WorldWideScience

Sample records for changing process parameters

  1. Raw material changes and their processing parameters in an extrusion cooking process

    DEFF Research Database (Denmark)

    Cheng, Hongyuan; Friis, Alan

    In this work, the effects of raw material and process parameters on product expansion in a fish feed extrusion process were investigated. Four different recipes were studied with a pilot-scale twin-screw co-rotating extruder according to a set of pre-defined processing conditions. In the four rec...

  2. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    Science.gov (United States)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  3. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    Science.gov (United States)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-03-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters (i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  4. Sensitivity of Austempering Heat Treatment of Ductile Irons to Changes in Process Parameters

    Science.gov (United States)

    Boccardo, A. D.; Dardati, P. M.; Godoy, L. A.; Celentano, D. J.

    2018-06-01

    Austempered ductile iron (ADI) is frequently obtained by means of a three-step austempering heat treatment. The parameters of this process play a crucial role on the microstructure of the final product. This paper considers the influence of some process parameters ( i.e., the initial microstructure of ductile iron and the thermal cycle) on key features of the heat treatment (such as minimum required time for austenitization and austempering and microstructure of the final product). A computational simulation of the austempering heat treatment is reported in this work, which accounts for a coupled thermo-metallurgical behavior in terms of the evolution of temperature at the scale of the part being investigated (the macroscale) and the evolution of phases at the scale of microconstituents (the microscale). The paper focuses on the sensitivity of the process by looking at a sensitivity index and scatter plots. The sensitivity indices are determined by using a technique based on the variance of the output. The results of this study indicate that both the initial microstructure and the thermal cycle parameters play a key role in the production of ADI. This work also provides a guideline to help selecting values of the appropriate process parameters to obtain parts with a required microstructural characteristic.

  5. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    Science.gov (United States)

    Loaiza, Vanessa M; Camos, Valérie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoretically meaningful methodological aspect of the LoP span task. Specifically, we fixed the presentation duration of the processing component a priori because such fixed complex span tasks have shown differences when compared to unfixed tasks in terms of recall from WM as well as the latent structure of WM. After establishing a fixed presentation rate from a pilot study, the LoP span task presented memoranda in red or blue font that were immediately followed by two processing words that matched the memoranda in terms of font color or semantic relatedness. On presentation of the processing words, participants made deep or shallow processing decisions for each of the memoranda before a cue to recall them from WM. Participants also completed delayed recall of the memoranda. Results indicated that LoP affected delayed recall, but not immediate recall from WM. These results suggest that fixing temporal parameters of the LoP span task does not moderate the null LoP effect in WM, and further indicate that WM and long-term episodic memory are dissociable on the basis of LoP effects.

  6. Extrusion and Extruded Products: Changes in Quality Attributes as Affected by Extrusion Process Parameters: A Review.

    Science.gov (United States)

    Alam, M S; Kaur, Jasmeen; Khaira, Harjot; Gupta, Kalika

    2016-01-01

    Extrusion of foods is an emerging technology for the food industries to process and market a large number of products of varying size, shape, texture, and taste. Extrusion cooking technology has led to production of wide variety of products like pasta, breakfast cereals, bread crumbs, biscuits, crackers, croutons, baby foods, snack foods, confectionery items, chewing gum, texturized vegetable protein (TVP), modified starch, pet foods, dried soups, dry beverage mixes etc. The functional properties of extruded foods plays an important role for their acceptability which include water absorption, water solubility, oil absorption indexes, expansion index, bulk density and viscosity of the dough. The aim of this review is to give the detailed outlines about the potential of extrusion technology in development of different types of products and the role of extrusion-operating conditions and their effect on product development resulting in quality changes i.e physical, chemical, and nutritional, experienced during the extrusion process.

  7. Process Damping Parameters

    International Nuclear Information System (INIS)

    Turner, Sam

    2011-01-01

    The phenomenon of process damping as a stabilising effect in milling has been encountered by machinists since milling and turning began. It is of great importance when milling aerospace alloys where maximum surface speed is limited by excessive tool wear and high speed stability lobes cannot be attained. Much of the established research into regenerative chatter and chatter avoidance has focussed on stability lobe theory with different analytical and time domain models developed to expand on the theory first developed by Trusty and Tobias. Process damping is a stabilising effect that occurs when the surface speed is low relative to the dominant natural frequency of the system and has been less successfully modelled and understood. Process damping is believed to be influenced by the interference of the relief face of the cutting tool with the waveform traced on the cut surface, with material properties and the relief geometry of the tool believed to be key factors governing performance. This study combines experimental trials with Finite Element (FE) simulation in an attempt to identify and understand the key factors influencing process damping performance in titanium milling. Rake angle, relief angle and chip thickness are the variables considered experimentally with the FE study looking at average radial and tangential forces and surface compressive stress. For the experimental study a technique is developed to identify the critical process damping wavelength as a means of measuring process damping performance. For the range of parameters studied, chip thickness is found to be the dominant factor with maximum stable parameters increased by a factor of 17 in the best case. Within the range studied, relief angle was found to have a lesser effect than expected whilst rake angle had an influence.

  8. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    OpenAIRE

    Loaiza, Vanessa M.; Camos, Val?rie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoret...

  9. DETERMINATION AND ANALYSIS OF CHANGE POWER CHARACTER AND POWER PARAMETERS OF EARTHMOVING- TRANSPORT WORKING PROCESS MACHINES OF CYCLIC ACTION

    Directory of Open Access Journals (Sweden)

    KHMARA L. A.

    2017-05-01

    Full Text Available Summary. Raising of problem. Efficiency of implementation working process an earthmoving-transport machine on digging of soil depends on complete realization of power equipment and hauling properties working equipment during implementation this operation. Most effective will be the mode of digging when from his beginning to the final stage a power equipment will realize nominal power, and working equipment maximal KKD at that skidding of mover does not exceed the defined possible value. However, for the traditional constructions of earthmoving-transport machines cyclic action, for such, as a drag shovel, bulldozer, realizing these terms is heavy. The feature of process digging consists in the increase of resistance to digging soil from the ego of the initial stage to eventual when hauling possibilities of machine will be maximally realized. Therefore the calculation of power equipment takes into account the power indexes of machine on the final stage of digging. Thus the unstationarity of working process results in the under exploitation of power equipment machine and hereupon appearance her bits and pieces. The size of bits and pieces power depends on the stage digging of soil, his physical and mechanical properties, terms cooperation of working equipment with the surface of motion. One of methods realization surplus power, this use it for the drive intensifiers working process of earthmoving-transport machines. Therefore for the effective choice parameters of intensifier, his office hours it is necessary to know the size of bits and pieces of power and character her change during digging of soil. The purpose of the article. Development of methodology determination remaining power equipment an earthmoving-transport machine on the example self-propelled drags hovel, character her change at digging of soil taking into account physical and mechanical properties of soil and terms cooperation working equipment with the surface of motion. Conclusion

  10. Determination of delta sub(18) in water from delta sub(18) in equilibrated CO2: influence of changes in experimental parameters on the equilibration process

    International Nuclear Information System (INIS)

    Nestler, V.; Arora, H.L.

    1977-01-01

    The result of an isotopic exchange reaction is expressed in terms of the isotopic abundance ratios, the fractionation factor and the atom number ratio of the reactants. The general formula is applied to the CO 2 -H 2 O system and simplified by neglecting terms small in relation to the experimental error. The influence of variations in the experimental parameters on the equilibrium is discussed. It is found that changes in temperature as well as atom number ratio will influence the equilibration process appreciably [pt

  11. Specific microbial gene abundances and soil parameters contribute to C, N, and greenhouse gas process rates after land use change in Southern Amazonian Soils

    Directory of Open Access Journals (Sweden)

    Daniel Renato Lammel

    2015-10-01

    Full Text Available Ecological processes regulating soil carbon (C and nitrogen (N cycles are still poorly understood, especially in the world’s largest agricultural frontier in Southern Amazonia. We analyzed soil parameters in samples from pristine rainforest and after land use change to pasture and crop fields, and correlated them with abundance of functional and phylogenetic marker genes (amoA, nirK, nirS, norB, nosZ, nifH, mcrA, pmoA, and 16S/18S rRNA. Additionally, we integrated these parameters using path analysis and multiple regressions. Following forest removal, concentrations of soil C and N declined, and pH and nutrient levels increased, which influenced microbial abundances and biogeochemical processes. A seasonal trend was observed, suggesting that abundances of microbial groups were restored to near native levels after the dry winter fallow. Integration of the marker gene abundances with soil parameters using path analysis and multiple regressions provided good predictions of biogeochemical processes, such as the fluxes of NO3, N2O, CO2, and CH4. In the wet season, agricultural soil showed the highest abundance of nitrifiers (amoA and Archaea, however forest soils showed the highest abundances of denitrifiers (nirK, nosZ and high N, which correlated with increased N2O emissions. Methanogens (mcrA and methanotrophs (pmoA were more abundant in forest soil, but methane flux was highest in pasture sites, which was related to soil compaction. Rather than analyzing direct correlations, the data integration using multivariate tools provided a better overview of biogeochemical processes. Overall, in the wet season, land use change from forest to agriculture reduced the abundance of different functional microbial groups related to the soil C and N cycles; integrating the gene abundance data and soil parameters provided a comprehensive overview of these interactions. Path analysis and multiple regressions addressed the need for more comprehensive approaches

  12. Flavor changing lepton processes

    International Nuclear Information System (INIS)

    Kuno, Yoshitaka

    2002-01-01

    The flavor changing lepton processes, or in another words the lepton flavor changing processes, are described with emphasis on the updated theoretical motivations and the on-going experimental progress on a new high-intense muon source. (author)

  13. Seafood-Processing Sludge Composting: Changes to Microbial Communities and Physico-Chemical Parameters of Static Treatment versus for Turning during the Maturation Stage

    Science.gov (United States)

    Alves, David; Mato, Salustiano

    2016-01-01

    In general, in composting facilities the active, or intensive, stage of the process is done separately from the maturation stage, using a specific technology and time. The pre-composted material to be matured can contain enough biodegradable substrates to cause microbial proliferation, which in turn can cause temperatures to increase. Therefore, not controlling the maturation period during waste management at an industrial level can result in undesired outcomes. The main hypothesis of this study is that controlling the maturation stage through turning provides one with an optimized process when compared to the static approach. The waste used was sludge from a seafood-processing plant, mixed with shredded wood (1:2, v/v). The composting system consists of an intensive stage in a 600L static reactor, followed by maturation in triplicate in 200L boxes for 112 days. Two tests were carried out with the same process in reactor and different treatments in boxes: static maturation and turning during maturation when the temperature went above 55°C. PLFAs, organic matter, pH, electrical conductivity, forms of nitrogen and carbon, hydrolytic enzymes and respiratory activity were periodically measured. Turning significantly increased the duration of the thermophilic phase and consequently increased the organic-matter degradation. PCA differentiated significantly the two treatments in function of tracking parameters, especially pH, total carbon, forms of nitrogen and C/N ratio. So, stability and maturity optimum values for compost were achieved in less time with turnings. Whereas turning resulted in microbial-group stabilization and a low mono/sat ratio, static treatment produced greater variability in microbial groups and a high mono/sat ratio, the presence of more degradable substrates causes changes in microbial communities and their study during maturation gives an approach of the state of organic-matter degradation. Obtaining quality compost and optimizing the composting

  14. Changes in haematological parameters of Tilapia guineensis ...

    African Journals Online (AJOL)

    Changes in haematological parameters of Tilapia guineensis exposed to different concentrations of detergent under laboratory conditions. ... The experiment evaluated sub-lethal effect of the exposure on some haematological parameters including haemoglobin (Hb), red blood cell (RBC), packed cell volume (PCV), white ...

  15. Nanohydroxyapatite synthesis using optimized process parameters ...

    Indian Academy of Sciences (India)

    3Energy Research Group, School of Engineering, Taylor's University, 47500 ... influence of different ultrasonication parameters on the prop- ... to evaluate multiple process parameters and their interaction. ..... dent and dependent variables by a 3-D representation of .... The intensities of O–H functional groups are seen to.

  16. Nanohydroxyapatite synthesis using optimized process parameters

    Indian Academy of Sciences (India)

    Nanohydroxyapatite; ultrasonication; response surface methodology; calcination; ... Three independent process parameters: temperature () (70, 80 and 90°C), ... Bangi, Selangor, Malaysia; Energy Research Group, School of Engineering, ...

  17. Changing Throwing Pattern: Instruction and Control Parameter

    Science.gov (United States)

    Southard, Dan

    2006-01-01

    The purpose of this study was to determine the effects of instruction and scaling up a control parameter (velocity of throw) on changes in throwing pattern. Sixty adult female throwers (ages 20-26 years) were randomly placed into one of four practice conditions: (a) scale up on velocity with no instruction, (b) maintain constant velocity with no…

  18. Parameter identification in multinomial processing tree models

    NARCIS (Netherlands)

    Schmittmann, V.D.; Dolan, C.V.; Raijmakers, M.E.J.; Batchelder, W.H.

    2010-01-01

    Multinomial processing tree models form a popular class of statistical models for categorical data that have applications in various areas of psychological research. As in all statistical models, establishing which parameters are identified is necessary for model inference and selection on the basis

  19. The effect of process parameters and microstructural changes on a new convenience food - quick-frozen paste-coated mushrooms (Agaricus bisporus).

    Science.gov (United States)

    Liu, Su-Wen; Chang, Xue-Dong; Liu, Xiu-Feng; Jiang, Wen-Hong; Ma, Xiao-Feng

    2015-03-01

    The technology of quick-freezing paste-coated mushrooms (Agaricus bisporus) was studied and optimized. The best microwave pretreatment condition for 1 cm slices, regarding color protection, was 5.4 W/g, for 55, 55-60 and 60 s for mushrooms with 3, 4 and 5 cm diameter caps respectively. For a batch of paste (668.2-1034.6 g), the process parameters considered were oil content (46.6-63.4 g), water content (381-562.6 g) and flour content (166-334 g) with a constant additional content of 30 g starch, 9 g baking powder, 2.6 g carrageenan, 30 g salt and 3 g pepper. These parameters were investigated using response surface methodology (RSM) with a central composite design. The optimal levels of the major paste components were 300 g flour, 432.5 g water and 50 g oil. The freezing time and sensory acceptability for paste-coated Agaricus bisporus(PCAB) under the optimized conditions were 7.49 min and 6.2 respectively. The freezing curves of PCAB were established at different temperatures and the freezing rates were calculated to find the freezing characteristics. In addition, the cell structure of PCAB, frozen at -75 °C, the lowest freezing temperature, and studied using transmission electron microscopy, was similar in quality to that of fresh Agaricus bisporus. The results suggested that Agaricus bisporus can be quick-frozen with a paste coating to produce an acceptable and nutritious convenience food.

  20. Effects of process parameters on hydrothermal carbonization

    Science.gov (United States)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  1. Effect of Thermo-extrusion Process Parameters on Selected Quality ...

    African Journals Online (AJOL)

    Effect of Thermo-extrusion Process Parameters on Selected Quality Attributes of Meat Analogue from Mucuna Bean Seed Flour. ... Nigerian Food Journal ... The product functional responses with coefficients of determination (R2) ranging between 0.658 and 0.894 were most affected by changes in barrel temperature and ...

  2. Climate change decision-making: Model & parameter uncertainties explored

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Linville, C.

    1995-12-31

    A critical aspect of climate change decision-making is uncertainties in current understanding of the socioeconomic, climatic and biogeochemical processes involved. Decision-making processes are much better informed if these uncertainties are characterized and their implications understood. Quantitative analysis of these uncertainties serve to inform decision makers about the likely outcome of policy initiatives, and help set priorities for research so that outcome ambiguities faced by the decision-makers are reduced. A family of integrated assessment models of climate change have been developed at Carnegie Mellon. These models are distinguished from other integrated assessment efforts in that they were designed from the outset to characterize and propagate parameter, model, value, and decision-rule uncertainties. The most recent of these models is ICAM 2.1. This model includes representation of the processes of demographics, economic activity, emissions, atmospheric chemistry, climate and sea level change and impacts from these changes and policies for emissions mitigation, and adaptation to change. The model has over 800 objects of which about one half are used to represent uncertainty. In this paper we show, that when considering parameter uncertainties, the relative contribution of climatic uncertainties are most important, followed by uncertainties in damage calculations, economic uncertainties and direct aerosol forcing uncertainties. When considering model structure uncertainties we find that the choice of policy is often dominated by model structure choice, rather than parameter uncertainties.

  3. Laser Processing of Multilayered Thermal Spray Coatings: Optimal Processing Parameters

    Science.gov (United States)

    Tewolde, Mahder; Zhang, Tao; Lee, Hwasoo; Sampath, Sanjay; Hwang, David; Longtin, Jon

    2017-12-01

    Laser processing offers an innovative approach for the fabrication and transformation of a wide range of materials. As a rapid, non-contact, and precision material removal technology, lasers are natural tools to process thermal spray coatings. Recently, a thermoelectric generator (TEG) was fabricated using thermal spray and laser processing. The TEG device represents a multilayer, multimaterial functional thermal spray structure, with laser processing serving an essential role in its fabrication. Several unique challenges are presented when processing such multilayer coatings, and the focus of this work is on the selection of laser processing parameters for optimal feature quality and device performance. A parametric study is carried out using three short-pulse lasers, where laser power, repetition rate and processing speed are varied to determine the laser parameters that result in high-quality features. The resulting laser patterns are characterized using optical and scanning electron microscopy, energy-dispersive x-ray spectroscopy, and electrical isolation tests between patterned regions. The underlying laser interaction and material removal mechanisms that affect the feature quality are discussed. Feature quality was found to improve both by using a multiscanning approach and an optional assist gas of air or nitrogen. Electrically isolated regions were also patterned in a cylindrical test specimen.

  4. Hydrothermal carbonization. Investigation of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Steinbrueck, J.; Rossbach, M.; Reichert, D.; Bockhorn, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. of Technical Chemistry and Polymerchemistry; Walz, L. [Energie Baden-Wuerttemberg AG, Karlsruhe (Germany); Eyler, D. [European Institute for Energy Research, Karlsruhe (Germany)

    2010-07-01

    For energetic use and as a raw material lignocellulosic biomass becomes more and more important. Among pyrolytic refining, the hydrothermal treatment can be an alternative way to deoxygenerate biomass. The objective of this study is to gain deeper insights into the Hydrothermal Carbonization (HTC) process and also to define basic parameters for the construction of a small pilot plant. The biomass is converted in an autoclave at temperatures between 180 C and 240 C establishing the respective vapour pressure. Reaction times between 1 and 12 hours are applied and various catalysts in different concentrations are tested. Elemental analysis of the product, a brown coal-like solid, shows a composition of ca. C{sub 4}H{sub 3}O{sub 1}, corresponding to a carbon recovery of 60% of initial carbon mass. The elemental composition of the product is independent of the process temperature and the applied biomass, if a minimal reaction time is adhered, which however heavily depends on the reaction temperature. The remaining carbon species in intermediate reaction products in the liquid and gas phase are characterised by use of GC/MS, HPLC and FTIR. From the experimental data a two-way mechanism is deduced that includes a rapid formation of an initial solid and dehydration and decomposition reactions which lead to smaller organic molecules, e.g. furfural and aromatic species, and can be promoted by acid catalysis, e.g. H{sub 2}SO{sub 4}. (orig.)

  5. The potential of pyrolysis technology in climate change mitigation - influence of process design and - parameters, simulated in SuperPro Designer software

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, T.; Hauggaard-Nielsen, H.; Bruun, E.W.; Ahrenfeldt, J.

    2011-01-15

    This report investigates whether or not it would be possible to produce carbon-negative energy from pyrolysis of wheat straw in a series of Danish agricultural scenarios. A combination of process simulation in SuperPro Designer software, correlations derived from literature studies and experimental work, and overall balance calculations has been applied in the process. The study deviates from other studies of pyrolysis and biochar production by the inclusion of substitution energy impact on the overall carbon-balance. Substitution energy is integrated to account for the gap between the energy production from the pyrolysis and the full energy potential of the biomass, quantified by complete conversion in either combustion or gasification systems. It was concluded that it is feasible to produce carbon-negative energy under a variation of different settings, but also that the negative carbon-balance is only robust for the slow pyrolysis scenario. The CO{sub 2} benefit of the most carbon-negative slow pyrolysis process is estimated to be around 10 % of the atmospheric carbon stored in the original biomass when natural gas is applied for energy substitution. This process avoids the emission of around 150-200 kg CO{sub 2}/ton wheat straw with substitution energy with a Denmark 2007 average carbon-intensity. This result is weighted against the net emissions of the carbon-'neutral' process of conventional combustion. This emission is in this report estimated to be around 50 - 150 kg CO{sub 2}/ton straw depending on scenario settings. The final results of the study have been compared to another study with convincing results. Results concluded that the primary force of the pyrolysis technology is the recalcitrant char product and not the pyrolysis oil. Based on this, the study suggests that despite the trend in commercial pyrolysis technology that focuses on fast pyrolysis processes with maximized bio-oil production, the twin challenge of climate mitigation and

  6. The potential of pyrolysis technology in climate change mitigation – influence of process design and –parameters, simulated in SuperPro Designer Software

    DEFF Research Database (Denmark)

    Thomsen, Tobias; Hauggaard-Nielsen, Henrik; Bruun, Esben

    This report investigates whether or not it would be possible to produce carbon-negative energy from pyrolysis of wheat straw in a series of Danish agricultural scenarios. A combination of process simulation in SuperPro Designer software, correlations derived from literature studies and experimental...... on scenario settings. The final results of the study have been compared to another study with convincing results. Results concluded that the primary force of the pyrolysis technology is the recalcitrant char product and not the pyrolysis oil. Based on this, the study suggests that despite the trend...... in commercial pyrolysis technology that focuses on fast pyrolysis processes with maximized bio-oil production, the twin challenge of climate mitigation and sustainable energy production is most efficiently addressed with a combination of slow pyrolysis and complete biomass conversion through combustion...

  7. CHANGES IN SOME METEOROLOGICAL PARAMETERS IN THE ...

    African Journals Online (AJOL)

    DJFLEX

    2008-12-18

    Dec 18, 2008 ... drastically lowered earth's average surface temperatures in 1991, the general pattern of climatic change seem to indicate ... environmental changes caused by climate change ... The Niger Delta is located in the Atlantic Coast.

  8. Management of Organizational Change Processes

    Directory of Open Access Journals (Sweden)

    Vladimir-Codrin Ionescu

    2015-12-01

    Full Text Available Contemporary organizations need to understand the meaning of change and to tackle it as a source for improving processes and activities, aiming at increasing the performance and competitiveness. From this perspective, the paper presents approaches to organizational change and highlights the fundamental objectives which the organizations set for themselves by designing and implementing organizational change programs. The conceptual framework of the change management is defined and the stages of the change management process are presented. In the final part of the paper the problem of resistance to change is highlighted by explaining the content of the stages that employees go through in the process of adapting to change within organizations

  9. Processes in Organizational Change

    Science.gov (United States)

    1987-06-01

    performance changes for some and increases for * d i -t* * * C C . ~ . - 6 others. Schein et al. noted that flexible working hours seldom have an adverse...shortened/compressed work week and flexible working hours were largely a function of an individual’s "leisure time orienta- tion." Summarizing the...strongl) favored the compressed schedule. Attitudes toward flexible working hours . Favorable travel effects (ti and from work) have been identified for

  10. Relationship between process parameters and properties of multifunctional needlepunched geotextiles

    CSIR Research Space (South Africa)

    Rawal, A

    2006-04-01

    Full Text Available , and filtration. In this study, the effect of process parameters, namely, feed rate, stroke frequency, and depth of needle penetration has been investigated on various properties of needlepunched geotextiles. These process parameters are then empirically related...

  11. Numerical simulation of distributed parameter processes

    CERN Document Server

    Colosi, Tiberiu; Unguresan, Mihaela-Ligia; Muresan, Vlad

    2013-01-01

    The present monograph defines, interprets and uses the matrix of partial derivatives of the state vector with applications for the study of some common categories of engineering. The book covers broad categories of processes that are formed by systems of partial derivative equations (PDEs), including systems of ordinary differential equations (ODEs). The work includes numerous applications specific to Systems Theory based on Mpdx, such as parallel, serial as well as feed-back connections for the processes defined by PDEs. For similar, more complex processes based on Mpdx with PDEs and ODEs as components, we have developed control schemes with PID effects for the propagation phenomena, in continuous media (spaces) or discontinuous ones (chemistry, power system, thermo-energetic) or in electro-mechanics (railway – traction) and so on. The monograph has a purely engineering focus and is intended for a target audience working in extremely diverse fields of application (propagation phenomena, diffusion, hydrodyn...

  12. SKOCh modified parameters and data processing method

    International Nuclear Information System (INIS)

    Abramov, V.V.; Baldin, B.Yu.; Vasil'chenko, V.G.

    1986-01-01

    Characteristics of a modified Cherenkov radiation ring spectrometer variant (SKOCH) are presented. Methods of experimental data processing are described. Different SKOCH optics variants are investigated. Multi-particle registering electronic equipment for data read-out from SKOCH providing for the improvement of multiparticle occurance registration conditions is applied in the course of measurements using proton beams. A system of SKOCH spectrometer data processing programms is developed and experimentally tested. Effective algorithm for calibrating Cherenkov radiation ring spectrometers with quite a large angular and radial aperture is developed. The on-line- and off-line-processing program complex provides for the complete control of SKOCH operation during statistics collection and for particle (π, K, P) identification within 5.5-30 GeV/c range

  13. Variation of physicochemical parameters during a composting process

    International Nuclear Information System (INIS)

    Faria C, D.M.; Ballesteros, M.I.; Bendeck, M.

    1999-01-01

    Two composting processes were carried out; they lasted for about 165 days. In one of the processes the decomposition of the material was performed only by microorganisms only (direct composting) and in the other one, by microorganisms and earthworms -Eisenla foetida- (indirect composting). The first one was carried out in a composting system called c amas a nd the indirect one was carried out in its initial phase in a system of p anelas , then the wastes were transferred to a c ama . The materials were treated in both processes with lime, ammonium nitrate and microorganisms. Periodical samples were taken from different places of the pile and a temperature control was made weekly. The following physicochemical parameters were analyzed in each sample: Humidity, color, pH soil : water in ratios of 1:5 and 1:10, ash, organic matter, CIC, contents of carbon and nitrogen and C/N ratio. In the aqueous extract, C/N ratio and percentage of hydro solubles were analyzed. It was also made a germination assay taking measurements of the percentage of garden cress seeds (Lepidium sativum) that germinated in the aqueous extract. The parameters variation in each process let us to establish that the greatest changes in the material happened in the initial phases of the process (thermophilic and mesophilic phases); the presence of microorganisms was the limiting factor in the dynamic of the process; on the other hand, the earthworm addition did not accelerate the mineralization of organic matter. The results let us to establish that the color determination is not an effective parameter in order to evaluate the degree of maturity of the compost. Other parameters such as temperature and germination percentage can be made as routine test to determine the process rate. Determination of CIC, ash and hydro solubles content are recommended to evaluate the optimal maturity degree in the material. It is proposed changes such as to reduce the composting time to a maximum of 100 days and to

  14. Including Organizational Cultural Parameters in Work Processes

    National Research Council Canada - National Science Library

    Handley, Holly A; Heacox, Nancy J

    2004-01-01

    ... between decision-makers of different nationalities. In addition to nationality, a decision-maker is also a member of an organization and brings this organizational culture to his role in the work process, where it may also affect his task performance...

  15. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad; Canini, Marco

    2017-01-01

    for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing

  16. Evaluation of Control Parameters for the Activated Sludge Process

    Science.gov (United States)

    Stall, T. Ray; Sherrard, Josephy H.

    1978-01-01

    An evaluation of the use of the parameters currently being used to design and operate the activated sludge process is presented. The advantages and disadvantages for the use of each parameter are discussed. (MR)

  17. Optimization of process and solution parameters in electrospinning polyethylene oxide

    CSIR Research Space (South Africa)

    Jacobs, V

    2011-11-01

    Full Text Available This paper reports the optimization of electrospinning process and solution parameters using factorial design approach to obtain uniform polyethylene oxide (PEO) nanofibers. The parameters studied were distance between nozzle and collector screen...

  18. Characteristic parameters of the coal briquetting process

    International Nuclear Information System (INIS)

    Davkova, Katica

    1998-01-01

    The complete knowledge about the energetic sources in our country - Republic of Macedonia, point to the fact that coals are the most attractive and highly productive, still keeping the leadership position. However, the process of lignite exploitation causes their degradation and formation of large amount of fine fractions. The industrial valorization of these fractions is the most actual problem that could be solved only through production of made-up enriched fuels of wide spectrum of application. Thus, briquetting formation, with or without use of binds, is a process of mechanical or combined modification of coal fine fractions. At the same time, this is a possible procedure of solid fuels enrichment. Lignite from the Macedonian coal deposits 'Suvodol', 'Priskupshtina' and 'Brik-Berovo' is analyzed, in order to examine the possibilities of its briquetting. The results show that the 'Suvodol' lignite satisfy the quality requirements given with the MKS B H1.031 standard as well as the 'Brik-Berovo' lignite

  19. Changing haematological parameters in dengue viral infections

    International Nuclear Information System (INIS)

    Jamil, T.; Mehmood, K.; Mujtaba, G.; Choudhry, N.

    2012-01-01

    Background: Dengue Fever is the most common arboviral disease in the world, and presents cyclically in tropical and subtropical regions of the world. The four serotypes of dengue virus, 1, 2, 3, and 4, form an antigenic subgroup of the flaviviruses (Group B arboviruses). Transmission to humans of any of these serotypes initiates a spectrum of host responses, from in apparent to severe and sometimes lethal infections. Complete Blood count (CBC) is an important part of the diagnostic workup of patients. Comparison of various finding in CBC including peripheral smear can help the physician in better management of the patient. Material and Methods: This cross sectional study was carried out on a series of suspected patients of Dengue viral infection reporting in Ittefaq Hospital (Trust). All were investigated for serological markers of acute infection. Results Out of 341 acute cases 166 (48.7%) were confirmed by IgM against Dengue virus. IgG anti-dengue was used on 200 suspected re-infected patients. Seventy-one (39.5%) were positive and 118 (59%) were negative. Among 245 confirmed dengue fever patients 43 (17.6%) were considered having dengue hemorrhagic fever on the basis of lab and clinical findings. Raised haematocrit, Leukopenia with relative Lymphocytosis and presence atypical lymphocytes along with plasmacytoid cells was consistent finding at presentation in both the patterns of disease, i.e., Dengue Haemorrhagic fever (DHF) and Dengue fever (DF). Conclusion: Changes in relative percentage of cells appear with improvement in the symptoms and recovery from the disease. These findings indicate that in the course of the disease, there are major shifts within cellular component of blood. (author)

  20. Parameter optimization of electrochemical machining process using black hole algorithm

    Science.gov (United States)

    Singh, Dinesh; Shukla, Rajkamal

    2017-12-01

    Advanced machining processes are significant as higher accuracy in machined component is required in the manufacturing industries. Parameter optimization of machining processes gives optimum control to achieve the desired goals. In this paper, electrochemical machining (ECM) process is considered to evaluate the performance of the considered process using black hole algorithm (BHA). BHA considers the fundamental idea of a black hole theory and it has less operating parameters to tune. The two performance parameters, material removal rate (MRR) and overcut (OC) are considered separately to get optimum machining parameter settings using BHA. The variations of process parameters with respect to the performance parameters are reported for better and effective understanding of the considered process using single objective at a time. The results obtained using BHA are found better while compared with results of other metaheuristic algorithms, such as, genetic algorithm (GA), artificial bee colony (ABC) and bio-geography based optimization (BBO) attempted by previous researchers.

  1. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  2. The Process of Systemic Change

    Science.gov (United States)

    Duffy, Francis M.; Reigeluth, Charles M.; Solomon, Monica; Caine, Geoffrey; Carr-Chellman, Alison A.; Almeida, Luis; Frick, Theodore; Thompson, Kenneth; Koh, Joyce; Ryan, Christopher D.; DeMars, Shane

    2006-01-01

    This paper presents several brief papers about the process of systemic change. These are: (1) Step-Up-To-Excellence: A Protocol for Navigating Whole-System Change in School Districts by Francis M. Duffy; (2) The Guidance System for Transforming Education by Charles M. Reigeluth; (3) The Schlechty Center For Leadership In School Reform by Monica…

  3. Measurement methods and accuracy analysis of Chang'E-5 Panoramic Camera installation parameters

    Science.gov (United States)

    Yan, Wei; Ren, Xin; Liu, Jianjun; Tan, Xu; Wang, Wenrui; Chen, Wangli; Zhang, Xiaoxia; Li, Chunlai

    2016-04-01

    Chang'E-5 (CE-5) is a lunar probe for the third phase of China Lunar Exploration Project (CLEP), whose main scientific objectives are to implement lunar surface sampling and to return the samples back to the Earth. To achieve these goals, investigation of lunar surface topography and geological structure within sampling area seems to be extremely important. The Panoramic Camera (PCAM) is one of the payloads mounted on CE-5 lander. It consists of two optical systems which installed on a camera rotating platform. Optical images of sampling area can be obtained by PCAM in the form of a two-dimensional image and a stereo images pair can be formed by left and right PCAM images. Then lunar terrain can be reconstructed based on photogrammetry. Installation parameters of PCAM with respect to CE-5 lander are critical for the calculation of exterior orientation elements (EO) of PCAM images, which is used for lunar terrain reconstruction. In this paper, types of PCAM installation parameters and coordinate systems involved are defined. Measurement methods combining camera images and optical coordinate observations are studied for this work. Then research contents such as observation program and specific solution methods of installation parameters are introduced. Parametric solution accuracy is analyzed according to observations obtained by PCAM scientifically validated experiment, which is used to test the authenticity of PCAM detection process, ground data processing methods, product quality and so on. Analysis results show that the accuracy of the installation parameters affects the positional accuracy of corresponding image points of PCAM stereo images within 1 pixel. So the measurement methods and parameter accuracy studied in this paper meet the needs of engineering and scientific applications. Keywords: Chang'E-5 Mission; Panoramic Camera; Installation Parameters; Total Station; Coordinate Conversion

  4. An experimental study on effect of process parameters in deep ...

    African Journals Online (AJOL)

    The effects of various deep drawing process parameters were determined by experimental study with the use of Taguchi fractional factorial design and analysis of variance for AA6111 Aluminum alloy. The optimum process parameters were determined based on their influence on the thickness variation at different regions ...

  5. Changes in platelet functional parameters and CD62 P expression ...

    African Journals Online (AJOL)

    EB

    Objective: To investigate the changes in platelet functional parameters and CD62 P expression in liver cirrhosis as a possible .... bleeding and non-bleeding group with hepatic cirrhosis (±s). Group ... the body's coagulate function requirement.

  6. Laser dimpling process parameters selection and optimization using surrogate-driven process capability space

    Science.gov (United States)

    Ozkat, Erkan Caner; Franciosa, Pasquale; Ceglarek, Dariusz

    2017-08-01

    Remote laser welding technology offers opportunities for high production throughput at a competitive cost. However, the remote laser welding process of zinc-coated sheet metal parts in lap joint configuration poses a challenge due to the difference between the melting temperature of the steel (∼1500 °C) and the vapourizing temperature of the zinc (∼907 °C). In fact, the zinc layer at the faying surface is vapourized and the vapour might be trapped within the melting pool leading to weld defects. Various solutions have been proposed to overcome this problem over the years. Among them, laser dimpling has been adopted by manufacturers because of its flexibility and effectiveness along with its cost advantages. In essence, the dimple works as a spacer between the two sheets in lap joint and allows the zinc vapour escape during welding process, thereby preventing weld defects. However, there is a lack of comprehensive characterization of dimpling process for effective implementation in real manufacturing system taking into consideration inherent changes in variability of process parameters. This paper introduces a methodology to develop (i) surrogate model for dimpling process characterization considering multiple-inputs (i.e. key control characteristics) and multiple-outputs (i.e. key performance indicators) system by conducting physical experimentation and using multivariate adaptive regression splines; (ii) process capability space (Cp-Space) based on the developed surrogate model that allows the estimation of a desired process fallout rate in the case of violation of process requirements in the presence of stochastic variation; and, (iii) selection and optimization of the process parameters based on the process capability space. The proposed methodology provides a unique capability to: (i) simulate the effect of process variation as generated by manufacturing process; (ii) model quality requirements with multiple and coupled quality requirements; and (iii

  7. Changing PLA Processes, Not PLA

    Science.gov (United States)

    Suopis, Cynthia A.

    2009-01-01

    Margaret J. Wheatley, the organizational consultant who wrote the 1999 classic, "Leadership and the New Science: Discovering Order in a Chaotic World," laments about the rigid structures and processes that often strangle organizations rendering them incapable of change. Wheatley asserts that organizations lack faith that their purpose…

  8. Optimization of process parameters for friction stir processing (FSP ...

    Indian Academy of Sciences (India)

    Administrator

    al 2005; Yadav and Bauri 2011) as the thermo- mechanical aspect of the process provides enough driving force for occurrence of dynamic recovery (DRV) that precedes DRX leading to an equi-axed fine grain struc- ture. The microstructure evolution is further discussed below with the aid of transmission electron microscopy.

  9. ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS

    OpenAIRE

    W. Nakanishi; T. Fuse; T. Ishikawa

    2015-01-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...

  10. GA based CNC turning center exploitation process parameters optimization

    Directory of Open Access Journals (Sweden)

    Z. Car

    2009-01-01

    Full Text Available This paper presents machining parameters (turning process optimization based on the use of artificial intelligence. To obtain greater efficiency and productivity of the machine tool, optimal cutting parameters have to be obtained. In order to find optimal cutting parameters, the genetic algorithm (GA has been used as an optimal solution finder. Optimization has to yield minimum machining time and minimum production cost, while considering technological and material constrains.

  11. Optimization of process parameters for synthesis of silica–Ni ...

    Indian Academy of Sciences (India)

    Optimization of process parameters for synthesis of silica–Ni nanocomposite by design of experiment ... Sol–gel; Ni; design of experiments; nanocomposites. ... Kolkata 700 032, India; Rustech Products Pvt. Ltd., Kolkata 700 045, India ...

  12. Optimization of turning process parameters by using grey-Taguchi

    African Journals Online (AJOL)

    DR OKE

    ... India continue to choose the operating conditions solely on the basis of handbook values .... Surface Roughness Measuring instrument ... process control parameters like spindle speed, feed and depth of cut. ..... and Industrial Engineering.

  13. LIKELIHOOD ESTIMATION OF PARAMETERS USING SIMULTANEOUSLY MONITORED PROCESSES

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2004-01-01

    The topic is maximum likelihood inference from several simultaneously monitored response processes of a structure to obtain knowledge about the parameters of other not monitored but important response processes when the structure is subject to some Gaussian load field in space and time. The consi....... The considered example is a ship sailing with a given speed through a Gaussian wave field....

