliffe, P.G.

    1987-06-25

    The role of orbital angular momentum is discussed within the framework of the parton model. It is shown that a consistent interpretation of the Altarelli-Parisi equations governing the Q/sup 2/-evolution of helicity-weighted parton distributions necessitates the assumption that partons carry a large orbital angular momentum, contrary to popular belief. In developing the arguments presented, the Altarelli-Parisi formalism is extended to include orbital angular momentum dependence.

  17. Photoionization with Orbital Angular Momentum Beams

    OpenAIRE

    Picón, A.; Mompart, J.; de Aldana, J. R. Vázquez; Plaja, L.; Calvo, G. F.; Roso, L.

    2010-01-01

    Intense laser ionization expands Einstein's photoelectric effect rules giving a wealth of phenomena widely studied over the last decades. In all cases, so far, photons were assumed to carry one unit of angular momentum. However it is now clear that photons can possess extra angular momentum, the orbital angular momentum (OAM), related to their spatial profile. We show a complete description of photoionization by OAM photons, including new selection rules involving more than one unit of angula...

  18. Quantum formulation of fractional orbital angular momentum

    OpenAIRE

    Götte, Jörg B; Franke-Arnold, Sonja; Zambrini, Roberta; Barnett, Stephen M.

    2007-01-01

    The quantum theory of rotation angles (S. M. Barnett and D. T. Pegg, Phys. Rev. A, 41, 3427-3425 (1990)) is generalised to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

  19. Orbital angular momentum induced beam shifts

    OpenAIRE

    Hermosa N.; Merano M.; Aiello A.; Woerdman J.P.

    2011-01-01

    We present experiments on Orbital Angular Momentum (OAM) induced beam shifts in optical reflection. Specifically, we observe the spatial Goos-H\\"anchen shift in which the beam is displaced parallel to the plane of incidence and the angular Imbert-Fedorov shift which is a transverse angular deviation from the geometric optics prediction. Experimental results agree well with our theoretical predictions. Both beam shifts increase with the OAM of the beam; we have measured these for OAM indices u...

  20. Oral candidiasis and angular cheilitis.

    Science.gov (United States)

    Sharon, Victoria; Fazel, Nasim

    2010-01-01

    Candidiasis, an often encountered oral disease, has been increasing in frequency. Most commonly caused by the overgrowth of Candida albicans, oral candidiasis can be divided into several categories including acute and chronic forms, and angular cheilitis. Risk factors for the development of oral candidiasis include immunosuppression, wearing of dentures, pharmacotherapeutics, smoking, infancy and old age, endocrine dysfunction, and decreased salivation. Oral candidiasis may be asymptomatic. More frequently, however, it is physically uncomfortable, and the patient may complain of burning mouth, dysgeusia, dysphagia, anorexia, and weight loss, leading to nutritional deficiency and impaired quality of life. A plethora of antifungal treatments are available. The overall prognosis of oral candidiasis is good, and rarely is the condition life threatening with invasive or recalcitrant disease.

  1. Channeling of fast particles in fullerenes

    CERN Document Server

    Zhevago, N K

    2002-01-01

    The theory on channeling the relativistic electrons and positrons as well as positively and negatively charged ions in the fullerenes molecular crystals (fullerites) is developed. The calculation of the crystalline potentials is carried out and spatial and angular distribution of the particles beams, propagating along the main crystallographic directions is studied. The method making it possible to account for the effect of the incoherent scattering on the channeling process is developed

  2. Magnetic Modulation of Stellar Angular Momentum Loss

    CERN Document Server

    Garraffo, Cecilia; Cohen, Ofer

    2014-01-01

    Angular Momentum Loss is important for understanding astrophysical phenomena such as stellar rotation, magnetic activity, close binaries, and cataclysmic variables. Magnetic breaking is the dominant mechanism in the spin down of young late-type stars. We have studied angular momentum loss as a function of stellar magnetic activity. We argue that the complexity of the field and its latitudinal distribution are crucial for angular momentum loss rates. In this work we discuss how angular momentum is modulated by magnetic cycles, and how stellar spin down is not just a simple function of large scale magnetic field strength.

  3. The Angular Momentum of the Solar System

    Science.gov (United States)

    Cang, Rongquin; Guo, Jianpo; Hu, Juanxiu; He, Chaoquiong

    2016-05-01

    The angular momentum of the Solar System is a very important physical quantity to the formation and evolution of the Solar System. Previously, the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets were only taken into consideration, when researchers calculated the angular momentum of the Solar System. Nowadays, it seems narrow and conservative. Using Eggleton's code, we calculate the rotational inertia of the Sun. Furthermore, we obtain that the spin angular momentum of the Sun is 1.8838 x 10^41 kg m^2 s^-1. Besides the spin angular momentum of the Sun and the orbital angular momentum of the Eight Giant Planets, we also account for the orbital angular momentum of the Asteroid Belt, the Kuiper Belt, the Oort Cloud, the Ninth Giant Planet and the Solar Companion. We obtain that the angular momentum of the whole Solar System is 3.3212 x 10^45 kg m^2 s^-1.

  4. Optimization of extrusion process for production of nutritious pellets

    Directory of Open Access Journals (Sweden)

    Ernesto Aguilar-Palazuelos

    2012-03-01

    Full Text Available A blend of 50% Potato Starch (PS, 35% Quality Protein Maize (QPM, and 15% Soybean Meal (SM were used in the preparation of expanded pellets utilizing a laboratory extruder with a 1.5 × 20.0 × 100.0 mm die-nozzle. The independent variables analyzed were Barrel Temperature (BT (75-140 °C and Feed Moisture (FM (16-30%. The effect of extrusion variables was investigated in terms of Expansion Index (EI, apparent density (ApD, Penetration Force (PF and Specific Mechanical Energy (SME, viscosity profiles, DSC, crystallinity by X-ray diffraction, and Scanning Electronic Microscopy (SEM. The PF decreased from 30 to 4 kgf with the increase of both independent variables (BT and FM. SME was affected only by FM, and decreased with the increase in this variable. The optimal region showed that the maximum EI was found for BT in the range of 123-140 °C and 27-31% for FM, respectively. The extruded pellets obtained from the optimal processing region were probably not completely degraded, as shown in the structural characterization. Acceptable expanded pellets could be produced using a blend of PS, QPM, and SM by extrusion cooking.

