WorldWideScience

Sample records for changing refractive index

  1. Measurements of photoinduced refractive index changes in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2007-03-01

    We report the pump--probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  2. Measurements of photoinduced refractive index changes in bacteriorhodopsin films

    Indian Academy of Sciences (India)

    Ravinder Kumar Banyal; B Raghavendra Prasad

    2007-03-01

    We report the pump-probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  3. Modelling refractive index changes due to molecular interactions

    Science.gov (United States)

    Varma, Manoj

    2016-03-01

    There are a large number of sensing techniques which use optical changes to monitor interactions between molecules. In the absence of fluorophores or other labels, the basic signal transduction mechanism relies on refractive index changes arising from the interactions of the molecules involved. A quantitative model incorporating molecular transport, reaction kinetics and optical mixing is presented which reveals important insights concerning the optimal detection of molecular interactions optically. Although conceptually simple, a comprehensive model such as this has not been reported anywhere. Specifically, we investigate the pros and cons of detecting molecular interactions in free solution relative to detecting molecular interactions on surfaces using surface bound receptor molecules such as antibodies. The model reveals that the refractive index change produced in surface based sensors is 2-3 orders of magnitude higher than that from interactions in free solution. On the other hand, the model also reveals that it is indeed possible to distinguish specific molecular interactions from non-specific ones based on free-solution bulk refractometry without any washing step necessary in surface based sensors. However, the refractive index change for free solution interactions predicted by the model is smaller than 10-7 RIU, even for large proteins such as IgG in sufficiently high concentrations. This value is smaller than the typical 10-6 RIU detection limit of most state of the art optical sensing techniques therefore requiring techniques with substantially higher index sensitivity such as Back Scattering Interferometry.

  4. CO2 laser induced refractive index changes in optical polymers.

    Science.gov (United States)

    Liu, Qing; Chiang, Kin Seng; Reekie, Laurence; Chow, Yuk Tak

    2012-01-01

    We study the infrared photosensitivity properties of two optical polymer materials, benzocyclobutene (BCB) and epoxy OPTOCAST 3505, with a 10.6 μm CO2 laser. We discover that the CO2 laser radiation can lower the refractive index of BCB by as much as 5.5 × 10(-3), while inducing no measurable index change in the epoxy. As confirmed by Fourier transform infrared spectroscopy, the observed index change in BCB can be attributed to photothermal modification of chemical bonds in the material by the CO2 laser radiation. Our findings open up a new possibility of processing polymer materials with a CO2 laser, which could be further developed for application in the areas of post-processing and direct-writing of polymer waveguide devices.

  5. Mechanisms of the refractive index change in DO11/PMMA due to photodegradation

    CERN Document Server

    Anderson, Benjamin R

    2014-01-01

    Using a white light interferometric microscope (WLIM) we measure the photodamage induced change in the complex index of refraction of disperse orange 11 (DO11) dye-doped (poly)methyl-methacrylate. We find that the change in the imaginary part of the refractive index is consistent with previous measurements of photodamage-induced absorbance change. Additionally, we find that the change in the real refractive index can be separated into a component due to damage to the dye molecules and a component due to irreversible damage to the polymer.

  6. Interferometer for Measuring Fast Changes of Refractive Index and Temperature in Transparent Liquids

    DEFF Research Database (Denmark)

    Miller, Arne; Hussmann, E. K.; McLaughlin, W. L.

    1975-01-01

    A double‐beam interferometer has been designed for detecting changes of refractive index in transparent liquids associated with the absorption of ionizing radiation energy, due to short electron beam pulses from an accelerator. The response time of the interferometer is less than 0.2 μsec......, and refractive index changes of the order of 10−7 can be measured, corresponding to a temperature change of ∼10−3  °C and an absorbed dose in water of ∼350 rad. The interferometer can be used as either a real‐time or integrating radiation dosimeter, if the temperature coefficient of the refractive index (dn...

  7. Refractive Index Change and Color Center Formation in LiYF_4 Crystal Induced by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The refractive index change and color centers formation in LiYF4 crystal at room temperature are induced by a femtosecond laser irradiation. A mechanism for refractive index change and color centers formation is proposed.

  8. Refractive Index Change and Color Center Formation in LiYF4 Crystal Induced by a Femtosecond Laser

    Institute of Scientific and Technical Information of China (English)

    Quanzhong Zhao; Jianrong Qiu; Lüyun Yang; Xiongwei Jiang; Congshan Zhu

    2003-01-01

    The refractive index change and color centers formation in LiYF4 crystal at room temperature are induced by a femtosecond laser irradiation. A mechanism for refractive index change and color centers formation is proposed.

  9. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

    Science.gov (United States)

    Arasa, Josep; Pizarro, Carles; Blanco, Patricia

    2016-06-01

    Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

  10. Photoinduced changes in refractive index of nanostructured shungite-containing polyimide systems

    Science.gov (United States)

    Kamanina, N. V.; Serov, S. V.; Shurpo, N. A.; Rozhkova, N. N.

    2011-10-01

    Photoinduced changes in the refractive index of a conjugate polyimide (PI) matrix sensitized by shungite carbon nanoparticles have been studied for the first time. The results are compared to the data of previous investigations of the photorefractive properties of PI matrices doped with fullerenes, carbon nanotubes, and quantum dots. The nonlinear refractive index of the proposed material has been determined using the dynamic holography techniques. The position of conjugate polymer materials of this type among the other nonlinear optical systems is considered.

  11. Spatial light modulation based on photoinduced change in the complex refractive index of bacteriorhodopsin

    Science.gov (United States)

    Takei, Hiroyuki; Shimizu, Norio

    1996-04-01

    Bacteriorhodopsin exhibits photoinduced changes in both absorption and refractive index at 633 nm. To explore the possibility of exploiting this property in constructing a photoaddressed spatial light modulator, we investigated the transmission property of a Fabry-Perot interferometer containing a bacteriorhodopsin thin film. Film was formed that had a phase shift of pi /4 and sufficient interference fringe contrast for spatial light modulation. This establishes the possibility of constructing a spatial light modulator that features nonlinear input-output characteristics and can operate at moderate light intensities of the order of tens of milliwatts per centimeter square. spatial light modulation, complex refractive index.

  12. Visualizations of Light-induced Refractive Index Changes in Photorefractive Crystals Employing Digital Holography

    Institute of Scientific and Technical Information of China (English)

    赵建林; 张鹏; 周俭波; 杨德兴; 杨东升; 李恩普

    2003-01-01

    We propose a novel approach to visualize the light-induced refractive index changes in photorefractive crystals employing digital holography. The holograms formed in a Mach-Zehnder interferometer are recorded by a twodimensional CCD camera. From these holograms, the phase differences, which contain the information of the index changes in photorefractive crystals, are determined by utilizing digital holographic interferometry. Then the two-dimensional visualizations of index changes in the crystals can be obtained. This method is successfully demonstrated in LiNbO3:Fe, KNSBN:Ce and SBN:Cr crystals.

  13. Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation

    Science.gov (United States)

    Bachman, D.; Chen, Z.; Fedosejevs, R.; Tsui, Y. Y.; Van, V.

    2016-08-01

    An optical damage threshold for crystalline silicon from single femtosecond laser pulses was determined by detecting a permanent change in the refractive index of the material. This index change could be detected with unprecedented sensitivity by measuring the resonant wavelength shift of silicon integrated optics microring resonators irradiated with femtosecond laser pulses at 400 nm and 800 nm wavelengths. The threshold for permanent index change at 400 nm wavelength was determined to be 0.053 ± 0.007 J/cm2, which agrees with previously reported threshold values for femtosecond laser modification of crystalline silicon. However, the threshold for index change at 800 nm wavelength was found to be 0.044 ± 0.005 J/cm2, which is five times lower than the previously reported threshold values for visual change on the silicon surface. The discrepancy is attributed to possible modification of the crystallinity of silicon below the melting temperature that has not been detected before.

  14. Intersubband transitions and refractive index changes in coupled double quantum well with different well shapes

    Science.gov (United States)

    Ozturk, Emine; Sokmen, Ismail

    2011-10-01

    In this study, both the linear intersubband transitions and the refractive index changes in coupled double quantum well (DQW) with different well shapes for different electric fields are theoretically calculated within framework of the effective mass approximation. Results obtained show that intersubband transitions and the energy levels in coupled DQW can importantly be modified and controlled by the electric field strength and direction. By considering the variation of the energy differences, it should point out that by varying electric field we can obtain a blue or red shift in the intersubband optical transitions. The modulation of the absorption coefficients and the refractive index changes which can be suitable for good performance optical modulators and various infrared optical device applications can be easy obtained by tuning applied electric field strength and direction.

  15. SOLITONS: Nonlinear dynamics of optical pulses in fibres with a travelling refractive-index-change wave

    Science.gov (United States)

    Adamova, M. S.; Zolotovskii, Igor'O.; Sementsov, Dmitrii I.

    2009-03-01

    Dynamics of soliton-like wave packets in fibres with a travelling refractive-index-change wave is studied. It is shown that both a soliton-like propagation regime of a pulse and a self-compression regime in the region of normal group velocity dispersion are possible. It is also shown that in the case of a copropagating or counterpropagating pulse and optically inhomogeneous wave nonreciprocal effects appear.

  16. A Comparison of Kretschmann-Raether Angular Regimes for Measuring Changes in Bulk Refractive Index

    Energy Technology Data Exchange (ETDEWEB)

    KASUNIC, K.J.

    1999-09-16

    We compare 2 angular regimes for the measurement of changes in the real refractive index of bulk fluid analytes. The measurements are based on the use of the Kretschmann-Raether configuration to sense a change in reflectivity with index. Specifically, we numerically simulate the relative sensitivities of the total internal reflection (TIR) and surface-plasmon resonance (SPR) regimes. For a fixed-angle apparatus, the method which gives the greatest change in reflectivity varies with metal film thickness. For films thicker than the skin depth, the SPR regime is the most sensitive to index changes. For thinner films, however, the TIR angle is then dominant, with increases in sensitivity on the order of 75% for 10 nm gold or silver media.

  17. Refractive index based measurements

    DEFF Research Database (Denmark)

    2014-01-01

    In a method for performing a refractive index based measurement of a property of a fluid such as chemical composition or temperature by observing an apparent angular shift in an interference fringe pattern produced by back or forward scattering interferometry, ambiguities in the measurement caused...... by the apparent shift being consistent with one of a number of numerical possibilities for the real shift which differ by 2n are resolved by combining measurements performed on the same sample using light paths therethrough of differing lengths....

  18. Negative refractive index metamaterials

    Directory of Open Access Journals (Sweden)

    Willie J. Padilla

    2006-07-01

    Full Text Available Engineered materials composed of designed inclusions can exhibit exotic and unique electromagnetic properties not inherent in the individual constituent components. These artificially structured composites, known as metamaterials, have the potential to fill critical voids in the electromagnetic spectrum where material response is limited and enable the construction of novel devices. Recently, metamaterials that display negative refractive index – a property not found in any known naturally occurring material – have drawn significant scientific interest, underscoring the remarkable potential of metamaterials to facilitate new developments in electromagnetism.

  19. In situ measurement of humidity induced changes in the refractive index and thickness of polyethylene glycol thin films

    OpenAIRE

    Bilen, Bükem; Skarlatos, Yani; Gülen, Aktaş; İnci, Mehmet Naci; Dışpınar, Tuğba; Köse, Meliha Merve; Sanyal, Amital

    2008-01-01

    Humidity induced changes in the refractive index and thickness of polyethylene glycol (PEG) thin films are in situ determined by optical waveguide spectroscopy. PEG brushes are covalently attached to the surface of a thin gold film on a borosilicate crown glass (BK7) using a grafting-from chemical synthesis technique. The measurements are carried out in an attenuated total internal reflection setup. At low humidity levels, both the refractive index and the thickness change gradually due to sw...

  20. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    International Nuclear Information System (INIS)

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity. (paper)

  1. Refractive-index changes in lithium niobate crystals by radiation damages; Brechungsindexaenderungen in Lithiumniobat-Kristallen durch Strahlenschaeden

    Energy Technology Data Exchange (ETDEWEB)

    Zamani Meymian, Mohammad Reza

    2007-12-18

    For the study in this thesis {sup 3}He{sup 2+} ions with the energy of about 40 MeV were applied. The results of these studies show a timely very stable anisotrope refractive-index change in the range of some 10{sup -3}. The radiation damages caused by ions cause a decreasement of the ordinary refractive index n{sub o} and an increasement of the extra-ordinary refractive index n{sub e}. While the absolute values for {delta}n{sub o} and {delta}n{sub e} are nearly equal the birefringence of the material (n{sub e}-n{sub o}) smaller. The generated refractive-index change is dose dependent and the curve {delta}n has at increasing dose a strongly nonlinear slope with a characteristic stage at the radiation dose of about 2 x 10{sup 20} ions/m{sup 2}.

  2. Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses

    Science.gov (United States)

    Lei, Kai; Wang, Yang; Jiang, Minghui; Wu, Yiqun

    2016-05-01

    In this study, the controllable effective refractive index modulation of Sb70Te30 phase-change thin films between amorphous and crystalline states was achieved experimentally by multiple femtosecond laser pulses. The modulation mechanism was analyzed comprehensively by a spectral ellipsometer measurement, surface morphology observation, and two-temperature model calculations. We numerically demonstrate the application of the optically modulated refractive index of the phase-change thin films in a precisely adjustable color display. These results may provide further insights into ultrafast phase-transition mechanics and are useful in the design of programmable photonic and opto-electrical devices based on phase-change memory materials.

  3. Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum wells

    International Nuclear Information System (INIS)

    The authors present measurements of electrorefraction and electroabsorption in a novel multiple quantum well waveguide structure in which each InGaAs quantum well is provided with an individual electron reservoir. External bias transfers electrons into the wells, thus quenching the absorption and producing a refractive index change at wavelengths below the bandedge which is linear in the applied voltage. The authors demonstrate that in this type of structure both the change in refractive index per applied field and the ratio of optical phase to intensity modulation can be significantly enhanced over those found in the quantum confined Stark effect

  4. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    Science.gov (United States)

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

  5. Directly photoinscribed refractive index change and Bragg gratings in Ohara WMS-15 glass ceramic.

    Science.gov (United States)

    Krug, Peter A; Rogojan, Rodica Matei; Albert, Jacques

    2009-06-20

    We inscribed thick volume gratings in WMS-15 glass ceramic by ultraviolet light at 193 and 248 nm. Unlike earlier work in ceramic materials, the inscription process modified the optical properties of the material without the need for any additional chemical or thermal processing. Experimental evidence from measurements of grating growth, thermal annealing, and spectral absorption indicates that two distinct physical mechanisms are responsible for the grating formation. Weak, easily thermally bleached gratings resulted from exposure fluences below 0.3 kJ/cm2. Optical absorption measurements suggest that these low fluence gratings are predominantly absorption gratings. More thermally stable gratings, found to be refractive index gratings with unsaturated refractive index modulation amplitude as large as 6 x 10(-5) were formed at cumulative fluences of 1 kJ/cm2 and above.

  6. Optofluidic two-dimensional grating volume refractive index sensor.

    Science.gov (United States)

    Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik

    2016-09-10

    We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes. PMID:27661360

  7. Variable refractive index in environment matte

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-tian; XIAO Shuang-jiu; YANG Xu-bo; MA Li-zhuang

    2006-01-01

    Environment matting and compositing is a technique to extract a foreground object, including color, opacity, reflective and refractive properties, from a real-world scene, and synthesize new images by placing it into new environments. The description of the captured object is named environment matte. Recent matting and compositing techniques can produce quite realistic images for objects with complex optical properties. This paper presents an approximate method to transform the matte by simulating variation of the foreground object's refractive index. Our algorithms can deal with achromatous-and-transparent objects and the experimental results are visually acceptable. Our idea and method can be applied to produce some special video effects, which could be very useful in film making, compared with the extreme difficulty of physically changing an object's refractive index.

  8. Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiangqun [Institute of Bioscience and Technology, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom); Wang, Ruikang K [Institute of Bioscience and Technology, Cranfield University, Silsoe, Bedfordshire MK45 4DT (United Kingdom); Elder, James B [School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB (United Kingdom); Tuchin, Valery V [Department of Optics, Saratov State University, 155 Moskovskaya Str., 410026 Saratov (Russian Federation)

    2003-05-07

    The purpose of the present study is to investigate systematically the mechanisms of alterations in the optical properties of whole blood immersed in the biocompatible agent dextran, and to define the optimal concentration of dextrans required for blood optical clearing in order to enhance the capability of light penetration depth for optical imaging applications. In the experiments, dextrans with different molecular weights and various concentrations were employed and investigated by the use of the optical coherence tomography technique. Changes in light attenuation, refractive index and aggregation properties of blood immersed in dextrans were studied. It was concluded from the results that the mechanisms for blood optical clearing are characteristic of the types of dextrans employed, their concentrations and the application stages. Among the substances applied, Dx500 at a concentration at 0.5 g dl{sup -1} gives the best result in improving light penetration depth through the blood. The increase of light transmission at the beginning of the addition of dextrans is mainly attributed to refractive index matching between the scattering centres and the ground matter. Thereafter, the transmission change is probably due to a dextran-induced aggregation-disaggregation effect. Overall, light scattering in the blood could be effectively reduced by the application of dextrans. It represents a promising approach to increasing the imaging depth for in vivo optical imaging of biological tissue, for example optical coherence tomography.

  9. Negative Index of Refraction in Optical Metamaterials

    CERN Document Server

    Shalaev, V M; Chettiar, U; Yuan, H K; Sarychev, A K; Drachev, V P; Kildishev, A V; Shalaev, Vladimir M.; Cai, Wenshan; Chettiar, Uday; Yuan, Hsiao-Kuan; Sarychev, Andrey K.; Drachev, Vladimir P.; Kildishev, Alexander V.

    2005-01-01

    An array of pairs of parallel gold nanorods is shown to have a negative refractive index in the optical range, close to a wavelength of 1 micron. Such behavior results from the plasmon resonance in the pairs of nanorods for both the electric and magnetic components of light. The metal rods act as inductive elements whereas the dielectric gaps perform as capacitive elements, forming an optical LC-circuit. Our experiments and simulations demonstrate the resonant behavior for an index of refraction. Above the resonance, the refractive index becomes negative. Paired metal nanorods open new opportunities for developing negative-refraction materials in optics.

  10. Threshold pump intensity effect on the refractive index changes in InGaN SQD: Internal constitution and size effects

    International Nuclear Information System (INIS)

    In the present paper, internal composition and size-dependent threshold pump intensity effects on on-center impurity-related linear, third-order nonlinear and total refractive index changes are investigated in wurtzite (In,Ga)N/GaN unstrained spherical quantum dot. The calculation is performed within the framework of parabolic band and single band effective-mass approximations using a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method. According to the results obtained, (i) a significant red-shift (blue shift) is obtained as the dot size (potential barrier) increases and (ii) a threshold optical pump intensity depending strongly on the size and the internal composition is obtained which constitutes the limit between two behaviors

  11. Threshold pump intensity effect on the refractive index changes in InGaN SQD: Internal constitution and size effects

    Energy Technology Data Exchange (ETDEWEB)

    El Ghazi, Haddou, E-mail: hadghazi@gmail.com [Special Mathematics, CPGE Rabat (Morocco); LPS, Faculty of Science, Dhar El Mehrez, BP 1796 Fes-Atlas (Morocco); A John Peter [P.G. & Research Department of Physics, Goverment Arts and Science College, Melur 625106, Madurai (India)

    2015-04-01

    In the present paper, internal composition and size-dependent threshold pump intensity effects on on-center impurity-related linear, third-order nonlinear and total refractive index changes are investigated in wurtzite (In,Ga)N/GaN unstrained spherical quantum dot. The calculation is performed within the framework of parabolic band and single band effective-mass approximations using a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock–Roothaan (HFR) method. According to the results obtained, (i) a significant red-shift (blue shift) is obtained as the dot size (potential barrier) increases and (ii) a threshold optical pump intensity depending strongly on the size and the internal composition is obtained which constitutes the limit between two behaviors.

  12. Microstructured optical fiber refractive index sensor

    DEFF Research Database (Denmark)

    Town, Graham E.; McCosker, Ravi; Yuan, Scott Wu;

    2010-01-01

    We describe a dual-core microstructured optical fiber designed for refractive index sensing of fluids. We show that by using the exponential dependence of intercore coupling on analyte refractive index, both large range and high sensitivity can be achieved in the one device. We also show...

  13. In situ visualizing the evolution of the light-induced refractive index change of Mn:KLTN crystal with digital holographic interferometry

    Directory of Open Access Journals (Sweden)

    Jinxin Han

    2015-04-01

    Full Text Available The light-induced refractive index change in Mn:KLTN crystal, illuminated by focused light sheet, is visualized in situ and quantified by digital holographic interferometry. By numerically retrieving a series of sequential phase maps from recording digital holograms, the spatial distribution of the induced refractive index change can be visualized and estimated readily. This technique enables the observation of the temporal evolution of the refractive index change under different recording situations such as writing laser power, applied voltage, and temperature, and the photoconductivity of Mn:KLTN crystal can be calculated as well, the experimental results are in good agreement with the theory. The research results suggest that the presented method is successful and feasible.

  14. Refractive index of plant cell walls

    Science.gov (United States)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  15. The refractive index of relic gravitons

    Science.gov (United States)

    Giovannini, Massimo

    2016-06-01

    The dynamical evolution of the refractive index of the tensor modes of the geometry produces a specific class of power spectra characterized by a blue (i.e. slightly increasing) slope which is directly determined by the competition of the slow-roll parameter and of the rate of variation of the refractive index. Throughout the conventional stages of the inflationary and post-inflationary evolution, the microwave background anisotropies measurements, the pulsar timing limits and the big-bang nucleosynthesis constraints set stringent bounds on the refractive index and on its rate of variation. Within the physically allowed region of the parameter space the cosmic background of relic gravitons leads to a potentially large signal for the ground-based detectors (in their advanced version) and for the proposed space-borne interferometers. Conversely, the lack of direct detection of the signal will set a qualitatively new bound on the dynamical variation of the refractive index.

  16. The refractive index of relic gravitons

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The dynamical evolution of the refractive index of the tensor modes of the geometry produces a specific class of power spectra characterized by a blue (i.e. slightly increasing) slope which is directly determined by the competition of the slow-roll parameter and of the rate of variation of the refractive index. Throughout the conventional stages of the inflationary and post-inflationary evolution, the microwave background anisotropies measurements, the pulsar timing limits and the big-bang nucleosythesis constraints set stringent bounds on the refractive index and on its rate of variation. Within the physically allowed region of the parameter space the cosmic background of relic gravitons leads to a potentially large signal for the ground based detectors (in their advanced version) and for the proposed space-borne interferometers. Conversely, the lack of direct detection of the signal will set a qualitatively new bound on the dynamical variation of the refractive index.

  17. Refractive index contrast in porous silicon multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Nava, R.; Mora, M.B. de la; Tagueena-Martinez, J. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Rio, J.A. del [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Temixco, Morelos (Mexico); Centro Morelense de Innovacion y Transferencia Tecnologica, Consejo de Ciencia y Tecnologia del Estado de Morelos (Mexico)

    2009-07-15

    Two of the most important properties of a porous silicon multilayer for photonic applications are flat interfaces and a relative large refractive index contrast between layers in the optical wavelength range. In this work, we studied the effect of the current density and HF electrolyte concentration on the refractive index of porous silicon. With the purpose of increasing the refractive index contrast in a multilayer, the refractive index of porous silicon produced at low current was studied in detail. The current density applied to produce the low porosity layers was limited in order to keep the electrolyte flow through the multilayer structure and to avoid deformation of layer interfaces. We found that an electrolyte composed of hydrofluoric acid, ethanol and glycerin in a ratio of 3:7:1 gives a refractive index contrast around 1.3/2.8 at 600 nm. Several multilayer structures with this refractive index contrast were fabricated, such as dielectric Bragg mirrors and microcavities. Reflectance spectra of the structures show the photonic quality of porous silicon multilayers produced under these electrochemical conditions. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Exciton-related nonlinear optical absorption and refractive index change in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, Miguel E., E-mail: memora@uaem.mx [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, Carlos A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2013-01-15

    In this work the variations of the exciton-related optical absorption and the change of the refractive index in a GaAs-(Ga,Al)As double quantum well as functions of the geometric parameters of the heterostructure are investigated. The variational method is applied within the framework of the parabolic band and effective mass approximations, in order to obtain the 1s-like exciton energy spectrum. The outcome for the related optical coefficients shows a quenched and redshifted light absorption as a result of the increment in the inner barrier and right-hand well widths, with the possibility of an enhancement of the excitonic contribution to the relative change in the refractive index.

  19. Negative refractive index with negative absorption

    CERN Document Server

    Wuestner, Sebastian; Tsakmakidis, Kosmas L; Hamm, Joachim M; Hess, Ortwin

    2010-01-01

    On the basis of a full-vectorial three-dimensional Maxwell-Bloch approach we investigate the possibility of using gain to overcome losses in a negative refractive index fishnet metamaterial. We show that appropriate placing of optically pumped laser dyes (gain) into the metamaterial structure results in a frequency band where the non-bianisotropic metamaterial becomes amplifying. In that region both the real and the imaginary part of the effective refractive index become simultaneously negative and the figure-of-merit diverges at two distinct frequency points.

  20. A Liquid Prism for Refractive Index Studies

    Science.gov (United States)

    Edmiston, Michael D.

    2001-11-01

    A hollow glass prism filled with liquid becomes a "liquid prism". A simple method for constructing hollow glass prisms is presented. A method is given for a demonstration that uses the liquid prism with a laser or laser pointer so the audience can observe differences in refractive index for various liquids. The demonstration provides a quick and easy determination of the sugar content of soft drinks and juices. The prism makes it easy to determine a numerical value for the refractive index of a liquid.

  1. Integrated Microfibre Device for Refractive Index and Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Sulaiman W. Harun

    2012-08-01

    Full Text Available A microfibre device integrating a microfibre knot resonator in a Sagnac loop reflector is proposed for refractive index and temperature sensing. The reflective configuration of this optical structure offers the advantages of simple fabrication and ease of sensing. To achieve a balance between responsiveness and robustness, the entire microfibre structure is embedded in low index Teflon, except for the 0.5–2 mm diameter microfibre knot resonator sensing region. The proposed sensor has exhibited a linear spectral response with temperature and refractive index. A small change in free spectral range is observed when the microfibre device experiences a large refractive index change in the surrounding medium. The change is found to be in agreement with calculated results based on dispersion relationships.

  2. As2S8 planar waveguide: refractive index changes following an annealing and irradiation and annealing cycle, and light propagation features

    Institute of Scientific and Technical Information of China (English)

    Zou Liner; Wang Gouri; Shen Yun; Chen Baoxue; Mamoru Iso

    2011-01-01

    The refractive index of as-evaporated amorphous semiconductor As2S8 film upon an annealing and saturation irradiation and annealing cycle is reversible.Upon successive treatment with annealing and non-saturation irradiation and further annealing,the refractive index of the as-evaporated amorphous semiconductor As2 S8 film reaches a maximum value and then its reversibility occurs upon annealing.The annealing of the amorphous semiconductor As2S8 films results in the stabilization of the structure through changes of the S-S bonds in the nearest environment,accompanied by a decrease of film thickness.The As2S8 planar waveguide after annealing (130 ℃)and saturation irradiation and annealing (130 ℃) shows a good propagation characteristic with ca.0.27 dB/cm low propagation loss of the 632.8 nm guided mode.

  3. Characterising refractive index dispersion in chalcogenide glasses

    DEFF Research Database (Denmark)

    Fang, Y.; Sojka, L.; Jayasuriya, D.;

    2016-01-01

    Much effort has been devoted to the study of glasses that contain the chalcogen elements (sulfur, selenium and tellurium) for photonics' applications out to MIR wavelengths. In this paper we describe some techniques for determining the refractive index dispersion characteristics of these glasses....

  4. Enhanced nonlinear refractive index in epsilon-near-zero materials

    CERN Document Server

    Caspani, L; Clerici, M; Ferrera, M; Roger, T; Di Falco, A; Kim, J; Kinsey, N; Shalaev, V M; Boltasseva, A; Faccio, D

    2016-01-01

    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here we demonstrate a universal approach based on the low linear permittivity values attained in the epsilon-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a six-fold increase of the Kerr nonlinear refractive index ($n_2$) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics.

  5. Enhanced Nonlinear Refractive Index in ε-Near-Zero Materials.

    Science.gov (United States)

    Caspani, L; Kaipurath, R P M; Clerici, M; Ferrera, M; Roger, T; Kim, J; Kinsey, N; Pietrzyk, M; Di Falco, A; Shalaev, V M; Boltasseva, A; Faccio, D

    2016-06-10

    New propagation regimes for light arise from the ability to tune the dielectric permittivity to extremely low values. Here, we demonstrate a universal approach based on the low linear permittivity values attained in the ε-near-zero (ENZ) regime for enhancing the nonlinear refractive index, which enables remarkable light-induced changes of the material properties. Experiments performed on Al-doped ZnO (AZO) thin films show a sixfold increase of the Kerr nonlinear refractive index (n_{2}) at the ENZ wavelength, located in the 1300 nm region. This in turn leads to ultrafast light-induced refractive index changes of the order of unity, thus representing a new paradigm for nonlinear optics. PMID:27341234

  6. Sensitivity Analysis of a Bioinspired Refractive Index Based Gas Sensor

    Institute of Scientific and Technical Information of China (English)

    Yang Gao; Qi Xia; Guanglan Liao; Tielin Shi

    2011-01-01

    It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.

  7. Refractive index determination by coherence scanning interferometry.

    Science.gov (United States)

    Yoshino, H; Kaminski, P M; Smith, R; Walls, J M; Mansfield, D

    2016-05-20

    Coherence scanning interferometry is established as a powerful noncontact, three-dimensional, metrology technique used to determine accurate surface roughness and topography measurements with subnanometer precision. The helical complex field (HCF) function is a topographically defined helix modulated by the electrical field reflectance, originally developed for the measurement of thin films. An approach to extend the capability of the HCF function to determine the spectral refractive index of a substrate or absorbing film has recently been proposed. In this paper, we confirm this new capability, demonstrating it on surfaces of silicon, gold, and a gold/palladium alloy using silica and zirconia oxide thin films. These refractive index dispersion measurements show good agreement with those obtained by spectroscopic ellipsometry. PMID:27411157

  8. Compact liquid-refractive index measuring equipment

    Institute of Scientific and Technical Information of China (English)

    Hong'an Ye(叶红安); Xi Wang(王熙); Cun Chang(常存)

    2003-01-01

    Based on total reflection principle, a compact liquid-refractive index measuring equipment was designedand fabricated, in which a diode laser was used as light source and a charge-coupled device (CCD) asphotodetector. The influence on measurement accuracy of the wavelength shift and intensity fluctuationof the diode laser were surmounted by an effective feedback method. It is crucial whether the diode lasercould be used in such a system.

  9. Refractive Index Sensor Using a Two-Hole Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Cortes, D; Sanchez-Mondragon, J J [Photonics and Optical Physics Laboratory, Optics Department, INAOE Apdo. Postal 51 and 216, Tonantzintla, Puebla 72000 (Mexico); Margulis, W [Department Fiber Photonics, ACREO, Electrum 236, 16440 Stockholm (Sweden); Dominguez-Cruz, R; May-Arrioja, D A, E-mail: darrioja@uat.edu.mx [Depto. de Ingenieria Electronica, UAM Reynosa Rodhe, Universidad Autonoma de Tamaulipas, Carr. Reynosa-San Fernando S/N, Reynosa, Tamaulipas 88779 (Mexico)

    2011-01-01

    We propose to use a twin-hole fiber to measure refractive index of liquids. The key idea is to have a single mode fiber (SMF) having two large air-holes running along the fiber length, the holes do not interact with the core. However, using wet chemical etching we can have access to the hole around the fiber, and further etching increases the holes diameter. The diameter is increased until the fiber exhibits a specific birefringence. Since the holes are open, by immersing the fiber in different liquids (n=1.33 to n=1.42) the value of the birefringence is modified and the refractive index of the liquid can be estimated from the change on the beat length. This process provides a very simple and highly sensitive mechanism for sensing refractive index in liquids, and can also be used for other applications.

  10. Negative Refractive Index Metasurfaces for Enhanced Biosensing

    Directory of Open Access Journals (Sweden)

    Dragan Tanasković

    2010-12-01

    Full Text Available In this paper we review some metasurfaces with negative values of effective refractive index, as scaffolds for a new generation of surface plasmon polariton-based biological or chemical sensors. The electromagnetic properties of a metasurface may be tuned by its full immersion into analyte, or by the adsorption of a thin layer on it, both of which change its properties as a plasmonic guide. We consider various simple forms of plasmonic crystals suitable for this purpose. We start with the basic case of a freestanding, electromagnetically symmetrical plasmonic slab and analyze different ultrathin, multilayer structures, to finally consider some two-dimensional “wallpaper” geometries like split ring resonator arrays and fishnet structures. A part of the text is dedicated to the possibility of multifunctionalization where a metasurface structure is simultaneously utilized both for sensing and for selectivity enhancement. Finally we give an overview of surface-bound intrinsic electromagnetic noise phenomena that limits the ultimate performance of a metasurfaces sensor.

  11. Measurement of refractive index of single microparticles

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H; Knoener, Gregor; Parkin, Simon; Nieminen, Timo A.; Heckenberg, Norman R.; Rubinsztein-Dunlop, Halina

    2006-01-01

    The refractive index of single microparticles is derived from precise measurement and rigorous modeling of the stiffness of a laser trap. We demonstrate the method for particles of four different materials with diameters from 1.6 to 5.2 microns and achieve an accuracy of better than 1%. The method greatly contributes as a new characterization technique because it works best under conditions (small particle size, polydispersion) where other methods, such as absorption spectroscopy, start to fail. Particles need not be transferred to a particular fluid, which prevents particle degradation or alteration common in index matching techniques. Our results also show that advanced modeling of laser traps accurately reproduces experimental reality.

  12. Absorption and refractive index dynamics in waveguide semiconductor electroabsorbers

    DEFF Research Database (Denmark)

    Romstad, Francis Pascal

    2002-01-01

    is the electroabsorption modulator response to a 10 Gb/s modulation of the bias. It is concluded that operation close to the absorption edge is advantageous both chirp-wise and with respect to lowering the drive voltage. This however becomes at the expense of a higher insertion loss. A comparison between a component...... with 10 shallow quantum wells and a component with 5 deep quantum wells shows that the shallow 10 quantum wells component is preferable with respect to chirp, extinction ratio and potentially also the insertion loss. Calculations of the refractive indes change confirms the measurements and show...... with 9.6 dB of extinction ratio can be realized. Teh sign of the refractive index change, induced by optical generation of carriers in the active region, is seen to depend both on the optical power and on the reverse bias applied to the saturable absorber. The trends of the observed refractive index...

  13. Liquid-core low-refractive-index-contrast Bragg fiber sensor

    CERN Document Server

    Qu, Hang

    2011-01-01

    We propose and experimentally demonstrate a low-refractive-index-contrast hollow-core Bragg fiber sensor for liquid analyte refractive index detection. The sensor operates using a resonant sensing principle- when the refractive index of a liquid analyte in the fiber core changes, the resonant confinement of the fiber guided mode will also change, leading to both the spectral shifts and intensity changes in fiber transmission. As a demonstration, we characterize the Bragg fiber sensor using a set of NaCl solutions with different concentrations. Strong spectral shifts are obtained with the sensor experimental sensitivity found to be ~1400nm/RIU (refractive index unit). Besides, using theoretical modeling we show that low-refractive-index-contrast Bragg fibers are more suitable for liquid-analyte sensing applications than their high-refractive-index-contrast counterparts.

  14. Characteristics measurement of gain and refractive index of traveling-wave semiconductor optical amplifier

    Institute of Scientific and Technical Information of China (English)

    MIAO Qing-yuan; Huang De-xiu; WANG Tao; KONG Xiao-jian; KE Chang-jian

    2005-01-01

    A novel method to measure the gain and refractive index characteristics of traveling-wave semiconductor optical amplifier(TMA) is presented.In-out fiber ends of TWA are used to construct an external cavity resonator to produce big ripple on amplified spontaneous emission(ASE) spectrum.By this means,Hakki-Paoli method is adopted to obtain the gain spectra of TWA over a wide spectral range.From measured longitudinal mode spacing and peak wavelength shift due to increased bias current,we further calculate the effective refractive index and the refractive index change.Special feature of refractive index change above lasing threshold is revealed and explained.

  15. Refractive index changes induced by sheet beams with various intensity distributions in LiNbO3:Fe crystal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; ZHAO Jianlin; XU Honglai; SUN Yidong; YANG Dexing; WANG Meirong

    2005-01-01

    According to the Kukhtarev equations and a simplified model based on the photovoltaic charge carriers transport mechanism, the distributions of the index changes (DICs) in LiNbO3:Fe crystals induced by sheet beams with various intensity profiles are theoretically analyzed. The numerically simulated results coincide with the analytic expressions deduced from the simplified model. The DICs in a LiNbO3:Fe crystal induced by sheet beams with rectangular, Gaussian and square law profiles are measured by using the interferometric method. By employing the analytic expressions, the experimental data points are well fitted. By utilizing the angular spectrum theory and the ray equation, the uniformities of the intensity profiles of the writing beams along the propagation directions and the influences of the self-defocusing effect of the crystal are numerically simulated, respectively. The results show that the experimental results are reliable. The numerically simulated method and the analytic expressions can be both employed to predict the DICs induced by sheet beams with various light intensity profiles. Furthermore, utilizing writing beams with proper intensity profiles, any desired index distributions could be obtained.

  16. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    Science.gov (United States)

    Potter, Jr., Barrett George; Potter, Kelly Simmons

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  17. Characterization of refractive index distribution of polymer optical fiber

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A focusing method is developed to characterize the refractive index profile of polymer optical fiber (POF). Based on the refractive index profile the theoretical bandwidth and the core index exponentα (α > 0) of POF are calculated. The results show that the value of theoretical bandwidth agrees well with the experimental data.

  18. Calculation of electron wave functions and refractive index of Ne

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The radial wave functions of inner electron shell and outer electron shell of a Ne atom were obtained by the approximate analytical method and tested by calculating the ground state energy of the Ne atom. The equivalent volume of electron cloud and the refractive index of Ne were calculated. The calculated refractive index agrees well with the experimental result. Relationship between the refractive index and the wave function of Ne was discovered.

  19. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  20. The preparation and refractive index of BST thin films

    International Nuclear Information System (INIS)

    Radio-frequency magnetron sputtering technique is used to deposit Ba0.65Sr0.35TiO3 (BST) thin films on fused quartz substrates. In order to prepare the high-quality BST thin films, the crystallization and microstructure of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). More intense characteristic diffraction peaks and better crystallization can be observed in BST thin films deposited at 600 deg. C and subsequently annealed at 700 deg. C. The refractive index of the films is determined from the measured transmission spectra. The dependences of the refractive index on the deposition parameters of BST thin films are different. The refractive index of the films increases with the substrate temperature. At lower sputtering pressure, the refractive index increases from 1.797 to 2.197 with pressure increase. However, when the pressure increases up to 3.9 Pa, the refractive index reduces to 1.86. The oxygen to argon ratio also plays an important effect on the refractive index of the films. It has been found that the refractive index increases with increase in the ratio of oxygen to argon. The refractive index of BST thin films is strongly dependent on the annealing temperature, which also increases as the annealing temperature ascends. In a word, the refractive index of BST thin films is finally affected by the films' microstructure and texture

  1. Ultrasensitive twin-core photonic bandgap fiber refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham; Bang, Ole

    2009-01-01

    We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift.......We propose a microfluidic refractive index sensor based on new polymer twin-core photonic bandgap fiber (PBGF). The sensor can achieve ultrahigh detection limit, i.e. >1.4times10-7RIU refractive index unit (RIU), by measuring the coupling wavelength shift....

  2. Empirical formula for the refractive index of freezing brine

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall

    2009-01-01

    The refractive index of freezing brine is important for example in order to estimate oceanic scattering as sea ice develops. Previously, no simple continuous expression was available for estimating the refractive index of brine at subzero temperatures. I show that extrapolation of the empirical...... formula for the refractive index of seawater by Quan and Fry [Appl. Opt. 34(18), 3477-3480 (1995)] provides a good fit to the refractive index of freezing brine for temperatures above -24 degrees celsius and salinities below 180 parts per thousand....

  3. Atmospheric stability index using radio occultation refractivity profiles

    Indian Academy of Sciences (India)

    D Jagadheesha; B Manikiam; Neerja Sharma; P K Pal

    2011-04-01

    A new stability index based on atmospheric refractivity at ∼500 hPa level and surface measurements of temperature, pressure and humidity is formulated. The new index named here as refractivity based lifted index (RLI) is designed to give similar results as traditionally used lifted index derived from radiosonde profiles of temperature, pressure and humidity. The formulation of the stability index and its comparison with the traditional temperature profile based lifted index (LI) is discussed. The index is tested on COSMIC radio occultation derived refractivity profiles over Indian region. The forecast potential of the new index for rainfall on 2° × 2° latitude–longitude spatial scale with lead time of 3–24 hours indicate that the refractivity based lifted index works better than the traditional temperature based lifted index for the Indian monsoon region. Decreasing values of RLI tend to give increasing rainfall probabilities.

  4. Refractive Index Compensation in Over-Determined Interferometric Systems

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2012-10-01

    Full Text Available We present an interferometric technique based on a differential interferometry setup for measurement under atmospheric conditions. The key limiting factor in any interferometric dimensional measurement are fluctuations of the refractive index of air representing a dominating source of uncertainty when evaluated indirectly from the physical parameters of the atmosphere. Our proposal is based on the concept of an over-determined interferometric setup where a reference length is derived from a mechanical frame made from a material with a very low thermal coefficient. The technique allows one to track the variations of the refractive index of air on-line directly in the line of the measuring beam and to compensate for the fluctuations. The optical setup consists of three interferometers sharing the same beam path where two measure differentially the displacement while the third evaluates the changes in the measuring range, acting as a tracking refractometer. The principle is demonstrated in an experimental setup.

  5. Targeted alteration of real and imaginary refractive index of biological cells by histological staining

    OpenAIRE

    Cherkezyan, Lusik; Subramanian, Hariharan; Stoyneva, Valentina; Rogers, Jeremy D.; Yang, Seungmoo; Damania, Dhwanil; Taflove, Allen; Backman, Vadim

    2012-01-01

    Various staining techniques are commonly used in biomedical research to investigate cellular morphology. By inducing absorption of light, staining dyes change the intracellular refractive index due to the Kramers-Kronig relationship. We present a method for creating 2-D maps of real and imaginary refractive indices of stained biological cells using their thickness and absorptance. We validate our technique on dyed polystyrene microspheres and quantify the alteration in refractive index of sta...

  6. Measurement of the refractive index of human teeth by optical coherence tomography

    Science.gov (United States)

    Meng, Zhuo; Yao, X. Steve; Yao, Hui; Liang, Yan; Liu, Tiegen; Li, Yanni; Wang, Guanhua; Lan, Shoufeng

    2009-05-01

    We describe a novel method based on optical coherence tomography (OCT) for the accurate measurement of the refractive index of in vitro human teeth. We obtain the refractive indices of enamel, dentin, and cementum to be 1.631+/-0.007, 1.540+/-0.013, and 1.582+/-0.010, respectively. The profile of the refractive index is readily obtained via an OCT B scan across a tooth. This method can be used to study the refractive index changes caused by dental decay and therefore has great potential for the clinical diagnosis of early dental caries.

  7. Determination of the complex refractive index of cell cultures by reflectance spectrometry

    Science.gov (United States)

    Calin, Mihaela Antonina; Calin, Marian Romeo; Munteanu, Constantin

    2014-06-01

    In this paper we propose a new approach to using reflectance spectrometry in connection with the Kramers-Kronig analysis for the determination of the complex refractive index of biological cells. Applying this procedure, the real and imaginary parts of the refractive index (refractive index and extinction coefficient) can be simultaneously determined. The accuracy of this procedure in the determination of the refractive index and extinction coefficient of culture media proved to be comparable with spectroscopic ellipsometry. Applying this procedure on the human umbilical vein endothelial cells (HUVEC), the results obtained from time-series measurements showed significant changes in the complex refractive index of cell cultures within 72h, the most important increases for both real and imaginary parts of the refractive index being recorded in the first 24h, when synthesis processes are happening. Thus, the analysis of the time-dependent changes in the complex refractive index provides information about the frequencies of the modifications that occur on both organizational structure and cells composition during the cell cycle. In conclusion, the combination of reflectance spectrometry with the Kramers-Kronig analysis is a feasible way to determine the complex refractive index of biological cells and to assess the events taking place during the cell cycle.

  8. Precise determination of the refractive index of suspended particles: light transmission as a function of refractive index mismatch

    Science.gov (United States)

    McClymer, J. P.

    2016-08-01

    Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.

  9. Effect of magnetic field of light on refractive index

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao

    2004-01-01

    Light refraction in a medium results from energy exchange between the medium and the magnetic field of the light. Formulas of refractive index, that is, the ratio of light speed in vacuum to light speed in the medium, were derived with the inductor model of electron cloud and the law of energy conservation. Refractive indices of several media were calculated using the formulas derived, and the calculated results are in agreement with the results measured. The anisotropy and the nonlinearity of the refractive index are explained with the theory described in this work.

  10. Measurement of air refractive index fluctuation based on a laser synthetic wavelength interferometer

    International Nuclear Information System (INIS)

    A novel method for measuring air refractive index fluctuation based on a laser synthetic wavelength interferometer is proposed. The change of air refractive index is regarded as an equivalent measured displacement in the measurement arm, which can be realized by tracking a large compensative displacement of the reference mirror in the reference arm of the laser synthetic wavelength interferometer. The merit of the proposed method is that the slight air refractive index fluctuation is magnified to a large displacement on the order of millimeters or micrometers. To verify the feasibility of the proposed method, the correlation experiment between the displacement of the reference mirror and the air refractive index fluctuation and the comparison experiments with Edlén equations both in short time and long time were performed. Experimental results show that the measurement accuracy of the air refractive index fluctuation is better than 3.7 × 10–8. (paper)

  11. Intersubband optical absorption coefficients and refractive index changes in a graded quantum well under intense laser field: Effects of hydrostatic pressure, temperature and electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ungan, F., E-mail: fungan@cumhuriyet.edu.tr [Department of Physics, Cumhuriyet University, 58140 Sivas (Turkey); Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Restrepo, R.L. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Escuela de Ingeniería de Antioquia AA 7516, Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Morales, A.L.; Duque, C.A. [Grupo de Materia Condensade-UdeA, Instituto de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2014-02-01

    The effects of hydrostatic pressure, temperature, and electric field on the optical absorption coefficients and refractive index changes associated with intersubband transition in a typical GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under intense laser field have been investigated theoretically. The electron energy eigenvalues and the corresponding eigenfunctions of the graded quantum well are calculated within the effective mass approximation and envelope wave function approach. The analytical expressions of the optical properties are obtained using the compact density-matrix approach and the iterative method. The numerical results show that the linear and nonlinear optical properties depend strongly on the intense laser field and electric field but weakly on the hydrostatic pressure and temperature. Additionally, it has been found that the electronic and optical properties in a GaAs/Ga{sub 0.7}Al{sub 0.3}As graded quantum well under the intense laser field can be tuned by changing these external inputs. Thus, these results give a new degree of freedom in the devices applications.

  12. Study of the refractive index change in a-Si:H thin films patterned by 532 nm laser radiation for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Colina, M., E-mail: monica.colina.brito@upm.e [Centro Laser UPM, Univ. Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Molpeceres, C.; Holgado, M. [Centro Laser UPM, Univ. Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain); Gandia, J. [Dept. de Energias Renovables, Energia Solar Fotovoltaica, CIEMAT, Avda, Complutense 22, 28040 Madrid (Spain); Nos, O. [CeRMAE Dept. Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Ocana, J.L. [Centro Laser UPM, Univ. Politecnica de Madrid, Ctra. de Valencia Km 7.3, 28031 Madrid (Spain)

    2010-07-01

    Laser scribing of hydrogenated amorphous silicon (a-Si:H) is a crucial step in the fabrication of thin film photovoltaic modules. During such process, inherent thermo-mechanical effects associated to laser ablation mechanisms lead to thermal damages. In that sense, the state of the material remaining in the vicinity of the ablated area has a critical influence on the electrical properties of the final devices. In this work, a comprehensive analysis of refractive index variations for the material surrounding the ablated area by means of Infrared-Visible Fourier transform spectrometry is proposed. Besides, in order to evaluate the material microstructure, Raman spectroscopy is employed as a complimentary technique. It was seen that the refractive index variation decreased as the distance from the center of the ablated groove was increased. Likewise, a clear transition from highly crystalline to amorphous material could be also observed as a function of the distance from the groove.