  14. Selection of parameters for advanced machining processes using firefly algorithm

    Directory of Open Access Journals (Sweden)

    Rajkamal Shukla

    2017-02-01

    Full Text Available Advanced machining processes (AMPs are widely utilized in industries for machining complex geometries and intricate profiles. In this paper, two significant processes such as electric discharge machining (EDM and abrasive water jet machining (AWJM are considered to get the optimum values of responses for the given range of process parameters. The firefly algorithm (FA is attempted to the considered processes to obtain optimized parameters and the results obtained are compared with the results given by previous researchers. The variation of process parameters with respect to the responses are plotted to confirm the optimum results obtained using FA. In EDM process, the performance parameter “MRR” is increased from 159.70 gm/min to 181.6723 gm/min, while “Ra” and “REWR” are decreased from 6.21 μm to 3.6767 μm and 6.21% to 6.324 × 10−5% respectively. In AWJM process, the value of the “kerf” and “Ra” are decreased from 0.858 mm to 0.3704 mm and 5.41 mm to 4.443 mm respectively. In both the processes, the obtained results show a significant improvement in the responses.

  15. MCO closure welding process parameter development and qualification

    International Nuclear Information System (INIS)

    CANNELL, G.R.

    2003-01-01

    One of the key elements in the SNF process is final closure of the MCO by welding. Fuel is loaded into the MCO (approximately 2 ft. in diameter and 13 ft. long) and a heavy shield plug is inserted into the top, creating a mechanical seal. The plug contains several process ports for various operations, including vacuum drying and inert-gas backfilling of the packaged fuel. When fully processed, the Canister Cover Assembly (CCA) is placed over the shield plug and final closure made by welding. The following reports the effort between the Amer Industrial Technology (AIT) and Fluor Hanford (FH) to develop and qualify the welding process for making the final closure--with primary emphasis on developing a set of robust parameters for deposition of the root pass. Work was carried out in three phases: (1) Initial welding process and equipment selection with subsequent field demonstration testing; (2) Development and qualification of a specific process technique and parameters; and (3) Validation of the process and parameters at the CSB under mock production conditions. This work establishes the process technique and parameters that provide a high level of confidence that acceptable MCO closure welds will be made on a consistent and repeatable basis

  16. Updating parameters of the chicken processing line model

    DEFF Research Database (Denmark)

    Kurowicka, Dorota; Nauta, Maarten; Jozwiak, Katarzyna

    2010-01-01

    A mathematical model of chicken processing that quantitatively describes the transmission of Campylobacter on chicken carcasses from slaughter to chicken meat product has been developed in Nauta et al. (2005). This model was quantified with expert judgment. Recent availability of data allows...... updating parameters of the model to better describe processes observed in slaughterhouses. We propose Bayesian updating as a suitable technique to update expert judgment with microbiological data. Berrang and Dickens’s data are used to demonstrate performance of this method in updating parameters...... of the chicken processing line model....

  17. Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Marwah O.M.F.

    2017-01-01

    Full Text Available Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA. In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products

  18. Processing changes across reading encounters.

    Science.gov (United States)

    Levy, B A; Newell, S; Snyder, J; Timmins, K

    1986-10-01

    Five experiments examined changes in the processing of a text across reading encounters. Experiment 1 showed that reading speed increased systematically across encounters, with no loss in the extensiveness of analyses of the printed text, as indicated by the ability to detect nonword errors embedded within that passage. Experiment 2 replicated this improved reading fluency with experience and showed that it occurred even with typescript changes across trials, thus indicating that a primed visual operations explanation cannot account for the effect. The third and fourth experiments then extended the study of the familiarity effect to higher level processing, as indicated by the detection of word errors. Familiarity facilitated the detection of these violations at the syntactic-semantic levels. Finally, Experiment 5 showed that these higher level violations continued to be well detected over a series of reading encounters with the same text. The results indicate that prior experience improves reading speed, with no attenuation of analysis of the printed words or of the passage's message.

  19. Changes in Certain Serum and Faeces Parameters in Weaned ...

    African Journals Online (AJOL)

    Weaning is associated with several stress factors and their effects on the piglet's body are fairly well known. Thus, changes were estimated in certain serum and faecal parameters after weaning owing to dietary protein level, though essential amino acid (AA) levels were maintained or reduced. Eighteen Topigs piglets were ...

  20. Analysis of process parameters for a DCMS process of a rotating ceramic ITO target

    Energy Technology Data Exchange (ETDEWEB)

    Ries, Patrick; Wuttig, Matthias [Institute of Physics, RWTH Aachen University (Germany)

    2012-07-01

    ITO is the most commonly used but at the same time rather expensive Transparent Conducting Oxide. This fact is due to the high Indium to Tin ratio of 90:10 that is necessary to obtain the best electrical conductivity. If it is possible to find another ratio with similar electrical properties but higher Tin content, this would be of great industrial relevance. To accomplish this goal and to check the hypothesis an in-house developed serial co-sputtering system is employed. The tool consists of a rotating primary cathode and up to two secondary cathodes for co-sputtering processes. The process parameters of a DC-sputtered ceramic ITO target installed on the primary cathode are analyzed and correlations with the thin film properties, especially the resistance and the transmittance are shown. The resistance behavior upon changing the Tin content via a co-deposition process from a secondary cathode will be presented.

  1. The time-lapse AVO difference inversion for changes in reservoir parameters

    Science.gov (United States)

    Longxiao, Zhi; Hanming, Gu; Yan, Li

    2016-12-01

    The result of conventional time-lapse seismic processing is the difference between the amplitude and the post-stack seismic data. Although stack processing can improve the signal-to-noise ratio (SNR) of seismic data, it also causes a considerable loss of important information about the amplitude changes and only gives the qualitative interpretation. To predict the changes in reservoir fluid more precisely and accurately, we also need the quantitative information of the reservoir. To achieve this aim, we develop the method of time-lapse AVO (amplitude versus offset) difference inversion. For the inversion of reservoir changes in elastic parameters, we apply the Gardner equation as the constraint and convert the three-parameter inversion of elastic parameter changes into a two-parameter inversion to make the inversion more stable. For the inversion of variations in the reservoir parameters, we infer the relation between the difference of the reflection coefficient and variations in the reservoir parameters, and then invert reservoir parameter changes directly. The results of the theoretical modeling computation and practical application show that our method can estimate the relative variations in reservoir density, P-wave and S-wave velocity, calculate reservoir changes in water saturation and effective pressure accurately, and then provide reference for the rational exploitation of the reservoir.

  2. Change in lattice parameter of tantalum due to dissolved hydrogen

    Directory of Open Access Journals (Sweden)

    Gyanendra P. Tiwari

    2012-06-01

    Full Text Available The volume expansion of tantalum due to the dissolved hydrogen has been determined using Bragg equation. The hydrogen was dissolved in the pure tantalum metal at constant temperature (360 °C and constant pressure (132 mbar by varying the duration of hydrogen charging. The amount of dissolved hydrogen was within the solid solubility limit. The samples with different hydrogen concentration were analyzed by X-ray diffraction technique. Slight peak shifts as well as peak broadening were observed. The relative changes of lattice parameters plotted against the hydrogen concentration revealed that the lattice parameters varied linearly with the hydrogen concentration.

  3. Effects of Extraction Process Parameters on the Quality ...

    African Journals Online (AJOL)

    Akorede

    for the first time the effects of extraction process parameters on the properties of parinari seed oil. The parinari seeds ... soya oil used in the production of alkyd polymer resin, a main ... relatively lower acid value implies better storage and shell life of the oil. ... Little work has been done on parinari oil, the variation in lipid.

  4. Exploring control parameters of two photon processes in solutions

    Indian Academy of Sciences (India)

    Here, we present the effect of several control parameters on the TPA process that are independent of .... as the typical selection rules and pathways of mole- cular transitions for ..... Inset in the graph shows the 780 beam spec- tra at two ...

  5. Statistical optimization of process parameters for the production of ...

    African Journals Online (AJOL)

    In this study, optimization of process parameters such as moisture content, incubation temperature and initial pH (fixed) for the improvement of citric acid production from oil palm empty fruit bunches through solid state bioconversion was carried out using traditional one-factor-at-a-time (OFAT) method and response surface ...

  6. Effect of process parameters on coating composition of cathodic ...

    Indian Academy of Sciences (India)

    1Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, ... The effect of some process parameters such as electrical conductivity, volume and temperature of ... the subject of numerous studies and found industrial applica- .... tion of positive ions and transfer of their kinetic energy to the.

  7. Optimization of CNC end milling process parameters using PCA ...

    African Journals Online (AJOL)

    Optimization of CNC end milling process parameters using PCA-based Taguchi method. ... International Journal of Engineering, Science and Technology ... To meet the basic assumption of Taguchi method; in the present work, individual response correlations have been eliminated first by means of Principal Component ...

  8. Key processes and input parameters for environmental tritium models

    International Nuclear Information System (INIS)

    Bunnenberg, C.; Taschner, M.; Ogram, G.L.

    1994-01-01

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs

  9. Key processes and input parameters for environmental tritium models

    Energy Technology Data Exchange (ETDEWEB)

    Bunnenberg, C; Taschner, M [Niedersaechsisches Inst. fuer Radiooekologie, Hannover (Germany); Ogram, G L [Ontario Hydro, Toronto, ON (Canada)

    1994-12-31

    The primary objective of the work reported here is to define key processes and input parameters for mathematical models of environmental tritium behaviour adequate for use in safety analysis and licensing of fusion devices like NET and associated tritium handling facilities. (author). 45 refs., 3 figs.

  10. Evaluation of some handling and processing parameters for ...

    African Journals Online (AJOL)

    Biomass materials require reduction and densification for the purpose of handling and space requirements. Guinea corn (Sorghum bi-color) is a major source of biomass material in the tropic regions. The densification process involves some measurable parameters, namely: pressure, particles size and binder ratio. Guinea ...

  11. Change of lattice parameters in highly disperse nickel powders

    International Nuclear Information System (INIS)

    Gamarnik, M.Ya.

    1991-01-01

    A monotonous increase of the lattice parameters with the decrease of particle size is established by an X-ray study for highly disperse nickel powders in the interval of sizes from 4.9 to 35 nm. The relative changes of lattice parameters are from 4.9x10 -3 ±5x10 -4 up to 3x10 -4 ±1x10 -4 . The effect is explained by the decrease of the intracrystalline pressure in small particles stipulated by electrostatic interaction of the elements of crystal charge lattice. A calculated dependence of the lattice parameters which agrees with experimental curve is obtained in the framework of the model suggested by the charge lattice represented by an ion-electron lattice of positive ions and collectivized electrons with regard of the lattice of atomic neutral cores (the contribution of the latter is proved very small as found from the calculations). (orig.)

  12. (1) H-MRS processing parameters affect metabolite quantification

    DEFF Research Database (Denmark)

    Bhogal, Alex A; Schür, Remmelt R; Houtepen, Lotte C

    2017-01-01

    investigated the influence of model parameters and spectral quantification software on fitted metabolite concentration values. Sixty spectra in 30 individuals (repeated measures) were acquired using a 7-T MRI scanner. Data were processed by four independent research groups with the freedom to choose their own...... + NAAG/Cr + PCr and Glu/Cr + PCr, respectively. Metabolite quantification using identical (1) H-MRS data was influenced by processing parameters, basis sets and software choice. Locally preferred processing choices affected metabolite quantification, even when using identical software. Our results......Proton magnetic resonance spectroscopy ((1) H-MRS) can be used to quantify in vivo metabolite levels, such as lactate, γ-aminobutyric acid (GABA) and glutamate (Glu). However, there are considerable analysis choices which can alter the accuracy or precision of (1) H-MRS metabolite quantification...

  13. Stellar atmospheric parameter estimation using Gaussian process regression

    Science.gov (United States)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  14. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    Energy Technology Data Exchange (ETDEWEB)

    Sun, G.F., E-mail: gfsun82@gmail.com [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Bhattacharya, S. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States); Dinda, G.P.; Dasgupta, A. [Center for Advanced Technologies, Focus: Hope, Detroit, MI, 48238 (United States); Mazumder, J. [Center for Laser-Aided Intelligent Manufacturing, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-06-15

    Highlights: {yields} Orientation relationships among phases in the DMD are given. {yields} Martensite lattice parameters increased with laser specific energy. {yields} Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  15. Influence of processing parameters on lattice parameters in laser deposited tool alloy steel

    International Nuclear Information System (INIS)

    Sun, G.F.; Bhattacharya, S.; Dinda, G.P.; Dasgupta, A.; Mazumder, J.

    2011-01-01

    Highlights: → Orientation relationships among phases in the DMD are given. → Martensite lattice parameters increased with laser specific energy. → Austenite lattice parameters decreased with laser specific energy. - Abstract: Laser aided direct metal deposition (DMD) has been used to form AISI 4340 steel coating on the AISI 4140 steel substrate. The microstructural property of the DMD coating was analyzed by means of scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Microhardness of the DMD was measured with a Vickers microhardness tester. Results indicate that DMD can be used to form dense AISI 4340 steel coatings on AISI 4140 steel substrate. The DMD coating is mainly composed of martensite and retained austenite. Consecutive thermal cycles have a remarkable effect on the microstructure of the plan view of the DMD coating and on the corresponding microhardness distribution. Orientation relationships among austenite, martensite and cementite in the DMD coating followed the ones in conventional heat treated steels. As the laser specific energy decreased, cooling rate increased, and martensite peaks broadened and shifted to a lower Bragg's angle. Also martensite lattice parameters increased and austenite lattice parameters decreased due to the above parameter change.

  16. Development of Operational Parameters for Advanced Voloxidation Process at KAERI

    International Nuclear Information System (INIS)

    Lee, Jae Won; Park, J. J.; Shin, J. M.; Yun, Y. W.; Park, G. I.; Lee, J. W.

    2010-10-01

    KAERI has been developing a voloxidation process as a head-end process of pyroprocessing technology with INL (Idaho National Laboratory). The work scope of KAERI is to develop the operation parameters for advanced voloxidation process at KAERI using surrogate materials and SIMFUEL. In order to evaluate operation conditions of an advanced voloxidation process, oxidation and vaporization behavior of metals and Cs compounds was investigated in terms of thermal treatment atmosphere and temperature by using thermodynamic data. And also, the oxidation and vaporization behavior of semi-volatile fission products with process pressure and temperature was investigated using surrogate materials. Particle size control for U 3 O 8 powder was investigated using SIMFUEL and a rotary voloxidizer. According to analysis of KAERI works, the operation conditions for advanced voloxiation process may be consisted of the following four steps: 1) oxidation of UO 2 pellet into U 3 O 8 powder at 500 .deg. C in oxidative atmosphere, 2) additional oxidation of noble metal alloy and vaporization of high vapor pressure of fission products at 700 .deg. C in oxidative atmosphere, 3) granulation of U 3 O 8 powder and vaporization of Cs compounds at 1200 .deg. C in an atmosphere of argon, and 4) reduction of UO 2+x granules into UO 2 granules at 1000 .deg. C in an atmosphere of 4%H 2 -Ar. This report will be used as a useful means for determining the operation parameters for advanced voloxidation process

  17. Choice of the parameters of the cusum algorithms for parameter estimation in the markov modulated poisson process

    OpenAIRE

    Burkatovskaya, Yuliya Borisovna; Kabanova, T.; Khaustov, Pavel Aleksandrovich

    2016-01-01

    CUSUM algorithm for controlling chain state switching in the Markov modulated Poissonprocess was investigated via simulation. Recommendations concerning the parameter choice were givensubject to characteristics of the process. Procedure of the process parameter estimation was described.

  18. Option Pricing with Time-changed Lévy Processes

    DEFF Research Database (Denmark)

    Klingler, Sven; Kim, Young Shin; Rachev, Svetlozar T.

    2013-01-01

    In this article, we introduce two new six-parameter processes based on time-changing tempered stable distributions and develop an option pricing model based on these processes. This model provides a good fit to observed option prices. To demonstrate the advantages of the new processes, we conduct...

  19. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad

    2017-09-27

    Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.

  20. Optimization of dissolution process parameters for uranium ore concentrate powders

    Energy Technology Data Exchange (ETDEWEB)

    Misra, M.; Reddy, D.M.; Reddy, A.L.V.; Tiwari, S.K.; Venkataswamy, J.; Setty, D.S.; Sheela, S.; Saibaba, N. [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear fuel complex processes Uranium Ore Concentrate (UOC) for producing uranium dioxide powder required for the fabrication of fuel assemblies for Pressurized Heavy Water Reactor (PHWR)s in India. UOC is dissolved in nitric acid and further purified by solvent extraction process for producing nuclear grade UO{sub 2} powder. Dissolution of UOC in nitric acid involves complex nitric oxide based reactions, since it is in the form of Uranium octa oxide (U{sub 3}O{sub 8}) or Uranium Dioxide (UO{sub 2}). The process kinetics of UOC dissolution is largely influenced by parameters like concentration and flow rate of nitric acid, temperature and air flow rate and found to have effect on recovery of nitric oxide as nitric acid. The plant scale dissolution of 2 MT batch in a single reactor is studied and observed excellent recovery of oxides of nitrogen (NO{sub x}) as nitric acid. The dissolution process is automated by PLC based Supervisory Control and Data Acquisition (SCADA) system for accurate control of process parameters and successfully dissolved around 200 Metric Tons of UOC. The paper covers complex chemistry involved in UOC dissolution process and also SCADA system. The solid and liquid reactions were studied along with multiple stoichiometry of nitrous oxide generated. (author)

  1. Optimization of vibratory welding process parameters using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pravin Kumar; Kumar, S. Deepak; Patel, D.; Prasad, S. B. [National Institute of Technology Jamshedpur, Jharkhand (India)

    2017-05-15

    The current investigation was carried out to study the effect of vibratory welding technique on mechanical properties of 6 mm thick butt welded mild steel plates. A new concept of vibratory welding technique has been designed and developed which is capable to transfer vibrations, having resonance frequency of 300 Hz, into the molten weld pool before it solidifies during the Shielded metal arc welding (SMAW) process. The important process parameters of vibratory welding technique namely welding current, welding speed and frequency of the vibrations induced in molten weld pool were optimized using Taguchi’s analysis and Response surface methodology (RSM). The effect of process parameters on tensile strength and hardness were evaluated using optimization techniques. Applying RSM, the effect of vibratory welding parameters on tensile strength and hardness were obtained through two separate regression equations. Results showed that, the most influencing factor for the desired tensile strength and hardness is frequency at its resonance value, i.e. 300 Hz. The micro-hardness and microstructures of the vibratory welded joints were studied in detail and compared with those of conventional SMAW joints. Comparatively, uniform and fine grain structure has been found in vibratory welded joints.

  2. Manufacturing of anode supported SOFCs: Processing parameters and their influence

    DEFF Research Database (Denmark)

    Ramousse, Severine; Menon, Mohan; Brodersen, Karen

    2007-01-01

    The establishment of low cost, highly reliable and reproducible manufacturing processes has been focused for commercialization of SOFC technology. A major challenge in the production chain is the manufacture of anode-supported planar SOFC's single cells in which each layer in a layered structure...... contains a complex microstructure. In order to improve the cell performance as well as reducing the processing costs, it has been found necessary to consider the process chain holistically, because successful manufacture of such a cell and the achievement of optimal final properties depend on each...... of the processing steps and their interdependence. A large database for several thousand anode-supported SOFCs manufactured annually at the Risoe National Laboratory in collaboration with Topsoe Fuel Cell A/S has been constructed. This enables a statistical analysis of the various controlling parameters. Some...

  3. Changes in Periodontal and Microbial Parameters after the Space ...

    African Journals Online (AJOL)

    Aim: This study aims to evaluate the clinical and microbiological changes accompanying the inflammatory process of periodontal tissues during treatment with space maintainers (SMs). Materials and Methods: The children were separated into fixed (Group 1, n = 20) and removable (Group 2, n = 20) appliance groups.

  4. Parameters in selective laser melting for processing metallic powders

    Science.gov (United States)

    Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek

    2012-03-01

    The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.

  5. Changes in tendon spatial frequency parameters with loading.

    Science.gov (United States)

    Pearson, Stephen J; Engel, Aaron J; Bashford, Gregory R

    2017-05-24

    To examine and compare the loading related changes in micro-morphology of the patellar tendon. Fifteen healthy young males (age 19±3yrs, body mass 83±5kg) were utilised in a within subjects matched pairs design. B mode ultrasound images were taken in the sagittal plane of the patellar tendon at rest with the knee at 90° flexion. Repeat images were taken whilst the subjects were carrying out maximal voluntary isometric contractions. Spatial frequency parameters related to the tendon morphology were determined within regions of interest (ROI) from the B mode images at rest and during isometric contractions. A number of spatial parameters were observed to be significantly different between resting and contracted images (Peak spatial frequency radius (PSFR), axis ratio, spatial Q-factor, PSFR amplitude ratio, and the sum). These spatial frequency parameters were indicative of acute alterations in the tendon micro-morphology with loading. Acute loading modifies the micro-morphology of the tendon, as observed via spatial frequency analysis. Further research is warranted to explore its utility with regard to different loading induced micro-morphological alterations, as these could give valuable insight not only to aid strengthening of this tissue but also optimization of recovery from injury and treatment of conditions such as tendinopathies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. CHANGES IN RADIOGRAPHIC PARAMETERS AFTER MINIMALLY INVASIVE LUMBAR INTERBODY FUSION

    Directory of Open Access Journals (Sweden)

    Emiliano Vialle

    2015-12-01

    Full Text Available Objective : This study aims to evaluate changes in lumbosacral parameters after minimally invasive lumbar interbody fusion. The secondary aim was to evaluate whether interbody cage shape (crescent shaped or rectangular would influence the results. Method : Retrospective analysis of 70 patients who underwent one or two level lumbar interbody fusion through a minimally invasive posterolateral approach. This included midline preservation and unilateral facetectomy. Pre- and postoperative (three to six months postoperative radiographs were used for measuring lumbar lordosis (LL, segmental lordosis (SL at the level of interbody fusion, and sacral slope (SS. Further analyses divided the patients into Roussouly lumbar subgroups. Results : LL was significantly reduced after surgery (59o:39o, p=0.001 as well as the SS (33.8o:31.2o, p=0.05. SL did not change significantly (11.4:11.06, p=0.85. There were no significant differences when comparing patients who received crescent shaped cage (n=27 and rectangular cage (n=43. Hypolordotic patients (Roussouly types 1 and 2 had radiographic improvement in comparison to normolordotic and hyperlordotic groups (types 3 and 4. Conclusion : Minimally invasive lumbar interbody fusion caused reduction in lumbosacral parameters. Cage shape had no influence on the results.

  7. Likelihood updating of random process load and resistance parameters by monitoring

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2003-01-01

    that maximum likelihood estimation is a rational alternative to an arbitrary weighting for least square fitting. The derived likelihood function gets singularities if the spectrum is prescribed with zero values at some frequencies. This is often the case for models of technically relevant processes......, even though it is of complicated mathematical form, allows an approximate Bayesian updating and control of the time development of the parameters. Some of these parameters can be structural parameters that by too much change reveal progressing damage or other malfunctioning. Thus current process......Spectral parameters for a stationary Gaussian process are most often estimated by Fourier transformation of a realization followed by some smoothing procedure. This smoothing is often a weighted least square fitting of some prespecified parametric form of the spectrum. In this paper it is shown...

  8. Effects of Processing Parameters on the Forming Quality of C-Shaped Thermosetting Composite Laminates in Hot Diaphragm Forming Process

    Science.gov (United States)

    Bian, X. X.; Gu, Y. Z.; Sun, J.; Li, M.; Liu, W. P.; Zhang, Z. G.

    2013-10-01

    In this study, the effects of processing temperature and vacuum applying rate on the forming quality of C-shaped carbon fiber reinforced epoxy resin matrix composite laminates during hot diaphragm forming process were investigated. C-shaped prepreg preforms were produced using a home-made hot diaphragm forming equipment. The thickness variations of the preforms and the manufacturing defects after diaphragm forming process, including fiber wrinkling and voids, were evaluated to understand the forming mechanism. Furthermore, both interlaminar slipping friction and compaction behavior of the prepreg stacks were experimentally analyzed for showing the importance of the processing parameters. In addition, autoclave processing was used to cure the C-shaped preforms to investigate the changes of the defects before and after cure process. The results show that the C-shaped prepreg preforms with good forming quality can be achieved through increasing processing temperature and reducing vacuum applying rate, which obviously promote prepreg interlaminar slipping process. The process temperature and forming rate in hot diaphragm forming process strongly influence prepreg interply frictional force, and the maximum interlaminar frictional force can be taken as a key parameter for processing parameter optimization. Autoclave process is effective in eliminating voids in the preforms and can alleviate fiber wrinkles to a certain extent.

  9. Optimization of Robotic Spray Painting process Parameters using Taguchi Method

    Science.gov (United States)

    Chidhambara, K. V.; Latha Shankar, B.; Vijaykumar

    2018-02-01

    Automated spray painting process is gaining interest in industry and research recently due to extensive application of spray painting in automobile industries. Automating spray painting process has advantages of improved quality, productivity, reduced labor, clean environment and particularly cost effectiveness. This study investigates the performance characteristics of an industrial robot Fanuc 250ib for an automated painting process using statistical tool Taguchi’s Design of Experiment technique. The experiment is designed using Taguchi’s L25 orthogonal array by considering three factors and five levels for each factor. The objective of this work is to explore the major control parameters and to optimize the same for the improved quality of the paint coating measured in terms of Dry Film thickness(DFT), which also results in reduced rejection. Further Analysis of Variance (ANOVA) is performed to know the influence of individual factors on DFT. It is observed that shaping air and paint flow are the most influencing parameters. Multiple regression model is formulated for estimating predicted values of DFT. Confirmation test is then conducted and comparison results show that error is within acceptable level.

  10. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    Science.gov (United States)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  11. Unraveling the Processing Parameters in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  12. Diagnosing resistance to change in the change management process

    OpenAIRE

    Tetiana Kuzhda

    2016-01-01

    This article explains the change management process and resistance to organizational change through examining causes of resistance to change, diagnosing them, and finding the ways to deal with resistance to change. In business environment, the one thing any company can be assured of is change. If an organization experiences change it may also need to implement new business strategies, which can create resistance among employees. Managers need to know in which phase they have to expect unusual...

  13. Parameters for viable process combinations; Randbedingungen fuer sinnvolle Verfahrenskombinationen

    Energy Technology Data Exchange (ETDEWEB)

    Lahl, U.; Zeschmar-Lahl, B. [BZL Kommunikation und Projektsteuerung GmbH, Oyten (Germany)

    1998-09-01

    The following parameters merit examination in determining the viability of process combinations: conceptual and technical soundness, environmental acceptability, energy balance, flexibility, costs, economic risk potential. The present contribution on this subject is not intended to take the place of or cover the scope of single-case studies. In practice, viability studies on process combinations have to deal with concrete plans involving precisely defined material flow balances, emissions, costs etc. The present paper therefore only presents the basic principles of this type of study. [Deutsch] Folgende Randbedingungen fuer sinnvolle Verfahrenskombinationen sind zu untersuchen: - konzeptionelle und technische Stimmigkeit, - Umweltvertraeglichkeit, - energetische Bilanz, - Flexibilitaet, - Kosten, - oekonomisches Risikopotential. Nun kann dieser Beitrag zum Thema keine Einzelfallbetrachtung ersetzen bzw. abdecken. Im Rahmen einer echten Pruefung auf `Sinnhaftigkeit` einer Kombinationsloesung stehen sich ganz konkrete Planungen gegenueber, die wiederum mit definierten Stoffflussbilanzen, Emissionen, Kosten usw. verbunden sind. Im Rahmen dieser Betrachtung koennen nur die Grundzuege einer derartigen Pruefung dargestellt werden. (orig.)

  14. Optimization of cutting parameters for machining time in turning process

    Science.gov (United States)

    Mavliutov, A. R.; Zlotnikov, E. G.

    2018-03-01

    This paper describes the most effective methods for nonlinear constraint optimization of cutting parameters in the turning process. Among them are Linearization Programming Method with Dual-Simplex algorithm, Interior Point method, and Augmented Lagrangian Genetic Algorithm (ALGA). Every each of them is tested on an actual example – the minimization of production rate in turning process. The computation was conducted in the MATLAB environment. The comparative results obtained from the application of these methods show: The optimal value of the linearized objective and the original function are the same. ALGA gives sufficiently accurate values, however, when the algorithm uses the Hybrid function with Interior Point algorithm, the resulted values have the maximal accuracy.

  15. CONTROL PARAMETERS FOR UNDERSTANDING AND PREVENTING PROCESS IMBALANCES IN BIOGAS PLANTS. EMPHAS IS ON VFA DYNAMICS

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik

    environmental changes differ widely between the different groups. As a consequence of this, an unrestrained reactor operation can lead to disturbances in the balance between the different microbial groups, which might lead to reactor failure. Therefore, reliable parameters and tools for efficient process...... control and understanding are necessary. The work of present study was directed towards this challenge. Initially, the response of the anaerobic digestion process to various types of process imbalances was investigated with special focus on volatile fatty acid dynamics (VFA), methane production and pH...... of process imbalances in biogas plants. At Danish full-scale biogas plants the biogas production is normally the only continuously measured parameter. In order to examine the usability of propionate as control parameter a reactor experiment was constructed in which the reactor operation either was carried...

  16. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara

    2012-03-30

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion. © 2012 SETAC.

  17. Hemodynamic parameters change earlier than tissue oxygen tension in hemorrhage.

    Science.gov (United States)

    Pestel, Gunther J; Fukui, Kimiko; Kimberger, Oliver; Hager, Helmut; Kurz, Andrea; Hiltebrand, Luzius B

    2010-05-15

    Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Influence of processing parameters on PZT thick films

    International Nuclear Information System (INIS)

    Huang, Oliver; Bandyopadhyay, Amit; Bose, Susmita

    2005-01-01

    We have studied influence of processing parameters on the microstructure and ferroelectric properties of lead zirconate titanate (PZT)-based thick films in the range of 5-25 μm. PZT and 2% La-doped PZT thick films were processed using a modified sol-gel process. In this process, PZT- and La-doped PZT powders were first prepared via sol-gel. These powders were calcined and then used with respective sols to form a slurry. Slurry composition was optimized to spin-coat thick films on platinized Si substrate (Si/SiO 2 /Ti/Pt). Spinning rate, acceleration and slurry deposition techniques were optimized to form thick films with uniform thickness and without any cracking. Increasing solids loading was found to enhance the surface smoothness of the film and decrease porosity. Films were tested for their electrical properties and ferroelectric fatigue response. The maximum polarization obtained was 40 μC/cm 2 at 250 kV/cm for PZT thick film and 30 μC/cm 2 at 450 kV/cm for La-doped PZT thick film. After 10 9 cycles of fatiguing at 35 kHz, La-doped PZT showed better resistance for ferroelectric fatigue compared with un-doped PZT films

  19. A comparative method for processing immunological parameters: developing an "Immunogram".

    Science.gov (United States)

    Ortolani, Riccardo; Bellavite, Paolo; Paiola, Fiorenza; Martini, Morena; Marchesini, Martina; Veneri, Dino; Franchini, Massimo; Chirumbolo, Salvatore; Tridente, Giuseppe; Vella, Antonio

    2010-04-01

    The immune system is a network of numerous cells that communicate both directly and indirectly with each other. The system is very sensitive to antigenic stimuli, which are memorised, and is closely connected with the endocrine and nervous systems. Therefore, in order to study the immune system correctly, it must be considered in all its complexity by analysing its components with multiparametric tools that take its dynamic characteristic into account. We analysed lymphocyte subpopulations by using monoclonal antibodies with six different fluorochromes; the monoclonal panel employed included CD45, CD3, CD4, CD8, CD16, CD56, CD57, CD19, CD23, CD27, CD5, and HLA-DR. This panel has enabled us to measure many lymphocyte subsets in different states and with different functions: helper, suppressor, activated, effector, naïve, memory, and regulatory. A database was created to collect the values of immunological parameters of approximately 8,000 subjects who have undergone testing since 2000. When the distributions of the values for these parameters were compared with the medians of reference values published in the literature, we found that most of the values from the subjects included in the database were close to the medians in the literature. To process the data we used a comparative method that calculates the percentile rank of the values of a subject by comparing them with the values for others subjects of the same age. From this data processing we obtained a set of percentile ranks that represent the positions of the various parameters with regard to the data for other age-matched subjects included in the database. These positions, relative to both the absolute values and percentages, are plotted in a graph. We have called the final plot, which can be likened to that subject's immunological fingerprint, an "Immunogram". In order to perform the necessary calculations automatically, we developed dedicated software (Immunogramma) which provides at least two different

  20. Feedstocks influence on the process parameters and the microbial community in anaerobic digestion

    OpenAIRE

    Ferguson, Robert Michael William

    2013-01-01

    To improve our understanding into the key parameters controlling and regulating the microbial groups involved in the anaerobic digestion (AD) process, particularly over multiple changes in operational conditions, triplicate lab-scale digesters fed with sewage sludge were exposed to single and multiple changes in organic loading rate (OLR) using either glycerol waste (a by-product of biodiesel manufacture), or Fats oils and greace (FOG waste) collected from a restaurant grease t...

  1. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.

    2013-04-01

    Boron removal in seawater desalination presents a particular challenge. In seawater reverse osmosis (SWRO) systems boron removal at low concentration (<0.5 mg/L) is usually achieved by a second pass using brackish water RO membranes. However, this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous solution was carried out by EC process using aluminum and iron electrodes. Several operating parameters on the removal efficiency such as initial pH, current density, initial boron ion concentration, feed concentration, gap between electrodes, and electrode material, were investigated. In the case of bipolar electrocoagulation (BEC), an optimum removal efficiency of 96% corresponding to a final boron concentration of 0.4 mg/L was achieved at a current density of 6 mA/cm2 and pH = 8 using aluminum electrodes. The concentration of NaCl was 2,500 mg/L and the gap between the electrodes of 0.5 cm. Furthermore, a comparison between monopolar electrocoagulation (MEC) and BEC using both aluminum and iron electrodes was carried out. Results showed that the BEC process has reduced the current density applied to obtain high level of boron removal in a short reaction time compared to MEC process. The high performance of the EC showed that the process could be used to reduce boron concentration to acceptable levels at low-cost and more environmentally friendly. © 2013 Copyright Taylor and Francis Group, LLC.

  2. Parameters Selection for Electropolishing Process of Products Made of Copper and Its Alloys

    Directory of Open Access Journals (Sweden)

    Maciąg T.

    2017-09-01

    Full Text Available Electropolishing is electrochemical method used in metal working that has a vital role in production of medical apparatus, in food or electric industry. The purpose of this paper is to determine optimal current parameters and time required for conducting electropolishing process from the perspective of changes of surface microgeometry. Furthermore, effect of different types of mechanical working used before electropolishing on final surface state was evaluated by observation in changes of topography. Research was conducted on electrolytic copper and brass. Analysis of surface geometry and its parameters (Ra, Sa was used as criterion describing efficiency of chemical electropolishing. Results of the experiment allow for current parameter optimization of electrochemical polishing process for selected non-ferrous alloys with preliminary mechanical preparation of the surface.

  3. Modeling Parameters of Reliability of Technological Processes of Hydrocarbon Pipeline Transportation

    Directory of Open Access Journals (Sweden)

    Shalay Viktor

    2016-01-01

    Full Text Available On the basis of methods of system analysis and parametric reliability theory, the mathematical modeling of processes of oil and gas equipment operation in reliability monitoring was conducted according to dispatching data. To check the quality of empiric distribution coordination , an algorithm and mathematical methods of analysis are worked out in the on-line mode in a changing operating conditions. An analysis of physical cause-and-effect relations mechanism between the key factors and changing parameters of technical systems of oil and gas facilities is made, the basic types of technical distribution parameters are defined. Evaluation of the adequacy the analyzed parameters of the type of distribution is provided by using a criterion A.Kolmogorov, as the most universal, accurate and adequate to verify the distribution of continuous processes of complex multiple-technical systems. Methods of calculation are provided for supervising by independent bodies for risk assessment and safety facilities.

  4. Diagnosing resistance to change in the change management process

    Directory of Open Access Journals (Sweden)

    Tetiana Kuzhda

    2016-12-01

    Full Text Available This article explains the change management process and resistance to organizational change through examining causes of resistance to change, diagnosing them, and finding the ways to deal with resistance to change. In business environment, the one thing any company can be assured of is change. If an organization experiences change it may also need to implement new business strategies, which can create resistance among employees. Managers need to know in which phase they have to expect unusual situations, problems, and resistance to change. Most successful organizations are those that are able to adjust themselves to new conditions quickly. Preparing for change, managing change through resistance management plan and reinforcing change have been identified in the article as the main phrases of change management process that lead to improve the organization performance. Managing resistance to change is important part for success of any change effort in each company. Dealing with resistance in large part will depend on timely recognition of the real causes of resistance to change and finding the ways to reduce, overcome or eliminate the resistance to change. Developing efficient ways to introduce and implement change can ease the stress the staff feels when change is introduced. Different resistance states, causes of change resistance and forms of change resistance have been emphasized in the change management process. The proposed diagnosing model has been used to identify significant and weighty causes of resistance to change by using the expert survey and ranking causes of resistance to change. The ways to reduce and overcome resistance to change have been explained.

  5. A Systematic Approach to Modelling Change Processes in Construction Projects

    Directory of Open Access Journals (Sweden)

    Ibrahim Motawa

    2012-11-01

    Full Text Available Modelling change processes within construction projects isessential to implement changes efficiently. Incomplete informationon the project variables at the early stages of projects leads toinadequate knowledge of future states and imprecision arisingfrom ambiguity in project parameters. This lack of knowledge isconsidered among the main source of changes in construction.Change identification and evaluation, in addition to predictingits impacts on project parameters, can help in minimising thedisruptive effects of changes. This paper presents a systematicapproach to modelling change process within construction projectsthat helps improve change identification and evaluation. Theapproach represents the key decisions required to implementchanges. The requirements of an effective change processare presented first. The variables defined for efficient changeassessment and diagnosis are then presented. Assessmentof construction changes requires an analysis for the projectcharacteristics that lead to change and also analysis of therelationship between the change causes and effects. The paperconcludes that, at the early stages of a project, projects with a highlikelihood of change occurrence should have a control mechanismover the project characteristics that have high influence on theproject. It also concludes, for the relationship between changecauses and effects, the multiple causes of change should bemodelled in a way to enable evaluating the change effects moreaccurately. The proposed approach is the framework for tacklingsuch conclusions and can be used for evaluating change casesdepending on the available information at the early stages ofconstruction projects.

  6. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  7. The Elements of Business Process Change

    African Journals Online (AJOL)

    user

    organization and employees' empowerment recommended in the BPC literature. ... failure, selecting policy directions, and designing effective and efficient program. ... performance management, and business process change that is considered .... the new processes result in dramatic improvements including reduced work.

  8. Evolutionary change - patterns and processes

    Directory of Open Access Journals (Sweden)

    Francisco M. Salzano

    2005-12-01

    Full Text Available The present review considered: (a the factors that conditioned the early transition from non-life to life; (b genome structure and complexity in prokaryotes, eukaryotes, and organelles; (c comparative human chromosome genomics; and (d the Brazilian contribution to some of these studies. Understanding the dialectical conflict between freedom and organization is fundamental to give meaning to the patterns and processes of organic evolution.A presente revisão considerou: (a os fatores que condicionaram a transição inicial entre não-vida e vida; (b a estrutura e complexidade genômica em procariotos, eucariotos e organelas; (c a genômica comparada dos cromossomos humanos; (d a contribuição brasileira a alguns desses estudos. A compreensão do conflito dialético entre liberdade e organização é fundamental para dar significado aos padrões e processos da evolução orgânica.