  5. Extrusion foaming of protein-based thermoplastic and polyethylene blends

    Science.gov (United States)

    Gavin, Chanelle; Lay, Mark C.; Verbeek, Casparus J. R.

    2016-03-01

    Currently the extrusion foamability of Novatein® Thermoplastic Protein (NTP) is being investigated at the University of Waikato in collaboration with the Biopolymer Network Ltd (NZ). NTP has been developed from bloodmeal (>86 wt% protein), a co-product of the meat industry, by adding denaturants and plasticisers (tri-ethylene glycol and water) allowing it to be extruded and injection moulded. NTP alone does not readily foam when sodium bicarbonate is used as a chemical blowing agent as its extensional viscosity is too high. The thermoplastic properties of NTP were modified by blending it with different weight fractions of linear low density polyethylene (LLDPE) and polyethylene grafted maleic anhydride (PE-g-MAH) compatibiliser. Extrusion foaming was conducted in two ways, firstly using the existing water content in the material as the blowing agent and secondly by adding sodium bicarbonate. When processed in a twin screw extruder (L/D 25 and 10 mm die) the material readily expanded due to the internal moisture content alone, with a conditioned expansion ratio of up to ± 0.13. Cell structure was non-uniform exhibiting a broad range cell sizes at various stages of formation with some coalescence. The cell size reduced through the addition of sodium bicarbonate, overall more cells were observed and the structure was more uniform, however ruptured cells were also visible on the extrudate skin. Increasing die temperature and introducing water cooling reduced cell size, but the increased die temperature resulted in surface degradation.

  6. Propulsion via beam extrusion at low Reynolds number

    CERN Document Server

    Gosselin, Frederick P; Paak, Mehdi

    2014-01-01

    Inspired by microscopic paramecies which use trichocyst extrusion to propel themselves away from thermal aggressions, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive force theory, predicts a similar behaviour. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length-independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity and the dynamic viscosity of the flui...

  7. Optimizing the seamless tube extrusion process using the finite element method

    Science.gov (United States)

    Li, Feng; Li, Li; Wang, Xiang; Ma, Xu Liang

    2010-03-01

    In order to reveal the mechanism of extrusion forming for large-scale aluminum alloy seamless pipe, in this research the rigid-viscous plastic finite element method was used to analyze the effect of the technological parameters of the aluminum alloy pipe extrusion process, consistent with the use requirements.

  8. Way of Producing Porous-Free Long-Measured Blanks of Hot Extrusion

    OpenAIRE

    G.H. Tumanyan; H.S. Petrosyan

    2007-01-01

    The blank porosity dependence on extrusion conditions is established: coefficient of drawing (λ ), pressure (P), yield point (C), angle of the die (α) and initial porosity (θ0). Appropriate transformations of formulas obtained by the authors, as well as numerical calculations allow to get extrusion parameters for manufacturing porous-free long-measured blanks.

  9. The Prospect of China’s Alumin-ium Extrusion Product Market

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>China’s aluminium extrusion industry can be dated back to the 1950s-70s,when the North- east 101 Plant was established in 1956,the Northwest Aluminium and Southwest Alumin- ium were completed and put into operation in 1968-1969.The three plants’ extrusion assem- bly lines were designed to produce aluminium

  10. 78 FR 66895 - Aluminum Extrusions From the People's Republic of China: Preliminary Results of Changed...

    Science.gov (United States)

    2013-11-07

    ..., including, but not limited to, window frames, door frames, solar panels, curtain walls, or furniture. Such... backing material, and solar panels. The scope also excludes finished goods containing aluminum extrusions... Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order, 76 FR 30650 (May 26,...

  11. 78 FR 51143 - Aluminum Extrusions From the People's Republic of China: Initiation of Changed Circumstances...

    Science.gov (United States)

    2013-08-20

    ..., including, but not limited to, window frames, door frames, solar panels, curtain walls, or furniture. Such... backing material, and solar panels. The scope also excludes finished goods containing aluminum extrusions... Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order, 76 FR 30650 (May 26,...

  12. Factors affecting irrigant extrusion during root canal irrigation: a systematic review

    NARCIS (Netherlands)

    Boutsioukis, C.; Psimma, Z.; Sluis, van der L.W.M.

    2013-01-01

    The aim of the present study was to conduct a systematic review and critical analysis of published data on irrigant extrusion to identify factors causing, affecting or predisposing to irrigant extrusion during root canal irrigation of human mature permanent teeth. An electronic search was conducted

  13. Extrusion cooking using a twin-screw apparatus reduces toxicity of fumonisin-contaminated corn grits

    Science.gov (United States)

    Extrusion cooking using a single screw configuration reduced fumonisin concentrations of corn grits in an earlier study. Adding glucose before cooking enhanced reductions and, in one of three trials, partially reversed in vivo toxicity. To determine the effectiveness of extrusion using the more effi...

  14. Mathematical model of determination of die bearing length in design of aluminum profile extrusion die

    Institute of Scientific and Technical Information of China (English)

    闫洪; 王高潮; 夏巨谌; 李志刚

    2004-01-01

    Based on the finite element simulation of profile extrusion process, the effect of local extrusion ratio, die bearing area and the distance between extrusion cylindrical center and local die orfice center on mental flow velocity was investigated. The laws of deformed metalflow on profile extrusion process were obtained. The smaller the local extrusion ratio, the faster the metal flow velocity; the smaller the area of die bearing, the faster the metal flow velocity; the smaller the distance of position of local die orifice(the closer the distance of position of local die orifice from extrusion cylindrical axis), the faster the metal flow velocity. The effect of main parameters of die structure on metal flow velocity was integrated and the mathematical model of determination of die bearing length in design of aluminum profile extrusion die was proposed. The calculated results with proposed model were well compared with the experimental results. The proposed model can be applied to determine die bearing length in design of aluminum profile extrusion die.