  13. The influence of refractive index change and initial bending of cantilevers on the optical lever readout method

    DEFF Research Database (Denmark)

    Dohn, Søren; Greve, Anders; Svendsen, Winnie Edith;

    2010-01-01

    It has been speculated that the initial bending of cantilevers has a major influence on the detector signal in a cantilever-based sensor using the optical lever readout method. We have investigated theoretically as well as experimentally the changes induced in the detector signal when the optical...... experimentally using an environmental chamber and varying the pressure. We sketch routes to circumvent the problem and formulas suitable for data treatment are given....

  14. Refractive index and temperature nanosensor with plasmonic waveguide system

    Science.gov (United States)

    Kong, Yan; Qiu, Peng; Wei, Qi; Quan, Wei; Wang, Shouyu; Qian, Weiying

    2016-07-01

    A surface plasmon polariton sensor consisting of two metal-insulator-metal waveguides and a transverse rectangular resonator is proposed. Both refractive index and temperature sensing characteristics are analyzed by investigating the transmission spectra which demonstrates that the transmission peak wavelength shifting satisfies linear relation with environmental refractive index and temperature, respectively. The proposed design provides high refractive index and temperature sensitivity as 3.38×106%/RIU and 82%/K estimated by integrated response of the sensor, and owns the potentials for high-throughput array sensing. It is believed that the nanoscale sensor can be applied in spot detection for high speed multi-parameter sensing and accurate measurements.

  15. Pump-induced refractive index modulation and dispersions in Er3+-doped fibers

    DEFF Research Database (Denmark)

    Thirstrup, Carsten; Shi, Yuan

    1996-01-01

    A novel measurement system provides determination of pump induced phase shifts in erbium doped fibers with an accuracy of ~π/20. Using this system, a systematical analysis of the pump induced modulation of the refractive index and dispersions for a signal at 1550 nm and a pump at 980 nm is reported....... The analysis contains measurements of pump induced refractive index changes as function of wavelength, pump power, and doping concentration. A model taking account of the contribution to the refractive index changes from optical transitions between 4 I15/2 states and 4I13/2 states in Er3+ yields good agreement...

  16. Demystifying back scatter interferometry: a sensitive refractive index detector

    DEFF Research Database (Denmark)

    Jepsen, Søren Terpager; Jørgensen, Thomas Martini; Trydal, Torleif;

    2014-01-01

    BACKGROUND: Back Scatter Interferometry (BSI) is a sensitive method for detecting changes of the refractive index (RI) in small capillaries. The method was originally developed as an off-axial column detector for use in Liquid Chromatography or Capillary Electrophoresis systems, but it has been...... a common-path interferometer. The sensitivity of the BSI system is given by twice the inner diameter of the capillary times the wavenumber of the light source. Our results suggest that Back Scatter Interferometry does not provide a unique measurement principle for sensing biochemical bindings compared...

  17. Engineering a resonant nanocoating for an optical refractive index sensor

    Science.gov (United States)

    Bialiayeu, A.; Ianoul, A.; Albert, J.

    2014-03-01

    We proposing to boost the performance of refractive index sensors based on the tilted fiber Bragg grating (TFBG) structure by resonant coupling of small spherical nanoparticles to the TFBG resonances. The optimal choice of nanoparticle parameters is discussed.

  18. Dark Matter Constraints from a Cosmic Index of Refraction

    OpenAIRE

    Gardner, S.; Latimer, D. C.

    2009-01-01

    The dark-matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects in the propagation and attenuation of light. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particula...

  19. Dependence of Physical Parameters of Compound Semiconductors on Refractive Index

    Directory of Open Access Journals (Sweden)

    R.R. Reddy

    2003-07-01

    Full Text Available Interesting relationships have been found between refractive index, plasmon energy, electronic polarisability, bond length, microhardness, bulk modulus, force constants and lattice energy. An attempt has been made for the first time to correlate only one physical parameter with others. The calculated values are in good agreement with the experimental values as well as with the values reported in the literature. Refractive index data is the only one parameter required to estimate all the above parameters.

  20. Refractive index modulation in polymer film doped with diazo Meldrum's acid

    Science.gov (United States)

    Zanutta, Alessio; Villa, Filippo; Bertarelli, Chiara; Bianco, Andrea

    2016-08-01

    Diazo Meldrum's acid undergoes a photoreaction induced by UV light and it is used as photosensitizer in photoresists. Upon photoreaction, a change in refractive index occurs, which makes this system interesting for volume holography. We report on the sublimation effect at room temperature and the effect of photoirradiation on the refractive index in thin films of CAB (Cellulose acetate butyrate) doped with different amount of diazo Meldrum's acid. A net modulation of the refractive index of 0.01 is achieved with 40% of doping ratio together with a reduction of the film thickness.

  1. The temperature dependence of refractive index of hemoglobin at the wavelengths 930 and 1100 nm

    Science.gov (United States)

    Lazareva, Ekaterina N.; Tuchin, Valery V.

    2016-04-01

    In this study, the refractive index of hemoglobin was measured at different temperatures within a physiological range and above that is characteristic to light-blood interaction at laser therapy. Measurements were carried out using the multi-wavelength Abbe refractometer (Atago, Japan). The refractive index was measured at two NIR wavelengths of 930 nm and 1100 nm. Samples of hemoglobin solutions with concentration of 80, 120 and 160 g/l were investigated. The temperature was varied between 25 and 55 °C. It was shown that the dependence of the refractive index of hemoglobin is nonlinear with temperature, which may be associated with changes in molecular structure of hemoglobin.

  2. Ultraviolet light induced refractive index structures in germanosilica

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    1997-01-01

    application of a scanning near-field optical microscope to obtain high resolution images of UV induced refractive index structures and by monitoring the dynamics of UV induced index changes and luminescence. During part of my ph.d. project I have worked at the National Institute of Standards and Technolgy...... bulk optics. Finally, I have developed a new method for direct UV writing of planar waveguide devices using a focussed continuous wave UV laser beam which is scanned across a photosensitive thin film deposited on a silicon wafer. Contrary to other waveguide fabrication techniques this method requires...... no additional wafer processing. By demonstrating a wide variety of integrated devices it is shown that the performance of this method in terms of waveguide loss, flexibility and fabrication yield rivals or surpasses that currently obtainable with other more elaborate techniques....

  3. Structures with negative index of refraction

    Science.gov (United States)

    Soukoulis, Costas M.; Zhou, Jiangfeng; Koschny, Thomas; Zhang, Lei; Tuttle, Gary

    2011-11-08

    The invention provides simplified negative index materials (NIMs) using wire-pair structures, 4-gap single ring split-ring resonator (SRR), fishnet structures and overleaf capacitor SRR. In the wire-pair arrangement, a pair of short parallel wires and continuous wires are used. In the 4-gap single-ring SRR, the SRRs are centered on the faces of a cubic unit cell combined with a continuous wire type resonator. Combining both elements creates a frequency band where the metamaterial is transparent with simultaneously negative .di-elect cons. and .mu.. In the fishnet structure, a metallic mesh on both sides of the dielectric spacer is used. The overleaf capacitor SRR changes the gap capacities to small plate capacitors by making the sections of the SRR ring overlap at the gaps separated by a thin dielectric film. This technique is applicable to conventional SRR gaps but it best deploys for the 4-gap single-ring structures.

  4. Intensity correlations in random media induced by refractive index tuning (RIT)

    CERN Document Server

    Faez, Sanli; Lagendijk, Ad

    2009-01-01

    We introduce a new approach for measuring both the transport and the effective medium properties of light propagation in inhomogeneous media. These properties include the diffusion constant, the path length distribution, and the effective index of refraction. Our method utilizes the equivalence of frequency variation with a change in the index of refraction. A new correlation function that describes correlations in both frequency and index of refraction is introduced. Experimentally, we measure this correlation via spectrally resolved refractive index tuning (RIT), controlling the latter via changes in the ambient pressure. Our new generic measurement technique can be used to characterize a wide variety of materials, including photonic crystals, random photonic media, photonic meta-materials, and certain porous biological samples like bone and wood.

  5. Entanglement Generation by Time Varying Refractive Index: Analogy with Cosmological Model

    CERN Document Server

    Moradi, Shahpoor

    2012-01-01

    Generation of entanglement between modes of a electromagnetic fields by sudden change of the refractive index of a medium is considered. We use the analogy between the Fock-space formulation of pair creation caused by the contraction and expansion of the universe on one hand and the pair creation in time-dependent electric fields on the other hand. It is shown that entanglement between photons encodes information concerning the underlying refractive index of a medium.

  6. Bent induced refractive index profile variation and mode field distribution of step-index multimode optical fiber

    Science.gov (United States)

    Sokkar, T. Z. N.; Ramadan, W. A.; Shams El-Din, M. A.; Wahba, H. H.; Aboleneen, S. S.

    2014-02-01

    The effect of bending of step-index optical fiber on its refractive index profile and the mode field distribution were investigated. An enhanced slab model is suggested in this investigation. A qualitative study has been done on a bent step-index optical fiber. A very small radius of bending curvature (R) has been reached, practically R is 9.25 mm. In this case a dramatic change of the refractive index profile has been observed with an induced birefringence. The refractive index profile is recovered from the interferograms which were generated by Mach-Zehnder interferometer. The interferogram has been analyzed using advanced image analyses software. We have proposed another approach to calculate the refractive index profile of bent optical fiber. In this approach the fiber is divided into layers and slabs, simultaneously. The induced refractive index profile variation of the bent optical fiber, for parallel and perpendicular components of the light beam, is calculated considering the refraction of the light beam traversing the fiber. The mode field distribution and mode numbers in these two directions of polarizations are determined for both straight and bent fibers.

  7. Investigation of the nonlinear refractive index of single-crystalline thin gold films and plasmonic nanostructures

    Science.gov (United States)

    Goetz, Sebastian; Razinskas, Gary; Krauss, Enno; Dreher, Christian; Wurdack, Matthias; Geisler, Peter; Pawłowska, Monika; Hecht, Bert; Brixner, Tobias

    2016-04-01

    The nonlinear refractive index of plasmonic materials may be used to obtain nonlinear functionality, e.g., power-dependent switching. Here, we investigate the nonlinear refractive index of single-crystalline gold in thin layers and nanostructures on dielectric substrates. In a first step, we implement a z-scan setup to investigate ~100-µm-sized thin-film samples. We determine the nonlinear refractive index of fused silica, n 2(SiO2) = 2.9 × 10-20 m2/W, in agreement with literature values. Subsequent z-scan measurements of single-crystalline gold films reveal a damage threshold of 0.22 TW/cm2 and approximate upper limits of the real and imaginary parts of the nonlinear refractive index, | n 2'(Au)| film). An upper limit for the nonlinear power-dependent phase change between two propagating near-field modes is determined to Δ φ < 0.07 rad.

  8. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Science.gov (United States)

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  9. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Directory of Open Access Journals (Sweden)

    José Luis Cruz

    2013-08-01

    Full Text Available We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions.

  10. Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes

    DEFF Research Database (Denmark)

    Raza, Søren; Toscano, Giuseppe; Jauho, Antti-Pekka;

    2013-01-01

    We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analy......We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive...... an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure of merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits...

  11. Optical humidity-sensitive mechanism based on refractive index variation

    Institute of Scientific and Technical Information of China (English)

    Zhenyuan Wang; Zhengtian Gu

    2009-01-01

    A novel composite model is put forward for humidity-sensitive material based on Maxwell-Garnett and effective medium theory.The analytical expression of the relation between effective refractive index and relative humidity is shown with different absorption factors and porosities.The larger the absorption factor is,the higher the refractive index is.The refractive index of humidity-sensitive SiO2 film decreases with the increase of ceramic material porosity.The sensitivity of optical humidity sensor can reach the magnitude of 10-3.In comparison with the experimental humidity-sensing curve by the method of p-polarized reflectance and the analysis of mechanism,theoretical simulation is in agreement with experimental results.Therefore,this composite model is proved to be reasonable which lays new theoretical foundation in further research on optical humidity sensor.

  12. Empirical modelling to predict the refractive index of human blood

    Science.gov (United States)

    Yahya, M.; Saghir, M. Z.

    2016-02-01

    Optical techniques used for the measurement of the optical properties of blood are of great interest in clinical diagnostics. Blood analysis is a routine procedure used in medical diagnostics to confirm a patient’s condition. Measuring the optical properties of blood is difficult due to the non-homogenous nature of the blood itself. In addition, there is a lot of variation in the refractive indices reported in the literature. These are the reasons that motivated the researchers to develop a mathematical model that can be used to predict the refractive index of human blood as a function of concentration, temperature and wavelength. The experimental measurements were conducted on mimicking phantom hemoglobin samples using the Abbemat Refractometer. The results analysis revealed a linear relationship between the refractive index and concentration as well as temperature, and a non-linear relationship between refractive index and wavelength. These results are in agreement with those found in the literature. In addition, a new formula was developed based on empirical modelling which suggests that temperature and wavelength coefficients be added to the Barer formula. The verification of this correlation confirmed its ability to determine refractive index and/or blood hematocrit values with appropriate clinical accuracy.

  13. Modified refractive index of zinc sulfide nanoparticles doped glasses

    Directory of Open Access Journals (Sweden)

    M. Moussaoui

    2011-09-01

    Full Text Available ZnS nanoparticles (NPs embedded in an oxide glass have been achieved in the present work by melting process. The UV-visible absorption and fluorescence properties of these doped and undoped glasses have been evaluated and compared. Studies on absorption spectra showed that the size of the ZnS NPs was near to 2 nm. Doped glass fluorescence characterized by laser confocale microscopy is centered at about 620 nm. We measured also the refractive index of ZnS doped glasses. The maximum refractive index difference between the undoped and ZnS doped glasses was found about 0.1 (l = 632.8 nm.

  14. Rainbow refractometry on particles with radial refractive index gradients

    Energy Technology Data Exchange (ETDEWEB)

    Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)

    2007-10-15

    The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)

  15. Studying of refractive index measurements in reflected light

    CERN Document Server

    Tikhonov, E A

    2010-01-01

    Two methods of refractometry in reflected light from optical surface of samples are considered and studied experimentally. Methods are grounded on results of Fresnel theory of concerning light reflectivity at near normal incidence and Brewster angle. Sources of errors for both methods were considered and possibility of measuring of the refractive index with application of laser radiation with accuracy to within 4th sign was shown. Advantages of described methods concerning requirements to preparation of samples to refractive index measurement of solid, thin-film and absorbing materials are scored.

  16. Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Kumar, Rajesh [Radiological Physics and Advisory Division, BARC, Mumbai 400094 (India)

    2015-02-15

    Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm

  17. Direct characterization of ultraviolet-light-induced refractive index structures by scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Madsen, S.; Hvam, Jørn Märcher;

    1998-01-01

    We have applied a reflection scanning near-field optical microscope to directly probe ultraviolet (UV)-light-induced refractive index structures in planar glass samples. This technique permits direct comparison between topography and refractive index changes (10(-5)-10(-3)) with submicrometer...

  18. Effect of Effective Refractive Index of Grating in FBG Splitter

    Directory of Open Access Journals (Sweden)

    DINESH ARORA

    2011-09-01

    Full Text Available The Fiber Bragg Gratings have been used extensively in the communication industry. Fiber Bragg grating is written directly into the core of the optical fiber and it is quite an attractive technique for wavelength splitter since it provides high reflectivity at a certain wavelength, with negligible transmission losses for others, providing a wavelength-channel selection with low crosstalk between adjacent channels.In this paper we propose a Fiber Bragg Grating base splitter with alteration of effective refractive index of grating for Ethernet passive optical network. With the increase in the effective refractive index the reflectivity of grating is increased. We analysed the effect of effective refractive index on reflectivity of grating. In our work the Bragg wavelength has been fixed at 1550 nm,length of the grating as 10mm and with effective refractive index as 4.0 it has been found that the reflectivity of the grating or the effectiveness of the grating in extracting the wavelength is 92-93%.

  19. Refractive index determination in axially symmetric oprtically inhomogeneous media

    Science.gov (United States)

    Ionescu-Pallas, Nicholas; Vlad, Valentin I.; Bociort, Florian

    The focussing method from transversally light, put forward by Dietrich Marcuse in view of determining the refractive index profile (RIP) in optical fibers and fiber performs, is revised. A more rigorous derivation of the Marcuse formula is given, establishing the conditions of its validity and a simplified version is initially proposed, able to avoid the systematic errors in the processing of light intensity data.

  20. Silicon photonic crystal nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Dorfner, Dominic; Hürlimann, T.; Zabel, T.;

    2008-01-01

    mode frequency between input and output waveguides. Optical characterization of the structures in air and various liquids demonstrate detectivities in excess of n=n = 0:018 and n=n = 0:006 for the H1-r and L3 cavities, respectively. The measured cavity-frequencies and detector refractive index...

  1. Monitoring of temperature-mediated adipose tissue phase transitions by refractive-index measurements

    Science.gov (United States)

    Yanina, I. Yu.; Popov, A. P.; Bykov, A. V.; Tuchin, V. V.

    2014-10-01

    Monitoring of temperature-mediated adipose tissue phase transitions were studied in vitro using an Abbe refractometer. The 1-2-mm thick porcine fat tissues slices were used in the experiments. The observed change in the tissue was associated with several phase transitions of lipid components of the adipose tissue. It was found that overall heating of a sample from the room to higher temperature led to more pronounced and tissue changes in refractive index if other experimental conditions were kept constant. We observed an abrupt change in the refractive index in the temperature range of 37-60 °C.

  2. Experimental determination of the refractive index of metamaterials

    International Nuclear Information System (INIS)

    We present a simple experimental technique based on diffraction for determining the complex refractive index of metamaterials, and demonstrate it with metamaterials that consist of detuned electrical dipoles (DEDs), mimicking the dressed-state picture of electromagnetically induced transparency (EIT). The metamaterials are realized by fabricating lithographically defined gold nanorods on a silica substrate, covered with a ∼ 15 µm thick polymer layer, and feature EIT-like transmission spectra with transparency windows centered at wavelengths near ∼ 800 nm. The refractive indices are determined for wavelengths where the DED metamaterials exhibit enhanced transmission. Thereby, we experimentally demonstrate normal dispersion in the transmission window and estimate the group refractive index to ∼ 3.6. Furthermore, finite-element simulations are conducted on a monolayer of DED unit cells, which similarly exhibit the EIT-like behavior in terms of enhanced transmission revealed in the transmission spectra. Simulated transmission and reflection spectra are utilized for calculations of the real and imaginary parts of the metamaterial refractive index, showing consistent trends with those obtained experimentally

  3. High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD.

    Science.gov (United States)

    Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun

    2015-06-01

    Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors. PMID:26072758

  4. Numerical Study of Negative-Refractive Index Ferrite Waveguide

    Directory of Open Access Journals (Sweden)

    Mohammed O. Sid-Ahmed

    2012-03-01

    Full Text Available Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and permittivity of the structure are both simultaneously negative. The frequency band corresponding to this transmission can be tuned by changing the applied magnetic fields. The obtained results are in agreement with the law of conservation of energy. Consider a magnetized ferrite-wire waveguide structure situated between two half free spaces. Ferrites to provide negative permeability and wire array to provide negative permittivity. The structure form left-handed material (LHM with negative refractive index. The transmission of electromagnetic waves through the structure is investigated theoretically. Maxwell's equations are used to determine the electric and magnetic fields of the incident waves at each layer. Snell's law is applied and the boundary conditions are imposed at each layer interface to calculate the reflected and transmitted powers of the structure. Numerical results are illustrated to show the effect of frequency, applied magnetic fields, angle of incidence and LHM thickness on the mentioned powers. The analyzed results show that the transmission is very good when the permeability and

  5. Electrically tunable refractive index in the dark conglomerate phase of a bent-core liquid crystal

    Science.gov (United States)

    Nagaraj, M.; Görtz, V.; Goodby, J. W.; Gleeson, H. F.

    2014-01-01

    Here we report an electrically tunable refractive index observed in an isotropic liquid crystal phase known as the dark conglomerate (DC) phase. This unusual change in the refractive index which has not been reported before in the DC phase of other bent-core liquid crystals occurs because of a series of electric-field-driven transformations that take place in the DC phase of the studied bent-core liquid crystal. These transformations give rise to a decrease in the refractive index of the system, when an electric field is applied across the device, and no change in the birefringence is seen during such behavior. The electro-optic phenomenon is described in detail and the possibility of exploiting this for a number of liquid crystal based device applications is discussed.

  6. Nonlinear Refractive Index Measurement in Semiconductor-Doped Glasses

    Directory of Open Access Journals (Sweden)

    M. t. Tavassoli

    1997-04-01

    Full Text Available   There are several techniques in use for non-linear refractive index measurement, namely, interferometric techniques, in which conventional inter-ferometers are used, degenerate for wave mixing (DFWM, and z-scan, Each of these techniques suffers from some shortcmings. For example conventional interferometers like Fabry-Perot and Twyman-Green need high quality optical components, unwanted reflections on these components produce noise, and the device limits the probe-pump anglc, or in z-scan technique one needs very sensitive detectors and since the intensity is monitored by the nonlinear absorption, which is usually present, reduces the measurement accuracy.   In the techniqucs introduced here, in principle, only a plate of the sample is required, and even parallelism of the plate surfaces is not curcial. Experiments can be carried out successfully if the angle between the plate surface is less than few minutes. In the first technique, the probe beam strikes the surface at an arbitray angle of incidence. The reflected beam from the two surfaces of the sample interfere on a photo-sensitive screen like CCD, and more or less linear interference fringes are produced. When the pump beam is switched on, the interference pattern deforms. The amount and the direction of the deformation give the value and the sign of the non-linear refractive index. In this technique the probe-pump angle can be varied from 00 to 1900.  In the second technique, interference between the reflected probe beam from the sample and the diffracted pump beam from the grating induced by the interference of the probe and the pump beams, leads to a series of circular fringes. When the non-linear sample is replaced by a linear material like fuse silica glass, the above mentioned circular fringes are formed, but the number of fringes in a specified angular interval remains fixed as the pump beam intensity increases. But, in the case of a non-linear sample the number changes due to

  7. Determination of refractive index of various materials on Brewster angle

    CERN Document Server

    Tikhonov, Eugene A

    2015-01-01

    Studied experimentally the origin of the non-zero reflection of p-polarized radiation (TM) of Brewster's angle. The results have shown the residual reflected light in the vicinity of Brewster angle occurs due to inaccessibility 100% polarization degree the incident linearly-polarized radiation and installation of the zero azimuthal angle. These factors create the s-component of the radiation reflected from the examined surface indeed. A smooth change of reflected light polarization in the vicinity of Brewster angle in the sequence p-s-p appears due to the changing power proportion of reflected p-, and s-components but not is the result of the atomically thin transitional layer at the border of the material/environment according to Drude model. Metrological aspects of refractive index measurement by Brewster angle are investigated: due to the above-mentioned factors, as well as due to the contribution of the reflected scattered light caused by on residual roughness of the optical surface. Advantages of Brewste...

  8. The use of a conical lens to find the refractive index of liquids

    International Nuclear Information System (INIS)

    In this work, the basic idea is to determine the refractive index of liquids unknown using a conical lens. The measurement of the refractive index of liquids is an important work in engineering and science since is one of the most important optical parameter. The adulteration problem is increasing day by day; therefore it is necessary to implement new and simple devices for measure the refractive index of several materials. There is a great variety of interferometric methods that may be used for determining the refractive index. However, these methods either need sophisticated equipment or have low accuracy. Our system consists of a conical lens coupled to a cylindrical container with a liquid whose composition can be changed easily or adulterated. The diameter of the emergent beam of the container is associated to the specific index of refraction of each substance. Any adulteration of the liquid will be reflected in the diameter of the beam, which will be detected by a charge-coupled device (CCD). Our hypothesis is supported by developed mathematical calculations and numerical simulations.

  9. The use of a conical lens to find the refractive index of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Anguiano-Morales, Marcelino; Salas Peimbert, Didia P; Trujillo-Schiaffino, Gerardo, E-mail: manguiano@itchihuahua.edu.mx [Instituto Tecnologico de Chihuahua, Division de Estudios de Posgrado e Investigacion, Av. Tecnologico No 2909, Chihuahua, Chih., 31310 (Mexico)

    2011-01-01

    In this work, the basic idea is to determine the refractive index of liquids unknown using a conical lens. The measurement of the refractive index of liquids is an important work in engineering and science since is one of the most important optical parameter. The adulteration problem is increasing day by day; therefore it is necessary to implement new and simple devices for measure the refractive index of several materials. There is a great variety of interferometric methods that may be used for determining the refractive index. However, these methods either need sophisticated equipment or have low accuracy. Our system consists of a conical lens coupled to a cylindrical container with a liquid whose composition can be changed easily or adulterated. The diameter of the emergent beam of the container is associated to the specific index of refraction of each substance. Any adulteration of the liquid will be reflected in the diameter of the beam, which will be detected by a charge-coupled device (CCD). Our hypothesis is supported by developed mathematical calculations and numerical simulations.

  10. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film. Film samples were exposed to focused above bandgap light with wavelength at 405 nm using different fluence adjusted by laser power and exposure time. The index of refraction before and after laser irradiation was calculated by fitting the experimental data obtained from Spectroscopic Ellipsometer (SE) measurement to Tauc-Lorenz dispersion formula. A positive change in refractive index (Δn = 0.19 at 1.55 μm) as well as an enhancement in anisotropy was achieved in As2S3 film by using 10 mW, 0.3 μs laser irradiation. With further increasing the fluence, refractive index increased while anisotropic property weakened. Due to the rapid and large photo-induced modification of refractive index obtainable with high spatial resolution, this process is promising for integrated optic device fabrication.

  11. Dark Matter Constraints from a Cosmic Index of Refraction

    CERN Document Server

    Gardner, S

    2009-01-01

    The dark-matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects: the real part yields dispersive effects in propagation, and the imaginary part yields such in attenuation. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particular observations needed to isolate its coefficients. This, with the advent of new opportunities to view gamma-ray bursts at cosmological distance scales, gives us a new probe of dark matter. As a first application we use the time delay determined from radio afterglow observations of gamma-ray bursts to limit the charge-to-mass ratio of dark matter to |\\epsilon/M|< 1.8 x 10^{-5}/eV at 95% CL.

  12. A RICH with aerogel: a study of refractive index uniformity

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Easo, S

    2004-01-01

    The use of aerogel as a radiator in the RICH detectors of LHCb is a challenge due to the hot environment of the hadron collider LHC. Large size tiles of silica aerogel were recently produced with unprecedented optical quality for such dimensions. Results of laboratory measurements and beam tests are briefly reported. A description of a method to measure the uniformity of the index of refraction within the tile is given.

  13. Studying of refractive index measurements in reflected light

    OpenAIRE

    Tikhonov, E. A.; Ivashkin, V. A.

    2010-01-01

    Two methods of refractometry in reflected light from optical surface of samples are considered and studied experimentally. Methods are grounded on results of Fresnel theory of concerning light reflectivity at near normal incidence and Brewster angle. Sources of errors for both methods were considered and possibility of measuring of the refractive index with application of laser radiation with accuracy to within 4th sign was shown. Advantages of described methods concerning requirements to pre...

  14. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  15. Negative Refractive Index in a Four-Level Atomic System

    Institute of Scientific and Technical Information of China (English)

    ZhANG Hong-Jun; GONG Shang-Qing; NIU Yue-Ping; LI Ru Xin; XU Zhi-Zhan

    2006-01-01

    @@ We propose a scheme for realizing negative refractive index in a four-level atomic system. It is shown that such a system can simultaneously exhibit negative permittivity and negative permeability in an optical frequency range.Furthermore, by analysing the dispersion property of the left-handed material, we find that the probe beam can be controlled from superluminal to subluminal or vice versa via choosing appropriate parameters.

  16. Matching the refractive index [in] density stratified flows

    OpenAIRE

    Hannoun, Imad

    1985-01-01

    The use of optical methods such as Laser Doppler Velocimetry (LDV) and laser induced fluorescence techniques (LIF) in experimental fluid mechanics is becoming very common. The greatest advantage of such methods is that measurements are made without disturbing the flow. A major impediment to using optical methods to study density stratified flows is the variation of the refractive index within the flow field. McDougall (1979a) has proposed a method for the reduction of refrac...

  17. Fiber probe microcavities for refractive index and temperature discrimination

    Science.gov (United States)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-05-01

    Fiber probe structures composed of two physical microcavities were created using focused ion beam technology. These structures have a tip-like shape as they were milled in preciously etched tapered fiber tips. The microprobes are then characterized for temperature and refractive index sensing using a signal filtering technique to discriminate signals from distinct microcavities. Using fast Fourier transforms combined with band-pass filters, it is possible to reconstruct the spectra of each cavity independently and thus measure their individual spectral shifts.

  18. A Simple Model for Measuring Refractive Index of a Liquid Based upon Fresnel Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Wei; WU Zhi-Fang; WEN Ting-Dun

    2007-01-01

    Due to many experimental data required and a lot of calculations involved, it is very complex and cumbersome to model prism-based liquid-refractive-index-measuring methods. We develop a new method of mathematical modelling for measuring refractive index of a liquid based upon the Fresnel formula and prism internal reflection at an incident angle less than the critical angle. With this method, only two different concentrations measurements for a kind of solution can lead to the determination of computational model. Measurements are performed to examine the validity of the theoretical model. Experimental results indicate the feasibility of the theoretical model with an error of 1%. The method is also capable of measuring even smaller changes in the optical refractive index of the material on a metal surface by the surface plasma resonance sensing techniques.

  19. Estimating index of refraction for material identification in comparison to existing temperature emissivity separation algorithms

    Science.gov (United States)

    Martin, Jacob A.; Gross, Kevin C.

    2016-05-01

    As off-nadir viewing platforms become increasingly prevalent in remote sensing, material identification techniques must be robust to changing viewing geometries. Current identification strategies generally rely on estimating reflectivity or emissivity, both of which vary with viewing angle. Presented here is a technique, leveraging polarimetric and hyperspectral imaging (P-HSI), to estimate index of refraction which is invariant to viewing geometry. Results from a quartz window show that index of refraction can be retrieved to within 0.08 rms error from 875-1250 cm-1 for an amorphous material. Results from a silicon carbide (SiC) wafer, which has much sharper features than quartz glass, show the index of refraction can be retrieved to within 0.07 rms error. The results from each of these datasets show an improvement when compared with a maximum smoothness TES algorithm.

  20. Realization of absolute negative refraction index by a photonic crystal using anisotropic dielectric material

    Institute of Scientific and Technical Information of China (English)

    Yuntuan Fang; Zhengbiao Ouyang

    2008-01-01

    A method to realize absolute negative refraction index -1 with a two-dimensional (2D) photonic crystal is presented by introducing dielectric anisotropy in the photonic crystal material. The band structures of E-polarization mode and H-polarization mode can be adjusted by changing the parameters of materials. Thus the two modes with different polarizations have the same negative refraction index -1 for the same frequency. The results are demonstrated by numerical simulation based on the finite-difference time-domain (FDTD) method.

  1. 3D refractive index measurements of special optical fibers

    Science.gov (United States)

    Yan, Cheng; Huang, Su-Juan; Miao, Zhuang; Chang, Zheng; Zeng, Jun-Zhang; Wang, Ting-Yun

    2016-09-01

    A digital holographic microscopic chromatography-based approach with considerably improved accuracy, simplified configuration and performance stability is proposed to measure three dimensional refractive index of special optical fibers. Based on the approach, a measurement system is established incorporating a modified Mach-Zehnder interferometer and lab-developed supporting software for data processing. In the system, a phase projection distribution of an optical fiber is utilized to obtain an optimal digital hologram recorded by a CCD, and then an angular spectrum theory-based algorithm is adopted to extract the phase distribution information of an object wave. The rotation of the optic fiber enables the experimental measurements of multi-angle phase information. Based on the filtered back projection algorithm, a 3D refraction index of the optical fiber is thus obtained at high accuracy. To evaluate the proposed approach, both PANDA fibers and special elliptical optical fiber are considered in the system. The results measured in PANDA fibers agree well with those measured using S14 Refractive Index Profiler, which is, however, not suitable for measuring the property of a special elliptical fiber.

  2. Estimating index of refraction from polarimetric hyperspectral imaging measurements.

    Science.gov (United States)

    Martin, Jacob A; Gross, Kevin C

    2016-08-01

    Current material identification techniques rely on estimating reflectivity or emissivity which vary with viewing angle. As off-nadir remote sensing platforms become increasingly prevalent, techniques robust to changing viewing geometries are desired. A technique leveraging polarimetric hyperspectral imaging (P-HSI), to estimate complex index of refraction, N̂(ν̃), an inherent material property, is presented. The imaginary component of N̂(ν̃) is modeled using a small number of "knot" points and interpolation at in-between frequencies ν̃. The real component is derived via the Kramers-Kronig relationship. P-HSI measurements of blackbody radiation scattered off of a smooth quartz window show that N̂(ν̃) can be retrieved to within 0.08 RMS error between 875 cm-1 ≤ ν̃ ≤ 1250 cm-1. P-HSI emission measurements of a heated smooth Pyrex beaker also enable successful N̂(ν̃) estimates, which are also invariant to object temperature.

  3. Numerical Analysis of Multilayer Waveguides Using Effective Refractive Index Method

    Institute of Scientific and Technical Information of China (English)

    GAO Shao-Wen; CAO Jun-Cheng; FENG Song-Lin

    2003-01-01

    With the help of the effective refractive index method we have numerically analyzed a multilayer planar waveguide structure and calculated the propagation constants, confinement factors, and transverse electric (TE) modes. A five-layer waveguide model has been provided to analyze the electro-magne tic wave propagation process. The analysis method has been applied to the 980 nm laser with active layer of GaInAs/GaInAsP strained quantum wells, GaInAsP confinement layers and GaInP cap layers. By changing the thickness of confinement layers, we obtained confinement factor as high as 95% with higher TE modes TE1 and TE2. The results are in good agreement with the experiment by A. Al-Muhanna et al. and give the new idea to enhance output power of semiconductor lasers. The analysis method can also be extended to any other slab multilayer waveguide structures, and the results are useful to the fabrication of optic-electronic devices.

  4. Interference Imaging of Refractive Index Distribution in Thin Samples

    Directory of Open Access Journals (Sweden)

    Norbert Tarjanyi

    2004-01-01

    Full Text Available There are three versions of interference imaging of refractive index distribution in thin samples suggested in this contribution. These are based on imaging of interference field created by waves reflected from the front and the back sample surface or imaging of interference field of Michelson or Mach-Zehnder interferometer with the sample put in one of the interferometers arm. The work discusses the advantages and disadvantages of these techniques and presents the results of imaging of refrective index distribution in photorefractive record of a quasi-harmonic optical field in thin LiNbO3 crystal sample.

  5. A wide-range temperature immune ultra-sensitive refractive index sensor using concatenated LPGs

    OpenAIRE

    Tripathi, Saurabh Mani; Kumar, Arun; Bock, Wojtek J.; Mikulic, Predrag

    2013-01-01

    Compensating the temperature induced phase-changes of concatenated dual-resonance long-period-gratings by a suitably chosen inter-grating material and space we report wide-range temperature insensitivity along with extremely high refractive-index sensitivity, on either side of turn-around wavelength.

  6. Ultrasensitive refractive index sensor based on twin-core photonic bandgap fibers

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    We have theoretically investigated twin-core all-solid photonic bandgap fibers (PBGFs) for evanescent wave sensing of refractive index within one single microfluidic analyte channel centered between the two cores. The sensor can achieve ultrahigh sensitivity by detecting the change in transmission...

  7. Effect of intense high-frequency laser field on the linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a parabolic quantum well under the applied electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yesilgul, U., E-mail: uyesilgul@cumhuriyet.edu.tr [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Ungan, F. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sakiroglu, S. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Kasapoglu, E.; Sarı, H. [Cumhuriyet University, Physics Department, 58140 Sivas (Turkey); Sökmen, I. [Dokuz Eylül University, Physics Department, 35160 Buca, İzmir (Turkey)

    2014-01-15

    The effects of the intense high-frequency laser field on the optical absorption coefficients and the refractive index changes in a GaAs/GaAlAs parabolic quantum well under the applied electric field have been investigated theoretically. The electron energy levels and the envelope wave functions of the parabolic quantum well are calculated within the effective mass approximation. Analytical expressions for optical properties are obtained using the compact density-matrix approach. The numerical results show that the intense high-frequency laser field has a large effect on the optical characteristics of these structures. Also we can observe that the refractive index and absorption coefficient changes are very sensitive to the electric field in large dimension wells. Thus, this result gives a new degree of freedom in the optoelectronic device applications. -- Highlights: • ILF has a large effect on the optical properties of parabolic quantum wells. • The total absorption coefficients increase as the ILF increases. • The RICs increase as the ILF increases.

  8. Imaging based refractometer for hyperspectral refractive index detection

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Justin S.; Boudreaux, Philip R.

    2015-11-24

    Refractometers for simultaneously measuring refractive index of a sample over a range of wavelengths of light include dispersive and focusing optical systems. An optical beam including the range of wavelengths is spectrally spread along a first axis and focused along a second axis so as to be incident to an interface between the sample and a prism at a range of angles of incidence including a critical angle for at least one wavelength. An imaging detector is situated to receive the spectrally spread and focused light from the interface and form an image corresponding to angle of incidence as a function of wavelength. One or more critical angles are identified and corresponding refractive indices are determined.

  9. Highly compact refractive index sensor based on stripe waveguides for lab-on-a-chip sensing applications

    Science.gov (United States)

    Perera, Chamanei; Cheng, Elliot; Sathian, Juna; Jaatinen, Esa; Davis, Timothy

    2016-01-01

    Summary In this paper we report the design and experimental realisation of a novel refractive index sensor based on coupling between three nanoscale stripe waveguides. The sensor is highly compact and designed to operate at a single wavelength. We demonstrate that the sensor exhibits linear response with a resolution of 6 × 10−4 RIU (refractive index unit) for a change in relative output intensity of 1%. Authors expect that the outcome of this paper will prove beneficial in highly compact, label-free and highly sensitive refractive index analysis. PMID:27335763

  10. The Refractive Index Measurement Of Silicon Dioxide Thin Film by the Coupling Prism Method

    International Nuclear Information System (INIS)

    Refractive index of silicon dioxide thin film that doped with phosphor (SiO2:P) above the pure silicon dioxide substrate has been measured by light coupling prism method. The method principle is focusing the light on coupling prism base so that the light propagates into the waveguide layer while the reflected one forms a mode in the observation plane. The SiO2 thin film as waveguide layer has a refractive index that give the thick and refractive index relation. The He-Ne laser as light source has the wavelength λ 0,6328 μm. The refractive index measurement of the thin film with the substrate refractive index nsb = 1,47 and the thin film thick d = 2μm gives ng = 1,5534 ± 0,01136. This method can distinguish the refractive index of thin film about 6% to the refractive index of substrate

  11. Strip Waveguide Directional Coupling Modulator with Equivalent Refractive Index

    Institute of Scientific and Technical Information of China (English)

    LI Hong-tao; HE Dui-yan

    2004-01-01

    The equivalent refractive index(ERI) method is employed to analyze the function of the strip waveguide directional coupling modulator(SWM). Through deducing the diagnostic equation of the Exmn mode of the four-layer media film waveguide equivalent to the SWM,the transmission constant of the symmetrical mode of the positive phase and negative one and the coupling length of powerful transference are obtained. The veracity of ERI is validated with the example of Ex11 basal mode under the condition of comparing the three results of ERI,EIM and Marcatili.

  12. Prism refractive index measurement at INRiM

    International Nuclear Information System (INIS)

    A simple method to measure the refractive index of a glass prism with very low uncertainty was developed at INRiM. The method is a modification of the classical minimum deviation method. A brief description of the methods used to measure the vertex angles of the prism and the angle of minimum deviation is reported together with the uncertainty evaluation. The technique is going to be validated by a comparison between INRiM and two other laboratories. A relative standard uncertainty better than 1 ppm has been obtained

  13. Negative refractive index induced by percolation in disordered metamaterials

    CERN Document Server

    Slovick, Brian A

    2016-01-01

    An effective medium model is developed for disordered metamaterials containing a spatially random distribution of dielectric spheres. Similar to effective medium models for ordered metamaterials, this model predicts resonances in the effective permeability and permittivity arising from electric- and magnetic-dipole Mie resonances in the spheres. In addition, the model predicts a redshift of the electric resonance with increasing particle loading. Interestingly, when the particle loading exceeds the percolation threshold of 33\\%, the model predicts that the electric resonance overlaps with the magnetic resonance, resulting in a negative refractive index.

  14. Refractive Index of Humid Air in the Infrared: Model Fits

    CERN Document Server

    Mathar, R J

    2006-01-01

    The theory of summation of electromagnetic line transitions is used to tabulate the Taylor expansion of the refractive index of humid air over the basic independent parameters (temperature, pressure, humidity, wavelength) in five separate infrared regions from the H to the Q band at a fixed percentage of Carbon Dioxide. These are least-squares fits to raw, highly resolved spectra for a set of temperatures from 10 to 25 C, a set of pressures from 500 to 1023 hPa, and a set of relative humidities from 5 to 60%. These choices reflect the prospective application to characterize ambient air at mountain altitudes of astronomical telescopes.

  15. Refractive index of nanoscale thickness films measured by Brewster refractometry

    CERN Document Server

    Tikhonov, E A; Malyukin, Yu V

    2015-01-01

    It is shown that reflective laser refractometery at Brewster angle can be usefull for precision measurements of refractive indexes (RI) in the transparency band of various films of nanoscale thickness. The RI measurements of nanoscale porous film on the basis of gadolinium orthosilicate and quartz have been carried out as first experience. It is shown that surface light scattering in such films that is connected with clustering of nanoscale pores can decrease the accuracy of the RI measurements at Brewster angle. Estimated physical dependence RI stipulated by the film thickness reduction (3D-2D transition) in the range of (20-160)nm has not been not detected.

  16. Science Letters: Lattice type transmission line of negative refractive index

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this letter, we introduce a novel passive transmission line of negative refractive index (i.e., left-handedness) based on identical symmetrical lattice type structures [thus called "lattice type transmission line" (LT-TL)]. The dispersion characteristic and the transmission response of the proposed LT-TL are analyzed. While all the other left-handed passive transmission lines are of high pass, the present passive left-handed transmission line is of low pass. Compared with a conventional transmission line, the LT-TL has a phase shift of 180° in the entire wide pass-band.

  17. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    Directory of Open Access Journals (Sweden)

    Everardo Vargas-Rodriguez

    2015-10-01

    Full Text Available In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS and the Tunable Laser Spectroscopy (TLS principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors.

  18. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    Science.gov (United States)

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-10-15

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors.

  19. Refractive index sensing characteristics of dual resonances in rectangular fractal nano-apertures

    Science.gov (United States)

    Aslan, Ekin; Turkmen, Mustafa

    2015-08-01

    Aperture based sensing platforms can be useful for both gas and bio-sensing applications. In this study, we investigate the refractive index sensing characteristics of dual resonances in rectangular fractal nanoapertures. By taking the advantages coming from its aperture based nature and dual band resonant behavior, one can use this platform to detect two different chemical/bio-molecules simultaneously. For the numerical analysis, we study the rectangular fractal nanoantenna array through the finite difference time domain (FDTD) method. We also introduce a fine tuning mechanism for adjusting the resonance frequencies which is important for the sensing applications. Then, we demonstrate the results of refractive index sensitivity tests in order to show the behavior of the structure against the refractive index changes. In these tests, we embed our sensing platform into different cladding media and obtain the refractive index sensing characteristics of dual resonances. Due to the dual-resonant behavior with easily accessible ultra-high-field localization characteristics, the proposed sensing platform can be a good candidate for ultra-sensitive chemical- and bio-sensing applications.

  20. Optomecatronic system to estimate the index of refraction of a Compound Chromic

    International Nuclear Information System (INIS)

    The paper presents an optomechatronic system, which it can detect the displacement of laser beam refracted by Lophine layer deposited in a slider. The displacement was estimated by mean of image processing. The displacement of the laser beam is a function of the refractive index of the Lophine layer as function of temperature change. The system uses a Graphical User Interface (GUI), where it is possible to control the incidence angle of the laser beam, and the same time, the temperature of the lophine layer can be sensed. (Author)

  1. X-ray refractive index of laser-dressed atoms

    CERN Document Server

    Buth, Christian

    2008-01-01

    We investigated the complex index of refraction in the x-ray regime of atoms in laser light. The laser (intensity up to 10^13 W/cm^2, 800nm) modifies the atomic states but, by assumption, does not excite or ionize the atoms in their electronic ground state. Using quantum electrodynamics, we devise an ab initio theory to calculate the dynamic dipole polarizability and the photoabsorption cross section, which are subsequently used to determine the real and imaginary part, respectively, of the refractive index. The interaction with the laser is treated nonperturbatively; the x-ray interaction is described in terms of a one-photon process. We numerically solve the resolvents involved using a single-vector Lanczos algorithm. Finally, we formulate rate equations to copropagate a laser and an x-ray pulse through a gas cell. Our theory is applied to argon. We study the x-ray polarizability and absorption near the argon K edge over a large range of dressing-laser intensities. We find electromagnetically induced transp...

  2. Dark matter constraints from a cosmic index of refraction

    Science.gov (United States)

    Gardner, Susan; Latimer, David C.

    2010-09-01

    The dark matter candidates of particle physics invariably possess electromagnetic interactions, if only via quantum fluctuations. Taken en masse, dark matter can thus engender an index of refraction which deviates from its vacuum value. Its presence is signaled through frequency-dependent effects in the propagation and attenuation of light. We discuss theoretical constraints on the expansion of the index of refraction with frequency, the physical interpretation of the terms, and the particular observations needed to isolate its coefficients. This, with the advent of new opportunities to view gamma-ray bursts at cosmological distance scales, gives us a new probe of dark matter and a new possibility for its direct detection. As a first application we use the time delay determined from radio afterglow observations of distant gamma-ray bursts to realize a direct limit on the electric charge-to-mass ratio of dark matter of |ɛ|/M<1×10-5eV-1 at 95% C.L.

  3. A surface refractive index scanning system and method

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction, and a s......The invention relates to a surface refractive index scanning system for characterization of a sample. The system comprises a grating device for holding or receiving the sample, the device comprising at least a first grating region having a first grating width along a transverse direction...... at least a part of the grating device with light at an illumination wavelength band. Additionally, the system comprises an imaging system for imaging the emitted, transmitted or reflected light from the grating device. The imaging system comprises an optical element, such as a cylindrical lens or a bended......, and an imaging spectrometer comprising an entrance slit having a longitudinal direction oriented to coincide with the invariant direction of the optical element. The imaging spectrometer further comprises a 2-dimensional image sensor. The invention further relates to a method....

  4. Simultaneous temperature and refractive index measurement of liquid using a local micro-structured fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Ye Cao; Yinfei Yang; Xiufeng Yang; Zhengrong Tong

    2012-01-01

    An alternative solution for the simultaneous measurement of temperature and refractive index is presented. A local micro-structured fiber Bragg grating (LMSFBG) is formed as the sensing head, in which a standard grating is etched by HF. According to the phase shift theory, the main spectral change of the LMSFBG is the formation of a narrow allowed band, which is strongly dependent on the etching features and the surrounding refractive index. As such, the temperature and refractive index measurements can be achieved by the shifts of the double peaks and narrow allowed band, and their fitting linearity coefficients are 0.996 and 0.994, respectively. Thus, the reflection and transmission peaks of the LMSFBG have a good linear relationship with temperature and refractive index.%An alternative solution for the simultaneous measurement of temperature and refractive index is presented.A local micro-structured fiber Bragg grating (LMSFBG) is formed as the sensing head,in which a standard grating is etched by HF.According to the phase shift theory,the main spectral change of the LMSFBG is the formation of a narrow allowed band,which is strongly dependent on the etching features and the surrounding refractive index.As such,the temperature and refractive index measurements can be achieved by the shifts of the double peaks and narrow allowed band,and their fitting linearity coefficients are 0.996 and 0.994,respectively.Thus,the reflection and transmission peaks of the LMSFBG have a good linear relationship with temperature and refractive index.