  9. [Effect of the microencapsulation process parameters piroxicam by complex coacervation].

    Science.gov (United States)

    Lamoudi, L; Chaumeil, J-C; Daoud, K

    2015-01-01

    The gelatin-acacia system is used for the microencapsulation of piroxicam by complex coacervation. The effect of some formulation parameters and process, namely the ratio of gelatin/gum acacia, core/wall ratio, concentration of crosslinking agent and crosslinking time are studied. The microcapsules properties are evaluated. The results showed that the microcapsules have a spherical shape, a coacervation efficiency greater than 70%, an average diameter less than 250 microns, a good stability and finally, the better values are obtained for gelatin/acacia ratio (5/3), ratio core/wall (1/4), an amount of 2 mL of crosslinking agent and a crosslinking time of 60 minutes. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. BACTERIAL LEACHING OF ELECTRONIC SCRAP: INFLUENCE OF PROCESS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Luciana Harue Yamane

    2013-03-01

    Full Text Available The application of bacterial leaching in the ore treatment is already known and also can be applied such as treatment of electronic waste to copper recovery. This paper investigates the influence of process parameters (pulp density, inoculums volume, rotation speed and initial concentration of ferrous iron on bacterial leaching of copper from printed circuit board of computers using the bacterium Acidithiobacillus ferrooxidans–LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non-magnetic material used in this study. A shake flask study was carried out on the non-magnetic material using a shaker. The results show that Acidithiobacillus ferrooxidans–LR can leach 99% of copper from printed circuit boards (non–magnetic material under the determined conditions through of the studies.

  11. Use of Hansen Solubility Parameters in Fuel Treatment Processes

    Science.gov (United States)

    2014-03-17

    Clearance # Considerations for Rocket Fuel Objective: Utilize liquid/liquid extraction process to improve performance, increase availability, and...1/4)(H1 - H0)2 - (D2 – D0)2 - (1/4) (P2 - P0)2 - (1/4)(H2 - H0)2 ] + RT ln (V1/ V2 ) K = C0,2 / CO,1 Partition coefficient RT ln K = V0( D1...02 – D2-02 ) + RT ln (V1/ V2 ) Di-0 is the distance in “solubility parameter space” between liquid i and impurity 0. For reference, phase 1 = fuel

  12. A Dual Processing Approach to Stereotype Change.

    Science.gov (United States)

    Johnston, Lucy; Coolen, Petra

    1995-01-01

    Considered stereotype change within a framework of dual process models. Using three experiments, manipulated task involvement, source credibility, and message quality. Findings proved dual process as appropriate when considering the processing of stereotype-disconfirming information and processing's impact on existing stereotypes. Different…

  13. EFFECT OF COMPOSITION OF FUEL CONTAINING BUTANOL ON WORKING PROCESS PARAMETERS OF DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    D. G. Hershan

    2017-01-01

    Full Text Available Computational researches the effect of composition of fuel containing butanol on working process parameters of 4ЧН 11/12,5 diesel engine on the external speed characteristic have been conducted. Nominal power is 140 kW at engine speed 2300 min–1. The engine is equipped with gas turbine pressure charging with intercooling of charging air, accumulator-type fuel-handling system. Calculations of the working process have been made in accordance with the developed computer program and models. Investigations have been carried out in two stages: without any changes in regulation of fuel-handling system and with cyclic fuel delivery that ensure such value of excess air factor at various operational modes which corresponds to the operation with diesel fuel. All the obtained results have been analyzed in the paper. The paper shows changes in mean indicated pressure, specific indicated fuel consumption, indicated efficiency, specific nitrogen oxides emissions for various modes in question while using 5, 10, 15, 20, 25 and 30 % mixture of diesel fuel with butanol. Dependences of parameters pertaining to diesel operation have been determined according to external speed characteristic for various mixtures and the obtained data make it possible to justify parameters of the fuel-handling system. It has been recommended to use a diesel fuel-butanol mixture containing 15 % of butanol without any changes in regulating and design engine parameters. It has been revealed that in order to improve parameters of the engine operational process mixture composition must be changed while changing the operational mode. An injector nozzle with a compound needle for the fuel-handling system has been developed and it allows to change fuel composition according to engine operational mode.

  14. Optimisation of shock absorber process parameters using failure mode and effect analysis and genetic algorithm

    Science.gov (United States)

    Mariajayaprakash, Arokiasamy; Senthilvelan, Thiyagarajan; Vivekananthan, Krishnapillai Ponnambal

    2013-07-01

    The various process parameters affecting the quality characteristics of the shock absorber during the process were identified using the Ishikawa diagram and by failure mode and effect analysis. The identified process parameters are welding process parameters (squeeze, heat control, wheel speed, and air pressure), damper sealing process parameters (load, hydraulic pressure, air pressure, and fixture height), washing process parameters (total alkalinity, temperature, pH value of rinsing water, and timing), and painting process parameters (flowability, coating thickness, pointage, and temperature). In this paper, the process parameters, namely, painting and washing process parameters, are optimized by Taguchi method. Though the defects are reasonably minimized by Taguchi method, in order to achieve zero defects during the processes, genetic algorithm technique is applied on the optimized parameters obtained by Taguchi method.

  15. Compositional Changes in Selected Minimally Processed Vegetables

    OpenAIRE

    O'Reilly, Emer, (Thesis)

    2000-01-01

    Compositional, physiological and microbiological changes in selected minimally processed vegetables packaged under a modified atmosphere of 2% oxygen and 5% carbon dioxide were monitored over a ten day storage period at 40 C and 80 C. The analysis targeted specific changes in the nutritional, chemical and physiological make up of the vegetables as well as the changes in the microbial levels. In addition the changes in the gas atmospheres within the packs were monitored. It has been widely acc...

  16. Traditional processing, microbial and physicochemical changes ...

    African Journals Online (AJOL)

    A survey was conducted to characterise production methods of malwa; a Ugandan ... Changes in chemical parameters were determined using standard methods. ... Moistened millet flour was subjected to solid state pit fermentation for one week to ... spp increased from 2.67 to 6.22 log cfu mL–1 during 72 h of fermentation.

  17. High Temperature Epoxy Foam: Optimization of Process Parameters

    Directory of Open Access Journals (Sweden)

    Samira El Gazzani

    2016-06-01

    Full Text Available For many years, reduction of fuel consumption has been a major aim in terms of both costs and environmental concerns. One option is to reduce the weight of fuel consumers. For this purpose, the use of a lightweight material based on rigid foams is a relevant choice. This paper deals with a new high temperature epoxy expanded material as substitution of phenolic resin, classified as potentially mutagenic by European directive Reach. The optimization of thermoset foam depends on two major parameters, the reticulation process and the expansion of the foaming agent. Controlling these two phenomena can lead to a fully expanded and cured material. The rheological behavior of epoxy resin is studied and gel time is determined at various temperatures. The expansion of foaming agent is investigated by thermomechanical analysis. Results are correlated and compared with samples foamed in the same temperature conditions. The ideal foaming/gelation temperature is then determined. The second part of this research concerns the optimization of curing cycle of a high temperature trifunctional epoxy resin. A two-step curing cycle was defined by considering the influence of different curing schedules on the glass transition temperature of the material. The final foamed material has a glass transition temperature of 270 °C.

  18. Change in requirements during the design process

    DEFF Research Database (Denmark)

    Sudin, Mohd Nizam Bin; Ahmed-Kristensen, Saeema

    2011-01-01

    Specification is an integral part of the product development process. Frequently, more than a single version of a specification is produced due to changes in requirements. These changes are often necessary to ensure the scope of the design problem is as clear as possible. However, the negative...... on a pre-defined coding scheme. The results of the study shows that change in requirements were initiated by internal stakeholders through analysis and evaluation activities during the design process, meanwhile external stakeholders were requested changes during the meeting with consultant. All...

  19. Screening key parameters related to passive system performance based on Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    Ma, Guohang; Yu, Yu; Huang, Xiong; Peng, Yuan; Ma, Nan; Shan, Zuhua; Niu, Fenglei; Wang, Shengfei

    2015-01-01

    Highlights: • An improved AHP method is presented for screening key parameters used in passive system reliability analysis. • We take the special bottom parameters as criterion for calculation and the abrupt change of the results are verified. • Combination weights are also affected by uncertainty of input parameters. - Abstract: Passive safety system is widely used in the new generation nuclear power plant (NPP) designs such as AP1000 to improve the reactor safety benefitting from its simple construction and less request for human intervene. However, the functional failure induced by uncertainty in the system thermal–hydraulic (T–H) performance becomes one of the main contributors to system operational failure since the system operates based on natural circulation, which should be considered in the system reliability evaluation. In order to improve the calculation efficiency the key parameters which significantly affect the system T–H characteristics can be screened and then be analyzed in detail. The Analytical Hierarchy Process (AHP) is one of the efficient methods to analyze the influence of the parameters on a passive system based on the experts’ experience. The passive containment cooling system (PCCS) in AP1000 is one of the typical passive safety systems, nevertheless too many parameters need to be analyzed and the T–H model itself is more complicated, so the traditional AHP method should be mended to use for screening key parameters efficiently. In this paper, we adapt the improved method in hierarchy construction and experts’ opinions integration, some parameters at the bottom justly in the traditional hierarchy are studied as criterion layer in improved AHP, the rationality of the method and the effect of abrupt change with the data are verified. The passive containment cooling system (PCCS) in AP1000 is evaluated as an example, and four key parameters are selected from 49 inputs

  20. Optimization of process parameters for a quasi-continuous tablet coating system using design of experiments.

    Science.gov (United States)

    Cahyadi, Christine; Heng, Paul Wan Sia; Chan, Lai Wah

    2011-03-01

    The aim of this study was to identify and optimize the critical process parameters of the newly developed Supercell quasi-continuous coater for optimal tablet coat quality. Design of experiments, aided by multivariate analysis techniques, was used to quantify the effects of various coating process conditions and their interactions on the quality of film-coated tablets. The process parameters varied included batch size, inlet temperature, atomizing pressure, plenum pressure, spray rate and coating level. An initial screening stage was carried out using a 2(6-1(IV)) fractional factorial design. Following these preliminary experiments, optimization study was carried out using the Box-Behnken design. Main response variables measured included drug-loading efficiency, coat thickness variation, and the extent of tablet damage. Apparent optimum conditions were determined by using response surface plots. The process parameters exerted various effects on the different response variables. Hence, trade-offs between individual optima were necessary to obtain the best compromised set of conditions. The adequacy of the optimized process conditions in meeting the combined goals for all responses was indicated by the composite desirability value. By using response surface methodology and optimization, coating conditions which produced coated tablets of high drug-loading efficiency, low incidences of tablet damage and low coat thickness variation were defined. Optimal conditions were found to vary over a large spectrum when different responses were considered. Changes in processing parameters across the design space did not result in drastic changes to coat quality, thereby demonstrating robustness in the Supercell coating process. © 2010 American Association of Pharmaceutical Scientists

  1. Changes of peritoneal transport parameters with time on dialysis: assessment with sequential peritoneal equilibration test.

    Science.gov (United States)

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2017-10-27

    Sequential peritoneal equilibration test (sPET) is based on the consecutive performance of the peritoneal equilibration test (PET, 4-hour, glucose 2.27%) and the mini-PET (1-hour, glucose 3.86%), and the estimation of peritoneal transport parameters with the 2-pore model. It enables the assessment of the functional transport barrier for fluid and small solutes. The objective of this study was to check whether the estimated model parameters can serve as better and earlier indicators of the changes in the peritoneal transport characteristics than directly measured transport indices that depend on several transport processes. 17 patients were examined using sPET twice with the interval of about 8 months (230 ± 60 days). There was no difference between the observational parameters measured in the 2 examinations. The indices for solute transport, but not net UF, were well correlated between the examinations. Among the estimated parameters, a significant decrease between the 2 examinations was found only for hydraulic permeability LpS, and osmotic conductance for glucose, whereas the other parameters remained unchanged. These fluid transport parameters did not correlate with D/P for creatinine, although the decrease in LpS values between the examinations was observed mostly for patients with low D/P for creatinine. We conclude that changes in fluid transport parameters, hydraulic permeability and osmotic conductance for glucose, as assessed by the pore model, may precede the changes in small solute transport. The systematic assessment of fluid transport status needs specific clinical and mathematical tools beside the standard PET tests.

  2. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    Science.gov (United States)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  3. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Negro, M.J.; Manzanares, P.; Oliva, J.M.; Ballesteros, I.; Ballesteros, M. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Madrid (Spain). Departamento de Energias Renovables

    2003-09-01

    Steam-explosion process can be satisfactorily used as a pretreatment in ethanol production from lignocellulosic biomass. Traditionally, pretreatment effectiveness is evaluated in terms of hemicellulose solubilization, enzymatic convertibility of cellulosic fraction, and recovery of both polysaccharides. In this study some parameters different from composition (main components) have been evaluated as an alternative tool to characterise the effect of steaming pretreatment on lignocellulosic materials. The effect of the most important variables in steam explosion pretreatment (temperature, residence time and chip size) on various physical/chemical parameters of pine biomass were investigated. Changes in O/C and H/C atomic ratios, colour analysis, elementary composition, water drop penetration time, organic soluble content, cellulose crystallinity index, and thermogravimetric analysis after the pretreatment were evaluated. Furthermore the influence of operational pretreatment variables on all such parameters and their interactions were examined with the Yates' algorithm. (author)

  4. Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment

    International Nuclear Information System (INIS)

    Negro, M.J.; Manzanares, P.; Oliva, J.M.; Ballesteros, I.; Ballesteros, M.

    2003-01-01

    Steam-explosion process can be satisfactorily used as a pretreatment in ethanol production from lignocellulosic biomass. Traditionally, pretreatment effectiveness is evaluated in terms of hemicellulose solubilization, enzymatic convertibility of cellulose fraction, and recovery of both polysaccharides. In this study some parameters different from composition (main components) have been evaluated as an alternative tool to characterise the effect of steaming pretreatment on lignocellulosic materials. The effect of the most important variables in steam explosion pretreatment (temperature, residence time and chip size) on various physical/chemical parameters of pine biomass were investigated. Changes in O/C and H/C atomic ratios, colour analysis, elementary composition, water drop penetration time, organic soluble content, cellulose cristallinity index, and thermogravimetric analysis after the pretreatment were evaluated. Furthermore the influence of operational pretreatment variables on all such parameters and their interactions were examined with the Yates' algorithm

  5. Does facial processing prioritize change detection?: change blindness illustrates costs and benefits of holistic processing.

    Science.gov (United States)

    Wilford, Miko M; Wells, Gary L

    2010-11-01

    There is broad consensus among researchers both that faces are processed more holistically than other objects and that this type of processing is beneficial. We predicted that holistic processing of faces also involves a cost, namely, a diminished ability to localize change. This study (N = 150) utilized a modified change-blindness paradigm in which some trials involved a change in one feature of an image (nose, chin, mouth, hair, or eyes for faces; chimney, porch, window, roof, or door for houses), whereas other trials involved no change. People were better able to detect the occurrence of a change for faces than for houses, but were better able to localize which feature had changed for houses than for faces. Half the trials used inverted images, a manipulation that disrupts holistic processing. With inverted images, the critical interaction between image type (faces vs. houses) and task (change detection vs. change localization) disappeared. The results suggest that holistic processing reduces change-localization abilities.

  6. An ecological process model of systems change.

    Science.gov (United States)

    Peirson, Leslea J; Boydell, Katherine M; Ferguson, H Bruce; Ferris, Lorraine E

    2011-06-01

    In June 2007 the American Journal of Community Psychology published a special issue focused on theories, methods and interventions for systems change which included calls from the editors and authors for theoretical advancement in this field. We propose a conceptual model of systems change that integrates familiar and fundamental community psychology principles (succession, interdependence, cycling of resources, adaptation) and accentuates a process orientation. To situate our framework we offer a definition of systems change and a brief review of the ecological perspective and principles. The Ecological Process Model of Systems Change is depicted, described and applied to a case example of policy driven systems level change in publicly funded social programs. We conclude by identifying salient implications for thinking and action which flow from the Model.

  7. Changes in platelet parameters in leukocytosis | Ozturk | Pan African ...

    African Journals Online (AJOL)

    Methods: white blood cell counts count and all platelet parameters were evaluated in 341 results of normal complete blood count (of which the white blood cell counts were within reference range, ... Results: there was a significant difference between these two groups in PLT counts and PCT values, being higher in Group 2.

  8. Parameter extraction using global particle swarm optimization approach and the influence of polymer processing temperature on the solar cell parameters

    Science.gov (United States)

    Kumar, S.; Singh, A.; Dhar, A.

    2017-08-01

    The accurate estimation of the photovoltaic parameters is fundamental to gain an insight of the physical processes occurring inside a photovoltaic device and thereby to optimize its design, fabrication processes, and quality. A simulative approach of accurately determining the device parameters is crucial for cell array and module simulation when applied in practical on-field applications. In this work, we have developed a global particle swarm optimization (GPSO) approach to estimate the different solar cell parameters viz., ideality factor (η), short circuit current (Isc), open circuit voltage (Voc), shunt resistant (Rsh), and series resistance (Rs) with wide a search range of over ±100 % for each model parameter. After validating the accurateness and global search power of the proposed approach with synthetic and noisy data, we applied the technique to the extract the PV parameters of ZnO/PCDTBT based hybrid solar cells (HSCs) prepared under different annealing conditions. Further, we examine the variation of extracted model parameters to unveil the physical processes occurring when different annealing temperatures are employed during the device fabrication and establish the role of improved charge transport in polymer films from independent FET measurements. The evolution of surface morphology, optical absorption, and chemical compositional behaviour of PCDTBT co-polymer films as a function of processing temperature has also been captured in the study and correlated with the findings from the PV parameters extracted using GPSO approach.

  9. Training change control process at Cernavoda NPP

    International Nuclear Information System (INIS)

    Valache, Cornelia Mariana

    2005-01-01

    The paper presents the process of 'Training Change Control' at Cernavoda NPP. This process is a systematic approach that allows determination of the most effective training and/or non-training solutions for challenges that may influence the content and conditions for a training program or course. Changes may be the result of: - response to station systems or equipment modifications; - new or revised procedures; - regulatory requirements; - external organizations requirements; - internal evaluations meaning feedback from trainees, trainers, management or post-training evaluations; - self-assessments; - station condition reports; - operating experience (OPEX); - modifications of job scope; - management input. The Training Change Control Process at Cernavoda NPP includes the following aspects. The first step is the identification of all the initiating factors for a potential training change. Then, retain only those, which could have an impact on training and classify them in two categories: as deficiencies or as enhancement suggestions. The process is different for the two categories. The deficiency category supposes the application of the Training Needs Analysis (TNA) process. This is a performance-oriented process, resulting in more competent employees, solving existing and potential performance problems. By using needs analysis to systematically determine what people or courses and programs are expected to do and gathering data to reveal what they are really doing, we can receive a clear picture of the problem and then we can establish corrective action plans to fix it. The process is supported by plant subjects matter and by training specialists. On the other hand, enhancements suggestions are assessed by designated experienced persons and then are implemented in the training process. Regarding these two types of initiating factors for the training change control process, the final result consists of a training improvement, raising the effectiveness, efficiency or

  10. Affect of different ICT processing parameters to the quality of tomograms

    International Nuclear Information System (INIS)

    Zhou Jiang; Sun Lingxia; Ye Yunchang

    2009-01-01

    The quality of ICT tomograms is affected by detecting processing parameters and image processing methods besides the performances of ICT systems. Optimal processing parameters and image processing methods can promote not only the quality of tomogram but also the resolution. Some research work was carried out about processing parameters and image processing methods including choice of collimator, filter, false color composite image. And some examples were given in this paper, which can provide the ICT analyst with reference. (authors)

  11. Sensor Data Acquisition and Processing Parameters for Human Activity Classification

    Directory of Open Access Journals (Sweden)

    Sebastian D. Bersch

    2014-03-01

    Full Text Available It is known that parameter selection for data sampling frequency and segmentation techniques (including different methods and window sizes has an impact on the classification accuracy. For Ambient Assisted Living (AAL, no clear information to select these parameters exists, hence a wide variety and inconsistency across today’s literature is observed. This paper presents the empirical investigation of different data sampling rates, segmentation techniques and segmentation window sizes and their effect on the accuracy of Activity of Daily Living (ADL event classification and computational load for two different accelerometer sensor datasets. The study is conducted using an ANalysis Of VAriance (ANOVA based on 32 different window sizes, three different segmentation algorithm (with and without overlap, totaling in six different parameters and six sampling frequencies for nine common classification algorithms. The classification accuracy is based on a feature vector consisting of Root Mean Square (RMS, Mean, Signal Magnitude Area (SMA, Signal Vector Magnitude (here SMV, Energy, Entropy, FFTPeak, Standard Deviation (STD. The results are presented alongside recommendations for the parameter selection on the basis of the best performing parameter combinations that are identified by means of the corresponding Pareto curve.

  12. The Influence of Parameters Affecting Boron Removal by Electrocoagulation Process

    KAUST Repository

    Zeboudji, B.; Drouiche, Nadjib; Lounici, Hakim; Mameri, Nabil; Ghaffour, NorEddine

    2013-01-01

    , this process requires chemical addition and important additional investment, operation and maintenance, and energy costs. Electrocoagulation (EC) process can be used to achieve such low boron concentration. In this work, the removal of boron from aqueous

  13. Identifying important parameters for a continuous bioscouring process

    NARCIS (Netherlands)

    Lenting, H.B.M.; Lenting, H.B.M.; Zwier, E.; Nierstrasz, Vincent

    2002-01-01

    Compared to a bioscouring process in the batch mode, a continuously operating process requires relatively short processing steps. This study focusses on minimizing the required enzymatic incubation time. It is clear that the presence of a sufficient level of surfactant is of major importance in

  14. Effect of Processing Parameters on Thickness of Columnar Structured Silicon Wafers Directly Grown from Silicon Melts

    Directory of Open Access Journals (Sweden)

    Jin-Seok Lee

    2012-01-01

    Full Text Available In order to obtain optimum growth conditions for desired thickness and more effective silicon feedstock usage, effects of processing parameters such as preheated substrate temperatures, time intervals, moving velocity of substrates, and Ar gas blowing rates on silicon ribbon thickness were investigated in the horizontal growth process. Most of the parameters strongly affected in the control of ribbon thickness with columnar grain structure depended on the solidification rate. The thickness of the silicon ribbon decreased with an increasing substrate temperature, decreasing time interval, and increasing moving velocity of the substrate. However, the blowing of Ar gas onto a liquid layer existing on the surface of solidified ribbon contributed to achieving smooth surface roughness but did not closely affect the change of ribbon thickness in the case of a blowing rate of ≥0.65 Nm3/h because the thickness of the solidified layer was already determined by the exit height of the reservoir.

  15. Retrieval and processing of atmospheric parameters from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    Remote sensing of each of passive microwave channels enables one to estimate the atmospheric parameters over oceans on a repetitive basis throughout the year. Such a data base forms a useful tool in the study of complex weather phenomena. With India...

  16. The effect of selected parameters of the honing process on cylinder liner surface topography

    International Nuclear Information System (INIS)

    Pawlus, P; Dzierwa, A; Michalski, J; Reizer, R; Wieczorowski, M; Majchrowski, R

    2014-01-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable. (papers)

  17. On the pilot's behavior of detecting a system parameter change

    Science.gov (United States)

    Morizumi, N.; Kimura, H.

    1986-01-01

    The reaction of a human pilot, engaged in compensatory control, to a sudden change in the controlled element's characteristics is described. Taking the case where the change manifests itself as a variance change of the monitored signal, it is shown that the detection time, defined to be the time elapsed until the pilot detects the change, is related to the monitored signal and its derivative. Then, the detection behavior is modeled by an optimal controller, an optimal estimator, and a variance-ratio test mechanism that is performed for the monitored signal and its derivative. Results of a digital simulation show that the pilot's detection behavior can be well represented by the model proposed here.

  18. Transient radiation responses of optical fibers: influence of MCVD process parameters

    International Nuclear Information System (INIS)

    Girard, Sylvain; Alessi, Antonino; Boukenter, Aziz; Ouerdane, Y.; Marcandella, Claude; Richard, Nicolas; Paillet, Philippe; Gaillardin, Marc; Raine, Melanie

    2012-01-01

    A dedicated set of fibers elaborated via the Modified Chemical Vapor Deposition (MCVD) technique is used to study the influence of composition and drawing parameters on their responses to an X-ray pulse representative of the radiation environments associated with Megajoule class lasers. These canonical fibers were designed to highlight the impact of these parameters on the amplitude and kinetics of the transient pulsed X-ray Radiation Induced Attenuation (RIA) at room temperature. From pre-forms differing by their core composition, three optical fibers were elaborated by varying the tension and speed during the drawing process. No or only slight RIA change results from the tested variations in drawing process parameters of Ge-doped, F-doped, and pure-silica-core fibers. This study reveals that the drawing process is not the main parameter to be optimized in order to enhance the radiation tolerance of MCVD specialty optical fibers for the LMJ harsh environment. From the hardness assurance point of view, a specialty fiber sufficiently tolerant to this environment should be robust against changes in the drawing process. The origins of the RIA observed in the different fibers are discussed on the basis of spectral decomposition of their measured RIA spectra, using sets of defects from the literature and related to the different core dopants. This analysis highlights the limits of the well-known defect set to reproduce the RIA above 1 for Ge-doped fibers whereas self-trapped holes and chlorine-related species seem responsible for the transient responses of pure-silica-core and F-doped fibers. (authors)

  19. Numerical support, information processing and attitude change

    OpenAIRE

    de Dreu, C.K.W.; de Vries, N.K.

    1993-01-01

    In two experiments we studied the prediction that majority support induces stronger convergent processing than minority support for a persuasive message, the more so when recipients are explicitly forced to pay attention to the source's point of view; this in turn affects the amount of attitude change on related issues. Convergent processing is the systematic elaboration on the sources position, but with a stronger focus on verification and justification rather than falsification. In Exp 1 wi...

  20. Optimization of processing parameters of amaranth grits before grinding into flour

    Science.gov (United States)

    Zharkova, I. M.; Safonova, Yu A.; Slepokurova, Yu I.

    2018-05-01

    There are the results of experimental studies about the influence of infrared treatment (IR processing) parameters of the amaranth grits before their grinding into flour on the composition and properties of the received product. Using the method called as regressionfactor analysis, the optimal conditions of the thermal processing to the amaranth grits were obtained: the belt speed of the conveyor – 0.049 m/s; temperature of amaranth grits in the tempering silo – 65.4 °C the thickness of the layer of amaranth grits on the belt is 3 - 5 mm and the lamp power is 69.2 kW/m2. The conducted researches confirmed that thermal effect to the amaranth grains in the IR setting allows getting flour with a smaller size of starch grains, with the increased water-holding ability, and with a changed value of its glycemic index. Mathematical processing of experimental data allowed establishing the dependence of the structural and technological characteristics of the amaranth flour on the IR processing parameters of amaranth grits. The obtained results are quite consistent with the experimental ones that proves the effectiveness of optimization based on mathematical planning of the experiment to determine the influence of heat treatment optimal parameters of the amaranth grits on the functional and technological properties of the flour received from it.

  1. Biologic phosphorus elimination - influencing parameters, boundary conditions, process optimation

    International Nuclear Information System (INIS)

    Dai Xiaohu.

    1992-01-01

    This paper first presents a systematic study of the basic process of biologic phosphorus elimination as employed by the original 'Phoredox (Main Stream) Process'. The conditions governing the process and the factors influencing its performance were determined by trial operation. A stationary model was developed for the purpose of modelling biologic phosphorus elimination in such a main stream process and optimising the dimensioning. The validity of the model was confirmed by operational data given in the literature and by operational data from the authors' own semitechnical-scale experimental plant. The model permits simulation of the values to be expected for effluent phosphorus and phosphate concentrations for given influent data and boundary conditions. It is thus possible to dimension a plant for accomodation of the original Phoredox (Main Stream) Process or any similar phosphorus eliminating plant that is to work according to the principle of the main stream process. (orig./EF) [de

  2. Time-changed Ornstein–Uhlenbeck process

    International Nuclear Information System (INIS)

    Gajda, Janusz; Wyłomańska, Agnieszka

    2015-01-01

    The Ornstein–Uhlenbeck process is one of the most popular systems used for financial data description. However, this process has also been examined in the context of many other phenomena. In this paper we consider the so-called time-changed Ornstein–Uhlenbeck process, in which time is replaced by an inverse subordinator of general infinite divisible distribution. Time-changed processes nowadays play an important role in various fields of mathematical physics, chemistry, and biology as well as in finance. In this paper we examine the main characteristics of the time-changed Ornstein–Uhlenbeck process, such as the covariance function. Moreover, we also prove the formula for a generalized fractional Fokker–Planck equation that describes the one-dimensional probability density function of the analyzed system. For three cases of subordinators we show the special forms of obtained general formulas. Furthermore, we mention how to simulate the trajectory of the Ornstein–Uhlenbeck process delayed by a general inverse subordinator. (paper)

  3. Research and determination of process parameters of milk lactose hydrolysis

    OpenAIRE

    Калинина, Елена Дмитриевна; Коваленко, Александр Владимирович

    2014-01-01

    The researches of enzymatic milk lactose hydrolysis by using the β - galactosidase enzyme are given in the paper. For carrying out a lactose hydrolysis, two β-galactosidase enzyme preparations GODO-YNL2 and Neolactase are offered. For setting lactose hydrolysis parameters, the influence of a pH medium, temperature, enzyme preparation doses, the duration of hydrolyzing the milk lactose affected by the β- galactosidase enzyme preparations, was studied. In terms of effectiveness, adaptability an...

  4. Influence of Process Parameters on Nitrogen Oxide Formation in

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der; Glarborg, Peter; Dam-Johansen, Kim

    1997-01-01

    This paper describes the influence of burner operating conditions, burner geometry and fuel parameters on the formation of nitrogen oxide during combustion of pulverized coal. Main attention has been paid to combustion test facilities with self-sustaining flames, while extensions have been made...... to full scale boilers and furnace modeling. Since coal combustion and flame aerodynamics have been reviewed earlier, these phenomena are only treated briefly....

  5. Optimization of process parameters through GRA, TOPSIS and RSA models

    Directory of Open Access Journals (Sweden)

    Suresh Nipanikar

    2018-01-01

    Full Text Available This article investigates the effect of cutting parameters on the surface roughness and flank wear during machining of titanium alloy Ti-6Al-4V ELI( Extra Low Interstitial in minimum quantity lubrication environment by using PVD TiAlN insert. Full factorial design of experiment was used for the machining 2 factors 3 levels and 2 factors 2 levels. Turning parameters studied were cutting speed (50, 65, 80 m/min, feed (0.08, 0.15, 0.2 mm/rev and depth of cut 0.5 mm constant. The results show that 44.61 % contribution of feed and 43.57 % contribution of cutting speed on surface roughness also 53.16 % contribution of cutting tool and 26.47 % contribution of cutting speed on tool flank wear. Grey relational analysis and TOPSIS method suggest the optimum combinations of machining parameters as cutting speed: 50 m/min, feed: 0.8 mm/rev., cutting tool: PVD TiAlN, cutting fluid: Palm oi

  6. Game-Changing Innovations: How Culture Can Change the Parameters of Its Own Evolution and Induce Abrupt Cultural Shifts

    Science.gov (United States)

    2016-01-01

    One of the most puzzling features of the prehistoric record of hominid stone tools is its apparent punctuation: it consists of abrupt bursts of dramatic change that separate long periods of largely unchanging technology. Within each such period, small punctuated cultural modifications take place. Punctuation on multiple timescales and magnitudes is also found in cultural trajectories from historical times. To explain these sharp cultural bursts, researchers invoke such external factors as sudden environmental change, rapid cognitive or morphological change in the hominids that created the tools, or replacement of one species or population by another. Here we propose a dynamic model of cultural evolution that accommodates empirical observations: without invoking external factors, it gives rise to a pattern of rare, dramatic cultural bursts, interspersed by more frequent, smaller, punctuated cultural modifications. Our model includes interdependent innovation processes that occur at different rates. It also incorporates a realistic aspect of cultural evolution: cultural innovations, such as those that increase food availability or that affect cultural transmission, can change the parameters that affect cultural evolution, thereby altering the population’s cultural dynamics and steady state. This steady state can be regarded as a cultural carrying capacity. These parameter-changing cultural innovations occur very rarely, but whenever one occurs, it triggers a dramatic shift towards a new cultural steady state. The smaller and more frequent punctuated cultural changes, on the other hand, are brought about by innovations that spur the invention of further, related, technology, and which occur regardless of whether the population is near its cultural steady state. Our model suggests that common interpretations of cultural shifts as evidence of biological change, for example the appearance of behaviorally modern humans, may be unwarranted. PMID:28036346

  7. An experimental study on effect of process parameters in deep ...

    African Journals Online (AJOL)

    DR OKE

    Indeed, deep drawing is one of the widely used sheet metal forming process ... and quality of business process by the use of statistical tools (Chen and Lyu, 2009). ... Selection of control factors and their levels are made on the basis of some.

  8. The Sensitivity of the Input Impedance Parameters of Track Circuits to Changes in the Parameters of the Track

    Directory of Open Access Journals (Sweden)

    Lubomir Ivanek

    2017-01-01

    Full Text Available This paper deals with the sensitivity of the input impedance of an open track circuit in the event that the parameters of the track are changed. Weather conditions and the state of pollution are the most common reasons for parameter changes. The results were obtained from the measured values of the parameters R (resistance, G (conductance, L (inductance, and C (capacitance of a rail superstructure depending on the frequency. Measurements were performed on a railway siding in Orlova. The results are used to design a predictor of occupancy of a track section. In particular, we were interested in the frequencies of 75 and 275 Hz for this purpose. Many parameter values of track substructures have already been solved in different works in literature. At first, we had planned to use the parameter values from these sources when we designed the predictor. Deviations between them, however, are large and often differ by three orders of magnitude (see Tab.8. From this perspective, this article presents data that have been updated using modern measurement devices and computer technology. And above all, it shows a transmission (cascade matrix used to determine the parameters.

  9. Clinical Application of "The Change Process".

    Science.gov (United States)

    Thompson, Mary L.

    A change process described in the work of Yochelson and Samenow was adapted to students committed as delinquents to a state correctional facility. Their criminal profile accurately described the majority of the offenders. While minor problems continued, their frequency was reduced by as much as nine times. Serious incidents occurred only after the…

  10. Biochemical Changes during Development Process of Anther ...

    African Journals Online (AJOL)

    ERCAN

    2012-02-20

    Feb 20, 2012 ... The main metabolic substances changes during the development process of anther-derived embryos in loquat (Eriobotrya japonica Lindl. ... provide energy for the new development phase (Zang et al., 2004; He and Qi, 2002). ... were used for experimental materials (Figure 1) such as embryogenic calluses ...

  11. Impact polarization and alignment creation parameters via stepwise excitation processes

    International Nuclear Information System (INIS)

    Csanak, G.; Cartwright, D.C.; Kazantsev, S.A.; Bray, I.

    1998-01-01

    W report here results from first order many body theory, distorted wave approximation, and converged close coupling calculations for polarization fractions and alignment creation parameters in the case of 2 1 S → n 1 P(n 3 - 5), 2 3 S → n 1 P(n = 2 - 5), 2 1 S → n 1 D(n = 3 - 5), 2 3 S → n 1 D(n = 3 - 5), 2 3 S → n 3 D(n = 3 - 5), and 2 1 S → n 3 D(n = 3 - 5) excitations in helium for electron impact energies from threshold to several hundred eV. (author)

  12. Signal processing for longitudinal parameters of the Tevatron beam

    International Nuclear Information System (INIS)

    Pordes, S.; Crisp, J.; Fellenz, B.; Flora, R.; Para, A.; Tollestrup, A.V.

    2005-01-01

    We describe the system known as the Tevatron SBD [1] which is used to provide information on the longitudinal parameters of coalesced beam bunches in the Tevatron. The system has been upgraded over the past year with a new digitizer and improved software. The quantities provided for each proton and antiproton bunch include the intensity, the longitudinal bunch profile, the timing of the bunch with respect to the low-level RF, the momentum spread and the longitudinal emittance. The system is capable of 2 Hz operation and is run at 1 Hz

  13. Seasonal change of WEPP erodibility parameters on a fallow plot

    Science.gov (United States)

    D. K. McCool; S. Dun; J. Q. Wu; W. J. Elliot

    2011-01-01

    In cold regions, frozen soil has a significant influence on runoff and water erosion. Frozen soil can reduce infiltration capacity, and the freeze-thaw processes degrade soil cohesive strength and increase soil erodibility. In the Inland Pacific Northwest of the USA, major erosion events typically occur during winter from low-intensity rain, snowmelt, or both as frozen...

  14. Optimization of Injection Moulding Process Parameters in the ...

    African Journals Online (AJOL)

    ADOWIE PERE

    https://www.ajol.info/index.php/jasem ... Cooling time was found to be the factor with most significant effect on ... Keywords: High Density Polyethylene (HDPE), Injection Moulding, Process .... value of shrinkage behavior is expected to be.

  15. Interpolation of final geometry and result fields in process parameter space

    NARCIS (Netherlands)

    Misiun, Grzegorz Stefan; Wang, Chao; Geijselaers, Hubertus J.M.; van den Boogaard, Antonius H.; Saanouni, K.

    2016-01-01

    Different routes to produce a product in a bulk forming process can be described by a limited set of process parameters. The parameters determine the final geometry as well as the distribution of state variables in the final shape. Ring rolling has been simulated using different parameter settings.

  16. Determining the optimum process parameter for grinding operations using robust process

    Energy Technology Data Exchange (ETDEWEB)

    Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent [Univ. of Selcuk, Konya (Turkmenistan)

    2012-11-15

    We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L{sup 27} orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R{sup 2Ra}=and 2 92.73) R{sup 2Vb}=that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process.

  17. Determining the optimum process parameter for grinding operations using robust process

    International Nuclear Information System (INIS)

    Neseli, Suley Man; Asilturk, Ilhan; Celik, Levent

    2012-01-01

    We applied combined response surface methodology (RSM) and Taguchi methodology (TM) to determine optimum parameters for minimum surface roughness (Ra) and vibration (Vb) in external cylindrical grinding. First, an experiment was conducted in a CNC cylindrical grinding machine. The TM using L 27 orthogonal array was applied to the design of the experiment. The three input parameters were workpiece revolution, feed rate and depth of cut; the outputs were vibrations and surface roughness. Second, to minimize wheel vibration and surface roughness, two optimized models were developed using computer aided single objective optimization. The experimental and statistical results revealed that the most significant grinding parameter for surface roughness and vibration is workpiece revolution followed by the depth of cut. The predicted values and measured values were fairly close, which indicates 2 ( 94.99 R 2Ra =and 2 92.73) R 2Vb =that the developed models can be effectively used to predict surface roughness and vibration in the grinding. The established model for determination of optimal operating conditions shows that a hybrid approach can lead to success of a robust process

  18. A study of process parameters on workpiece anisotropy in the laser engineered net shaping (LENSTM) process

    Science.gov (United States)

    Chandra, Shubham; Rao, Balkrishna C.