  15. Finite element simulation of extrusion of optical fiber preforms: Effects of wall slip

    Science.gov (United States)

    Zhang, Zhi Feng; Zhang, Yilei

    2016-03-01

    Extrusion has been successfully used to fabricate optical fiber preforms, especially microstructured ones. Although simplified mathematical model has been used to calculate the extrusion pressure or speed, more frequently die design and extrusion process optimization depend on trial and error, which is especially true for complex die and preform design. This paper employs the finite element method (FEM) to simulate the billet extrusion process to investigate the relationship between the extruding pressure, the billet viscosity, the wall slip condition and the extruding speed for extrusion of rod preforms. The slipping wall boundary condition is taken into account of the finite element model, and the simulated extruding pressure agrees with the one experimental value reported preciously. Then the dependence of the extruding speed on the extruding pressure, billet viscosity and the slip speed is systematically simulated. Simulated data is fitted to a second order polynomial model to describe their relationship, and the terms of the model are reduced from nine to five by using a statistical method while maintaining the fitting accuracy. The FEM simulation and the fitted model provide a convenient and dependable way to calculate the extrusion pressure, speed or other process parameters, which could be used to guide experimental design for future preform extrusion. Furthermore, the same simulation could be used to optimize die design and extrusion process to improve quality of extruded preforms.

  16. Process optimization diagram based on FEM simulation for extrusion of AZ31 profile

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ram speed and the billet temperature are the primary process variables that determine the quality of the extruded magnesium profile and the productivity of the extrusion operation.The optimization of the extrusion process concerns the interplay between these two variables in relation to the extrudate temperature and the peak extrusion pressure The 3D computer simulations were performed to determine the eriects of the ram speed and the billet temperature on the extrudate temperature and the peak extrusion pressure,thereby providing guidelines for the process optimization and minimizing the number of trial extrusion runs needed for the process optimization.A case study on the extrusion of an AZ31 X-shaped profile was conducted.The correlations between the process variables and the response from the deformed material,extrudate temperature and peak extrusion pressure,were established from the 3D FEM simulations and verified by the experiment.The research opens up a way to rational selection of the process variables for ensured quality and maximum productivity of the magnesium extrusion.

  17. 75 FR 51243 - Aluminum Extrusions from the People's Republic of China: Postponement of Preliminary...

    Science.gov (United States)

    2010-08-19

    ...: Initiation of Antidumping Duty Investigation, 75 FR 22109 (April 27, 2010). On August 4, 2010, the Aluminum... International Trade Administration Aluminum Extrusions from the People's Republic of China: Postponement of... antidumping duty investigation on Aluminum Extrusions from the People's Republic of China.\\1\\ The notice...

  18. SUPERCRITICAL CO2 EXTRUSION – OPPORTUNITIES FOR FOOD AND BIOLOGICAL PROCESSING

    Science.gov (United States)

    Extrusion cooking is a high temperature, short time processing method. During extrusion processing, many chemical and structural changes of the feed materials occur inside the barrel due to high temperatures, shear rates, and pressures. These alterations affect bonding between molecules, which in...

  19. Chemical, physical and nutritional changes in soybean meal as a result of toasting and extrusion cooking.

    NARCIS (Netherlands)

    Marsman, G.J.P.

    1998-01-01

    The effect of soybean meal extrusion and the development of shear forces during single-screw extrusion was compared with the toasting process of soybean meal. Attention was focused on chemical, physical and nutritional changes during these thermo-mechanical treatments.Monitoring target parameters we

  20. Physical properties, molecular structures and protein quality of texturized whey protein isolate: effect of extrusion temperature

    Science.gov (United States)

    Extrusion is a powerful food processing operation, which utilizes high temperature and high shear force to produce a product with unique physical and chemical characteristics. Texturization of whey protein isolate (WPI) through extrusion for the production of protein fortified snack foods has provid...

  1. Digital angular position sensor using wavelength division multiplexing

    Science.gov (United States)

    Fritsch, Klaus; Beheim, Glenn; Sotomayor, Jorge

    1990-01-01

    Future aircraft will use fly-by-light control systems with fiber-linked optical sensors for such measurands as temperature, pressure, and linear and angular position. A digital optical sensor is described which was developed to transmit the angular position of such slowly rotating parts as a throttle of fuel flow control valve on an aircraft. The sensor employs a reflective code plate with ten channels providing a resolution of 0.35 degrees. Two light-emitting diodes with overlapping spectra are used as light sources. A single microoptic multiplexer-demultiplexer composed of a GRIN rod lens and a miniature grating is used to disperse the spectrum and recombine the spectral components from each channel after reflection by the code plate. The results of preliminary environmental tests of this unit are discussed. The sensor has been operated for brief periods of time between -60 C and +125 without adverse effects. Preliminary vibration tests indicate that the unit will work properly at the maximum vibration levels expected in a jet-engine environment.

  2. Transverse and longitudinal angular momenta of light

    International Nuclear Information System (INIS)

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties

  3. Angular momentum of non-paraxial light beam: Dependence of orbital angular momentum on polarization

    OpenAIRE

    Li, Chun-Fang

    2009-01-01

    It is shown that the momentum density of free electromagnetic field splits into two parts. One has no contribution to the net momentum due to the transversality condition. The other yields all the momentum. The angular momentum that is associated with the former part is spin, and the angular momentum that is associated with the latter part is orbital angular momentum. Expressions for the spin and orbital angular momentum are given in terms of the electric vector in reciprocal space. The spin ...