  5. Experimental research on modulation degree of refractive index in the SCLP/E7/C60 polymer using a fiber Fabry-Perot Interferometer

    Institute of Scientific and Technical Information of China (English)

    HAN Ren-xue

    2006-01-01

    Modulation degree of refractive index is an important parameter for information storage in photorefractive materials. Using the relationship between the refractive index and the wavelengthsof laser and the order of interference, we introduce a new method to measure the modulation degree of refractive index in photorefractive materials through detecting the shift of the interference fringe in a fiber Fabry-Perot interferometer with a CCD.The measurement precision is also analyzed. With this method, the modulation degree of refractive index in our prepared SCLP/E7/C60 photorefractive polymer is measured for different external voltages and the external voltage corresponding to the maximal modulation degree of refractive index is reported. The dynamic change of refractive index in the SCLP/E7/C60is also studied, which will be helpful to understand the reaction mechanism of photochemistry in the material.

  6. The Refractive Index of Silicon at Gamma Ray Energies

    CERN Document Server

    Habs, D; Jentschel, M; Urban, W

    2011-01-01

    The index of refraction n(E_{\\gamma})=1+\\delta(E_{\\gamma})+i\\beta(E_{\\gamma}) is split into a real part \\delta and an absorptive part \\beta. The absorptive part has the three well-known contributions to the cross section \\sigma_{abs}: the photo effect, the Compton effect and the pair creation, but there is also the inelastic Delbr\\"uck scattering. Second-order elastic scattering cross sections \\sigma_{sca} with Rayleigh scattering (virtual photo effect), virtual Compton effect and Delbr\\"uck scattering (virtual pair creation) can be calculated by integrals of the Kramers-Kronig dispersion relations from the cross section \\sigma_{abs}. The real elastic scattering amplitudes are proportional to the refractive indices \\delta_{photo}, \\delta_{Compton} and \\delta_{pair}. While for X-rays the negative \\delta_{photo} dominates, we show for the first time experimentally and theoretically that the positive \\delta_{pair} dominates for \\gamma rays, opening a new era of \\gamma optics applications, i.e. of nuclear photoni...

  7. Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Michael Gerard; Ince, Rabia; Yukselici, Mehmet Hikmet; Allahverdi, Cagdas

    2011-07-01

    The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nanoparticles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He-Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He-Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

  8. Tuning the Refractive Index and Optical Band Gap of Silk Fibroin Films by Electron Irradiation

    Directory of Open Access Journals (Sweden)

    S. Asha

    2015-01-01

    Full Text Available The Bombyx mori silk fibroin (SF films were prepared by solution casting method and effects of electron beam on the optical properties and optical constants of the films have been studied by using UV-Visible spectrophotometer. Optical properties like optical band gap Eg, refractive index n, extinction coefficient k, optical conductivity σopt, and dielectric constants ε∗ of virgin and electron irradiated films were determined by using UV-Visible absorption and transmission spectra. It was found that the reduction in optical band gap and increase in refractive index with increasing radiation dosage was observed. It is also observed from results that there is increase in dielectric constants with increasing photon energy. The observed optical changes have been tried to be correlated with the structural changes, revealed through FT-IR spectroscopy. The present study is quite important for tailoring the optical responses of SF films as per specific requirements.

  9. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper

    Science.gov (United States)

    Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu

    2007-05-01

    Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.

  10. Measurement of the magnetic field-dependent refractive index of magnetic fluids in bulk

    Institute of Scientific and Technical Information of China (English)

    Ting Liu; Xianfeng Chen; Ziyun Di; Junfeng Zhang; Xinwan Li; Jianping Chen

    2008-01-01

    An optical alignment-free and highly accurate method is employed to measure the magnetic field-dependent refractive index of magnetic fluid(MF) in bulk.The measured refractive index decreases significantly with the increasing magnetic strength and then tends to saturate in the high intensity range.By applying a tunable magnetic field ranging between 0 and 1661 Oe,the maximum shift of the refractive index of MF in bulk iS found to be 0.0231.

  11. Loop-mirror-based slot waveguide refractive index sensor

    Science.gov (United States)

    Kou, Jun-long; Xu, Fei; Lu, Yan-qing

    2012-12-01

    Loop mirror has been widely used in fiber optical devices and systems for it provides a smart way to make use of the fiber birefringence properties and can enhance the sensitivity greatly. On the other hand, slot waveguide is very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper, we propose and analyze a loop-mirror-based slot waveguide (LMSW) sensor which can be routinely fabricated in modern high-volume complementary metal-oxide-semiconductor (CMOS) process. The finite element method (FEM) simulation results show that the birefringence can be as high as 0.8 which is orders of magnitude than that in conventional birefringent fiber loop mirror. High sensitivity up to 6 × 103 nm/RIU (refractive index unit) is achieved by this scheme.

  12. Loop-mirror-based slot waveguide refractive index sensor

    Directory of Open Access Journals (Sweden)

    Jun-long Kou

    2012-12-01

    Full Text Available Loop mirror has been widely used in fiber optical devices and systems for it provides a smart way to make use of the fiber birefringence properties and can enhance the sensitivity greatly. On the other hand, slot waveguide is very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper, we propose and analyze a loop-mirror-based slot waveguide (LMSW sensor which can be routinely fabricated in modern high-volume complementary metal-oxide–semiconductor (CMOS process. The finite element method (FEM simulation results show that the birefringence can be as high as 0.8 which is orders of magnitude than that in conventional birefringent fiber loop mirror. High sensitivity up to 6 × 103 nm/RIU (refractive index unit is achieved by this scheme.

  13. Controlling a microdisk laser by local refractive index perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Liew, Seng Fatt; Redding, Brandon; Cao, Hui, E-mail: hui.cao@yale.edu [Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States); Ge, Li [Department of Engineering Science and Physics, College of Staten Island, CUNY, Staten Island, New York 10314 (United States); The Graduate Center, CUNY, New York, New York 10016 (United States); Solomon, Glenn S. [Joint Quantum Institute, NIST and University of Maryland, Gaithersburg, Maryland 20899 (United States)

    2016-02-01

    We demonstrate a simple yet effective approach of controlling lasing in a semiconductor microdisk by photo-thermal effect. A continuous wave green laser beam, focused onto the microdisk perimeter, can enhance or suppress lasing in different cavity modes, depending on the position of the focused beam. Its main effect is a local modification of the refractive index of the disk, which results in an increase in the power slope of some lasing modes and a decrease of others. The boundary roughness breaks the rotational symmetry of a circular disk, allowing the lasing process to be tuned by varying the green beam position. Using the same approach, we can also fine tune the relative intensity of a quasi-degenerate pair of lasing modes. Such post-fabrication control, enabled by an additional laser beam, is flexible and reversible, thus enhancing the functionality of semiconductor microdisk lasers.

  14. Scattering and refractive index properties of skin obtained with OCT

    Science.gov (United States)

    Knuettel, Alexander R.; Bonev, Slavtcho M.; Knaak, W.

    2003-10-01

    Optical Coherence Tomography (OCT) provides more parameters than pure morphology does. In a recent paper we have shown that the refractive index (RI) can be evaluated in a localized manner in skin tissue under in vivo conditions. Further evaluation provides scattering parameters (scatter width) of turbid materials down to penetration depths of some 100 μm. Measurements have been done in vitro in pig skin and in vivo in human skin with our OCT scanner SkinDex 300. The parameters RI and scatter width may have a viable impact on skin research and clinical diagnoses. In addition, we demonstrate the breakdown of the ballistic light propagation in turbid material and tissue due to multiple forward scattering.

  15. Imprinting the nanostructures on the high refractive index semiconductor glass

    Science.gov (United States)

    Silvennoinen, M.; Paivasaari, K.; Kaakkunen, J. J. J.; Tikhomirov, V. K.; Lehmuskero, A.; Vahimaa, P.; Moshchalkov, V. V.

    2011-05-01

    The centimeter range one- and two-dimensional nanostructures of 70 nm pitch have been imprinted by hot pressing with a quartz, silicon or nickel mold, at 240 °C, onto the surface of Ge 20As 20Se 14Te 46 semiconductor glass. Excellent glass stability of this glass allows multiple re-pressing of the nano-structures. With increasing the Te/Se ratio in the glass formula, the refractive index reaches a value of 3.5 with an option of free electron absorption at elevated temperatures pointing out the use of such nanostructures in submicron and micron scale electronic devices/chips, moth eye structures and photonic crystals.

  16. Near-Zero-Refractive-Index Structure at Optical Frequencies

    Directory of Open Access Journals (Sweden)

    Hassan S. Ashour

    2013-01-01

    Full Text Available We have used a new class of left-handed materials, which uses 3D nanospheres distributed in loops in the dielectric host material. These 3D nanospheres loops give rise to negative effective permeability and permeability at Terahertz (optical frequencies. The modal dispersion relation for Terahertz TE surface waves has been derived for a slab waveguide constructed from a dielectric material slab sandwiched between two thick layers of Terahertz left-handed material (LHM. The modal dispersion relation and the power flow were numerically solved for a given set of parameters: dielectric slab thickness, the operating frequency, mode order, and the power flow and extinction in the structure. The real part of the effective refractive index exhibits near-zero values, with small extinction coefficient values. Besides that, the power flow in the dielectric core increased with slab thickness increase and the power attenuation decreased with thickness increase.

  17. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    CERN Document Server

    Rindorf, Lars

    2007-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. It is shown that optical dispersion plays a central role in determining the sensitivity, and the dispersion may enhance or suppress sensitivity as well as change the sign of the resonant wavelength shifts. We propose a quality factor, $Q$, for characterizing LPGs.

  18. Refractive index measurement of nanoparticles by immersion refractometry based on a surface plasmon resonance sensor

    Science.gov (United States)

    Kano, Hiroshi; Iseda, Ayumu; Ohenoja, Katja; Niskanen, Ilpo

    2016-06-01

    Accurate determination of the refractive index of nanoparticles has important ramifications for applications, such as pharmaceuticals, cosmetics, paints, textiles, and inks. We describe a new method to determine the refractive index of nanoparticles by immersion refractometry with a surface plasmon resonance sensor. With this method, the refractive index of the nanoparticles is perfectly matched with that of the surrounding liquid. We demonstrate this method for calcium fluoride nanoparticles that have an average diameter of 100 nm; the results achieve an accuracy of better than 0.002 refractive index units.

  19. Refractive index sensor based on a 1D photonic crystal in a microfluidic channel

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Asger; Kutter, Jörg Peter;

    2010-01-01

    A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental demonstrat......A refractive index sensor has been fabricated in silicon oxynitride by standard UV lithography and dry etching processes. The refractive index sensor consists of a 1D photonic crystal (PhC) embedded in a microfluidic channel addressed by fiber-terminated planar waveguides. Experimental...

  20. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi [Department of Applied Physics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Tarvainen, T. [Department of Applied Physics, University of Eastern Finland, PO Box 1627, 70211 Kuopio (Finland); Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom); Kim, A.D. [Applied Mathematics Unit, School of Natural Sciences, University of California, Merced, CA 95343 (United States); Arridge, S.R. [Department of Computer Science, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-02-01

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.

  1. Finite element approximation of the radiative transport equation in a medium with piece-wise constant refractive index

    International Nuclear Information System (INIS)

    The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena on the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light

  2. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly

    Science.gov (United States)

    Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk

    2016-01-01

    The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077

  3. Cryogenic Refractive Index and Coefficient of Thermal Expansion for the S-TIH1 Glass

    Science.gov (United States)

    Quijada, Manuel A.; Leviton, Douglas; Content, David

    2013-01-01

    Using the CHARMS facility at NASA GSFC, we have measured the cryogenic refractive index of the Ohara S-TIH1 glass from 0.40 to 2.53 micrometers and from 120 to 300 K. We have also examined the spectral dispersion and thermo-optic coefficients (dn/dT). We also derived temperature-dependent Sellmeier models from which refractive index may be calculated for any wavelength and temperature within the stated ranges of each model. The S-TIH1 glass we tested exhibited unusual behavior in the thermo-optic coefficient. We found that for delta coefficient of thermal expansion (CTE) for the similar batch of S-TIH1 glass in order to understand its thermal properties. The CTE showed a monotonic change with a decrease in temperature.

  4. D-shaped fiber grating refractive index sensor induced by an ultrashort pulse laser.

    Science.gov (United States)

    Liao, Changrui; Wang, Qiao; Xu, Lei; Liu, Shen; He, Jun; Zhao, Jing; Li, Zhengyong; Wang, Yiping

    2016-03-01

    The fabrication of fiber Bragg gratings was here demonstrated using ultrashort pulse laser point-by-point inscription. This is a very convenient means of creating fiber Bragg gratings with different grating periods and works by changing the translation speed of the fiber. The laser energy was first optimized in order to improve the spectral properties of the fiber gratings. Then, fiber Bragg gratings were formed into D-shaped fibers for use as refractive index sensors. A nonlinear relationship was observed between the Bragg wavelength and liquid refractive index, and a sensitivity of ∼30  nm/RIU was observed at 1.450. This shows that D-shaped fiber Bragg gratings might be used to develop promising biochemical sensors. PMID:26974608

  5. Double-layered metal grating for high-performance refractive index sensing.

    Science.gov (United States)

    Li, Guozhen; Shen, Yang; Xiao, Guohui; Jin, Chongjun

    2015-04-01

    The detection of minuscule changes in the local refractive index by localized surface plasmon resonances (LSPRs), carried by metal nanostructures, has been used successfully in applications such as real-time and label-free detection of molecular binding events. However, localized plasmons demonstrate 1-2 orders of magnitude lower figure of merit (FOM) compared with their propagating counterparts. Here, we propose and experimentally demonstrate a high-performance refractive index sensor based on a structure of double-layered metal grating (DMG) with an FOM and FOM* reaching 38 and 40 respectively under normal incidence. Such a high FOM and FOM* arise from a result of a sharp fano resonance, which is caused by the coherent interference between the LSPR from the individual top gold stripes and Wood's anomaly (WA). Moreover, a small conformal decay length of ~68 nm is determined in DMG, indicating that the DMG is a promising candidate for label-free biomedical sensing. PMID:25968735

  6. Study on measurement of refractive index profile of GI-POF by light scattering

    Science.gov (United States)

    Huifen, Jiang; Xiang'e, Han

    2009-04-01

    This paper is devoted to the study on measurement of refractive index profile of graded-index polymer optical fiber (GI-POF) by light scattering. Using Generalized Airy theory and Debye series of an inhomogeneous cylinder, the scattering intensity distributions are obtained of Airy structure of rainbows for different refractive index profile. The results show that positions of Airy peaks depend closely on refractive index profile of GI-POF. Since each order of rainbow penetrates it to different depths, such methods could be used to provide information of the refractive index profile of GI-POF. For GI-POF with given diameter, positions of Airy peaks of rainbows are simulated as a function of refractive index profile, which can be used to inverse unknown parameters of refractive index profile. The least square method is used in inversion of refractive index profile with the given refractive index of the cladding. The results obtained agree with theoretical values with high precision. The method has the advantages of non-instructive and on-line measurement, and can be used for the measurement of other inhomogeneous droplets.

  7. Influence of Complex Refractive Index on Diffuse Reflection of Biological Tissues

    Institute of Scientific and Technical Information of China (English)

    LAI Jian-Cheng; LI Zhen-Hua; HE An-Zhi

    2005-01-01

    @@ Complex refractive indices are introduced to solve various boundary questions at the interfaces when modelling light migration within heterogeneous tissues. Combined with the complex refractive index, Fresnel's formulae are used to describe the reflection and transmission at the interfaces between two heterogeneous tissues layers.Using the Monte Carlo method, the influence of the complex refractive index on diffuse reflection of semi-infinite biological tissues is discussed. The results show that neglecting the imaginary part of the refractive index of tissues will bring a major deviation in the diffuse reflection of semi-infinite biological tissues when its emitting point is apart from the incident point.

  8. Optical refractive index of massive particles and physical meanings of left-handed media [rapid communication

    Science.gov (United States)

    Shen, Jian Qi

    2005-09-01

    In this Letter the expression for the refractive index of de Broglie wave in the presence of a potential field is obtained and based on this, the physical meanings of negative index of refraction is revealed. We demonstrate that the electromagnetic wave propagation in a left-handed medium with negative refractive index behaves just like that of antiphotons, which is required of the complex vector field theory. It is believed that the complex vector field theory is helpful in considering the wave propagation and photonic band gap structures in the left-handed medium photonic crystals with a periodicity in negative and positive indices of refraction.

  9. Design and fabrication activity towards 3D negative refraction index materials in the IR region

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this paper we present a new 3D isotropic structure that allows obtaining negative refraction index in the telecom wavelength as well as first fabrication efforts towards obtaining such structures.......In this paper we present a new 3D isotropic structure that allows obtaining negative refraction index in the telecom wavelength as well as first fabrication efforts towards obtaining such structures....

  10. X-ray tomography using the full complex index of refraction

    DEFF Research Database (Denmark)

    Nielsen, Mikkel Schou; Lauridsen, Torsten; Thomsen, M.;

    2012-01-01

    We report on x-ray tomography using the full complex index of refraction recorded with a grating-based x-ray phase-contrast setup. Combining simultaneous absorption and phase-contrast information, the distribution of the full complex index of refraction is determined and depicted in a bivariate...

  11. Refractive Index Measurement within a Photonic Crystal Fibre Based on Short Wavelength Diffraction

    Directory of Open Access Journals (Sweden)

    Nathaniel Groothoff

    2007-10-01

    Full Text Available A new class of refractive index sensors using solid core photonic crystal fibres isdemonstrated. Coherent scattering at the cladding lattice is used to optically characterizematerials inserted into the fibre holes. The liquid to solid phase transition of water uponfreezing to ice 1h is characterized by determining the refractive index.

  12. Refractive index dependent local electric field enhancement in cylindrical gold nanohole

    International Nuclear Information System (INIS)

    We report on the local electric field characters in a long cylindrical gold nanohole. Theoretical calculation results based on quasi-static model show that the local environmental dielectric constant dependent electric field intensity and field distribution in the gold nanohole show quite unique properties, different from those in the thin gold nanotube. Because of the thick gold wall, no plasmon hybridization exists. So there is only one resonance frequency taking place, and the intense local field has been focused into the gold nanohole. Our main finding is that, the local field in the nanohole is largely dependent on the inner hole refractive index and outer environmental refractive index. The competition between inner hole and outer polarization leads to a non-monotonic change of the local field intensity with increasing the dielectric constant of the nanohole. This refractive index controlled local field enhancement in cylindrical gold nanohole presents a potential for tunable surface-enhanced fluorescence and novel nano-optical biosensing applications.

  13. The role of refractive index gradient on sensitivity and limit of detection of microdisk sensors

    Science.gov (United States)

    Najafi, Zohreh; Vahedi, Mohammad; Behjat, Abbas

    2016-09-01

    This paper presents a new type of microdisk resonator sensor with a gradient refractive index (GRIN) that can achieve higher sensitivity with respect to constant refractive index disks. The behavior of the microdisk resonator is simulated by 2D-FDTD method. The shift in the resonance frequency for different thicknesses of the absorbed layer and different refractive index gradients of the microdisks are studied. The best refractive index gradient function is found that leads to the largest sensitivity and smallest limit of detection. The sensitivity of a GRIN microresonator sensor (GMS) with a convex quadratic refractive index function is approximately 11 times as much as that of homogeneous microdisk sensor, which is the best record among GMSs.

  14. Refractive-index change and sensitivity improvement in holographic recording in LiNbO3:Ce:Cu crystals with green light

    Institute of Scientific and Technical Information of China (English)

    Cuixia Dai; Liren Liu; De'an Liu; Yu Zhou

    2005-01-01

    @@ Nonvolatile holographic recording is performed with green light in LiNbO3:Ce:Cu crystals. The refractiveindex change and the recording sensitivity are times better than those obtained by recording with red light,and higher optical fixing efficiency is obtained. Correspondingly, theoretical investigations are given.

  15. Gradient shadow pattern reveals refractive index of liquid

    Science.gov (United States)

    Kim, Wonkyoung; Kim, Dong Sung

    2016-06-01

    We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index nL of liquids. A light source generates a “dark-bright-dark” GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 ≤ nL ≤ 1.46 of liquids was measured in the single measurement setup with error <0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples.

  16. Polymer-based composite with outstanding mechanically tunable refractive index

    Science.gov (United States)

    Mohamed-Noriega, Nasser; Hinojosa, Moisés; González, Virgilio; Rodil, Sandra. E.

    2016-08-01

    A composite with high visible light transmittance, mechanically tunable refractive index (RI) and rubber-like mechanical properties, based on poly(dimethylsiloxane) (PDMS) and barium titanate nanoparticles (BT) was prepared on three steps. First, BT nanoparticles were obtained by high-energy milling. Second, the nanoparticles were embedded in PDMS by in-situ polymerization; the BT content was varied up to 1.0 wt% (0.17 vol%). Finally, ∼0.5 mm membranes were prepared by solvent casting. The effect of the BT concentration was examined. Powder XRD and Raman spectroscopy revealed a tetragonal crystal structure for the nanoparticles. SEM images confirmed a mean particle size of ∼64 nm and together with EDX mappings showed a moderate dispersion of the nanoparticles in some membranes, whereas other exhibited agglomerates at the surface. The normal transmittance of the membranes was measured with a spectroscopic ellipsometer while they were stretched in-situ at different percentages. The RI variations as a function of strain were calculated from the transmittance spectra. The results exhibit surprising variations in the RI, up to ∼5 times higher than those associated to PDMS alone, implying that the presence of BT significantly influences the optical response of the PDMS when stretched. However, the response is neither linear nor well understood; further studies must be performed to clarify this new interaction.

  17. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements

    Directory of Open Access Journals (Sweden)

    Galina Nemova

    2016-01-01

    Full Text Available We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius rco = 10 μm instead of a fiber with a radius rco = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme.

  18. Silica Bottle Resonator Sensor for Refractive Index and Temperature Measurements.

    Science.gov (United States)

    Nemova, Galina; Kashyap, Raman

    2016-01-01

    We propose and theoretically demonstrate a bottle resonator sensor with a nanoscale altitude and with alength several of hundreds of microns made on the top of the fiber with a radius of tens microns for refractive index and temperature sensor applications. The whispering gallery modes (WGMs) in the resonators can be excited with a taper fiber placed on the top of the resonator. These sensors can be considered as an alternative to fiber Bragg grating (FBG) sensors.The sensitivity of TM-polarized modes is higher than the sensitivity of the TE-polarized modes, but these values are comparable and both polarizations are suitable for sensor applications. The sensitivity ~150 (nm/RIU) can be reached with abottle resonator on the fiber with the radius 10 μm. It can be improved with theuse of a fiber with a smaller radius. The temperature sensitivity is found to be ~10 pm/K. The temperature sensitivity can decrease ~10% for a fiber with a radius r(co) = 10 μm instead of a fiber with a radius r(co) = 100 μm. These sensors have sensitivities comparable to FBG sensors. A bottle resonator sensor with a nanoscale altitude made on the top of the fiber can be easily integrated in any fiber scheme. PMID:26761011

  19. Index of Refraction Measurements Using a Laser Distance Meter

    Science.gov (United States)

    Ochoa, Romulo; Fiorillo, Richard; Ochoa, Cris

    2014-01-01

    We present a simple method to determine the refractive indices of transparent media using a laser distance meter. Indices of refraction have been obtained by measuring the speed of light in materials. Some speed of light techniques use time-of-flight measurements in which pulses are emitted by lasers and the time interval is measured for the pulse…

  20. Full-field refractive index distribution measurement of a gradient-index lens with heterodyne interferometry

    International Nuclear Information System (INIS)

    A light beam coming from a circular heterodyne light source with an electro-optic modulator is incident on a gradient-index lens obliquely. The reflected light passes through an analyzer and an imaging lens, and is recorded by a fast CMOS camera. A group of periodic sinusoidal segments recorded by each pixel is modified, and its associated phase is derived with a unique technique. The processes are applied to other pixels; the two-dimensional phase distribution can be obtained similarly. The estimated data are substituted into the special equations derived from Fresnel's equations, and the full-field refractive index distribution of the gradient-index lens can be obtained. This method has the merits of both common-path interferometry and heterodyne interferometry

  1. Measurement of Refractive Index for High Reflectance Materials with Terahertz Time Domain Reflection Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    SUN Wen-Feng; WANG Xin-Ke; ZHANG Yan

    2009-01-01

    A method to measure the refractive index for high reflectance materials in the terahertz range with terahertz time domain reflection spectroscopy is proposed. In this method, the THz waveforms reflected by a silicon wafer and high reflectance sample are measured respectively. The refractive index of the silicon wafer, measured with the THz time domain transmission spectroscopy, is used as a reference in the THz time domain reflective spectroscopy. Therefore, the complex refractive index of the sample can be obtained by resorting to the known reflective index of the silicon and the Fresnel law. To improve the accuracy of the phase shift, the Kramers-Kronig transform is adopted. This method is also verified by the index of the silicon in THz reflection spectroscopy. The bulk metal plates have been taken as the sample, and the experimentally obtained metallic refractive indexes are compared with the simple Drude model.

  2. Study on the Change of Refractive Index on Mixing, Excess Molar Volume and Viscosity Deviation for Aqueous Solution of Methanol, Ethanol, Ethylene Glycol, 1-Propanol and 1, 2, 3-Propantriol at T = 292.15 K and Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    Fardad Koohyar

    2012-08-01

    Full Text Available For aqueous solutions of methanol, ethanol, ethylene glycol, 1-propanol and 1, 2, 3-propantriol the change of refractive indices on mixing, excess molar volumes and viscosity deviations were calculated from the experimental data at 292.15 K. These experimental data (refractive indices, densities and viscosities were measured over the whole mole fractions range in atmospheric pressure and at T = 292.15 K. For these mixtures, excess thermodynamic properties have been correlated with the Redlich-Kister polynomial equation (and experimental equation to derive the coefficients and standard errors.

  3. Cladding modes in photonic crystal fiber: characteristics and sensitivity to surrounding refractive index

    Science.gov (United States)

    Jiang, Xiuli; Gu, Zhengtian; Zheng, Li

    2016-01-01

    Characteristics of cladding modes in a photonic crystal fiber (PCF) with triangular air-hole lattice in the cladding are numerically analyzed using a finite element method. The transition for LP11 cladding mode to core mode with variation of the normalized wavelength has been shown. The transition of the LP01 cladding mode to the outer silica mode and reorganization of the LP0m cladding modes caused by varying the fiber radius has been investigated. By choosing the optimized fiber radius, which is located in the cladding modes' reorganization region, the sensitivity of the coupled wavelength between the core mode LP01 and cladding mode LP03 to surrounding refractive index is increased by a factor of five and reaches to 2660 nm/refractive index unit over the range of 1.40 to 1.42. The sensitivity is competitive with that of long-period grating in PCF in response to changes in refractive indices of the medium contained in the cladding air channels.

  4. Density dependence of refractive index of nanoparticle-derived titania films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Matthias, Anja [Institute of Non-Metallic Materials, Clausthal University of Technology, Zehntnerstraße 2a, 38678 Clausthal-Zellerfeld (Germany); Raićevic, Nevena [Faculty of Electrical Engineering, Helmut Schmidt University, Holstenhofweg 85, 21043 Hamburg (Germany); Donfeu Tchana, Romeo [Institute of Non-Metallic Materials, Clausthal University of Technology, Zehntnerstraße 2a, 38678 Clausthal-Zellerfeld (Germany); Kip, Detlef [Faculty of Electrical Engineering, Helmut Schmidt University, Holstenhofweg 85, 21043 Hamburg (Germany); Deubener, Joachim, E-mail: jd@tu-clausthal.de [Institute of Non-Metallic Materials, Clausthal University of Technology, Zehntnerstraße 2a, 38678 Clausthal-Zellerfeld (Germany)

    2014-05-02

    In order to test the relationship of refractive index to mass density within a wide range, porous titania films up to 800 nm thickness were prepared on silica glass by repetitive dip-coating and thermal curing of anatase sols having primary particle sizes below 7 nm. Profilometry showed a decrease in film thickness and an increase in the index of refraction of up to 50%, if the curing temperature was increased from 100 °C to 1000 °C. The decrease in film thickness was related to an increase in mass density, which directly acts on the optical polarizability and thus the (effective) refractive index of the film. In particular, mass density–refractive index calculations were performed using linear (Arago–Biot, Gladstone–Dale) and nonlinear mixture models (Drude, Lorentz–Lorenz), assuming either air- or water-filled pores, while anatase and rutile fractions were determined by X-ray diffraction. These investigations were verified using refractive index and mass density data from literature. For each model noticeable deviations from the expected trend were evident. We show that an empirical power law expression holds for the Lorentz–Lorenz theory and permits to calculate effective density and porosity of titania thin films from effective refractive index with high accuracy. - Highlights: • The relationship of refractive-index-to-mass-density of titania films is investigated. • Commonly used mixture models show noticeable deviations from experimental data. • An empirical power law expression permits to calculate porosity of titania thin films.

  5. Density dependence of refractive index of nanoparticle-derived titania films on glass

    International Nuclear Information System (INIS)

    In order to test the relationship of refractive index to mass density within a wide range, porous titania films up to 800 nm thickness were prepared on silica glass by repetitive dip-coating and thermal curing of anatase sols having primary particle sizes below 7 nm. Profilometry showed a decrease in film thickness and an increase in the index of refraction of up to 50%, if the curing temperature was increased from 100 °C to 1000 °C. The decrease in film thickness was related to an increase in mass density, which directly acts on the optical polarizability and thus the (effective) refractive index of the film. In particular, mass density–refractive index calculations were performed using linear (Arago–Biot, Gladstone–Dale) and nonlinear mixture models (Drude, Lorentz–Lorenz), assuming either air- or water-filled pores, while anatase and rutile fractions were determined by X-ray diffraction. These investigations were verified using refractive index and mass density data from literature. For each model noticeable deviations from the expected trend were evident. We show that an empirical power law expression holds for the Lorentz–Lorenz theory and permits to calculate effective density and porosity of titania thin films from effective refractive index with high accuracy. - Highlights: • The relationship of refractive-index-to-mass-density of titania films is investigated. • Commonly used mixture models show noticeable deviations from experimental data. • An empirical power law expression permits to calculate porosity of titania thin films

  6. Terahertz multi-metal-wire hybrid-cladding hollow waveguide for refractive index sensing

    Science.gov (United States)

    Ying-Ying, Yu; Xu-You, Li; Kun-Peng, He; Bo, Sun

    2016-02-01

    We propose a design of terahertz refractive index sensing based on the multi-metal-wire (MMW) hybrid-cladding hollow waveguide. The proposed terahertz hybrid-cladding hollow waveguide comprises one air core in the center surrounding MMW surrounded dielectric. The central air core is used for filling lossless measurands and transmitting terahertz light. In particular, the refractive index sensing is realized by measuring the mode field area (MFA) variation of radially polarized mode. The modal effective refractive index, mode field intensity distribution, and mode field area properties responding to the measurand refractive indexes for different operating frequencies and structure dimensions are investigated, respectively. Simulations show that the proposed terahertz refractive index sensor can realize easily the measurement of the measurand refractive index. Meanwhile, the effects of operating frequency and structure parameters on sensitivity and measurement accuracy are also studied. In view of the trade-off between sensitivity and measurement accuracy, the reasonable choice of the operating frequency and structure parameters can optimize appropriately the sensitivity and measurement accuracy, and the sensitivity can reach approximately 0.585 mm2/RIU (RIU is short for refraction index units) with the proper frequency and structure parameter. Project supported by the National Natural Science Foundation of China (Grant No. 51309059).

  7. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

    Science.gov (United States)

    Rogers, Jeremy D.

    2016-03-01

    Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

  8. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    Energy Technology Data Exchange (ETDEWEB)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  9. Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity

    CERN Document Server

    Borrero-Echeverry, Daniel

    2016-01-01

    We show that aqueous solutions of ammonium thiocyanate (NH4SCN) can be used to match the index of refraction of several transparent materials commonly used in experiments, while maintaining low viscosity and density compared to other common refractive index-matching liquids. We present empirical models for estimating the index of refraction, density, and kinematic viscosity of these solutions as a function of temperature and concentration. Finally, we summarize some of the chemical compatibility of ammonium thiocyanate with materials commonly used in apparatus.

  10. Experimental characterization of negative refractive index material NRM at Ka band

    CERN Document Server

    Chatterjee, Sougata

    2016-01-01

    In this paper, we discuss the experimental characterization of a negative refractive material NRM at Ka band using LR labyrinth Ring and wire array WA. We describe in detail the the LR and wire array characterization separately, and after that the combined experimental results, for NRM are reported. The LRs analytical and simulation study is not new but design in Ka band and different experimental procedure for the characterization of the negative refractive index is the novelty of this paper. For performing a negative refractive index experiment we made prism of 150 Prism angle . We get enhanced transmittance of more than 20 dB from background, at a negative angle of refraction. The values of the negative refractive index in a band of about 1 G Hz around 31 GHz are retrieved from the experimental data.

  11. All-optical on-chip sensor for high refractive index sensing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yazhao [Foundation for Fundamental Research on Matter, Van Vollenhovenlaan 659, 3527 JP, Utrecht (Netherlands); Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft (Netherlands); Salemink, H. W. M., E-mail: H.Salemink@science.ru.nl [Institute for Molecules and Materials, Radboud University Nijmegen, Heijendaalseweg 135, 6525 AJ Nijmegen (Netherlands)

    2015-01-19

    A highly sensitive sensor design based on two-dimensional photonic crystal cavity is demonstrated. The geometric structure of the cavity is modified to gain a high quality factor, which enables a sensitive refractive index sensing. A group of slots with optimized parameters is created in the cavity. The existence of the slots enhances the light-matter interactions between confined photons and analytes. The interactions result in large wavelength shifts in the transmission spectra and are denoted by high sensitivities. Experiments show that a change in refractive index of Δn ∼ 0.12 between water and oil sample 1 causes a spectral shift of 23.5 nm, and the spectral shift between two oil samples is 5.1 nm for Δn ∼ 0.039. These results are in good agreement with simulations, which are 21.3 and 7.39 nm for the same index changes.

  12. Simultaneous detection of refractive index and surface charges in nanolaser biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Keisuke; Kishi, Yoji; Hachuda, Shoji; Watanabe, Takumi; Sakemoto, Mai; Nishijima, Yoshiaki; Baba, Toshihiko [Department of Electrical and Computer Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)

    2015-01-12

    The emission intensity of a GaInAsP photonic crystal nanolaser is affected by the pH of the solution, in which the nanolaser is immersed. This phenomenon can be explained by the change in the redox potential, which modifies the filling of electrons at surface states of the semiconductor and hence the nonradiative surface recombination. This phenomenon allows the nanolaser to simultaneously and independently detect the refractive index and electric charges near the surface on the basis of the variation in emission wavelength and intensity, respectively. This paper demonstrates this function through alternate deposition of charged polyelectrolytes and hybridization of deoxyribonucleic acids.

  13. Measurement of Refractive Index Gradients by Deflection of a Laser Beam

    Science.gov (United States)

    Barnard, A. J.; Ahlborn, B.

    1975-01-01

    In this simple experiment for an undergraduate laboratory a laser beam is passed through the mixing zone of two liquids with different refractive indices. The spatial variation of the refractive index, at different times during the mixing, can be determined from the observed deflection of the beam. (Author)

  14. Transmittance and Refractive Index of the Lanthanum Strontium Aluminium Tantalum Oxide Crystal

    Institute of Scientific and Technical Information of China (English)

    HU Bo-Qing; WANG Xiao-Ming; ZHOU Tang; ZHAO Zong-Yuan; WU Xing; CHEN Xiao-Long

    2001-01-01

    The lanthanum strontium aluminium tantalum oxide (LSAT) crystal is grown by means of a floating or pulling method. Its optical transmittance, refractive indices in visible and near-infrared areas and its dispersion curve are reported. The transparence range of LSAT is from 0.45 to 4.2μm and its refractive index is 2.0244.

  15. Nonlinear optics in high refractive index contrast photonic crystal microcavities

    Science.gov (United States)

    Cowan, Allan Ralph

    2005-07-01

    This thesis describes theoretical and experimental research on the nonlinear response of high refractive index contrast (HRIC) optical microcavities. An intuitive, numerically efficient model of second harmonic reflection from two dimensional (2D), planar photonic crystals made of sub-wavelength thick, non-centrosymmetric semiconductors is developed. It predicts that appropriate 2D texture can result in orders of magnitude enhancement of the reflected second order signal when harmonic plane waves are used to excite leaky photonic crystal eigenmodes. Local field enhancement in the textured slab, and other physical processes responsible for these enhancements are explained. A different formalism is developed to treat the Kerr-related bistable response of a 3D microcavity coupled to a single mode waveguide. This model predicts that optical bistability should be observed using only milliwatts of power to excite a cavity fabricated in Al0.18 Ga0.82As, having a quality factor of Q = 4000 and a mode volume of 0.05 mum 3. Two-photon absorption is shown to only slightly hinder the performance in Al0.18Ga0.82 As. By including nonresonant downstream reflections in the model, novel hysteresis loops are predicted, and their stability is analyzed. A coupled waveguide-microcavity structure is fabricated by selectively cladding a silicon ridge-Bragg grating waveguide with photoresist. Three-dimensionally localized optical modes are realized with Q values ranging from 200 to 1200, at ˜1.5 mum. Using 100 fs pulses, the transmission spectra of these structures is studied as a function of input power. The output power saturates when the cavity mode and pulse centre frequencies are resonant, and the output exhibits superlinear growth when they are appropriately detuned. These results are explained in terms of the filtering action of the microcavity on the nonlinear spectral distortion of the input pulse as it propagates through the waveguide. PbSe nanocrystals are deposited on a

  16. Refractive Index Measurement of the Isolated Crystalline Lens Using Optical Coherence Tomography

    Science.gov (United States)

    Uhlhorn, Stephen R.; Borja, David; Manns, Fabrice; Parel, Jean-Marie

    2008-01-01

    An optical coherence tomography system has been developed that was designed specifically for imaging the isolated crystalline lens. Cross-sectional OCT images were recorded on 40 lenses from 32 human donors with an age range of 6 – 82 years. A method has been developed to measure the axial thickness and average refractive index of the lens from a single recorded image. The measured average group refractive index at the measurement wavelength of 825 nm was converted to the average phase refractive index at 589 nm using lens dispersion data from the literature. The average refractive index for all lenses measured was 1.408 ± 0.005 which agrees well with recent MRI measurements of the lens index gradient. A linear regression of the data resulted in a statistically significant decrease in the average refractive index with age, but a simple linear model was insufficient to explain the age dependence. The results presented here suggest that the peak refractive index in the nucleus is closer to 1.420, rather than the previously accepted value of 1.406. PMID:18824191

  17. Spectral Intensity Variation by the Correlation Function of Refractive Index Fluctuations of the Liquid Medium

    Directory of Open Access Journals (Sweden)

    Nageshwar Singh

    2013-01-01

    Full Text Available It is proposed that a macroscopic theory of propagation and scattering of light through random media can be functional for the dye liquid flowing media in the microscopic levels too, with modest approximations. Maxwell’s equation for a random refractive index medium is approximated and solved for the electric field. An analytical expression for the spectral intensity of the field scattered by the refractive index fluctuations inside a medium has been derived which was valid within the first Born approximation. Far field spectral intensity variation of the radiation propagating through the liquid medium is a consequence of variation in correlation function of the refractive index inhomogeneities. The strength of radiation scattered in a particular direction depends on the spatial correlation function of the refractive index fluctuations of the medium. An attempt is made to explain some of the experimentally observed spectral intensity variations, particularly dye emission propagation through liquid flowing medium, in the presence of thermal and flow field.

  18. Fabrication and Determination of Refractive Index Profile of the Planar Waveguides by Wedge Technique

    Institute of Scientific and Technical Information of China (English)

    S.; M.; R.; Sadat; Hosseini; A.; Darudi

    2003-01-01

    Several planar waveguides have been fabricated. The waveguides have been polished for determination of their refractive index profiles (RIP) by wedge method. The RIP determined by inserting the sample in a Mach-Zehnder interferometer and applying fringe analysis methods.

  19. A study on refractive index sensors based on optical micro-ring resonators

    CERN Document Server

    Tsigaridas, Georgios N

    2015-01-01

    In this work the behavior of optical micro-ring resonators, especially when functioning as refractive index sensors, is studied in detail. Two configurations are considered, namely a linear waveguide coupled to a circular one and two linear waveguides coupled to each other through a circular one. The optimum coupling conditions are derived and it is shown that in both cases the condition for the resonant wavelength, i.e. the wavelength at which the transmission spectrum exhibits a dip (peak), is the same and depends only on the geometrical characteristics of the circular waveguide and the effective refractive index of the propagating mode. The latter, as well as the corresponding mode profile, can be easily calculated through numerical analysis. The sensitivity of the sensor is defined based on the dependence of the effective refractive index on the refractive index of the environment. Using a result of waveguide perturbation theory, the geometrical characteristics of the core of the circular waveguide that m...

  20. Equivalent refractive-index structure constant of non-Kolmogorov turbulence.

    Science.gov (United States)

    Li, Yujie; Zhu, Wenyue; Wu, Xiaoqing; Rao, Ruizhong

    2015-09-01

    The relationship between the non-Kolmogorov refractive-index structure constant and the Kolmogorov refractive-index structure constant is derived by using the refractive-index structure function and the variance of refractive-index fluctuations. It shows that the non-Kolmogorov structure constant is proportional to the Kolmogorov structure constant and the scaling factor depends on the outer scale and the spectral power law. For a fixed Kolmogorov structure constant, the non-Kolmogorov structure constant increases with a increasing outer scale for the power law less than 11/3, the trend is opposite for the power law greater than 11/3. This equivalent relation provides a way of obtaining the non-Kolmogorov structure constant by using the Kolmogorov structure constant.

  1. Determination of the effective refractive index of porous silicon/polymer composite films

    Institute of Scientific and Technical Information of China (English)

    Zhenhong Jia

    2005-01-01

    The equation for calculating the effective refractive index of porous silicon inserted polymer was obtained by three-component Bruggeman effective medium model. The dependence of the effective refractive index of porous silicon/polymer composite films on the polymer fraction with various initial porosity was given theorically and experimentally respectively. The porous silicon and polymer polymethylmetacrylate based dispersive red one (PMMA/DR1) composite films were fabricated in our experiments. It is found that the measured effective refractive index of porous silicon inserted polymer was slightly lower than the calculated result because of the oxidization of porous silicon. The effective refractive index of oxidized porous silicon inserted polymer also was analyzed by four-component medium system.

  2. Application of high-refractive index fluid to KrF-immersion lithography

    Science.gov (United States)

    Yada, Yuji; Ito, Koji; Yamaguchi, Yoshikazu; Furukawa, Taiichi; Miyamatsu, Takashi; Wang, Yong; Hieda, Katsuhiko; Shimokawa, Tsutomu

    2006-03-01

    This paper describes the material characteristics for KrF-immersion lithography with a high refractive index fluid. We have obtained promising results in soaking experiments involving KrF lithography without topcoat film. Although water is currently used as the immersion fluid in 193nm lithography, providing suitable refractive index (n=1.44@193nm and n=1.37@248nm) and transmittance (>99%/mm), it is found to have leaching issues when used with KrF resist. On the other hand, our high refractive index fluid (JSR-HIL-001), which was developed for ArF immersion purposes, satisfies the following requirements: HIL-001 has indicated promising characteristics as a 248nm-immmersion fluid. The refractive index is 1.54@248nm and the transmittance is >99%/mm. In this paper the physical and chemical properties of HIL-001 for KrF-immersion fluid application are discussed in detail.

  3. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    Science.gov (United States)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  4. Single-Mode Optical Waveguides on Native High-Refractive-Index Substrates

    CERN Document Server

    Grote, Richard R

    2016-01-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs) , but the conventional methods of achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. Our waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. The proposed waveguide geometry removes the need for a buried-oxide-layer in silicon photonics, as well as the InGaAsP layer in InP-based PICs and will allow for photonic integration on emerging material platforms such as diamond and SiC.

  5. Method for engineering of refraction index profile of circular crosssection waveguide

    Directory of Open Access Journals (Sweden)

    V. G. Levandovskyy

    2009-10-01

    Full Text Available Engineering method for circular cross-section waveguide refraction index profile is proposed. Mathematical apparatus of Gel’fund-Levitan-Martchenko for solving of inverse scattering problem of nonrelativistic quantum mechanic been used.

  6. Qualitative Analysis of Relationship between Refractive Index and Atomic Parameters of Solid Materials

    Institute of Scientific and Technical Information of China (English)

    罗遵度; 黄艺东

    2004-01-01

    The refractive index is one of the important parameters describing the optical properties of solid materials. However, it is difficult to obtain a quantitative relation between the refractive index and the structure and composition of materials. A qualitative relation between the refractive index and some atomic parameters of materials was proposed and demonstrated by some oxide optical crystals. A parameter P=r-/F=r-/(r+ΔxD) is defined, in which Δx is the difference of the electronegativities between cations and anions in the materials and r+ and r- are the radii of cations and anions respectively. On the other hand, the factor D was introduced to describe the effect of mass difference of the ions. It is demonstrated by both theoretical discussion and experimental data that refractive index is a decreasing function of parameter P. The relation may be useful for the investigation of optical materials.

  7. Determination Of Refractive Index And Reflectivity Of Thin Layer With Optical Absorption Method

    International Nuclear Information System (INIS)

    . The refractive index and reflectivity of ASi:H and Si Ox thin layer have been observed by optical absorption methods. Measurement has been done after the preparation of optical system which consists of a halogen lamp light source, monochromator, sample and light detector. The Monochromator output showed that measured halogen lamp spectrum light is between 470 nm -750 nm. The maximum voltage of halogen lamp is 220 Volt, the output light increases in intensity while the wave length increases. The inclination of intensity decrease at the wave length of 725 nm. The result of the calculation of refractive index varies in accordance with the wave length. The average refractive index of ASi:H is nf a = 1.753. The total reflectivity of air-thin layer-substrate is Rt a = 0.315. The refractive index of Si Ox sample is nf b2.182 and the total reflectivity is Rt b=O,514

  8. Femtosecond laser induced refractive index structures in polymer optical fibre (POF) for sensing

    Science.gov (United States)

    Liang, S. J.; Scully, P. J.; Schille, J.; Vaughan, J.; Perrie, W.

    2009-10-01

    Techniques to directly write localised refractive index structures in polymer optical fibres (POF) are presented, using UV (400nm) ultrafast laser with pulse lengths of 100 fs to create in-fibre gratings for sensing. No doping is necessary for photosensitisation so commercially available POF is used. An in-fibre grating consisting of a 1.8 μm wide refractive index structure with a periodicity of 189 nm was demonstrated in single mode polymer fibre with optimised laser processing parameters.

  9. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matched layer absorbing boundary condition.Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing.Based on the relationship,the refractive index of the material can be obtained from the detection of one of the resonant wavelengths.The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10-6,giving the wavelength resolution of 0.01 nm.It could be applied to highly-resolution biological sensing.%A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matcted layer absorbing boundary conditition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolutio of refractive index of the nanometeric plasmonic sensor can reach as high as 1O-6, giving the wavelength resolution of 0.01 nm. It could be applied to highly- resolution biological sensing.

  10. Dependence of refractive indexes dispersion for LiNbO3 on impurity

    International Nuclear Information System (INIS)

    The effect of the impurities of the transition metals Co, Mn, Cr, Fe, Ni, Cu on the dispersion of the refractive indexes of LiNbO3 is studied. The dispersion curves for LiNbO3 are compared to those for the pure crystals. The relation between the difference of the refractive indexes of the pure and doped LiNbO3 and the ionic radius of the impurity is established. (author)

  11. A spatial refractive index sensor using whispering gallery modes in an optically trapped microsphere

    OpenAIRE

    Zijlstra, P.; van der Molen, K. L.; Mosk, A.P.

    2006-01-01

    We propose the use of an optically trapped, dye doped polystyrene microsphere for spatial probing of the refractive index at any position in a fluid. We demonstrate the use of the dye embedded in the microsphere as an internal broadband excitation source, thus eliminating the need for a tunable excitation source. We measured the full width at half maximum of the TE and TM resonances, and their frequency spacing as a function of the refractive index of the immersion fluid. From these relations...