    2017-06-01

    The process of laser engineered net shaping (LENSTM) is an additive manufacturing technique that employs the coaxial flow of metallic powders with a high-power laser to form a melt pool and the subsequent deposition of the specimen on a substrate. Although research done over the past decade on the LENSTM processing of alloys of steel, titanium, nickel and other metallic materials typically reports superior mechanical properties in as-deposited specimens, when compared to the bulk material, there is anisotropy in the mechanical properties of the melt deposit. The current study involves the development of a numerical model of the LENSTM process, using the principles of computational fluid dynamics (CFD), and the subsequent prediction of the volume fraction of equiaxed grains to predict process parameters required for the deposition of workpieces with isotropy in their properties. The numerical simulation is carried out on ANSYS-Fluent, whose data on thermal gradient are used to determine the volume fraction of the equiaxed grains present in the deposited specimen. This study has been validated against earlier efforts on the experimental studies of LENSTM for alloys of nickel. Besides being applicable to the wider family of metals and alloys, the results of this study will also facilitate effective process design to improve both product quality and productivity.

  19. NUMERICAL SIMULATION OF RESIDUAL STRESSES GENERATED IN THE WIRE DRAWING PROCESS FOR DIFFERENT PROCESS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Juliana Zottis

    2014-03-01

    Full Text Available The drawing process of steel bars is usually used to check better dimensional accuracy and mechanical properties to the material. In the other hand, the major concern found in manufacturing axes through this process is the appearance of distortion of shape. Such distortions are directly linked to the accumulation of residual stresses generated during the processes. As a result, this paper aims to study the influence of process parameters such as shape of puller, speed and lubrication used in wire drawing analyzing the accumulation of residual stress after the process. The stress analysis was performed by FEM being used two simulation software: Simufact.formingGP and DeformTM. Through these analyzes, it was found that the shape of how the bar is pulled causes a reduction of up to 100 MPa in residual stresses in the center of the bar, which represents an important factor in the study of the possible causes of the distortion. As well as factors speed and homogeneity of lubrication significantly altered the profile of residual stresses in the bar.

  20. Process intensification for biodiesel production from Jatropha curcas L. seeds: Supercritical reactive extraction process parameters study

    International Nuclear Information System (INIS)

    Lim, Steven; Lee, Keat Teong

    2013-01-01

    Highlights: ► Investigation of supercritical reactive extraction process for biodiesel production. ► Focus is given on optimizing methyl esters yield for Jatropha curcas L. seeds. ► Influence of process parameters to the reaction are discussed thoroughly. ► Comparison between the novel reaction with conventional process are studied. ► High methyl esters yield can be obtained without pre-extraction and catalyst. -- Abstract: In a bid to increase the cost competitiveness of biodiesel production against mineral diesel, process intensification has been studied for numerous biodiesel processing technologies. Subsequently, reactive extraction or in situ transesterification is actively being explored in which the solid oil-bearing seeds are used as the reactant directly with short-chain alcohol. This eliminates separate oil extraction process and combines both extraction and transesterification in a single unit. Supercritical reactive extraction takes one step further by substituting the role of catalyst with supercritical conditions to achieve higher yield and shorter processing time. In this work, supercritical reactive extraction with methanol was carried out in a high-pressure batch reactor to produce fatty acid methyl esters (FAMEs) from Jatropha curcas L. seeds. Material and process parameters including space loading, solvent to seed ratio, co-solvent (n-hexane) to seed ratio, reaction temperature, reaction time and mixing intensity were varied one at a time and optimized based on two responses i.e. extraction efficiency, M extract and FAME yield, F y . The optimum responses for supercritical reactive extraction obtained were 104.17% w/w and 99.67% w/w (relative to 100% lipid extraction with n-hexane) for M extract and F y respectively under the following conditions: 54.0 ml/g space loading, 5.0 ml/g methanol to seeds ratio, 300 °C, 9.5 MPa (Mega Pascal), 30 min reaction time and without n-hexane as co-solvent or any agitation source. This proved that

  1. A process of change and a changing process : introduction to the special issue on contemporary gentrification

    NARCIS (Netherlands)

    Doucet, B.

    2014-01-01

    Gentrification is a process of social and spatial change, but it is also a changing process. This special issue aims to better understand new forms of gentrification, policies and experiences which have emerged since the year 2000. Specific emphasis has been given to the Netherlands, a country where

  2. Key Process Parameters Affecting Performance of Electro-Coagulation.

    Czech Academy of Sciences Publication Activity Database

    Krystyník, Pavel; Tito, Duarte Novaes

    2017-01-01

    Roč. 117, JUL (2017), s. 106-112 ISSN 0255-2701 R&D Projects: GA TA ČR TA04020130 Institutional support: RVO:67985858 Keywords : electrocoagulation * dosing concentration * current density Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.234, year: 2016

  3. Testing the Box-Cox Parameter for an Integrated Process

    NARCIS (Netherlands)

    J. Huang (Jian); M. Kobayashi (Masahito); M.J. McAleer (Michael)

    2011-01-01

    textabstractThis paper analyses the constant elasticity of volatility (CEV) model suggested by Chan et al. (1992). The CEV model without mean reversion is shown to be the inverse Box-Cox transformation of integrated processes asymptotically. It is demonstrated that the maximum likelihood estimator

  4. Organizational Change Perspectives on Software Process Improvement

    DEFF Research Database (Denmark)

    Müller, Sune Dueholm; Mathiassen, Lars; Balshøj, Hans Henrik

    Many software organizations have engaged in Software Process Improvement (SPI) and experienced the challenges related to managing such complex organizational change efforts. As a result, there is an increasing body of research investigating change management in SPI. To provide an overview of what......, and brain perspectives. Practitioners may use these articles as a guide to SPI insights relevant to their improvement initiatives. In contrast, the impact of culture, dominance, psychic prison, flux and transformation, and politics in SPI have only received scant attention. We argue that these perspectives...

  5. Clinical Implications of Changing Parameters on an Elliptical Trainer.

    Science.gov (United States)

    Kaplan, Yonatan; Nyska, Meir; Palmanovich, Ezequiel; Shanker, Rebecca

    2014-06-01

    Specific weightbearing instructions continue to be a part of routine orthopaedic clinical practice on an injured or postoperative extremity. Researchers and clinicians have struggled to define the best weightbearing strategies to maximize clinical outcomes. To investigate the average percentage body weight (APBW) values, weightbearing distribution percentages (WBDP), and cadence values on the entire foot, hindfoot, and forefoot during changing resistance and incline on an elliptical trainer, as well as to suggest clinical implications. Descriptive laboratory study. An original research study was performed consisting of 30 asymptomatic subjects (mean age, 29.54 ± 12.64 years; range, 21-69 years). The protocol included 3 consecutive tests of changing resistance and incline within a speed range of 70 to 95 steps/min. The SmartStep weightbearing gait analysis system was utilized to measure the values. The APBW values for the entire foot ranged between 70% and 81%, the hindfoot values were between 27% and 57%, and the forefoot values between 42% and 70%. With regard to WBDP, the forefoot remained planted on the pedal (stance phase) 2 to 3 times more as compared with the hindfoot raise in the swing phase. The study findings highlight the fact that elliptical training significantly reduces weightbearing in the hindfoot, forefoot, and entire foot even at higher levels of resistance and incline. Weightbearing on the hindfoot consistently displayed the lowest weightbearing values. Orthopaedic surgeons, now equipped with accurate weightbearing data, may recommend using the elliptical trainer as a weightbearing exercise early on following certain bony or soft tissue pathologies and lower limb surgical procedures.

  6. Process Improvement in a Radically Changing Organization

    Science.gov (United States)

    Varga, Denise M.; Wilson, Barbara M.

    2007-01-01

    This presentation describes how the NASA Glenn Research Center planned and implemented a process improvement effort in response to a radically changing environment. As a result of a presidential decision to redefine the Agency's mission, many ongoing projects were canceled and future workload would be awarded based on relevance to the Exploration Initiative. NASA imposed a new Procedural Requirements standard on all future software development, and the Center needed to redesign its processes from CMM Level 2 objectives to meet the new standard and position itself for CMMI. The intended audience for this presentation is systems/software developers and managers in a large, research-oriented organization that may need to respond to imposed standards while also pursuing CMMI Maturity Level goals. A set of internally developed tools will be presented, including an overall Process Improvement Action Item database, a formal inspection/peer review tool, metrics collection spreadsheet, and other related technologies. The Center also found a need to charter Technical Working Groups (TWGs) to address particular Process Areas. In addition, a Marketing TWG was needed to communicate the process changes to the development community, including an innovative web site portal.

  7. Dual elaboration models in attitude change processes

    Directory of Open Access Journals (Sweden)

    Žeželj Iris

    2005-01-01

    Full Text Available This article examines empirical and theoretical developments in research on attitude change in the past 50 years. It focuses the period from 1980 till present as well as cognitive response theories as the dominant theoretical approach in the field. The postulates of Elaboration Likelihood Model, as most-researched representative of dual process theories are studied, based on review of accumulated research evidence. Main research findings are grouped in four basic factors: message source, message content, message recipient and its context. Most influential criticisms of the theory are then presented regarding its empirical base and dual process assumption. Some possible applications and further research perspectives are discussed at the end.

  8. Dynamic Computation of Change Operations in Version Management of Business Process Models

    Science.gov (United States)

    Küster, Jochen Malte; Gerth, Christian; Engels, Gregor

    Version management of business process models requires that changes can be resolved by applying change operations. In order to give a user maximal freedom concerning the application order of change operations, position parameters of change operations must be computed dynamically during change resolution. In such an approach, change operations with computed position parameters must be applicable on the model and dependencies and conflicts of change operations must be taken into account because otherwise invalid models can be constructed. In this paper, we study the concept of partially specified change operations where parameters are computed dynamically. We provide a formalization for partially specified change operations using graph transformation and provide a concept for their applicability. Based on this, we study potential dependencies and conflicts of change operations and show how these can be taken into account within change resolution. Using our approach, a user can resolve changes of business process models without being unnecessarily restricted to a certain order.

  9. Effect of changes in technical parameters in radiological safety

    International Nuclear Information System (INIS)

    Avendano, Ge; Fernandez, C

    2007-01-01

    This work analyzes the generation of secondary radiation that affects the professionals of health during interventional X ray procedures in first level hospitals. The research objectives were, on the one hand, to quantify the amount of radiation and to compare it with norms in force with respect to magnitudes, and on the other hand to evaluate the elements of protection used. The measurements will help to improve the radiological safety, to assess the eventuality of risks and, in the last term, to the possibility of norms modification for the improvement of the protection, especially that of the personnel who daily make a certain amount of interventional procedures guided by radiation, like angiographic cine applications, using continuous or pulsed fluoroscopy. The motivation of the study is in the suspicion that present interventionism is made with a false sensation of safety, based only in the use of lead apron and protection elements incorporated in the equipment by the manufacturer, nevertheless not always the health personnel are conscious that an excessive proximity with the tube and the patient body becomes a risky source of secondary and scattered radiation. The obtained results allow us to demonstrate the existence of conditions of risk, even possible iatrogenic events, in particular when the procedures imply the use of certain techniques of radiographic exploration, thus reaching the conclusion that the radiographic methodology must be changed in order to rationalize so much?. In order to achieve this we propose modifications to the present norms and legislation referred to the radiological safety in Chile

  10. Analysis of Tire Contact Parameters Using Visual Processing

    Directory of Open Access Journals (Sweden)

    Valentin Ivanov

    2010-01-01

    The first part of this paper presents the results of experimental estimation of the contact patch area depending on the normal wheel load and inflation pressure for different car tires. The data were obtained for test bench conditions on the basis of the visual processing of tread footprint. Further, the contact length in the cohesion area during wheel rolling for single points on the tire profile has been chosen as a benchmark criterion. This paper has analyzed the influence of the wheel normal load and tire inflation pressure on the contact length with small rolling velocities. The results of the investigations are given for winter and racing tires with different grades of wear.

  11. Parameter Sensitivity of the Microdroplet Vacuum Freezing Process

    Directory of Open Access Journals (Sweden)

    Zhijun Zhang

    2015-01-01

    Full Text Available The vacuum freezing process of microdroplets (1 mm. Pressure and droplet diameter have an effect on cooling and freezing stages, but initial temperature only affects the cooling stage. The thermal conductivity coefficient kl affected the cooling stage, whereas ki affected the freezing stage. Heat capacity Cl affected the cooling stage, but Ci has virtually no effect on all stages. The actual latent heat of freezing ΔH was also affected. Higher density corresponds to lower cooling rate in the cooling stage.

  12. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.

    2008-04-01

    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  13. Influence of processing parameters on morphology of polymethoxyflavone in emulsions.

    Science.gov (United States)

    Ting, Yuwen; Li, Colin C; Wang, Yin; Ho, Chi-Tang; Huang, Qingrong

    2015-01-21

    Polymethoxyflavones (PMFs) are groups of compounds isolated from citrus peels that have been documented with wide arrays of health-promoting bioactivities. Because of their hydrophobic structure and high melting point, crystallized PMFs usually have poor systemic bioavailability when consumed orally. To improve the oral efficiency of PMFs, a viscoelastic emulsion system was formulated. Because of the crystalline nature, the inclusion of PMFs into the emulsion system faces great challenges in having sufficient loading capacity and stabilities. In this study, the process of optimizing the quality of emulsion-based formulation intended for PMF oral delivery was systematically studied. With alteration of the PMF loading concentration, processing temperature, and pressure, the emulsion with the desired droplet and crystal size can be effectively fabricated. Moreover, storage temperatures significantly influenced the stability of the crystal-containing emulsion system. The results from this study are a good illustration of system optimization and serve as a great reference for future formulation design of other hydrophobic crystalline compounds.

  14. The rate of change in declining steroid hormones: a new parameter of healthy aging in men?

    Science.gov (United States)

    Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike

    2016-09-20

    Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.

  15. Processes and parameters involved in modeling radionuclide transport from bedded salt repositories. Final report. Technical memorandum

    International Nuclear Information System (INIS)

    Evenson, D.E.; Prickett, T.A.; Showalter, P.A.

    1979-07-01

    The parameters necessary to model radionuclide transport in salt beds are identified and described. A proposed plan for disposal of the radioactive wastes generated by nuclear power plants is to store waste canisters in repository sites contained in stable salt formations approximately 600 meters below the ground surface. Among the principal radioactive wastes contained in these canisters will be radioactive isotopes of neptunium, americium, uranium, and plutonium along with many highly radioactive fission products. A concern with this form of waste disposal is the possibility of ground-water flow occurring in the salt beds and endangering water supplies and the public health. Specifically, the research investigated the processes involved in the movement of radioactive wastes from the repository site by groundwater flow. Since the radioactive waste canisters also generate heat, temperature is an important factor. Among the processes affecting movement of radioactive wastes from a repository site in a salt bed are thermal conduction, groundwater movement, ion exchange, radioactive decay, dissolution and precipitation of salt, dispersion and diffusion, adsorption, and thermomigration. In addition, structural changes in the salt beds as a result of temperature changes are important. Based upon the half-lives of the radioactive wastes, he period of concern is on the order of a million years. As a result, major geologic phenomena that could affect both the salt bed and groundwater flow in the salt beds was considered. These phenomena include items such as volcanism, faulting, erosion, glaciation, and the impact of meteorites. CDM reviewed all of the critical processes involved in regional groundwater movement of radioactive wastes and identified and described the parameters that must be included to mathematically model their behavior. In addition, CDM briefly reviewed available echniques to measure these parameters

  16. Acetylene Flow Rate as a Crucial Parameter of Vacuum Carburizing Process of Modern Tool Steels

    Directory of Open Access Journals (Sweden)

    Rokicki P.

    2016-12-01

    Full Text Available Carburizing is one of the most popular and wide used thermo-chemical treatment methods of surface modification of tool steels. It is a process based on carbon diffusive enrichment of the surface material and is applied for elements that are supposed to present higher hardness and wear resistance sustaining core ductility. Typical elements submitted to carburizing process are gears, shafts, pins and bearing elements. In the last years, more and more popular, especially in highly advanced treatment procedures used in the aerospace industry is vacuum carburizing. It is a process based on chemical treatment of the surface in lower pressure, providing much higher uniformity of carburized layer, lower process cost and much lesser negative impact on environment to compare with conventional carburizing methods, as for example gas carburizing in Endo atmosphere. Unfortunately, aerospace industry requires much more detailed description of the phenomena linked to this process method and the literature background shows lack of tests that could confirm fulfilment of all needed requirements and to understand the process itself in much deeper meaning. In the presented paper, authors focused their research on acetylene flow impact on carburized layer characteristic. This is one of the most crucial parameters concerning homogeneity and uniformity of carburized layer properties. That is why, specific process methodology have been planned based on different acetylene flow values, and the surface layer of the steel gears have been investigated in meaning to impact on any possible change in potential properties of the final product.

  17. Determination of process parameters for curcumin - dextrose cocrystallization

    Science.gov (United States)

    Katherine; Nugroho, Denny; Sugih, Asaf K.

    2018-01-01

    Curcumin is a polyphenol that could act as anti-oxidant and anti - inflammation agent. It is usually isolated from rhizome plants such as turmeric and temulawak. Despite its many favorable properties, curcumin is practically insoluble in water, thus limiting its application. In the present investigation, variables affecting preparation of curcumin-dextrose cocrystal were examined with the aim to increase the solubility of curcumin. The effect of different processing conditions, such as water to dextrose ratio, final heating temperature and water bath temperature to the formation of cocrystal, were studied and the yield and solubility of curcumin - dextrose cocrystal products were analyzed. The morphology of the cocrystals were also analyzed using SEM and fluorescence microscopy.. Curcumin - dextrose cocrystals showed a significant increase in solubility up to 25 mg curcumin per mL water compared to pure curcumin.

  18. Multi-Response Parameter Interval Sensitivity and Optimization for the Composite Tape Winding Process

    Science.gov (United States)

    Yu, Tao; Kang, Chao; Zhao, Pan

    2018-01-01

    The composite tape winding process, which utilizes a tape winding machine and prepreg tapes, provides a promising way to improve the quality of composite products. Nevertheless, the process parameters of composite tape winding have crucial effects on the tensile strength and void content, which are closely related to the performances of the winding products. In this article, two different object values of winding products, including mechanical performance (tensile strength) and a physical property (void content), were respectively calculated. Thereafter, the paper presents an integrated methodology by combining multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis to obtain the optimal intervals of the composite tape winding process. First, the global multi-parameter sensitivity analysis method was applied to investigate the sensitivity of each parameter in the tape winding processing. Then, the local single-parameter sensitivity analysis method was employed to calculate the sensitivity of a single parameter within the corresponding range. Finally, the stability and instability ranges of each parameter were distinguished. Meanwhile, the authors optimized the process parameter ranges and provided comprehensive optimized intervals of the winding parameters. The verification test validated that the optimized intervals of the process parameters were reliable and stable for winding products manufacturing. PMID:29385048

  19. Effects of process parameters on sheet resistance uniformity of fluorine-doped tin oxide thin films

    Science.gov (United States)

    Hudaya, Chairul; Park, Ji Hun; Lee, Joong Kee

    2012-01-01

    An alternative indium-free material for transparent conducting oxides of fluorine-doped tin oxide [FTO] thin films deposited on polyethylene terephthalate [PET] was prepared by electron cyclotron resonance - metal organic chemical vapor deposition [ECR-MOCVD]. One of the essential issues regarding metal oxide film deposition is the sheet resistance uniformity of the film. Variations in process parameters, in this case, working and bubbler pressures of ECR-MOCVD, can lead to a change in resistance uniformity. Both the optical transmittance and electrical resistance uniformity of FTO film-coated PET were investigated. The result shows that sheet resistance uniformity and the transmittance of the film are affected significantly by the changes in bubbler pressure but are less influenced by the working pressure of the ECR-MOCVD system.

  20. Investigation of the Bitumen Modification Process Regime Parameters Influence on Polymer-Bitumen Bonding Qualitative Indicators

    Science.gov (United States)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Belousov, O. A.; Frolov, V. A.

    2018-04-01

    The objects of this study are petroleum road bitumen and polymeric bituminous binder for road surfaces obtained by polymer materials. The subject of the study is monitoring the polymer-bitumen binder quality changes as a result of varying the bitumen modification process. The purpose of the work is to identify the patterns of the modification process and build a mathematical model that provides the ability to calculate and select technological equipment. It is shown that the polymer-bitumen binder production with specified quality parameters can be ensured in apparatuses with agitators in turbulent mode without the colloidal mills use. Bitumen mix and modifying additives limiting indicators which can be used as restrictions in the form of mathematical model inequalities are defined. A mathematical model for the polymer-bitumen binder preparation has been developed and its adequacy has been confirmed.

  1. THE MANUFACUTE OF GLOVES USING RVNRL: PARAMETERS OF the COAGULANT DIPPING PROCESS

    Directory of Open Access Journals (Sweden)

    H.D. CHIRINOS

    1998-12-01

    Full Text Available Surgical gloves were manufactured using the RVNRL process. A fractional factorial design at two levels showed that five parameters of the coagulant dipping process which were studied independent. Coagulant concentration and dwell time in the radiovulcanized latex presented major main effects while the temperature of the former before dipping into the radiovulcanized latex and the flow time of the radiovulcanized latex on the former surface presented opposite main effects. The withdrawal rate of the former from the radiovulcanized latex did not change glove thickness. The mathematical correlation between the estimates of thickness and the significant main effects of coded variables was = 0.212 + 0.025x1 + 0.019x2. This optimized equation allowed reproduction of a surgical glove thickness in the range of 0.157 to 0.291mm, which is considered acceptable by international standard specification.

  2. Effects of Process Parameters on Copper Powder Compaction Process Using Multi-Particle Finite Element Method

    Science.gov (United States)

    Güner, F.; Sofuoğlu, H.

    2018-01-01

    Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.

  3. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    Science.gov (United States)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  4. Reflow Process Parameters Analysis and Reliability Prediction Considering Multiple Characteristic Values

    Directory of Open Access Journals (Sweden)

    Guo Yu

    2016-01-01

    Full Text Available As a major step surface mount technology, reflow process is the key factor affecting the quality of the final product. The setting parameters and characteristic value of temperature curve shows a nonlinear relationship. So parameter impacts on characteristic values are analyzed and the parameters adjustment process based on orthogonal experiment is proposed in the paper. First, setting parameters are determined and the orthogonal test is designed according to production conditions. Then each characteristic value for temperature profile is calculated. Further, multi-index orthogonal experiment is analyzed for acquiring the setting parameters which impacts the PCBA product quality greater. Finally, reliability prediction is carried out considering the main influencing parameters for providing a theoretical basis of parameters adjustment and product quality evaluation in engineering process.

  5. Optimization of the tape placement process parameters for carbon–PPS composites

    NARCIS (Netherlands)

    Grouve, Wouter Johannes Bernardus; Warnet, Laurent; Rietman, B.; Visser, Roy; Akkerman, Remko

    2013-01-01

    The interrelation between process parameters, material properties and interlaminar bond strength is investigated for the laser assisted tape placement process. Unidirectionally carbon reinforced poly(phenylene sulfide) (PPS) tapes were welded onto carbon woven fabric reinforced PPS laminates. The

  6. Photo-induced changes of silicate glasses optical parameters at multi-photon laser radiation absorption

    International Nuclear Information System (INIS)

    Efimov, O.M.; Glebov, L.B.; Mekryukov, A.M.

    1995-01-01

    In this paper the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to the intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center open-quotes S. I. Vavilov State Optical Instituteclose quotes during last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three- or more photon matrix ionization of these glasses, but they were failed. However it was established that in the lead silicate glasses the long-wave carriers mobility boundary (> 5.6 eV) is placed considerably higher the fundamental absorption edge (∼ 3.5 eV) of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed

  7. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...... varied systematically at two levels. The data obtained were evaluated using the multivariate methods, principal component analysis (PCA) and partial least squares (PLS) regression. The PCA models were used to identify which process parameters were actually most important for the quality of the frozen cod....... PLS models that were able to predict the physical, chemical and sensory quality parameters from the process parameters of the frozen raw material were generated. The prediction abilities of the PLS models were good enough to give reasonable results even when the process parameters were characterised...

  8. Mathematical modelling of nonstationary processes in a regenerator with dissociating coolant at supercritical parameters

    International Nuclear Information System (INIS)

    Tashchilova, Eh.M.; Sharovarov, G.A.

    1985-01-01

    The mathematical model of nonstationary processes in heat exchangers with dissociating coolant at supercritical parameters is given. Its dimensionless criteria are deveped. The effect of NPP regenerator parameters on criteria variation is determined. The proceeding nonstationary processes are estimated qualitatively using the dimensionless parameters. Dynamics of the processes in heat exchangers is described by the energy, mass and moment-of-momentum equations for heating and heated medium taking into account heat accumulation in the heat-transfer wall and distribution of parameters along the length of a heat exchanger

  9. Estimation of metallurgical parameters of flotation process from froth visual features

    Directory of Open Access Journals (Sweden)

    Mohammad Massinaei

    2015-06-01

    Full Text Available The estimation of metallurgical parameters of flotation process from froth visual features is the ultimate goal of a machine vision based control system. In this study, a batch flotation system was operated under different process conditions and metallurgical parameters and froth image data were determined simultaneously. Algorithms have been developed for measuring textural and physical froth features from the captured images. The correlation between the froth features and metallurgical parameters was successfully modeled, using artificial neural networks. It has been shown that the performance parameters of flotation process can be accurately estimated from the extracted image features, which is of great importance for developing automatic control systems.

  10. Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release.

    Science.gov (United States)

    Liu, Jingqing; Shentu, Huabin; Chen, Huanyu; Ye, Ping; Xu, Bing; Zhang, Yifu; Bastani, Hamid; Peng, Hongxi; Chen, Lei; Zhang, Tuqiao

    2017-11-01

    The long-term stagnation in metal water supply pipes, usually caused by intermittent consumption patterns, will cause significant iron release and water quality deterioration, especially at the terminus of pipelines. Another common phenomenon at the terminus of pipelines is leakage, which is considered helpful by allowing seepage of low-quality drinking water resulting from long-term stagnation. In this study, the effect of laminar flow on alleviating water quality deterioration under different leakage conditions was investigated, and the potential thresholds of the flow rate, which can affect the iron release process, were discussed. Based on a galvanized pipe and ductile cast iron pipe pilot platform, which was established at the terminus of pipelines, this research was carried out by setting a series of leakage rate gradients to analyze the influence of different leakage flow rates on iron release, as well as the relationship with chemical and biological parameters. The results showed that the water quality parameters were obviously influenced by the change in flow velocity. Water quality was gradually improved with an increase in flow velocity, but its change regularity reflected a diversity under different flow rates (p water distribution system, when the bulk water was at the critical laminar flow velocity, the concentration of total iron, the quantity and rate of total iron release remain relatively in an ideal and safe situation. Copyright © 2017. Published by Elsevier Ltd.

  11. Spatiotemporal impacts of LULC changes on hydrology from the perspective of runoff generation mechanism using SWAT model with evolving parameters

    Science.gov (United States)

    Li, Y.; Chang, J.; Luo, L.

    2017-12-01

    It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.

  12. Flavor-changing processes in extended technicolor

    International Nuclear Information System (INIS)

    Appelquist, Thomas; Piai, Maurizio; Christensen, Neil; Shrock, Robert

    2004-01-01

    We analyze constraints on a class of extended technicolor (ETC) models from neutral flavor-changing processes induced by (dimension-six) four-fermion operators. The ETC gauge group is taken to commute with the standard model gauge group. The models in the class are distinguished by how the left- and right-handed (L,R) components of the quarks and charged leptons transform under the ETC group. We consider K 0 -K 0 and other pseudoscalar meson mixings, and conclude that they are adequately suppressed if the L and R components of the relevant quarks are assigned to the same (fundamental or conjugate-fundamental) representation of the ETC group. Models in which the L and R components of the down-type quarks are assigned to relatively conjugate representations, while they can lead to realistic CKM mixing and intrafamily mass splittings, do not adequately suppress these mixing processes. We identify an approximate global symmetry that elucidates these behavioral differences and can be used to analyze other possible representation assignments. Flavor-changing decays, involving quarks and/or leptons, are adequately suppressed for any ETC representation assignment of the L and R components of the quarks, as well as the leptons. We draw lessons for future ETC model building

  13. On the design of experimental separation processes for maximum accuracy in the estimation of their parameters

    International Nuclear Information System (INIS)

    Volkman, Y.

    1980-07-01

    The optimal design of experimental separation processes for maximum accuracy in the estimation of process parameters is discussed. The sensitivity factor correlates the inaccuracy of the analytical methods with the inaccuracy of the estimation of the enrichment ratio. It is minimized according to the design parameters of the experiment and the characteristics of the analytical method

  14. Characterization of cutting parameters in the minimum quantity lubricant (MQL) machining process of a gearbox

    OpenAIRE

    Travieso Rodriguez, Jose Antonio; Gómez Gras, David; García Vilana, Silvia; Mainau Noguer, Ferran; Jerez Mesa, Ramón

    2015-01-01

    This paper aims to find the key process parameters for machining different parts of an automobile gearbox, commissioned by a company that needs to replace with the MQL lubrication system their current machining process based on cutting fluids. It particularly focuses on the definition of appropriate cutting parameters for machining under the MQL condition through a statistical method of Design of Experiments (DOE). Using a combination of recommended parameters, significant improvements in the...

  15. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    Science.gov (United States)

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Evolving chemometric models for predicting dynamic process parameters in viscose production

    Energy Technology Data Exchange (ETDEWEB)

    Cernuda, Carlos [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Lughofer, Edwin, E-mail: edwin.lughofer@jku.at [Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz (Austria); Suppan, Lisbeth [Kompetenzzentrum Holz GmbH, St. Peter-Str. 25, 4021 Linz (Austria); Roeder, Thomas; Schmuck, Roman [Lenzing AG, 4860 Lenzing (Austria); Hintenaus, Peter [Software Research Center, Paris Lodron University Salzburg (Austria); Maerzinger, Wolfgang [i-RED Infrarot Systeme GmbH, Linz (Austria); Kasberger, Juergen [Recendt GmbH, Linz (Austria)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer Quality assurance of process parameters in viscose production. Black-Right-Pointing-Pointer Automatic prediction of spin-bath concentrations based on FTNIR spectra. Black-Right-Pointing-Pointer Evolving chemometric models for efficiently handling changing system dynamics over time (no time-intensive re-calibration needed). Black-Right-Pointing-Pointer Significant reduction of huge errors produced by statistical state-of-the-art calibration methods. Black-Right-Pointing-Pointer Sufficient flexibility achieved by gradual forgetting mechanisms. - Abstract: In viscose production, it is important to monitor three process parameters in order to assure a high quality of the final product: the concentrations of H{sub 2}SO{sub 4}, Na{sub 2}SO{sub 4} and Z{sub n}SO{sub 4}. During on-line production these process parameters usually show a quite high dynamics depending on the fiber type that is produced. Thus, conventional chemometric models, which are trained based on collected calibration spectra from Fourier transform near infrared (FT-NIR) measurements and kept fixed during the whole life-time of the on-line process, show a quite imprecise and unreliable behavior when predicting the concentrations of new on-line data. In this paper, we are demonstrating evolving chemometric models which are able to adapt automatically to varying process dynamics by updating their inner structures and parameters in a single-pass incremental manner. These models exploit the Takagi-Sugeno fuzzy model architecture, being able to model flexibly different degrees of non-linearities implicitly contained in the mapping between near infrared spectra (NIR) and reference values. Updating the inner structures is achieved by moving the position of already existing local regions and by evolving (increasing non-linearity) or merging (decreasing non-linearity) new local linear predictors on demand, which are guided by distance-based and similarity criteria. Gradual

  17. Study of Dynamic Characteristics of Slow-Changing Process

    Directory of Open Access Journals (Sweden)

    Yinong Li

    2000-01-01

    Full Text Available A vibration system with slow-changing parameters is a typical nonlinear system. Such systems often occur in the working and controlled process of some intelligent structures when vibration and deformation exist synchronously. In this paper, a system with slow-changing stiffness, damping and mass is analyzed in an intelligent structure. The relationship between the amplitude and the frequency of the system is studied, and its dynamic characteristic is also discussed. Finally, a piecewise linear method is developed on the basis of the asymptotic method. The simulation and the experiment show that a suitable slow-changing stiffness can restrain the amplitude of the system when the system passes through the resonant region.

  18. Optimizing the equal channel angular pressing process (ECAP) operation parameters to produce bulk nanostructure materials

    International Nuclear Information System (INIS)

    Abushgair, K.

    2015-01-01

    In this work we were interested in doing simulation using finite elements analysis (FEA) to study the equal channel angular pressing process (ECAP), which is currently one of the most popular methods of severe plastic deformation Processes (SPD). for fabricating Ultra-Fine Grained (UFG) materials, because it allows very high strains to be imposed leading to extreme work hardening and microstructural refinement. The main object of this study is to establish the influence of main parameters which effect ECAP process which are magnitude of the die angle and the friction coefficient. The angle studied between (90-135°) degree, and magnitude of the friction coefficient μ between (0.12-0.6), and number of pass. The samples were made from aluminum alloy at room temperature with (15X 15) mm cross section and 150 mm length. The simulation result shows that normal elastic strain, shears elastic strain, and max. shear elastic strain increased, when changing the angle from 90° to 100°. and decrease between the angle 110° to 135°. Also the total deformation increased when we change die angle from 90° to 135°. By studding the friction effect on the die and sample we noted that increasing the friction coefficient from 0.12 to 0.6, normal elastic strain, and shear elastic strain increased and increasing the friction coefficient from 0.1 to 0.6 decrease the normal and shear stress

  19. Intelligent methods for the process parameter determination of plastic injection molding

    Science.gov (United States)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  20. Thermo-economic analysis of combined power plants with changing economic parameters

    International Nuclear Information System (INIS)

    Bidini, G.; Desideri, U.; Facchini, B.

    1991-01-01

    A method of thermo-economic analysis for the choice of optimal thermodynamic parameters of steam bottoming cycles in combined cycle power plants is presented. By keeping the thermodynamic aspects separated from the economic aspects, this method allows designers to easily perform a sensitivity analysis of the change in the economic parameters

  1. Multi-parameters monitoring during traditional Chinese medicine concentration process with near infrared spectroscopy and chemometrics

    Science.gov (United States)

    Liu, Ronghua; Sun, Qiaofeng; Hu, Tian; Li, Lian; Nie, Lei; Wang, Jiayue; Zhou, Wanhui; Zang, Hengchang

    2018-03-01

    As a powerful process analytical technology (PAT) tool, near infrared (NIR) spectroscopy has been widely used in real-time monitoring. In this study, NIR spectroscopy was applied to monitor multi-parameters of traditional Chinese medicine (TCM) Shenzhiling oral liquid during the concentration process to guarantee the quality of products. Five lab scale batches were employed to construct quantitative models to determine five chemical ingredients and physical change (samples density) during concentration process. The paeoniflorin, albiflorin, liquiritin and samples density were modeled by partial least square regression (PLSR), while the content of the glycyrrhizic acid and cinnamic acid were modeled by support vector machine regression (SVMR). Standard normal variate (SNV) and/or Savitzkye-Golay (SG) smoothing with derivative methods were adopted for spectra pretreatment. Variable selection methods including correlation coefficient (CC), competitive adaptive reweighted sampling (CARS) and interval partial least squares regression (iPLS) were performed for optimizing the models. The results indicated that NIR spectroscopy was an effective tool to successfully monitoring the concentration process of Shenzhiling oral liquid.

  2. Parameter analysis on the ultrasonic TSV-filling process and electrochemical characters

    Science.gov (United States)

    Wang, Fuliang; Ren, Xinyu; Wang, Yan; Zeng, Peng; Zhou, Zhaohua; Xiao, Hongbin; Zhu, Wenhui

    2017-10-01

    As one of the key technologies in 3D packaging, through silicon via (TSV) interconnection technology has become a focus recently. In this paper, an electrodeposition method for TSV filling with the assistance of ultrasound and additives are introduced. Two important parameters i.e. current density and ultrasonic power are studied for TSV filling process and electrochemical properties. It is found that ultrasound can improve the quality of TSV-filling and change the TSV-filling mode. The experimental results also indicate that the filling rate enhances more significantly with decreasing current density under ultrasonic conditions than under silent conditions. In addition, according to the voltammetry curve, the increase of ultrasonic power can significantly increase the current density of cupric reduction, and decrease the thickness of diffusion layer. So that the reduction speed of copper ions is accelerated, resulting in a higher TSV-filling rate.

  3. Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo.

    Science.gov (United States)

    Sharifi, Soroosh; Murthy, Sudhir; Takács, Imre; Massoudieh, Arash

    2014-03-01

    One of the most important challenges in making activated sludge models (ASMs) applicable to design problems is identifying the values of its many stoichiometric and kinetic parameters. When wastewater characteristics data from full-scale biological treatment systems are used for parameter estimation, several sources of uncertainty, including uncertainty in measured data, external forcing (e.g. influent characteristics), and model structural errors influence the value of the estimated parameters. This paper presents a Bayesian hierarchical modeling framework for the probabilistic estimation of activated sludge process parameters. The method provides the joint probability density functions (JPDFs) of stoichiometric and kinetic parameters by updating prior information regarding the parameters obtained from expert knowledge and literature. The method also provides the posterior correlations between the parameters, as well as a measure of sensitivity of the different constituents with respect to the parameters. This information can be used to design experiments to provide higher information content regarding certain parameters. The method is illustrated using the ASM1 model to describe synthetically generated data from a hypothetical biological treatment system. The results indicate that data from full-scale systems can narrow down the ranges of some parameters substantially whereas the amount of information they provide regarding other parameters is small, due to either large correlations between some of the parameters or a lack of sensitivity with respect to the parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Hypertension and hematologic parameters in a community near a uranium processing facility

    International Nuclear Information System (INIS)

    Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Pinney, Susan M.; Puett, Robin; Porter, Dwayne; Vena, John E.; Hebert, James R.

    2010-01-01

    Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited

  5. Hypertension and hematologic parameters in a community near a uranium processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Sara E., E-mail: swagner@uga.edu [College of Public Health, Department of Epidemiology and Biostatistics, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602-7396 (United States); Burch, James B. [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC (United States); WJB Dorn Veteran' s Affairs Medical Center, Columbia, SC (United States); Bottai, Matteo [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); Pinney, Susan M. [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH (United States); Puett, Robin [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC (United States); Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC (United States); Porter, Dwayne [Arnold School of Public Health, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC (United States); Vena, John E. [College of Public Health, Department of Epidemiology and Biostatistics, Paul D. Coverdell Center for Biomedical and Health Sciences, University of Georgia, 500 D.W. Brooks Drive, Athens, GA 30602-7396 (United States); Hebert, James R. [Arnold School of Public Health, Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC (United States); South Carolina Statewide Cancer Prevention and Control Program, Columbia, SC (United States)

    2010-11-15

    Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited

  6. RIGOROUS PHOTOGRAMMETRIC PROCESSING OF CHANG'E-1 AND CHANG'E-2 STEREO IMAGERY FOR LUNAR TOPOGRAPHIC MAPPING

    OpenAIRE

    K. Di; Y. Liu; B. Liu; M. Peng

    2012-01-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D c...