  4. Parametric Optimization of Simulated Extrusion of Square to Square Section Through Linear Converging Die

    Science.gov (United States)

    Mohapatra, S. K.; Maity, K. P.

    2016-02-01

    The effect of various process parameters for determining extrusion load has been studied for square to square extrusion of Al-6061 alloy, a most used aluminium alloy series in forming industries. Parameters like operating temperature, friction condition, ram velocity, extrusion ratio and die length have been chosen as an input variable for the above study. Twenty five combinations of parameters were set for the investigation by considering aforementioned five parameters in five levels. The simulations have been carried out by Deform-3D software for predicting maximum load requirement for the complete extrusion process. Effective stress and strain distribution across the billet has been checked. Operating temperature, extrusion ratio, friction factor, ram velocity and die length have the significant effect in decreasing order on the maximum load requirement.

  5. Processing and Microstructural Evolution of Superalloy Inconel 718 during Hot Tube Extrusion

    Institute of Scientific and Technical Information of China (English)

    Shihong ZHANG; Zhongtang WANG; Bing QIAO; Yi XU; Tingfeng XU

    2005-01-01

    The processing parameters of tube extrusion for superalloy Inconel 718 (IN 718), such as slug temperature, tools temperature, choice of lubricant, extrusion ratio and extrusion speed, were determined by experiment in this paper. An appropriate temperature range recommended for the slug is 1080~1120℃, and the temperature range recommended for the tools is 350~500℃. The microstructural evolution of superalloy IN 718 during tube extrusion was analyzed.With the increase of the deformation the cross crystal grains were slightly refined. While the vertical crystal grain is elongated evidently and the tensile strength increased along the axial rake. Glass lubricants have to be spread on the slug surface after being heated to 150~200℃, vegetable oil or animal oil can be used as the lubricant on the surface of the tools to reduce the extrusion force remarkably.

  6. Microstructure and properties of AZ80 magnesium alloy prepared by hot extrusion from recycled machined chips

    Institute of Scientific and Technical Information of China (English)

    刘英; 李元元; 张大童; 倪东惠; 陈维平

    2002-01-01

    AZ80 magnesium alloy was prepared by hot extrusion of recycled machined chips and its microstructure and mechanical properties were investigated. Hot pressing was employed to prepare extrusion billets of AZ80 chips, then the billets were hot extruded at 623K with an extrusion ratio of 25∶ 1. The extruded rods show a high ultimate tensile strength of 285MPa and a high elongation of 6%. Due to grain refinement by extrusion, mechanical properties of the extruded rods are much higher than those of as-cast AZ80 alloy. Process technique and chips densification mechanism were also studied. Results show that hot extrusion is an efficient method for AZ80 alloy chips recycling.

  7. Experimental and Numerical Study on the Strength of Aluminum Extrusion Welding

    Directory of Open Access Journals (Sweden)

    Sedat Bingöl

    2015-07-01

    Full Text Available The quality of extrusion welding in the extruded hollow shapes is influenced significantly by the pressure and effective stress under which the material is being joined inside the welding chamber. However, extrusion welding was not accounted for in the past by the developers of finite element software packages. In this study, the strength of hollow extrusion profile with seam weld produced at different ram speeds was investigated experimentally and numerically. The experiments were performed on an extruded hollow aluminum profile which was suitable to obtain the tensile tests specimens from its seam weld’s region at both parallel to extrusion direction and perpendicular to extrusion direction. A new numerical modeling approach, which was recently proposed in literature, was used for numerical analyses of the study. The simulation results performed at different ram speeds were compared with the experimental results, and a good agreement was obtained.

  8. FUNCTIONAL PROPERTIES OF DEFATTED CHICKPEA (CICER ARIETINUM, L. FLOUR AS INFLUENCED BY THERMOPLASTIC EXTRUSION

    Directory of Open Access Journals (Sweden)

    Maria Filomena Claret Fernandes de Aguiar VALIM

    2009-07-01

    Full Text Available

    Defatted chickpea (Cicer arietinum, L flour was submitted to thermoplastic extrusion at three feed moisture levels (13%, 18% and 27%. The functional properties of raw and extruded flours were investigated. The nitrogen solubility index of raw chickpea flour was minimum at pH 4.0 but increased at both lower and higher pHs. Extrusion reduced nitrogen solubility drastically for all feed moisture levels. Water and oil absorption capacity were significantly (p O < 05 increased after extrusion treatment. Foam stability could be improved by extrusion and was positively influenced by alkaline pH. It was also verified that extrusion cooking increased significantly (p O < 05 the emulsifying capacity of the extruded flour with 13% moisture level in water.

  9. A general extrudate bulk density model for both twin-screw and single-screw extruder extrusion cooking processes

    OpenAIRE

    Cheng, Hongyuan; Friis, Alan; Høeg Hansen, Jonas; Tolderlund Rasmussen, Hanne

    2010-01-01

    Effects of extrusion parameters and raw materials on extrudate expansion are respectively investigated in a twin-screw extruder and a single-screw extruder extrusion cooking experiments for fish feed, wheat, and oat & wheat mixture processing. A new phenomenological model is proposed to correlated extrudate bulk density, extrusion parameters and raw material changes based on the experimental results. The average absolute deviation (AAD) of the correlation is 2.2% for fish feed extrusion in th...

  10. Radiofrequency encoded angular-resolved light scattering

    DEFF Research Database (Denmark)

    Buckley, Brandon W.; Akbari, Najva; Diebold, Eric D.;

    2015-01-01

    Encoded Angular-resolved Light Scattering (REALS), this technique multiplexes angular light scattering in the radiofrequency domain, such that a single photodetector captures the entire scattering spectrum from a particle over approximately 100 discrete incident angles on a single shot basis. As a proof...

  11. Angular-Rate Estimation Using Quaternion Measurements

    Science.gov (United States)

    Azor, Ruth; Bar-Itzhack, Y.; Deutschmann, Julie K.; Harman, Richard R.