  12. Refraction index of shock compressed water in the megabar pressure range

    Science.gov (United States)

    Batani, D.; Jakubowska, K.; Benuzzi-Mounaix, A.; Cavazzoni, C.; Danson, C.; Hall, T.; Kimpel, M.; Neely, D.; Pasley, J.; Rabec Le Gloahec, M.; Telaro, B.

    2015-11-01

    We compressed water to megabar pressures by laser-driven shock waves and evidenced transparent, opaque and reflecting phases as pressure increases. The refraction index of water in the first two states was measured using a VISAR system. At high compression a sharp increase of the real and imaginary part of the refraction index is observed. Experiments were performed at the LULI and RAL laboratories.

  13. Method of determining effects of heat-induced irregular refractive index on an optical system.

    Science.gov (United States)

    Song, Xifa; Li, Lin; Huang, Yifan

    2015-09-01

    The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature. PMID:26368895

  14. Polarimetry of moonlight: A new method for determining the refractive index of the lunar regolith

    Science.gov (United States)

    Fearnside, Andrew; Masding, Philip; Hooker, Chris

    2016-04-01

    We present a new method for remotely measuring the refractive index of the lunar regolith, using polarised moonlight. Umov's Law correlates the polarisation (Pmax) of scattered moonlight and the albedo (A) of the scattering lunar regolith. We discuss how deviations from this correlation have previously been linked to the so-called 'Polarimetric Anomaly Parameter', (Pmax)aA, which was proposed by Shkuratov and others as being related to variations in regolith grain size. We propose a reinterpretation of that parameter. We develop models of light scattering by regolith grains which predict that variation in the refractive index of regolith grains causes deviations from Umov's Law. Variations in other grain parameters such as grain size and degree of space weathering do not produce this deviation. The models are supported by polarimetric measurements on powdered terrestrial materials of differing refractive index. We derive a simple formula to express the relationship between refractive index and the deviation from Umov's Law and apply it to telescopic measurements of regions of the lunar surface. We show that the Aristarchus Plateau and the Marius Hills regions both comprise materials of unusually low refractive index. These results are consistent with recent estimates of the mineralogy of those areas. Picard and Peirce craters, in Mare Crisium, are shown to contain material of low refractive index similar to highland regions, as has been suggested by earlier studies of these craters.

  15. Highly Sensitive Refractive Index Sensor Based on Adiabatically Tapered Microfiber Long Period Gratings

    Directory of Open Access Journals (Sweden)

    Choong Leng Ng

    2013-10-01

    Full Text Available We demonstrate a refractive index sensor based on a long period grating (LPG inscribed in a special photosensitive microfiber with double-clad profile. The fiber is tapered gradually enough to ensure the adiabaticity of the fiber taper. In other words, the resulting insertion loss is sufficiently small. The boron and germanium co-doped inner cladding makes it suitable for inscribing gratings into its tapered form. The manner of wavelength shift for refractive indices (RIs differs from conventional LPG, and the refractive index detection limit is 1.67 × 10−5.

  16. Novel high refractive index, thermally conductive additives for high brightness white LEDs

    Science.gov (United States)

    Hutchison, Richard Stephen

    making this decrease in transparency important to note. This decrease in transparency may be partially or wholly why a decrease in light extraction efficiency is observed at the 33.5 wt% zirconia loading fraction used for the LED samples. Preliminary aging studies under full and enhanced power conditions were conducted over 500 and 1000 hours to observe any changes in the spectral output power and phosphor conversion efficiency of the LEDs due to inclusion of the zirconia nanoparticles. It was found that the nanoparticles have no negative effect on the aging properties but also show no enhancement in relative output power over a preliminary aging study. However, their inclusion did result in increased phosphor conversion efficiency over the use of an unfilled silicone. This increase was seen as around a 10% or greater enhancement for the nanocomposite over that for the base Sylgard silicone. These experiments were originally conducted on the commercially available methylated Sylgard 184 silicone and then again on a higher refractive index methyl-phenyl silicone from Momentive. While some of the results from the Momentive silicone were perplexing, it was seen that, even without the inclusion of nanoparticles, the Momentive silicone had a higher refractive index, better aging properties, and a higher phosphor conversion efficiency over 500 hours under enhanced power conditions, warranting further studies into methyl-phenyl silicone nanocomposites.

  17. The Raman Contribution to the Intensity Dependent Refractive Index in Optical Fibers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Pálsson, Tómas; Jespersen, Kim G.;

    2011-01-01

    We report on the Raman contribution to the intensity dependent refractive index in step-index fibers with germanium doped silica core. The fR value is found to be 0.157 ± 0.07 for a field weighted germanium concentration between 5 and 25 mol %.......We report on the Raman contribution to the intensity dependent refractive index in step-index fibers with germanium doped silica core. The fR value is found to be 0.157 ± 0.07 for a field weighted germanium concentration between 5 and 25 mol %....

  18. A novel approach to design microwave medium of negative refractive index and simulation verification

    Institute of Scientific and Technical Information of China (English)

    CAO YunJian; WEN GuangJun; WU KaiMin; XU XinHe

    2007-01-01

    In this paper, a novel approach is presented to synthesize microwave medium of negative refractive index by incorporating metallic wire array with negative effective permittivity into the host media such as ferrimagnet-YIG (yttrium iron garnet) applied by external magnetic field whose permeability is negative. We have designed the composite medium having negative refractive index in C/X band frequencies, analyzed and simulated its electromagnetic (EM) properties by use of EM EDA package based on time-domain finite integration method. The simulation results show that: ① the effective permittivity of the designed metallic wire array is negative in the frequency range from 7.02 GHz to 9.80 GHz; ② the permeability of YIG substrate immersed into an external magnetic field is negative in the frequency range from 5.22 GHz to 8.14 GHz; ③ EM wave can pass through the composite medium synthesized by the above designed metallic wire array and YIG substrate, and ④ the negative refraction behavior occurs on the interface between the composite medium and the normal material with positive refractive index in 7.51-8.13 GHz frequency range, in which the effective permittivity of the metallic wire array and the permeability of YIG substrate are negative simultaneously. The full wave simulation has demonstrated that the effective refractive index of the designed composite medium is indeed negative and ascertained that the proposed approach to design microwave medium with negative refractive index is viable.

  19. Waveguides and nonlinear index of refraction of borate glass doped with transition metals

    Science.gov (United States)

    Almeida, Juliana M. P.; Fonseca, Ruben D.; De Boni, Leonardo; Diniz, Andre Rosa S.; Hernandes, Antonio C.; Ferreira, Paulo H. D.; Mendonca, Cleber R.

    2015-04-01

    The ability to write 3D waveguides by femtosecond laser micromachining and the nonlinear refractive index (n2) spectrum of a new borate glass matrix, containing zinc and lead oxides - (BZP) have been investigated. The transparent matrix was doped with transition metals (CdCl2, Fe2O3, MnO2 and CoO) in order to introduce electronic transitions in visible spectrum, aiming to evaluate their influence on the waveguides and n2 spectrum. We observed that n2 is approximately constant from 600 to 1500 nm, exhibiting an average value of 4.5 × 10-20 m2/W, which is about twice larger than the one for fused silica. The waveguide profile is influenced by the self-focusing effect of the matrix owing to its positive nonlinear index of refraction in the wavelength used for micromachining. A decrease in the waveguide loss of approximately four times was observed for the sample doped with Fe in comparison to the other ones, which may be associated with the change in the optical gap energy.

  20. Refraction index modulation induced with transverse electric field in double tunnel-coupled GaAs/AlGaAs quantum wells

    Science.gov (United States)

    Shumilov, A. A.; Vinnichenko, M. Ya; Balagula, R. M.; Vorobjev, L. E.; Firsov, D. A.; Kulagina, M. M.; Vasil'iev, A. P.; Duque, C. A.; Tiutiunnyk, A.; Akimov, V.; Restrepo, R. L.; Tulupenko, V. N.; Ter-Martirosyan, A. L.

    2015-11-01

    Modulation of refraction index under transverse electric field was studied in structures with multiple tunnel-coupled GaAs/AlGaAs quantum wells in the spectral range corresponding to intersubband light absorption. The change of refraction index in electric field was calculated using Kramers-Kronig relation and experimentally determined spectra of intersubband light absorption in equilibrium conditions and under transverse electric field.

  1. Refractive change after vitrectomy for epiretinal membrane in pseudophakic eyes

    DEFF Research Database (Denmark)

    Hamoudi, Hassan; Kofod, Mads; La Cour, Morten

    2013-01-01

    Purpose:  To report the change in refraction in pseudophakic eyes following 23-gauge vitrectomy for epiretinal membrane (ERM), without use of silicone oil, intraocular gas or scleral buckling. Methods:  Retrospective review of the records of 28 pseudophakic eyes in 28 patients undergoing 23-gauge...... pars plana vitrectomy for ERM. All 28 eyes had a measured preoperative refraction in their records and were seen minimum 2 months after vitrectomy for measuring their refraction. Fellow eyes (28 eyes) were used as controls. Results:  The mean preoperative refraction was -0.15 ± 0.85 dioptre (D......, respectively. The mean absolute refractive error was 0.47 ± 0.44 D. The change in refraction in fellow eyes was +0.01 D (p = 0.82). Conclusion:  The change in refraction following 23-gauge pars plana vitrectomy for ERM in pseudophakic eyes was -0.26 D....

  2. Effects of atmospheric humidity on the refractive index and the size distribution of aerosols as estimated from light scattering measurements.

    OpenAIRE

    Takamura, Tamio; Tanaka, Masayuki; Nakajima, Teruyuki

    1984-01-01

    The complex index of refraction, scattering cross section and albedo for single scattering have been estimated from measurements of the angular distribution of light scattered by aerosol particles, by an inversion library method. The humidity dependence of these optical properties has been examined in compiling 250 samples for the period FebruaryNovember 1978. It is found that optical properties of aerosol particles change systematically according to the change of relative humidity. The humid...

  3. Effect of crystalline lens surfaces and refractive index on image quality by model simulation analysis

    Institute of Scientific and Technical Information of China (English)

    Meimei Kong; Zhishan Gao; Lei Chen; Xinhua Li

    2008-01-01

    The surfaces and refractive index of crystalline lens play an important role in the optical performance of human eye.On the basis of two eye models,which are widely applied at present,the effect of lens surfaces and its refractive index distribution on optical imaging is analyzed with the optical design software ZEMAX (Zemax Development Co.,San Diego,USA).The result shows that good image quality can be provided by the aspheric lens surfaces or (and) the gradient-index (GRIN) distribution.It has great potential in the design of intraocular lens (IOL).The eye models with an intraocular implantation are presented.

  4. Integrated microsphere whispering gallery mode probe for highly sensitive refractive index measurement

    Science.gov (United States)

    Wang, Hanzheng; Yuan, Lei; Kim, Cheol-Woon; Huang, Jie; Lan, Xinwei; Xiao, Hai

    2016-06-01

    We report an integrated whispering gallery mode microresonator-based sensor probe for refractive index sensing. The probe was made by sealing a borosilicate glass microsphere into a thin-wall glass capillary pigtailed with a multimode optical fiber. The intensities of the resonant peaks were found decreasing exponentially (linearly in a log scale) with the increasing refractive index of the medium surrounding the capillary. The sensing capability of the integrated probe was tested using sucrose solutions of different concentrations and the resolution was estimated to be about 2.5×10-5 in the index range of 1.3458 to 1.3847. The integrated sensor probe may prove useful in many chemical and biological sensing applications where highly sensitive refractive index monitoring is needed.

  5. Optimum Forward Light Scattering by Spherical and Spheroidal Dielectric Nanoparticles with High Refractive Index

    CERN Document Server

    Luk`yanchuk, Boris S; Paniagua-Dominguez, Ramon; Kuznetsov, Arseniy I

    2014-01-01

    High-refractive index dielectric nanoparticles may exhibit strong directional forward light scattering at visible and near-infrared wavelengths due to interference of simultaneously excited electric and magnetic dipole resonances. For a spherical high-index dielectric, the so-called first Kerker's condition can be realized, at which the backward scattering practically vanishes for some combination of refractive index and particle size. However, Kerker's condition for spherical particles is only possible at the tail of the scattering resonances, when the particle scatters light weakly. Here we demonstrate that significantly higher forward scattering can be realized if spheroidal particles are considered instead. For each value of refractive index exists an optimum shape of the particle, which produces minimum backscattering efficiency together with maximum forward scattering. This effect is achieved due to the overlapping of magnetic and electric dipole resonances of the spheroidal particle at the resonance fr...

  6. Quasi-guiding modes in microfibers on high refractive index substrate

    CERN Document Server

    Wang, Kaiyang; Sun, Wenzhao; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2015-01-01

    Light confinement and amplification in micro- & nano-fiber have been intensively studied and a number of applications have been developed. However, the typical micro- & anno- fibers are usually free-standing or positioned on a substrate with lower refractive index to ensure the light confinement and guiding mode. Here we numerically and experimentally demonstrate the possibility of confining light within a microfiber on a high refractive index substrate. In contrast to the strong leaky to the substrate, we found that the radiation loss was dependent on the radius of microfiber and the refractive index contrast. Consequently, quasi-guiding modes could be formed and the light could propagate and be amplified in such systems. By fabricating tapered silica fiber and dye-doped polymer fiber and placing them on sapphire substrates, the light propagation, amplification, and laser behaviors have been experimentally studied to verify the quasi-guiding modes in microfer with higher index substrate. We believe t...

  7. An empirical method to estimate bulk particulate refractive index for ocean satellite applications

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Mascarenhas, A.A.M.Q.; Matondkar, S.G.P.; Naik, P.; Nayak, S.R.

    . Algorithms with the IRS-P4 OCM satellite data was used and derived the refractive index image. The values of indexes are found to be lower for the open ocean and relatively higher for the coastal waters. Distinct features are observed even...

  8. Measurement of optical penetration depth and refractive index of human tissue

    Institute of Scientific and Technical Information of China (English)

    Shusen Xie(谢树森); Hui Li(李晖); Buhong Li(李步洪)

    2003-01-01

    Experimental techniques for measurement of optical penetration depth and refractive index of human tissue are presented, respectively. Optical penetration depth can be obtained from the measurement of the relative fluence-depth distribution inside the target tissue. The depth of normal and carcinomatous human lung tissues irradiated with the wavelengths of 406.7, 632.8 and 674.4 nm in vitro are respectively determined. In addition, a novel simple method based on total internal reflection for measuring the refractive index of biotissue in vivo is developed, and the refractive indices of skin from people of different age, sex and skin color are measured. Their refractive indices are almost same and the average is 1.533.

  9. Effect of concentration of Er3+ ions on ultra-large index of refraction via atomic coherence in Er3+: YAG crystal

    Institute of Scientific and Technical Information of China (English)

    张惠芳; 戴振文; 张冰; 吴金辉; 高锦岳

    2003-01-01

    A four-level system is proposed to produce large index of refraction accompanied by vanishing absorption in the Er3+-doped yttrium aluminium garnet(YAG)crystal.It is found that the high index of refraction with zero absorption can be provided by adjusting the incoherent pumping,the coherent field,as well as the concentration of Er3+ ions in the crystal.Furthermore,the value of the incoherent pump to achieve the high index of refraction with zero absorption is greatly changed with increasing the concentration of Er3+ ions in the crystal.This indicates that the effect of concentration on the high index of refraction with zero absorption cannot be neglected.

  10. Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents

    OpenAIRE

    Anouti, M.; Vigeant, A.; Johan JACQUEMIN; Brigouleix, C.; Lemordant, D.

    2010-01-01

    Densities ([rho]) and viscosities ([eta]) of binary mixtures containing the Protic Ionic Liquid (PIL), pyrrolidinium octanoate with five molecular solvents: water, methanol, ethanol, n-butanol, and acetonitrile are determined at the atmospheric pressure as a function of the temperature and within the whole composition range. The refractive index of all mixtures (nD) is measured at 298.15†K. The excess molar volumes VE and deviation from additivity rules of viscosities [eta]E and refractive in...

  11. Method of and system for identification or estimation of a refractive index of a liquid

    DEFF Research Database (Denmark)

    2015-01-01

    This invention relates to a method of and a system (100) for identification or estimation of a refractive index of a liquid (120) comprising a light receiving part (111) adapted to receive polarised or non-polarised light (125; 135), a light emitting part (112) adapted, during use, to transmit li....../or captured by an image capturing unit (501), enables identification or estimation of the predetermined refractive index of the liquid (120). In this way, a method and a system for identification or estimation of a refractive index of a liquid is readily provided.......This invention relates to a method of and a system (100) for identification or estimation of a refractive index of a liquid (120) comprising a light receiving part (111) adapted to receive polarised or non-polarised light (125; 135), a light emitting part (112) adapted, during use, to transmit...... light (130), an optical structure (110) being adapted to receive, during use, polarised light (125) via or from the light receiving part (111), and being adapted to receive, during use, a liquid (120) having a predetermined refractive index to be identified or estimated, and a first polariser (115...

  12. High-accuracy correction of air refractive index by using two-color heterodyne interferometry of optical frequency combs

    International Nuclear Information System (INIS)

    High-accuracy two-color heterodyne interferometry based on fundamental and second harmonic of frequency combs for air refractive index correction is developed. A monitor interferometer as well as a probe interferometer is constructed to compensate the phase noises and drifts, which are caused by introducing the acousto-optic modulators for heterodyne interferometer, to realize high-accuracy measurement of optical distance. A relative stability of 10−10 to the total length for 500 s is achieved in the measurement of an optical path length difference between two wavelengths. In long-term measurements, the interferometric measurement results and the calculations from empirical equation of air refractive indices are in good agreement with a standard deviation of 4.1 × 10−10 throughout the 10 h period. By applying the two-color method, high-accuracy correction of air refractive index with an uncertainty of 8.9 × 10−8 is achieved during 10 h continuous measurements while the total refractive index changes with a range of 2.0 × 10−6. (paper)

  13. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    International Nuclear Information System (INIS)

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches

  14. Matching-index-of-refraction of transparent 3D printing models for flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Seop; Choi, Hae Yoon; Seong, Jee Hyun; Kim, Eung Soo, E-mail: kes7741@snu.ac.kr

    2015-04-01

    Matching-index-of-refraction (MIR) has been used for obtaining high-quality flow visualization data for the fundamental nuclear thermal-hydraulic researches. By this method, distortions of the optical measurements such as PIV and LDV have been successfully minimized using various combinations of the model materials and the working fluids. This study investigated a novel 3D printing technology for manufacturing models and an oil-based working fluid for matching the refractive indices. Transparent test samples were fabricated by various rapid prototyping methods including selective layer sintering (SLS), stereolithography (SLA), and vacuum casting. As a result, the SLA direct 3D printing was evaluated to be the most suitable for flow visualization considering manufacturability, transparency, and refractive index. In order to match the refractive indices of the 3D printing models, a working fluid was developed based on the mixture of herb essential oils, which exhibit high refractive index, high transparency, high density, low viscosity, low toxicity, and low price. The refractive index and viscosity of the working fluid range 1.453–1.555 and 2.37–6.94 cP, respectively. In order to validate the MIR method, a simple test using a twisted prism made by the SLA technique and the oil mixture (anise and light mineral oil) was conducted. The experimental results show that the MIR can be successfully achieved at the refractive index of 1.51, and the proposed MIR method is expected to be widely used for flow visualization studies and CFD validation for the nuclear thermal-hydraulic researches.

  15. Realization of Zero-Refractive-Index Lens with Ultralow Spherical Aberration

    CERN Document Server

    He, Xin-Tao; Chang, Ming-Li; Xu, Shao-Zeng; Zhao, Fu-Li; Deng, Shao-Zhi; She, Jun-Cong; Dong, Jian-Wen

    2016-01-01

    Optical complex materials offer unprecedented opportunity to engineer fundamental band dispersion which enables novel optoelectronic functionality and devices. Exploration of photonic Dirac cone at the center of momentum space has inspired an exceptional characteristic of zero-index, which is similar to zero effective mass in fermionic Dirac systems. Such all-dielectric zero-index photonic crystals provide an in-plane mechanism such that the energy of the propagating waves can be well confined along the chip direction. A straightforward example is to achieve the anomalous focusing effect without longitudinal spherical aberration, when the size of zero-index lens is large enough. Here, we designed and fabricated a prototype of zero-refractive-index lens by comprising large-area silicon nanopillar array with plane-concave profile. Near-zero refractive index was quantitatively measured near 1.55 um through anomalous focusing effect, predictable by effective medium theory. The zero-index lens was also demonstrate...

  16. Perturbation theory for the refractive index mismatch between the inclusion and the surrounding tissues

    Science.gov (United States)

    Chai, Chenggang; Liu, Quan

    2016-08-01

    Tissue refractive index is one optical contrast mechanism with diagnostic potential, it is very important to investigate the effect of the refractive index mismatch on light propagation through diffusive regions. Here, we present a new analytical solution of perturbation theory for the refractive index mismatch between the small spherical inclusion and the surrounding tissues. The solution has been used to implement fitting procedures in order to obtain the optical properties of a heterogeneous sphere in semi-infinite medium from measurements of diffuse reflectance. Finally, perturbation theory has been validated by comparisons with the results of Monte Carlo simulation. The new perturbation theory would provide a basis for allowing early disease diagnosis and automatic screening.

  17. Spectral dependence of the refractive index of single-crystalline GaAs for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Plotnichenko, V G; Nazaryants, V O; Kryukova, E B; Dianov, E M, E-mail: victor@fo.gpi.ac.r [Fibre Optics Research Center of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119333 (Russian Federation)

    2010-03-17

    The refractive index of crystalline GaAs is measured by the method of interference refractometry in the wavenumber range from 10 500 to 540 cm{sup -1} (or the wavelength range from 0.9 to 18.6 {mu}m) with a resolution of 0.1 cm{sup -1}. The measurement results are approximated by the generalized Cauchy dispersion formula of the 8th power. Spectral wavelength dependences of the first- and second-order derivatives of the refractive index are calculated, and the zero material dispersion wavelength is found to be {lambda}{sub 0} = 6.61 {mu}m. Using three GaAs plates of different thicknesses we managed to raise the refractive index measurement accuracy up to 4 x 10{sup -4} or 0.02%, being nearly by an order of magnitude better than the data available.

  18. Suppression of Air Refractive Index Variations in High-Resolution Interferometry

    Directory of Open Access Journals (Sweden)

    Zdeněk Buchta

    2011-08-01

    Full Text Available The influence of the refractive index of air has proven to be a major problem on the road to improvement of the uncertainty in interferometric displacement measurements. We propose an approach with two counter-measuring interferometers acting as a combination of tracking refractometer and a displacement interferometer referencing the wavelength of the laser source to a mechanical standard made of a material with ultra-low thermal expansion. This technique combines length measurement within a specified range with measurement of the refractive index fluctuations in one axis. Errors caused by different position of the interferometer laser beam and air sensors are thus eliminated. The method has been experimentally tested in comparison with the indirect measurement of the refractive index of air in a thermal controlled environment. Over a 1 K temperature range an agreement on the level of 5 × 10−8 has been achieved.

  19. Profile and Character of Atmospheric Structure Constant of Refractive Index C_n~2

    Institute of Scientific and Technical Information of China (English)

    SUN Gang; WENG Ning-Quan; XIAO Li-Ming; WU Yi

    2012-01-01

    Random fluctuations of turbulence bring random fluctuations of the refractive index, making the atmosphere a random fluctuation medium that destroys the coherence of light-waves. Research in atmospheric turbulence is actually the investigation of the atmospheric refractive index. The atmospheric structure constant of refractive index, C n 2 , is an important parameter denoting atmospheric turbulence. In this paper, C n 2 is measured during the day and at night and in all four seasons using a high sensitivity micro-thermal meter QHTP-2. The vertical profile of C n 2 in Hefei (0-30 km) is investigated by the analysis of experimental data. The average profile of C n 2 in Hefei exhibits conspicuous day and night differences with increased altitude. The distribution of log(C n 2 ) is nearly normal and has conspicuous seasonal differences.

  20. High-refractive-index fluids for the next-generation ArF immersion lithography

    Science.gov (United States)

    Wang, Yong; Miyamatsu, Takashi; Furukawa, Taiichi; Yamada, Kinji; Tominaga, Tetsuo; Makita, Yutaka; Nakagawa, Hiroki; Nakamura, Atsushi; Shima, Motoyuki; Kusumoto, Shiro; Shimokawa, Tsutomu; Hieda, Katsuhiko

    2006-03-01

    ArF immersion lithography using a high-refractive-index fluid (HIF) is considered to be a promising candidate for the 32nm node or below. At SPIE 2005 we introduced a new immersion fluid, JSR HIL-1, which has a refractive index and transmittance of 1.64 and >98%/mm (193.4nm, 23 °C), respectively. With HIL-1 immersion and a two beam interferometric exposure tool, hp32nm L/S imaging has been demonstrated. In this paper, we will report another novel immersion fluid, HIL-2, which has a transmittance of >99%/mm, which is almost as high as that of water, and a refractive index of 1.65 (193.4nm, 23 °C). Furthermore, an ArF laser irradiation study has shown that the degree of photodecomposition for both HIL-1 and HIL-2 is small enough for immersion lithography application. A "fluid puddle" defect study confirmed that HILs have less tendency to form immersion-specific photoresist defects and the refractive indices of HILs were found constant under laser irradiation. Batch-to-batch variation in refractive index during manufacture of HILs was not observed. By refining prism designs, hp30nm L/S patterns have also been successfully imaged with two interferometric exposure tools and HIL immersion.

  1. Estimation of volcanic ash refractive index from satellite infrared sounder data

    Science.gov (United States)

    Ishimoto, H.; Masuda, K.

    2014-12-01

    The properties of volcanic ash clouds (cloud height, optical depth, and effective radius of the particles) are planned to estimate from the data of the next Japanese geostationary meteorological satellite, Himawari 8/9. The volcanic ash algorithms, such as those proposed by NOAA/NESDIS and by EUMETSAT, are based on the infrared absorption properties of the ash particles, and the refractive index of a typical volcanic rock (i.e. andesite) has been used in the forward radiative transfer calculations. Because of a variety of the absorption properties for real volcanic ash particles at infrared wavelengths (9-13 micron), a large retrieval error may occur if the refractive index of the observed ash particles was different from that assumed in the retrieval algorithm. Satellite infrared sounder provides spectral information for the volcanic ash clouds. If we can estimate the refractive index of the ash particles from the infrared sounder data, a dataset of the optical properties for similar rock type of the volcanic ash can be prepared for the ash retrieval algorithms of geostationary/polar-orbiting satellites in advance. Furthermore, the estimated refractive index can be used for a diagnostic and a correction of the ash particle model in the retrieval algorithm within a period of the volcanic activities. In this work, optimal estimation of the volcanic ash parameters was conducted through the radiative transfer calculations for the window channels of the atmospheric infrared sounder (AIRS). The estimated refractive indices are proposed for the volcanic ash particles of some eruption events.

  2. Tunable effective nonlinear refractive index of graphene dispersions during the distortion of spatial self-phase modulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaozhong; Zhang, Saifeng, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn; Cheng, Xin; Dong, Ningning; Zhang, Long; Wang, Jun, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Umran, Fadhil A. [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Laser for Post Graduate Studies, Baghdad University, Baghdad (Iraq); Coghlan, Darragh; Blau, Werner J. [Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); School of Physics and the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Cheng, Ya [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-04-07

    Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphene dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.

  3. Refractive index modulating Raman spectroscopy based on perovskite PMN-PT ceramics.

    Science.gov (United States)

    Wei, Danzhu; Xu, Tian; Yuan, Li; Tian, Shu; Fang, Jinghuai; Jin, Yonglong; Wang, Chaonan; Ma, Xinxiang; Shi, Jianzhen

    2016-04-01

    A three-layer planar waveguide structure comprising a perovskite (1-x)Pb(Mg1/3Nb2/3Nb2/3)O3-xPbTiO3 (PMN-PT) ceramic sandwiched by two silver films is designed and called PMPW. Using the high sensitivity of ultrahigh-order modes, theoretical analysis is performed to calculate the effective refractive index (ERI) of the PMPW. A detailed analysis of the Raman spectrum of PMN-PT at 795  cm-1 is performed. A comparison of the numerical analysis and experimental results reveals that the nonlinear change in ERI plays a primary role in the Raman signal variation. Analysis of the Raman spectrum of a sample deposited on PMPW confirms that it is effective for modulating Raman signals. PMID:27139681

  4. High-sensitivity refractive index sensors based on fused tapered photonic crystal fiber

    Science.gov (United States)

    Fu, Xing-hu; Xie, Hai-yang; Yang, Chuan-qing; Qu, Yu-wei; Zhang, Shun-yang; Fu, Guang-wei; Guo, Xuan; Bi, Wei-hong

    2016-05-01

    In this paper, a novel liquid refractive index (RI) sensor based on fused tapered photonic crystal fiber (PCF) is proposed. It is fabricated by fusing and tapering a section of PCF which is spliced with two single-mode fibers (SMFs). Due to the fused biconical taper method, the sensor becomes longer and thinner, to make the change of the outside RI has more direct effects on the internal optical field of the PCF, which finally enhances the sensitivity of this sensor. Experimental results show that the transmission spectra of the sensor are red-shifted obviously with the increase of RI. The longer the tapered region of the sensor, the higher the sensitivity is. This sensor has the advantages of simple structure, easy fabrication, high performance and so on, so it has potential applications in RI measurement.

  5. Infrared complex refractive index of astrophysical ices exposed to cosmic rays simulated in the laboratory

    CERN Document Server

    Rocha, W R M; de Barros, A L F; Andrade, D P P; Rothard, H; Boduch, P

    2016-01-01

    In dense and cold regions of the interstellar medium (ISM), molecules may be adsorbed onto dust grains to form the ice mantles. Once formed, they can be processed by ionizing radiation coming from stellar or interstellar medium leading to formation of several new molecules in the ice. Among the different kind of ionizing radiation, cosmic rays play an important role in the solid-phase chemistry because of the large amount of energy deposited in the ices. The physicochemical changes induced by the energetic processing of astrophysical ices are recorded in a intrinsic parameter of the matter called complex refractive index (CRI). In this paper, we present for the first time a catalogue containing 39 complex refractive indices (n, k) in the infrared from 2.0 - 16.6 micrometer for 13 different water-containing ices processed in laboratory by cosmic ray analogs. The calculation was done by using the NKABS (acronym of determination of N and K from ABSorbance data) code, which employs the Lambert-Beer and Kramers-Kr...

  6. High-precision broadband measurement of refractive index by picosecond real-time interferometry.

    Science.gov (United States)

    Tan, Zheng Jie; Jin, Dafei; Fang, Nicholas X

    2016-08-20

    The refractive index is one of the most important quantities that characterize a material's optical properties. However, it is hard to measure this value over a wide range of wavelengths. Here, we demonstrate a new technique to achieve a spectrally broad refractive index measurement. When a broadband pulse passes through a sample, different wavelengths experience different delays. By comparing the delayed pulse to a reference pulse, the zero path difference position for each wavelength can be obtained and the material's dispersion can be retrieved. Our technique is highly robust and accurate, and can be miniaturized in a straightforward manner. PMID:27556980

  7. Relationship between Compostion,Density and Refractive Index for Heavy Metal Fluoride Glasses

    Institute of Scientific and Technical Information of China (English)

    ShaukatS.F; HobsonP.R.; 等

    2001-01-01

    The density and the refractive index for various compositions of heavy metal fluoride(HMF) glasses,used to make low-loss optical wave-guides,have been measured by standard archimedes method and by using as Pulfrich refrctometer respectively.The density as a function of composition is calculated considering the effective volume of the ions contained in the glass to be invariant.The refractive index as a function of composition is also calcuated.based on the Lorenz-Lorentz equation,by computing the electronic polarizability of HMF glasses.All calculated results are in good agreement with the observed data.

  8. Effect of Index of Refraction on Radiation Characteristics in a Heated Absorbing, Emitting, and Scattering Layer

    Science.gov (United States)

    Siegel, R.; Spuckler, C. M.

    1992-01-01

    The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates

  9. High Performance Optical Coatings Utilizing Tailored Refractive Index Nanoporous Thin Films

    Science.gov (United States)

    Poxson, David J.

    Refractive index is perhaps the most important quantity in optics. It is particularly relevant in the field of optical coatings, where the refractive index appears in virtually every optics equation as a figure of merit. Recently it has been demonstrated through control of the deposition angle during oblique-angle electron-beam deposition, nanoporous films of virtually any desired porosity may be accurately deposited. As the porosity of a nanoporous film directly relates to its effective refractive index, the refractive index value of a film may be tailored to any value between that of the bulk material and close to that of air. These two characteristics, namely; (i) tailored-refractive index and (ii) very low-refractive index values close to that of air, offer significant advantages in the design and optical performance in all optical coating applications. In this dissertation we explore optical coating applications whose performance can be greatly enhanced by utilization of a tailored- and low-refractive index nanoporous material system. One such important application is in the design and fabrication of broadband, omnidirectional antireflection (AR) coatings on solar cell devices. To harness the full spectrum of solar energy, Fresnel reflections at the surface of a photovoltaic cell must be reduced as much as possible over the relevant solar wavelength range and over a wide range of incident angles. However, the development of AR coatings embodying omni-directionality over a wide range of wavelengths is challenging. By utilizing the tailored- and low-refractive index properties of the nanoporous material system, in conjunction with a computational genetic algorithm and a predictive quantitative model for the porosity of such nanoporous films, truly optimized AR coatings can be designed and fabricated on solar cells. Here we show that these optimized AR structures demonstrate significant improvement to overall device efficiency. Traditionally, nanoporous films

  10. Observation of a multiply ionized plasma with index of refraction greater than one

    Energy Technology Data Exchange (ETDEWEB)

    Filevich, J; Rocca, J J; Marconi, M C; Moon, S J; Nilsen, J; Scofield, J H; Dunn, J; Smith, R F; Keenan, R; Hunter, J R; Shlyaptsev, V N

    2004-10-14

    We present clear experimental evidence showing that the contribution of bound electrons can dominate the index of refraction of laser created plasmas at soft x-ray wavelengths. We report anomalous fringe shifts in soft x-ray laser interferograms of Al laser-created plasmas. The comparison of measured and simulated interferograms show that this results from the dominant contribution of low charge ions to the index of refraction. This usually neglected bound electron contribution can a.ect the propagation of soft x-ray radiation in plasmas and the interferometric diagnostics of plasmas for many elements.

  11. Refractive index dispersion sensing using an array of photonic crystal resonant reflectors

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron;

    2015-01-01

    Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by cove...... perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications. © 2015 AIP Publishing LLC....

  12. Wavelength Sweep Interferometry for Measuring the Refractive Index and Physical Thickness

    Institute of Scientific and Technical Information of China (English)

    SONG Guiju; WANG Xiangzhao; FANG Zujie

    2001-01-01

    A method combining wavelength sweep interferometry with the Fourior transform technique to perform the separate measurements of the physical thickness and the refractive index is proposed. By converting the optical path difference of the interferometer to the beat frequency of the interference signal we realize the depth scanning without mechanical moving parts. The effect of specimen dispersion is avoided by using a narrow tuning laser diode. For demonstrating this method we measure the physical thickness and the refractive index of an x-cut LiNbO3, BK9 and BK7 glass, and the results consist with the reported values.

  13. Time-resolved measurement of the refractive index for photopolymerization processes

    Science.gov (United States)

    Dorkenoo, Kokou; van Wonderen, A. J.; Bulou, Hervé; Romeo, Michelangelo; Crégut, Olivier; Fort, Alain

    2003-09-01

    A double-interferometer technique is employed to examine the dynamics of a photopolymerization process. The dye molecule is eosine Y. The refractive index and the thickness of the photopolymerizable film are measured as a function of time. During the photopolymerization process, the first quantity increases by 2%, while the second quantity decreases by more than 4%. Therefore, the refractive index cannot be measured by means of single-interferometer techniques. By fitting our experimental curves to a rate equation, the quantum yield and the absorption coefficient of the sample can be determined with good accuracy.

  14. "Peak-tracking chip" (PTC) for bulk refractive index sensing and bioarray sensing

    KAUST Repository

    Bougot-Robin, Kristelle

    2013-10-20

    Resonant techniques are of wide interest to detect variation of effective refractive index at a chip surface. Both Surface Plasmon Resonance (SPR) and dielectric resonant waveguide (RWGs) can be exploited. Through their design, RWGs allow more flexibility (size of the biomolecule to detect, detection angle…). Using specially designed RWG “Peak-tracking chip”, we propose to use spatial information from a simple monochromatic picture as a new label-free bioarray technique. We discuss robustness, sensitivity, multiplex detection, fluidic integration of the technique and illustrate it through bulk refractive index sensing as well as specific recognition of DNA fragment from gyrase A.

  15. Refractive index detection range adjustable liquid-core fiber optic sensor based on surface plasmon resonance and a nano-porous silica coating

    Science.gov (United States)

    Chen, Yuzhi; Li, Xuejin; Zhou, Huasheng; Hong, Xueming; Geng, Youfu

    2016-09-01

    A liquid-core fiber optic surface plasmon resonance sensor with an adjustable nano-porous silica coating is first presented in this paper. By adjusting the refractive index of the nano-porous silica coating, the sensor can be used in different refractive index detection ranges. A low refractive index interval of 1.33–1.34 and a high refractive index interval of 1.42–1.44 are taken as examples to be investigated. Results show that our sensor works well in these two intervals by using appropriate nano-porous silica coatings. The highest sensitivities of the low and high refractive index intervals are obtained to be 5840 nm/RIU and 5120 nm/RIU, respectively. In addition, the sensing performances and the working wavelengths can be adjusted to meet different working requirements by changing the refractive index of the nano-porous silica coating. We also take the single mode incidence cases to explain the effects of different single incident light modes on the sensing performances.

  16. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle.

    Science.gov (United States)

    Sobral, H; Peña-Gomar, M

    2015-10-01

    A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated. PMID:26479623

  17. How indexes have changed

    International Nuclear Information System (INIS)

    The accompanying table compares refinery construction and operating wages monthly for the years 1990 and 1991. The Nelson-Farrar refinery construction cost indexes are inflation indexes, while the operating indexes incorporate a productivity which shows improvement with experience and the increasing size of operations. The refinery construction wage indexes in the table show a steady advance over the 2-year period. Common labor indexes moved up faster than skilled indexes. Refinery operating wages showed a steady increase, while productivities averaged higher near the end of the period. Net result is that labor costs remained steady for the period

  18. Single-mode optical waveguides on native high-refractive-index substrates

    Science.gov (United States)

    Grote, Richard R.; Bassett, Lee C.

    2016-10-01

    High-refractive-index semiconductor optical waveguides form the basis for modern photonic integrated circuits (PICs). However, conventional methods for achieving optical confinement require a thick lower-refractive-index support layer that impedes large-scale co-integration with electronics and limits the materials on which PICs can be fabricated. To address this challenge, we present a general architecture for single-mode waveguides that confine light in a high-refractive-index material on a native substrate. The waveguide consists of a high-aspect-ratio fin of the guiding material surrounded by lower-refractive-index dielectrics and is compatible with standard top-down fabrication techniques. This letter describes a physically intuitive, semi-analytical, effective index model for designing fin waveguides, which is confirmed with fully vectorial numerical simulations. Design examples are presented for diamond and silicon at visible and telecommunications wavelengths, respectively, along with calculations of propagation loss due to bending, scattering, and substrate leakage. Potential methods of fabrication are also discussed. The proposed waveguide geometry allows PICs to be fabricated alongside silicon CMOS electronics on the same wafer, removes the need for heteroepitaxy in III-V PICs, and will enable wafer-scale photonic integration on emerging material platforms such as diamond and SiC.

  19. Generation of J_0-Bessel-Gauss beam by a heterogeneous refractive index map

    KAUST Repository

    San-Román-Alerigi, Damián P.

    2012-07-01

    In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to a J0-Bessel-Gauss convertor. We theoretically demonstrate the viability of a device that could be fabricated on a Si/Si1-yOy/Si1-x-yGexCy platform or by photo-refractive media. The proposed device is 200 ?m in length and 25 ?m in width, and its refractive index varies in controllable steps across the light propagation and transversal directions. The computed conversion efficiency and loss are 90%, and -0.457 dB, respectively. The theoretical results, obtained from the beam conversion efficiency, self-regeneration, and propagation through an opaque obstruction, demonstrate that a two-dimensional (2D) graded index map of the refractive index can be used to transform a Gauss beam into a J0-Bessel-Gauss beam. To the best of our knowledge, this is the first demonstration of such beam transformation by means of a 2D index-mapping that is fully integrable in silicon photonics based planar lightwave circuits (PLCs). The concept device is significant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and nonlinear beam diode lasers. © 2012 Optical Society of America.

  20. Phase-conjugate interferometer to estimate refractive index and thickness of transparent plane parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana-Sanchez, R.; Rodriguez-Zurita, G.; Vazquez-Castillo, J. F. [Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)

    2001-04-01

    A technique to estimate the refractive index and thickness of homogeneous plane parallel dielectric plates is proposed using a phase-conjugate interferometer, in which counting of interference fringes is employed. The light beam impinges a tilted plate before it enters a phase-conjugate interferometer, and a count of the fringes passing through a given reference at the observing plane gives the phase changes as a function of tilting angle. The obtained data is fitted to a mathematical model, which leads to the determination of both refractive index and thickness simultaneously. In this letter, experimental data from two interferometers are also discussed for comparison. One with an externally-pumped phase-conjugate mirror achieved with a BSO photorefractive crystal and another one with conventional mirrors. Results show that the phase sensitivity of the phase-conjugate interferometer is not simply twice the corresponding sensitivity of the conventional version. [Spanish] Se propone una tecnica para medir indices de refraccion y espesores de placas dielectricas plano paralelas homogeneas empleando un interferometro con fase conjugada, en el cual se usa el conteo de franjas. El haz luminoso incide en una placa inclinada bajo inspeccion antes de entrar en un interferometro equipado con un espejo conjugador de fase, y se realiza un conteo de las franjas que pasan por determinada referencia en el plano de observacion, proporcionando los cambios de fase en funcion del angulo de inclinacion. Los datos obtenidos se ajustan a un modelo, el cual conduce a la determinacion, tanto del indice de refraccion como del espesor, simultaneamente. En este trabajo se discuten datos experimentales provenientes de dos interferometros para su comparacion. Uno de ellos tiene un espejo conjugador basado en un cristal BSO fotorrefractivo, mientras que el otro es una variante con espejos convencionales. Se muestra que la sensibilidad de fase del interferometro con conjugador de fase no

  1. Determining particle size distribution and refractive index in a two-layer tissue phantom by linearly polarized light

    Institute of Scientific and Technical Information of China (English)

    Yong Deng; Qiang Lu; Qingming Luo

    2006-01-01

    We report a new method for measuring particle size distribution (PSD) and refractive index of the top layer in a two-layer tissue phantom simulated epithelium tissue by varying the azimuth angle of incident linearly polarized light. The polarization gating technique is used to decouple the single and multiple scattering components in the returned signal. The theoretical model based on Mie theory is presented and a nonlinear inversion method - floating genetic algorithm - is applied to inverting the azimuth dependence of component of polarization light backscattered. The experiment results demonstrate that the size distribution and refractive index of the scatters of the top layer can be determined by measuring and analyzing the differential signal of the parallel and perpendicular components from a two-layer tissue phantom. The method implies to detect precancerous changes in human epithelial tissue.

  2. Broadband giant-refractive-index material based on mesoscopic space-filling curves.

    Science.gov (United States)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-01-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain 1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications. PMID:27573337

  3. Broadband giant-refractive-index material based on mesoscopic space-filling curves

    Science.gov (United States)

    Chang, Taeyong; Kim, Jong Uk; Kang, Seung Kyu; Kim, Hyowook; Kim, Do Kyung; Lee, Yong-Hee; Shin, Jonghwa

    2016-08-01

    The refractive index is the fundamental property of all optical materials and dictates Snell's law, propagation speed, wavelength, diffraction, energy density, absorption and emission of light in materials. Experimentally realized broadband refractive indices remain 1,800 resulting from a mesoscopic crystal with a dielectric constant greater than three million. This gigantic enhancement effect originates from the space-filling curve concept from mathematics. The principle is inherently very broad band, the enhancement being nearly constant from zero up to the frequency of interest. This broadband giant-refractive-index medium promises not only enhanced resolution in imaging and raised fundamental absorption limits in solar energy devices, but also compact, power-efficient components for optical communication and increased performance in many other applications.

  4. Internal characteristics of refractive-index matched debris flows

    Science.gov (United States)

    Gollin, Devis; Bowman, Elisabeth; Sanvitale, Nicoletta

    2016-04-01

    Debris flows are channelized masses of granular material saturated with water that travel at high speeds downslope. Their destructive character represents a hazard to lives and properties, especially in regions of high relief and runoff. The characteristics that distinguish their heterogeneous, multi-phase, nature are numerous: non-uniform surge formation, particle size ranging from clay to boulders, flow segregation with larger particles concentrating at the flow front and fluid at the tail making the composition and volume of the bulk varying with time and space. These aspects render these events very difficult to characterise and predict, in particular in the area of the deposit spread or runout - zones which are generally of most interest in terms of human risk. At present, considerable gaps exist in our understanding of the flow dynamics of debris flows, which originates from their complex motion and relatively poor observations available. Flume studies offer the potential to examine in detail the behaviour of model debris flows, however, the opaque nature of these flows is a major obstacle in gaining insight of their internal behaviour. Measurements taken at the sidewalls may be poorly representative leading to incomplete or misleading results. To probe internally to the bulk of the flow, alternative, nonintrusive techniques can be used, enabling, for instance, velocities and solid concentrations within the flowing material to be determined. We present experimental investigations into polydisperse granular flows of spherical immersed particles down an inclined flume, with specific attention directed to their internal behavior. To this end, the refractive indices of solids and liquid are closely matched allowing the two phases to be distinguished. Measurements are then made internally at a point in the channel via Plane Laser Induced Fluorescence, Particle Tracking Velocimetry, PTV and Particle Image Velocimetry, PIV. The objective is to to increase our

  5. Refractive index and solubility control of para-cymene solutions for index-matched fluid-structure interaction studies

    Science.gov (United States)

    Fort, Charles; Fu, Christopher D.; Weichselbaum, Noah A.; Bardet, Philippe M.

    2015-12-01

    To deploy optical diagnostics such as particle image velocimetry or planar laser-induced fluorescence (PLIF) in complex geometries, it is beneficial to use index-matched facilities. A binary mixture of para-cymene and cinnamaldehyde provides a viable option for matching the refractive index of acrylic, a common material for scaled models and test sections. This fluid is particularly appropriate for large-scale facilities and when a low-density and low-viscosity fluid is sought, such as in fluid-structure interaction studies. This binary solution has relatively low kinematic viscosity and density; its use enables the experimentalist to select operating temperature and to increase fluorescence signal in PLIF experiments. Measurements of spectral and temperature dependence of refractive index, density, and kinematic viscosity are reported. The effect of the binary mixture on solubility control of Rhodamine 6G is also characterized.

  6. Generation of J0-Bessel-Gauss Beam by an heterogeneous refractive index map

    CERN Document Server

    Alerigi, Damian P San Roman; Benslimane, Ahmed; Zhang, Yaping; Alsunaidi, Mohammad; Ooi, Boon S; 10.1364/JOSAA.29.001252

    2012-01-01

    In this paper, we present the theoretical studies of a refractive index map to implement a Gauss to J0-Bessel-Gauss convertor. We theoretically demonstrate the viability of such device by solving the inverse electromagnetic problem. The computed conversion e?ficiency is 90%. The theoretical results, obtained from the beam conversion efi?ciency, self-regeneration, and propagation through an opaque obstruction; demonstrate that a 2D graded index map of the refractive index can be used to transform a Gauss beam into a J0-Bessel-Gauss beam. To the best of our knowledge, this is the ?rst demonstration of such beam transformation by means of a 2D index-mapping which is fully integrable in silicon photonics based planar lightwave circuits (PLC). The concept device is signi?cant for the eventual development of a new array of technologies, such as micro optical tweezers, optical traps, beam reshaping and non-linear beam diode lasers.

  7. The iterative self-consistent reaction-field method: The refractive index of pure water

    DEFF Research Database (Denmark)

    Sylvester-Hvid, Kristian O.; Mikkelsen, K. V.; Ratner, M.A.