  7. Grinding Parameter Optimization of Ultrasound-Aided Electrolytic in Process Dressing for Finishing Nanocomposite Ceramics

    Directory of Open Access Journals (Sweden)

    Fan Chen

    2016-01-01

    Full Text Available In order to achieve the precision and efficient processing of nanocomposite ceramics, the ultrasound-aided electrolytic in process dressing method was proposed. But how to realize grinding parameter optimization, that is, the maximum processing efficiency, on the premise of the assurance of best workpiece quality is a problem that needs to be solved urgently. Firstly, this research investigated the influence of grinding parameters on material removal rate and critical ductile depth, and their mathematic models based on the existing models were developed to simulate the material removal process. Then, on the basis of parameter sensitivity analysis based on partial derivative, the sensitivity models of material removal rates on grinding parameter were established and computed quantitatively by MATLAB, and the key grinding parameter for optimal grinding process was found. Finally, the theoretical analyses were verified by experiments: the material removal rate increases with the increase of grinding parameters, including grinding depth (ap, axial feeding speed (fa, workpiece speed (Vw, and wheel speed (Vs; the parameter sensitivity of material removal rate was in a descending order as ap>fa>Vw>Vs; the most sensitive parameter (ap was optimized and it was found that the better machining result has been obtained when ap was about 3.73 μm.

  8. Process parameter optimization based on principal components analysis during machining of hardened steel

    Directory of Open Access Journals (Sweden)

    Suryakant B. Chandgude

    2015-09-01

    Full Text Available The optimum selection of process parameters has played an important role for improving the surface finish, minimizing tool wear, increasing material removal rate and reducing machining time of any machining process. In this paper, optimum parameters while machining AISI D2 hardened steel using solid carbide TiAlN coated end mill has been investigated. For optimization of process parameters along with multiple quality characteristics, principal components analysis method has been adopted in this work. The confirmation experiments have revealed that to improve performance of cutting; principal components analysis method would be a useful tool.

  9. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    Science.gov (United States)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  10. Optimisation of process parameters on thin shell part using response surface methodology (RSM)

    Science.gov (United States)

    Faiz, J. M.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    This study is carried out to focus on optimisation of process parameters by simulation using Autodesk Moldflow Insight (AMI) software. The process parameters are taken as the input in order to analyse the warpage value which is the output in this study. There are some significant parameters that have been used which are melt temperature, mould temperature, packing pressure, and cooling time. A plastic part made of Polypropylene (PP) has been selected as the study part. Optimisation of process parameters is applied in Design Expert software with the aim to minimise the obtained warpage value. Response Surface Methodology (RSM) has been applied in this study together with Analysis of Variance (ANOVA) in order to investigate the interactions between parameters that are significant to the warpage value. Thus, the optimised warpage value can be obtained using the model designed using RSM due to its minimum error value. This study comes out with the warpage value improved by using RSM.

  11. Process-induced compositional changes of flaxseed.

    Science.gov (United States)

    Wanasundara, P K; Shahidi, F

    1998-01-01

    Flaxseed has been used as an edible grain in different parts of the world since ancient times. However, use of flaxseed oil has been limited due to its high content of polyunsaturated fatty acids. Nonetheless, alpha-linolenic acid, dietary fiber and lignans of flaxseed have regained attention. New varieties of flaxseed containing low levels of alpha-linolenic acid are available for edible oil extraction. Use of whole flaxseed in foods provides a means to utilise all of its nutrients and require minimum processing steps. However, the presence of cyanogenic glucosides and diglucosides in the seeds is a concern as they may release cyanide upon hydrolysis. In addition, the polyunsaturated fatty acids may undergo thermal or autooxidation when exposed to air or high temperatures that are used in food preparation. Studies todate on oxidation products of intact flaxseed lipids have not shown any harmful effects when flaxseed is included, up to 28%, in the baked products. Furthermore, cyanide levels produced as a result of autolysis are below the harmful limits to humans. However, the meals left after oil extraction require detoxification but, by solvent extraction, to reduce the harmful effects of cyanide when used in animal rations. Flaxseed meal is a good source of proteins; these could be isolated by complexation with sodium hexametaphosphate without changing their nutritional value or composition. In addition, the effect of germination on proteins, lipids, cyanogenic glycosides, and other minor constituents of flaxseed is discussed.

  12. Time-varying parameter models for catchments with land use change: the importance of model structure

    Science.gov (United States)

    Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid

    2018-05-01

    Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  13. Time-varying parameter models for catchments with land use change: the importance of model structure

    Directory of Open Access Journals (Sweden)

    S. Pathiraja

    2018-05-01

    Full Text Available Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2 in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.

  14. MODELING OF WATER DISTRIBUTION SYSTEM PARAMETERS AND THEIR PARTICULAR IMPORTANCE IN ENVIRONMENT ENGINEERING PROCESSES

    Directory of Open Access Journals (Sweden)

    Agnieszka Trębicka

    2016-05-01

    Full Text Available The object of this study is to present a mathematical model of water-supply network and the analysis of basic parameters of water distribution system with a digital model. The reference area is Kleosin village, municipality Juchnowiec Kościelny in podlaskie province, located at the border with Białystok. The study focused on the significance of every change related to the quality and quantity of water delivered to WDS through modeling the basic parameters of water distribution system in different variants of work in order to specify new, more rational ways of exploitation (decrease in pressure value and to define conditions for development and modernization of the water-supply network, with special analysis of the scheme, in frames of specification of the most dangerous places in the network. The analyzed processes are based on copying and developing the existing state of water distribution sub-system (the WDS with the use of mathematical modeling that includes the newest accessible computer techniques.

  15. [Dynamics of hormonal parameters changes in workers affected by noise nuisance].

    Science.gov (United States)

    Lizarev, A V

    2008-01-01

    The dynamics of hormonal parameters changes in workers of noise dangerous occupations was studied over 5 year period. It was shown that with extension of length of service the content of hormones in peripheral blood of patients with sensorineural deafness has not changed significantly.

  16. Fast reactor parameter optimization taking into account changes in fuel charge type during reactor operation time

    International Nuclear Information System (INIS)

    Afrin, B.A.; Rechnov, A.V.; Usynin, G.B.

    1987-01-01

    The formulation and solution of optimization problem for parameters determining the layout of the central part of sodium cooled power reactor taking into account possible changes in fuel charge type during reactor operation time are performed. The losses under change of fuel composition type for two reactor modifications providing for minimum doubling time for oxide and carbide fuels respectively, are estimated

  17. Seasonal changes in climatic parameters and their relationship with the incidence of pneumococcal bacteraemia in Denmark

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Lundbye-Christensen, Søren; Thomsen, R.W.

    2008-01-01

    The seasonal variation in the incidence of invasive pneumococcal disease is well recognized, but little is known about its relationship with actual changes in climatic parameters. In this 8-year longitudinal population-based study in Denmark, a harmonic sinusoidal regression model was used...... to examine whether preceding changes in climatic parameters corresponded with subsequent variations in the incidence of pneumococcal bacteraemia, independently of seasonal variation. The study shows that changes in temperature can be used to closely predict peaks in the incidence of pneumococcal bacteraemia...

  18. CO 2 laser cutting of MDF . 1. Determination of process parameter settings

    Science.gov (United States)

    Lum, K. C. P.; Ng, S. L.; Black, I.

    2000-02-01

    This paper details an investigation into the laser processing of medium-density fibreboard (MDF). Part 1 reports on the determination of process parameter settings for the effective cutting of MDF by CO 2 laser, using an established experimental methodology developed to study the interrelationship between and effects of varying laser set-up parameters. Results are presented for both continuous wave (CW) and pulse mode (PM) cutting, and the associated cut quality effects have been commented on.

  19. Self-adaptive Green-Ampt infiltration parameters obtained from measured moisture processes

    Directory of Open Access Journals (Sweden)

    Long Xiang

    2016-07-01

    Full Text Available The Green-Ampt (G-A infiltration model (i.e., the G-A model is often used to characterize the infiltration process in hydrology. The parameters of the G-A model are critical in applications for the prediction of infiltration and associated rainfall-runoff processes. Previous approaches to determining the G-A parameters have depended on pedotransfer functions (PTFs or estimates from experimental results, usually without providing optimum values. In this study, rainfall simulators with soil moisture measurements were used to generate rainfall in various experimental plots. Observed runoff data and soil moisture dynamic data were jointly used to yield the infiltration processes, and an improved self-adaptive method was used to optimize the G-A parameters for various types of soil under different rainfall conditions. The two G-A parameters, i.e., the effective hydraulic conductivity and the effective capillary drive at the wetting front, were determined simultaneously to describe the relationships between rainfall, runoff, and infiltration processes. Through a designed experiment, the method for determining the G-A parameters was proved to be reliable in reflecting the effects of pedologic background in G-A type infiltration cases and deriving the optimum G-A parameters. Unlike PTF methods, this approach estimates the G-A parameters directly from infiltration curves obtained from rainfall simulation experiments so that it can be used to determine site-specific parameters. This study provides a self-adaptive method of optimizing the G-A parameters through designed field experiments. The parameters derived from field-measured rainfall-infiltration processes are more reliable and applicable to hydrological models.

  20. Numerical study of the evaporation process and parameter estimation analysis of an evaporation experiment

    Directory of Open Access Journals (Sweden)

    K. Schneider-Zapp

    2010-05-01

    Full Text Available Evaporation is an important process in soil-atmosphere interaction. The determination of hydraulic properties is one of the crucial parts in the simulation of water transport in porous media. Schneider et al. (2006 developed a new evaporation method to improve the estimation of hydraulic properties in the dry range. In this study we used numerical simulations of the experiment to study the physical dynamics in more detail, to optimise the boundary conditions and to choose the optimal combination of measurements. The physical analysis exposed, in accordance to experimental findings in the literature, two different evaporation regimes: (i a soil-atmosphere boundary layer dominated regime (regime I close to saturation and (ii a hydraulically dominated regime (regime II. During this second regime a drying front (interface between unsaturated and dry zone with very steep gradients forms which penetrates deeper into the soil as time passes. The sensitivity analysis showed that the result is especially sensitive at the transition between the two regimes. By changing the boundary conditions it is possible to force the system to switch between the two regimes, e.g. from II back to I. Based on this findings a multistep experiment was developed. The response surfaces for all parameter combinations are flat and have a unique, localised minimum. Best parameter estimates are obtained if the evaporation flux and a potential measurement in 2 cm depth are used as target variables. Parameter estimation from simulated experiments with realistic measurement errors with a two-stage Monte-Carlo Levenberg-Marquardt procedure and manual rejection of obvious misfits lead to acceptable results for three different soil textures.

  1. Analysis the parameters of seed quality in ns sunflower hybrid after processing in gravity separator

    Directory of Open Access Journals (Sweden)

    Jokić Goran

    2016-01-01

    Full Text Available This paper analyzed the processed seed of five sunflower hybrid seed developed at the Institute of Field and Vegetable Crops in Novi Sad before and after processing in gravity separator. The cultivars were Pegaz, Duško, NS Fantazija, Sumo 1 PR and NS Oskar. The analysis was conducted on seed lots processed in 2015 and involved the following parameters: seed purity percentage, 1.000-seed weight, germination energy, germination, seed moisture, number of sclerotinia per 1.000. The results showed that all the parameters of seed quality of sunflower hybrids were better after processing seeds in the gravity separator.

  2. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is a sintering process based on the resistance heating principle, which makes it faster than conventional sintering. The process is investigated as a function of the main process parameters, namely compacting pressure, electrical current density and sintering time....... The present work is focused on analysing the influence of these process parameters on the final density of a disc sample made from commercially pure titanium powder. Applying the design of experiments (DoE) approach, the electrical current was seen to be of largest influence. The maximum obtained density...

  3. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    Science.gov (United States)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  4. Optimization of process parameters in welding of dissimilar steels using robot TIG welding

    Science.gov (United States)

    Navaneeswar Reddy, G.; VenkataRamana, M.

    2018-03-01

    Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.

  5. TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field

    International Nuclear Information System (INIS)

    O’Brien, D. J.; Sawakuchi, G. O.

    2016-01-01

    Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. A point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR 20 10 , the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR 20 10 is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future dosimetry protocols. This

  6. TH-CD-BRA-07: MRI-Linac Dosimetry: Parameters That Change in a Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    O’Brien, D. J.; Sawakuchi, G. O. [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: In MRI-linac integrated systems, the presence of the magnetic (B-)field has a large impact of the dose-distribution and the dose-responses of detectors; yet established protocols and previous experience may lead to assumptions about the commissioning process that are no longer valid. This study quantifies parameters that change when performing dosimetry with an MRI-linac including beam quality specifiers and the effective-point-of-measurement (EPOM) of ionization chambers. Methods: We used the Geant4 Monte Carlo code for this work with physics parameters that pass the Fano cavity test to within 0.1% for the simulated conditions with and without a 1.5 T B-field. A point source model with the energy distribution of an MRI-linac beam was used with and without the B-field to calculate the beam quality specifiers %dd(10)× and TPR{sup 20}{sub 10}, the variation of chamber response with orientation and the how the B-field affects the EPOM of ionization chambers by comparing depth-dose curves calculated in water to those generated by a model PTW30013 Farmer chamber. Results: The %dd(10)× changes by over 2% in the presence of the B-field while the TPR{sup 20}{sub 10} is unaffected. Ionization chamber dose-response is known to depend on the orientation w.r.t. the B-field, but two alternative perpendicular orientations (anti-parallel to each other) also differ in dose-response by over 1%. The B-field shifts the EPOM downstream (closer to the chamber center) but it is also shifted laterally by 0.27 times the chamber’s cavity radius. Conclusion: The EPOM is affected by the B-field and it even shifts laterally. The relationship between %dd(10)× and the Spencer-Attix stopping powers is also changed. Care must be taken when using chambers perpendicular to the field as the dose-response changes depending on which perpendicular orientation is used. All of these effects must be considered when performing dosimetry in B-fields and should be accounted for in future

  7. A parameter estimation for DC servo motor by using optimization process

    International Nuclear Information System (INIS)

    Arjoni Amir

    2010-01-01

    Modeling and simulation parameters of DC servo motor using Matlab Simulink software have been done. The objective to define the DC servo motor parameter estimation is to get DC servo motor parameter values (B, La, Ra, Km, J) which are significant value that can be used for actuation process of control systems. In the analysis of control systems DC the servo motor expressed by transfer function equation to make faster to be analyzed as a component of the actuator. To obtain the data model parameters and initial conditions of the DC servo motors is then carried out the processor modeling and simulation in which the DC servo motor combined with other components. To obtain preliminary data of the DC servo motor parameters as estimated venue, it is obtained from the data factory of the DC servo motor. The initial data parameters of the DC servo motor are applied for the optimization process by using nonlinear least square algorithm and minimize the cost function value so that the DC servo motors parameter values are obtained significantly. The result of the optimization process of the DC servo motor parameter values are B = 0.039881, J= 1.2608e-007, Km = 0.069648, La = 2.3242e-006 and Ra = 1.8837. (author)

  8. Warpage improvement on wheel caster by optimizing the process parameters using genetic algorithm (GA)

    Science.gov (United States)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, the defects will always encountered and affected the final product shape and functionality. This study is concerning on minimizing warpage and optimizing the process parameter of injection moulding part. Apart from eliminating product wastes, this project also giving out best recommended parameters setting. This research studied on five parameters. The optimization showed that warpage have been improved 42.64% from 0.6524 mm to 0.30879 mm in Autodesk Moldflow Insight (AMI) simulation result and Genetic Algorithm (GA) respectively.

  9. Condition of organ of vision and free radical process parameters in liquidators of the Chernobyl accident

    International Nuclear Information System (INIS)

    Sosnovsky, S.; Danilicnev, V.; Nikiforov, A.; Zybina, N.; Nesteruk, L.

    1997-01-01

    84 liquidators of consequences of Chernobyl APS accident from the age of 28 to 58 were examined. The control group was made with 22 men from the age of 28 to 52. A certain increase of infringement of a transparency of lens without typical attributes of radiating cataract is revealed in the experimental group. Electrophysiological investigation (EPI) shows a certain reduction of amplitude of a wave ''a'' of macular electroretinogram (ERG) on green stimulus, amplitude of a main component and lengthening of an interpeak time interval of flicker ERG 10 Hz is revealed. These changes indicate the tendency to reduction of functional activity of a retina (first of all at a level of photoreceptors) in paramacular and in a smaller degree in peripheral zones among liquidators. The parameters of contrast sensitivity are definitely reduced in the experimental group for all stimuli on all spatial frequencies. Luminous and colour sensitivity to stimuli of different colour in the experimental group is definitely reduced in all central field of sight, but in paracentral zone the degree of reduction is higher. We investigated the parameters of oxidative stress in both groups. Definite increase of production of the reactive oxygen species and disbalance of a glutathione link of antioxidant protection are revealed. Authentic correlation dependences are revealed: moderate direct correlation - between a level of glutathione reductase and amplitude of a main component of flicker ERG 10 Hz, between a level of oxidized glutathione and interpeak time interval of flicker ERG 10 Hz, inverse correlation - between the level of oxidized glutathione and amplitude of a main component of flicker ERG 10 Hz. In view of large spontaneous activity of free radical processes in a retina in norm the received results can explain revealed changes of an organ of vision. (author)

  10. Condition of organ of vision and free radical process parameters in liquidators of the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Sosnovsky, S; Danilicnev, V [Military Medical Academy, Saint-Petersburg (Russian Federation); Nikiforov, A; Zybina, N [All-Russian Center of Emergency and Radiation Medicine, Saint-Petersburg (Russian Federation); Nesteruk, L [Helmholtz Inst. of Eyes Diseases, Moscow (Russian Federation)

    1997-11-01

    84 liquidators of consequences of Chernobyl APS accident from the age of 28 to 58 were examined. The control group was made with 22 men from the age of 28 to 52. A certain increase of infringement of a transparency of lens without typical attributes of radiating cataract is revealed in the experimental group. Electrophysiological investigation (EPI) shows a certain reduction of amplitude of a wave ``a`` of macular electroretinogram (ERG) on green stimulus, amplitude of a main component and lengthening of an interpeak time interval of flicker ERG 10 Hz is revealed. These changes indicate the tendency to reduction of functional activity of a retina (first of all at a level of photoreceptors) in paramacular and in a smaller degree in peripheral zones among liquidators. The parameters of contrast sensitivity are definitely reduced in the experimental group for all stimuli on all spatial frequencies. Luminous and colour sensitivity to stimuli of different colour in the experimental group is definitely reduced in all central field of sight, but in paracentral zone the degree of reduction is higher. We investigated the parameters of oxidative stress in both groups. Definite increase of production of the reactive oxygen species and disbalance of a glutathione link of antioxidant protection are revealed. Authentic correlation dependences are revealed: moderate direct correlation - between a level of glutathione reductase and amplitude of a main component of flicker ERG 10 Hz, between a level of oxidized glutathione and interpeak time interval of flicker ERG 10 Hz, inverse correlation - between the level of oxidized glutathione and amplitude of a main component of flicker ERG 10 Hz. In view of large spontaneous activity of free radical processes in a retina in norm the received results can explain revealed changes of an organ of vision. (author). 5 refs.

  11. Legitimacy gaps and processes of institutional change

    DEFF Research Database (Denmark)

    Rocha, Robson Silva Sø

    2012-01-01

    This article investigates the organizational changes triggered by the implementation of certified management systems and explores how institutionalized organizational practices change over time. The research identifies two sources, and two distinct mechanisms of change. The first source is the re......This article investigates the organizational changes triggered by the implementation of certified management systems and explores how institutionalized organizational practices change over time. The research identifies two sources, and two distinct mechanisms of change. The first source...... is the regulation imposed by the European Union, the second the demand for healthier and safer workplaces being made by subordinate actors. The two mechanisms of change identified were: leverage, in which organizational actors use exogenous sources of power to leverage their demands; and accumulation, in which...

  12. Measurement and analysis of geometric parameters of human carotid bifurcation using image post-processing technique

    International Nuclear Information System (INIS)

    Xue Yunjing; Gao Peiyi; Lin Yan

    2008-01-01

    Objective: To investigate variation in the carotid bifurcation geometry of adults of different age by MR angiography images combining image post-processing technique. Methods: Images of the carotid bifurcations of 27 young adults (≤40 years old) and 30 older subjects ( > 40 years old) were acquired via contrast-enhanced MR angiography. Three dimensional (3D) geometries of the bifurcations were reconstructed and geometric parameters were measured by post-processing technique. Results: The geometric parameters of the young versus older groups were as follows: bifurcation angle (70.268 degree± 16.050 degree versus 58.857 degree±13.294 degree), ICA angle (36.893 degree±11.837 degree versus 30.275 degree±9.533 degree), ICA planarity (6.453 degree ± 5.009 degree versus 6.263 degree ±4.250 degree), CCA tortuosity (0.023±0.011 versus 0.014± 0.005), ICA tortuosity (0.070±0.042 versus 0.046±0.022), ICA/CCA diameter ratio (0.693± 0.132 versus 0.728±0.106), ECA/CCA diameter ratio (0.750±0.123 versus 0.809±0.122), ECA/ ICA diameter ratio (1.103±0.201 versus 1.127±0.195), bifurcation area ratio (1.057±0.281 versus 1.291±0.252). There was significant statistical difference between young group and older group in-bifurcation angle, ICA angle, CCA tortuosity, ICA tortuosity, ECA/CCA and bifurcation area ratio (F= 17.16, 11.74, 23.02, 13.38, 6.54, 22.80, respectively, P<0.05). Conclusions: MR angiography images combined with image post-processing technique can reconstruct 3D carotid bifurcation geometry and measure the geometric parameters of carotid bifurcation in vivo individually. It provides a new and convenient method to investigate the relationship of vascular geometry and flow condition with atherosclerotic pathological changes. (authors)

  13. Optimization of TRPO process parameters for americium extraction from high level waste

    International Nuclear Information System (INIS)

    Chen Jing; Wang Jianchen; Song Chongli

    2001-01-01

    The numerical calculations for Am multistage fractional extraction by trialkyl phosphine oxide (TRPO) were verified by a hot test. 1750L/t-U high level waste (HLW) was used as the feed to the TRPO process. The analysis used the simple objective function to minimize the total waste content in the TRPO process streams. Some process parameters were optimized after other parameters were selected. The optimal process parameters for Am extraction by TRPO are: 10 stages for extraction and 2 stages for scrubbing; a flow rate ratio of 0.931 for extraction and 4.42 for scrubbing; nitric acid concentration of 1.35 mol/L for the feed and 0.5 mol/L for the scrubbing solution. Finally, the nitric acid and Am concentration profiles in the optimal TRPO extraction process are given

  14. Optimization of a Cu CMP process modeling parameters of nanometer integrated circuits

    International Nuclear Information System (INIS)

    Ruan Wenbiao; Chen Lan; Ma Tianyu; Fang Jingjing; Zhang He; Ye Tianchun

    2012-01-01

    A copper chemical mechanical polishing (Cu CMP) process is reviewed and analyzed from the view of chemical physics. Three steps Cu CMP process modeling is set up based on the actual process of manufacturing and pattern-density-step-height (PDSH) modeling from MIT. To catch the pattern dependency, a 65 nm testing chip is designed and processed in the foundry. Following the model parameter extraction procedure, the model parameters are extracted and verified by testing data from the 65 nm testing chip. A comparison of results between the model predictions and test data show that the former has the same trend as the latter and the largest deviation is less than 5 nm. Third party testing data gives further evidence to support the great performance of model parameter optimization. Since precise CMP process modeling is used for the design of manufacturability (DFM) checks, critical hotspots are displayed and eliminated, which will assure good yield and production capacity of IC. (semiconductor technology)

  15. Optimization of process parameters of ECM by RSM on AISI 202 steel

    Directory of Open Access Journals (Sweden)

    P. Alex John Britto

    2015-12-01

    Full Text Available The machining of complex shaped designs was difficult earlier, but with the advent of the newer machining processes incorporating in it electrical, chemical & mechanical processes, manufacturing has redefined itself. Especially, the Electrochemical Machining (ECM process is used to machine the hard to cut materials without producing heat and friction. Hence, in this work, the ECM process has been chosen to machine SS AISI 202 steel. This study establishes the effect of process parameters such as voltage, current and concentration of electrolyte on the responses on material removal rate (MRR. In this work, second-order quadratic models were developed for MRR, considering the electrolyte concentration, voltage and current as the machining parameters, using central composite design. The developed models were used for Response Surface Methodology (RSM optimization by desirability function approach to determine the optimum machining parameters.

  16. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

    Science.gov (United States)

    Sriram, Krishnan; Lin, Gary X; Jefferson, Amy M; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J; McKinney, Walter; Jackson, Mark; Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L; Roberts, Jenny R; Frazer, David G; Antonini, James M

    2015-02-03

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson's disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m(3); 3h/day × 5 d/week × 2 weeks) to fumes generated by gas-metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks. Published by Elsevier Ireland Ltd.

  17. Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes

    International Nuclear Information System (INIS)

    Sriram, Krishnan; Lin, Gary X.; Jefferson, Amy M.; Stone, Samuel; Afshari, Aliakbar; Keane, Michael J.; McKinney, Walter; Jackson, Mark; Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared L.; Roberts, Jenny R.; Frazer, David G.; Antonini, James M.

    2015-01-01

    Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40 mg/m 3 ; 3 h/day × 5 d/week × 2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25 V; RVSS) or high voltage (30 V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks

  18. Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes

    International Nuclear Information System (INIS)

    Bachoc, Francois

    2014-01-01

    Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The asymptotic covariance matrices of the covariance parameter estimators are deterministic functions of the regularity parameter. By means of an exhaustive study of the asymptotic covariance matrices, it is shown that the estimation is improved when the regular grid is strongly perturbed. Hence, an asymptotic confirmation is given to the commonly admitted fact that using groups of observation points with small spacing is beneficial to covariance function estimation. Finally, the prediction error, using a consistent estimator of the covariance parameters, is analyzed in detail. (authors)

  19. Optimization of injection molding process parameters for a plastic cell phone housing component

    Science.gov (United States)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  20. Gaussian process inference for estimating pharmacokinetic parameters of dynamic contrast-enhanced MR images.

    Science.gov (United States)

    Wang, Shijun; Liu, Peter; Turkbey, Baris; Choyke, Peter; Pinto, Peter; Summers, Ronald M

    2012-01-01

    In this paper, we propose a new pharmacokinetic model for parameter estimation of dynamic contrast-enhanced (DCE) MRI by using Gaussian process inference. Our model is based on the Tofts dual-compartment model for the description of tracer kinetics and the observed time series from DCE-MRI is treated as a Gaussian stochastic process. The parameter estimation is done through a maximum likelihood approach and we propose a variant of the coordinate descent method to solve this likelihood maximization problem. The new model was shown to outperform a baseline method on simulated data. Parametric maps generated on prostate DCE data with the new model also provided better enhancement of tumors, lower intensity on false positives, and better boundary delineation when compared with the baseline method. New statistical parameter maps from the process model were also found to be informative, particularly when paired with the PK parameter maps.

  1. Influence of process parameters on threshold voltage and leakage current in 18nm NMOS device

    Science.gov (United States)

    Atan, Norani Binti; Ahmad, Ibrahim Bin; Majlis, Burhanuddin Bin Yeop; Fauzi, Izzati Binti Ahmad

    2015-04-01

    The process parameters are very crucial factor in the development of transistors. There are many process parameters that influenced in the development of the transistors. In this research, we investigate the effects of the process parameters variation on response characteristics such as threshold voltage (VTH) and sub-threshold leakage current (IOFF) in 18nm NMOS device. The technique to identify semiconductor process parameters whose variability would impact most on the device characteristic is realized through the process by using Taguchi robust design method. This paper presents the process parameters that influenced in threshold voltage (VTH) and sub-threshold leakage current (IOFF) which includes the Halo Implantation, Compensation Implantation, Adjustment Threshold voltage Implantation and Source/Drain Implantation. The design, fabrication and characterization of 18nm HfO2/TiSi2 NMOS device is simulated and performed via a tool called Virtual Wafer Fabrication (VWF) Silvaco TCAD Tool known as ATHENA and ATLAS simulators. These two simulators were combined with Taguchi L9 Orthogonal method to aid in the design and the optimization of the process parameters to achieve the optimum average of threshold voltage (VTH) and sub-threshold leakage current, (IOFF) in 18nm device. Results from this research were obtained; where Halo Implantation dose was identified as one of the process parameter that has the strongest effect on the response characteristics. Whereby the Compensation Implantation dose was identified as an adjustment factor to get the nominal values of threshold voltage VTH, and sub-threshold leakage current, IOFF for 18nm NMOS devices equal to 0.302849 volts and 1.9123×10-16 A/μm respectively. The design values are referred to ITRS 2011 prediction.

  2. Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J.; Sarradin, J.; Flaud, V.; Tedenac, J.C. [Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5 (France); Frety, N. [Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, Place E. Bataillon, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-09-22

    The effects of processing parameters on the properties of tantalum nitride thin films deposited by radio frequency reactive sputtering have been investigated. The influence of the N{sub 2} partial and (Ar + N{sub 2}) total gas pressures as well as the sputtering power on the microstructure and electrical properties is reported. Rising the N{sub 2} partial pressure, from 2 to 10.7%, induces a change in the composition of the {delta}-TaN phase, from TaN to TaN{sub 1.13}. This composition change is associated with a drastic increase of the electrical resistivity over a 7.3% N{sub 2} partial pressure. The total gas pressure is revealed to strongly affect the film microstructure since a variation in both composition and grain size is observed when the gas pressure rises from 6.8 to 24.6 Pa. When the sputtering power varied between 50 and 110 W, an increase of the grain size related to a decrease of the electrical resistivity is observed.

  3. Multiple and sign-changing solutions for discrete Robin boundary value problem with parameter dependence

    Directory of Open Access Journals (Sweden)

    Long Yuhua

    2017-12-01

    Full Text Available In this paper, we study second-order nonlinear discrete Robin boundary value problem with parameter dependence. Applying invariant sets of descending flow and variational methods, we establish some new sufficient conditions on the existence of sign-changing solutions, positive solutions and negative solutions of the system when the parameter belongs to appropriate intervals. In addition, an example is given to illustrate our results.

  4. Planning successful change incorporating processes and people.

    Science.gov (United States)

    Hewitt-Taylor, Jaqui

    Implementing change is a core element of developing healthcare practice. While planning the practical aspects of change is vital, so too is considering how people will perceive and be affected by an innovation, including what individuals and teams will gain or lose, who the opinion leaders will be and the influence of workplace culture. The aim of this article is to highlight some of the considerations that may be useful in planning successful change.

  5. Differential processing and attitude change following majority versus minority arguments

    NARCIS (Netherlands)

    de Dreu, C.K.W.; van de Vliert, E.

    1996-01-01

    Tested the hypothesis that majority (MAJ) influence induces convergent processing, which stimulates attitude change (AC) on focal issues (FISs), whereas minority (MIN) influence produces divergent processing, which might stimulate change on related attitudes. Ss were 86 high school students. Results

  6. Differential processing and attitude change following majority versus minority arguments

    NARCIS (Netherlands)

    DeDreu, CKW; DeVries, NK

    This experiment tested the general hypothesis that majority influence induces convergent processing, which stimulates attitude change on focal issues, whereas minority influence sometimes produces divergent processing, which might stimulate change on related attitudes. Results of a numerical support

  7. Resilience of Key Biological Parameters of the Senegalese Flat Sardinella to Overfishing and Climate Change.

    Science.gov (United States)

    Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice

    2016-01-01

    The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.

  8. The influence of the surface parameter changes onto the phonon states in ultrathin crystalline films

    Science.gov (United States)

    Šetrajčić, Jovan P.; Ilić, Dušan I.; Jaćimovski, Stevo K.

    2018-04-01

    In this paper, we have analytically investigated how the changes in boundary surface parameters influence the phonon dispersion law in ultrathin films of the simple cubic crystalline structure. Spectra of possible phonon states are analyzed using the method of two-time dependent Green's functions and for the diverse combination of boundary surface parameters, this problem was presented numerically and graphically. It turns out that for certain values and combinations of parameters, displacement of dispersion branches outside of bulk zone occurs, leading to the creation of localized phonon states. This fact is of great importance for the heat removal, electrical conductivity and superconducting properties of ultrathin films.

  9. Optimization of process parameters in precipitation for consistent quality UO{sub 2} powder production

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N., E-mail: misra@nfc.gov.in [Nuclear Fuel Complex, Hyderabad (India)

    2013-07-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO{sub 2} powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO{sub 2} powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO{sub 2} powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  10. Optimization of process parameters in precipitation for consistent quality UO2 powder production

    International Nuclear Information System (INIS)

    Tiwari, S.K.; Reddy, A.L.V.; Venkataswamy, J.; Misra, M.; Setty, D.S.; Sheela, S.; Saibaba, N.

    2013-01-01

    Nuclear reactor grade natural uranium dioxide powder is being produced through precipitation route, which is further processed before converting into sintered pellets used in the fabrication of PHWR fuel assemblies of 220 and 540 MWe type reactors. The process of precipitating Uranyl Nitrate Pure Solution (UNPS) is an important step in the UO 2 powder production line, where in soluble uranium is transformed into solid form of Ammonium Uranate (AU), which in turn reflects and decides the powder characteristics. Precipitation of UNPS with vapour ammonia is being carried out in semi batch process and process parameters like ammonia flow rate, temperature, concentration of UNPS and free acidity of UNPS are very critical and decides the UO 2 powder quality. Variation in these critical parameters influences powder characteristics, which in turn influences the sinterability of UO 2 powder. In order to get consistent powder quality and sinterability the critical parameter like ammonia flow rate during precipitation is studied, optimized and validated. The critical process parameters are controlled through PLC based automated on-line data acquisition systems for achieving consistent powder quality with increased recovery and production. The present paper covers optimization of process parameters and powder characteristics. (author)

  11. Climate change: Scientific background and process

    OpenAIRE

    Alfsen, Knut H.; Fuglestvedt, Jan S.; Seip, Hans Martin; Skodvin, Tora

    2000-01-01

    The paper gives a brief description of natural and man-made forces behind climate change and outlines climate variations in the past together with a brief synopsis likely future impacts of anthropogenic emissions of greenhouse gases. The paper also gives a briefing on the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC).

  12. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  13. DECAB: process development of a phase change absorption process

    NARCIS (Netherlands)

    Sanchez Fernandez, E.; Goetheer, E.L.V.

    2011-01-01

    This work describes the conceptual design of a novel separation process for CO2 removal from flue gas based on precipitating solvents. The process here described (DECAB) is an enhanced CO2 absorption based on the Le Chatelier's principle, which states that reaction equilibrium can be shifted by

  14. Effect of process parameters on the dryness of molded pulp products

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    2016-01-01

    Molded pulp products are made from cellulose fibers dispersed in water then formed, drained and dried. As in the conventional papermaking process, the most energ yintensive operation (including time) is drying. To gain a better understanding of the process parameters involved and to investigate...

  15. An analysis to optimize the process parameters of friction stir welded ...

    African Journals Online (AJOL)

    The friction stir welding (FSW) of steel is a challenging task. Experiments are conducted here, with a tool having a conical pin of 0.4mm clearance. The process parameters are optimized by using the Taguchi technique based on Taguchi's L9 orthogonal array. Experiments have been conducted based on three process ...

  16. Influence analysis of sewage sludge methane fermentation parameters on process efficiency

    Directory of Open Access Journals (Sweden)

    Катерина Борисівна Сорокіна

    2016-12-01

    Full Text Available The efficiency dependence of sewage sludge organic matter decomposition from organization and conditions of the process is analyzed. Support of the optimal values of several parameters ensures to provide completeness of the sludge fermentation process and obtain biogas in calculated amount. Biogas utilization reduces costs for reactor heating and provides additional obtaining of other types of energy

  17. Influence analysis of sewage sludge methane fermentation parameters on process efficiency

    OpenAIRE

    Катерина Борисівна Сорокіна

    2016-01-01

    The efficiency dependence of sewage sludge organic matter decomposition from organization and conditions of the process is analyzed. Support of the optimal values of several parameters ensures to provide completeness of the sludge fermentation process and obtain biogas in calculated amount. Biogas utilization reduces costs for reactor heating and provides additional obtaining of other types of energy

  18. Effect of spray drying processing parameters on the insecticidal activity of two encapsulated formulations of baculovirus

    Science.gov (United States)

    The aim of this work was to evaluate the effect of spray dryer processing parameters on the process yield and insecticidal activity of baculovirus to support the development of this beneficial group of microbes as biopesticides. For each of two baculoviruses [granulovirus (GV) from Pieris rapae (L....

  19. Wavelet theory and belt finishing process, influence of wavelet shape on the surface roughness parameter values

    International Nuclear Information System (INIS)

    Khawaja, Z; Mazeran, P-E; Bigerelle, M; Guillemot, G; Mansori, M El

    2011-01-01

    This article presents a multi-scale theory based on wavelet decomposition to characterize the evolution of roughness in relation with a finishing process or an observed surface property. To verify this approach in production conditions, analyses were developed for the finishing process of the hardened steel by abrasive belts. These conditions are described by seven parameters considered in the Tagushi experimental design. The main objective of this work is to identify the most relevant roughness parameter and characteristic length allowing to assess the influence of finishing process, and to test the relevance of the measurement scale. Results show that wavelet approach allows finding this scale.

  20. Process parameter and surface morphology of pineapple leaf electrospun nanofibers (PALF)

    Science.gov (United States)

    Surip, S. N.; Aziz, F. M. A.; Bonnia, N. N.; Sekak, K. A.; Zakaria, M. N.

    2017-09-01

    In recent times, nanofibers have attracted the attention of researchers due to their pronounced micro and nano structural characteristics that enable the development of advanced materials that have sophisticated applications. The production of nanofibers by the electrospinning process is influenced both by the electrostatic forces and the viscoelastic behavior of the polymer. Process parameters, like solution feed rate, applied voltage, nozzle-collector distance, and spinning environment, and material properties, like solution concentration, viscosity, surface tension, conductivity, and solvent vapor pressure, influence the structure and properties of electrospun nanofibers. Significant work has been done to characterize the properties of PALF nanofibers as a function of process and material parameters.

  1. Finite element analysis and optimization of process parameters during stamp forming of composite materials

    International Nuclear Information System (INIS)

    Venkatesan, S; Kalyanasundaram, S

    2010-01-01

    In the manufacture of parts for high performance structures using composite materials, the quality and robustness of the parts is of utmost importance. The quality of the produced parts depends largely on the process parameters and manufacturing methodologies. This study presents the use of a temperature dependant orthotropic material for a coupled structural-thermal analysis of the stamp forming process. The study investigated the effects of process parameters such as pre-heat temperature, blank holder force and process time on the formability of composite materials. Temperature was found to be the dominant factor governing the formability of the composite material while higher blank holder forces were deemed to be important for achieving high quality of the parts manufactured. Finally, an optimum set of parameters was used to compare the simulations with experimental results using an optical strain measurement system.