    1998-01-01

    In most spacecraft (SC) there is a need to know the SC angular rate. Precise angular rate is required for attitude determination, and a coarse rate is needed for attitude control damping. Classically, angular rate information is obtained from gyro measurements. These days, there is a tendency to build smaller, lighter and cheaper SC, therefore the inclination now is to do away with gyros and use other means and methods to determine the angular rate. The latter is also needed even in gyro equipped satellites when performing high rate maneuvers whose angular-rate is out of range of the on board gyros or in case of gyro failure. There are several ways to obtain the angular rate in a gyro-less SC. When the attitude is known, one can differentiate the attitude in whatever parameters it is given and use the kinematics equation that connects the derivative of the attitude with the satellite angular-rate and compute the latter. Since SC usually utilize vector measurements for attitude determination, the differentiation of the attitude introduces a considerable noise component in the computed angular-rate vector.

  12. Exposing Library Services with AngularJS

    OpenAIRE

    Jakob Voß; Moritz Horn

    2014-01-01

    This article provides an introduction to the JavaScript framework AngularJS and specific AngularJS modules for accessing library services. It shows how information such as search suggestions, additional links, and availability can be embedded in any website. The ease of reuse may encourage more libraries to expose their services via standard APIs to allow usage in different contexts.

  13. Concepts of radial and angular kinetic energies

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  14. Angular Momentum Eigenstates for Equivalent Electrons.

    Science.gov (United States)

    Tuttle, E. R.; Calvert, J. B.

    1981-01-01

    Simple and efficient methods for adding angular momenta and for finding angular momentum eigenstates for systems of equivalent electrons are developed. Several different common representations are used in specific examples. The material is suitable for a graduate course in quantum mechanics. (SK)

  15. Angular Momentum Distribution in the Transverse Plane

    CERN Document Server

    Adhikari, Lekha

    2016-01-01

    Several possibilities to relate the $t$-dependence of Generalized Parton Distributions (GPDs) to the distribution of angular momentum in the transverse plane are discussed. Using a simple spectator model we demonstrate that non of them correctly describes the orbital angular momentum distribution that for a longitudinally polarized nucleon obtained directly from light-front wavefunctions.

  16. Orbital Angular Momentum in the Nucleon

    OpenAIRE

    Garvey, Gerald T.

    2010-01-01

    Analysis of the measured value of the integrated \\bar{d}-\\bar{u} asymmetry (Ifas = 0.147+-0.027) in the nucleon show it to arise from nucleon fluctuations into baryon plus pion. Requiring angular momentum conservation in these fluctuations shows the associated orbital angular momentum is equal to the value of the flavor asymmetry.

  17. Detecting orbital angular momentum in radio signals

    OpenAIRE

    Then, H.; Thidé, B.; Mendonça, J T; Carozzi, T.D.; Bergman, J.; Baan, W. A.; Mohammadi, S. (Siawoosh); Eliasson, B.

    2008-01-01

    Electromagnetic waves with an azimuthal phase shift are known to have a well defined orbital angular momentum. Different methods that allow for the detection of the angular momentum are proposed. For some, we discuss the required experimental setup and explore the range of applicability.

  18. Responsive web design with AngularJS

    CERN Document Server

    Patel, Sandeep Kumar

    2014-01-01

    If you are an AngularJS developer who wants to learn about responsive web application development, this book is ideal for you. Responsive Web Design with AngularJS is intended for web developers or designers with a basic knowledge of HTML, CSS, and JavaScript.

  19. Angular momentum decomposition of Richardson's pairs

    International Nuclear Information System (INIS)

    The angular momentum decomposition of pairs obtained using Richardson's exact solution of the pairing Hamiltonian for the deformed 174Yb nucleus are displayed. The probabilities for low angular momenta of the collective pairs are strikingly different from the ones obtained in the BCS ground state

  20. MIMO-OFDM performance in relation to wideband channel properties

    NARCIS (Netherlands)

    Li, P.; Zhang, H.; Oostveen, J.; Fledderus, E.

    2010-01-01

    In this paper, the sensitivity of the error rate performance of MIMO-OFDM-based practical systems (WiMAX and LTE) to wide band channel properties is investigated. The behavior of the wideband channel is characterized in terms of delay spread (DS) and angular spread (AS). The impacts of DS and AS on

  1. Extrusão de misturas de castanha do Brasil com mandioca Extrusion of Brazil nut and cassava flour mixtures

    Directory of Open Access Journals (Sweden)

    Maria Luzenira de Souza

    2008-06-01

    Full Text Available Considerando-se que a castanha do Brasil apresenta elevado potencial nutritivo, baixo consumo no Brasil, baixo valor agregado e é um produto orgânico, além da alta produtividade, do baixo custo da mandioca e da tecnologia de extrusão termoplástica apresentarem ampla aplicabilidade e vantagens, este trabalho teve como objetivo empregar estas três variáveis, para formular misturas com castanha do Brasil e farinha de mandioca e processá-las por extrusão, visando à obtenção de produtos extrusados ricos em proteína vegetal e prontos para o consumo. Foram utilizadas torta de amêndoa de castanha do Brasil semidesengordurada e farinha de mandioca para formulações das misturas para extrusão. Aplicou-se o delineamento fatorial completo composto central (2³, com 3 variáveis independentes e a metodologia de superfície de resposta foi usada para avaliar os resultados da composição centesimal e o valor calórico, frente às variações de castanha, umidade e temperatura. Os resultados indicam que as formulações com maiores quantidades de castanha apresentam quantidades de proteínas, lipídios e cinzas mais elevadas, já as formulações com menores teores de castanha apresentam maiores percentuais de carboidratos. Os coeficientes de regressão médios do modelo estatístico para as respostas são: umidade 7,40; carboidratos 51,09; proteínas 15,34; lipídios 11,77; fibra total 9,92 e kcal 371,65. Os ensaios com menores teores de castanha e maiores de farinha apresentam-se mais expandidos e de cor clara, enquanto que aqueles com maiores teores de castanha não se expandem e têm a cor acinzentada. Conclui-se que a adição de castanha semidesengordurada à farinha de mandioca pode ser submetida à extrusão, originando um produto extrusado fonte de proteína vegetal, pronto para o consumo e que pode atender à exigência de consumidores que não utilizam proteínas de origem animal.Considering that Brazil nut presents high nutritional

  2. 78 FR 34984 - Aluminum Extrusions From the People's Republic of China: Notice of Court Decision Not in Harmony...