    2011-01-01

    We present different microscopic models for describing electromagnetic properties of condensed phases and the models involve iterative self-consistent procedures for calculating the properties. We report calculations of the frequency-dependent refractive index of pure water. We investigate the...

  8. Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions

    Science.gov (United States)

    Siegel, R.; Spuckler, C. M.

    1993-01-01

    A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.

  9. Laplace-Gauss and Helmholtz-Gauss paraxial modes in media with quadratic refraction index.

    Science.gov (United States)

    Kiselev, Aleksei P; Plachenov, Alexandr B

    2016-04-01

    The scalar theory of paraxial wave propagation in an axisymmetric medium where the refraction index quadratically depends on transverse variables is addressed. Exact solutions of the corresponding parabolic equation are presented, generalizing the Laplace-Gauss and Helmholtz-Gauss modes earlier known for homogeneous media. Also, a generalization of a zero-order asymmetric Bessel-Gauss beam is given. PMID:27140777

  10. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally valid...... factor, Q, for characterizing long period gratings sensors....

  11. Calculation of the refractive index of metal on the basis of nonlocal potential theory

    Science.gov (United States)

    Chrzanowski, Janusz

    2008-12-01

    In this paper a quantative discussion upon the frequency dependence of the refractive index of metal, in wide range of frequency, is performed on the basis of nonlocal potential theory connected with the concept of quasiparticles. Obtained results, for chosen metals, have been compared to evidence.

  12. Design and use of guided mode resonance filters for refractive index sensing

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon

    This Ph.D. thesis is concerned with the design and use of guided mode resonance filters (GMRF) for applications in refractive index sensing. GMRFs are optical nanostructures capable of efficiently and resonantly reflecting a narrow wavelength interval of incident broad band light. They combine a ...

  13. Observation of optical emission from high refractive index waveguide excited by traveling electron beam

    OpenAIRE

    Kuwamura, Yuji; Yamada, Minoru; Okamoto, Ryuichi; Kanai, Takeshi; Fares, Hesham

    2008-01-01

    A new scheme for optical emission using a high refractive index waveguide and the traveling electron beam in vacuum was demonstrated. Optical emission around wavelength of 1.5 pm was observed for electron acceleration voltage of 40KV. © 2008 Optical Society of America.

  14. Optical waveguides with compound multiperiodic grating nanostructures for refractive index sensing

    DEFF Research Database (Denmark)

    Neustock, Lars Thorben; Jahns, Sabrina; Adam, Jost;

    2016-01-01

    (Rudin-Shapiro, Fibonacci, Thue-Morse). The refractive index sensitivity of the TE-resonances is similar for all types of investigated nanostructures. For the TM-resonances the compound multiperiodic nanostructures exhibit higher sensitivity values compared to the monoperiodic nanostructure and similar...

  15. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy

    NARCIS (Netherlands)

    Stavenga, Doekele G.; Leertouwer, Hein L.; Wilts, Bodo D.

    2013-01-01

    Jamin-Lebedeff polarizing interference microscopy is a classical method for determining the refractive index and thickness of transparent tissues. Here, we extend the application of this method to pigmented, absorbing biological tissues, based on a theoretical derivation using Jones calculus. This n

  16. High-refractive index particles in counter-propagating optical tweezers - manipulation and forces

    NARCIS (Netherlands)

    Horst, Astrid van der

    2006-01-01

    With a tightly focused single laser beam, also called optical tweezers, particles of a few nanometers up to several micrometers in size can be trapped and manipulated in 3D. The size, shape and refractive index of such colloidal particles are of influence on the optical forces exerted on them in the

  17. Concurrency of anisotropy and spatial dispersion in low refractive index dielectric composites

    CERN Document Server

    Ushkov, Andrey A

    2016-01-01

    The article demonstrates uncommon manifestation of spatial dispersion in low refractive index contrast 3D periodic dielectric composites with periods of about one tenth of the wavelength. First principles simulations by the well established plane wave method reveal that spatial dispersion leads to appearance of additional optical axes and tends to compensate anisotropy in certain directions.

  18. Chiral metamaterials with negative refractive index based on four "U" split ring resonators

    OpenAIRE

    Li, Zhaofeng; Zhao, Rongkuo; Koschny, Thomas; Kafesaki, Maria; Alici, Kamil Boratay; Colak, Evrim; Caglayan, Humeyra; Soukoulis, Ekmel Ozbayand C. M.

    2010-01-01

    A uniaxial chiral metamaterial is constructed by double-layered four "U" split ring resonators mutually twisted by 90 degrees. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.

  19. Research Advances in Detection Techniques of High Performance Liquid Chromatography-Refractive Index Detector

    Institute of Scientific and Technical Information of China (English)

    Huo; Fang; Zhang; Zhimei; Wang; Jianjun; Guo; Shijin; Zhou; Chunfeng; Fu; Shijun

    2014-01-01

    As a highly sensitive and stable detector,refractive index detector is usually used for quantitative detection of substances such as polymer,sugar and organic acid. The research reviewed the application of HPLC-RID in the fields of quantitative determination of medicine and food,in order to lay a foundation for wider use of RID.

  20. Forces from highly focused laser beams: modeling, measurement and application to refractive index measurements

    CERN Document Server

    Knoener, G; Nieminen, T A; Heckenberg, N R; Rubinsztein-Dunlop, H

    2007-01-01

    The optical forces in optical tweezers can be robustly modeled over a broad range of parameters using generalsed Lorenz-Mie theory. We describe the procedure, and show how the combination of experimental measurement of properties of the trap coupled with computational modeling, can allow unknown parameters of the particle - in this case, the refractive index - to be determined.

  1. Methods to calibrate and scale axial distances in confocal microscopy as a function of refractive index

    NARCIS (Netherlands)

    Besseling, T. H.; Jose, J.; Blaaderen, A. Van

    2015-01-01

    Accurate distance measurement in 3D confocal microscopy is important for quantitative analysis, volume visualization and image restoration. However, axial distances can be distorted by both the point spread function (PSF) and by a refractive-index mismatch between the sample and immersion liquid, wh

  2. Relationship between the Kramers-Kronig relations and negative index of refraction

    CERN Document Server

    Hickey, Mark C; Kussow, Adil-Gerai

    2010-01-01

    The condition for a negative index of refraction with respect to the vacuum index is established in terms of permittivity and permeability susceptibilities. It is found that the imposition of analyticity to satisfy the Kramers-Kronig relations is a sufficiently general criterion for a physical negative index. The satisfaction of the Kramers-Kronig relations is a manifestation of the principle of causality and the predicted frequency region of negative index agrees with the Depine-Lakhtakia condition for the phase velocity being anti-directed to the Poynting vector, although the conditions presented here do not assume {\\it a priori} a negative solution branch for n.

  3. Surface Wave Cloak from Graded Refractive Index Nanocomposites

    Science.gov (United States)

    La Spada, L.; McManus, T. M.; Dyke, A.; Haq, S.; Zhang, L.; Cheng, Q.; Hao, Y.

    2016-07-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas.

  4. Surface Wave Cloak from Graded Refractive Index Nanocomposites.

    Science.gov (United States)

    La Spada, L; McManus, T M; Dyke, A; Haq, S; Zhang, L; Cheng, Q; Hao, Y

    2016-01-01

    Recently, a great deal of interest has been re-emerged on the possibility to manipulate surface waves, in particular, towards the THz and optical regime. Both concepts of Transformation Optics (TO) and metamaterials have been regarded as one of key enablers for such applications in applied electromagnetics. In this paper, we experimentally demonstrate for the first time a dielectric surface wave cloak from engineered gradient index materials to illustrate the possibility of using nanocomposites to control surface wave propagation through advanced additive manufacturing. The device is designed analytically and validated through numerical simulations and measurements, showing good agreement and performance as an effective surface wave cloak. The underlying design approach has much wider applications, which span from microwave to optics for the control of surface plasmon polaritons (SPPs) and radiation of nanoantennas. PMID:27416815

  5. Omnidirectional Photonic Band Gap Using Low Refractive Index Contrast Materials and its Application in Optical Waveguides

    KAUST Repository

    Vidal Faez, Angelo

    2012-07-01

    Researchers have argued for many years that one of the conditions for omnidirectional reflection in a one-dimensional photonic crystal is a strong refractive index contrast between the two constituent dielectric materials. Using numerical simulations and the theory of Anderson localization of light, in this work we demonstrate that an omnidirectional band gap can indeed be created utilizing low refractive index contrast materials when they are arranged in a disordered manner. Moreover, the size of the omnidirectional band gap becomes a controllable parameter, which now depends on the number of layers and not only on the refractive index contrast of the system, as it is widely accepted. This achievement constitutes a major breakthrough in the field since it allows for the development of cheaper and more efficient technologies. Of particular interest is the case of high index contrast one-dimensional photonic crystal fibers, where the propagation losses are mainly due to increased optical scattering from sidewall roughness at the interfaces of high index contrast materials. By using low index contrast materials these losses can be reduced dramatically, while maintaining the confinement capability of the waveguide. This is just one of many applications that could be proven useful for this discovery.

  6. Surface tension and refractive index of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids

    International Nuclear Information System (INIS)

    Highlights: ► Data for the refractive index and surface tension of tetradecyltrihexylphosphonium-based ionic liquids are reported. ► Experimental data for both pure and water-saturated ionic liquids are provided. ► The refractive index decreases with the increase on the water content. ► The surface tension decreases or increases as a function of the water content. ► The surface thermodynamic properties and critical temperatures are presented and discussed. - Abstract: Experimental data on the surface tension and refractive index of tetradecyltrihexylphosphonium-based ionic liquids with bromide, chloride, decanoate, methanesulfonate, dicyanimide, bis(2,4,4-trimethylpentyl)phosphinate and bis(trifluoromethylsulfonyl)imide anions are reported. The data were obtained for pure and water saturated samples at temperatures from 283 K to 353 K and at atmospheric pressure. The refractive index of the investigated ionic liquids decreases with increasing the water content in the sample. On the other hand, no clearly dependence of the surface tension with the water content up to a weight fraction of 16% was found. The prediction of the refractive index for the studied ionic liquids was also accomplished by a group contribution method and new values for the cation and diverse anions were estimated and proposed. The studied ionic liquids show lower surface tension in comparison with imidazolium-, pyridinium- or pyrrolidinium-based ionic liquids with a similar anion; also they show higher surface entropy than cyclic nitrogen-based fluids which indicates a lower surface organization. The anion dependence of the surface tension and surface entropy for the investigated ionic liquids is weaker than that for short-chain imidazolium-based ionic liquids. Their critical temperatures evaluated from Eötvos and Guggenheim equations are also lower than those of N-heterocyclic ionic fluids.

  7. Monitoring of high refractive index edible oils using coated long period fiber grating sensors

    Science.gov (United States)

    Coelho, Luís.; Viegas, Diana; Santos, José Luís.; de Almeida, Jose Manuel M. M.

    2015-05-01

    Monitoring the quality of high refractive index edible oils is of great importance for the human health. Uncooked edible oils in general are healthy foodstuff, olive oil in particular, however, they are frequently used for baking and cooking. High quality edible oils are made from seeds, nuts or fruits by mechanical processes. Nevertheless, once the mechanical extraction is complete, up to 15% of the oil remains in oil pomace and in the mill wastewater, which can be extracted using organic solvents, often hexane. Optical fiber sensors based on long period fiber gratings (LPFG) have very low wavelength sensitivity when the surround refractive index is higher than the refractive index of the cladding. Titanium dioxide (TiO2) coated LPFG could lead to the realization of high sensitivity chemical sensor for the food industry. In this work LPFG coated with a TiO2 thin film were successfully used for to detect small levels of hexane diluted in edible oils and for real time monitoring the thermal deterioration of edible oils. For a TiO2 coating of 30 nm a wavelength sensitivity of 1361.7 nm/RIU (or 0.97 nm / % V/V) in the 1.4610-1.4670 refractive index range was achieved, corresponding to 0 to 12 % V/V of hexane in olive oil. A sensitivity higher than 638 nm/RIU at 225 ºC was calculated, in the 1.4670-1.4735 refractive index range with a detection limit of thermal deterioration of about 1 minute.

  8. Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

    DEFF Research Database (Denmark)

    Dantanarayana, Harshana G.; Abdel-Moneim, Nabil; Tang, Zhuoqi;

    2014-01-01

    We select a chalcogenide core glass, AsSe, and cladding glass, GeAsSe, for their disparate refractive indices yet sufficient thermal-compatibility for fabricating step index fiber (SIF) for mid-infrared supercontinuum generation (MIR-SCG). The refractive index dispersion of both bulk glasses...

  9. Refractive index sensing in an all-solid twin-core photonic bandgap fiber

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Town, Graham E.; Bang, Ole

    2010-01-01

    We describe a highly sensitive refractive index sensor based on a twin-core coupler in an all-solid photonic bandgap guiding optical fiber. A single hole acts as a microfluidic channel for the analyte, which modifies the coupling between the cores, and avoids the need for selective filling....... By operating in the bandgap guiding regime the proposed sensor is capable of measuring refractive indices around that of water, and because the analyte varies the coupling coefficient (i.e., instead of phase matching condition) the device is capable of both high sensitivity and a relatively large dynamic range....

  10. Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymer matrix

    Science.gov (United States)

    Nogi, Masaya; Handa, Keishin; Nakagaito, Antonio Norio; Yano, Hiroyuki

    2005-12-01

    Transparent polymers were reinforced by bacterial cellulose (BC) nanofibers, which are 10×50nm ribbon-shaped fibers. They exhibited high luminous transmittance at a fiber content as high as 60 wt %, and low sensitivity to a variety of refractive indices of matrix resins. Due to the nanofiber size effect, high transparency was obtained against a wider distribution of refractive index of resins from 1.492 to 1.636 at 20 °C. The optical transparency was also surprisingly insensitive to temperature increases up to 80 °C. As such, BC nanofibers appear to be viable candidates for optically transparent reinforcement.

  11. Dynamical measurement of refractive index distribution using digital holographic interferometry based on total internal reflection.

    Science.gov (United States)

    Zhang, Jiwei; Di, Jianglei; Li, Ying; Xi, Teli; Zhao, Jianlin

    2015-10-19

    We present a method for dynamically measuring the refractive index distribution in a large range based on the combination of digital holographic interferometry and total internal reflection. A series of holograms, carrying the index information of mixed liquids adhered on a total reflection prism surface, are recorded with CCD during the diffusion process. Phase shift differences of the reflected light are reconstructed exploiting the principle of double-exposure holographic interferometry. According to the relationship between the reflection phase shift difference and the liquid index, two dimensional index distributions can be directly figured out, assuming that the index of air near the prism surface is constant. The proposed method can also be applied to measure the index of solid media and monitor the index variation during some chemical reaction processes. PMID:26480394

  12. Impacts of Refraction Index Mismatch on Performance of Target Detection and Imaging by Using Flat LHM Lens

    Institute of Scientific and Technical Information of China (English)

    FANG Jie-Ran; GONG Yu; DONG Xiao-Ting; WANG Gang

    2008-01-01

    Refraction index mismatch between flat left-handed metamaterial(LHM)lens and its surrounding medium generally destroys the focusing of flat LHM lens and degrades the performance of near-field target detection by usingflat LHM lens.For LHM lens of refraction index mismatch within±30%,numerical simulations demonstrate that lenses with large refraction index may suffer less resolution degradation than lenses with small refraction index,and the enhancement of refocused microwave backscattered from target can be subsided bly up to approximately 5.5 dB.The refraction index mismatch will also shift the target position in the reconstructed image so that theoretical prediction of target position needs to be modified.

  13. Aqueous ammonium thiocyanate solutions as refractive index-matching fluids with low density and viscosity

    Science.gov (United States)

    Morrison, Benjamin C.; Borrero-Echeverry, Daniel

    2015-11-01

    Index-matching fluids play an important role in many fluid dynamics experiments, particularly those involving particle tracking, as they can be used to minimize errors due to distortion from the refraction of light across interfaces of the apparatus. Common index-matching fluids, such as sodium iodide solutions or mineral oils, often have densities or viscosities very different from those of water. This can make them undesirable for use as a working fluid when using commercially available tracer particles or at high Reynolds numbers. A solution of ammonium thiocyanate (NH4SCN) can be used for index-matching common materials such as borosilicate glass and acrylic, and has material properties similar to those of water (ν ~ 1 . 6 cSt and ρ ~ 1 . 1 g/cc). We present an empirical model for predicting the refractive index of aqueous NH4SCN solutions as a function of temperature and NH4SCN concentration that allows experimenters to develop refractive index matching solutions for various common materials. This work was supported by the National Science Foundation (CBET-0853691) and by the James Borders Physics Student Fellowship at Reed College.

  14. Improving axial resolution in confocal microscopy with new high refractive index mounting media.

    Directory of Open Access Journals (Sweden)

    Coralie Fouquet

    Full Text Available Resolution, high signal intensity and elevated signal to noise ratio (SNR are key issues for biologists who aim at studying the localisation of biological structures at the cellular and subcellular levels using confocal microscopy. The resolution required to separate sub-cellular biological structures is often near to the resolving power of the microscope. When optimally used, confocal microscopes may reach resolutions of 180 nm laterally and 500 nm axially, however, axial resolution in depth is often impaired by spherical aberration that may occur due to refractive index mismatches. Spherical aberration results in broadening of the point-spread function (PSF, a decrease in peak signal intensity when imaging in depth and a focal shift that leads to the distortion of the image along the z-axis and thus in a scaling error. In this study, we use the novel mounting medium CFM3 (Citifluor Ltd., UK with a refractive index of 1.518 to minimize the effects of spherical aberration. This mounting medium is compatible with most common fluorochromes and fluorescent proteins. We compare its performance with established mounting media, harbouring refractive indices below 1.500, by estimating lateral and axial resolution with sub-resolution fluorescent beads. We show furthermore that the use of the high refractive index media renders the tissue transparent and improves considerably the axial resolution and imaging depth in immuno-labelled or fluorescent protein labelled fixed mouse brain tissue. We thus propose to use those novel high refractive index mounting media, whenever optimal axial resolution is required.

  15. Using aircraft measurements to determine the refractive index of Saharan dust during the DODO Experiments

    Directory of Open Access Journals (Sweden)

    C. L. McConnell

    2010-03-01

    Full Text Available Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of internally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550 is found to range between 0.0001 i to 0.0046 i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550 nm (ω0550 are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling was performed with different

  16. Negative refractive index in a four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhen-Qing; Liu Zheng-Dong; Zhao Shun-Cai; Zheng Jun; Ji Yan-Fang; Liu Nian

    2011-01-01

    A closed four-level system in atomic vapour is proposed,which is made to possess left handedness by using the technique of quantum coherence.The density matrix method is utilized in view of the rotating-wave approximation and the effect of a local field in dense gas.The numerical simulation result shows that the negative permittivity and the negative permeability of the medium can be achieved simultaneously (i.e.the left handedness) in a wider frequency band under appropriate parameter conditions.Furthermore,when analysing the dispersion property of the left-handed material,we can find that the probe beam propagation can be controlled from superluminal to subluminal,or vice versa via changing the detuning of the probe field.

  17. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    International Nuclear Information System (INIS)

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10-3 to 25 . 10-3) mol . kg-1. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs

  18. Propagation of hypergeometric laser beams in a medium with a parabolic refractive index

    International Nuclear Information System (INIS)

    An expression to describe the complex amplitude of a family of paraxial hypergeometric laser beams propagating in a parabolic-index fiber is proposed. A particular case of a Gaussian optical vortex propagating in a parabolic-index fiber is studied. Under definite parameters, the Gaussian optical vortices become the modes of the medium. This is a new family of paraxial modes derived for the parabolic-index medium. A wide class of solutions of nonparaxial Helmholtz equations that describe modes in a parabolic refractive index medium is derived in the cylindrical coordinate system. As the solutions derived are proportional to Kummer’s functions, only those of them which are coincident with the nonparaxial Laguerre–Gaussian modes possess a finite energy, meaning that they are physically implementable. A definite length of the graded-index fiber is treated as a parabolic lens, and expressions for the numerical aperture and the focal spot size are deduced. An explicit expression for the radii of the rings of a binary lens approximating a parabolic-index lens is derived. Finite-difference time-domain simulation has shown that using a binary parabolic-index microlens with a refractive index of 1.5, a linearly polarized Gaussian beam can be focused into an elliptic focal spot which is almost devoid of side-lobes and has a smaller full width at half maximum diameter of 0.45 of the incident wavelength. (paper)

  19. Using aircraft measurements to determine the refractive index of Saharan dust during the DODO experiments

    Directory of Open Access Journals (Sweden)

    M. A. J. Harrison

    2009-11-01

    Full Text Available Much uncertainty in the value of the imaginary part of the refractive index of mineral dust contributes to uncertainty in the radiative effect of mineral dust in the atmosphere. A synthesis of optical, chemical and physical in-situ aircraft measurements from the DODO experiments during February and August 2006 are used to calculate the refractive index mineral dust encountered over West Africa. Radiative transfer modeling and measurements of broadband shortwave irradiance at a range of altitudes are used to test and validate these calculations for a specific dust event on 23 August 2006 over Mauritania. Two techniques are used to determine the refractive index: firstly a method combining measurements of scattering, absorption, size distributions and Mie code simulations, and secondly a method using composition measured on filter samples to apportion the content of externally mixed quartz, calcite and iron oxide-clay aggregates, where the iron oxide is represented by either hematite or goethite and clay by either illite or kaolinite. The imaginary part of the refractive index at 550 nm (ni550 is found to range between 0.0001i to 0.0046i, and where filter samples are available, agreement between methods is found depending on mineral combination assumed. The refractive indices are also found to agree well with AERONET data where comparisons are possible. ni550 is found to vary with dust source, which is investigated with the NAME model for each case. The relationship between both size distribution and ni550 on the accumulation mode single scattering albedo at 550nm (ω0550 are examined and size distribution is found to have no correlation to ω0550, while ni550 shows a strong linear relationship with ω0550. Radiative transfer modeling indicates that Mie-derived values

  20. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    CERN Document Server

    Koshelev, Alexander; Piña-Hernandez, Carlos; Allen, Frances; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-01-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  1. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    Science.gov (United States)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  2. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    Science.gov (United States)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  3. Study of refractive index and thickness of TiO2/ormosil planar waveguide

    Institute of Scientific and Technical Information of China (English)

    Wang Bao-Ling; Hu Li-Li

    2004-01-01

    Hybrid titania/ormosil waveguide films have been prepared by sol-gel method at low thermal treatment temperature of 150℃. The influence of processing parameters including the molar ratios of Ti(OBu)4/ glycidoxypropyltrimethoxysilane (GLYMO) and H2O/Ti(OBu)4 (expressed as R), especially aging of sol, on the refractive index and thickness of film was investigated. The optical properties of films were measured with Scanning Electron Microscope and m-line spectroscopy. The results indicate that the film thickness increases with the aging time of sol, but the variation of refractive index as a function of aging time of sol depends on the relative ratio of GLYMO to Ti-alkoxide.The relation between film thickness and corresponding sol viscosity is linear as the volume of GLYMO is 80% within the range of measured data.

  4. Refractive index detection of liquid based on magneto-optical surface plasmon resonance

    Science.gov (United States)

    Zhang, Yanfen; Tang, Tingting; Li, Jie; Luo, Li

    2016-09-01

    We propose a refractive index sensor applied in liquid detection based on magneto-optical surface plasmon resonance. The device is made of a prism-coupling system, which consists of a prism and a CeYIG/Au/liquid waveguide. Systematic simulations using the finite element method and 4  ×  4 transfer matrix methods are implemented to calculate the figure of merit (FOM) of sensitivity. Calculation results show that a FOM of 5.022/RIU for refractive index variation from 1.330 to 1.345 can be obtained when the incident wavelength is 980 nm. The proposed structure can achieve high angular sensitivity for the magnetic field of the proposed structure concentrated in the sensing medium. Meanwhile, our sensor, with gold as the bottom layer, is a better hydrophily for the molecular self-assembly technique compared with other conventional sensors, which makes it more practical in applications.

  5. Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material.

    Science.gov (United States)

    Xi, J Q; Ojha, Manas; Cho, Woojin; Plawsky, J L; Gill, W N; Gessmann, Th; Schubert, E F

    2005-06-15

    Triple-layer omnidirectional reflectors (ODRs) consisting of a semiconductor, a quarter-wavelength transparent dielectric layer, and a metal have high reflectivities for all angles of incidence. Internal ODRs (ambient material's refractive index n > 1.0) are demonstrated that incorporate nanoporous SiO2, a low-refractive-index material (n = 1.23), as well as dense SiO2 (n = 1.46). GaP and Ag serve as the semiconductor and the metal layer, respectively. Reflectivity measurements, including angular dependence, are presented. Calculated angle-integrated TE and TM reflectivities for ODRs employing nanoporous SiO2 are R(int)/TE = 99.9% and R(int)/TM = 98.9%, respectively, indicating the high potential of the ODRs for low-loss waveguide structures.

  6. Properties of material in the submillimeter wave region (instrumentation and measurement of index of refraction)

    Science.gov (United States)

    Lally, J.; Meister, R.

    1983-01-01

    The Properties of Materials in the Submillimeter Wave Region study was initiated to instrument a system and to make measurements of the complex index of refraction in the wavelength region between 0.1 to 1.0 millimeters. While refractive index data is available for a number of solids and liquids there still exists a need for an additional systematic study of dielectric properties to add to the existing data, to consider the accuracy of the existing data, and to extend measurements in this wavelength region for other selected mateials. The materials chosen for consideration would be those with useful thermal, mechanical, and electrical characteristics. The data is necessary for development of optical components which, for example, include beamsplitters, attenuators, lenses, grids, all useful for development of instrumentation in this relatively unexploited portion of the spectrum.

  7. Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.

    Science.gov (United States)

    Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P

    2016-04-29

    We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime. PMID:27176521

  8. Infrared refractive index dispersion of PMMA spheres from synchrotron extinction spectra

    CERN Document Server

    Blümel, R; Lukacs, R; Kohler, A

    2016-01-01

    We performed high-resolution Fourier-transform infrared (FTIR) spectroscopy of a polymethyl methacrylate (PMMA) sphere of unknown size in the Mie scattering region. Apart from a slow, oscillatory structure (wiggles), which is due to an interference effect, the measured FTIR extinction spectrum exhibits a ripple structure, which is due to electromagnetic resonances. We fully characterize the underlying electromagnetic mode structure of the spectrum by assigning two mode numbers to each of the ripples in the measured spectrum. We show that analyzing the ripple structure in the spectrum in the wavenumber region from about $3000\\,$cm$^{-1}$ to $8000\\,$cm$^{-1}$ allows us to both determine the unknown radius of the sphere and the PMMA index of refraction, which shows a strong frequency dependence in this near-infrared spectral region. While in this paper we focus on examining a PMMA sphere as an example, our method of determining the refractive index and its dispersion from synchrotron infrared extinction spectra ...

  9. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    Science.gov (United States)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  10. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

    Science.gov (United States)

    Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

    2016-08-01

    Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

  11. Refractive index matching to develop transparent polyaphrons: Characterization of immobilized proteins.

    Science.gov (United States)

    Ward, Keeran; Stuckey, David C

    2016-06-01

    Refractive index matching was used to create optically transparent polyaphrons to enable proteins adsorbed to the aphron surface to be characterized. Due to the significant light scattering created by polyaphrons, refractive index matching allowed for representative circular dichroism (CD) spectra and acceptable structural characterization. The method utilized n-hexane as the solvent phase, a mixture of glycerol and phosphate buffer (30% [w/v]) as the aqueous phase, and the non-ionic surfactants, Laureth-4 and Kolliphor P-188. Deconvolution of CD spectra revealed that the immobilized protein adapted its native conformation, showing that the adsorbed protein interacted only with the bound water layer ("soapy shell") of the aphron. Isothermal calorimetry further demonstrated that non-ionic surfactant interactions were virtually non-existent, even at the high concentrations used (5% [w/v]), proving that non-ionic surfactants can preserve protein conformation. PMID:26952359

  12. Quantum Enhancement of the Index of Refraction in a Bose-Einstein Condensate.

    Science.gov (United States)

    Bons, P C; de Haas, R; de Jong, D; Groot, A; van der Straten, P

    2016-04-29

    We study the index of refraction of an ultracold bosonic gas in the dilute regime. Using phase-contrast imaging with light detuned from resonance by several tens of linewidths, we image a single cloud of ultracold atoms for 100 consecutive shots, which enables the study of the scattering rate as a function of temperature and density using only a single cloud. We observe that the scattering rate is increased below the critical temperature for Bose-Einstein condensation by a factor of 3 compared to the single-atom scattering rate. We show that current atom-light interaction models to second order of the density show a similar increase, where the magnitude of the effect depends on the model that is used to calculate the pair-correlation function. This confirms that the effect of quantum statistics on the index of refraction is dominant in this regime.

  13. Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, R. [Institut Jaume Almera, Consell Superior d' Investigacions Científiques (CSIC), Lluís Solé i Sabarís s.n., 08028 Barcelona, Catalonia (Spain); MALTA-Consolider Team, Departament de Física Aplicada, ICMUV, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, València (Spain); Segura, A. [MALTA-Consolider Team, Departament de Física Aplicada, ICMUV, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, València (Spain); Ibáñez, J., E-mail: jibanez@ictja.csic.es; Artús, L. [Institut Jaume Almera, Consell Superior d' Investigacions Científiques (CSIC), Lluís Solé i Sabarís s.n., 08028 Barcelona, Catalonia (Spain); Yamaguchi, T.; Nanishi, Y. [Faculty of Science and Engineering, Ritsumeikan University, Shiga 525-8577 (Japan)

    2014-12-08

    We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussed in terms of the electronic band structure and the compressibility of both phases.

  14. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    Science.gov (United States)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes. PMID:27472584

  15. Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

    Science.gov (United States)

    André Ambrosio, Leonardo

    2016-09-01

    In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti-parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam-shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts.

  16. Preparation of Hard Coating Films with High Refractive Index from Titania Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Woo; Ahn, Chi Yong; Song, Ki Chang [Konyang University, 121 Daehak-ro, Nonsan (Korea, Republic of)

    2015-12-15

    The titania (TiO{sub 2}) nanoparticles with a diameter 2-3 nm were synthesized by controlling hydrolysis of titanium tetraisopropoxide (TTIP) in acid solution. Organic-inorganic hybrid coating solutions were prepared by reacting the titania nanoparticles with 3-glycidoxypropyl trimethoxysilane (GPTMS) by the sol-gel method. The hard coating films with high refractive index were obtained by curing thermally at 120 .deg. C after spin-coating the coating solutions on the polycarbonate (PC) sheets. The coating films showed high optical transparency of 90% in the visible range and exhibited a pencil hardness of 2H. Also, the refractive index at 633 nm wavelength of coating films enhanced from 1.502 to 1.584 as the weight content of titania nanoparticles in the coating solutions increased from 4% to 25%.

  17. Refractive-index-matched hydrogel materials for modeling flow-structure interactions

    CERN Document Server

    Byron, Margaret L

    2012-01-01

    In imaging-based studies of flow around solid objects, it is useful to have materials that are refractive-index-matched to the surrounding fluid. However, materials currently in use are usually rigid and matched to liquids that are either expensive or highly viscous. This does not allow for measurements at high Reynolds number, nor accurate modeling of flexible structures. This work explores the use of two hydrogels (agarose and polyacrylamide) as refractive-index-matched models in water. These hydrogels are inexpensive, can be cast into desired shapes, and have flexibility that can be tuned to match biological materials. The use of water as the fluid phase allows this method to be implemented immediately in many experimental facilities and permits investigation of high Reynolds number phenomena. We explain fabrication methods and present a summary of the physical and optical properties of both gels, and then show measurements demonstrating the use of hydrogel models in quantitative imaging.

  18. Aluminum-jointed silicon dioxide octagon nanohelix array with desired complex refractive index.

    Science.gov (United States)

    Jen, Yi-Jun; Chen, Chien-Chi; Jheng, Ci-Yao

    2014-06-15

    In this Letter, glancing angle deposition is used to form an aluminum-jointed silicon dioxide octagon nanohelix array as a 3D nanostructured thin film. As a sculptured metal-dielectric composite, the film exhibits a complex refractive index of near unity with a small imaginary part. This structured film is demonstrated as an efficient light absorber to absorb light in a broad band and over a wide range of angles for both polarization states.

  19. Electromagnetic polarization controlled perfect switching effect with high refractive index dimers. the beam-splitter configuration

    OpenAIRE

    Barreda, Angela I.; Saleh, Hassan; Litman, Amelie; Gonzalez, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2016-01-01

    High Refractive Index (HRI) dielectric particles smaller than the wavelength, isolated or forming a designed ensemble are ideal candidates as new multifunctional elements for building optical devices. Their directionality effects are traditionally analyzed through forward and backward measurements, even if these directions are not suitable for practical purposes. Here we present unambiguous experimental evidence in the microwave range that, for a dimer of HRI spherical particles, a perfect sw...

  20. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs

  1. Quantifying the refractive index dispersion of a pigmented biological tissue using Jamin-Lebedeff interference microscopy

    OpenAIRE

    Stavenga, Doekele G; Leertouwer, Hein L.; WILTS, Bodo D.

    2013-01-01

    Jamin-Lebedeff polarizing interference microscopy is a classical method for determining the refractive index and thickness of transparent tissues. Here, we extend the application of this method to pigmented, absorbing biological tissues, based on a theoretical derivation using Jones calculus. This novel method is applied to the wings of the American Rubyspot damselfly, Hetaerina americana. The membranes in the red-colored parts of the damselfly's wings, with a thickness of similar to 2.5 mu m...

  2. Experimental Study on Near-IR Nonlinear Optical Waveguide Sensor for Refractive Index of Liquids

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-rong; WANG Dong; CAO Chang-xiu; ZHUANG Ling

    2007-01-01

    To determine the refractive index of liquids in near infrared(IR),a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide.The system configuration and the principle of the method are analyzed and some experimental results are given out.Both the experimental result and simulation show that this method is simple,rapid and of sufficient precision.

  3. Nanofabrication of planar split ring resonators for negative refractive index metamaterials in the infrared range

    OpenAIRE

    ZORAN JAKSIC; DANA VASILJEVIC-RADOVIC; MILAN MAKSIMOVIC; MILIJA SARAJLIC; ZORAN DJURIC

    2006-01-01

    Experimental nanofabrication of planar structures for one-dimensional metamaterials designed to achieve a negative effective refractive index in the mid-infrared range (5–10 micrometers) was performed. Double split ring and complementary double split ring resonators (SRR and CSRR) with square and circular geometries, were chosen to be fabricated since these are the basic building blocks to achieve a negative effective dielectric permittivity and magnetic permeability. Scanning probe nanolitho...

  4. Transmission of a broadband light through a fiber optic loop: effect of nonlinear refractive index

    OpenAIRE

    Zakhidov, Erkin; KOKHKHAROV, ABDUMUTALLIB; MIRTADJIEV, Farrukh

    2014-01-01

    The results of studies of broadband light transmission through a fiber loop and a double loop under the effect of nonlinear refractive index are presented in this paper. Fiber loop and double loop transmission/reflection vs. a coupler splitting ratio at various powers of the light with a spectral width of approximately 35 nm are studied and high efficient nonlinear light switching is demonstrated. It is shown that a double loop formed by consecutive connecting 2 fiber loops allows us to...

  5. Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process.

    Science.gov (United States)

    Ishizawa, Hitoshi; Niisaka, Shunsuke; Murata, Tsuyoshi; Tanaka, Akira

    2008-05-01

    Porous MgF(2)-SiO(2) thin films consisting of MgF(2) particles connected by an amorphous SiO(2) binder are prepared by a solgel process. The films have a low refractive index of 1.26, sufficient strength to withstand wiping by a cloth, and a high environmental resistance. The refractive index of the film can be controlled by changing the processing conditions. Films can be uniformly formed on curved substrates and at relatively low temperatures, such as 100 degrees C. The low refractive index of the film, which cannot be achieved by conventional dry processes, is effective in improving the performance of antireflective coatings. PMID:18449247

  6. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O [Institute for Automation and Control Processes, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok (Russian Federation)

    2011-09-30

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  7. Refractive index spectral dependence, Raman and transmission spectra of high-purity $^{28}$Si, $^{29}$Si, $^{30}$Si, and $^{nat}$Si single crystals

    CERN Document Server

    Plotnichenko, V G; Kryukova, E B; Koltashev, V V; Sokolov, V O; Dianov, E M; Gusev, A V; Gavva, V A; Kotereva, T V; Churbanov, M F

    2011-01-01

    Precise measurement of the refractive index of stable silicon isotopes $^{28}$Si, $^{29}$Si, $^{30}$Si single crystals with enrichments above 99.9 at.% and a silicon single crystal $^{nat}$Si of natural isotopic composition is performed with the Fourier-transform interference refractometry method from 1.06 to more than 80 mkm with 0.1 cm$^{-1}$ resolution and accuracy of $2 \\times 10^{-5} ... 1 \\times 10^{-4}$. The oxygen and carbon concentrations in all crystals are within $5 \\times 10^{15}$ cm$^{-3}$ and the content of metal impurities is $10^{-5} ... 10^{-6}$ at.%. The peculiar changes of the refractive index in the phonon absorption region of all silicon single crystals are shown. The coefficients of generalized Cauchy dispersion function approximating the experimental refractive index values all over the measuring range are given. The transmission and Raman spectra are also studied.

  8. Study on Optical Constants and Refractive Index Dispersion of Neutral red Doped Polymer Film

    Directory of Open Access Journals (Sweden)

    Hussain A. Badran

    2012-01-01

    Full Text Available Problem statement: The some optical constants polymer thin film with red dye 3-amino-7-dimethylamino-2-methyl phenazine (NR as the guest material and Polyvinylpyrrolidone (PVP as the host material were prepared by adulteration and spin-coating methods. Approach: The values of some important parameters (refractive index n, extinction coefficient K and dielectric constant ε∞ of polymer thin film are determined from these spectra. Results: It has been found that the dispersion data obey the single oscillator relation of the Wemple-DiDomenico model, from which the dispersion parameters and high-frequency dielectric constant were determined. The estimation of the E0, Ed and ε∞ are 1.27, 3.175 and 3.5 eV respectively. Conclusion: The single oscillator model was used to calculate their optical constants from the transmittance and reflectance spectra. The dispersion of the refractive index in film follow the single electronic oscillator mode relation. The UV-Visible spectroscopic studies showed that, the NR film have high refractive index and high dielectric constant. The variation of the dielectric constant with the wavelength indicates that some interactions between photon and electrons in the films are produced in this wavelength range. These interactions are observed on the shapes of the real and imaginary parts of the dielectric constant and they cause the formation of peaks in the dielectric spectra which depends on the material type.

  9. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor.

    Science.gov (United States)

    Rifat, Ahmmed A; Mahdiraji, G A; Sua, Yong Meng; Ahmed, Rajib; Shee, Y G; Adikan, F R Mahamd

    2016-02-01

    A simple multi-core flat fiber (MCFF) based surface plasmon resonance (SPR) sensor operating in telecommunication wavelengths is proposed for refractive index sensing. Chemically stable gold (Au) and titanium dioxide (TiO(2)) layers are used outside the fiber structure to realize a simple detection mechanism. The modeled sensor shows average wavelength interrogation sensitivity of 9,600 nm/RIU (Refractive Index Unit) and maximum sensitivity of 23,000 nm/RIU in the sensing range of 1.46-1.485 and 1.47-1.475, respectively. Moreover, the refractive index resolution of 4.35 × 10(-6) is demonstrated. Additionally, proposed sensor had shown the maximum amplitude interrogation sensitivity of 820 RIU(-1), with the sensor resolution of 1.22 × 10(-5) RIU. To the best of our knowledge, the proposed sensor achieved the highest wavelength interrogation sensitivity among the reported fiber based SPR sensors. Finally we anticipate that, this novel and highly sensitive MCFF SPR sensor will find the potential applications in real time remote sensing and monitoring, ultimately enabling inexpensive and accurate chemical and biochemical analytes detection. PMID:26906823

  10. Refractive Index and Fourier Transform Infrared Spectra of Virgin Coconut Oil and Virgin Olive Oil

    Directory of Open Access Journals (Sweden)

    W. M.M. Yunus

    2009-01-01

    Full Text Available This study presents the refractive index and FTIR spectra of virgin coconut oil and virgin olive oil that have been measured in the wavelength range from 491.0-667.8 nm. The measurement of refractive index was carried out using a minimum deviation method while the IR transmission ranging from 600-4000 cm-1 was measured using FTIR spectrometer respectively. The measurements were done at room temperature and the dispersion equations for the studied samples were verified and the Cauchy constants were obtained by fitting the experimental data to the Cauchy formula. For both, refractive index and Cauchy constants, the value obtained are higher in virgin olive oil as compared to virgin coconut oil. A similar result for FTIR absorption spectrum was also observed where the five important peaks explaining the stretching absorption due to aldehyde (C = O and esters (C-O, bending absorption (methylene (CH2 and methyl (CH3 groups and double bond absorptions (C = O were strong in virgin olive oil.

  11. Derivation of a Vacuum Refractive Index in a Stringy Space-Time Foam Model

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, D V

    2008-01-01

    It has been suggested that energetic photons propagating in vacuo should experience a non-trivial refractive index due to the foamy structure of space-time induced by quantum-gravitational fluctuations. The sensitivity of recent astrophysical observations, particularly of AGN Mk501 by the MAGIC Collaboration, approaches the Planck scale for a refractive index depending linearly on the photon energy. We present here a new derivation of this quantum-gravitational vacuum refraction index, based on a stringy analogue of the interaction of a photon with internal degrees of freedom in a conventional medium. We model the space-time foam as a gas of D-particles in the bulk space-time of a higher-dimensional cosmology where the observable Universe is a D3-brane. The interaction of an open string representing a photon with a D-particle stretches and excites the string, which subsequently decays and re-emits the photon with a time delay that increases linearly with the photon energy and is related to stringy uncertainty...

  12. Velocimetry with refractive index matching for complex flow configurations, phase 1

    Science.gov (United States)

    Thompson, B. E.; Vafidis, C.; Whitelaw, J. H.

    1987-01-01

    The feasibility of obtaining detailed velocity field measurements in large Reynolds number flow of the Space Shuttle Main Engine (SSME) main injector bowl was demonstrated using laser velocimetry and the developed refractive-index-matching technique. An experimental system to provide appropriate flow rates and temperature control of refractive-index-matching fluid was designed and tested. Test results are presented to establish the feasibility of obtaining accurate velocity measurements that map the entire field including the flow through the LOX post bundles: sample mean velocity, turbulence intensity, and spectral results are presented. The results indicate that a suitable fluid and control system is feasible for the representation of complex rocket-engine configurations and that measurements of velocity characteristics can be obtained without the optical access restrictions normally associated with laser velocimetry. The refractive-index-matching technique considered needs to be further developed and extended to represent other rocket-engine flows where current methods either cannot measure with adequate accuracy or they fail.

  13. Standard guide for choosing a method for determining the index of refraction and dispersion of glass

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide identifies and describes seven test methods for measuring the index of refraction of glass, with comments relevant to their uses such that an appropriate choice of method can be made. Four additional methods are mentioned by name, and brief descriptive information is given in Annex A1. The choice of a test method will depend upon the accuracy required, the nature of the test specimen that can be provided, the instrumentation available, and (perhaps) the time required for, or the cost of, the analysis. Refractive index is a function of the wavelength of light; therefore, its measurement is made with narrow-bandwidth light. Dispersion is the physical phenomenon of the variation of refractive index with wavelength. The nature of the test-specimen refers to its size, form, and quality of finish, as described in each of the methods herein. The test methods described are mostly for the visible range of wavelengths (approximately 400 to 780m); however, some methods can be extended to the ultraviolet a...

  14. Lattice and electronic contributions to the refractive index of CuWO₄

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Fuertes, J., E-mail: ruiz-fuertes@kristall.uni-frankfurt.de [Geowissenschaften, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Malta-Consolider Team, Departamento de Física Aplicada-ICMUV, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Spain); Pellicer-Porres, J.; Segura, A. [Malta-Consolider Team, Departamento de Física Aplicada-ICMUV, Universitat de València, Dr. Moliner 50, 46100 Burjassot (Spain); Rodríguez-Hernández, P.; Muñoz, A. [Malta-Consolider Team Departamento de Física Fundamental II, Instituto de Materiales y Nanotecnología, Universidad de La Laguna, La Laguna, 38205 Tenerife (Spain)

    2014-09-14

    We report an investigation of the refractive index dispersion and anisotropy in CuWO₄ by means of interference measurements in two extinction directions from mid infrared to the visible region of the energy spectrum. The analysis of the refractive index dispersion yields ϵ(∞)=4.5(1) for light polarization parallel to the c-axis and ϵ(∞)=5.3(1) with respect to the other extinction axis. In addition, we report reflectance measurements carried out from the far infrared to the near ultraviolet to study the lattice and electronic contributions to the refractive index of CuWO₄. We have determined the wavenumbers of nine infrared active lattice modes and compared them with previous ab initio calculations. The value of the Penn gap, 7eV, as well as the origin of a structure observed at 4.4 eV in the reflectance spectrum, is discussed in the context of the CuWO₄ electronic structure.

  15. Estimation of the path-averaged atmospheric refractive index structure constant from time-lapse imagery

    Science.gov (United States)

    Basu, Santasri; McCrae, Jack E.; Fiorino, Steven T.

    2015-05-01

    A time-lapse imaging experiment was conducted to monitor the effects of the atmosphere over some period of time. A tripod-mounted digital camera captured images of a distant building every minute. Correlation techniques were used to calculate the position shifts between the images. Two factors causing shifts between the images are: atmospheric turbulence, causing the images to move randomly and quickly, plus changes in the average refractive index gradient along the path which cause the images to move vertically, more slowly and perhaps in noticeable correlation with solar heating and other weather conditions. A technique for estimating the path-averaged C 2n from the random component of the image motion is presented here. The technique uses a derived set of weighting functions that depend on the size of the imaging aperture and the patch size in the image whose motion is being tracked. Since this technique is phase based, it can be applied to strong turbulence paths where traditional irradiance based techniques suffer from saturation effects.

  16. Refractive index gradient measurement across the thickness of a dielectric film by the prism coupling method

    International Nuclear Information System (INIS)

    A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness Hf with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [Δ n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)

  17. A FORTRAN code for the calculation of probe volume geometry changes in a laser anemometry system caused by window refraction

    Science.gov (United States)

    Owen, Albert K.

    1987-01-01

    A computer code was written which utilizes ray tracing techniques to predict the changes in position and geometry of a laser Doppler velocimeter probe volume resulting from refraction effects. The code predicts the position change, changes in beam crossing angle, and the amount of uncrossing that occur when the beams traverse a region with a changed index of refraction, such as a glass window. The code calculates the changes for flat plate, cylinder, general axisymmetric and general surface windows and is currently operational on a VAX 8600 computer system.

  18. Sol-gel derived titania hybrid thin films with high refractive index

    International Nuclear Information System (INIS)

    Incorporation of metal alkoxides into polymers through sol-gel process is of significant interest for tuning the refractive index of optical materials. In this paper, the organic-inorganic hybrid material with high refractive index (RI) and transparency was studied. Tetrabutoxytitanate (TBOT) and alkoxysilanes including diphenyldimethoxysilane (DPS) and γ-glycidoxypropyl trimethoxysilane (GPTS) were employed as sources of the titania sol and the silica sol, respectively. Two series of titania-based inorganic-organic hybrid materials with and without acetylacetone (AcAc) were prepared using the sol-gel method. Subsequently, crack-free films were fabricated by spin coating. The hybrid films with different Ti content were characterized by various techniques including IR, UV-vis, TG/DSC, SEM and auto-laser ellipsometer. The results indicated that the hybrid films displayed homogeneous morphology and titania was crosslinked with alkoxysilanes. Films without AcAc showed higher optical transparency in the visible region than those containing AcAc. The RI of films without AcAc increased from 1.54 to 1.64 at 633 nm with Ti molar fraction varying from 10 to 70%. Whereas, in the films with AcAc, the refractive indices were higher and unorderly. The study has demonstrated great potential to obtain titania hybrid films with high RI and transparency.