  2. Optimization of cryogenic cooled EDM process parameters using grey relational analysis

    International Nuclear Information System (INIS)

    Kumar, S Vinoth; Kumar, M Pradeep

    2014-01-01

    This paper presents an experimental investigation on cryogenic cooling of liquid nitrogen (LN 2 ) copper electrode in the electrical discharge machining (EDM) process. The optimization of the EDM process parameters, such as the electrode environment (conventional electrode and cryogenically cooled electrode in EDM), discharge current, pulse on time, gap voltage on material removal rate, electrode wear, and surface roughness on machining of AlSiCp metal matrix composite using multiple performance characteristics on grey relational analysis was investigated. The L 18 orthogonal array was utilized to examine the process parameters, and the optimal levels of the process parameters were identified through grey relational analysis. Experimental data were analyzed through analysis of variance. Scanning electron microscopy analysis was conducted to study the characteristics of the machined surface.

  3. Optimization of Nano-Process Deposition Parameters Based on Gravitational Search Algorithm

    Directory of Open Access Journals (Sweden)

    Norlina Mohd Sabri

    2016-06-01

    Full Text Available This research is focusing on the radio frequency (RF magnetron sputtering process, a physical vapor deposition technique which is widely used in thin film production. This process requires the optimized combination of deposition parameters in order to obtain the desirable thin film. The conventional method in the optimization of the deposition parameters had been reported to be costly and time consuming due to its trial and error nature. Thus, gravitational search algorithm (GSA technique had been proposed to solve this nano-process parameters optimization problem. In this research, the optimized parameter combination was expected to produce the desirable electrical and optical properties of the thin film. The performance of GSA in this research was compared with that of Particle Swarm Optimization (PSO, Genetic Algorithm (GA, Artificial Immune System (AIS and Ant Colony Optimization (ACO. Based on the overall results, the GSA optimized parameter combination had generated the best electrical and an acceptable optical properties of thin film compared to the others. This computational experiment is expected to overcome the problem of having to conduct repetitive laboratory experiments in obtaining the most optimized parameter combination. Based on this initial experiment, the adaptation of GSA into this problem could offer a more efficient and productive way of depositing quality thin film in the fabrication process.

  4. The Elements of Business Process Change

    African Journals Online (AJOL)

    user

    magnitude of the BPC effort, and its interruption to operations. Based on ... innovation, business process redesign and business process management ..... Table 5. Organization performance ( Organizational outcome and Impact). Mean SD. 1. Increased operational efficiency(decreased cycle time, inventory). 2.3 .97. 2.

  5. Optimisation Of Cutting Parameters Of Composite Material Laser Cutting Process By Taguchi Method

    Science.gov (United States)

    Lokesh, S.; Niresh, J.; Neelakrishnan, S.; Rahul, S. P. Deepak

    2018-03-01

    The aim of this work is to develop a laser cutting process model that can predict the relationship between the process input parameters and resultant surface roughness, kerf width characteristics. The research conduct is based on the Design of Experiment (DOE) analysis. Response Surface Methodology (RSM) is used in this work. It is one of the most practical and most effective techniques to develop a process model. Even though RSM has been used for the optimization of the laser process, this research investigates laser cutting of materials like Composite wood (veneer)to be best circumstances of laser cutting using RSM process. The input parameters evaluated are focal length, power supply and cutting speed, the output responses being kerf width, surface roughness, temperature. To efficiently optimize and customize the kerf width and surface roughness characteristics, a machine laser cutting process model using Taguchi L9 orthogonal methodology was proposed.

  6. Optimization of WEDM process parameters using deep cryo-treated Inconel 718 as work material

    Directory of Open Access Journals (Sweden)

    Bijaya Bijeta Nayak

    2016-03-01

    Full Text Available The present work proposes an experimental investigation and optimization of various process parameters during taper cutting of deep cryo-treated Inconel 718 in wire electrical discharge machining process. Taguchi's design of experiment is used to gather information regarding the process with less number of experimental runs considering six input parameters such as part thickness, taper angle, pulse duration, discharge current, wire speed and wire tension. Since traditional Taguchi method fails to optimize multiple performance characteristics, maximum deviation theory is applied to convert multiple performance characteristics into an equivalent single performance characteristic. Due to the complexity and non-linearity involved in this process, good functional relationship with reasonable accuracy between performance characteristics and process parameters is difficult to obtain. To address this issue, the present study proposes artificial neural network (ANN model to determine the relationship between input parameters and performance characteristics. Finally, the process model is optimized to obtain a best parametric combination by a new meta-heuristic approach known as bat algorithm. The results of the proposed algorithm show that the proposed method is an effective tool for simultaneous optimization of performance characteristics during taper cutting in WEDM process.

  7. On selecting a prior for the precision parameter of Dirichlet process mixture models

    Science.gov (United States)

    Dorazio, R.M.

    2009-01-01

    In hierarchical mixture models the Dirichlet process is used to specify latent patterns of heterogeneity, particularly when the distribution of latent parameters is thought to be clustered (multimodal). The parameters of a Dirichlet process include a precision parameter ?? and a base probability measure G0. In problems where ?? is unknown and must be estimated, inferences about the level of clustering can be sensitive to the choice of prior assumed for ??. In this paper an approach is developed for computing a prior for the precision parameter ?? that can be used in the presence or absence of prior information about the level of clustering. This approach is illustrated in an analysis of counts of stream fishes. The results of this fully Bayesian analysis are compared with an empirical Bayes analysis of the same data and with a Bayesian analysis based on an alternative commonly used prior.

  8. Estimation of G-renewal process parameters as an ill-posed inverse problem

    International Nuclear Information System (INIS)

    Krivtsov, V.; Yevkin, O.

    2013-01-01

    Statistical estimation of G-renewal process parameters is an important estimation problem, which has been considered by many authors. We view this problem from the standpoint of a mathematically ill-posed, inverse problem (the solution is not unique and/or is sensitive to statistical error) and propose a regularization approach specifically suited to the G-renewal process. Regardless of the estimation method, the respective objective function usually involves parameters of the underlying life-time distribution and simultaneously the restoration parameter. In this paper, we propose to regularize the problem by decoupling the estimation of the aforementioned parameters. Using a simulation study, we show that the resulting estimation/extrapolation accuracy of the proposed method is considerably higher than that of the existing methods

  9. Sensitivity of NTCP parameter values against a change of dose calculation algorithm

    International Nuclear Information System (INIS)

    Brink, Carsten; Berg, Martin; Nielsen, Morten

    2007-01-01

    Optimization of radiation treatment planning requires estimations of the normal tissue complication probability (NTCP). A number of models exist that estimate NTCP from a calculated dose distribution. Since different dose calculation algorithms use different approximations the dose distributions predicted for a given treatment will in general depend on the algorithm. The purpose of this work is to test whether the optimal NTCP parameter values change significantly when the dose calculation algorithm is changed. The treatment plans for 17 breast cancer patients have retrospectively been recalculated with a collapsed cone algorithm (CC) to compare the NTCP estimates for radiation pneumonitis with those obtained from the clinically used pencil beam algorithm (PB). For the PB calculations the NTCP parameters were taken from previously published values for three different models. For the CC calculations the parameters were fitted to give the same NTCP as for the PB calculations. This paper demonstrates that significant shifts of the NTCP parameter values are observed for three models, comparable in magnitude to the uncertainties of the published parameter values. Thus, it is important to quote the applied dose calculation algorithm when reporting estimates of NTCP parameters in order to ensure correct use of the models

  10. Influence of Weaving Loom Setting Parameters on Changes of Woven Fabric Structure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aušra ADOMAITIENĖ

    2011-11-01

    Full Text Available During the manufacturing of fabric of different raw material there was noticed, that after removing the fabric from weaving loom and after stabilization of fabric structure, the changes of parameters of fabric structure are not regular. During this investigation it was analysed, how weaving loom technological parameters (heald cross moment and initial tension of warp should be chosen and how to predict the changes of fabric structure parameters and its mechanical properties. The dependencies of changes of half-wool fabric structure parameters (weft setting, fabric thickness and projections of fabric cross-section and mechanical properties (breaking force, elongation at break, static friction force and static friction coefficient on weaving loom setting parameters (heald cross moment and initial warp tension were analysed. The orthogonal Box plan of two factors was used, the 3-D dependencies were drawn, and empirical equations of these dependencies were established.http://dx.doi.org/10.5755/j01.ms.17.4.780

  11. The Elements of Business Process Change

    African Journals Online (AJOL)

    user

    and are actually derived; and the impact of BPC endeavors on business processes and on ..... it also helps improve relationships with customers and suppliers, empower employees, and improve ..... Reduced budget consumption. 2.79. 1.1. 8.

  12. Algorithms of control parameters selection for automation of FDM 3D printing process

    Directory of Open Access Journals (Sweden)

    Kogut Paweł

    2017-01-01

    Full Text Available The paper presents algorithms of control parameters selection of the Fused Deposition Modelling (FDM technology in case of an open printing solutions environment and 3DGence ONE printer. The following parameters were distinguished: model mesh density, material flow speed, cooling performance, retraction and printing speeds. These parameters are independent in principle printing system, but in fact to a certain degree that results from the selected printing equipment features. This is the first step for automation of the 3D printing process in FDM technology.

  13. [Parameters of cardiac muscle repolarization on the electrocardiogram when changing anatomical and electric position of the heart].

    Science.gov (United States)

    Chaĭkovskiĭ, I A; Baum, O V; Popov, L A; Voloshin, V I; Budnik, N N; Frolov, Iu A; Kovalenko, A S

    2014-01-01

    While discussing the diagnostic value of the single channel electrocardiogram a set of theoretical considerations emerges inevitably, one of the most important among them is the question about dependence of the electrocardiogram parameters from the direction of electrical axis of heart. In other words, changes in what of electrocardiogram parameters are in fact liable to reflect pathological processes in myocardium, and what ones are determined by extracardiac factors, primarily by anatomic characteristics of patients. It is arguable that while analyzing electrocardiogram it is necessary to orient to such physiologically based informative indexes as ST segment displacement. Also, symmetry of the T wave shape is an important parameter which is independent of patients anatomic features. The results obtained are of interest for theoretical and applied aspects of the biophysics of the cardiac electric field.

  14. Changes in spatiotemporal gait parameters following intravenous immunoglobulin treatment for chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Vo, Mary L; Chin, Russell L; Miranda, Caroline; Latov, Norman

    2017-10-01

    Gait impairment is a common presenting symptom in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). However, gait parameters have not previously been evaluated in detail as potential independent outcome measures. We prospectively measured changes in spatiotemporal gait parameters of 20 patients with CIDP at baseline and following treatment with intravenous immunoglobulin (IVIG), using GAITRite® a computerized walkway system with embedded sensors. Overall, study patients showed significant improvements in gait velocity, cadence, stride length, double support time, stance phase, and swing phase following IVIG treatment. Mean changes in velocity, stance phase, and swing phase, exhibited the greatest statistical significance among the subgroup that exhibited clinically meaningful improvement in Inflammatory Neuropathy Cause and Treatment disability score, Medical Research Council sum score, and grip strength. Assessment of gait parameters, in particular velocity, step phase and swing phase, is a potentially sensitive outcome measure for evaluating treatment response in CIDP. Muscle Nerve 56: 732-736, 2017. © 2017 Wiley Periodicals, Inc.

  15. Optimum design of forging process parameters and preform shape under uncertainties

    International Nuclear Information System (INIS)

    Repalle, Jalaja; Grandhi, Ramana V.

    2004-01-01

    Forging is a highly complex non-linear process that is vulnerable to various uncertainties, such as variations in billet geometry, die temperature, material properties, workpiece and forging equipment positional errors and process parameters. A combination of these uncertainties could induce heavy manufacturing losses through premature die failure, final part geometric distortion and production risk. Identifying the sources of uncertainties, quantifying and controlling them will reduce risk in the manufacturing environment, which will minimize the overall cost of production. In this paper, various uncertainties that affect forging tool life and preform design are identified, and their cumulative effect on the forging process is evaluated. Since the forging process simulation is computationally intensive, the response surface approach is used to reduce time by establishing a relationship between the system performance and the critical process design parameters. Variability in system performance due to randomness in the parameters is computed by applying Monte Carlo Simulations (MCS) on generated Response Surface Models (RSM). Finally, a Robust Methodology is developed to optimize forging process parameters and preform shape. The developed method is demonstrated by applying it to an axisymmetric H-cross section disk forging to improve the product quality and robustness

  16. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Dan Selişteanu

    2015-01-01

    Full Text Available Monoclonal antibodies (mAbs are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  17. Optimization and Simulation of Machining Parameters in Radial-axial Ring Rolling Process

    Directory of Open Access Journals (Sweden)

    Shuiyuan Tang

    2011-05-01

    Full Text Available Ring rolling is a complicated process, in which rolling parameters influence directly the quality of ring. It is a process method with high productivity and few waste of material, widely used in transportation industry including automotive, shipbuilding, aerospace etc. During the rolling process of large-sized parts, crinkle and hollows often appear on surface, due to inconsistence of rolling motions with the deformation of ring part. Based on radial-axial ring rolling system configuration, motions and forces in rolling process are analyzed, and a dynamic model is formulated. Error of ring's end flatness and roundness are defined as the characteristic parameters of ring quality. The relationship between core roller feed speed, drive roller speed, the upper taper roller feed speed, and quality of ring part are analyzed. The stress and strain of the part are simulated in the Finite Element Method by DEFORM software. The simulation results provide a reference for the definition of ring rolling process parameters. It is able to make the deformation of the part be consistent with the process parameters, and improve product quality considerably.

  18. Determination of some process parameters in a tyre-cord plant using radiotracer technique

    International Nuclear Information System (INIS)

    Kirti; Madhavankutti, C.K.; Eapen, A.C.

    1979-01-01

    In the process industry, it is often necessary to study the process parameters such as the residence time, flow rate, etc., under different operating conditions and equipment. The tracer technique represents in this respect an outstanding and even sometimes singular means of determining some of the above parameters. A method consisting of the introduction of a radioactive tracer at the input of a flow system under study and subsequently determining the distribution of activity with time at the output end is described. The form of the activity time curve depends on the parameters of the installation and the mode of operation. A study conducted at a multi-stage viscose rayon processing plant is described in detail. (auth.)

  19. Statistical analysis of process parameters to eliminate hot cracking of fiber laser welded aluminum alloy

    Science.gov (United States)

    Wang, Jin; Wang, Hui-Ping; Wang, Xiaojie; Cui, Haichao; Lu, Fenggui

    2015-03-01

    This paper investigates hot cracking rate in Al fiber laser welding under various process conditions and performs corresponding process optimization. First, effects of welding process parameters such as distance between welding center line and its closest trim edge, laser power and welding speed on hot cracking rate were investigated experimentally with response surface methodology (RSM). The hot cracking rate in the paper is defined as ratio of hot cracking length over the total weld seam length. Based on the experimental results following Box-Behnken design, a prediction model for the hot cracking rate was developed using a second order polynomial function considering only two factor interaction. The initial prediction result indicated that the established model could predict the hot cracking rate adequately within the range of welding parameters being used. The model was then used to optimize welding parameters to achieve cracking-free welds.

  20. Intelligent Modeling Combining Adaptive Neuro Fuzzy Inference System and Genetic Algorithm for Optimizing Welding Process Parameters

    Science.gov (United States)

    Gowtham, K. N.; Vasudevan, M.; Maduraimuthu, V.; Jayakumar, T.

    2011-04-01

    Modified 9Cr-1Mo ferritic steel is used as a structural material for steam generator components of power plants. Generally, tungsten inert gas (TIG) welding is preferred for welding of these steels in which the depth of penetration achievable during autogenous welding is limited. Therefore, activated flux TIG (A-TIG) welding, a novel welding technique, has been developed in-house to increase the depth of penetration. In modified 9Cr-1Mo steel joints produced by the A-TIG welding process, weld bead width, depth of penetration, and heat-affected zone (HAZ) width play an important role in determining the mechanical properties as well as the performance of the weld joints during service. To obtain the desired weld bead geometry and HAZ width, it becomes important to set the welding process parameters. In this work, adaptative neuro fuzzy inference system is used to develop independent models correlating the welding process parameters like current, voltage, and torch speed with weld bead shape parameters like depth of penetration, bead width, and HAZ width. Then a genetic algorithm is employed to determine the optimum A-TIG welding process parameters to obtain the desired weld bead shape parameters and HAZ width.

  1. ORGANIZATIONAL CHANGE: BUSINESS PROCESS REENGINEERING OR OUTSOURCING?

    Directory of Open Access Journals (Sweden)

    Pellicelli Michela

    2012-12-01

    Full Text Available This article will analyze the logic behind the adoption of Business Process Reengineering and outsourcing. The first part analyzes Business Process Reengineering as a technique for analysis and for defining the business processes implemented by organizations in order to make the achievement of corporate objectives more efficient and effective. Nevertheless, this approach has some limits when the reengineering project aims solely at cost reduction. In any event, for several activities management must constantly evaluate the alternative to turning to outsourcing. In the second part we thus observe what should be the evaluations of management in order to pursue the objectives of maximum efficiency, economic efficiency, and productivity. Starting from the methodological assumptions that aid our understanding of the outsourcing of processes and that represent the operational and conceptual framework for the existence of this approach, several models will be analyzed held to be significant for determining those processes that can be outsourced, from a “strategic” point of view, and that are useful for deciding on the shift from BPR to outsourcing.

  2. Managing Change in Software Process Improvement

    DEFF Research Database (Denmark)

    Mathiassen, Lars; Ngwenyama, Ojelanki K.; Aaen, Ivan

    2005-01-01

    When software managers initiate SPI, most are ill prepared for the scale and complexity of the organizational change involved. Although they typically know how to deal with large software projects, few managers have sufficient experience with projects that transform organizations. To succeed with...

  3. Experiments for practical education in process parameter optimization for selective laser sintering to increase workpiece quality

    Science.gov (United States)

    Reutterer, Bernd; Traxler, Lukas; Bayer, Natascha; Drauschke, Andreas

    2016-04-01

    Selective Laser Sintering (SLS) is considered as one of the most important additive manufacturing processes due to component stability and its broad range of usable materials. However the influence of the different process parameters on mechanical workpiece properties is still poorly studied, leading to the fact that further optimization is necessary to increase workpiece quality. In order to investigate the impact of various process parameters, laboratory experiments are implemented to improve the understanding of the SLS limitations and advantages on an educational level. Experiments are based on two different workstations, used to teach students the fundamentals of SLS. First of all a 50 W CO2 laser workstation is used to investigate the interaction of the laser beam with the used material in accordance with varied process parameters to analyze a single-layered test piece. Second of all the FORMIGA P110 laser sintering system from EOS is used to print different 3D test pieces in dependence on various process parameters. Finally quality attributes are tested including warpage, dimension accuracy or tensile strength. For dimension measurements and evaluation of the surface structure a telecentric lens in combination with a camera is used. A tensile test machine allows testing of the tensile strength and the interpreting of stress-strain curves. The developed laboratory experiments are suitable to teach students the influence of processing parameters. In this context they will be able to optimize the input parameters depending on the component which has to be manufactured and to increase the overall quality of the final workpiece.

  4. ENVIRONMENTAL AND PROCESS PARAMETERS OF METHANE FERMENTATION IN CONTINUOSLY STIRRED TANK REACTOR (CSTR

    Directory of Open Access Journals (Sweden)

    Kamil Kozłowski

    2016-12-01

    Full Text Available A key indicator of methane fermentation process which influences the cost-effectiveness of the biogas plant is efficient production of methane per 1 m3 of reactor. It depends on the proper selection of environmental and process parameters. This article present collected and analyzed the effect of the most important parameters of continuous methane fermentation (CSTR, which include temperature, pH, nutrient content and the C/N ratio in the feed medium, the presence of inhibitors, and the volume load of reactor, retention time and mixing of digestion reactor. Still, the impact of many factors remain unknown, hence there is a need for more comprehensive studies.

  5. Evaluation of the parameters effects on the bio-ethanol production process from Ricotta Cheese Whey

    DEFF Research Database (Denmark)

    Sansonetti, Sascha; Curcio, Stefano; Calabrò, Vincenza

    2010-01-01

    composite design, constituted by 26 runs, has been carried out, and the effects of the parameters have been evaluated. Eventually, once eliminated the negligible effects, Response Surface Methodology (RSM) has been applied to optimize the four parameters values in RCW fermentation process. After......The work consists of an experimental analysis to evaluate the effects of the variables temperature (T), pH, agitation rate (K) and initial lactose concentration (L) on the batch fermentation process of Ricotta Cheese Whey (RCW) into bio-ethanol by using the yeast Kluyveromyces marxianus. A central...

  6. The effect of electrodeposition process parameters on the current density distribution in an electrochemical cell

    Directory of Open Access Journals (Sweden)

    R. M. STEVANOVIC

    2001-02-01

    Full Text Available Cell voltage – current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.

  7. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: medsciwangkun@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Chen, Shiyue [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Hao, Qiang, E-mail: haoqiang@189.cn [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Shen, Hongxing, E-mail: shenhxgk@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China)

    2014-12-15

    Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis.

  8. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord

    International Nuclear Information System (INIS)

    Wang, Kun; Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing; Chen, Shiyue; Hao, Qiang; Shen, Hongxing

    2014-01-01

    Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis

  9. Postirradiational changes in hematologic parameters and in intestinal microflora in rats

    International Nuclear Information System (INIS)

    Benova, K.; Striskova, K.; Dvorak, P.

    2007-01-01

    A decrease in the defense capacity of the body combined with penetration of intestinal microorganisms through the intestinal wall causes severe, often lethal complications of the acute radiation disease. We followed the clinical symptoms, the changes of hematological parameters and the changes of the composition of intestinal microflora in laboratory rats irradiated by a single, whole-body dose of 15 Gy gamma-rays. An increase of the common microflora in duodenum, liver and in oral cave and leucopenia in peripheral blood have been observe in all time intervals followed. The changes in red blood cells were characterized by anemia, manifesting clinically in hemorrhages and bloody diarrhea. (authors)

  10. Managing Technological Change: The Process is Key

    Science.gov (United States)

    1989-01-01

    performance suggestive of an electronic sweatshop or informa- and the quality of their work lives has been significantly im- tion assembly line than a...changc the rescrvations system, but without docu- systems, databases, and software applications that comprise mentation or access to the person who...and task HAS BEEN SEEN that instead of trying to minimize change. level, the technology’s inherent flexibili- AS A ITATI particularly with respect to

  11. Change of surface colour parameters during storage of paprika (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Belović Miona M.

    2014-01-01

    Full Text Available The change of paprika surface colour during three years of storage was monitored by measuring CIEL*a*b* colour parameters once a year. Ten commercial and three branded paprika samples, originating from Hungary, Austria and Serbia, were stored in original packaging at ambient temperature in dark during the storage period. The colour of paprika powder was measured by Chroma Meter CR-400 (Konica Minolta, Japan, using attachment for granular materials CR-A50. Directly measured colour parameters were CIE L* (lightness, a* (+a* = redness, -a* = greenness, b* (+b* = yellowness, -b* = blueness and dominant wavelength (DWL, while derived colour parameters were chroma (C*, hue angle (h°, and total colour change (ΔE. Paprika samples had similar granulation, and therefore it was concluded that it did not influence the colour reflection. The change of reflected colour of paprika powder during storage can be characterized by increase of CIE L* and b* colour values and decrease of a* colour value. Therefore, chroma values remained almost unchanged, while hue angle showed shift in spectrum from red-orange to orange-yellow, similarly to dominant wavelength. The paprika samples changed their colour most rapidly during the first year of storage, except the branded paprika from Serbia. Commercial paprika samples from Serbian market changed their colour more rapidly comparing to other investigated samples.

  12. Plasma analysis of different TiN PVD processes at various process parameters

    International Nuclear Information System (INIS)

    Strauss, G.N.; Schlichtherle, S.; Pulker, H.K.; Meyer, M.; Jehn, H.; Balzer, M.; Misiano, C.; Silipo, V.

    2002-01-01

    TiN coatings of some microns in thickness were deposited by different reactive plasma deposition technologies (Magnetron Sputtering Magnetically Assisted, Arc Source Ion Plating, Sputter Ion Plating Plasma Assisted) on various metal parts. The experiments were carried out in specially designed plants under variable vacuum and plasma conditions. The plasma properties of the different processes were investigated by mass spectrometry and the energy distribution of process relevant particles was additionally determined. The aim of this work was to find proper processes and conditions for a reliable low cost deposition of hard coatings at relatively high gas pressures. It was found that the magnetically forced and medium frequency pulsed biased dc magnetron sputter deposition variants, operating in the 10 -3 mbar gas pressure range, showed a relatively large amount of single and double charged positive ions with kinetic energies up to 55 and 95 eV, as consequence of the applied modifications. Cathodic arc deposition, in the same gas pressure range of 10 - 3 mbar, showed a very high number of such ions with energies up to more than 100 eV, depending on the value of the applied arc current. However, at constant distance between source and substrate the higher gas pressure increases also the number of energy reducing collisions of the coating-material vapour-species with the gas molecules. The arc source process, even when performed at high gas pressures of about 10 -1 mbar, showed a remarkable amount of ions with energies up to 75 eV resulting in high performance TiN films of quite proper 3D homogeneity. The arc source technique is able to increase film thickness uniformity up to 3 times with respect to the traditional coatings if the samples are mounted in a way that they do not influence each other. (nevyjel)

  13. Variational estimation of process parameters in a simplified atmospheric general circulation model

    Science.gov (United States)

    Lv, Guokun; Koehl, Armin; Stammer, Detlef

    2016-04-01

    Parameterizations are used to simulate effects of unresolved sub-grid-scale processes in current state-of-the-art climate model. The values of the process parameters, which determine the model's climatology, are usually manually adjusted to reduce the difference of model mean state to the observed climatology. This process requires detailed knowledge of the model and its parameterizations. In this work, a variational method was used to estimate process parameters in the Planet Simulator (PlaSim). The adjoint code was generated using automatic differentiation of the source code. Some hydrological processes were switched off to remove the influence of zero-order discontinuities. In addition, the nonlinearity of the model limits the feasible assimilation window to about 1day, which is too short to tune the model's climatology. To extend the feasible assimilation window, nudging terms for all state variables were added to the model's equations, which essentially suppress all unstable directions. In identical twin experiments, we found that the feasible assimilation window could be extended to over 1-year and accurate parameters could be retrieved. Although the nudging terms transform to a damping of the adjoint variables and therefore tend to erases the information of the data over time, assimilating climatological information is shown to provide sufficient information on the parameters. Moreover, the mechanism of this regularization is discussed.

  14. Experimental studies of parameters affecting the heat generation in friction stir welding process

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2012-01-01

    Full Text Available Heat generation is a complex process of transformation of a specific type of energy into heat. During friction stir welding, one part of mechanical energy delivered to the welding tool is consumed in the welding process, another is used for deformational processes etc., and the rest of the energy is transformed into heat. The analytical procedure for the estimation of heat generated during friction stir welding is very complex because it includes a significant number of variables and parameters, and many of them cannot be fully mathematically explained. Because of that, the analytical model for the estimation of heat generated during friction stir welding defines variables and parameters that dominantly affect heat generation. These parameters are numerous and some of them, e. g. loads, friction coefficient, torque, temperature, are estimated experimentally. Due to the complex geometry of the friction stir welding process and requirements of the measuring equipment, adequate measuring configurations and specific constructional solutions that provide adequate measuring positions are necessary. This paper gives an overview of the process of heat generation during friction stir welding, the most influencing parameters on heat generation, constructional solutions for the measuring equipment needed for these experimental researches and examples of measured values.

  15. MA-burners efficiency parameters allowing for the duration of transmutation process

    International Nuclear Information System (INIS)

    Gulevich, A.; Zemskov, E.; Kalugin, A.; Ponomarev, L.; Seliverstov, V.; Seregin, M.

    2010-01-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time τ - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n rep - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  16. MA-burners efficiency parameters allowing for the duration of transmutation process

    Energy Technology Data Exchange (ETDEWEB)

    Gulevich, A.; Zemskov, E. [Institute of Physics and Power Engineering, Bondarenko Square 1, Obninsk, Kaluga Region 249020 (Russian Federation); Kalugin, A.; Ponomarev, L. [Russian Research Center ' ' Kurchatov Institute' ' Kurchatov Square 1, Moscow 123182 (Russian Federation); Seliverstov, V. [Institute of Theoretical and Experimental Physics ul.B. Cheremushkinskaya 25, Moscow 117259 (Russian Federation); Seregin, M. [Russian Research Institute of Chemical Technology Kashirskoe Shosse 33, Moscow 115230 (Russian Federation)

    2010-07-01

    Transmutation of minor actinides (MA) means their transforming into the fission products. Usually, MA-burner's transmutation efficiency is characterized by the static parameters only, such as the number of neutrons absorbed and the rate of MA feeding. However, the proper characterization of MA-burner's efficiency additionally requires the consideration of parameters allowing for the duration of the MA transmutation process. Two parameters of that kind are proposed: a) transmutation time {tau} - mean time period from the moment a mass of MA is loaded into the burner's fuel cycle to be transmuted to the moment this mass is completely transmuted; b) number of reprocessing cycles n{sub rep} - effective number of reprocessing cycles a mass of loaded MA has to undergo before being completely transmuted. Some of MA-burners' types have been analyzed from the point of view of these parameters. It turned out that all of them have the value of parameters too high from the practical point of view. It appears that some new approaches to MA-burner's design have to be used to significantly reduce the value of these parameters in order to make the large-scale MA transmutation process practically reasonable. Some of such approaches are proposed and their potential efficiency is discussed. (authors)

  17. Interdecadal Change of Tropical Cyclone Genesis Controlling Parameter in Western North Pacific

    Science.gov (United States)

    Li, T.

    2017-12-01

    The main environmental parameter controlling tropical cyclone (TC) genesis in the western North Pacific (WNP) changed in different interdecadal periods. The interannual variability of TC genesis frequency was primarily control by specific humidity in 1950-1976, sea surface temperature (SST) in 1977-1998, and vorticity in 1999-2014. A further diagnosis shows that the change of environmental specific humidity during 1950-1976 was attributed to anomalous advection of mean moisture during ENSO developing summer. The SST change during 1977-1998 was associated with circulation change during ENSO decaying summer. The change of environment vorticity was primarily related to CP-type El Niño during 1999-2014. The ultimate cause of the controlling parameter change is attributed to the change of ENSO behavior. Compared to the first period, a stronger EP-type ENSO variability in the second period leads to a stronger circulation/SST response during ENSO decaying phase. The occurrence of more frequent CP type El Niño in the third period was responsible for greater vorticity controlling in the WNP.

  18. Preface. Forest ecohydrological processes in a changing environment.

    Science.gov (United States)

    Xiaohua Wei; Ge Sun; James Vose; Kyoichi Otsuki; Zhiqiang Zhang; Keith Smetterm

    2011-01-01

    The papers in this issue are a selection of the presentations made at the second International Conference on Forests and Water in a Changing Environment. This special issue ‘Forest Ecohydrological Processes in a Changing Environment’ covers the topics regarding the effects of forest, land use and climate changes on ecohydrological processes across forest stand,...

  19. Influence of Processing Parameters on the Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, J. A.; Nunes, A. C., Jr.

    2006-01-01

    Friction stir welding (FSW) is a solid phase welding process that unites thermal and mechanical aspects to produce a high quality joint. The process variables are rpm, translational weld speed, and downward plunge force. The strain-temperature history of a metal element at each point on the cross-section of the weld is determined by the individual flow path taken by the particular filament of metal flowing around the tool as influenced by the process variables. The resulting properties of the weld are determined by the strain-temperature history. Thus to control FSW properties, improved understanding of the processing parameters on the metal flow path is necessary.

  20. Processing parameters for ZnO-based thick film varistors obtained by screen printing

    Directory of Open Access Journals (Sweden)

    de la Rubia, M. A.

    2006-06-01

    Full Text Available Thick film varistors based on the ZnO-Bi2O3-Sb2O3 system have been prepared by screen printing on dense alumina substrates. Different processing parameters like the paste viscosity, burn out and sintering cycles, green and sintered thickness, have been studied to improve the processing of ZnO-based thick film varistors. Starting powders were pre-treated in two different ways in order to control both the Bi-rich liquid phase formation and the excessive volatilization of Bi2O3 during sintering due to the high area/volume ratio of the thick films. Significant changes have been observed in the electrical properties related to the different firing schedule and selection of the starting powders.

    Se han preparado varistores basados en el sistema ZnO-Bi2O3-Sb2O3 en forma de lámina gruesa sobre sustratos de alúmina densa. Diferentes parámetros del procesamiento como la viscosidad de la pasta, los ciclos de calcinación y sinterización y el espesor en verde y sinterizado han sido estudiados para mejorar el procesamiento de los varistores basados en ZnO preparados en forma de lámina gruesa. Los polvos de partida fueron pretratados de dos formas diferentes con el objetivo de controlar la formación de la fase líquida rica en bismuto y la excesiva volatilización de Bi2O3 durante la sinterización debida a la alta relación área-volumen de las láminas gruesas. Se han observado cambios significativos en las propiedades eléctricas relacionadas con los diferentes ciclos de calcinado y con la selección de los polvos de partida.

  1. Model Optimization Identification Method Based on Closed-loop Operation Data and Process Characteristics Parameters

    Directory of Open Access Journals (Sweden)

    Zhiqiang GENG

    2014-01-01

    Full Text Available Output noise is strongly related to input in closed-loop control system, which makes model identification of closed-loop difficult, even unidentified in practice. The forward channel model is chosen to isolate disturbance from the output noise to input, and identified by optimization the dynamic characteristics of the process based on closed-loop operation data. The characteristics parameters of the process, such as dead time and time constant, are calculated and estimated based on the PI/PID controller parameters and closed-loop process input/output data. And those characteristics parameters are adopted to define the search space of the optimization identification algorithm. PSO-SQP optimization algorithm is applied to integrate the global search ability of PSO with the local search ability of SQP to identify the model parameters of forward channel. The validity of proposed method has been verified by the simulation. The practicability is checked with the PI/PID controller parameter turning based on identified forward channel model.

  2. Selected Parameters of Micro-Jet Cooling Gases in Hybrid Spraying Process

    Directory of Open Access Journals (Sweden)

    Szczucka-Lasota B.

    2016-06-01

    Full Text Available The innovative technology, like thermal spraying with a micro-jet cooling is one of the important modification of classical ultrasonic spraying methods. Using of micro-stream with gases like argon or nitrogen allows to cool the coating immediately after spraying, and thereby reduce the time of transition during the injection of each layer. As a result of the process, the fine dispersive structure of coatings is obtained during the shorter time in comparable to the classical high velocity oxygen fuel process (HVOF. The parameter of process and the type of stream equipment determine the quality of the obtained structure and thermal stress in the coating. The article presents the relationship between selected parameters of hybrid process and properties of the coatings. The presented technology should be adapted to the actual production of protective coating for machines and construction working in wear conditions.

  3. Aperiodic signals processing via parameter-tuning stochastic resonance in a photorefractive ring cavity

    Directory of Open Access Journals (Sweden)

    Xuefeng Li

    2014-04-01

    Full Text Available Based on solving numerically the generalized nonlinear Langevin equation describing the nonlinear dynamics of stochastic resonance by Fourth-order Runge-Kutta method, an aperiodic stochastic resonance based on an optical bistable system is numerically investigated. The numerical results show that a parameter-tuning stochastic resonance system can be realized by choosing the appropriate optical bistable parameters, which performs well in reconstructing aperiodic signals from a very high level of noise background. The influences of optical bistable parameters on the stochastic resonance effect are numerically analyzed via cross-correlation, and a maximum cross-correlation gain of 8 is obtained by optimizing optical bistable parameters. This provides a prospective method for reconstructing noise-hidden weak signals in all-optical signal processing systems.

  4. Detecting change in processes using comparative trace clustering

    NARCIS (Netherlands)

    Hompes, B.F.A.; Buijs, J.C.A.M.; van der Aalst, W.M.P.; Dixit, P.M.; Buurman, J.

    2015-01-01

    Real-life business processes are complex and show a high degree of variability. Additionally, due to changing conditions and circumstances, these processes continuously evolve over time. For example, in the healthcare domain, advances in medicine trigger changes in diagnoses and treatment processes.

  5. Water and Oil Repellent Finishing of Textiles by UV Curing: Evaluation of the Influence of Scaled-Up Process Parameters

    Directory of Open Access Journals (Sweden)

    Franco Ferrero

    2017-04-01

    Full Text Available In this work, various textile fabrics were coated with silicone and fluorocarbon-based resins by photo-curing using ultraviolet irradiation. A great number of large fabric samples were impregnated by padding with commercial finishing agents and then irradiated in air with a high power, semi-industrial UV source. The add-on of various finishing agents was kept low to reduce the treatment cost. White and dyed samples of different textile composition were treated and evaluated in terms of conferred repellency, yellowing, or color changes. Most relevant process parameters were investigated, utilizing the thermal process normally adopted at industrial level as reference. The results were statistically evaluated by ANOVA using Minitab 16 software, in order to identify the most influential parameters and to evaluate the real possibility of replacing the thermal treatment with UV curing.

  6. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  7. Effect of critical process parameters on the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Pirrung, Silvia; Lima Afonso Neto, Watson; Schwarze, Daniel

    equilibrium, the inhibition profiles for substrates and products but also on the possibilities for in-situ product removal (ISPR) and technologies for shifting the equilibrium. In a challenging process such as the synthesis of optically pure chiral amines using ω-transaminase, these decisions will have...... process parameters involved in the production of two chiral amines (S-methylbenzylamine and 3-amino-1-phenylbutane) (Figure 1) to demonstrate the effects of such decisions....

  8. Analysis of WEDM Process Parameters on Surface Roughness and Kerf using Taguchi Method

    Directory of Open Access Journals (Sweden)

    Asfana Banu

    2017-12-01

    Full Text Available In obtaining the best quality of engineering parts, the quality of machined surface plays an essential role. The fatigue strength, wear resistance, and corrosion of workpiece are some of the aspects of the qualities that can be improved. This paper investigates the effect of wire electrical discharge machining (WEDM process parameters on surface roughness and kerf on stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The selected process parameters are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical models using Taguchi method were developed for the estimation of surface roughness and kerf. The analysis revealed that off time has major influence on surface roughness and kerf. The optimum machining parameters for minimum surface roughness and kerf were found to be 10 V open voltage, 2.84 µs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  9. Optimization of process parameter for graft copolymerization of glycidyl methacrylate onto delignified banana fibers

    International Nuclear Information System (INIS)

    Selambakkannu, S.; Nor Azillah Fatimah Othman; Siti Fatahiyah Mohamad

    2016-01-01

    This paper focused on pre-treated banana fibers as a trunk polymer for optimization of radiation-induced graft copolymerization process parameters. Pre-treated banana fiber was grafted with glycidyl methacrylate (GMA) via electron beam irradiation. Optimization of grafting parameters in term of grafting yield was analyzed at numerous radiation dose, monomer concentration and reaction time. Grafting yield had been calculated gravimetrically against all the process parameters. The grafting yield at 40 kGy had increases from 14 % to 22.5 % at 1 h and 24 h of reaction time respectively. Grafting yield at 1 % of GMA was about 58 % and it increases to 187 % at 3 % GMA. The grafting of GMA onto pre-treated banana fibers confirmed with the characterization using FTIR, SEM and TGA. Grafting of GMA onto pre-treated fibers was successfully carried out and it was confirmed by the results obtained via the characterization. (author)

  10. POWER PARAMETERS OF THE PROCESS OF END FORMING OF THICK WALLED TUBES

    Directory of Open Access Journals (Sweden)

    V. A. Tamila

    2016-01-01

    Full Text Available Analysis of forces acting on the rolls in the radial direction made by the analytical method and with use of computer modeling techniques is made. Application of FEM has allowed to calculate distribution of power parameters of the technological process during time. The deviation of the experimental data on the results of analytical calculation is within 3%.