    Science.gov (United States)

    2013-06-11

    ... Aluminum Extrusions from the People's Republic of China: Antidumping Duty Order, 76 FR 30650 (May 26, 2011) and Aluminum Extrusions from the People's Republic of China: Countervailing Duty Order, 76 FR 30653... International Trade Administration Aluminum Extrusions From the People's Republic of China: Notice of...

  3. The Effects of Process Parameters on Evolutions of Thermodynamics and Microstructures for Composite Extrusion of Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    H.-J. Hu

    2013-01-01

    Full Text Available To research the effects of process parameters on evolutions of extrusion force and temperature rise and microstructures for composite extrusion of magnesium alloy which includes initial extrusion and shearing process subsequently and is shortened for “ES” in this paper, the ES extrusion process has been researched by using finite element modeling (FEM technology. The rules of temperature rise and the extrusion force varying with process parameters have been developed. The thermal-mechanical coupling finite element models including the geometric and FEM models and solution conditions were applied to calculate the effective strain and temperature and extrusion force during ES extrusion. The maximum temperature rises in the billets do not increase with billet temperature rising. The temperature of rod surface increased continuously with development of ES extrusion. The evolutions of extrusion load curve and effective stress and temperature can be divided into three stages obviously. Extrusion experiments have been constructed to validate the FEM models with different process conditions. The simulation results and microstructure observation showed that ES process can introduce compressive and accumulated shear strain into the magnesium alloy. The ES extrusion would cause severe plastic deformation and improve the dynamic recrystallization during ES extrusion. The microstructures show that ES is an efficient and inexpensive grain refinement method for magnesium alloys.

  4. Does high harmonic generation conserve angular momentum?

    CERN Document Server

    Fleischer, Avner; Diskin, Tzvi; Sidorenko, Pavel; Cohen, Oren

    2013-01-01

    High harmonic generation (HHG) is a unique and useful process in which infrared or visible radiation is frequency up converted into the extreme ultraviolet and x ray spectral regions. As a parametric process, high harmonic generation should conserve the radiation energy, momentum and angular momentum. Indeed, conservation of energy and momentum have been demonstrated. Angular momentum of optical beams can be divided into two components: orbital and spin (polarization). Orbital angular momentum is assumed to be conserved and recently observed deviations were attributed to propagation effects. On the other hand, conservation of spin angular momentum has thus far never been studied, neither experimentally nor theoretically. Here, we present the first study on the role of spin angular momentum in extreme nonlinear optics by experimentally generating high harmonics of bi chromatic elliptically polarized pump beams that interact with isotropic media. While observing that the selection rules qualitatively correspond...

  5. Physical Angular Momentum Separation for QED

    CERN Document Server

    Sun, Weimin

    2016-01-01

    We study the non-uniqueness problem of the gauge-invariant angular momentum separation for the case of QED, which stems from the recent controversy concerning the proper definitions of the orbital angular momentum and spin operator of the individual parts of a gauge field system. For the free quantum electrodynamics without matter, we show that the basic requirement of Euclidean symmetry selects a unique physical angular momentum separation scheme from the multitude of the possible angular momentum separation schemes constructed using the various Gauge Invariant Extentions. Based on these results, we propose a set of natural angular momentum separation schemes for the case of interacting QED by invoking the formalism of asymptotic fields. Some perspectives on such a problem for the case of QCD are briefly discussed.

  6. Quark angular momentum in a spectator model

    International Nuclear Information System (INIS)

    We investigate the quark angular momentum in a model with the nucleon being a quark and a spectator. Both scalar and axial-vector spectators are included. We perform the calculations in the light-cone formalism where the parton concept is well defined. We calculate the quark helicity and canonical orbital angular momentum. Then we calculate the gravitational form factors which are often related to the kinetic angular momentums, and find that even in a no gauge field model we cannot identify the canonical angular momentums with half the sum of gravitational form factors. In addition, we examine the model relation between the orbital angular momentum and pretzelosity, and find it is violated in the axial-vector case

  7. Resolvability of positron decay channels

    International Nuclear Information System (INIS)

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs

  8. Angular dispersion and energy loss of H+ and He+ in metals

    International Nuclear Information System (INIS)

    In this master thesis the effects produced when a light ion beam traverses a thin metallic film were studied.In particular, the interactions of low energy (E ≤ 10 keV) light ions (H+,H2+, D+, He+) with monocrystalline and also polycrystalline gold samples were investigated.In first place, the dependence of the stopping power with projectiles' velocity was studied, analyzing the threshold effect in the excitation of the 5d electrons in the channelling regime for energies between 0,4 and 9 keV.Next, the angular dispersion of ions in polycrystalline and monocrystalline films was measured and analyzed.Comparisons for different energies and projectiles were done, studying molecular and isotopic effects.Using Lindhard's channeling theory, a scale law for the angular dispersion of angles greater than the critical angle was found.Additionally, the angular dependence of the energy loss and the energy loss straggling of protons transmitted through monocrystals were measured.To explain the angular variations of these magnitudes a theoretical model based on the electronic density fluctuations inside the channel was developed

  9. Angular momentum transport and particle acceleration during magnetorotational instability in a kinetic accretion disk.