  19. Dispersion engineered silicon nitride waveguides by geometrical and refractive-index optimization

    CERN Document Server

    Boggio, J M Chavez; Fremberg, T; Haynes, R; Roth, M M; Eisermann, R; Lisker, M; Zimmermann, L; Boehm, M

    2014-01-01

    Dispersion engineering in silicon nitride (SiX NY ) waveguides is investigated through the optimization of the waveguide transversal dimensions and refractive indices in a multi-cladding arrangement. Ultra-flat dispersion of -84.0 +/- 0.5 ps/nm/km between 1700 and 2440 nm and 1.5 +/- 3 ps/nm/km between 1670 and 2500 nm is numerically demonstrated. It is shown that typical refractive index fluctuations as well as dimension fluctuations during the fabrication of the SiX NY waveguides are a limitation for obtaining ultra-flat dispersion profiles. Single- and multi-cladding waveguides are fabricated and their dispersion profiles measured (over nearly 1000 nm) using a low-coherence frequency domain interferometric technique. By appropriate thickness optimization, the zero-dispersion wavelength is tuned over a large spectral range in both single-cladding waveguides and multi-cladding waveguides with small refractive index contrast (3 %). A flat dispersion profile with 3.2 ps/nm/km variation over 500 nm is obtained ...

  20. Infrared Spectra, Index of Refraction, and Optical Constants of Nitrile Ices Relevant to Titan's Atmosphere

    Science.gov (United States)

    Moore, Marla; Ferrante, Robert; Moore, William; Hudson, Reggie

    2010-01-01

    Spectra and optical constants of nitrite ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 per cm ). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; C2N2, cyanogen; CH3CN, acetonitrile; C 2H5CN, propionitrile; and HC3N, cyanoacetylene. For each of these molecules we report new measurements of the index of refraction, n, determined in both the amorphous- and crystallinephase at 670 nm. Spectra were measured and optical constants were calculated for each nitrite at a variety of temperatures including 20, 35, 50, 75, 95, and 110 K, in the amorphous- and crystalline-phase. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (K-K) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Index of refraction measurements are made in a separate dedicated FTIR spectrometer where interference deposit fringes are measured using two 670 nm lasers at different angles to the ice substrate. A survey of these new measurements will be presented along with a discussion of their validation, errors, and application to Titan data.

  1. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-06-01

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m‑2 and 1.5 kW m‑2, respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.

  2. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens.

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-01-01

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m(-2) and 1.5 kW m(-2), respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.

  3. A hybrid algorithm for reengineering the refractive index profile of inhomogeneous coatings from optical in-situ broadband monitoring data

    Institute of Scientific and Technical Information of China (English)

    S.Wilbrandt; O.Stenzel; D.G(a¨)bler; N.Kaiser

    2005-01-01

    Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.

  4. Design of acid-lead battery stage-of-charge detection system based on refractive index detection technology

    Science.gov (United States)

    Chen, Junyao; Yang, Kecheng; Xia, Min; Li, Lei; Zeng, Xianjiang

    2015-10-01

    Based on optical total reflection critical Angle method, we have designed a refractive index measurement system. It adopted a divergent light source and a CCD camera as the occurrence and receiver of the signal. The divergent light source sent out a bunch of tapered beam, exposure to the interface of optical medium and sulfuric acid solution. Light intensity reflected from the interface could be detected by the CCD camera and then sent to the embedded system. In the DSP embedded system, we could obtain the critical edge position through the light intensity distribution curve and converted it to critical angle. Through experiment, we concluded the relation between liquid refractive index and the critical angle edge position. In this system, the detecting precision of the refractive index of sulfuric acid solution reached 10-4. Finally, through the conversion of the refractive index and density, we achieved high accuracy online measurement of electrolyte density in lead-acid battery.

  5. SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED CARBON BLACK/POLY(VINYL ALCOHOL) HIGH REFRACTIVE INDEX NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Xue; Ji-bin Wang; Yu-bin Bao; Qiu-ying Li; Chi-fei Wu

    2012-01-01

    Carbon black (CB)/polymer composites with high refractive index (RI) were fabricated from poly(vinyl alcohol) (PVA) and covalently functionalized nano-CB (PVA-es-CB) by simple esterification reaction.Transmission electron microscopy showed that uniform aggregates of PVA-es-CB nanoparticles with a size smaller than 100 nm formed in the nanocomposite films.Ellipsometric measurements indicated that the PVA-es-CB/PVA composite films had a RI in the range 1.520-1.598 linearly increased with the PVA-es-CB volume content.Theoretical equation based on Lorentz-Lorenz theory provided reasonably close estimation of the refractive indices to the experimentally observed values.The hybrid films also revealed relatively good surface planarity,thermal stability and optical transparency.

  6. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2013-03-01

    Full Text Available This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954 was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999.

  7. Fabrication quality analysis of a fiber optic refractive index sensor created by CO2 laser machining.

    Science.gov (United States)

    Chen, Chien-Hsing; Yeh, Bo-Kuan; Tang, Jaw-Luen; Wu, Wei-Te

    2013-03-26

    This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10(-4) RIU (linear fitting R2 = 0.954) was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10(-5) RIU, and greater linearity at R2 = 0.999.

  8. The effect of lens wear on refractive index of conventional hydrogel and silicone-hydrogel contact lenses : a comparative study

    OpenAIRE

    Lira, Madalena; Santos, Lívia; Azeredo, Joana; Yebra-Pimentel Vilar, Eva; Oliveira, M. Elisabete

    2008-01-01

    Purpose: The purpose of this work was to evaluate the ability of four silicone-hydrogel contact lenses (galyfilcon A, balafilcon A, lotrafilcon A and lotrafilcon B) to retain their equilibrium water content before and after wear, through measurements of refractive index and compare with that of a conventional disposable hydrogel contact lens (etafilcon A). Methods: The refractive indices of 115 contact lenses were measured using an automated refractometer (CLR 12-70, Index Instrument...

  9. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    OpenAIRE

    Jing Liu; Yushan Chen; Haoyuan Cai; Xiaoyi Chen; Changwei Li; Cheng-Fu Yang

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. S...

  10. A proposal of T-structure fiber-optic refractive index sensor based on surface plasmon resonance

    Science.gov (United States)

    Wang, Xiao-Ming; Zhao, Chun-Liu; Wang, Yan-Ru; Jin, Shangzhong

    2016-06-01

    We present a compact and novel "T" structure optical fiber refractive index sensor proposal based on surface plasmon resonance. "T" structure sensing head consists of a single mode fiber (SMF) with a plasmonic facet and a cladding partly removed single mode fiber (CPR-SMF) with a gap. The gold film is deposited on the end of SMF instead of the side of the CPR-SMF. The simulation results show that the SPR based on the "T" structure can be excited effectively. The SPR transmission spectrum shifts towards longer wavelength with the sensing sample refractive index increasing largely. When we divide the refractive index range of the sensing sample to two parts, the linear relationships between the SPR wavelength and the refractive index can be used. The resolutions can be highly up to 7.115×10-6 RIU and 3.525×10-6 RIU for the refractive index ranges of 1.3333-1.36 and 1.37-1.4, respectively. The proposed "T" structure sensor works well for achieving the refractive index measurement with high sensitivity and wide range for samples with a tiny amount.

  11. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-05-01

    Full Text Available In this study, the nanosphere lithography (NSL method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz and 1.68 (SF5 glass, the nanoparticle arrays would have better refractive index sensitivity (RIS and figure of merit (FOM. Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  12. 介质折射率对矩形波导有效折射率的影响%Influence of Medium Refractive Index on the Effective Refractive Index in Rectangular Waveguide

    Institute of Scientific and Technical Information of China (English)

    潘继环; 张元文

    2016-01-01

    The study uses Marca ladder in approximation theory and electromagnetic waves theory to solve characteristic equation of the rectangular waveguide mode, and research the influence of the refractive index on the effective refractive index in rectangular waveguide. The result shows that whatever the value of mode order is, the effective refractive index in rectangular waveguide increases with the increase of the core refractive index and de-creases with the increase of the cladding refractive index;when the ratios of the core refractive index and the clad-ding refractive index remain constant, the number of the effective refractive index is increased with the increase of the refractive index of the medium;the curve of the effective refractive index begins to degenerate when the numeri-cal aperture becomes large to a certain value. These laws can provide theoretical guide to study the practical appli-cation of a rectangular waveguide.%基于电磁波动理论,通过马卡梯里法近似求解矩形波导模式特征方程,研究介质折射率对矩形波导有效折射率的影响。结果表明:无论模阶数取何值,矩形波导有效折射率随芯层折射率的增大而增大,随包层折射率的增大而减小;当芯层与包层折射率比保持不变时,随介质折射率的增大而增大;当孔径数值变大到某一数值,有效折射率均出现简并现象。这些影响规律对矩形波导的实际应用具有一定的理论指导意义。

  13. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    OpenAIRE

    Mohammad Habib Ullah; Mohammad Rashed Iqbal Faruque; Mohammad Tariqul Islam

    2013-01-01

    A new meta-surface structure (MSS) with a near-zero refractive index (NZRI) is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide) four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-fre...

  14. SELFAS2 : radio emission from cosmic ray air showers. Effect of realistic air refractive index

    CERN Document Server

    Marin, Vincent

    2012-01-01

    Using the simulation code SELFAS2, we present predictions of the radio signal emitted by extensive air showers (EAS) during their development in the atmosphere. The radio emission in the MHz range coming from air showers is the superposition of two mechanisms: the variation of the transverse current due to the systematic opposite drift of electrons and positrons in the Earth's magnetic field and the variation of the charge excess due to the electrons in excess in the shower front. In this paper, we stress particularly the effect of the realistic air refractive index on the radio signal predicted by SELFAS2.

  15. Local Refractive Index Measurements at Low Temperatures using Photonic Crystal Cavities

    CERN Document Server

    Wolters, Janik; Schoengen, Max; Schell, Andreas W; Probst, Jürgen; Löchel, Bernd; Benson, Oliver

    2012-01-01

    Photonic crystal cavities have a wide range of applications in physics today. Here we demonstrate a method to use the narrow resonances of photonic crystal cavities to measure the temperature dependence of the refractive index of gallium phosphide in a temperature range between 5 K and near room temperature at a wavelength of about 605 nm. On one hand, this is an essential step for the design of GaP photonic crystal structures for quantum technology applications. On the other hand, this demonstrates how photonic structures can be utilized to locally determine the optical properties of semiconductor materials in attoliter volumina.

  16. SPR sensors in POF: a new experimental configuration for extended refractive index range and better SNR

    Science.gov (United States)

    Cennamo, N.; Coelho, L.; Guerreiro, A.; Jorge, P. A. S.; Zeni, L.

    2014-05-01

    In this work we present a new low cost SPR (Surface Plasmon Resonance) sensor configuration based on efficient higher-order mode filtering in plastic multimode fibers, using a tapered POF (Plastic Optical Fiber) after the sensor system, without decreasing the sensitivity of the sensor. In particular, we present the experimental results obtained with this new configuration. The experimental results have shown as the tapered POF after the sensor system influences the performances in terms of refractive index range and Signal-to-Noise Ratio (SNR).

  17. Highly birefringent suspended-core photonic microcells for refractive-index sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong (China); The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057 (China); Jin, Wa; Ma, Jun; Jin, Wei, E-mail: eewjin@polyu.edu.hk; Yang, Fan; Ho, Hoi Lut [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Liao, Changrui; Wang, Yiping [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060 (China)

    2014-08-11

    An in-line photonic microcell with a highly birefringent suspended microfiber core is fabricated by locally heating and pressurizing selected air-holes of an endless single mode photonic crystal fiber. The microfiber core has rhombus-like cross-sectional geometry and could achieve a high birefringence of up to 10{sup −2}. The microfiber core is fixed at the center of the microcell by thin struts attached to an outer jacket tube, which protects and isolates the microfiber from environmental contaminations. Highly sensitive and robust refractive index sensors based on such microcells are experimentally demonstrated.

  18. A Refractive Index Sensor Based on a Metal-Insulator-Metal Waveguide-Coupled Ring Resonator

    Directory of Open Access Journals (Sweden)

    Shu-Bin Yan

    2015-11-01

    Full Text Available A refractive index sensor composed of two straight metal-insulator-metal waveguides and a ring resonator is presented. One end of each straight waveguide is sealed and the other end acts as port. The transmission spectrum and magnetic field distribution of this sensor structure are simulated using finite-difference time-domain method (FDTD. The results show that an asymmetric line shape is observed in the transmission spectrum, and that the transmission spectrum shows a filter-like behavior. The quality factor and sensitivity are taken to characterize its sensing performance and filter properties. How structural parameters affect the sensing performance and filter properties is also studied.

  19. Plasma-enhanced growth, composition, and refractive index of silicon oxy-nitride films

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1995-01-01

    Secondary ion mass spectrometry and refractive index measurements have been carried out on silicon oxy-nitride produced by plasma-enhanced chemical vapor deposition (PECVD). Nitrous oxide and ammonia were added to a constant flow of 2% silane in nitrogen, to produce oxy-nitride films with atomic......-product. A model, that combine the chemical net reaction and the stoichiometric rules, is found to agree with measured deposition rates for given material compositions. Effects of annealing in a nitrogen atmosphere has been investigated for the 400 °C– 1100 °C temperature range. It is observed that PECVD oxy...

  20. Spatiotemporal collapse in a nonlinear waveguide with a randomly fluctuating refractive index.

    Science.gov (United States)

    Gaididei, Y B; Christiansen, P L

    1998-07-15

    Analytical results, based on the virial theorem and the Furutsu-Novikov theorem, of the spatiotemporal evolution of a pulse in a nonlinear waveguide with a randomly fluctuating refractive index are presented. For initial conditions in which total collapse occurs in a homogeneous waveguide, random fluctuations postpone the collapse. Sufficiently large-amplitude and short-wavelength fluctuations can cause an initially localized pulse to spread instead of contracting. We show that the disorder can be applied to induce a high degree of controllability of the spatiotemporal extent of the pulses in the nonlinear waveguide. PMID:18087437

  1. The anisotropic Kerr nonlinear refractive index of \\beta-BaB_2O_4

    CERN Document Server

    Bache, Morten; Zhou, Binbin; Zeng, Xianglong

    2012-01-01

    We study the anisotropic nature of the Kerr nonlinear response in a \\beta-BaB_2O_4 (BBO) crystal. The focus is on determining the relevant $\\chi^{(3)}$ cubic tensor component in connection with type I cascaded quadratic interaction, which is done by analyzing various experiments in the literature. We correct the data from some of the experiments for contributions from cascading as well as for updated material parameters, and find that the Kerr nonlinear refractive index used to model self-phase modulation in cascading is considerably larger than what has been used to date.

  2. Spatiotemporal collapse in a nonlinear waveguide with a randomly fluctuating refractive index.

    Science.gov (United States)

    Gaididei, Y B; Christiansen, P L

    1998-07-15

    Analytical results, based on the virial theorem and the Furutsu-Novikov theorem, of the spatiotemporal evolution of a pulse in a nonlinear waveguide with a randomly fluctuating refractive index are presented. For initial conditions in which total collapse occurs in a homogeneous waveguide, random fluctuations postpone the collapse. Sufficiently large-amplitude and short-wavelength fluctuations can cause an initially localized pulse to spread instead of contracting. We show that the disorder can be applied to induce a high degree of controllability of the spatiotemporal extent of the pulses in the nonlinear waveguide.

  3. Causality-based criteria for a negative refractive index must be used with care

    CERN Document Server

    Kinsler, P; 10.1103/PhysRevLett.101.167401

    2008-01-01

    Using the principle of causality as expressed in the Kramers-Kronig relations, we derive a generalized criterion for a negative refractive index that admits imperfect transparency at an observation frequency $\\omega$. It also allows us to relate the global properties of the loss (i.e. its frequency response) to its local behaviour at $\\omega$. However, causality-based criteria rely the on the group velocity, not the Poynting vector. Since the two are not equivalent, we provide some simple examples to compare the two criteria.

  4. Oscillation of spatial solitons in a waveguide with a symmetrical refractive index profile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Dynamics of (1+1)D spatial solitons in a Kerr medium with a transversely symmetrical refractive index profile is investigated. Propagation of solitons is analysed theoretically by using an effective-particle approach. Analytical results show that the soliton oscillates periodically with a variable acceleration. The expression of oscillatory period is derived by introducing a concept of 'average acceleration'. Both acceleration and oscillatory period are determined by the parameters of the input soliton and the waveguide. Propagations of solitons are simulated numerically and good agreement is obtained between the theoretical and numerical results.

  5. Measuring the refractive index of water with a pulsed laser diode

    Science.gov (United States)

    Cataldo, Enrico; Di Lieto, Alberto; Maccarrone, Francesco; Paffuti, Giampiero

    2016-11-01

    In a previous paper published in this journal (Ronzani et al 2008 Eur. J. Phys. 29 957), an estimate of the light speed in air, obtained by measuring the time of flight of a pulsed laser beam, was reported. Using the same method and apparatus, we have improved the measure of the light speed in air, by increasing the data sample, and measured the light speed in water, obtaining an estimate of the water refractive index equal to n = 1.323 (0.016), at the wavelength of 665 nm.

  6. Numerical simulations of negative-index refraction in a lamellar composite with alternating single negative layers

    Institute of Scientific and Technical Information of China (English)

    Dong Zheng-Gao; Zhu Shi-Ning; Liu Hui

    2006-01-01

    Negative-index refraction is demonstrated in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeability of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the renowned left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such ENG-MNG layers. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.

  7. Thermodynamic study of three pharmacologically significant drugs: Density, viscosity, and refractive index measurements at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Javed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: mjiqauchem@yahoo.com; Chaudhry, Mansoora Ahmed [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2009-02-15

    Measurements of density, viscosity, and refractive index of three pharmacologically significant drugs, i.e. diclofenac sodium, cetrizine, and doxycycline have been carried in aqueous medium at T = (293.15 to 313.15) K. An automated vibrating-tube densimeter, viscometer, and refractometer are used in a concentration range from (7.5) . 10{sup -3} to 25 . 10{sup -3}) mol . kg{sup -1}. The precise density results are used to evaluate the apparent molar volume, partial molar volume, thermal expansion coefficient, partial molar expansivity, and the Hepler's constant. Viscosity results are used to calculate the Jones-Dole viscosity B-coefficient, free energy of activation of the solute and solvent, activation enthalpy, and activation entropy. The molar refractive indices of the drug solutions can be employed to calculate molar refraction. It is inferred from these results that the above mentioned drugs act as structure-making compounds due to hydrophobic hydration of the molecules in the drugs.

  8. Infrared Refractive Index of Silicon: Parity and Sum-Rule Tests

    Science.gov (United States)

    Karstens, William; Inokuti, Mitio; Smith, David Y.

    2012-02-01

    We have resolved conflicting reports for the IR refractive index of silicon using general considerations of linear response theory. We find that use of unphysical series expansions in the analysis of channel spectra has been a significant source of systematic error. Recognition that the index is an even function of photon energy is crucial for analysis of these measurements and clarifies data presentation. In the region of high IR transparency of elemental semiconductors, the index may be expanded in a rapidly convergent Taylor series. Coefficients of terms in the (2n)^th power of energy are proportional to the (2n+1)^th inverse moment of the electronic absorption spectrum. In the favorable case of intrinsic Si, the electronic absorption is sufficiently well known that independent values of the intercept, slope and curvature of plots of index vs. the square of photon energy may be calculated. Index data sets with parameters significantly different from these suffer from systematic errors or refer to impure samples. Using these parity and sum-rule tests we have prepared a composite index data set for intrinsic silicon that represents a best fit to reliable measurements from microwaves to the visible. Applications to germanium and diamond will be discussed.

  9. A Sensitivity-Enhanced Refractive Index Sensor Using a Single-Mode Thin-Core Fiber Incorporating an Abrupt Taper

    Directory of Open Access Journals (Sweden)

    Jie Shi

    2012-04-01

    Full Text Available A sensitivity-enhanced fiber-optic refractive index (RI sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF between two sections of single-mode fibers (SMFs. The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI. An abrupt taper (tens of micrometers long made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  10. A new method for measuring the imaginary part of refractive index structure parameter in the urban surface layer

    Directory of Open Access Journals (Sweden)

    R. Yuan

    2014-08-01

    Full Text Available Atmospheric refractive index consists of both the real and the imaginary parts. The intensity of refractive index fluctuation is usually expressed as the refractive index structure parameter, whose real part reflects the strength of the atmospheric turbulence while the imaginary part reflects the absorption in the light path. The large aperture scintillometer (LAS is often used to measure the structure parameter of the real part of atmospheric refractive index, and the sensible and latent heat fluxes can further be obtained, while the influence of the imaginary part is ignored, or thought to be a noise. Based on the expression for the spectrum of the logarithmic light intensity fluctuation caused by the imaginary part of refractive index, new expressions for the logarithmic intensity fluctuation variance and the structure function related to the imaginary part of refractive index are derived. Then a simple expression for the imaginary part of the atmospheric refractive index structure parameter (ARISP is obtained. It can be conveniently used to measure the imaginary part of the ARISP from LAS. Experiments of light propagation were performed in the urban surface layer and the imaginary part of the ARISP was calculated. The experimental results showed a good agreement with the presented theory. The results also suggested that, the imaginary part of ARISP shows a different variation from the real part of ARISP. For the light with the wavelength of 0.62 μm, the variation of the imaginary part of ARISP is related to both the turbulent transport process and the spatial distribution characteristics of aerosols. Based on the theoretical analysis, it can be expected that the method presented in this study can be applied to measuring the imaginary part of the ARISP caused by the trace gas, if the light wavelength is selected within the corresponding gas absorption region.

  11. Conical photonic crystals for enhancing light extraction efficiency from high refractive index materials.

    Science.gov (United States)

    Kim, Jeong-Gil; Hsieh, Chih-Hung; Choi, Hyungryul J; Gardener, Jules; Singh, Bipin; Knapitsch, Arno; Lecoq, Paul; Barbastathis, George

    2015-08-24

    We propose, analyze and optimize a two-dimensional conical photonic crystal geometry to enhance light extraction from a high refractive index material, such as an inorganic scintillator. The conical geometry suppresses Fresnel reflections at an optical interface due to adiabatic impedance matching from a gradient index effect. The periodic array of cone structures with a pitch larger than the wavelength of light diffracts light into higher-order modes with different propagating angles, enabling certain photons to overcome total internal reflection (TIR). The numerical simulation shows simultaneous light yield gains relative to a flat surface both below and above the critical angle and how key parameters affect the light extraction efficiency. Our optimized design provides a 46% gain in light yield when the conical photonic crystals are coated on an LSO (cerium-doped lutetium oxyorthosilicate) scintillator. PMID:26368241

  12. Reflectivity enhanced refractive index sensor based on a fiber-integrated Fabry-Perot microresonator.

    Science.gov (United States)

    Wieduwilt, T; Dellith, J; Talkenberg, F; Bartelt, H; Schmidt, M A

    2014-10-20

    We discuss a fiber-integrated refractive index sensor with strongly improved detection performance. The resonator has been implemented by means of focused-ion beam milling of a step index fiber and shows a sensitivity of about 1.15µm/RIU. Coating the resonator walls led to a strongly improved mirror reflectivity by a factor of about 26. Design rules for device optimization and a detailed mathematical analysis are discussed, revealing that the sensor operates as an optimized Fabry-Perot resonator. We also show that the performance of such kind of Fabry-Perot sensors is, in general, limited by the detection limit function - a quantity depending on the cavitiy's finesse and on the measurement capabilities used.

  13. Nonlinear refractive index measurements and self-action effects in Roselle-Hibiscus Sabdariffa solutions

    Science.gov (United States)

    Henari, F. Z.; Al-Saie, A.

    2006-12-01

    We report the observation of self-action phenomena, such as self-focusing, self-defocusing, self-phase modulation and beam fanning in Roselle-Hibiscus Sabdariffa solutions. This material is found to be a new type of natural nonlinear media, and the nonlinear reflective index coefficient has been determined using a Z-scan technique and by measuring the critical power for the self-trapping effect. Z-scan measurements show that this material has a large negative nonlinear refractive index, n 2 = 1 × 10-4 esu. A comparison between the experimental n 2 values and the calculated thermal value for n 2 suggests that the major contribution to nonlinear response is of thermal origin.

  14. Analyzing refractive index profiles of confined fluids by interferometry part II: Multilayer and asymmetric systems.

    Science.gov (United States)

    Kienle, Daniel F; Kuhl, Tonya L

    2016-09-14

    Methods for determining the substrate properties and the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface for unknown 5-layer symmetric and 3-layer asymmetric interferometers are presented. Both systems can be fully resolved without any known layer properties and without contact or confining the films. The method was tested using realistic simulated interferometer data, and was found to consistently yield accurate values for all desired properties. The method was experimentally validated through analysis of an asymmetric three layer interferometer system of linear polyethyleneimine (LPEI) adsorbed onto mica substrates of differing thickness and identical refractive index. The results were in excellent agreement with the dry polymer film properties measured using conventional SFA contact measurements. More complicated systems were also evaluated for feasibility, and any additional parameter specifications required for analysis were determined. The utility of this method is broad, as a single experiment in a laboratory setting can independently provide non-contact film properties and the effects of confinement on the film structure, which can be correlated to a simultaneously measured interaction force profile. PMID:27566361

  15. Measurement of nonlinear refractive index in open-aperture -scan experiments

    Indian Academy of Sciences (India)

    Ritwick Das; Mukesh Kumar Shukla

    2014-12-01

    We present an experimental study on measurement of nonlinear refractive index (2) of organic liquids when the thermo-optic effects manifest into large nonlinear phase shifts ($_0$) in an open-aperture -scan configuration. Although we do not obtain the familiar peak–valley normalized transmittance curve as in the case of closed-aperture -scan technique, we use a theoretical model using Gaussian beam decomposition (GD) technique to estimate the value of 2. Using this recipe, we obtain the nonlinear refractive index 2 = −(4.90 ± 1.20) × 10−15 cm2/W for toluene (organic solvent) and 2 = −(10.60 ± 2.10) × 10−15 cm2/W for an organic polymer solution (10−4 Min toluene). By carrying out absorption measurements directly with an unfocussed Gaussian beam, we found nonlinear absorptions tol = (2.42 ± 0.20) × 10−13 m/W and poly = (2.79 ± 0.24) × 10−13 m/W which are close to the expected results.

  16. Making the invisible visible: a microfluidic chip using a low refractive index polymer.

    Science.gov (United States)

    Hanada, Yasutaka; Ogawa, Tatsuya; Koike, Kazuhiko; Sugioka, Koji

    2016-07-01

    Microfluidic frameworks known as micro-total-analysis-systems or lab-on-a-chip have become versatile tools in cell biology research, since functional biochips are able to streamline dynamic observations of various cells. Glass or polymers are generally used as the substrate due to their high transparency, chemical stability and cost-effectiveness. However, these materials are not well suited for the microscopic observation of cell migration at the fluid boundary due to the refractive index mismatch between the medium and the biochip material. For this reason, we have developed a new method of fabricating three-dimensional (3D) microfluidic chips made of the low refractive index fluoric polymer CYTOP. This novel fabrication procedure involves the use of a femtosecond laser for direct writing, followed by wet etching with a dilute fluorinated solvent and annealing, to create high-quality 3D microfluidic chips inside a polymer substrate. A microfluidic chip made in this manner enabled us to more clearly observe the flagellum motion of a Dinoflagellate moving in circles near the fluid surface compared to the observations possible using conventional microfluidic chips. We believe that CYTOP microfluidic chips made using this new method may allow more detailed analysis of various cell migrations near solid boundaries. PMID:27265196

  17. Band gap and refractive index tunability in thallium based layered mixed crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gasanly, N. M., E-mail: nizami@metu.edu.tr [Department of Physics, Middle East Technical University, Ankara 06800 (Turkey); Virtual International Scientific Research Centre, Baku State University, Baku 1148 (Azerbaijan)

    2015-07-21

    Compositional variation of the band gap energy and refractive index of TlMeX{sub 2}-type (Me = Ga or In and X = S or Se) layered mixed crystals have been studied by the transmission and reflection measurements in the wavelength range of 400–1100 nm. The analysis of absorption data of TlGa{sub 1-x}In{sub x}Se{sub 2}, TlGa(S{sub 1−x}Se{sub x}){sub 2}, TlGa{sub 1−x}In{sub x}S{sub 2}, and TlIn(Se{sub 1−x}S{sub x}){sub 2} mixed crystals revealed the presence of both optical indirect and direct transitions. It was found that the energy band gaps of mixed crystals decrease at the replacing of gallium atoms by indium and of sulfur atoms by selenium ones. Through the similar replacing of atoms (smaller atoms by larger ones) in the studied mixed crystals, the refractive index shows the quite opposite behavior.

  18. Optimization of long-period grating-based refractive index sensor by bent-fiber interference.

    Science.gov (United States)

    Zhang, Xinpu; Xie, Lingxiao; Zhang, Yang; Peng, Wei

    2015-11-01

    In this paper, we propose and demonstrate a novel approach to enhance the refractive index (RI) sensitivity and eliminate the temperature cross-sensitivity of a long-period grating (LPG) -based refractive index sensor by bent-fiber interference. The approach is based on a hybrid structure composed of an LPG and a bent-fiber intermodal interferometer. The bent-fiber intermodal interferometer has a simple structure, which consists of a bare fiber semi-circular bending region with a 5 mm bending radius. As the RI increases, the resonance wavelength of the LPG moves toward a shorter wavelength, while the resonance wavelength of the bent-fiber intermodal interferometer shifts to a longer wavelength. The separation of two resonance dips increases with the RI; using two resonance dips allows us to measure an RI with a higher sensitivity than if we had only used one resonance dip. However, as the temperature increases, the separation of the two resonance dips is constant. This approach can effectively enhance the RI sensitivity and eliminate temperature cross-sensitivity. PMID:26560567

  19. A Schrodinger formulation research for light beam propagation through the media of complex refractive index

    Institute of Scientific and Technical Information of China (English)

    LIU; Timon; Cheng-Yi(刘承宜); GUO; Hong(郭弘); HU; Wei(胡巍)

    2002-01-01

    The Helmhotz equation of light beam propagating through a medium of complex refractive index is reduced to the axial-coordinate-dependent Schr?dinger equation of complex potential. The new bra vector, the new expectation value of a dynamical variable and the extended Heisenberg picture are defined by the inverse of the evolution operator instead of its Hermitian adjoint, and the complex beam propagation parameters defined in terms of the new expectation value, the complex ABCD law and the ABCD formulation of the Huygens' integral are discussed in terms of quantum mechanics. It is shown that the evolution equations of the complex beam propagation parameters are the same as those of the beam propagation parameters of beam propagating through a medium of real refractive index. The research on an optical system of the conservative complex beam quality factor shows that the complex ABCD law holds, the evolution of its coordinate operator and the momentum operator is linear, and the Huygens' integral is of the ABCD formulation.

  20. Structure of the refractive index distribution of the supersonic turbulent boundary layer

    Science.gov (United States)

    Gao, Qiong; Yi, Shihe; Jiang, Zongfu; He, Lin; Wang, Xiaohu

    2013-09-01

    The refractive index field of supersonic turbulent boundary layer with Mach number 3 is measured with the nanoparticle-based planar laser scattering technique, and its structure is investigated from the viewpoints of power spectrum, structure function and correlation function. The power spectrum along streamwise direction shows evident power behavior in a broad region of wavenumber, and the power exponent varies from -1.9 to -1.7 in the logarithmic region. The dominant structures is revealed using the pre-multiplied spectrum, and the length of the largest structure is about 1.2δ (δ is the thickness of the boundary layer). The structure function of the refractive index along streamwise direction is computed and an analytic expression is suggested to fit the experimental results, which is a modification of the Tatraski model. The power spectrum is computed with the fitting expression and its behavior is analyzed. The characteristic length along normal direction is studied with the linking equation in aero-optics. This length is defined with normal integral of correlation coefficient, and the results with two slightly different definitions of correlation coefficient are compared.

  1. Low refractive index SiOF thin films prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Garcia, F.J.; Gil-Rostra, J.; Terriza, A.; González, J.C.; Cotrino, J. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain); Frutos, F. [Departamento de Física Aplicada, E.T.S. Ingeniería Informática, University of Seville, Avd. Reina Mercedes s/n, E-41012 Seville (Spain); Ferrer, F.J. [Centro Nacional de Aceleradores, CSIC, Univ. Sevilla, Junta Andalucia, Thomas A. Edison 7, E-41092 Sevilla (Spain); González-Elipe, A.R. [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain); Yubero, F., E-mail: yubero@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, CSIC, Univ. Sevilla, Av. Américo Vespucio 49, E-41092 Sevilla (Spain)

    2013-09-02

    We have studied low refractive index fluorine doped silica thin films prepared by reactive magnetron sputtering. Two experimental parameters were varied to increase the porosity of the films, the geometry of the deposition process (i.e., the use of glancing angle deposition) and the presence of chemical etching agents (fluorine species) at the plasma discharge during film growth. The microstructure, chemistry, optical properties, and porosity of the films have been characterized by scanning electron and atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV–vis, and spectroscopic ellipsometry. It is found that either the deposition at glancing angles or the incorporation of CF{sub x} species in the plasma discharge during film growth produces a decrease in the refractive index of the deposited films. The combined effect of the two experimental approaches further enhances the porosity of the films. Finally, the films prepared in a glancing geometry exhibit negative uniaxial birefringence. - Highlights: • SiOF thin films with controlled porosity prepared by reactive magnetron sputtering • Incorporation of CF{sub x} precursors in the plasma discharge enhances film porosity. • Deposition at glancing geometries further increases void fraction within the films.

  2. Effective group index of refraction in non-thermal plasma photonic crystals

    International Nuclear Information System (INIS)

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum)

  3. Differential Refractive index sensor based on Photonic molecules and defect cavities

    CERN Document Server

    Andueza, Angel; Sevilla, Joaquin

    2016-01-01

    We present a novel differential refractive index sensor based on arrays of photonic molecules (PM) of dielectric cylinders and two structural defect cavities. The transmission spectrum of the photonic proposed structure as sensor shows a wide photonic stop band with two localized states. One of them, the reference state, is bound to a decagonal ring of cylinders and the other, the sensing state, to the defect cavities of the lattice. It is shown that defect mode is very sensitive to the presence of materials with dielectric permittivity different from that of the surrounding cylinders while the state in the PM is not affected by their presence. This behavior allows to design a device for sensing applications. A prototype of the sensor, in the microwave region, was built using a matrix of 3x2 PM arrays made of soda-lime glass cylinders (dielectric permittivity of 4.5). The transmission spectra was measured in the microwave range (8-12 GHz) with samples of different refractive index inserted in the defect cavit...

  4. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing.

    Science.gov (United States)

    Klantsataya, Elizaveta; François, Alexandre; Ebendorff-Heidepriem, Heike; Hoffmann, Peter; Monro, Tanya M

    2015-01-01

    Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR) configuration realized in an Exposed Core Microstructured Optical Fiber (ECF) capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM) of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber). Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33-1.37) suitable for biosensing applications. PMID:26426022

  5. Surface Plasmon Scattering in Exposed Core Optical Fiber for Enhanced Resolution Refractive Index Sensing

    Directory of Open Access Journals (Sweden)

    Elizaveta Klantsataya

    2015-09-01

    Full Text Available Refractometric sensors based on optical excitation of surface plasmons on the side of an optical fiber is an established sensing architecture that has enabled laboratory demonstrations of cost effective portable devices for biological and chemical applications. Here we report a Surface Plasmon Resonance (SPR configuration realized in an Exposed Core Microstructured Optical Fiber (ECF capable of optimizing both sensitivity and resolution. To the best of our knowledge, this is the first demonstration of fabrication of a rough metal coating suitable for spectral interrogation of scattered plasmonic wave using chemical electroless plating technique on a 10 μm diameter exposed core of the ECF. Performance of the sensor in terms of its refractive index sensitivity and full width at half maximum (FWHM of SPR response is compared to that achieved with an unstructured bare core fiber with 140 μm core diameter. The experimental improvement in FWHM, and therefore the detection limit, is found to be a factor of two (75 nm for ECF in comparison to 150 nm for the large core fiber. Refractive index sensitivity of 1800 nm/RIU was achieved for both fibers in the sensing range of aqueous environment (1.33–1.37 suitable for biosensing applications.

  6. Single-mode D-shaped optical fiber sensor for the refractive index monitoring of liquid

    Science.gov (United States)

    Qazi, Hummad Habib; Mohammad, Abu Bakar bin; Ahmad, Harith; Zamani Zulkifli, Mohd; Wadi Harun, Sulaiman

    2016-04-01

    A new fabrication method is introduced for the production of D-shaped optical fiber. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of single-mode optical fiber in order to obtain a D-shaped cross section. Adjusting specific mechanical parameters allows for control of the volume of the D-shaped zone, while the fiber surface smoothness is governed by selection of polishing film grit size. To meet the accuracy and repeatability requirements, optical power loss is monitored during the entire polishing process in situ and in real time. This proposed technique possesses advantages of rapidity, safety, simplicity, repeatability and stability with high precision in comparison with contemporary methods for production. Sensor performance tests on the fiber reveal a linear response with linearity up to R2 = 0.984 for surrounding refractive index in the range of 1.320-1.342 refractive index, which corresponds to different concentrations of the glucose solution test environment. The produced D-shaped optical fiber has potential sensing and monitoring applications in chemical, environmental, biological and biochemical fields.

  7. Differential refractive index sensor based on photonic molecules and defect cavities

    Science.gov (United States)

    Andueza, Ángel; Pérez-Conde, Jesús; Sevilla, Joaquín

    2016-08-01

    We present a novel differential refractive index sensor based on arrays of photonic molecules (PM) of dielectric cylinders and two structural defect cavities. The transmission spectrum of the photonic proposed structure as sensor shows a wide photonic stop band with two localized states. One of them, the reference state, is bound to a decagonal ring of cylinders and the other, the sensing state, to the defect cavities of the lattice. It is shown that defect mode is very sensitive to the presence of materials with dielectric permittivity different from that of the surrounding cylinders while the state in the PM is not affected by their presence. This behavior allows to design a device for sensing applications. A prototype of the sensor, in the microwave region, was built using a matrix of 3x2 PM arrays made of soda-lime glass cylinders (dielectric permittivity of 4.5). The transmission spectra was measured in the microwave range (8-12 GHz) with samples of different refractive index inserted in the defect cavities. Simulations with Finite Integration time-domain Method are in good agreement with experiments. We find that the response of the sensor is linear. Device measurement range is determined by the dielectric constant of the cylinders that make up the device. The results here presented in the microwave region can be extrapolated to the visible range due to scale invariance of Maxwell equations. This make our prototype a promising structure as sensor also in the optical range.

  8. The Refractive Index of Curved Spacetime: the Fate of Causality in QED

    CERN Document Server

    Hollowood, Timothy J

    2007-01-01

    It has been known for a long time that vacuum polarization in QED leads to a superluminal low-frequency phase velocity for light propagating in curved spacetime. Assuming the validity of the Kramers-Kronig dispersion relation, this would imply a superluminal wavefront velocity and the violation of causality. Here, we calculate for the first time the full frequency dependence of the refractive index using world-line sigma model techniques together with the Penrose plane wave limit of spacetime in the neighbourhood of a null geodesic. We find that the high-frequency limit of the phase velocity (i.e. the wavefront velocity) is always equal to c and causality is assured. However, the Kramers-Kronig dispersion relation is violated due to a non-analyticity of the refractive index in the upper-half complex plane, whose origin may be traced to the generic focusing property of null geodesic congruences and the existence of conjugate points. This indicates a violation of micro-causality, i.e. the vanishing of commutato...

  9. Effective group index of refraction in non-thermal plasma photonic crystals

    Science.gov (United States)

    Mousavi, A.; Sadegzadeh, S.

    2015-11-01

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).

  10. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    Science.gov (United States)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  11. Broadband opto-electro-mechanical effective refractive index tuning on a chip.

    Science.gov (United States)

    Pruessner, Marcel W; Park, Doweon; Stievater, Todd H; Kozak, Dmitry A; Rabinovich, William S

    2016-06-27

    Photonic integrated circuits have enabled progressively active functionality in compact devices with the potential for large-scale integration. To date the lowest loss photonic circuits are achieved with silica or silicon nitride-based platforms. However, these materials generally lack reconfigurability. In this work we present a platform for achieving active functionality in any dielectric waveguide via large-scale opto-electro-mechanical tuning of the effective refractive index (Δneff≈0.01-0.1) and phase (Δϕ>2π). A suspended microbridge weakly interacts with the evanescent field of a low-mode confinement waveguide to tune the effective refractive index and phase with minimal loss. Metal-coated bridges enable electrostatic actuation to displace the microbridge to dynamically tune nEFF. In a second implementation we place a non-metallized dielectric microbridge in a gradient electric field to achieve actuation and tuning. Both approaches are broadband, universally applicable to any waveguide, and pave the way for adding active functionality to many passive optical materials. PMID:27410554

  12. Compression of ultra-short light pulses using the graded refractive index one-dimensional photonic crystals

    Science.gov (United States)

    Shiri, R.; Bananej, A.; Safari, E.

    2016-09-01

    The one-dimensional photonic crystals (1D PCs) containing a graded refractive index layer have been theoretically utilized to compress the positively chirped ultra-short pulses of light. Two types of simple and graded index multi-layer structures consisting alternating layers of TiO2 and SiO2 with the same total thicknesses and periodicity have been investigated and compared. For the graded structure, three different refractive index distributions including linear, exponential and parabolic profiles have been considered. The results revealed that replacing one of the homogeneous layers of the unit cells in simple photonic crystal with a graded material having parabolic refractive index profile efficiently improves compression behavior of the structure. The compress factors of as much as 47% and 78% depending on the pulse's initial chirp rate obtained with parabolic profile of such the structures.

  13. Effect of surface plasmon polaritons on the sensitivity of refractive index measurement using total internal reflection method

    Energy Technology Data Exchange (ETDEWEB)

    Roshan Entezar, S., E-mail: s-roshan@tabrizu.ac.ir

    2015-05-01

    The phase difference between two p-polarized and s-polarized plane waves which are reflected under total internal reflection from the base of a prism with a thin metal coating is studied. Typically such a quantity can be used to measure the refractive index of a test material using the total internal reflection method. It is shown that due to the excitation of surface plasmon polaritons at the interface between the tested dielectric material and the thin metal layer, the p-polarized light experiences a large phase shift which enlarges the phase difference between the p-polarized and the s-polarized waves. As a result, the sensitivity of refractive index measurement increases and the error in determining the refractive index decreases. - Highlights: • Phase difference of totally internally reflected p and s polarized beams is studied. • Excitation of the surface wave increases the phase shift of the p-polarized light. • The sensitivity of refractive index measurement increases by using a coated prism. • The error in determining the refractive index decreases using the coated prism.

  14. Sensitivity Analysis for Aerosol Refractive Index and Size Distribution Estimation Methods Based on Polarized Atmospheric Irradiance Measurements

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2014-01-01

    Full Text Available Aerosol refractive index and size distribution estimations based on polarized atmospheric irradiance measurements are proposed together with its application to reflectance based vicarious calibration. A method for reflectance based vicarious calibration with aerosol refractive index and size distribution estimation using atmospheric polarization irradiance data is proposed. It is possible to estimate aerosol refractive index and size distribution with atmospheric polarization irradiance measured with the different observation angles (scattering angles. The Top of the Atmosphere (TOA or at-sensor radiance is estimated based on atmospheric codes with estimated refractive index and size distribution then vicarious calibration coefficient can be calculated by comparing to the acquired visible to near infrared instrument data onboard satellites. The estimated TOA radiance based on the proposed method is compared to that with aureole-meter based approach which is based on refractive index and size distribution estimated with solar direct, diffuse and aureole (Conventional AERONET approach. It is obvious that aureole-meter is not portable, heavy and large while polarization irradiance measurement instruments are light and small (portable size and weight.

  15. Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and nano-coating deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Koba, Marcin; Mikulic, Predrag; Bock, Wojtek J

    2016-05-30

    In this work we report experimental results on optimizing the refractive index (RI) sensitivity of long-period gratings (LPGs) by fiber cladding etching and thin aluminum oxide (Al2O3) overlay deposition. The presented LPG takes advantage of work in the dispersion turning point (DTP) regime as well as the mode transition (MT) effect for higher-order cladding modes (LP09 and LP010). The MT was obtained by depositing Al2O3 overlays with single-nanometer precision using the Atomic Layer Deposition method (ALD). Etching of both the overlay and the fiber cladding was performed using hydrofluoric acid (HF). For shallow etching of the cladding, i.e., DTP observed at next = 1.429 and 1.439 RIU for an LPG with no overlay, followed by deposition of an overlay of up to 167 nm in thickness, HF etching allowed for post-deposition fine-tuning of the overlay thickness resulting in a significant increase in RI sensitivity mainly at the DTP of the LP09 cladding mode. However, at an external RI (next) above 1.39 RIU, the DTP of LP010 was noticed, and its RI sensitivity exceeded 9,000 nm/RIU. Deeper etching of the cladding, i.e., DTP observed for next above 1.45 RIU, followed by the deposition of thicker overlays (up to 201 nm in thickness) allowed the sensitivity to reach values of over 40,000 nm/RIU in a narrow RI range. Sensitivity exceeding 20,000 nm/RIU was obtained in an RI range suitable for label-free biosensing applications. PMID:27410112

  16. Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents

    Energy Technology Data Exchange (ETDEWEB)

    Anouti, Meriem, E-mail: meriem.anouti@univ-tours.f [Universite Francois Rabelais de Tours, Laboratoire PCMB (EA 4244), equipe Chimie-physique des Interfaces et des Milieux Electrolytiques (CIME), parc de Grandmont, 37200 Tours (France); Vigeant, Annie; Jacquemin, Johan; Brigouleix, Catherine; Lemordant, Daniel [Universite Francois Rabelais de Tours, Laboratoire PCMB (EA 4244), equipe Chimie-physique des Interfaces et des Milieux Electrolytiques (CIME), parc de Grandmont, 37200 Tours (France)

    2010-07-15

    Densities (rho) and viscosities (eta) of binary mixtures containing the Protic Ionic Liquid (PIL), pyrrolidinium octanoate with five molecular solvents: water, methanol, ethanol, n-butanol, and acetonitrile are determined at the atmospheric pressure as a function of the temperature and within the whole composition range. The refractive index of all mixtures (n{sub D}) is measured at 298.15 K. The excess molar volumes V{sup E} and deviation from additivity rules of viscosities eta{sup E} and refractive index DELTA{sub p}hin, of pyrrolidinium octanoate solutions were then deduced from the experimental results as well as apparent molar volumes Vphi{sub i}, partial molar volumes V-bar{sub m,i} and thermal expansion coefficients alpha{sub p}. The excess molar volumes V{sup E} are negative over the entire mole fraction range for mixture with water, acetonitrile, and methanol indicating strong hydrogen-bonding interaction for the entire mole fraction. In the case of longest carbon chain alcohols (such as ethanol and n-butanol) + pyrrolidinium octanoate solutions, the V{sup E} variation as a function of the composition describes an S shape. The deviation from additivity rules of viscosities is negative over the entire composition range for the acetonitrile, methanol, ethanol, and butanol, and becomes less negative with increasing temperature. Whereas, eta{sup E} of the left brace[Pyrr][C{sub 7}CO{sub 2}] + waterright brace binary mixtures is positive in the whole mole fraction range and decreases with increasing temperature. the excess Gibbs free energies of activation of viscous flow (DELTAG*{sup E}) for these systems were calculated. The deviation from additivity rules of refractive index DELTA{sub p}hin are positive over the whole composition range and approach a maximum of 0.25 in PIL mole fraction for all systems. The magnitude of deviation for DELTA{sub p}hin describes the following order: water > methanol > acetonitrile > ethanol. Results have been discussed in

  17. Refractive-index based tomosynthesis using dark-field imaging optics

    International Nuclear Information System (INIS)

    Tomosynthesis (TS) is a pseudo-3-dimensional image reconstruction method to recover depth-resolved information using restricted number of projections. In this research, refraction index based TS imaging using dark-field imaging (DFI) optics is proposed and biomedical soft tissues were imaged in low dose exposure. By a single exposure of an object, two projected images are obtained from a Laue-case analyzer of DFI. Calculating the both images refraction component is deduced, while two exposures are needed in DEI (diffraction enhanced imaging). Thus the measurement time and the radiation dose in DFI are half of DEI. In addition, the proposed reconstruction algorithm, derived from the quantitative relationship in measurement process, allows high contrast tomographic imaging in spite of one order smaller number of projections for CT (computed tomography). To demonstrate the proposed imaging protocol efficacy, an ex-vivo excised tissue of human lung were imaged using a system constructed at the vertical wiggler beamline at PF-BL14C at KEK. TS image is successfully delineated high quality soft tissue structures comparable to CT.