  11. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  12. Influence of processing parameters on disintegration of Chlorella cells in various types of homogenizers

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2008-01-01

    Roč. 81, č. 3 (2008), s. 431-440 ISSN 0175-7598 R&D Projects: GA ČR GV104/97/S055 Institutional research plan: CEZ:AV0Z50200510 Keywords : processing parameters * disintegration efficiency * chlorella Subject RIV: EE - Microbiology, Virology Impact factor: 2.569, year: 2008

  13. Critical literature review of relationships between processing parameters and physical properties of particleboard

    Science.gov (United States)

    Myron W. Kelly

    1977-01-01

    The pertinent literature has been reviewed, and the apparent effects of selected processing parameters on the resultant particleboard properties, as generally reported in the literature, have been determined. Resin efficiency, type and level, furnish, and pressing conditions are reviewed for their reported effects on physical, strength, and moisture and dimensional...

  14. The system of processing and analysis of the parameters to be controlled of the 'Ukrytie' (SPA)

    International Nuclear Information System (INIS)

    Shcherbin, V.N.; Kravchuk, T.A.; Nenakhov, A.N.

    1998-01-01

    Processing system and analysis of parameters to be controlled (SPA) is an integrated system monitor control, which unites complexes of technical facilities with methods of remote control and diagnostics of object 'Ukrytie'. System executes checking, diagnosing analytical, prognostic, scholastic-simulator and scientifically-methodical functions, describing current condition of the 'Ukrytie', with the issue of possible emergency situation descriptions

  15. Modeling the wire-EDM process parameters for EN-8 carbon steel ...

    African Journals Online (AJOL)

    Modeling the wire-EDM process parameters for EN-8 carbon steel using .... The neural networks has been developed with the help of MATLAB 8.1 (R13) package .... Now, Simulation and Prediction will be performed using the trained network.

  16. Influential Parameters and Numerical Simulation of Heat Generated in the Process of Friction Stir Welding

    Directory of Open Access Journals (Sweden)

    Ilija KOVACEVIC

    2016-09-01

    Full Text Available The paper analyzes the problem of friction stir welding (FSW technology. The mechanism of thermo-mechanical process of the FSW method has been identified and a correlation between the weld zone and its microstructure established. Presented are the basic analytical formulations for the definition of temperature fields. Analysis of influential parameters of welding FSW technology at the zone of the weld material and mechanical properties of the realized joint was performed. Influential welding parameters were defined based on tool geometry, technological parameters of processing and the axial load of tool. Specific problems with the FSW process are related to gaps (holes left behind by a tool at the end of the process and inflexibility of welding regarding the degree of variation of material thickness. Numerical simulation of process welding FSW proceeding was carried out on the example of Aluminum Alloy (AA 2219 using the ANSYS Mechanical ADPL (Transient Thermal software package. The defined was the temperature field in the welding process at specified time intervals.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.10022

  17. Processing parameters for the mechanical working of 9 Cr-1 Mo steel: processing maps approach

    Energy Technology Data Exchange (ETDEWEB)

    Sivaprasad, P.V.; Mannan, S.L.; Prasad, Y.V.R.K. [Indira Ghandi Centre for Atomic Research, Tamilnadu (India)

    2004-12-15

    Processing and instability maps using a dynamic materials model have been developed for 9Cr-1Mo steel in the temperature range 850 to 1200{sup o}C and strain rate range 0.001-100 s{sup -1} with a view to optimising its hot workability. The efficiency of power dissipation increased with increase in temperature and decrease in strain rate. The 9Cr-1Mo material exhibited two dynamic recrystallisation domains, one with a peak efficiency of 37% occurring at 950{sup o}C and 0.001 s{sup -1} and the other with a peak efficiency of 35% occurring at 1200{sup o}C and 0.1 s{sup -1}. These results are in good agreement with those found in industry. (author)

  18. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, D.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001-2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter's linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Nina events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  19. Change in geometrical parameters of WWER high burnup fuel rods under operational conditions and transient testing

    International Nuclear Information System (INIS)

    Kanashov, B.; Amosov, S.; Lyadov, G.; Markov, D.; Ovchinnikov, V; Polenok, V.; Smirnov, A.; Sukhikh, A.; Bek, E.; Yenin, A.; Novikov, V.

    2001-01-01

    The paper discusses changes in fuel rods geometric parameters as result of operation conditions and burnups. The degree of geometry variability of fuel rods, cladding and column is one of the most important characteristics affecting fuel serviceability. On the other hand, changes in fuel rod geometric parameters influence fuel temperature, fission gas release, fuel-to-cladding stress strained state as well as the degree of interaction with FA skeleton elements and skeleton rigidity. Change in fuel-to-cladding gap is measured using compression technique. The axial distribution of fuel-to-cladding gap demonstrates the largest decrease of the gap in the region 500 to 2000 mm from the bottom of the fuel rod (WWER-440) and in the region of 500 to 3000 mm for WWER-1000. The cladding material creep in WWER fuel rods together with the radiation growth results in fuel rod cladding elongation. A set of transient tests for spent WWER-440 and WWER-1000 fuel rods carried out in SSC RIAR during a period 1995-1999, with the aim to estimate the changes in geometric parameters of FRs. The estimation of changes in outer diameter of cladding and fuel column and fuel-to-cladding gap are performed in transient conditions (changes in linear power range of 180 to 400 W/cm) for both WWER-440 and WWER-1000. WWER-440 fuel rods having the same burnup and close fuel-cladding contact before testing are subjected to considerable hoop cladding strain in testing up to 300 W/cm. But the hoop strain does not grow due to the structural changes in fuel column and decrease in central hole diameter occurred when the power is higher

  20. Exposure to sublethal concentrations of copper changes biochemistry parameters in silver catfish, Rhamdia quelen, Quoy & Gaimard.

    Science.gov (United States)

    Pretto, Alexandra; Loro, Vania Lucia; Silva, Vera M Machado; Salbego, Joseânia; de Menezes, Charlene Cavalheiro; Souza, Carine de Freitas; Gioda, Carolina Rosa; Baldisserotto, Bernardo

    2014-04-01

    The effects of Cu exposure on catalase (CAT) and acetylcholinesterase (AChE) activity, formation of thiobarbituric acid-reactive species (TBARS) and metabolic parameters were evaluated in silver catfish (Rhamdia quelen). The fish were exposed for 45 days to 0, 16 and 29 μg/L Cu. The fish that were exposed to Cu exhibited lower TBARS levels in the muscle and higher TBARS levels in the liver. They also showed lower CAT activity in the liver and lower AChE activity in the brain and muscle. Higher glucose and lactate and lower protein plasma levels were observed in the fish exposed to Cu. The changes in the hepatic metabolic parameters were Cu concentration dependent. In the muscle, lower glycogen and higher lactate levels were observed in the fish exposed to Cu. Alterations in the metabolic parameters showed a preference for the anaerobic pathway of energy production and liver protein catabolism to supply the energy demand.

  1. Business Process Aware IS Change Management in SMEs

    Science.gov (United States)

    Makna, Janis

    Changes in the business process usually require changes in the computer supported information system and, vice versa, changes in the information system almost always cause at least some changes in the business process. In many situations it is not even possible to detect which of those changes are causes and which of them are effects. Nevertheless, it is possible to identify a set of changes that usually happen when one of the elements of the set changes its state. These sets of changes may be used as patterns for situation analysis to anticipate full range of activities to be performed to get the business process and/or information system back to the stable state after it is lost because of the changes in one of the elements. Knowledge about the change pattern gives an opportunity to manage changes of information systems even if business process models and information systems architecture are not neatly documented as is the case in many SMEs. Using change patterns it is possible to know whether changes in information systems are to be expected and how changes in information systems activities, data and users will impact different aspects of the business process supported by the information system.

  2. How often do sensitivity analyses for economic parameters change cost-utility analysis conclusions?

    Science.gov (United States)

    Schackman, Bruce R; Gold, Heather Taffet; Stone, Patricia W; Neumann, Peter J

    2004-01-01

    There is limited evidence about the extent to which sensitivity analysis has been used in the cost-effectiveness literature. Sensitivity analyses for health-related QOL (HR-QOL), cost and discount rate economic parameters are of particular interest because they measure the effects of methodological and estimation uncertainties. To investigate the use of sensitivity analyses in the pharmaceutical cost-utility literature in order to test whether a change in economic parameters could result in a different conclusion regarding the cost effectiveness of the intervention analysed. Cost-utility analyses of pharmaceuticals identified in a prior comprehensive audit (70 articles) were reviewed and further audited. For each base case for which sensitivity analyses were reported (n = 122), up to two sensitivity analyses for HR-QOL (n = 133), cost (n = 99), and discount rate (n = 128) were examined. Article mentions of thresholds for acceptable cost-utility ratios were recorded (total 36). Cost-utility ratios were denominated in US dollars for the year reported in each of the original articles in order to determine whether a different conclusion would have been indicated at the time the article was published. Quality ratings from the original audit for articles where sensitivity analysis results crossed the cost-utility ratio threshold above the base-case result were compared with those that did not. The most frequently mentioned cost-utility thresholds were $US20,000/QALY, $US50,000/QALY, and $US100,000/QALY. The proportions of sensitivity analyses reporting quantitative results that crossed the threshold above the base-case results (or where the sensitivity analysis result was dominated) were 31% for HR-QOL sensitivity analyses, 20% for cost-sensitivity analyses, and 15% for discount-rate sensitivity analyses. Almost half of the discount-rate sensitivity analyses did not report quantitative results. Articles that reported sensitivity analyses where results crossed the cost

  3. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach. The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.

  4. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Parameters and structure of lunar regolith in Chang'E-3 landing area from lunar penetrating radar (LPR) data

    Science.gov (United States)

    Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan

    2017-01-01

    Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.

  6. A predictive thermal dynamic model for parameter generation in the laser assisted direct write process

    International Nuclear Information System (INIS)

    Shang Shuo; Fearon, Eamonn; Wellburn, Dan; Sato, Taku; Edwardson, Stuart; Dearden, G; Watkins, K G

    2011-01-01

    The laser assisted direct write (LADW) method can be used to generate electrical circuitry on a substrate by depositing metallic ink and curing the ink thermally by a laser. Laser curing has emerged over recent years as a novel yet efficient alternative to oven curing. This method can be used in situ, over complicated 3D contours of large parts (e.g. aircraft wings) and selectively cure over heat sensitive substrates, with little or no thermal damage. In previous studies, empirical methods have been used to generate processing windows for this technique, relating to the several interdependent processing parameters on which the curing quality and efficiency strongly depend. Incorrect parameters can result in a track that is cured in some areas and uncured in others, or in damaged substrates. This paper addresses the strong need for a quantitative model which can systematically output the processing conditions for a given combination of ink, substrate and laser source; transforming the LADW technique from a purely empirical approach, to a simple, repeatable, mathematically sound, efficient and predictable process. The method comprises a novel and generic finite element model (FEM) that for the first time predicts the evolution of the thermal profile of the ink track during laser curing and thus generates a parametric map which indicates the most suitable combination of parameters for process optimization. Experimental data are compared with simulation results to verify the accuracy of the model.

  7. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-04-01

    Full Text Available Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  8. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  9. Design and Development of Data Acquisition System Process Parameters of Kartini Reactor

    International Nuclear Information System (INIS)

    Prajitno

    2009-01-01

    Design and development of computer program for data acquisition system of process parameters of the Kartini reactor have been done. System was designed using industrial computer which equipped with electronic module PCL-812PG. The function of computer is to take parameter data of reactor process, processing the data and displaying on the numeric form and bar graphic. Electronics module PCL- 12PG was installed in one of computer slot, functions to convert from analog signal to digital, received digital status signal and produce digital output. The analog signal and digital status got from logarithmic power channel, linear power channel dan three control rod. Result of data acquisition is merged in the form of ASCII characters block, send to the master computer serially with communications protocols RS-232. Computer program which has been developed was tested and used for monitoring Kartini reactor operation and give good performance result. (author)

  10. Parameters Online Detection and Model Predictive Control during the Grain Drying Process

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2013-01-01

    Full Text Available In order to improve the grain drying quality and automation level, combined with the structural characteristics of the cross-flow circulation grain dryer designed and developed by us, the temperature, moisture, and other parameters measuring sensors were placed on the dryer, to achieve online automatic detection of process parameters during the grain drying process. A drying model predictive control system was set up. A grain dry predictive control model at constant velocity and variable temperature was established, in which the entire process was dried at constant velocity (i.e., precipitation rate per hour is a constant and variable temperature. Combining PC with PLC, and based on LabVIEW, a system control platform was designed.

  11. Parameters of the Two-Phase Sand-Air Stream in the Blowing Process

    Directory of Open Access Journals (Sweden)

    Danko J.

    2012-12-01

    Full Text Available Theoretical problems concerning the determination of work parameters of the two-phase sand-air stream in the cores making process by blowing methods as well as experimental methods of determination of the main and auxiliary parameters of this process decisive on the cores quality assessed by the value and distribution of their apparent density are presented in the paper. In addition the results of visualisations of the core-box filling with the sand-air stream, from the blowing chamber, obtained by the process filming by means of the quick-action camera are presented in the paper and compared with the results of simulation calculations with the application of the ProCast software.

  12. Parameters of the Two-Phase Sand-Air Stream in the Blowing Process

    Directory of Open Access Journals (Sweden)

    J. Danko

    2012-12-01

    Full Text Available Theoretical problems concerning the determination of work parameters of the two-phase sand-air stream in the cores making process byblowing methods as well as experimental methods of determination of the main and auxiliary parameters of this process decisive on thecores quality assessed by the value and distribution of their apparent density are presented in the paper. In addition the results of visualisations of the core-box filling with the sand-air stream, from the blowing chamber, obtained by the process filming by means of the quick-action camera are presented in the paper and compared with the results of simulation calculations with the application of the ProCast software.

  13. Microsoft excel's automatic data processing and diagram drawing of RIA internal quality control parameters

    International Nuclear Information System (INIS)

    Zeng Pingfan; Liu Guoqiang

    2006-01-01

    We did automatic data processing and diagram drawing of various parameters of RIA' s internal quality control (IQC)by the use of Microsoft Excel (ME). By use of AVERAGE and STDEV of ME, we got x-bar, s and CV%. With pearson, we got the serum quality control coefficients (r). Inputing the original data to diagram's self-definition item, the diagram was drawn automatically. By the use of logic judging, we got the quality control judging results with the status, timing and data of various quality control parameters. For the past four years, the ME data processing and diagram drawing as well as quality control judging have been showed to be accurate, convenient and correct. It was quick and easy to manage and the automatic computer processing of RIA's IQC was realized. Conclusion: the method is applicable to all types of RIA' s IQC. (authors)

  14. A new method to estimate heat source parameters in gas metal arc welding simulation process

    International Nuclear Information System (INIS)

    Jia, Xiaolei; Xu, Jie; Liu, Zhaoheng; Huang, Shaojie; Fan, Yu; Sun, Zhi

    2014-01-01

    Highlights: •A new method for accurate simulation of heat source parameters was presented. •The partial least-squares regression analysis was recommended in the method. •The welding experiment results verified accuracy of the proposed method. -- Abstract: Heat source parameters were usually recommended by experience in welding simulation process, which induced error in simulation results (e.g. temperature distribution and residual stress). In this paper, a new method was developed to accurately estimate heat source parameters in welding simulation. In order to reduce the simulation complexity, a sensitivity analysis of heat source parameters was carried out. The relationships between heat source parameters and welding pool characteristics (fusion width (W), penetration depth (D) and peak temperature (T p )) were obtained with both the multiple regression analysis (MRA) and the partial least-squares regression analysis (PLSRA). Different regression models were employed in each regression method. Comparisons of both methods were performed. A welding experiment was carried out to verify the method. The results showed that both the MRA and the PLSRA were feasible and accurate for prediction of heat source parameters in welding simulation. However, the PLSRA was recommended for its advantages of requiring less simulation data

  15. Multi-Response Optimization of WEDM Process Parameters Using Taguchi Based Desirability Function Analysis

    Science.gov (United States)

    Majumder, Himadri; Maity, Kalipada

    2018-03-01

    Shape memory alloy has a unique capability to return to its original shape after physical deformation by applying heat or thermo-mechanical or magnetic load. In this experimental investigation, desirability function analysis (DFA), a multi-attribute decision making was utilized to find out the optimum input parameter setting during wire electrical discharge machining (WEDM) of Ni-Ti shape memory alloy. Four critical machining parameters, namely pulse on time (TON), pulse off time (TOFF), wire feed (WF) and wire tension (WT) were taken as machining inputs for the experiments to optimize three interconnected responses like cutting speed, kerf width, and surface roughness. Input parameter combination TON = 120 μs., TOFF = 55 μs., WF = 3 m/min. and WT = 8 kg-F were found to produce the optimum results. The optimum process parameters for each desired response were also attained using Taguchi’s signal-to-noise ratio. Confirmation test has been done to validate the optimum machining parameter combination which affirmed DFA was a competent approach to select optimum input parameters for the ideal response quality for WEDM of Ni-Ti shape memory alloy.

  16. Parameter identification of process simulation models as a means for knowledge acquisition and technology transfer

    Science.gov (United States)

    Batzias, Dimitris F.; Ifanti, Konstantina

    2012-12-01

    Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.

  17. Individual differences in emotion processing: how similar are diffusion model parameters across tasks?

    Science.gov (United States)

    Mueller, Christina J; White, Corey N; Kuchinke, Lars

    2017-11-27

    The goal of this study was to replicate findings of diffusion model parameters capturing emotion effects in a lexical decision task and investigating whether these findings extend to other tasks of implicit emotion processing. Additionally, we were interested in the stability of diffusion model parameters across emotional stimuli and tasks for individual subjects. Responses to words in a lexical decision task were compared with responses to faces in a gender categorization task for stimuli of the emotion categories: happy, neutral and fear. Main effects of emotion as well as stability of emerging response style patterns as evident in diffusion model parameters across these tasks were analyzed. Based on earlier findings, drift rates were assumed to be more similar in response to stimuli of the same emotion category compared to stimuli of a different emotion category. Results showed that emotion effects of the tasks differed with a processing advantage for happy followed by neutral and fear-related words in the lexical decision task and a processing advantage for neutral followed by happy and fearful faces in the gender categorization task. Both emotion effects were captured in estimated drift rate parameters-and in case of the lexical decision task also in the non-decision time parameters. A principal component analysis showed that contrary to our hypothesis drift rates were more similar within a specific task context than within a specific emotion category. Individual response patterns of subjects across tasks were evident in significant correlations regarding diffusion model parameters including response styles, non-decision times and information accumulation.

  18. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  19. Optimization of the Process Parameters for Controlling Residual Stress and Distortion in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Schmidt, Henrik Nikolaj Blicher; Hattel, Jesper Henri

    2008-01-01

    In the present paper, numerical optimization of the process parameters, i.e. tool rotation speed and traverse speed, aiming minimization of the two conflicting objectives, i.e. the residual stresses and welding time, subjected to process-specific thermal constraints in friction stir welding......, is investigated. The welding process is simulated in 2-dimensions with a sequentially coupled transient thermo-mechanical model using ANSYS. The numerical optimization problem is implemented in modeFRONTIER and solved using the Multi-Objective Genetic Algorithm (MOGA-II). An engineering-wise evaluation or ranking...

  20. Modelling pesticide leaching under climate change: parameter vs. climate input uncertainty

    Directory of Open Access Journals (Sweden)

    K. Steffens

    2014-02-01

    Full Text Available Assessing climate change impacts on pesticide leaching requires careful consideration of different sources of uncertainty. We investigated the uncertainty related to climate scenario input and its importance relative to parameter uncertainty of the pesticide leaching model. The pesticide fate model MACRO was calibrated against a comprehensive one-year field data set for a well-structured clay soil in south-western Sweden. We obtained an ensemble of 56 acceptable parameter sets that represented the parameter uncertainty. Nine different climate model projections of the regional climate model RCA3 were available as driven by different combinations of global climate models (GCM, greenhouse gas emission scenarios and initial states of the GCM. The future time series of weather data used to drive the MACRO model were generated by scaling a reference climate data set (1970–1999 for an important agricultural production area in south-western Sweden based on monthly change factors for 2070–2099. 30 yr simulations were performed for different combinations of pesticide properties and application seasons. Our analysis showed that both the magnitude and the direction of predicted change in pesticide leaching from present to future depended strongly on the particular climate scenario. The effect of parameter uncertainty was of major importance for simulating absolute pesticide losses, whereas the climate uncertainty was relatively more important for predictions of changes of pesticide losses from present to future. The climate uncertainty should be accounted for by applying an ensemble of different climate scenarios. The aggregated ensemble prediction based on both acceptable parameterizations and different climate scenarios has the potential to provide robust probabilistic estimates of future pesticide losses.

  1. VISUALIZATION SOFTWARE DEVELOPMENT FOR PROCEDURE OF MULTI-DIMENSIONAL OPTIMIZATION OF TECHNOLOGICAL PROCESS FUNCTIONAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    E. N. Ishakova

    2016-05-01

    Full Text Available A method for multi-criteria optimization of the design parameters for technological object is described. The existing optimization methods are overviewed, and works in the field of basic research and applied problems are analyzed. The problem is formulated, based on the process requirements, making it possible to choose the geometrical dimensions of machine tips and the flow rate of the process, so that the resulting technical and economical parameters were optimal. In the problem formulation application of the performance method adapted to a particular domain is described. Task implementation is shown; the method of characteristics creation for the studied object in view of some restrictions for parameters in both analytical and graphical representation. On the basis of theoretical research the software system is developed that gives the possibility to automate the discovery of optimal solutions for specific problems. Using available information sources, that characterize the object of study, it is possible to establish identifiers, add restrictions from the one side, and in the interval as well. Obtained result is a visual depiction of dependence of the main study parameters on the others, which may have an impact on both the flow of the process, and the quality of products. The resulting optimal area shows the use of different design options for technological object in an acceptable kinematic range that makes it possible for the researcher to choose the best design solution.

  2. Laser Trimming of CuAlMo Thin-Film Resistors: Effect of Laser Processing Parameters

    Science.gov (United States)

    Birkett, Martin; Penlington, Roger

    2012-08-01

    This paper reports the effect of varying laser trimming process parameters on the electrical performance of a novel CuAlMo thin-film resistor material. The films were prepared on Al2O3 substrates by direct-current (DC) magnetron sputtering, before being laser trimmed to target resistance value. The effect of varying key laser parameters of power, Q-rate, and bite size on the resistor stability and tolerance accuracy were systematically investigated. By reducing laser power and bite size and balancing this with Q-rate setting, significant improvements in resistor stability and resistor tolerance accuracies of less than ±0.5% were achieved.

  3. Kinetics parameters of a slurry remediation process in rotating drum bioreactors

    International Nuclear Information System (INIS)

    Esquivel-Rios, I.; Rodriguez-Meza, M. A.; Barrera-Cortes, J.

    2009-01-01

    The knowledge of biotransformation pollution dynamics in any systems is important for design and optimization purposes of biochemical processes involved. this is focus to the determination of kinetics parameters such as the maximum specific growth rate (μMAX), saturation constant (Ks), biomass yield (YX/S; X: biomass, S: substrate) and oxygen consumption (YO 2 /S; O 2 : oxygen). Several approximations, based on Monod equation, have been developed for estimating kinetics parameters in terms of concentration and type of substrate, bioprocess type and microflora available. (Author)

  4. On Representing Instance Changes in Adaptive Process Management Systems.

    NARCIS (Netherlands)

    Rinderle, S.B.; Kreher, U; Lauer, M.; Dadam, P.; Reichert, M.U.

    2006-01-01

    By separating the process logic from the application code process management systems (PMS) offer promising perspectives for automation and management of business processes. However, the added value of PMS strongly depends on their ability to support business process changes which can affect the

  5. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  6. Processes and driving forces in changing cultural landscapes across Europe

    DEFF Research Database (Denmark)

    Bürgi, Matthias; Bieling, Claudia; Von Hackwitz, Kim

    2017-01-01

    Context: Cultural landscapes evolve over time. However, the rate and direction of change might not be in line with societal needs and more information on the forces driving these changes are therefore needed. Objectives: Filling the gap between single case studies and meta-analyses, we present...... perceived landscape changes, and remembered driving forces. Land cover and landscape changes were analysed regarding change, conversions and processes. For all case study areas, narratives on mapped land cover change, perceived landscape changes and driving forces were compiled. Results: Despite a very high...... diversity in extent, direction and rates of change, a few dominant processes and widespread factors driving the changes could be identified in the six case study areas, i.e. access and infrastructure, political shifts, labor market, technological innovations, and for the more recent period climate change...

  7. Meltlets(®) of soy isoflavones: process optimization and the effect of extrusion spheronization process parameters on antioxidant activity.

    Science.gov (United States)

    Deshmukh, Ketkee; Amin, Purnima

    2013-07-01

    In the current research work an attempt was made to develop "Melt in mouth pellets" (Meltlets(®)) containing 40% herbal extract of soy isoflavones that served to provide antioxidants activity in menopausal women. The process of extrusion-spheronization was optimized for extruder speed, extruder screen size, spheronization speed, and time. While doing so the herbal extract incorporated in the pellet matrix was subjected to various processing conditions such as the effect of the presence of other excipients, mixing or kneading to prepare wet mass, heat generated during the process of extrusion, spheronization, and drying. Thus, the work further investigates the effect of these processing parameters on the antioxidant activity of the soy isoflavone herbal extract incorporated in the formula. Thereby, the antioxidant activity of the soya bean herbal extract, Meltlets(®) and of the placebo pellets was evaluated using DPPH free radical scavenging assay and total reduction capacity.

  8. Effects of Processing Parameters on the Density and Microstructure of Pyrolytic Carbon

    International Nuclear Information System (INIS)

    Kim, Weon Ju; Park, Jeong Nam; Park, Jong Hoon; Cho, Moon Sung; Lee, Young Woo; Park, Ji Yeon

    2007-01-01

    Chemical vapor deposition (CVD) of pyrolytic carbon (PyC) and silicon carbide (SiC) has been applied to TRISO-coated fuel particles for high-temperature gas-cooled reactors (HTGR). The porous PyC coating layer, called the buffer layer, attenuates fission recoils and provides void volume for gaseous fission products and carbon monoxide. The inner PyC layer acts as a containment to gaseous products. The outer PyC layer protects the SiC coating layer by inducing a compressive stress and provides chemical compatibility with a graphite matrix in the fuel compact. The PyC layers undergo shrinkage due to neutron irradiation, affecting the design and modeling of fuel particles. Because the dimensional change of PyC depends on the detailed microstructure of PyC, it differs from one fabrication route to another one. This requires a new design of irradiation experiment applicable to spherical objects and leads to an international collaborative work called PYCASSO (PYrocarbon irradiation for Creep And Swelling/Shrinkage of Objects). KAERI proposed four different types of PyC layers coated on ZrO 2 particles, buffer with a density of 1.0 and dense PyCs with densities of 1.7, 1.9 and 2.1 g/cm 3 , for the irradiation experiment. In this study, we fabricated PyC-coated particles with various coating densities for supporting the PYCASSO experiment. We also investigated effects of processing parameters such as temperature, hydrocarbon concentration and gas flow rate on the density and microstructure of the PyC layer

  9. Long-term changes in flood event patterns due to changes in hydrological distribution parameters in a rural-urban catchment, Shikoku, Japan

    Science.gov (United States)

    Mouri, Goro; Kanae, Shinjiro; Oki, Taikan

    2011-07-01

    This article describes the principal control parameters of flood events and precipitation and the relationships between corresponding hydrologic and climatologic parameters. The long-term generation of runoff and associated processes is important in understanding floods and droughts under changes in climate and land use. This study presents detailed analyses of flood events in a coastal amphitheatre catchment with a total area of 445 km 2 in western Japan, followed by analyses of flood events in both urban and forest areas. Using long-term (1962 to 2002) hydrological and climatological data from the Ministry of Land, Infrastructure and Transport, Japan, the contributions of precipitation, river discharge, temperature, and relative humidity to flood events were analysed. Flood events could be divided into three types with respect to hydrologic and climatologic principal control parameters: the long-term tendency; medium-term changes as revealed by hydrographs and hyetographs of high-intensity events such as the relative precipitation, river discharge, and temperature; and large events, as shown by the flow-duration curve, with each cluster having particular characteristics. River discharge showed a decreasing tendency of flow quantity during small rainfall events of less than 100 mm/event from the 1980s to the present. An approximately 7% decrease from 44.8 to 37.3% occurred in the percentage of river water supplied by precipitation in the years after the 1980s. For the medium-term changes, no marked change occurred in the flow quantity of the peak point over time in event hydrographs. However, flow quantities before and after the peak tended to decrease by 1 to 2 m 3/s after the 1980s. Theoretical considerations with regard to the influence of hydrologic and climatologic parameters on flood discharge are discussed and examined in terms of observational data. These findings provide a sound foundation for use in hydrological catchment modelling.

  10. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure

    Directory of Open Access Journals (Sweden)

    F. Burgio

    2014-10-01

    Full Text Available Chemical Vapour Infiltration (CVI technique has been long used to produce carbon/carbon composites. The Pyrolytic Carbon (Py-C matrix infiltrated by CVI could have different microstructures, i.e. Rough Laminar (RL, Smooth Laminar (SL or Isotropic (ISO. These matrix microstructures, characterized by different properties, influence the mechanical behaviour of the obtained composites. Tailoring the process parameters, it is possible to direct the infiltration towards a specific Py-C type. However, the factors, influencing the production of a specific matrix microstructure, are numerous and interconnected, e.g. temperature, pressure, flow rates etc. Due to the complexity of the physical and chemical phenomena involved in CVI process, up to now it has not been possible to obtain a general correlation between CVI process parameters and Py–C microstructure. This study is aimed at investigating the relationship between infiltration temperature and the microstructure of obtained Py-C, for a pilot - sized CVI/CVD reactor. Fixing the other process parameters and varying only the temperature, from 1100°C to 1300°C, the Py-C infiltration was performed on fibrous preforms. Polarized light microscopy, with quantitative measurements of average extinction angle (Ae, and Raman spectroscopy were used to characterize the obtained Py-C microstructures

  11. Cf/C composites: correlation between CVI process parameters and Pyrolytic Carbon microstructure

    Directory of Open Access Journals (Sweden)

    F. Burgio

    2014-10-01

    Full Text Available Chemical Vapour Infiltration (CVI technique has been long used to produce carbon/carbon composites. The Pyrolytic Carbon (Py-C matrix infiltrated by CVI could have different microstructures, i.e. Rough Laminar (RL, Smooth Laminar (SL or Isotropic (ISO. These matrix microstructures, characterized by different properties, influence the mechanical behaviour of the obtained composites. Tailoring the process parameters, it is possible to direct the infiltration towards a specific Py-C type. However, the factors, influencing the production of a specific matrix microstructure, are numerous and interconnected, e.g. temperature, pressure, flow rates etc. Due to the complexity of the physical and chemical phenomena involved in CVI process, up to now it has not been possible to obtain a general correlation between CVI process parameters and Py–C microstructure. This study is aimed at investigating the relationship between infiltration temperature and the microstructure of obtained Py-C, for a pilot - sized CVI/CVD reactor. Fixing the other process parameters and varying only the temperature, from 1100°C to 1300°C, the Py-C infiltration was performed on fibrous preforms. Polarized light microscopy, with quantitative measurements of average extinction angle (Ae, and Raman spectroscopy were used to characterize the obtained Py-C microstructures.

  12. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    Science.gov (United States)

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  13. Effects of process parameters on solid self-microemulsifying particles in a laboratory scale fluid bed.

    Science.gov (United States)

    Mukherjee, Tusharmouli; Plakogiannis, Fotios M

    2012-01-01

    The purpose of this study was to select the critical process parameters of the fluid bed processes impacting the quality attribute of a solid self-microemulsifying (SME) system of albendazole (ABZ). A fractional factorial design (2(4-1)) with four parameters (spray rate, inlet air temperature, inlet air flow, and atomization air pressure) was created by MINITAB software. Batches were manufactured in a laboratory top-spray fluid bed at 625-g scale. Loss on drying (LOD) samples were taken throughout each batch to build the entire moisture profiles. All dried granulation were sieved using mesh 20 and analyzed for particle size distribution (PSD), morphology, density, and flow. It was found that as spray rate increased, sauter-mean diameter (D(s)) also increased. The effect of inlet air temperature on the peak moisture which is directly related to the mean particle size was found to be significant. There were two-way interactions between studied process parameters. The main effects of inlet air flow rate and atomization air pressure could not be found as the data were inconclusive. The partial least square (PLS) regression model was found significant (P SME manufacturing process.

  14. The study of optimization on process parameters of high-accuracy computerized numerical control polishing

    Science.gov (United States)

    Huang, Wei-Ren; Huang, Shih-Pu; Tsai, Tsung-Yueh; Lin, Yi-Jyun; Yu, Zong-Ru; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Young, Hong-Tsu

    2017-09-01

    Spherical lenses lead to forming spherical aberration and reduced optical performance. Consequently, in practice optical system shall apply a combination of spherical lenses for aberration correction. Thus, the volume of the optical system increased. In modern optical systems, aspherical lenses have been widely used because of their high optical performance with less optical components. However, aspherical surfaces cannot be fabricated by traditional full aperture polishing process due to their varying curvature. Sub-aperture computer numerical control (CNC) polishing is adopted for aspherical surface fabrication in recent years. By using CNC polishing process, mid-spatial frequency (MSF) error is normally accompanied during this process. And the MSF surface texture of optics decreases the optical performance for high precision optical system, especially for short-wavelength applications. Based on a bonnet polishing CNC machine, this study focuses on the relationship between MSF surface texture and CNC polishing parameters, which include feed rate, head speed, track spacing and path direction. The power spectral density (PSD) analysis is used to judge the MSF level caused by those polishing parameters. The test results show that controlling the removal depth of single polishing path, through the feed rate, and without same direction polishing path for higher total removal depth can efficiently reduce the MSF error. To verify the optical polishing parameters, we divided a correction polishing process to several polishing runs with different direction polishing paths. Compare to one shot polishing run, multi-direction path polishing plan could produce better surface quality on the optics.

  15. Exact run length distribution of the double sampling x-bar chart with estimated process parameters

    Directory of Open Access Journals (Sweden)

    Teoh, W. L.

    2016-05-01

    Full Text Available Since the run length distribution is generally highly skewed, a significant concern about focusing too much on the average run length (ARL criterion is that we may miss some crucial information about a control chart’s performance. Thus it is important to investigate the entire run length distribution of a control chart for an in-depth understanding before implementing the chart in process monitoring. In this paper, the percentiles of the run length distribution for the double sampling (DS X chart with estimated process parameters are computed. Knowledge of the percentiles of the run length distribution provides a more comprehensive understanding of the expected behaviour of the run length. This additional information includes the early false alarm, the skewness of the run length distribution, and the median run length (MRL. A comparison of the run length distribution between the optimal ARL-based and MRL-based DS X chart with estimated process parameters is presented in this paper. Examples of applications are given to aid practitioners to select the best design scheme of the DS X chart with estimated process parameters, based on their specific purpose.

  16. Characteristic evaluation of process parameters of friction stir welding of aluminium 2024 hybrid composites

    Science.gov (United States)

    Sadashiva, M.; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    The Current work is aimed to investigate the effect of process parameters in friction stir welding of Aluminium 2024 base alloy and Aluminium 2024 matrix alloy reinforced with E Glass and Silicon Carbide reinforcements. The process involved a set of synthesis techniques incorporating stir casting methodology resulting in fabrication of the composite material. This composite material that is synthesized is then machined to obtain a plate of dimensions 100 mm * 50 mm * 6 mm. The plate is then friction stir welded at different set of parameters viz. the spindle speed of 600 rpm, 900 rpm and 1200 rpm and feed rate of 40 mm/min, 80 mm/min and 120 mm/min for analyzing the process capability. The study of the given set of parameters is predominantly important to understand the physics of the process that may lead to better properties of the joint, which is very much important in perspective to its use in advanced engineering applications, especially in aerospace domain that uses Aluminium 2024 alloy for wing and fuselage structures under tension.

  17. Using Process Mining to Learn from Process Changes in Evolutionary Systems

    NARCIS (Netherlands)

    Günther, Christian W.; Rinderle, S.B.; Reichert, M.U.; van der Aalst, Wil M.P.; Recker, Jan

    2008-01-01

    Traditional information systems struggle with the requirement to provide flexibility and process support while still enforcing some degree of control. Accordingly, adaptive process management systems (PMSs) have emerged that provide some flexibility by enabling dynamic process changes during

  18. Impact parameter sensitive study of inner-shell atomic processes in the experimental storage ring

    Science.gov (United States)

    Gumberidze, A.; Kozhuharov, C.; Zhang, R. T.; Trotsenko, S.; Kozhedub, Y. S.; DuBois, R. D.; Beyer, H. F.; Blumenhagen, K.-H.; Brandau, C.; Bräuning-Demian, A.; Chen, W.; Forstner, O.; Gao, B.; Gassner, T.; Grisenti, R. E.; Hagmann, S.; Hillenbrand, P.-M.; Indelicato, P.; Kumar, A.; Lestinsky, M.; Litvinov, Yu. A.; Petridis, N.; Schury, D.; Spillmann, U.; Trageser, C.; Trassinelli, M.; Tu, X.; Stöhlker, Th.

    2017-10-01

    In this work, we present a pilot experiment in the experimental storage ring (ESR) at GSI devoted to impact parameter sensitive studies of inner shell atomic processes for low-energy (heavy-) ion-atom collisions. The experiment was performed with bare and He-like xenon ions (Xe54+, Xe52+) colliding with neutral xenon gas atoms, resulting in a symmetric collision system. This choice of the projectile charge states was made in order to compare the effect of a filled K-shell with the empty one. The projectile and target X-rays have been measured at different observation angles for all impact parameters as well as for the impact parameter range of ∼35-70 fm.

  19. Influence of Wire Electrical Discharge Machining (WEDM) process parameters on surface roughness

    Science.gov (United States)

    Yeakub Ali, Mohammad; Banu, Asfana; Abu Bakar, Mazilah

    2018-01-01

    In obtaining the best quality of engineering components, the quality of machined parts surface plays an important role. It improves the fatigue strength, wear resistance, and corrosion of workpiece. This paper investigates the effects of wire electrical discharge machining (WEDM) process parameters on surface roughness of stainless steel using distilled water as dielectric fluid and brass wire as tool electrode. The parameters selected are voltage open, wire speed, wire tension, voltage gap, and off time. Empirical model was developed for the estimation of surface roughness. The analysis revealed that off time has a major influence on surface roughness. The optimum machining parameters for minimum surface roughness were found to be at a 10 V open voltage, 2.84 μs off time, 12 m/min wire speed, 6.3 N wire tension, and 54.91 V voltage gap.