    Science.gov (United States)

    Hoshino, Masahiro

    2015-02-13

    Angular momentum transport and particle acceleration during the magnetorotational instability (MRI) in a collisionless accretion disk are investigated using three-dimensional particle-in-cell simulation. We show that the kinetic MRI can provide not only high-energy particle acceleration but also enhancement of angular momentum transport. We find that the plasma pressure anisotropy inside the channel flow with p(∥)>p(⊥) induced by active magnetic reconnection suppresses the onset of subsequent reconnection, which, in turn, leads to high-magnetic-field saturation and enhancement of the Maxwell stress tensor of angular momentum transport. Meanwhile, during the quiescent stage of reconnection, the plasma isotropization progresses in the channel flow and the anisotropic plasma with p(⊥)>p(∥) due to the dynamo action of MRI outside the channel flow contribute to rapid reconnection and strong particle acceleration. This efficient particle acceleration and enhanced angular momentum transport in a collisionless accretion disk may explain the origin of high-energy particles observed around massive black holes.

  10. Polarization of molecular angular momentum in the chemical reactions Li + HF and F + HD.

    Science.gov (United States)

    Krasilnikov, Mikhail B; Popov, Ruslan S; Roncero, Octavio; De Fazio, Dario; Cavalli, Simonetta; Aquilanti, Vincenzo; Vasyutinskii, Oleg S

    2013-06-28

    The quantum mechanical approach to vector correlation of angular momentum orientation and alignment in chemical reactions [G. Balint-Kurti and O. S. Vasyutinskii, J. Phys. Chem. A 113, 14281 (2009)] is applied to the molecular reagents and products of the Li + HF [L. Gonzalez-Sanchez, O. S. Vasyutinskii, A. Zanchet, C. Sanz-Sanz, and O. Roncero, Phys. Chem. Chem. Phys. 13, 13656 (2011)] and F + HD [D. De Fazio, J. Lucas, V. Aquilanti, and S. Cavalli, Phys. Chem. Chem. Phys. 13, 8571 (2011)] reactions for which accurate scattering information has become recently available through time-dependent and time-independent approaches. Application of the theory to two important particular cases of the reactive collisions has been considered: (i) the influence of the angular momentum polarization of reactants in the entrance channel on the spatial distribution of the products in the exit channel and (ii) angular momentum polarization of the products of the reaction between unpolarized reactants. In the former case, the role of the angular momentum alignment of the reactants is shown to be large, particularly when the angular momentum is perpendicular to the reaction scattering plane. In the latter case, the orientation and alignment of the product angular momentum was found to be significant and strongly dependent on the scattering angle. The calculation also reveals significant differences between the vector correlation properties of the two reactions under study which are due to difference in the reaction mechanisms. In the case of F + HD reaction, the branching ratio between HF and DF production points out interest in the insight gained into the detailed dynamics, when information is available either from exact quantum mechanical calculations or from especially designed experiments. Also, the geometrical arrangement for the experimental determination of the product angular momentum orientation and alignment based on a compact and convenient spherical tensor expression for

  11. Angular profile of Particle Emission from a Higher-dimensional Black Hole: Analytic Results

    CERN Document Server

    Kanti, Panagiota

    2012-01-01

    During the spin-down phase of the life of a higher-dimensional black hole, the emission of particles on the brane exhibits a strong angular variation with respect to the rotation axis of the black hole. It has been suggested that this angular variation is the observable that could disentangle the dependence of the radiation spectra on the number of extra dimensions and angular momentum of the black hole. Working in the low-energy regime, we have employed analytical formulae for the greybody factors, angular eigenvalues and eigenfunctions of fermions and gauge bosons, and studied the characteristics of the corresponding angular profiles of emission spectra in terms of only a few dominant partial modes. We have confirmed that, in the low-energy channel, the emitted gauge bosons become aligned to the rotation axis of the produced black hole while fermions form an angle with the rotation axis whose exact value depends on the angular-momentum of the black hole. In the case of scalar fields, we demonstrated the exi...

  12. Building disc structure and galaxy properties through angular momentum: the DARK SAGE semi-analytic model

    Science.gov (United States)

    Stevens, Adam R. H.; Croton, Darren J.; Mutch, Simon J.

    2016-09-01

    We present the new semi-analytic model of galaxy evolution, DARK SAGE, a heavily modified version of the publicly available SAGE code. The model is designed for detailed evolution of galactic discs. We evolve discs in a series of annuli with fixed specific angular momentum, which allows us to make predictions for the radial and angular-momentum structure of galaxies. Most physical processes, including all channels of star formation and associated feedback, are performed in these annuli. We present the surface density profiles of our model spiral galaxies, both as a function of radius and specific angular momentum, and find that the discs naturally build a pseudo-bulge-like component. Our main results are focused on predictions relating to the integrated mass-specific angular momentum relation of stellar discs. The model produces a distinct sequence between these properties in remarkable agreement with recent observational literature. We investigate the impact Toomre disc instabilities have on shaping this sequence and find they are crucial for regulating both the mass and spin of discs. Without instabilities, high-mass discs would be systematically deficient in specific angular momentum by a factor of ˜2.5, with increased scatter. Instabilities also appear to drive the direction in which the mass-spin sequence of spiral galaxy discs evolves. With them, we find galaxies of fixed mass have higher specific angular momentum at later epochs.

  13. Near-field angular distributions of high velocity ions for low-power hall thrusters

    OpenAIRE

    Sullivan, Regina M.; Yost, Allison; Johnson, Lee K.

    2009-01-01

    Experimental angular distributions of high-energy primary ions in the near-field region of a small Hall thruster between 50-200 mm downstream of the thruster exit plane at a range of centerline angles have been determined using a highly-collimated, energy-selective diagnostic probe. The measurements reveal a wide angular distribution of ions exiting the thruster channel and the formation of a strong, axially-directed jet of ions along the thruster centerline. Comparisons are made to other exp...