  18. Local Doppler Effect, Index of Refraction through the Earth Crust, PDF and the CNGS Neutrino Anomaly?

    Directory of Open Access Journals (Sweden)

    Assis A. V. D. B.

    2012-04-01

    Full Text Available In this brief paper, we show the neutrino velocity discrepancy obtained in the OPERA experiment may be due to the local Doppler effect between a local clock attached to a given detector at Gran Sasso, say C G , and the respective instantaneous clock crossing C G , say C C , being this latter at rest in the instantaneous inertial frame having got the velocity of rotation of CERN about Earth’s axis in relation to the fixed stars. With this effect, the index of refraction of the Earth crust may accomplish a refractive effect by which the neutrino velocity through the Earth crust turns out to be small in relation to the speed of light in the empty space, leading to an encrusted discrepancy that may have contamined the data obtained from the block of detectors at Gran Sasso, leading to a time interval excess that did not provide an exact match between the shift of the protons PDF (probability distribution function by TOF c and the detection data at Gran Sasso via the maximum likelihood matching.

  19. Implementation of transformed lenses in bed of nails reducing refractive index maximum value and sub-unity regions.

    Science.gov (United States)

    Prado, Daniel R; Osipov, Andrey V; Quevedo-Teruel, Oscar

    2015-03-15

    Transformation optics with quasi-conformal mapping is applied to design a Generalized Maxwell Fish-eye Lens (GMFEL) which can be used as a power splitter. The flattened focal line obtained as a result of the transformation allows the lens to adapt to planar antenna feeding systems. Moreover, sub-unity refraction index regions are reduced because of the space compression effect of the transformation, reducing the negative impact of removing those regions when implementing the lens. A technique to reduce the maximum value of the refractive index is presented to compensate for its increase because of the transformation. Finally, the lens is implemented with the bed of nails technology, employing a commercial dielectric slab to improve the range of the effective refractive index. The lens was simulated with a 3D full-wave simulator to validate the design, obtaining an original and feasible power splitter based on a dielectric lens.

  20. Low hazard refractive index and density-matched fluid for quantitative imaging of concentrated suspensions of particles

    Science.gov (United States)

    Zhu, W.; Knapp, Y.; Deplano, V.

    2016-05-01

    A novel refractive index and density-matched liquid-solid suspension system taking into account chemical hazard and health concerns was developed and characterized. The solid phase is made of PMMA spheres, the refractive index of which being adapted with a mixture of 2,2'-thiodiethanol and phosphate-buffered saline (PBS), while the density is adapted with a mixture of PBS and glycerol. The proposed chemicals present low hazard characteristics in comparison with former solutions. Data collected from density and refractive index measurements of the solid phase and of the different fluid constituents are used to define a specific ternary mixture adapted to commercial grade micron-size particles. The defined mixture is validated in a micron-sized granular flow experiment. The described method can be applied to other low-density solids.

  1. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    International Nuclear Information System (INIS)

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not

  2. Negative Index Refraction in the Complex Ginzburg—Landau Equation in Connection with the Experimental CIMA Reaction

    Science.gov (United States)

    Yuan, Xu-Jin

    2012-09-01

    In comparison with the phenomenon of negative index refraction observed in artificial meta-materials, it is interesting to ask if this type of behavior also exists or not in reaction-diffusion systems that support nonlinear chemical waves. Previous studies indicate that the negative index refraction could occur on a interface between a medium of a normal wave and a medium that supports anti-waves. Here we investigate the phenomenon in the complex Ginzburg—Landau equation (CGLE) in a close relationship with the quantitative model for the chloriteiodide-malonic acid (CIMA) reaction. The amplitude equation CGLE is deduced from the CIMA reaction, and simulations with mapped parameters from the reaction-diffusion equation reveal that the competition between normal waves and anti-waves on the interface determines whether the negative index refraction occurs or not.

  3. The effect of oxygen flow rate on refractive index of aluminum oxide film deposited by electron beam evaporation technique

    Directory of Open Access Journals (Sweden)

    R Shakouri

    2016-02-01

    Full Text Available The effects of oxygen flow rate on refractive index of aluminum oxide film have been investigated. The Al2O3 films are deposited by electron beam on glass substrate at different oxygen flow rates. The substrate was heated to reach  and the temperature was constant during the thin film growth. The transmittance spectrum of samples was recorded in the wavelength 400-800 nm.  Then, using the maxima and minima of transmittance the refractive index and the extinction coefficient of samples were determined. It has been found that if we reduce the oxygen flow, while the evaporation rate is kept constant, the refractive index of Al2O3 films increases. On the other hand, reduced oxygen pressure causes the Al2O3 films to have some absorption.

  4. Fiber-optic temperature sensor based on interaction of temperature-dependent refractive index and absorption of germanium film.

    Science.gov (United States)

    Li, Min; Li, Yulin

    2011-01-10

    The interaction of a large temperature-dependent refractive index and a temperature-dependent absorption of semiconductor materials at 1550 nm can be used to build a very sensitive, film coated fiber-optic temperature probe. We developed a sensor model for the optical fiber-germanium film sensor. A temperature sensitivity of reflectivity change of 0.0012/°C, corresponding to 0.1°C considering a moderate signal processing system, over 100°C within the temperature regime of -20°C to 120°C, has been demonstrated by experimental tests of the novel sensor. The potential sensitivity and further applications of the sensor are discussed. PMID:21221150

  5. On the feasibility of optical-CT imaging in media of different refractive index

    International Nuclear Information System (INIS)

    Purpose: Achieving accurate optical-CT 3D dosimetry without the use of viscous refractive index (RI) matching fluids would greatly increase convenience. Methods: Software has been developed to simulate optical-CT 3D dosimetry for a range of scanning configurations including parallel-beam, point, and converging light sources. For each configuration the efficacy of three refractive media was investigated: air, water, a fluid closely matched to PRESAGE®, and perfect matching (RI = 1.00, 1.33, 1.49, and 1.501 respectively). Reconstructions were performed using both filtered backprojection (FBP) and algebraic reconstruction technique (ART). The efficacy of the three configurations and the two algorithms was evaluated by calculating the usable radius (i.e., the outermost radius where data were accurate to within 2%), and gamma (Γ) analysis. This definition recognizes that for optical-CT imaging, errors are greatest near the edge of the dosimeter, where refraction can be most pronounced. Simulations were performed on three types of dose distribution: uniform, volumetric modulated arc therapy (VMAT), and brachytherapy (Cs-137). Results: For a uniformly irradiated dosimeter the usable radius achieved with filtered backprojection was 68% for water-matching and 31% for dry-scanning in air. Algebraic reconstruction gave usable radii of 99% for both water and air (dry-scanning), indicating greater recovery of useful data for the uniform distribution. FBP and ART performed equally well for a VMAT dose distribution where less dose is delivered near the edge of the dosimeter. In this case, the usable radius was 86% and 53% for scanning in water and air, respectively. For brachytherapy, the usable radius was 99% and 98% for scanning in water and air, respectively using FBP, and a major decrease was seen with ART. Point source geometry provided 1%–2% larger usable radii than parallel geometry. Converging geometry recovered less usable dosimetry data (up to 10% reduced usable

  6. TAKE, development of the refractive index measurement technology for industrial needs; TAKE, taitekerroinmittaustekniikan kehittaeminen teollisuuden tarpeisiin - MPKT 12

    Energy Technology Data Exchange (ETDEWEB)

    Raety, J. [Oulu Univ. (Finland)

    1998-12-31

    Refractive index is one of the basic physical phenomena of materials. Traditional refractive index measurement has been widely used e.g. In research, in quality inspection of products and raw materials. It is also used for follow up of the different industrial processes. A measuring and research environment, by which it is possible to determine the complex refractive index of liquid samples, was developed in 1996 at the Measuring Instrument laboratory of the University of Oulu. This equipment, based on the reflectance of light measures both the refractive index and absorption factor of liquids simultaneously. While the commercial refractometers are best suitable for research of clear liquids, by the developed equipment it is possible to investigate by the side of clear fluids also dark strongly light absorbing samples. The measuring wave length can be chosen continuously inside the UV-Visual range. The knowing of the wave-length dependence of the complex refractive index gives additional information on the state of the fluid under inspection. The main objective of the task is to solve measuring problems of biotechnology, food industry and forest industry by a new type of refractometric method. This means the simultaneous measurement of refractive index and absorption, and the utilisation of this knowledge in wide spectral region. A refractometer, based on the technology, suitable for applied research of new measuring targets will be designed and constructed in the research. The above mentioned goals also require the survey of the present situation of the refractometry. This one and a half year project will be started in spring 1998. (orig.)

  7. Flexible chiral metamaterials with dynamically optical activity and high negative refractive index

    Science.gov (United States)

    Dincer, Furkan; Karaaslan, Muharrem; Unal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2015-06-01

    We demonstrate numerically and experimentally chiral metamaterials (MTMs) based on gammadion-bilayer cross-wires that uniaxially create giant optical activity and tunable circular dichroism as a result of the dynamic design. In addition, the suggested structure gives high negative refractive index due to the large chirality in order to obtain an efficient polarization converter. We also present a numerical analysis in order to show the additional features of the proposed chiral MTM in detail. Therefore, a MTM sensor application of the proposed chiral MTM is introduced and discussed. The presented chiral designs offer a much simpler geometry and more efficient outlines. The experimental results are in a good agreement with the numerical simulation. It can be seen from the results that, the suggested chiral MTM can be used as a polarization converter, sensor, etc. for several frequency regimes.

  8. Physics of Negative Refraction and Negative Index Materials Optical and Electronic Aspects and Diversified Approaches

    CERN Document Server

    Krowne, Clifford M

    2007-01-01

    This book deals with the subject of optical and electronic negative refraction (NR) and negative index materials NIM). Diverse approaches for achieving NR and NIM are covered, such as using photonic crystals, phononic crystals, split-ring resonators (SRRs) and continuous media, focusing of waves, guided-wave behavior, and nonlinear effects. Specific topics treated are polariton theory for LHMs (left handed materials), focusing of waves, guided-wave behavior, nonlinear optical effects, magnetic LHM composites, SRR-rod realizations, low-loss guided-wave bands using SRR-rods unit cells as LHMs, NR of electromagnetic and electronic waves in uniform media, field distributions in LHM guided-wave structures, dielectric and ferroelectric NR bicrystal heterostructures, LH metamaterial photonic-crystal lenses, subwavelength focusing of LHM/NR photonic crystals, focusing of sound with NR and NIMs, and LHM quasi-crystal materials for focusing.

  9. High-performance Refractive Index Sensor Based on Photonic Crystal Single Mode Resonant Micro-cavity

    Institute of Scientific and Technical Information of China (English)

    Shengye Huang; Junfeng Shi; Dongsheng Wang; Wei Li

    2006-01-01

    An effective refractive index sensor built with square lattice photonic crystal is proposed, which can be applicable to photonic integrated circuits. Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity. Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity. The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation. At the resonant wavelength of about 1500 nm, the resonant wavelength shifts up by 0.7 nm for each increment of △n=0.001. A transmission of more than 0.75 is observed. Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor,the transmission reduces rapidly as the disorder increases.

  10. Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection.

    Science.gov (United States)

    Li, J; Cheong, K L; Zhao, J; Hu, D J; Chen, X Q; Qiao, C F; Zhang, Q W; Chen, Y W; Li, S P

    2013-09-20

    A fast protein liquid chromatography coupled with refractive index detection (FPLC-RID) method was firstly developed for preparation and purification of fructooligosaccharides with different degree of polymerization from burdock, Arctium lappa. After extraction with 60% ethanol and decolorization with MCI gel CHP20P, total fructooligosaccharides were purified on Bio-Gel P-2 column eluted with water at the flow rate of 0.3 ml/min, which was the optimized conditions. The obtained fructooligosaccharides with degree of polymerization of 3-9 were identified based on their methylation analysis, MS and NMR data. This method has the advantages of high automation, good recovery and easy performance, which could be used for preparation of FOS from other sources, as well as other targeted compounds without UV absorbance.

  11. Metamaterial lens made of fully printed resonant-type negative-refractive-index transmission lines

    Science.gov (United States)

    Xu, He-Xiu; Wang, Guang-Ming; Qing Qi, Mei; Lv, Yuan-Yuan; Gao, Xi

    2013-05-01

    We studied a well-resolved lens based on planar fully printed resonant-type negative-refractive-index transmission lines made of complementary split ring resonators. The lens goes beyond previous lens in terms of moderate loss and compactness. The focusing has been demonstrated by the circuit theory simulation and full-wave simulation and finally confirmed by the experiments, showing that that the lens is able to overcome the diffraction limit of 0.5 effective wavelengths and exhibits a super resolution as small as 0.348 effective wavelengths inside the lens. The superlens free of any lumped elements opens an easy and inexpensive avenue toward imaging devices with super performances.

  12. An ultrasensitive and multispectral refractive index sensor based on quad-supercell metamaterials

    CERN Document Server

    Xiao, Shuyuan; Liu, Yuebo; Han, Xu; Yan, Xicheng

    2015-01-01

    Plasmonic metamaterials support the localized surface plasmon resonance (LSPR) and the strong field enhancement could be applied to ultrasensitive biochemical sensing. In this work, a novel design of quad-supercell metamaterials of split ring resonators (SRRs) is proposed and simultaneous excitations of odd (N=1 and N=3) and even (N=2) resonance modes are realized due to additional asymmetry from the rotation with respect to the excitation field. The full utilization of these three resonance dips show bright prospects for multispectral application. As a refractive index (RI) sensor, ultrahigh sensitivities ~1000nm/RIU for LC mode (N=1) and ~500nm/RIU for plasmon mode (N=2) are obtained in near infrared (NIR) spectrum.

  13. Electromagnetic polarization controlled perfect switching effect with high refractive index dimers. the beam-splitter configuration

    CERN Document Server

    Barreda, Angela I; Litman, Amelie; Gonzalez, Francisco; Geffrin, Jean-Michel; Moreno, Fernando

    2016-01-01

    High Refractive Index (HRI) dielectric particles smaller than the wavelength, isolated or forming a designed ensemble are ideal candidates as new multifunctional elements for building optical devices. Their directionality effects are traditionally analyzed through forward and backward measurements, even if these directions are not suitable for practical purposes. Here we present unambiguous experimental evidence in the microwave range that, for a dimer of HRI spherical particles, a perfect switching effect (perfect means off = null intensity) is observed out of those directions as a consequence of the mutual particle electric/magnetic interaction. The binary state depends on the excitation polarization (polarization switching). Its analysis is performed through the linear polarization degree of scattered radiation at a detection direction perpendicular to the incident direction: the beam-splitter configuration. The scaling property of Maxwell equations allows generalizing our results to other frequency range ...

  14. Detecting small lung tumors in mouse models by refractive-index microradiology

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Chia-Chi; Hwu, Y. [Academia Sinica, Institute of Physics, Taipei (China); National Tsing Hua University, Department of Engineering and System Science, Hsinchu (China); Zhang, Guilin; Yue, Weisheng; Li, Yan; Xue, Hongjie [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); Liu, Ping; Sun, Jianqi; Xu, Lisa X. [Shanghai Jiao Tong University, Shanghai (China); Wang, Chang Hai; Chen, Nanyow; Lu, Chien Hung; Lee, Ting-Kuo [Academia Sinica, Institute of Physics, Taipei (China); Yang, Yuh-Cheng; Lu, Yen-Ta [Mackay Memorial Hospital, Taipei City (China); Ching, Yu-Tai [National Chiao Tung University, Department of Computer Science, Hsinchu (China); Shih, T.F.; Yang, P.C. [National Taiwan University, College of Medicine, Taipei (China); Je, J.H. [Pohang University of Science and Technology Pohang, X-ray Imaging Center, Pohang CT, Kyungbuk (Korea, Republic of); Margaritondo, G. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland)

    2011-08-15

    Refractive-index (phase-contrast) radiology was able to detect lung tumors less than 1 mm in live mice. Significant micromorphology differences were observed in the microradiographs between normal, inflamed, and lung cancer tissues. This was made possible by the high phase contrast and by the fast image taking that reduces the motion blur. The detection of cancer and inflammation areas by phase contrast microradiology and microtomography was validated by bioluminescence and histopathological analysis. The smallest tumor detected is less than 1 mm{sup 3} with accuracy better than 1 x 10{sup -3} mm{sup 3}. This level of performance is currently suitable for animal studies, while further developments are required for clinical application. (orig.)

  15. Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography coupled with refractive index detection.

    Science.gov (United States)

    Li, J; Cheong, K L; Zhao, J; Hu, D J; Chen, X Q; Qiao, C F; Zhang, Q W; Chen, Y W; Li, S P

    2013-09-20

    A fast protein liquid chromatography coupled with refractive index detection (FPLC-RID) method was firstly developed for preparation and purification of fructooligosaccharides with different degree of polymerization from burdock, Arctium lappa. After extraction with 60% ethanol and decolorization with MCI gel CHP20P, total fructooligosaccharides were purified on Bio-Gel P-2 column eluted with water at the flow rate of 0.3 ml/min, which was the optimized conditions. The obtained fructooligosaccharides with degree of polymerization of 3-9 were identified based on their methylation analysis, MS and NMR data. This method has the advantages of high automation, good recovery and easy performance, which could be used for preparation of FOS from other sources, as well as other targeted compounds without UV absorbance. PMID:23962565

  16. Prediction model of atmospheric refractive index structure parameter in coastal area

    Science.gov (United States)

    Wang, Hongxing; Li, Bifeng; Wu, Xiaojun; Liu, Chuanhui; Hu, Zhihui; Xu, Pengfei

    2015-09-01

    In this paper, we focus on the prediction of atmospheric refractive index structure parameter (?) in coastal area using the routine meteorological parameters. Based on the micrometeorology, macrometeorology and Monin-Obukhov similarity theory, three modified prediction models of ? are presented in combination with the long-term observation data of ? and meteorological parameters in coastal city, respectively. For different weather, the applicable cases of three ? prediction models are comparatively analysed and their applicable effects are comprehensively evaluated. The results indicate that the modified micrometeorology model of ? shows better applicability for overcast sky, the offshore macrometeorology model of ? displays better predictability for sunny day and the offshore Thiermann model provides better availability for overcast sky, cloudy day, overcast to sunny or sunny to overcast day.

  17. Power-Interrogated Refractive Index Sensor Using Long Period Grating in Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    X. L. Jiang

    2015-01-01

    Full Text Available We reported a long period grating (LPG written in specially designed photonic crystal fiber (PCF for refractive index (RI sensing by interrogating the transmitted light power. The outermost ring of clad holes of the PCF is enlarged where the analyte is filled. We showed that the leakage loss of the clad mode increases with the RI in the larger holes. By numerically analyzing the complex couple mode equations for the core mode and the first clad mode, we found the depth of attenuation band in the transmitted spectra and the total transmitted power is sensitive to the leakage loss of the clad mode or the RI in the larger holes. We also demonstrated that the transmitted power is sensitive to the RI even less than that of the silica, which just avoids the limitation that the transmitted light power of LPG in conventional fiber is only sensitive to the RI of the external media higher than that of fiber clad.

  18. Label-free characterization of white blood cells by measuring 3D refractive index maps

    CERN Document Server

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  19. On the Correlation of Effective Terahertz Refractive Index and Average Surface Roughness of Pharmaceutical Tablets

    Science.gov (United States)

    Chakraborty, Mousumi; Bawuah, Prince; Tan, Nicholas; Ervasti, Tuomas; Pääkkönen, Pertti; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2016-08-01

    In this paper, we have studied terahertz (THz) pulse time delay of porous pharmaceutical microcrystalline compacts and also pharmaceutical tablets that contain indomethacin (painkiller) as an active pharmaceutical ingredient (API) and microcrystalline cellulose as the matrix of the tablet. The porosity of a pharmaceutical tablet is important because it affects the release of drug substance. In addition, surface roughness of the tablet has much importance regarding dissolution of the tablet and hence the rate of drug release. Here, we show, using a training set of tablets containing API and with a priori known tablet's quality parameters, that the effective refractive index (obtained from THz time delay data) of such porous tablets correlates with the average surface roughness of a tablet. Hence, THz pulse time delay measurement in the transmission mode provides information on both porosity and the average surface roughness of a compact. This is demonstrated for two different sets of pharmaceutical tablets having different porosity and average surface roughness values.

  20. An effective vacuum refractive index from gravity and the present ether-drift experiments

    CERN Document Server

    Consoli, M

    2006-01-01

    Re-analyzing the data published by the Berlin and Duesseldorf ether-drift experiments, we have found a clean non-zero daily average for the amplitude of the signal. The two experimental values, A_0\\sim (10.5 \\pm 1.3) 10^{-16} and A_0\\sim (12.1\\pm 2.2) 10^{-16}$ respectively, are entirely consistent with the theoretical prediction (9.7\\pm 3.5) 10^{-16} that is obtained once the Robertson-Mansouri-Sexl anisotropy parameter is expressed in terms of N_{vacuum}, the effective vacuum refractive index that one would get, for an apparatus placed on the Earth's surface, in a flat-space picture of gravity .

  1. Directional Fano Resonances at Light Scattering by a High Refractive Index Dielectric Sphere

    CERN Document Server

    Tribelsky, Michael I; Litman, Amelie; Eyraud, Christelle; Moreno, Fernando

    2016-01-01

    In this research, we report the experimental evidence of the directional Fano resonances at the scattering of a plane, linearly polarized electromagnetic wave by a homogeneous dielectric sphere with high refractive index and low losses. We observe a typical asymmetric Fano profile for the intensity scattered in, practically, any given direction, while the overall extinction cross section remains Lorentzian. The phenomenon is originated in the interference of the selectively excited electric dipolar and quadrupolar modes. The selectivity of the excitation is achieved by the proper choice of the frequency of the incident wave. Thanks to the scaling invariance of the Maxwell equations, in these experiments we mimic the scattering of the visible and near IR radiation by a nanoparticle made of common superconductor materials (Si, Ge, GaAs, GaP) by the equivalent scattering of a spherical particle of 18 mm in diameter in the microwave range. The theory developed to explain the experiments extends the conventional F...

  2. Application of matching liquid on the refractive index measurement of biotissue: A theoretical and experimental study

    Science.gov (United States)

    Wang, Jin; Ye, Qing; Deng, Zhichao; Zhou, Wenyuan; Mei, Jianchun; Zhang, Chunping; Tian, Jianguo

    2014-05-01

    The application of matching liquid on the measurement of the refractive index (RI) of biotissue using total internal reflection (TIR) method is investigated in detail. A theoretical model describing samples with different absorbing and scattering ability is given based on Fresnel formula. The theoretical calculation is verified by experimental results of three simulation samples (transparent plexiglass, white plexiglass and ZB3 glass) and cedar wood oil as the matching liquid. Reflectance curves of porcine tissue samples were recorded and systematically studied using two kinds of matching liquid (cedar wood oil and adipose oil) at the incident of TE and TM wave, respectively. Method for proper selection of matching liquid under different conditions is discussed.

  3. Refractive index sensors based on the fused tapered special multi-mode fiber

    Science.gov (United States)

    Fu, Xing-hu; Xiu, Yan-li; Liu, Qin; Xie, Hai-yang; Yang, Chuan-qing; Zhang, Shun-yang; Fu, Guang-wei; Bi, Wei-hong

    2016-01-01

    In this paper, a novel refractive index (RI) sensor is proposed based on the fused tapered special multi-mode fiber (SMMF). Firstly, a section of SMMF is spliced between two single-mode fibers (SMFs). Then, the SMMF is processed by a fused tapering machine, and a tapered fiber structure is fabricated. Finally, a fused tapered SMMF sensor is obtained for measuring external RI. The RI sensing mechanism of tapered SMMF sensor is analyzed in detail. For different fused tapering lengths, the experimental results show that the RI sensitivity can be up to 444.517 81 nm/RIU in the RI range of 1.334 9—1.347 0. The RI sensitivity is increased with the increase of fused tapering length. Moreover, it has many advantages, including high sensitivity, compact structure, fast response and wide application range. So it can be used to measure the solution concentration in the fields of biochemistry, health care and food processing.

  4. Minimization of losses in a structure having a negative index of refraction

    International Nuclear Information System (INIS)

    A structure consisting of an array of wires cladded with a nonmagnetic dielectric and embedded in a ferrimagnetic host has been calculated to have a negative index of refraction. The structure has moderate losses over a bandwidth of a few GHz. The calculation takes into account the skin effect within the wires and is valid provided the wavelength of electromagnetic waves in the structure is long compared to the radius of the cladded wires. The structure's electromagnetic response is accurately described by the ferrimagnet's permeability and a permittivity derived in the long wavelength limit. Losses can be minimized by choosing the pass band to be between 30 and 80% of the plasma frequency and by choosing wires to be of the highest possible conductivity and largest radius compatible with the required plasma frequency

  5. Trench-embedding fiber taper sensor fabricated by a femtosecond laser for gas refractive index sensing.

    Science.gov (United States)

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Peng; Zhang, Fei; Lu, Yongfeng

    2014-02-20

    A fiber in-line, multimode coupling interferometer with a trench-embedding, fiber taper probe is proposed and fabricated by femtosecond-laser-induced water breakdown. The reflection-type taper probe is used for gas refractive index (RI) detection from 1.0001143 to 1.0002187 and temperature sensing from 50°C to 500°C. The largest RI sensitivity of the taper probe embedded with a trench at a width of 18.4 μm is 669.502  nm/RIU for hybrid nitrogen and helium. Temperature sensitivity is 9.97  pm/°C and it shows good linearity through the whole testing range. The new-type multimode interferometer is appropriate for high-accuracy gas RI detection of micrometer-scale spaces and wide-range temperature compensation can be realized. PMID:24663297

  6. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3-D refractive index maps

    CERN Document Server

    Kim, Kyoohyun

    2016-01-01

    Optical trapping can be used to manipulate the three-dimensional (3-D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3-D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and the extensive computations. Here, we achieved the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3-D refractive index (RI) distribution of samples. Engineering the 3-D light field distribution of a trapping beam based on the measured 3-D RI map of samples generates a light mould, which can be used to manipulate colloidal and biological samples which have arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can ...

  7. Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications

    CERN Document Server

    Lodewijks, Kristof; Van Roy, Willem; Borghs, Gustaaf; Lagae, Liesbet; Van Dorpe, Pol

    2012-01-01

    Localized and propagating surface plasmon resonances are known to show very pronounced interactions if they are simultaneously excited in the same nanostructure. Here we study the fano interference that occurs between localized (LSPR) and propagating (SPP) modes by means of phase sensitive spectroscopic ellipsometry. The sample structures consist of periodic gratings of gold nanodisks on top of a continuous gold layer and a thin dielectric spacer, in which the structural dimensions were tuned in such a way that the dipolar LSPR mode and the propagating SPP modes are excited in the same spectral region. We observe pronounced anti-crossing and strongly asymmetric line shapes when both modes move to each others vicinity, accompagnied of largely increased phase differences between the respective plasmon resonances. Moreover we show that the anti-crossing can be exploited to increase the refractive index sensitivity of the localized modes dramatically, which result in largely increased values for the Figure-Of-Mer...

  8. Measuring the Nonlinear Refractive Index of Graphene using the Optical Kerr Effect Method

    CERN Document Server

    Dremetsika, Evdokia; Gorza, Simon-Pierre; Ciret, Charles; Martin, Marie-Blandine; Hofmann, Stephan; Seneor, Pierre; Dolfi, Daniel; Massar, Serge; Emplit, Philippe; Kockaert, Pascal

    2016-01-01

    By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1\\times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.

  9. Rational design of on-chip refractive index sensors based on lattice plasmon resonances (Presentation Recording)

    Science.gov (United States)

    Lin, Linhan; Zheng, Yuebing

    2015-08-01

    Lattice plasmon resonances (LPRs), which originate from the plasmonic-photonic coupling in gold or silver nanoparticle arrays, possess ultra-narrow linewidth by suppressing the radiative damping and provide the possibility to develop the plasmonic sensors with high figure of merit (FOM). However, the plasmonic-photonic coupling is greatly suppressed when the nanoparticles are immobilized on substrates because the diffraction orders are cut off at the nanoparticle-substrate interfaces. Here, we develop the rational design of LPR structures for the high-performance, on-chip plasmonic sensors based on both orthogonal and parallel coupling. Our finite-difference time-domain simulations in the core/shell SiO2/Au nanocylinder arrays (NCAs) reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the robust LPRs in asymmetric environment. The high wavelength sensitivity and narrow linewidth in these LPRs lead to the plasmonic sensors with high FOM and high signal-to-noise ratio (SNR). Wide working wavelengths from visible to near-infrared are also achieved by tuning the parameters of the NCAs. Moreover, the wide detection range of refractive index is obtained in the parallel LPR structure. The electromagnetic field distributions in the NCAs demonstrate the height-enabled tunability of the plasmonic "hot spots" at the sub-nanoparticles resolution and the coupling between these "hot spots" with the superstrate diffraction waves, which are responsible for the high performance LPRs-based on-chip refractive index sensors.

  10. Effective group index of refraction in non-thermal plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, A.; Sadegzadeh, S., E-mail: sadegzadeh@azaruniv.edu [Physics Department, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-11-15

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g) of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)

  11. Study of the Composition and Spectral Characteristics of a HDG-Prism Disperse System (GRISM) by Refractive Index Phase Matching

    CERN Document Server

    Jo, Chon-Gyu; Im, Song-Jin

    2015-01-01

    The composition and characteristics of a GRISM gained by refractive index matching between a refractive index modulation type HDG and a prism is investigated, the HDG being built by processing silver halide emulsion with halide vapor. The GRISM has been stable under external influences like humidity or ultraviolet light exposure. The mercury atomic spectrum obtained by a GRISM based on a HDG with a spatial frequency of 600mm-1 shows yellow dual lines with the wavelength difference of 2.1nm sufficiently separated.

  12. Enabling novel functionality in heavily doped ZnO:Ga by nanostructuring: an efficient plasmonic refractive index sensor.

    Science.gov (United States)

    Kuznetsov, Alexander S; Schäfer, Peter; John, Wilfred; Prasai, Deepak; Sadofev, Sergey; Kalusniak, Sascha

    2016-01-15

    We demonstrate a proof-of-concept refractive index sensor based on heavily doped ZnO:Ga nanostructured in a grating configuration, which supports free space excitation of propagating surface plasmons. The bulk sensitivity of the sensor of 4.9 × 10(3) nm per refractive index unit, achieved in the mid-infrared spectral range with the first grating prototype, surpasses that of the noble metal counterparts by three to four times. Sensing performance is discussed in the light of numerical simulations of the spatial profile of the near field of surface plasmon polaritons. PMID:26629968

  13. SPR-based PCF D-type sensor based on a metamaterial composed of planar metals for refractive index sensing

    Science.gov (United States)

    Santos, D. F.; Guerreiro, A.; Baptista, J. M.

    2016-05-01

    This paper presents a numerically investigation of the performance analysis of a conventional photonic crystal fiber (PCF) with a planar metamaterials structure for refractive index sensing, based on surface plasmon resonance (SPR), using the finite element method (FEM). We study the concentration metamaterials conformed by the aluminium oxide (Al2O3) and silver (Ag) and compared its performance with a single metal (Ag), assessing their impacts in the effective refractive index. Furthermore, we also use different types of mechanics to describe the effects of varying the structural parameters sensor on the evanescent field and the sensor performance.

  14. Analyzing the effect of absorption and refractive index on image formation in high numerical aperture transmission microscopy of single cells

    Science.gov (United States)

    Coe, Ryan L.; Seibel, Eric J.

    2013-02-01

    Transmission bright-field microscopy is the clinical mainstay for disease diagnosis where image contrast is provided by absorptive and refractive index differences between tissue and the surrounding media. Different microscopy techniques often assume one of the two contrast mechanisms is negligible as a means to better understand the tissue scattering processes. This particular work provides better understanding of the role of refractive index and absorption within Optical Projection Tomographic Microscopy (OPTM) through the development of a generalized computational model based upon the Finite-Difference Time-Domain method. The model mimics OPTM by simulating axial scanning of the objective focal plane through the cell to produce projection images. These projection images, acquired from circumferential positions around the cell, are reconstructed into isometric three-dimensional images using the filtered backprojection normally employed in Computed Tomography (CT). The model provides a platform to analyze all aspects of bright-field microscopes, such as the degree of refractive index matching and the numerical aperture, which can be varied from air-immersion to high NA oil-immersion. In this preliminary work, the model is used to understand the effects of absorption and refraction on image formation using micro-shells and idealized nuclei. Analysis of absorption and refractive index separately provides the opportunity to better assess their role together as a complex refractive index for improved interpretation of bright-field scattering, essential for OPTM image reconstruction. This simulation, as well as ones in the future looking at other effects, will be used to optimize OPTM imaging parameters and triage efforts to further improve the overall system design.

  15. Radio refractive index in the lowest 100-m layer of the troposphere in Akure, South Western Nigeria

    Science.gov (United States)

    Falodun, S. E.; Ajewole, M. O.

    2006-01-01

    The structure of the radio refractive index “in altitudes of” first 100 m of the troposphere is important for the planning and design of microwave communication “links”. For this reason, measurements of atmospheric pressure, temperature, and relative humidity were conducted in Akure “(7.15°N, 5.12°E)” to determine the radio refractive index. “Wireless meteorological sensors were positioned at the ground surface and at 100 m altitude on a 202 m high tower owned by the Nigerian Television Authority (hereafter NTA) which is now idle due to the relocation of the television house”. The measurements were “made” every “30 min” and round the clock. “Statistical” distributions of the refractive index modulus, “its” vertical gradient, and the diurnal and seasonal variations of the refractivity modulus were determined from the measured “data”. The results obtained show that the local climate has an appreciable influence on the radio refractivity. The curve of the seasonal variation of the vertical gradient of the radio refractive modulus has some minima points corresponding to the dry and the rainy seasons in Akure. The results obtained also show that the values of the refractive modulus at the “100 m” altitude were high in the morning and late evening/night hours while they “show” minima during the afternoon hours. Thus, the worst propagation condition obtained for Akure was observed in the afternoon “within” the time window “from 15:00 to 18:00” local time (hereafter LT) during the dry months and from roughly 17:00 to 19:00 LT during the rainy season.

  16. Fano lineshapes of 'Peak-tracking chip' spatial profiles analyzed with correlation analysis for bioarray imaging and refractive index sensing

    KAUST Repository

    Bougot-Robin, K.

    2013-05-22

    The asymmetric Fano resonance lineshapes, resulting from interference between background and a resonant scattering, is archetypal in resonant waveguide grating (RWG) reflectivity. Resonant profile shift resulting from a change of refractive index (from fluid medium or biomolecules at the chip surface) is classically used to perform label-free sensing. Lineshapes are sometimes sampled at discretized “detuning” values to relax instrumental demands, the highest reflectivity element giving a coarse resonance estimate. A finer extraction, needed to increase sensor sensitivity, can be obtained using a correlation approach, correlating the sensed signal to a zero-shifted reference signal. Fabrication process is presented leading to discrete Fano profiles. Our findings are illustrated with resonance profiles from silicon nitride RWGs operated at visible wavelengths. We recently demonstrated that direct imaging multi-assay RWGs sensing may be rendered more reliable using “chirped” RWG chips, by varying a RWG structure parameter. Then, the spatial reflectivity profiles of tracks composed of RWGs units with slowly varying filling factor (thus slowly varying resonance condition) are measured under monochromatic conditions. Extracting the resonance location using spatial Fano profiles allows multiplex refractive index based sensing. Discretization and sensitivity are discussed both through simulation and experiment for different filling factor variation, here Δf=0.0222 and Δf=0.0089. This scheme based on a “Peak-tracking chip” demonstrates a new technique for bioarray imaging using a simpler set-up that maintains high performance with cheap lenses, with down to Δn=2×10-5 RIU sensitivity for the highest sampling of Fano lineshapes. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Physicochemical and catalytic properties of Au nanorods micro-assembled in solvents of varying dipole moment and refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Rupinder; Pal, Bonamali, E-mail: bpal@thapar.edu

    2015-02-15

    Highlights: • Physicochemical activities of Au nanorods in water largely differ from organic solvents. • Au nanorods agglomeration increased with dipole moments of different polar solvents. • Refractive indexes of Au nanorods dispersion in various polar solvents are enhanced. • Electrokinetics significantly altered depending on agglomerated size of Au nanorods. • Catalysis or co-catalysis activity is varied as per the extent of Au nanorods coagulation. - Abstract: This paper deals with the impact of dipole moment (1.66–3.96 D) and refractive index (1.333–1.422) of the dispersion solvent on the plasmon absorption, surface charge, zeta potential, and adsorption properties of Au nanorods (AuNRs). AuNRs (length ≈ 53 nm and width ≈ 20 nm) undergo agglomeration (size 50–180 nm) with increase in the dipole moment of solvent (iPrOH < MeOH < DMF < DMSO). Whereas, no such coagulation occurs in H{sub 2}O and CCl{sub 4} suspension as confirmed by DLS and TEM size distribution. The electrostatic interaction of AuNRs with its surface adsorbed solvent dipoles leads to alteration of the their ionic state, absolute electronic charge and zeta potential (+49.79 mV in H{sub 2}O, +8.99 mV in DMF and −4.65 mV in MeOH dispersion) to a greater extent. This interaction distinctly modifies the adsorption behavior of polar molecules like p-nitrophenol and salicylic acid on AuNRs surface, as evidenced by the measured changes in their electro-kinetic parameters. As a result, we observe a substantial difference in catalytic and co-catalytic activities of AuNRs dispersed in various solvents as mentioned above because the catalytic properties of AuNRs are strongly dependent on the type of solvent in which they are dispersed.

  18. Finite frequency f-sum rule for assessment of number density of gold nanoparticles (AuNPs) and Kramers-Kronig relation for refractive index of colloidal gold.

    Science.gov (United States)

    Kontturi, Ville; Silfsten, Pertti; Peiponen, Kai-Erik

    2011-07-01

    Absorption spectra from colloids containing different concentrations of spherical gold nanoparticles in water were measured with a spectrophotometer. The absorption spectra were used to calculate the number density of nanoparticles (NPs) with the aid of an unconventional finite spectral band f-sum rule applied for gold colloid. Good correlation between the number density of dispersion electrons, obtained from the f-sum rule, and the number density of nanoparticles was found. The effective absolute refractive index of the gold colloid was obtained with the aid of a singly subtractive Kramers-Kronig relation, and in addition the refractive index change due to the nanoparticles was obtained with the aid of a conventional Kramers-Kronig relation. Such optical properties are valuable in studies of light interaction with nanoparticles.

  19. Zero absorption and a large negative refractive index in a left-handed four-level atomic medium

    International Nuclear Information System (INIS)

    In this paper, we have investigated three external fields interacting with the four-level atomic system described by the density-matrix approach. The atomic system exhibits left-handedness with zero absorption and large negative refractive index. Varying the parameters of the three external fields, the properties of zero absorption and large negative refractive index from the atomic system remain unvarying. Our scheme proposes an approach to obtain a negative refractive medium with zero absorption. The zero absorption property of the atomic system may be used to amplify the evanescent waves that have been lost in the imaging by traditional lenses, and a slab fabricated by the left-handed atomic system may be an ideal candidate for designing perfect lenses.

  20. Electrospray deposition of chalcogenide glass films for gradient refractive index and quantum dot incorporation

    Science.gov (United States)

    Novak, Spencer

    Chalcogenide glasses (ChGs) are well-known for their optical properties, making them ideal candidates for emerging applications of mid-infrared microphotonic devices, such as lab-on-a-chip chemical sensing devices, which currently demand additional flexibility in processing and materials available to realize new device designs. Solution-derived processing of ChG films, initially developed in the 1980s by Chern and Lauks, has consisted mainly of spin-coating and offers unique advantages over the more traditional physical vapor deposition techniques. In the present effort, the nanoparticles of interest are luminescent quantum dots (QDs), which can be used as an on-chip source of light for a planar chemical sensing device. Prior efforts of QD incorporation have exposed limitations of spin-coating of ChG solutions, namely QD aggregation and material waste, along with incompatibility with larger scale manufacturing methods such roll-to-roll processing. This dissertation has evaluated electrospray (ES) as an alternative method of solution-derived chalcogenide glass film deposition. While employed in other materials systems, deposition of optical quality ChG films via electrospray has not been previously attempted, nor have parameters until now, been defined. This study has defined pre-cursor solution chemistry, electrospray jet process parameters required for formation of stable films, annealing protocols and resulting film attributes, yielding important correlations needed to realize high optical quality films. Electrosprayed films attributes were compared to those seen for spin coating and trade-offs in processing route and resulting quality, were identified. Optical properties of importance to device applications were defined, including surface roughness, refractive index, and infrared transmission. The use of a serpentine path of the spray over the substrate was demonstrated to obtain uniform thickness, blanket films, and demonstrates process compatibility with roll

  1. Effect of anisotropic fluctuations of the refractive index on transhorizon ultrashort-wave propagation in the atmosphere

    Science.gov (United States)

    Koshel', K. V.; Shishkarev, A. A.

    1993-02-01

    A perturbation theory for complex propagation constants is considered, based on the invariant imbedding method. This approach makes it possible to describe the effect of nonstratified fluctuations of the refractive index on transhorizon propagation of ultrashort waves in the framework of the adiabatic approximation in the case when an evaporation duct exists. Examples of calculations are presented, and characteristic stochastic effects are studied.

  2. Retrieval of structure functions of air temperature and refractive index from large eddy simulations of the atmospheric boundary layer

    NARCIS (Netherlands)

    Wilson, C.; Eijk, A.M.J. van; Fedorovich, E.

    2013-01-01

    A methodology is presented to infer the refractive-index structure function parameter and the structure parameters for temperature and humidity from numerical simulations of the turbulent atmospheric convective boundary layer (CBL). The method employs spatial and temporal averaging of multiple reali

  3. An iterative method to reconstruct the refractive index of a medium from time-of-flight measurements

    Science.gov (United States)

    Schröder, Udo; Schuster, Thomas

    2016-08-01

    The article deals with a classical inverse problem: the computation of the refractive index of a medium from ultrasound time-of-flight measurements. This problem is very popular in seismics but also for tomographic problems in inhomogeneous media. For example ultrasound vector field tomography needs a priori knowledge of the sound speed. According to Fermat’s principle ultrasound signals travel along geodesic curves of a Riemannian metric which is associated with the refractive index. The inverse problem thus consists of determining the index of refraction from integrals along geodesics curves associated with the integrand leading to a nonlinear problem. In this article we describe a numerical solver for this problem scheme based on an iterative minimization method for an appropriate Tikhonov functional. The outcome of the method is a stable approximation of the sought index of refraction as well as a corresponding set of geodesic curves. We prove some analytical convergence results for this method and demonstrate its performance by means of several numerical experiments. Another novelty in this article is the explicit representation of the backprojection operator for the ray transform in Riemannian geometry and its numerical realization relying on a corresponding phase function that is determined by the metric. This gives a natural extension of the conventional backprojection from 2D computerized tomography to inhomogeneous geometries. The authors dedicate this article to Prof Todd Quinto on the occasion of his 65th birthday.

  4. High trapping forces for high-refractive index particles trapped in dynamic arrays of counterpropagating optical tweezers

    NARCIS (Netherlands)

    van der Horst, A.; van Oostrum, P.D.J.; Moroz, A.; van Blaaderen, A.; Dogterom, M.

    2008-01-01

    We demonstrate the simultaneous trapping of multiple high-refractive index (n > 2) particles in a dynamic array of counterpropagating optical tweezers in which the destabilizing scattering forces are canceled. These particles cannot be trapped in single-beam optical tweezers. The combined use of two

  5. Pressure Sensing in High-Refractive-Index Liquids Using Long-Period Gratings Nanocoated with Silicon Nitride

    Directory of Open Access Journals (Sweden)

    Jiahua Chen

    2010-12-01

    Full Text Available The paper presents a novel pressure sensor based on a silicon nitride (SiNx nanocoated long-period grating (LPG. The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD > 1.46 such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm, but is also the thinnest (

  6. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles

    Science.gov (United States)

    Tribelsky, Michael I.; Miroshnichenko, Andrey E.

    2016-05-01

    We present the results of a detailed analytical study of light scattering by a particle with high refractive index m +i κ and low losses (m ≫1 ,0 academic interest, the obtained results may be employed to design new highly nonlinear heterogenic nanostructures and other metamaterials.

  7. Refractive index of solutions of human hemoglobin from the near-infrared to the ultraviolet range: Kramers-Kronig analysis.

    Science.gov (United States)

    Sydoruk, Oleksiy; Zhernovaya, Olga; Tuchin, Valery; Douplik, Alexandre

    2012-11-01

    Because direct measurements of the refractive index of hemoglobin over a large wavelength range are challenging, indirect methods deserve particular attention. Among them, the Kramers-Kronig relations are a powerful tool often used to derive the real part of a refractive index from its imaginary part. However, previous attempts to apply the relations to solutions of human hemoglobin have been somewhat controversial, resulting in disagreement between several studies. We show that this controversy can be resolved when careful attention is paid not only to the absorption of hemoglobin but also to the dispersion of the refractive index of the nonabsorbing solvent. We present a Kramers-Kroning analysis taking both contributions into account and compare the results with the data from several studies. Good agreement with experiments is found across the visible and parts of near-infrared and ultraviolet regions. These results reinstate the use of the Kramers-Kronig relations for hemoglobin solutions and provide an additional source of information about their refractive index.

  8. Study on Effect of Number of Transparent Covers and Refractive Index on Performance of Solar Water Heater

    Directory of Open Access Journals (Sweden)

    B. Kalidasan

    2014-01-01

    Full Text Available Liquid flat plate collector (solar flat plate collector is one of the important applications in solar thermal system. The development in solar photovoltaic is an emerging challenge for the solar thermal system. In the current work an attempt has been made to optimize the number of transparent covers and refractive index to improve the optical efficiency and thermal efficiency for the collector. Performance of the liquid flat plate collector at VIT University Vellore has been simulated numerically for January 21st at an interval of half an hour with different numbers of transparent covers (0–3 and different refractive index values ranging from 1.1 to 1.7. The formulation and solutions are developed with simple software Microsoft Office Excel to result the performance characteristics. The result shows that the efficiency of the flat plate collector increases with an increase in number of covers and decreases after an optimum number of covers. It also decreases with an increase in refractive index. The combination of optimum number (two and lower refractive index (1.1 results improved useful heat.

  9. Experimental determination of soot refractive index in the infrared; Determination experimentale de l'indice de refraction de particules de suie dans l'infrarouge

    Energy Technology Data Exchange (ETDEWEB)

    Ouf, F.X.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), DRU/SERAC, Lab. de Physique et Metrologie des Aerosols, 91 - Gif sur Yvette (France); Ouf, F.X.; Coppalle, A.; Weil, M.E.; Yon, J. [CORIA - Complexe de Recherche Interprofessionnel en Aerothermochimie, UMR 6614, 76 - Saint Etienne du Rouvray (France)

    2007-07-01

    The study of physical properties of soot particles produced during combustion is a complex subject but of a great interest within the framework of the study of the safety of an installation, with respect to the fire hazard. These characteristics are, in this case, particularly useful in order to predict the behav of containment barriers in situation of fire, but also in order to estimate the contribution of these particles to radiative transfers. The aim of this study is to determine the radiative properties of soot particles produced during combustion. A specific device, which establishes extinction and vertical-vertical scattering coefficients, has been developed and has allowed to determine the refractive index of soot particles in the infrared. This determination also needed the establishment of size distribution and morphological properties of soot aggregates. We present in this document the experimental device developed, and the validation of this device on latex spheres which optical properties are well known. First results of extinction coefficients will be presented and will underline the similar optical behaviour of different soot aggregates. Values of refractive index will be detailed and discussed, and a direct application of these values will be carried out in order to determine the soot volume fraction. A comparison with reference method will underline the efficiency of our method. We will conclude on the validity of the information brought by this device and on the prospects of this study. A discussion is included, on the utility of mean values of refractive index and on the determination of total emissivity of soot particles. (authors)

  10. Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene

    Science.gov (United States)

    Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos

    2015-01-01

    The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical

  11. DESIGN OF WIRE-WRAPPED ROD BUNDLE MATCHED INDEX-OF-REFRACTION EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hugh McIlroy; Hongbin Zhang; Kurt Hamman

    2008-05-01

    Experiments will be conducted in the Idaho National Laboratory (INL) Matched Index-of-Refraction (MIR) Flow Facility [1] to characterize the three-dimensional velocity and turbulence fields in a wire-wrapped rod bundle typically employed in liquid-metal cooled fast reactors and to provide benchmark data for computer code validation. Sodium cooled fast reactors are under consideration for use in the U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program. The experiment model will be constructed of quartz components and the working fluid will be mineral oil. Accurate temperature control (to within 0.05 oC) matches the index-of-refraction of mineral oil with that of quartz and renders the model transparent to the wavelength of laser light employed for optical measurements. The model will be a scaled 7-pin rod bundle enclosed in a hexagonal canister. Flow field measurements will be obtained with a LaVision 3-D particle image velocimeter (PIV) and complimented by near-wall velocity measurements obtained from a 2-D laser Doppler velocimeter (LDV). These measurements will be used as benchmark data for computational fluid dynamics (CFD) validation. The rod bundle model dimensions will be scaled up from the typical dimensions of a fast reactor fuel assembly to provide the maximum Reynolds number achievable in the MIR flow loop. A range of flows from laminar to fully-turbulent will be available with a maximum Reynolds number, based on bundle hydraulic diameter, of approximately 22,000. The fuel pins will be simulated by 85 mm diameter quartz tubes (closed on the inlet ends) and the wire-wrap will be simulated by 25 mm diameter quartz rods. The canister walls will be constructed from quartz plates. The model will be approximately 2.13 m in length. Bundle pressure losses will also be measured and the data recorded for code comparisons. The experiment design and preliminary CFD calculations, which will be used to provide qualitative hydrodynamic

  12. Towards Silk Fiber Optics: Refractive Index Characterization, Fiber Spinning, and Spinneret Analysis

    Science.gov (United States)

    Spitzberg, Joshua David

    Of the many biologically derived materials, whose historical record of use by humans underscores an ex-vivo utility, silk is interesting for it's contemporary repurposing from textile to biocompatible substrate. And while even within this category silk is one of several materials studied for novel repurposing, it has the unique character of being evolutionarily developed specifically for fiber spinning in vivo. The work discussed here is inspired by taking what nature has given, to explore the in vitro spinning of silk towards biocompatible fiber optics applications. A common formulation of silk used in biomedical studies for re-forming it into the various structures begins with the silkworm cocoon, which is degummed and dissolved into an aqueous solution of its miscible protein, fibroin, and post-treated to fabricate solid structures. In the first aim, the optical refractive index (RI) of various post-treatment methods is discussed towards determining RI design techniques. The methods considered in this work for re-forming a solid fiber from the reconstituted silk fibroin (RSF) solution borrow from the industrial techniques of gel spinning, and dry-spinning. In the second aim, methods are applied to RSF and quality of the spun fibers discussed. A feature common to spinning techniques is passing the (silk) material through a spinneret of specific shape. In the third aim, fluid flow through a simplified native silkworm spinneret is modeled towards bio-inspired lessons in design. In chapter 1 the history, reconstitution, are discussed towards understanding the fabrication of several optical device examples. Chapter 2 then prefaces the experiments and measurements in fiber optics by reviewing electromagnetic theory of waveguide function, and loss factors, to be considered in actual device fabrication. Chapter 3 presents results and discussion for the first aim, understanding design principles for the refractive index of RSF. From this point, industrial fiber

  13. Effect of refraction index and thickness of the light guide in the position-sensitive gamma-ray detector using compact PS-PMTs

    CERN Document Server

    Inoue, K; Nagashima, Y; Hyodo, T; Nagai, Y; Muramatsu, S; Nagai, S

    2000-01-01

    We constructed a position-sensitive gamma-ray detector consisting of an array of BGO scintillators, a light guide and compact PS-PMTs. The effects of refractive index and thickness of the light guide of a glass plate on the detector performance were investigated. A light guide with higher refractive index and smaller thickness is found better for a good spatial resolution.

  14. Evaluation of electrical conductivity, pH and refractive index as physico-chemical parameters for quality control of Aveloz homeopathic solutions

    Directory of Open Access Journals (Sweden)

    Sheila Garcia

    2011-09-01

    Full Text Available Euphorbia tirucalli Lineu (Aveloz belongs to the family Euphorbiaceae and is used in the treatment of cancer and warts. Some studies have reported that phorbol esters are the active principles responsible for the antitumor activity of Aveloz. The production of these molecules occurs in greater quantity in May, during the morning. This study aimed to evaluate whether the physico-chemical parameters of Aveloz homeopathic aqueous solutions such as pH, electrical conductivity and refractive index change due to storage time. Such parameters were measured regularly for 180 days. All solutions were prepared according to the method of grinding with lactose and subsequent dissolution in aqueous medium, as described in the Brazilian Homeopathic Pharmacopoeia, using as starting point the Aveloz latex collected in May. Homeopathic aqueous solutions containing only lactose were also prepared and evaluated as a control group. The potencies that were analyzed for electrical conductivity, pH and refractive index were: 4cH, 7cH, 9cH, 12cH, 14cH, 15cH, 29cH, 30cH. As a result, we found out that there was only statistical difference (p=0.035 in electrical conductivity between the homeopathic solutions containing Aveloz and the homeopathic solutions without Aveloz, when 15cH potency was compared. We also observed that the electrical conductivity increased with the aging of the solutions but is not directly related to the pH or the refractive index of the solutions, indicating that the aging process may alter the electrical conductivity of the homeopathic medicines. The presence of gas inside the glass that stores these solutions may affect the electrical conductivity measurements. Finally, no statistically significant difference was observed (p> 0.05 in the pH and refractive index.

  15. Improving the outcoupling efficiency of white organic light-emitting devices based on a gradient refractive index substrate

    Science.gov (United States)

    Chang, Chih-Hao; Chang, Tzu-Fang; Liang, Yi-Hua; Lo, Yu-Jhong; Wu, Ying-Jie; Chang, Hsin-Hua

    2016-03-01

    For use in lighting applications, white organic light-emitting devices (WOLEDs) must operate at higher biases to ensure an ample flux. However, stressed operation voltages often result in poor performance and limited device lifetime. This could be addressed by modifying the inherent optical properties of OLEDs. This study proposes a gradient refractive index (GRIN) substrate to adjust the ratio of the light-waveguided modes as well as the radiation mode. An embedded nanocomposite film consisting of titanium dioxide (TiO2) nanoparticles (NPs) was inserted between ITO and glass to create an internal light-extraction structure (IES). The high refractive index of TiO2 is essential for increasing the refractive index of the photoresist film and thus diminishing the total internal reflection between the interfaces. In addition, the silicon dioxide NPs mixed poly(dimethylsiloxane) was used to form an external light-extraction structure (EES). The refractive indices of the IES and EES were adjusted to form a GRIN substrate. Compared with a control device, this sophisticated substrate produced a 1.6 fold efficiency improvement. Furthermore, the experiment results indicates that the size of NPs in the nanocomposite layer affects the efficiency enhancement of OLEDs with different emission colors.

  16. Kramers-Kronig analysis on the real refractive index of porous media in the terahertz spectral range.

    Science.gov (United States)

    Silfsten, Pertti; Kontturi, Ville; Ervasti, Tuomas; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2011-03-01

    We present a terahertz time-domain experimental technique for the detection of scattering from porous media. The method for detection of the scattering enables one to make a decision when Fresnel or Kramers-Kronig (K-K) analysis can be applied for a porous medium. In this study the real refractive index of a tablet is calculated using the conventional K-K dispersion relation and also using a singly subtractive K-K relation, which are applied to the extinction coefficient obtained from the Beer-Lambert law. The advantage of the K-K analysis is that one gets estimates both for absolute refractive index and also dispersion of the porous tablet, whereas Fresnel analysis provides only the absolute value of the index.

  17. Frequency-selective absorbance detection: Refractive index and turbidity compensation with dual-wavelength measurement.

    Science.gov (United States)

    Eom, In-Yong; Dasgupta, Purnendu K

    2006-06-15

    A frequency-selective absorbance detection approach and its applications are described. First, a digital signal processor-lock-in amplifier (DSP-LIA)-based absorbance detector was evaluated. Compared to a simple operational amplifier (TL082CP)-based detector, the DSP-LIA-based detector showed lower noise levels, but the relative advantage was reduced under very low photocurrent levels (down to few nA). A 7cm pathlength flow cell with this commercial LIA-based detector exhibited excellent Beer's law linearity (r(2)=0.9999) and a noise level of 7 micro absorbance units (muAU). The limit of detection (LOD, S/N=3) for methyl orange (MO) was 7nM with this detector. Finally, as a more affordable alternative to an LIA, a balanced demodulator integrated circuit chip was used to fabricate a dual wavelength-frequency-selective LED-based absorbance detector. This device successfully compensated refractive index (RI) effect and turbidity effect in test flow systems. The LOD for MO with this system was 8nM.

  18. Bulk photons in asymmetrically warped spacetimes and non-trivial vacuum refractive index

    International Nuclear Information System (INIS)

    We consider asymmetrically warped brane models, or equivalently brane models where the background metric is characterized by different time and space warp factors. The main feature of these models is that 4D Lorentz symmetry is violated for fields which propagate in the bulk, such as gravitons. In this paper we examine the case of bulk photons in asymmetrically warped brane models. Although our results are general, we examine here two specific but characteristic solutions: 1) AdS-Schwarzschild 5D Black Hole solution and 2) AdS-Reissner Nordstrom 5D Black Hole solution. We show that the standard Lorentz invariant dispersion relation for 4D photons is corrected by nonlinear terms which lead to an Energy-dependent speed of light. Specifically, we obtain a sub-luminous Energy-dependent refractive index of the form neff(oemega) = 1+cG oemega2, where oemega is the energy of the photon, and the factor cG is always positive and depends on the free parameters of the model. Finally, comparing the results with recent data from the MAGIC Telescope, claiming a delayed arrival of photons from the Active Galactic Nucleus of Mk501, we impose concrete restrictions to the two sets of models examined in this work. We shall also discuss briefly other possible astrophysical constraints on our models.

  19. A Near-Zero Refractive Index Meta-Surface Structure for Antenna Performance Improvement

    Directory of Open Access Journals (Sweden)

    Mohammad Habib Ullah

    2013-11-01

    Full Text Available A new meta-surface structure (MSS with a near-zero refractive index (NZRI is proposed to enhance the performance of a square loop antenna array. The main challenge to improve the antenna performance is increment of the overall antenna volume that is mitigated by assimilating the planar NZRI MSS at the back of the antenna structure. The proposed NZRI MSS-loaded CPW-fed (Co-Planar Waveguide four-element array antenna is designed on ceramic-bioplastic-ceramic sandwich substrate using high-frequency structure simulator (HFSS, a finite-element-method-based simulation tool. The gain and directivity of the antenna are significantly enhanced by incorporating the NZRI MSS with a 7 × 6 set of elements at the back of the antenna structure. Measurement results show that the maximum gains of the antenna increased from 6.21 dBi to 8.25 dBi, from 6.52 dBi to 9.05 dBi and from 10.54 dBi to 12.15 dBi in the first, second and third bands, respectively. The effect of the slot configuration in the ground plane on the reflection coefficient of the antenna was analyzed and optimized. The overall performance makes the proposed antenna appropriate for UHFFM (Ultra High Frequency Frequency Modulation telemetry-based space applications as well as mobile satellite, microwave radiometry and radio astronomy applications.

  20. Optics of an individual organic molecular mesowire waveguide: directional light emission and anomalous refractive index

    Science.gov (United States)

    Tripathi, Ravi P. N.; Dasgupta, Arindam; Chikkaraddy, Rohit; Pratim Patra, Partha; Vasista, Adarsh B.; Pavan Kumar, G. V.

    2016-06-01

    We report on experimental investigations performed on an isolated organic mesowire waveguide resting on a glass substrate. The waveguide was made of diaminoanthraquinone (DAAQ) molecular aggregates. First, we show directional emission of light from distal ends of the DAAQ waveguide. For a given mesowire geometry, operating in passive or photoluminescence regimes, we quantified the emission angles by combining multi-wavelength Fourier-plane optical microscopy and photoluminescence micro-spectroscopy. We found light emission in the photoluminescence regime to be more directional in nature compared to the passive waveguiding regime, which was supported by three-dimensional finite-difference time-domain (FDTD) simulations. Second, we measured the anomalous behaviour of refractive index as a function of emission wavelength using the spectra of directionally emitted light. Third, by using spatial-filtered collection optics, we observed and quantified single-excitation dual-channel directional, active emission from DAAQ mesowire. The results discussed herein has implication not only in understanding some fundamental aspects of exciton-polariton mediated directional light emission, but also in applications such as organic optical antennas and photonic couplers.

  1. Refractive Index Matching for Planar Laser-Induced Fluorescence Imaging of Fluid Mixing in Porous Media

    Science.gov (United States)

    Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.

    2015-12-01

    Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.

  2. Mono/dual-polarization refractive-index biosensors with enhanced sensitivity based on annular photonic crystals

    CERN Document Server

    Jiang, Liyong; Zhang, We; Li, Xiangyin

    2014-01-01

    To promote the development of two-dimensional (2D) photonic crystals (PCs) based refractive-index (RI) biosensors, there is an urgent requirement of an effective approach to improve the RI sensitivity of 2D PCs (usually less than 500 nm/RIU). In this work, the photonic band gap (PBG) feature and the corresponding RI sensitivity of the air-ring type 2D annular PCs (APCs) have been studied in detail. Such type of 2D PCs can easily and apparently improve the RI sensitivity in comparison with conventional air-hole type 2D PCs that have been widely studied in previous works. This is because the APCs can naturally exhibit suppressed up edge of PBG that can strongly affect the final RI sensitivity. In general, an enhanced sensing performance of as high as up to 2-3 times RI sensitivity can be obtained from pure 2D APCs. Such high RI sensitivity is also available in three typical waveguides developed from pure 2D APCs. Furthermore, a new conception of dual-polarization RI biosensors has been proposed by defining the ...

  3. Flat band degeneracy and near-zero refractive index materials in acoustic crystals

    Directory of Open Access Journals (Sweden)

    Shiqiao Wu

    2016-01-01

    Full Text Available A Dirac-like cone is formed by utilizing the flat bands associated with localized modes in an acoustic crystal (AC composed of a square array of core-shell-structure cylinders in a water host. Although the triply-degeneracy seems to arise from two almost-overlapping flat bands touching another curved band, the enlarged view of the band structure around the degenerate point reveals that there are actually two linear bands intersecting each other at the Brillouin zone center, with another flat band passing through the same crossing point. The linearity of dispersion relations is achieved by tuning the geometrical parameters of the cylindrical scatterers. A perturbation method is used to not only accurately predict the linear slopes of the dispersions, but also confirm the linearity of the bands from first principles. An effective medium theory based on coherent potential approximation is developed, and it shows that a slab made of the AC carries a near-zero refractive index around the Dirac-like point. Full-wave simulations are performed to unambiguously demonstrate the wave manipulating properties of the AC structures such as perfect transmission, unidirectional transmission and wave front shaping.

  4. Stability-indicating HPLC method for the determination of impurities in meprobamate with refractive index detection.

    Science.gov (United States)

    Karthikeyan, K; Balaji, T S; Shanmugasundaram, P; Chandrasekara Pillai, K

    2010-03-01

    The purpose of this study is to develop and validate a simple, sensitive, and robust high-performance liquid chromagraphic (HPLC) method for the determination of impurities ca. 2-methyl-2-propyl-1,3-propane diol (MP0) and 2-hydroxymethyl-2-methyl pentyl carbamate (MP1) in meprobamate (MEP) drug substance with refractive index (RI) detection. This method utilizes a Zorbax Eclipse XDB C(18) HPLC column, a mobile phase of 80:20 (v/v) 10 mM KH(2)PO(4),-acetonitrile, respectively. The stability-indicating capability of the method has been established by performing stress studies under acidic, basic, oxidation, light, humidity, and thermal conditions. The major degradation products of acid and base hydrolysis are identified as MP0 and MP1. The recovery data obtained for impurities are between 96.0-109.8%. The detection and quantitation limits of this method ranges from 0.009 to 0.017 mg/mL and 0.029 to 0.055 mg/mL, respectively. The relative standard deviation (RSD) for the area at QL is less than 6.1%. Good linearity (r(2) > 0.99) and precision (RSD < 2.2%) have been obtained for MEP, MP0, and MP1. This method has been applied successfully to determine the content of impurities in MEP bulk drug. PMID:20223088

  5. Sensor based on macrobent fiber Bragg grating structure for simultaneous measurement of refractive index and temperature.

    Science.gov (United States)

    Liu, Tiegen; Chen, Yaofei; Han, Qun; Liu, Fangchao; Yao, Yunzhi

    2016-02-01

    A novel and compact all-fiber sensor based on a macrobent fiber Bragg grating (FBG) structure for simultaneous measurement of refractive index (RI) and temperature is proposed and experimentally investigated. The sensor can be easily fabricated by properly bending an FBG. The bending causes interference between the core mode and the whispering gallery mode, which induces another kind of dip in the transmission spectra of the sensor besides the sharp one of the FBG. Because the two kinds of dips respond differently to the surrounding RI and temperature, these two parameters can be unambiguously measured by the sensor. A sample sensor was fabricated and experimentally investigated, and RI sensitivity of 165.9276 nm/RIU in the range from 1.3330 to 1.3785 and temperature sensitivity of 31.7 pm/°C were achieved. This sensor provides a convenient and economical way for applications where temperature and RI have to be simultaneously measured. PMID:26836081

  6. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2008-02-01

    Full Text Available A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF, enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL for the ACRI is close to 1.51(±0.02–i0.017(±0.003 at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  7. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    International Nuclear Information System (INIS)

    A synergy between lidar, sun photometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalite de l'air en Ile-de-France (ESQUIF), enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI) and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL) for the ACRI is close to 1.51(± 0.02)-i0.017(± 0.003) at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be similar to 0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH) profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements. (authors)

  8. Research on refractive index of optical cement used in Glan-Thompson prisms

    Institute of Scientific and Technical Information of China (English)

    Haifeng Wang; Fuquan Wu; Hailong Wang; Jing Wang; Shan Zhang

    2007-01-01

    The influence of the refractive index n2 of optical cement on the structure angle, field angle, and transmission of Glan-Thompson prism has been studied in detail. The results show that the structure angle will increase with the decrease of n2 under the condition of the largest field angle. Thus, the ratio of length to width (L/A) of the prism will decrease, which means more materials can be saved. When the value of L/A is 3.0 or 2.5 in the routine design, the field angle will firstly increase and then decrease with the increment of n2. Two routine designs with the n2 values of 1.47 and 1.45 have the optimal field angle. In addition, n2 also has great influence on light intensity transmittance of the prism. Considering all these factors, it will be the best choice with L/A=2.5 and n2 = 1.45 - 1.46.

  9. Measurement of colloidal phenomena during flow through refractive index matched porous media.

    Science.gov (United States)

    Roth, Eric J; Mont-Eton, Michael E; Gilbert, Benjamin; Lei, Tim C; Mays, David C

    2015-11-01

    Colloidal phenomena in porous media, natural or engineered, are important in a breadth of science and technology applications, but fundamental understanding is hampered by the difficulty in measuring colloid deposit morphology in situ. To partially address this need, this paper describes a static light scattering apparatus using a flow cell filled with refractive index matched (RIM) porous media, allowing real-time measurement of colloidal phenomena as a function of depth within the flow cell. A laser interacts with the colloids in the pore space and their structures, but not with the RIM media. The intensity of scattered light is measured as a function of scattering angle, which allows characterization of colloid deposit morphology as a fractal dimension and a radius of gyration. In parallel, fluid discharge rate and pressure drop are recorded to determine permeability, a key parameter for any application involving flow through porous media. This apparatus should prove useful in any application requiring characterization of colloidal phenomena within porous media. Additionally, this paper describes how to use granular Nafion as RIM porous media. PMID:26628117

  10. Graphene-deposited photonic crystal fibers for continuous refractive index sensing applications.

    Science.gov (United States)

    Tan, Y C; Tou, Z Q; Chow, K K; Chan, C C

    2015-11-30

    We present a pilot demonstration of an optical fiber based refractive index (RI) sensor involving the deposition of graphene onto the surface of a segment of a photonic crystal fiber (PCF) in a fiber-based Mach-Zehnder Interferometer (MZI). The fabrication process is relatively simple and only involves the fusion splicing of a PCF between two single mode fibers. The deposition process relies only on the cold transfer of graphene onto the PCF segment, without the need for further physical or chemical treatment. The graphene overlay modified the sensing scheme of the MZI RI sensor, allowing the sensor to overcome limitations to its detectable RI range due to free spectral range issues. This modification also allows for continuous measurements to be obtained without the need for reference values for the range of RIs studied and brings to light the potential for simultaneous dual parameter sensing. The sensor was able to achieve a RI sensitivity of 9.4 dB/RIU for the RIs of 1.33-1.38 and a sensitivity of 17.5 dB/RIU for the RIs of 1.38-1.43. It also displayed good repeatability and the results obtained were consistent with the modeling. PMID:26698755

  11. Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements

    Directory of Open Access Journals (Sweden)

    J.-C. Raut

    2007-07-01

    Full Text Available A synergy between lidar, sunphotometer and in situ measurements has been applied to airborne observations performed during the Etude et Simulation de la QUalité de l'air en Ile-de-France (ESQUIF, enabling the retrieval of vertical profiles for the aerosol complex refractive index (ACRI and single-scattering albedo with a vertical resolution of 200 m over Paris area. The averaged value over the entire planetary boundary layer (PBL for the ACRI is close to 1.51(±0.02–i0.017(±0.003 at 532 nm. The single-scattering albedo of the corresponding aerosols is found to be ~0.9 at the same wavelength. A good agreement is found with previous studies for urban aerosols. A comparison of vertical profiles of ACRI with simulations combining in situ measurements and relative humidity (RH profiles has highlighted a modification in aerosol optical properties linked to their history and the origin of the air mass. The determination of ACRI in the atmospheric column enabled to retrieve vertical profiles of extinction coefficient in accordance with lidar profiles measurements.

  12. High-Directivity Antenna Array Based on Artificial Electromagnetic Metamaterials with Low Refractive Index

    Directory of Open Access Journals (Sweden)

    Zhigang Xiao

    2015-01-01

    Full Text Available Planar metamaterials (MTMs with low refractive index are proposed as a cover in a high-gain patch antenna array configuration. This MTMs array antenna has the following features: the number of array elements significantly decreases compared with the conventional array; the elements spacing is larger than a wave length by far; the feeding network is simpler. MTMs are made of two layers of periodic square metallic grids and placed above the feeding array. With the same aperture size, the directivity of MTMs-cover antenna array is higher than the conventional antenna array. The simulation results show that an array of 2 × 2 patch elements integrated with MTMs yields about 26 dB of directivity which is higher than that of conventional 8 × 8 patch array. Furthermore, on the condition of the same aperture size, an array patch with 4 × 4 elements integrated with the MTMs-cover has an equivalent gain compared with the conventional patch array with 16 × 16 array elements. Obviously, the former has a simpler feeding network and higher aperture efficiency. The experimental work has verified that the 2 × 2 array case and the measured results have good agreement with the simulation.

  13. Bulk photons in Asymmetrically Warped Space-times and Non-trivial Vacuum Refractive Index

    CERN Document Server

    Farakos, K; Pasipoularides, P

    2009-01-01

    We consider asymmetrically warped brane models, or equivalently brane models where the background metric is characterized by different time and space warp factors. The main feature of these models is that 4D Lorentz symmetry is violated for fields which propagate in the bulk, such as gravitons. In this paper we examine the case of bulk photons in asymmetrically warped brane models. Although our results are general, we examine here two specific but characteristic solutions: 1) AdS-Schwarzschild 5D Black Hole solution and 2) AdS-Reissner Nordstrom 5D Black Hole solution. We show that the standard Lorentz invariant dispersion relation for 4D photons is corrected by nonlinear terms which lead to an Energy-dependent speed of light. Specifically, we obtain a sub-luminous Energy-dependent refractive index of the form n_{eff}(omega)=1+c_G omega^2, where omega is the energy of the photon, and the factor c_G is always positive and depends on the free parameters of the model. Finally, comparing the results with recent d...

  14. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-11-01

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties.

  15. Contactless optical fiber refractive index sensor for liquid and solid samples

    Science.gov (United States)

    Moreno-Hernández, Carlos; Monzón-Hernández, D.; Villatoro, Joel

    2016-05-01

    We report on a contactless optical fiber refractive index (RI) sensor that can be used to measure the RI of solid or liquid samples. The sensor is simple to construct and consists of a Fabry-Perot interferometer (FPI) with long cavity. The cavity of our FPI consists of a tapered optical fiber tip and an external flat mirror. The output beam of the fiber tip is partially reflected from different interfaces of the sample present in the interferometer cavity. Each of such reflections interferes with the beam internally reflected by the fiber tip. Thus, a multiple-beam FPI is formed whose reflection spectrum is composed by the superposition of several two-beam interferences. The analysis of the multiple interference spectra was carried out in the Fourier domain. Several glass samples, water-sucrose and water-glycerol solutions were prepared and tested. Since the fiber tip is not in direct contact with the sample under test the measurement is simple and immediate. To our-knowledge, this is the first time that a fiber optic sensor can be used to measure the RI of solid and liquid samples without any modification.

  16. The Effects of Experimental Conditions on the Refractive Index and Density of Low-temperature Ices: Solid Carbon Dioxide

    Science.gov (United States)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-08-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14-70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz-Lorenz approximation is valid for solid CO2 across the full 14-70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n vis and ρ are not measured in the same experimental setup where the IR spectral measurements are made.

  17. The Effects of Experimental Conditions on the Refractive Index and Density of Low-temperature Ices: Solid Carbon Dioxide

    Science.gov (United States)

    Loeffler, M. J.; Moore, M. H.; Gerakines, P. A.

    2016-08-01

    We present the first study on the effects of the deposition technique on the measurements of the visible refractive index and the density of a low-temperature ice using solid carbon dioxide (CO2) at 14–70 K as an example. While our measurements generally agree with previous studies that show a dependence of index and density on temperature below 50 K, we also find that the measured values depend on the method used to create each sample. Below 50 K, we find that the refractive index varied by as much as 4% and the density by as much as 16% at a single temperature depending on the deposition method. We also show that the Lorentz–Lorenz approximation is valid for solid CO2 across the full 14–70 K temperature range, regardless of the deposition method used. Since the refractive index and density are important in calculations of optical constants and infrared (IR) band strengths of materials, our results suggest that the deposition method must be considered in cases where n vis and ρ are not measured in the same experimental setup where the IR spectral measurements are made.

  18. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials.

    Science.gov (United States)

    Kaina, Nadège; Lemoult, Fabrice; Fink, Mathias; Lerosey, Geoffroy

    2015-09-01

    Metamaterials, man-made composite media structured on a scale much smaller than a wavelength, offer surprising possibilities for engineering the propagation of waves. One of the most interesting of these is the ability to achieve superlensing--that is, to focus or image beyond the diffraction limit. This originates from the left-handed behavior--the property of refracting waves negatively--that is typical of negative index metamaterials. Yet reaching this goal requires the design of 'double negative' metamaterials, which act simultaneously on the permittivity and permeability in electromagnetics, or on the density and compressibility in acoustics; this generally implies the use of two different kinds of building blocks or specific particles presenting multiple overlapping resonances. Such a requirement limits the applicability of double negative metamaterials, and has, for example, hampered any demonstration of subwavelength focusing using left-handed acoustic metamaterials. Here we show that these strict conditions can be largely relaxed by relying on media that consist of only one type of single resonant unit cell. Specifically, we show with a simple yet general semi-analytical model that judiciously breaking the symmetry of a single negative metamaterial is sufficient to turn it into a double negative one. We then demonstrate that this occurs solely because of multiple scattering of waves off the metamaterial resonant elements, a phenomenon often disregarded in these media owing to their subwavelength patterning. We apply our approach to acoustics and verify through numerical simulations that it allows the realization of negative index acoustic metamaterials based on Helmholtz resonators only. Finally, we demonstrate the operation of a negative index acoustic superlens, achieving subwavelength focusing and imaging with spot width and resolution 7 and 3.5 times better than the diffraction limit, respectively. Our findings have profound implications for the

  19. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments

    Science.gov (United States)

    Najjari, Mohammad Reza; Hinke, Jessica A.; Bulusu, Kartik V.; Plesniak, Michael W.

    2016-06-01

    Four commonly used refractive-index (RI)-matched Newtonian blood-analog fluids are reviewed, and different non-Newtonian blood-analogs, with RI of 1.372-1.495, are investigated. Sodium iodide (NaI), sodium thiocyanate (NaSCN) and potassium thiocyanate are used to adjust the RI of blood-analogs to that of test sections for minimizing optical distortions in particle image velocimetry data, and xanthan gum (XG) is added to the fluids to give them non-Newtonian properties (shear thinning and viscoelasticity). Our results support the general belief that adding NaI to Newtonian fluids matches the RI without changing the kinematic viscosity. However, in contrast to claims made in a few studies that did not measure rheology, our investigation revealed that adding NaI or NaSCN to XG-based non-Newtonian fluids changes the viscosity of the fluids considerably and reduces the shear-thinning property. Therefore, the RI of non-Newtonian blood-analog fluids with XG cannot be adjusted easily by varying the concentration of NaI or NaSCN and needs more careful rheological study.

  20. MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots; Donald M. McEligot; Richard Skifton; Hugh McIlroy

    2014-11-01

    Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early

  1. Effect of Ta concentration on the refractive index of TiO2:Ta studied by spectroscopic ellipsometry

    Science.gov (United States)

    Nurfani, Eka; Kurniawan, Robi; Muhammady, Shibghatullah; Marlina, Resti; Sutjahja, Inge M.; Winata, Toto; Rusydi, Andrivo; Darma, Yudi

    2016-04-01

    We have investigated optical properties of Ta-doped TiO2 thin film on LaAlO3 (LAO) substrate using Spectroscopic Ellipsometry (SE) at room temperature. Amplitude ratio Ψ and phase difference L1 between p- and s- polarized light waves are obtained by multiple incident angles measurement (60°, 70°, and 80°) at energy range of 0.5 - 6.5 eV. In order to obtain optical properties for every Ta concentrations (0.01, 0.4, and 5 at. %), multilayer modelling was performed simultaneously by using Drude-Lorentz model. Refractive index and optical dispersion parameters were determined by Wemple-DiDomenico relation. In general, refractive index at zero photon energy n(0) increases by increasing Ta concentration. Furthermore, optical band gap shows a significant increasing due to presence of Ta dopant. In addition, other optical constants are discussed as well.

  2. Digital holographic PTV for complicated flow in a water by two cameras and refractive index-matching method

    Science.gov (United States)

    Kuniyasu, Masataka; Aoyagi, Yusuke; Unno, Noriyuki; Satake, Shin-ichi; Yuki, Kazuhisa; Seki, Yohji

    2016-06-01

    A basic heat transfer promoter such as packed beds of spheres is one of the technologies of the promotion of heat transfer using the turbulent mixture. We carried out 3-D visualization of digital holographic PTV to understand the complicated flow in a sphere-packed pipe (SPP) using a refractive index-matching method with a water used as a working fluid, the spheres was made of MEXFLON, whose refractive index is the same as that of a water. To visualize the detail flow structure around the spheres in water, we performed three-dimensional simultaneous measurements of velocity field in a water flow in the SPP are performed by our proposed holography technique with two cameras. The velocity field by two cameras could obtain finer flow structures than that by one camera.

  3. Application of refractive index mixing rules in binary systems of hexadecane and heptadecane with -alkanols at different temperatures

    Indian Academy of Sciences (India)

    Rita Mehra

    2003-04-01

    Density and refractive index have been experimentally determined for binary liquid mixtures of hexadecane and heptadecane with 1-butanol, 1-pentanol, 1-hexanol and 1-heptanol at 298.15, 308.15 and 318.15 K. A comparative study of Lorentz-Lorenz (L-L), Weiner (W) and Heller (H), and Gladstone-Dale (G-D) relations for predicting the refractive index of a liquid has been carried out to test their validity for the eight binaries over the entire mole fraction range of hexadecane and heptadecane at the three temperatures. Comparison of various mixing rules has been expressed in terms of average percentage deviation. The performance of the Lorentz- Lorenz and Heller relations is relatively better than that of the Weiner and Gladstone-Dale relations.

  4. Reflection statistics of weakly disordered optical medium when its mean refractive index is different from an outside medium

    CERN Document Server

    Pradhan, Prabhakar; Capoglu, Ilker; Subramanian, Hariharan; Damania, Dhwanil; Cherkezyan, Lusik; Taflove, Allen; Backman, Vadim

    2015-01-01

    Based on the difference between mean background of an optical sample refractive index n_0 and an outside medium, n_out, different than n_0, we study the reflection statistics of a one-dimensional weakly disordered optical medium with refractive index n(x)=n_0+dn(x). Considering dn(x) as color noise with the exponential spatial correlation decay length l_c and k as the incident wave vector, our results show that for the small correlation length limit, i.e. k*l_c proportional to l_c. However, the standard deviation of r is proven to be std(r(dn,l_c)) proportional to sqrt(l_c), which is different from the matched case. Applications to light scattering from layered media and biological cells are discussed

  5. Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy

    Science.gov (United States)

    Rappaz, Benjamin; Marquet, Pierre; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Magistretti, Pierre J.

    2005-11-01

    We have developed a digital holographic microscope (DHM), in a transmission mode, adapted to the quantitative study of cellular dynamics. Living cells in culture are optically probed by measuring the phase shift they produce on the transmitted wave front. The high temporal stability of the phase signal, equivalent to λ/1800, and the low acquisition time (~20μs) enable to monitor cellular dynamics processes. An experimental procedure allowing to calculate both the integral refractive index and the cellular thickness (morphometry) from the measured phase shift is presented. Specifically, the method has been applied to study the dynamics of neurons in culture during a hypotonic stress. Such stress produces a paradoxical decrease of the phase which can be entirely resolved by applying the methodological approach described in this article; indeed the method allows to determine independently the thickness and the integral refractive index of cells.

  6. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    Energy Technology Data Exchange (ETDEWEB)

    Sakalli, I., E-mail: izzet.sakalli@emu.edu.tr; Mirekhtiary, S. F., E-mail: fatemeh.mirekhtiary@emu.edu.tr [Eastern Mediterranean University G. Magosa, Department of Physics (Turkey)

    2013-10-15

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  7. Effect of the refractive index on the hawking temperature: an application of the Hamilton-Jacobi method

    Science.gov (United States)

    Sakalli, I.; Mirekhtiary, S. F.

    2013-10-01

    Hawking radiation of a non-asymptotically flat 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method is studied. In addition to the naive coordinates, we use four more different coordinate systems that are well-behaved at the horizon. Except for the isotropic coordinates, direct computation by the HJ method leads to the standard Hawking temperature for all coordinate systems. The isotropic coordinates allow extracting the index of refraction from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, the Hawking temperature. The isotropic coordinates in the conventional HJ method produce a wrong result for the temperature of the linear dilaton. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  8. Effect of the Refractive Index on the Hawking Temperature: An Application of the Hamilton-Jacobi Method

    CERN Document Server

    Sakalli, I

    2013-01-01

    Hawking radiation of a non-asymptotically flat (NAF) 4-dimensional spherically symmetric and static dilatonic black hole (BH) via the Hamilton-Jacobi (HJ) method has been studied. In addition to the naive coordinates, we have used four more different coordinate systems which are well-behaved at the horizon. Except the isotropic coordinates, direct computation of the HJ method leads us the standard Hawking temperature for all coordinate systems. The isotropic coordinates render possible to get the index of refraction extracting from the Fermat metric. It is explicitly shown that the index of refraction determines the value of the tunneling rate and its natural consequence, Hawking temperature. The isotropic coordinates within the conventional HJ method produce wrong result for the temperature of the LDBH. Here, we explain how this discrepancy can be resolved by regularizing the integral possessing a pole at the horizon.

  9. Contribution of Delbrück scattering to the refractive index of substances at mega-electronvolt photon energies

    Science.gov (United States)

    Garanin, Sergey F.; Kravets, Ekaterina M.

    2016-10-01

    Recent work by Habs et al. [1] posits that for MeV photons, the contribution of Delbrück scattering to the refractive index of a substance δD becomes dominant as compared with the ordinary polarization contribution due to free electrons. Using the same method suggested Habs et al., we have calculated the contribution of Delbrück scattering using the dispersion relation between δD and the pair creation cross section in the nuclear Coulomb field σp. We have also considered the corrections related to the near-threshold behavior of σp and estimated the contribution of higher-order Delbrück scattering corrections. Our results indicate that δD for MeV photons is small and cannot be responsible for making the index of refraction for silicon larger than unity.

  10. Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    Energy Technology Data Exchange (ETDEWEB)

    Meichner, Christoph, E-mail: christoph.meichner@uni-bayreuth.de; Kador, Lothar, E-mail: lothar.kador@uni-bayreuth.de [University of Bayreuth, Institute of Physics and Bayreuth Institute of Macromolecular Research, Universitätsstrasse 30, 95447 Bayreuth (Germany); Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner, E-mail: hans-werner.schmidt@uni-bayreuth.de [University of Bayreuth, Macromolecular Chemistry I, Bayreuth Institute of Macromolecular Research and Bayreuth Center for Colloids and Interfaces, Universitätsstrasse 30, 95447 Bayreuth (Germany)

    2015-08-15

    We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard{sup ®} 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025{sup ∘} results in an error of the refractive index of typically ±5 ⋅ 10{sup −4}. Information on the sample thickness is not required.

  11. Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    Directory of Open Access Journals (Sweden)

    Christoph Meichner

    2015-08-01

    Full Text Available We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard® 184 and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025∘ results in an error of the refractive index of typically ±5 ⋅ 10−4. Information on the sample thickness is not required.

  12. Refractive-index determination of solids from first- and second-order critical diffraction angles of periodic surface patterns

    Science.gov (United States)

    Meichner, Christoph; Schedl, Andreas E.; Neuber, Christian; Kreger, Klaus; Schmidt, Hans-Werner; Kador, Lothar

    2015-08-01

    We present two approaches for measuring the refractive index of transparent solids in the visible spectral range based on diffraction gratings. Both require a small spot with a periodic pattern on the surface of the solid, collimated monochromatic light, and a rotation stage. We demonstrate the methods on a polydimethylsiloxane film (Sylgard® 184) and compare our data to those obtained with a standard Abbe refractometer at several wavelengths between 489 and 688 nm. The results of our approaches show good agreement with the refractometer data. Possible error sources are analyzed and discussed in detail; they include mainly the linewidth of the laser and/or the angular resolution of the rotation stage. With narrow-band light sources, an angular accuracy of ±0.025∘ results in an error of the refractive index of typically ±5 ṡ 10-4. Information on the sample thickness is not required.

  13. Simultaneous measurement of strain, temperature and refractive index based on multimode interference, fiber tapering and fiber Bragg gratings

    Science.gov (United States)

    Oliveira, Ricardo; Osório, Jonas H.; Aristilde, Stenio; Bilro, Lúcia; Nogueira, Rogerio N.; Cordeiro, Cristiano M. B.

    2016-07-01

    We report the development of an optical fiber sensor capable of simultaneously measuring strain, temperature and refractive index. The sensor is based on the combination of two fiber Bragg gratings written in a standard single-mode fiber, one in an untapered region and another in a tapered region, spliced to a no-core fiber. The possibility of simultaneously measuring three parameters relies on the different sensitivity responses of each part of the sensor. The results have shown the possibility of measuring three parameters simultaneously with a resolution of 3.77 με, 1.36 °C and 5  ×  10‑4, respectively for strain, temperature and refractive index. On top of the multiparameter ability, the simple production and combination of all the parts involved on this optical-fiber-based sensor is an attractive feature for several sensing applications.

  14. Note: Optical fiber milled by focused ion beam and its application for Fabry-Pérot refractive index sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Wang, Fei; Savenko, Alexey;

    2011-01-01

    We introduce a highly compact fiber-optic Fabry-Pérot refractive index sensor integrated with a fluid channel that is fabricated directly near the tip of a 32 μm in diameter single-mode fiber taper. The focused ion beam technique is used to efficiently mill the microcavity from the fiber side...... and finely polish the end facets of the cavity with a high spatial resolution. It is found that a fringe visibility of over 15 dB can be achieved and that the sensor has a sensitivity of ∼1731 nm/RIU (refractive index units) and a detection limit of ∼5.78 × 10−6 RIU. This miniature integrated all-in-fiber...

  15. Approximate solution for optical measurements of the diameter and refractive index of a small and transparent fiber.

    Science.gov (United States)

    Świrniak, Grzegorz; Mroczka, Janusz

    2016-04-01

    When a plane electromagnetic wave is scattered by an optically transparent object, whose size is much larger than the wavelength, a series of bright and dark fringes forms the primary rainbow, which is one of the most splendid phenomena in nature. In this work, an optical technique is discussed for simultaneous measurement of the diameter and refractive index of an axisymmetric and dielectric fiber by studying some rainbow features. This noncontact optical technique uses a beam of light exhibiting low temporal coherence, which enabled us to reduce the detrimental sensitivity of the rainbow features to variations of the fiber properties, thus allowing for high-precision estimates. Approximate mathematical formulas for the diameter and refractive index measurements were derived from the lowest-order complex angular momentum correction to Airy theory of rainbow. Furthermore, sensitivity of the measurement data to small deformation of the fiber's cross section into an ellipse was discussed. Preliminary empirical results provide a qualitative verification. PMID:27140778

  16. Optical design of 200-lm/W phosphorescent green light emitting devices based on the high refractive index substrate

    Energy Technology Data Exchange (ETDEWEB)

    Mikami, Akiyoshi [Department of Electrical Engineering, Kanazawa Institute of Technology, Nonoichimachi, Ishikawa 921-8501 (Japan)

    2011-09-15

    Light extraction efficiency has been successfully enhanced by using high refractive index substrate coupled with micro-lens array and weak micro-cavity structure. Optical energy intensity including waveguide, substrate and external modes was analyzed based on wave optics. It was shown that most of the waveguide mode is turned to the substrate mode by the effect of high index refraction substrate. About a half of the light can be extracted from the substrate by the assistance of surface textured structure. An external quantum efficiency of 57% and a power efficiency of over 200-lm/W were obtained in a green phosphorescent device. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. 3-D mapping with ellipsometrically determined physical thickness/refractive index of spin coated sol–gel silica layer

    Indian Academy of Sciences (India)

    S Das; P Pal; S Roy; S Chakraboarty; P K Biswas

    2002-11-01

    Precursor sol for sol–gel silica layer was prepared from the starting material, tetraethylorthosilicate (TEOS). The sol was deposited onto borosilicate crown (BSC) glass by the spinning technique (rpm 2500). The gel layer thus formed transformed to oxide layer on heating to 450°C for ∼ 30 min. The physical thicknessand the refractive index of the layer were measured ellipsometrically (Rudolph Auto EL II) at 632.8 nm. About 10 × 10 mm surface area of the silica layer was chosen for evaluation of thickness and refractive index values at different points (121 nos.) with 1 mm gap between two points. Those data were utilized in the Autolisp programme for 3-D mapping. Radial distribution of the evaluated values was also displayed.

  18. Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy

    International Nuclear Information System (INIS)

    In this paper we describe the progress we have made in our simultaneous length measurement and the femtosecond comb interferometric spectroscopy in a conventional arrangement with a moving mirror. Scanning and detection over an interval longer than the distance between two consecutive pulses of the frequency comb allow for a spectral resolution of the individual frequency modes of the comb. Precise knowledge of comb mode frequency leads to a precise estimation of the spectral characteristics of inspected phenomena. Using the pulse train of the frequency comb allows for measurement with highly unbalanced lengths of interferometer arms, i.e. an absolute long distance measurement. Further, we present a non-contact (double sided) method of measurement of the length/thickness of plane-parallel objects (gauge blocks, glass samples) by combining the fs comb (white light) with single frequency laser interferometry. The position of a fringe packet is evaluated by estimating the stationary phase position for any wavelength in the spectral band used. The repeatability of this position estimation is a few nanometres regardless of whether dispersion of the arms is compensated (transform limited fringe packet ∼10 fringes FWHM) or highly different (fringe packet stretched to >200 fringes FWHM). The measurement of steel gauge block by this method was compared with the standard method, and deviation (+13 ± 12) nm for gauge blocks (2 to 100) mm was found. The measurement of low reflecting ceramic gauges or clear glass samples was also tested. In the case of glass, it becomes possible to measure simultaneously both the thickness and the refractive index (and dispersion) of flat samples. (paper)

  19. Effect of Scintillometer Height on Structure Parameter of the Refractive Index of Air Measurements

    Science.gov (United States)

    Gowda, P. H.; Howell, T. A.; Hartogensis, O.; Basu, S.; Scanlon, B. R.

    2009-12-01

    Scintillometers measure amount of scintillations by emitting a beam of light over a horizontal path and expresses as the atmospheric turbulence structure parameter as the refractive index of air (Cn2). Cn2 represents the turbulent strength of the atmosphere and describes the ability of the atmosphere to transport heat and humidity. The main objective of this study was to evaluate the effect of scintillometer height on Cn2 measurements and on the estimation of latent heat fluxes. The study was conducted during the 2009 summer growing season in the USDA-ARS Conservation and Production Research Laboratory (CPRL) at Bushland [350 11' N, 1020 06' W; 1,170 m elevation MSL], Texas. Field experiment consisted of two steps: (1) cross-calibration of scintillometers and (2) measurement of Cn2 at different heights. In the first step, three large aperture scintillometers (LAS) were deployed across two large lysimeter fields with bare soil surfaces. During the 3-week cross-calibration period, all three scintillometers were installed at a 2-m height with a path length of 420 m. Cn2 was monitored at a 1-min interval and averaged for 15-min periods. Cn2 measurements were synchronized with weather station and weighing lysimeter measurements. After the cross-calibration period, scintillometers were installed at 2-, 2.5- and 3-m heights, and Cn2 measurements were continued for another 3-week period. In addition to the Cn2 measurements, net radiation (Rn) and soil heat fluxes (G) were measured in both lysimeter fields. Cn2 values were corrected for inner scale dependence before cross calibration and estimation of sensible heat fluxes. Measurements of wind speed, air temperature, and relative humidity were used with Cn2 data to derive sensible heat fluxes. Latent heat fluxes were estimated as a residual from the energy balance and compared with lysimeter data. Results of cross calibration and effects of scintillometer height on the estimation of latent heat fluxes were reported and

  20. Microfabricated refractive index gradient based detector for reversed-phase liquid chromatography with mobile phase gradient elution.

    Science.gov (United States)

    McBrady, Adam D; Synovec, Robert E

    2006-02-10

    Typical refractive index (RI) detectors for liquid chromatography (LC) are not well suited to application with mobile phase gradient elution, due to the difficulty in correcting for the detected baseline shift during the gradient. We report a sensitive, highly reproducible, microfabricated refractive index gradient (micro-RIG) detector that performs well with mobile phase gradient elution LC. Since the micro-RIG signal remains on-scale throughout the mobile phase gradient, one can apply a baseline correction procedure. We demonstrate that by collecting two mobile phase gradient blanks and subtracting one of them from the other, a reproducible, flat baseline is achieved. Therefore, subtracting a blank from a separation provides a baseline corrected chromatogram with reasonably high signal-to-noise ratio for eluting analytes. The micro-RIG detector uses a collimated diode laser beam to optically probe a RIG formed perpendicular to the laminar flow direction within a microfabricated borosilicate glass chip. The chip-based design of the detector is suitable for either traditional bench-top or LC-on-a-chip technologies. We report reversed phase high performance liquid chromatography (RP-HPLC) separations of proteins and polymers, over mobile phase gradient conditions of 67% A:33% B to 3% A:97% B by volume, where A is 96% methanol:3.9% water:0.1% trifluoroacetic acid (TFA), and B is 3.9% methanol:96% water:0.1% TFA. The separations were performed on a Jupiter 5 mu C4 300 A 150 mm x 1.0 mm Phenomenex column at a flow rate of 20 microl/min. Viscosity changes during the mobile phase gradient separation are found to shift the on-chip merge position of the detected concentration gradient (i.e., RIG), in a reproducible fashion. However, this viscosity effect makes detection sensitivity vary throughout the mobile phase gradient, due to moving the optimized position of the probe beam in relation to the analyte concentration gradient being probed. None-the-less, consistent limits