  14. MULTIPARTICULATE DRUG DELIVERY SYSTEM: PELLETIZATION THROUGH EXTRUSION AND SPHERONIZATION

    Directory of Open Access Journals (Sweden)

    Anshuli Sharma

    2013-02-01

    Full Text Available Pharmaceutical invention and research are increasingly focusing on delivery systems which enhance desirable therapeutic objectives while minimising side effects. Recent trends indicate that multiparticulate drug delivery systems are especially suitable for achieving controlled or delayed release oral formulations with low risk of dose dumping, flexibility of blending to attain different release patterns as well as reproducible and short gastric residence time. Pelletization is a technique used to prepare fine powders into pellets used as multiparticulate drug delivery systems. There are different pelletization techniques used to prepare pellets. Extrusion and spheronization is one of them used to prepare pellets drug loaded beads/pellets for extended release or sustained release oral formulations such as tablets and capsules.

  15. Molding of Aluminum Foams by Using Hot Powder Extrusion

    Directory of Open Access Journals (Sweden)

    Yoshitaka Tanino

    2012-06-01

    Full Text Available In order to form aluminum foams directly from powder, a combined process of hot powder extrusion and molding is proposed. Aluminum powder mixed with a foaming agent is extruded into the mold through the die heated to a temperature higher than the melting point, and the mold is filled with the aluminum foam. When a stainless steel pipe is used for a simple mold, an aluminum foam bar is obtained of which the relative density varies between 0.2 and 0.3. The molding of aluminum foam by using three types of mold shape shows the influence of gravity and friction. The effect of gravity is significant when a large step exists at the connection between the mold inlet and the die outlet, and friction is dominant in cases where foam is mold in a narrow space.

  16. Characterization of extrusion flow using particle image velocimetry

    Directory of Open Access Journals (Sweden)

    2009-09-01

    Full Text Available The aim of this study was the characterization of polymer flows within an extrusion die using particle image velocimetry (PIV in very constraining conditions (high temperature, pressure and velocity. Measurements were realized on semi-industrial equipments in order to have test conditions close to the industrial ones. Simple flows as well as disrupted ones were studied in order to determine the capabilities and the limits of the method. The analysis of the velocity profiles pointed out significant wall slip, which was confirmed by rheological measurements based on Mooney's method. Numerical simulations were used to connect the two sets of measurements and to simulate complex velocity profiles for comparison to the experimental ones. A good agreement was found between simulations and experiments providing wall slip is taken into account in the simulation.

  17. Visualization of the Crystallization in Foam Extrusion Process

    Science.gov (United States)

    Tabatabaei Naeini, Alireza

    In this study, crystal formation of polypropylene (PP) and poly lactic acid (PLA) in the presence of CO2 in foam extrusion process was investigated using a visualization chamber and a CCD camera. The role of pre-existing crystals on the foaming behavior of PP and PLA were studied by characterizing the foam morphology. Visualization results showed that crystals formed within the die before foaming and these crystals affect the cell nucleation behavior and expansion ratio of PP and PLA significantly. Due to the fast crystallization kinetics of PP, crystallinity should be optimum to achieve uniform cell structure with high cell density and high expansion ratio. In PLA, enhancement of crystallinity is crucial for getting foam with a high expansion ratio. It was also visualized that CO2 significantly suppresses the crystallization temperature in PP through the plasticization effect as well as its influence on flow induced crystallinity.

  18. Optimization of microstructure development: application to hot metal extrusion

    Science.gov (United States)

    Medina, E. A.; Venugopal, S.; Frazier, W. G.; Medeiros, S.; Mulhns, W. M.; Chaudhary, A.; Irwin, R. D.; Srinivasan, R.; Malas, J. C.

    1996-12-01

    A new process design method for controlling microstructure development during hot metal deformation processes is presented. This approach is based on modern control theory and involves state- space models for describing the material behavior and the mechanics of the process. The challenge of effectively controlling the values and distribution of important microstructural features can now be systematically formulated and solved in terms of an optimal control problem. This method has been applied to the optimization of grain size and certain process parameters such as die geometry profile and ram velocity during extrusion of plain carbon steel. Various case studies have been investigated, and experimental results show good agreement with those predicted in the design stage.

  19. Optimization of microstructure development: Application to hot metal extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Medina, E.A.; Venugopal, S.; Frazier, W.G.; Medeiros, S.; Mullins, W.M.; Chaudhary, A.; Malas, J.C. [WL/MLIM, Wright-Patterson AFB, OH (United States); Irwin, R.D. [Ohio Univ., Athens, OH (United States). School of Electrical Engineering and Computer Science; Srinivasan, R. [Wright State Univ., Dayton, OH (United States). Mechanical and Materials Engineering Dept.

    1996-12-01

    A new process design method for controlling microstructure development during hot metal deformation processes is presented. This approach is based on modern control theory and involves state-space models for describing the material behavior and the mechanics of the process. The challenge of effectively controlling the values and distribution of important microstructural features can now be systematically formulated and solved in terms of an optimal control problem. This method has been applied to the optimization of grain size and certain process parameters such as die geometry profile and ram velocity during extrusion of plain carbon steel. Various case studies have been investigated, and experimental results show good agreement with those predicted in the design stage.

  20. Semi-solid extrusion of aluminum alloy ZL116

    Institute of Scientific and Technical Information of China (English)

    Zhao Dazhi; Lu Guimin; Cui Jianzhong

    2008-01-01

    The semi-solid forward-extruding feasibility of reheated ZL116 alloy cast by the near-liquidus semicontinuous casting process was studied by analyzing the microstructures and properties of forward-extruded bars.The results show that the microstructure of the ZL116 alloy billets cast by near-liquidus semi-continuous casting is mainly made up of homogeneous,fine global-or rosette-shaped grains.The microstructure of the billets,reheated and held at 575℃,contains stable and net-spherical grains which are suitable for semi-solid thixoformina.The semi-solid forward-extruded bars of the ZL116 alloy billet are facially smooth.microstructurally fine and homogeneous.Therefore the feasibility of semi-solid foFward-extrusion of ZL116 alloy is thus excellent.