  20. Optimisation of wire-cut EDM process parameter by Grey-based response surface methodology

    Science.gov (United States)

    Kumar, Amit; Soota, Tarun; Kumar, Jitendra

    2018-03-01

    Wire electric discharge machining (WEDM) is one of the advanced machining processes. Response surface methodology coupled with Grey relation analysis method has been proposed and used to optimise the machining parameters of WEDM. A face centred cubic design is used for conducting experiments on high speed steel (HSS) M2 grade workpiece material. The regression model of significant factors such as pulse-on time, pulse-off time, peak current, and wire feed is considered for optimising the responses variables material removal rate (MRR), surface roughness and Kerf width. The optimal condition of the machining parameter was obtained using the Grey relation grade. ANOVA is applied to determine significance of the input parameters for optimising the Grey relation grade.

  1. [Energy dispersive spectrum analysis of surface compositions of selective laser melting cobalt-chromium alloy fabricated by different processing parameters].

    Science.gov (United States)

    Qian, Liang; Zeng, Li; Wei, Bin; Gong, Yao

    2015-06-01

    To fabricate selective laser melting cobalt-chromium alloy samples by different processing parameters, and to analyze the changes of energy dispersive spectrum(EDS) on their surface. Nine groups were set up by orthogonal experimental design according to different laser powers,scanning speeds and powder feeding rates(laser power:2500-3000 W, scanning speed: 5-15 mm/s, powder feeding rate: 3-6 r/min). Three cylinder specimens(10 mm in diameter and 3 mm in thickness) were fabricated in each group through Rofin DL 035Q laser cladding system using cobalt-chromium alloy powders which were developed independently by our group.Their surface compositions were then measured by EDS analysis. Results of EDS analysis of the 9 groups fabricated by different processing parameters(Co:62.98%-67.13%,Cr:25.56%-28.50%,Si:0.49%-1.23%) were obtained. They were similar to the compositions of cobalt-chromium alloy used in dental practice. According to EDS results, the surface compositions of the selective laser melting cobalt-chromium alloy samples are stable and controllable, which help us gain a preliminary sight into the range of SLM processing parameters. Supported by "973" Program (2012CB910401) and Research Fund of Science and Technology Committee of Shanghai Municipality (12441903001 and 13140902701).

  2. Investigation of fuel lattice pitch changes influence on reactor performance through evaluate the neutronic parameters

    International Nuclear Information System (INIS)

    Zareian Ronizi, F.; Fadaei, A.H.; Setayeshi, S.; Shahidi, A.R.

    2015-01-01

    Highlights: • One of the most complex issues that Nu-engineers deal with is the design of NR core. • Numerous factors in nuclear core design depend on Fuel-to-Moderator volume ratio. • Aim of this research is to investigate RX performance for different lattice pitches. - Abstract: Nuclear reactor core design is one of the most complex issues that nuclear engineers deal with. The number and complexity of effective parameters and their impact on reactor design, which makes the problem difficult to solve, require precise knowledge of these parameters and their influence on the reactor operation. Numerous factors in a nuclear reactor core design depend on the Fuel-to-Moderator volume ratio, V F /V M , in a fuel cell. This ratio can be modified by changing the lattice pitch which is the thickness of water channels between fuels plates while keeping fuel slab dimensions fixed. Cooling and moderating properties of water are affected by such a change in a reactor core, and hence some parameters related to these properties might be changed. The aim of this research is to provide the suitable knowledge for nuclear core designing. To reach this goal, the first operating core of Tehran Research Reactor (TRR) with different lattice pitches is simulated, and the effect of different lattice pitches on some parameters such as effective multiplication factor (K eff ), reactor life time, distribution of neutron flux and power density in the core, as well as moderator temperature and density coefficient of reactivity are evaluated. The nuclear reactor analysis code, MTR-PC package is employed to carry out the considered calculation. Finally, the results are presented in some tables and graphs that provide useful information for nuclear engineers in the nuclear reactor core design

  3. A Systematic Approach of Employing Quality by Design Principles: Risk Assessment and Design of Experiments to Demonstrate Process Understanding and Identify the Critical Process Parameters for Coating of the Ethylcellulose Pseudolatex Dispersion Using Non-Conventional Fluid Bed Process.

    Science.gov (United States)

    Kothari, Bhaveshkumar H; Fahmy, Raafat; Claycamp, H Gregg; Moore, Christine M V; Chatterjee, Sharmista; Hoag, Stephen W

    2017-05-01

    The goal of this study was to utilize risk assessment techniques and statistical design of experiments (DoE) to gain process understanding and to identify critical process parameters for the manufacture of controlled release multiparticulate beads using a novel disk-jet fluid bed technology. The material attributes and process parameters were systematically assessed using the Ishikawa fish bone diagram and failure mode and effect analysis (FMEA) risk assessment methods. The high risk attributes identified by the FMEA analysis were further explored using resolution V fractional factorial design. To gain an understanding of the processing parameters, a resolution V fractional factorial study was conducted. Using knowledge gained from the resolution V study, a resolution IV fractional factorial study was conducted; the purpose of this IV study was to identify the critical process parameters (CPP) that impact the critical quality attributes and understand the influence of these parameters on film formation. For both studies, the microclimate, atomization pressure, inlet air volume, product temperature (during spraying and curing), curing time, and percent solids in the coating solutions were studied. The responses evaluated were percent agglomeration, percent fines, percent yield, bead aspect ratio, median particle size diameter (d50), assay, and drug release rate. Pyrobuttons® were used to record real-time temperature and humidity changes in the fluid bed. The risk assessment methods and process analytical tools helped to understand the novel disk-jet technology and to systematically develop models of the coating process parameters like process efficiency and the extent of curing during the coating process.

  4. Optimization of process parameters of pulsed TIG welded maraging steel C300

    Science.gov (United States)

    Deepak, P.; Jualeash, M. J.; Jishnu, J.; Srinivasan, P.; Arivarasu, M.; Padmanaban, R.; Thirumalini, S.

    2016-09-01

    Pulsed TIG welding technology provides excellent welding performance on thin sections which helps to increase productivity, enhance weld quality, minimize weld costs, and boost operator efficiency and this has drawn the attention of the welding society. Maraging C300 steel is extensively used in defence and aerospace industry and thus its welding becomes an area of paramount importance. In pulsed TIG welding, weld quality depends on the process parameters used. In this work, Pulsed TIG bead-on-plate welding is performed on a 5mm thick maraging C300 plate at different combinations of input parameters: peak current (Ip), base current (Ib) and pulsing frequency (HZ) as per box behnken design with three-levels for each factor. Response surface methodology is utilized for establishing a mathematical model for predicting the weld bead depth. The effect of Ip, Ib and HZ on the weld bead depth is investigated using the developed model. The weld bead depth is found to be affected by all the three parameters. Surface and contour plots developed from regression equation are used to optimize the processing parameters for maximizing the weld bead depth. Optimum values of Ip, Ib and HZ are obtained as 259 A, 120 A and 8 Hz respectively. Using this optimum condition, maximum bead depth of the weld is predicted to be 4.325 mm.

  5. New Proxies for Climate change parameters: Foram Culturing and Pteropod Potentials

    Science.gov (United States)

    Keul, N.; Schneider, R. R.; Langer, G.; Bijma, J.; Peijnenburg, K. T.

    2017-12-01

    Global climate change is one of the most pressing challenges our society is currently facing and strong efforts are made to simulate future climate conditions. To better validate models that aim at predicting global temperature rise as a consequence of anthropogenic CO2 emissions, accurate atmospheric paleo-CO2 estimates in combination with temperature reconstructions are necessary. Consequently there is a strong need for reliable proxies, allowing reconstruction of climate change. With respect to foraminifera a combination of laboratory experiments and modeling is presented, to show the isolated impact of the different parameters of the carbonate system on trace element composition of their shells. We focus on U/Ca and Sr/Ca ratios, which have recently been established as new proxies reflecting changes in the carbonate system of seawater. While U/Ca correlates with carbonate ion concentration, Sr/Ca is primarily influenced by DIC. The latter is particularly promising since the impact of additional parameters is relatively well constrained and hence, Sr/Ca ratios may allow higher accuracy in carbonate system parameter reconstructions. Furthermore, our results will be discussed on how to advance our knowledge about foraminiferal biomineralization. Pteropods, among the first responders to ocean acidification and warming, are explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, pteropod shells were collected along a latitudinal transect in the Atlantic Ocean. By comparing shell oxygen isotopic composition to depth changes of the calculated aragonite equilibrium oxygen isotope values, we infer shallow calcification depths for Heliconoides inflatus (75 m), rendering this species a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we demonstrate that indeed, pteropod shells are

  6. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    Science.gov (United States)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  7. Study of process parameters for reducing ammonium uranyl carbonate to uranium dioxide in fluidized bed furnace

    International Nuclear Information System (INIS)

    Leitao Junior, C.B.

    1992-01-01

    This work consists of studying the process parameters of AUC (ammonium uranyl carbonate) to U O 2 (uranium dioxide) reduction, with good physical and chemical characteristics, in fluidized bed. Initially, it was performed U O 2 cold fluidization experiments with an acrylic column. Afterward, it was done AUC to U O 2 reduction experiments, in which the process parameters influence in the granulometry, specific surface area, porosity and fluoride amount on the U O 2 powder produced were studied. As a last step, it was done compacting and sintering tests of U O 2 pellets in order to appreciate the U O 2 powder performance, obtained by fluidized bed, in the fuel pellets fabrication. (author)

  8. Study on determination of durability analysis process and fatigue damage parameter for rubber component

    International Nuclear Information System (INIS)

    Moon, Seong In; Cho, Il Je; Woo, Chang Su; Kim, Wan Doo

    2011-01-01

    Rubber components, which have been widely used in the automotive industry as anti-vibration components for many years, are subjected to fluctuating loads, often failing due to the nucleation and growth of defects or cracks. To prevent such failures, it is necessary to understand the fatigue failure mechanism for rubber materials and to evaluate the fatigue life for rubber components. The objective of this study is to develop a durability analysis process for vulcanized rubber components, that can predict fatigue life at the initial product design step. The determination method of nonlinear material constants for FE analysis was proposed. Also, to investigate the applicability of the commonly used damage parameters, fatigue tests and corresponding finite element analyses were carried out and normal and shear strain was proposed as the fatigue damage parameter for rubber components. Fatigue analysis for automotive rubber components was performed and the durability analysis process was reviewed

  9. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    International Nuclear Information System (INIS)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-01-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  10. Determination of optimum thermal debinding and sintering process parameters using Taguchi Method

    CSIR Research Space (South Africa)

    Seerane, M

    2015-07-01

    Full Text Available powder and a wax-based binder. The binder’s backbone component is a low density polyethylene (LDPE). Careful selection of thermal debinding parameters was guided by thermo- gravimetric analysis (TGA) results. The Taguchi method was used to determine... International Light Metals Technology Conference (LMT 2015), Port Elizabeth, South Africa, July 27-29 Determination of Optimum Process for Thermal Debinding and Sintering using Taguchi Method SEERANE Mandya,*, CHIKWANDA Hildab, MACHAKA Ronaldc CSIR...

  11. Process parameters affecting the delignification of eucalyptus kraft pulp with peroxyacetic acid

    Directory of Open Access Journals (Sweden)

    Chandranupap, P.

    2004-11-01

    Full Text Available Various process parameters affecting eucalyptus kraft pulp delignification with peroxyacetic acid were investigated. The results showed that pH was an important factor. The delignification rate increased with increasing pH to the value of 6. High delignification rate was obtained when the pulp was chelated with Na4-EDTA prior to the peroxyacetic acid stage. Therefore, delignification reaction rate depends on peroxyacid charge, temperature, pH and metal content of pulp.

  12. Ergodicity and Parameter Estimates for Infinite-Dimensional Fractional Ornstein-Uhlenbeck Process

    International Nuclear Information System (INIS)

    Maslowski, Bohdan; Pospisil, Jan

    2008-01-01

    Existence and ergodicity of a strictly stationary solution for linear stochastic evolution equations driven by cylindrical fractional Brownian motion are proved. Ergodic behavior of non-stationary infinite-dimensional fractional Ornstein-Uhlenbeck processes is also studied. Based on these results, strong consistency of suitably defined families of parameter estimators is shown. The general results are applied to linear parabolic and hyperbolic equations perturbed by a fractional noise

  13. A dual-process account of auditory change detection.

    Science.gov (United States)

    McAnally, Ken I; Martin, Russell L; Eramudugolla, Ranmalee; Stuart, Geoffrey W; Irvine, Dexter R F; Mattingley, Jason B

    2010-08-01

    Listeners can be "deaf" to a substantial change in a scene comprising multiple auditory objects unless their attention has been directed to the changed object. It is unclear whether auditory change detection relies on identification of the objects in pre- and post-change scenes. We compared the rates at which listeners correctly identify changed objects with those predicted by change-detection models based on signal detection theory (SDT) and high-threshold theory (HTT). Detected changes were not identified as accurately as predicted by models based on either theory, suggesting that some changes are detected by a process that does not support change identification. Undetected changes were identified as accurately as predicted by the HTT model but much less accurately than predicted by the SDT models. The process underlying change detection was investigated further by determining receiver-operating characteristics (ROCs). ROCs did not conform to those predicted by either a SDT or a HTT model but were well modeled by a dual-process that incorporated HTT and SDT components. The dual-process model also accurately predicted the rates at which detected and undetected changes were correctly identified.

  14. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    Science.gov (United States)

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  15. Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters.

    Science.gov (United States)

    Fan, Liangliang; Zhang, Yaning; Liu, Shiyu; Zhou, Nan; Chen, Paul; Cheng, Yanling; Addy, Min; Lu, Qian; Omar, Muhammad Mubashar; Liu, Yuhuan; Wang, Yunpu; Dai, Leilei; Anderson, Erik; Peng, Peng; Lei, Hanwu; Ruan, Roger

    2017-10-01

    Effects of process parameters on the yield and chemical profile of bio-oil from fast pyrolysis of lignin and the processes for lignin-derived bio-oil upgrading were reviewed. Various process parameters including pyrolysis temperature, reactor types, lignin characteristics, residence time, and feeding rate were discussed and the optimal parameter conditions for improved bio-oil yield and quality were concluded. In terms of lignin-derived bio-oil upgrading, three routes including pretreatment of lignin, catalytic upgrading, and co-pyrolysis of hydrogen-rich materials have been investigated. Zeolite cracking and hydrodeoxygenation (HDO) treatment are two main methods for catalytic upgrading of lignin-derived bio-oil. Factors affecting zeolite activity and the main zeolite catalytic mechanisms for lignin conversion were analyzed. Noble metal-based catalysts and metal sulfide catalysts are normally used as the HDO catalysts and the conversion mechanisms associated with a series of reactions have been proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Parameter-free effective field theory calculation for the solar proton-fusion and hep processes

    International Nuclear Information System (INIS)

    T.S. Park; L.E. Marcucci; R. Schiavilla; M. Viviani; A. Kievsky; S. Rosati; K. Kubodera; D.P. Min; M. Rho

    2002-01-01

    Spurred by the recent complete determination of the weak currents in two-nucleon systems up to Ο(Q 3 ) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold S-factors for the solar pp (proton-fusion) and hep processes in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium β-decay rate as an input to fix the only unknown parameter in the theory, we can evaluate the threshold S factors with drastically improved precision; the results are S pp (0) = 3.94 x (1 ± 0.004) x 10 -25 MeV-b and S hep (0) = (8.6 ± 1.3) x 10 -20 keV-b. The dependence of the calculated S-factors on the momentum cutoff parameter Λ has been examined for a physically reasonable range of Λ. This dependence is found to be extremely small for the pp process, and to be within acceptable levels for the hep process, substantiating the consistency of our calculational scheme

  17. Setting priorities in health care organizations: criteria, processes, and parameters of success

    Directory of Open Access Journals (Sweden)

    Martin Douglas K

    2004-09-01

    Full Text Available Abstract Background Hospitals and regional health authorities must set priorities in the face of resource constraints. Decision-makers seek practical ways to set priorities fairly in strategic planning, but find limited guidance from the literature. Very little has been reported from the perspective of Board members and senior managers about what criteria, processes and parameters of success they would use to set priorities fairly. Discussion We facilitated workshops for board members and senior leadership at three health care organizations to assist them in developing a strategy for fair priority setting. Workshop participants identified 8 priority setting criteria, 10 key priority setting process elements, and 6 parameters of success that they would use to set priorities in their organizations. Decision-makers in other organizations can draw lessons from these findings to enhance the fairness of their priority setting decision-making. Summary Lessons learned in three workshops fill an important gap in the literature about what criteria, processes, and parameters of success Board members and senior managers would use to set priorities fairly.

  18. Setting priorities in health care organizations: criteria, processes, and parameters of success.

    Science.gov (United States)

    Gibson, Jennifer L; Martin, Douglas K; Singer, Peter A

    2004-09-08

    Hospitals and regional health authorities must set priorities in the face of resource constraints. Decision-makers seek practical ways to set priorities fairly in strategic planning, but find limited guidance from the literature. Very little has been reported from the perspective of Board members and senior managers about what criteria, processes and parameters of success they would use to set priorities fairly. We facilitated workshops for board members and senior leadership at three health care organizations to assist them in developing a strategy for fair priority setting. Workshop participants identified 8 priority setting criteria, 10 key priority setting process elements, and 6 parameters of success that they would use to set priorities in their organizations. Decision-makers in other organizations can draw lessons from these findings to enhance the fairness of their priority setting decision-making. Lessons learned in three workshops fill an important gap in the literature about what criteria, processes, and parameters of success Board members and senior managers would use to set priorities fairly.

  19. Multi-objective Optimization of Process Parameters in Friction Stir Welding

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    The objective of this paper is to investigate optimum process parameters in Friction Stir Welding (FSW) to minimize residual stresses in the work piece and maximize production efficiency meanwhile satisfying process specific constraints as well. More specifically, the choices of tool rotational...... speed and traverse welding speed have been sought in order to achieve the goals mentioned above using an evolutionary multi-objective optimization (MOO) algorithm, i.e. non-dominated sorting genetic algorithm (NSGA-II), integrated with a transient, 2- dimensional sequentially coupled thermo...

  20. Optimization of process parameters during carbonization for improved carbon fibre strength

    Science.gov (United States)

    Köhler, T.; Pursche, F.; Burscheidt, P.; Seide, G.; Gries, T.

    2017-10-01

    Based on their extraordinary properties, carbon fibres nowadays play a significant role in modern industries. In the last years carbon fibres are increasingly used for lightweight constructions in the energy or the transportation industry. However, a bigger market penetration of carbon fibres is still hindered by high prices (~ 22 /kg) [3]. One crucial step in carbon fibre production is the process of carbonization of stabilized fibres. However, the cause effect relationships of carbonization are nowadays not fully understood. Therefore, the main goal of this research work is the quantification of the cause-effect relationships of process parameters like temperature and residence time on carbon fibre strength.

  1. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  2. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    International Nuclear Information System (INIS)

    Kumar, A.; Sundarrajan, S.

    2009-01-01

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties

  3. Evaluation of Efficacy of Performed Dialysis According to Changes in Bone Metabolism Related Parameters in Hamadan City

    Directory of Open Access Journals (Sweden)

    N. Sheikh

    2005-07-01

    Full Text Available Introduction & Objective : Most of the CRF patients undergo dialysis to correct the CRF complications. Alterations in biochemical parameters of blood depends on the quality of dialysis. Several factors such as membrane , concentration of dialysis solutions , and dilution are involved in this process. Since the efficacy of the dialysis performed in Hamadan have not been studied previously and there was not information about the efficiency of Iranian made membrane (HD , R4 , R3 , S3 , this study was designed and performed.Materials & Methods: In this study some biochemical parameters including Hb , Hct , alkaline phosphatase , Ca , P , total protein , urea , creatinine before and after dialysis were measured in all patients referring to dialysis center of Hamadan. After collecting the blood samples before and after the dialysis, Hb and Htc were measured using the ABX cell counter. The other parameters were measured using Technicon RA1000 autoanalyser. The mean of these parameters before and after dialysis were compared using paired t-test. The results of different membranes were compared using ANOVA.Results: Results showed the serum level of total Ca increased 33% after dialysis (P<0.0001 while the P showed 36% decrease (P<0.0001. Alkaline phosphatase activity did not show any significant differences. Comparing the efficacy of different membrane in correction of urea and creatinine , HD membrane showed the most efficiency and R4 had the least (P<0.03. Other parameters did not show significant differences.Conclusion: The data obtained from this study showed a significant change in Ca , P, and ALP level after dialysis . Also it was concluded that different membrane had different effect on correction of studied parameters.

  4. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Rao, R. Venkata; Rai, Dhiraj P. [Sardar Vallabhbhai National Institute of Technology, Gujarat (India)

    2017-05-15

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  5. Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm

    International Nuclear Information System (INIS)

    Rao, R. Venkata; Rai, Dhiraj P.

    2017-01-01

    Submerged arc welding (SAW) is characterized as a multi-input process. Selection of optimum combination of process parameters of SAW process is a vital task in order to achieve high quality of weld and productivity. The objective of this work is to optimize the SAW process parameters using a simple optimization algorithm, which is fast, robust and convenient. Therefore, in this work a very recently proposed optimization algorithm named Jaya algorithm is applied to solve the optimization problems in SAW process. In addition, a modified version of Jaya algorithm with oppositional based learning, named “Quasi-oppositional based Jaya algorithm” (QO-Jaya) is proposed in order to improve the performance of the Jaya algorithm. Three optimization case studies are considered and the results obtained by Jaya algorithm and QO-Jaya algorithm are compared with the results obtained by well-known optimization algorithms such as Genetic algorithm (GA), Particle swarm optimization (PSO), Imperialist competitive algorithm (ICA) and Teaching learning based optimization (TLBO).

  6. Optimum processing parameters for the fabrication of twill flax fabric-reinforced polypropylene (PP) composites

    Science.gov (United States)

    Zuhudi, Nurul Zuhairah Mahmud; Minhat, Mulia; Shamsuddin, Mohd Hafizi; Isa, Mohd Dali; Nur, Nurhayati Mohd

    2017-12-01

    In recent years, natural fabric thermoplastic composites such as flax have received much attention due to its attractive capabilities for structural applications. It is crucial to study the processing of flax fabric materials in order to achieve good quality and cost-effectiveness in fibre reinforced composites. Though flax fabric has been widely utilized for several years in composite applications due to its high strength and abundance in nature, much work has been concentrated on short flax fibre and very little work focused on using flax fabric. The effectiveness of the flax fabric is expected to give higher strength performance due to its structure but the processing needs to be optimised. Flax fabric composites were fabricated using compression moulding due to its simplicity, gives good surface finish and relatively low cost in terms of labour and production. Further, the impregnation of the polymer into the fabric is easier in this process. As the fabric weave structure contributes to the impregnation quality which leads to the overall performance, the processing parameters of consolidation i.e. pressure, time, and weight fraction of fabric were optimized using the Taguchi method. This optimization enhances the consolidation quality of the composite by improving the composite mechanical properties, three main tests were conducted i.e. tensile, flexural and impact test. It is observed that the processing parameter significantly affected the consolidation and quality of composite.

  7. Changes in the basic experimental parameters of capillary gas chromatography in the 20th century.

    Science.gov (United States)

    Berezkin, V G; Viktorova, E N

    2003-01-24

    Studies of qualitative changes in capillary gas chromatography are of significant practical and scientific interest. This paper analyzes the evolution of the most important experimental chromatographic parameters over the last three decades and is based on the use of a new approach to scientometrical research that is referred to as applied scientometry. One essential feature of this approach is that it looks at the entire contents of each paper rather than only taking account its title, abstract. and references (as is typical for conventional scientometry). In this paper, we monitor how the most important chromatographic parameters, such as column length and diameter, layer thickness, stationary liquid phases, separation temperature mode. etc., have been evolving over the period 1970-2000. We used data from the following journals: Chromatographia, Journal of Chromatography, and Journal of High Resolution Chromatography and Chromatography Communications.

  8. Latent Culture as a Force for Change and the Change Process in Operation.

    Science.gov (United States)

    Banfield, Beryle

    The purpose of this study was to apply a theory of latent culture to describe the role of middle class black parents and students in effecting change in an elite educational organization and to use Schein's conceptual model of the Kurk Lewin paradigm of the change process (Unfreezing--Changing--Refreezing) to analyze this process over a three year…

  9. Morphological parameters for implantation of the screwless spring loop dynamic posterior spinous process stabilizing system.

    Science.gov (United States)

    Song, Geun Soo; Lee, Yeon Soo

    2015-07-01

    This study aimed to quantify morphological characteristics of the posterior lumbar spinous process, which may affect stable implantation of screwless wire spring loops. Virtual implantations of a screwless wire spring loop onto pairs of lumbar spinous processes were performed for computed tomography (CT)-derived three-dimensional vertebral models of 40 Korean subjects. Morphological parameters of lumbar vertebrae 1 through 5 (L1-L5) were measured with regard to bone-implant interference. In males, the transspinous process fixation lengths decreased from 57.8±3.0mm to 48.8±3.2mm as the lumbar joints descend from L1-L2 to L4-L5, with those in females about 4.1±0.4mm shorter (pprocess and the greatest (8.1±2.2mm) for the L4 upper spinous process; this was 1.0±10.3mm less than that for males at corresponding levels (p>0.05). The ratio of the spinous process clenched thickness to the transspinous fixation length increased from 0.133±0.016 to 0.196±0.076 for the upper spinous processes as the lumbar joints descend. The ratio of the spinous process clenched thickness to the transspinous fixation length varies, depending on gender and whether the clenched level is the upper or lower spinous process. These parameters related to the clenching fixation stability should be considered in development and implantations of the screwless wire spring loop. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

    Directory of Open Access Journals (Sweden)

    Chinmaya P. Mohanty

    2017-04-01

    Full Text Available Although significant research has gone into the field of electrical discharge machining (EDM, analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi’s L27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO and particle swarm optimization (PSO algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments.

  11. Effect of Process Parameter in Laser Cutting of PMMA Sheet and ANFIS Modelling for Online Control

    Directory of Open Access Journals (Sweden)

    Hossain Anamul

    2016-01-01

    Full Text Available Laser beam machining (LBM is a promising and high accuracy machining technology in advanced manufacturing process. In LBM, crucial machining qualities of the end product include heat affected zone, surface roughness, kerf width, thermal stress, taper angle etc. It is essential for industrial applications especially in laser cutting of thermoplastics to acquire output product with minimum kerf width. The kerf width is dependent on laser input parameters such as laser power, cutting speed, standoff distance, assist gas pressure etc. However it is difficult to get a functional relationship due to the high uncertainty among these parameters. Hence, total 81 sets of full factorial experiment were conducted, representing four input parameters with three different levels. The experiments were performed by a continuous wave (CW CO2 laser with the mode structure of TEM01 named Zech laser machine that can provide maximum laser power up to 500 W. The polymethylmethacrylate (PMMA sheet with thickness of 3.0 mm was used for this experiment. Laser power, cutting speed, standoff distance and assist gas pressure were used as input parameters for the output named kerf width. Standoff distance, laser power, cutting speed and assist gas pressure have the dominant effect on kerf width, respectively, although assist gas has some significant effect to remove the harmful gas. ANFIS model has been developed for online control purposes. This research is considered important and helpful for manufacturing engineers in adjusting and decision making of the process parameters in laser manufacturing industry of PMMA thermoplastics with desired minimum kerf width as well as intricate shape design purposes.

  12. Thermally induced changes of optical and vital parameters in human cancer cells

    Science.gov (United States)

    Dressler, C.; Schwandt, D.; Beuthan, J.; Mildaziene, V.; Zabarylo, U.; Minet, O.

    2010-11-01

    Minimally invasive laser-induced thermotherapy (LITT) presents an alternative method to conventional tumor therapeutically interventions, such as surgery, chemotherapy, radiotherapy or nuclear medicine. Optical tissue characteristics of tumor cells and their heat-induced changes are essential issues for controlling LITT progressions. Therefore, it is indispensable to exactly know the absorption coefficient μa, the scattering coefficient μs and the anisotropy factor g as well as their changes under rising temperatures in order to simulate the treatment parameters successfully. Optical parameters of two different cancer model tissues - breast cancer cells species MX1 and colon cancer cells species CX1 - were measured in the spectral range 400 - 1100 nm as well as in the temperature range 37 - 60°C. The absorption coefficient of both cell species was low throughout the spectral range analyzed, while μs of both species rose with increasing temperatures. The anisotropy factor g however dropped for both tissues with increasing temperatures. Light scatterings inside tissues proceeded continuously forward for all species tested. It was demonstrated that optical tissue properties undergo significant changes along with the vital status of the cells when the temperature increases.

  13. Investigation of metrological parameters of measuring system for small temperature changes

    Directory of Open Access Journals (Sweden)

    Samynina M. G.

    2014-02-01

    Full Text Available Metrological parameters of the non-standard contact device were investigated to characterize its performance in temperature change measurements in the specified temperature range. Several series thermistors with a negative temperature coefficient of resistance connected into a linearization circuit were used as the sensing element of the semiconductor device. Increasing the number of thermistors leads to improved circuitry resolving power and reduced dispersion of this parameter. However, there is the question of optimal ratio of the number of thermistors and implemented temperature resolution, due to the nonlinear resolution dependence of the number of series-connected thermoelements. An example of scheme of four similar thermistors as the primary sensor and of a standard measuring instrument, which is working in ohmmeter mode, shows the ability to measure temperature changes at the level of hundredth of a Celsius degree. In this case, a quantization error, which is determined by a resolution of the measuring system, and the ohmmeter accuracy make the main contribution to the overall accuracy of measuring small temperature changes.

  14. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-01-01

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 ± 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  15. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  16. Laser shock peening of Ti-17 titanium alloy: Influence of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Cellard, C.; Retraint, D.; Francois, M. [University of Technology of Troyes (UTT), Charles Delaunay Institute, LASMIS, UMR CNRS 6279, 12 Rue Marie Curie, BP2060, 10010 Troyes Cedex (France); Rouhaud, E., E-mail: rouhaud@utt.fr [University of Technology of Troyes (UTT), Charles Delaunay Institute, LASMIS, UMR CNRS 6279, 12 Rue Marie Curie, BP2060, 10010 Troyes Cedex (France); Le Saunier, D. [SNECMA Evry - Corbeil, Route Henry Auguste Desbrueres, 91003 Evry (France)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Laser shock peening parameters studied through a design of experiments. Black-Right-Pointing-Pointer Laser fluence, pulse duration, number of impacts and sample thickness are studied. Black-Right-Pointing-Pointer The observed work hardening is low, the roughness is lightly affected. Black-Right-Pointing-Pointer A significant part of hardness increase is due to compressive residual stresses. Black-Right-Pointing-Pointer High tensile residual stresses can appear on thin laser shocked specimens. - Abstract: The influence of the process parameters of laser shock peening was investigated on specimens made of an aeronautic titanium alloy: Ti-5Al-2Sn-2Zr-4Cr-4Mo (Ti-17). In order to quantify the effect of relevant process parameters, an experimental design was carried out. It is based on a full factorial design with four factors (laser fluence, pulse duration, number of impacts and thickness of the sample) and two levels for each factor. The process is characterised with the following variables: the depth of the impacts, the roughness of the treated surface, the hardening of the material (itself evaluated with the hardness and X-ray diffraction peak width), the residual stresses left in the sample and the global curvature of the sample. It is found that all the parameters have an influence on the residual stresses and that laser shock peening has no influence on roughness and low influence on work-hardening. The variables are then analysed in order to evaluate correlations. The increase in hardness is found to be essentially due to compressive residual stresses, cold work-hardening having only a small effect. In thin specimens, the stress redistribution due to self-equilibrium leads to tensile residual stresses at the treated surface and to large deformations of the specimens.

  17. Experimental Investigation of Process Parameters in Drilling LM25 Composites Coated with Multi Wall Carbon Nano Tubes Using Sonication Process

    Directory of Open Access Journals (Sweden)

    Sangeetha M.

    2017-09-01

    Full Text Available Aluminium based metal matrix composites are widely used in automobile components such as cardan shaft of Chevrolet corvette, disc brake and engine push rod. In this experiment a Hybrid Metal Matrix Composites (HMMC are fabricated and drilled. Drilling is the process of making slots in disc brake and thread in the engine parts. The surface quality of the drilled specimen depends on the speed, feed, drill type and the thrust force. Thrust force plays the major role in drilling the specimen. In this experiment HMMCs are fabricated using two processes-called, sonication and casting. Sonication is the process of coating the carbon nanotubes over the silicon carbide particles (SiCp. Semisolid stir casting is used to reinforce the coated SiCp in the LM 25 alloy. A drilling process is performed on HMMC to analyse the extent to which the input parameters influence the thrust force and Ovality. The tools used for drilling are solid carbide tools of three different diameters. Taguchi’s experimental design is adopted for the drilling operation. A mathematical model is used to determine the influence of input parameters on the outputs thrust force and ovality. This paper proves the combination of N3, f1 and d1 of the carbide tool results in the lowest value of thrust force and ovality while drilling HMMCs. In this work the HMMC is prepared by coating the abrasive nature, silicon carbide particle and there is a good interfacial bonding between the reinforced particle and matrix and the drilling process becomes smoother. The new being of this article is the treated ceramics, SiCp with carbon nanotubes. This HMMC shows the improved mechanical properties compared to other metal matrix composites surveyed in the literatures.

  18. The Optimization of Process Parameters and Microstructural Characterization of Fiber Laser Welded Dissimilar HSLA and MART Steel Joints

    Directory of Open Access Journals (Sweden)

    Celalettin Yuce

    2016-10-01

    Full Text Available Nowadays, environmental impact, safety and fuel efficiency are fundamental issues for the automotive industry. These objectives are met by using a combination of different types of steels in the auto bodies. Therefore, it is important to have an understanding of how dissimilar materials behave when they are welded. This paper presents the process parameters’ optimization procedure of fiber laser welded dissimilar high strength low alloy (HSLA and martensitic steel (MART steel using a Taguchi approach. The influence of laser power, welding speed and focal position on the mechanical and microstructural properties of the joints was determined. The optimum parameters for the maximum tensile load-minimum heat input were predicted, and the individual significance of parameters on the response was evaluated by ANOVA results. The optimum levels of the process parameters were defined. Furthermore, microstructural examination and microhardness measurements of the selected welds were conducted. The samples of the dissimilar joints showed a remarkable microstructural change from nearly fully martensitic in the weld bead to the unchanged microstructure in the base metals. The heat affected zone (HAZ region of joints was divided into five subzones. The fusion zone resulted in an important hardness increase, but the formation of a soft zone in the HAZ region.

  19. Impact of cell culture process changes on endogenous retrovirus expression.

    Science.gov (United States)

    Brorson, Kurt; De Wit, Christina; Hamilton, Elizabeth; Mustafa, Mehnaz; Swann, Patrick G; Kiss, Robert; Taticek, Ron; Polastri, Gian; Stein, Kathryn E; Xu, Yuan

    2002-11-05

    Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other

  20. Polyoxylglycerides and glycerides: effects of manufacturing parameters on API stability, excipient functionality and processing.

    Science.gov (United States)

    Jannin, Vincent; Rodier, Jean-David; Musakhanian, Jasmine

    2014-05-15

    Lipid-based formulations are a viable option to address modern drug delivery challenges such as increasing the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs), or sustaining the drug release of molecules intended for chronic diseases. Esters of fatty acids and glycerol (glycerides) and polyethylene-glycols (polyoxylglycerides) are two main classes of lipid-based excipients used by oral, dermal, rectal, vaginal or parenteral routes. These lipid-based materials are more and more commonly used in pharmaceutical drug products but there is still a lack of understanding of how the manufacturing processes, processing aids, or additives can impact the chemical stability of APIs within the drug product. In that regard, this review summarizes the key parameters to look at when formulating with lipid-based excipients in order to anticipate a possible impact on drug stability or variation of excipient functionality. The introduction presents the chemistry of natural lipids, fatty acids and their properties in relation to the extraction and refinement processes. Then, the key parameters during the manufacturing process influencing the quality of lipid-based excipients are provided. Finally, their critical characteristics are discussed in relation with their intended functionality and ability to interact with APIs and others excipients within the formulation. Copyright © 2014. Published by Elsevier B.V.

  1. Effect of processing parameters of rotary ultrasonic machining on surface integrity of potassium dihydrogen phosphate crystals

    Directory of Open Access Journals (Sweden)

    Jianfu Zhang

    2015-09-01

    Full Text Available Potassium dihydrogen phosphate is an important optical crystal. However, high-precision processing of large potassium dihydrogen phosphate crystal workpieces is difficult. In this article, surface roughness and subsurface damage characteristics of a (001 potassium dihydrogen phosphate crystal surface produced by traditional and rotary ultrasonic machining are studied. The influence of process parameters, including spindle speed, feed speed, type and size of sintered diamond wheel, ultrasonic power, and selection of cutting fluid on potassium dihydrogen phosphate crystal surface integrity, was analyzed. The surface integrity, especially the subsurface damage depth, was affected significantly by the ultrasonic power. Metal-sintered diamond tools with high granularity were most suitable for machining potassium dihydrogen phosphate crystal. Cutting fluid played a key role in potassium dihydrogen phosphate crystal machining. A more precise surface can be obtained in machining with a higher spindle speed, lower feed speed, and using kerosene as cutting fluid. Based on the provided optimized process parameters for machining potassium dihydrogen phosphate crystal, a processed surface quality with Ra value of 33 nm and subsurface damage depth value of 6.38 μm was achieved.

  2. Visualizing the influence of the process parameters on the keyhole dimensions in plasma arc welding

    International Nuclear Information System (INIS)

    Liu, Z M; Wu, C S; Chen, M A

    2012-01-01

    The keyhole status and its dimensions are critical information determining both the process quality and weld quality in plasma arc welding (PAW). It is of great significance to measure the keyhole shape and size and to correlate them with the main process parameters. In this study, a low-cost vision system is developed to visualize the keyhole at the backside of the test-pieces in PAW. Three stages of keyhole evolution, i.e. initial blind stage (non-penetrated keyhole), unstable stage with momentarily disappeared keyhole and quasi-steady open keyhole stage (fully-penetrated keyhole), are measured in real-time during the PAW tests on stainless steel test-pieces of thickness 8 mm. Based on the captured images of keyhole under different welding conditions, the correlations of the main welding process parameters (welding current, welding speed, plasma gas flow rate) with the keyhole length, width and area are visualized through vision measurement. It lays a solid foundation for implementing keyhole stability control and process optimization in keyhole PAW. (paper)

  3. The influence of the parameters of lost foam process on the quality of aluminum alloys castings

    Directory of Open Access Journals (Sweden)

    Aćimović-Pavlović Zagorka

    2010-01-01

    Full Text Available This paper presents the research results of application of Lost foam process for aluminum alloys castings of a simple geometry. The process characteristic is that patterns and gating of moulds, made of polymers, stay in the mould till the liquid metal inflow. In contact with the liquid metal, pattern intensely and in relatively short time decomposes and evaporates, which is accompanied by casting crystallization. As a consequence of polymer pattern decomposition and evaporation a great quantity of liquid and gaseous products are produced, which is often the cause of different types of casting errors. This paper presents the results of a research with a special consideration given to detecting and analyzing the errors of castings. In most cases the cause of these errors are defects of polymer materials used for evaporable patterns production, as well as defects of materials for refractory coatings production for polymer patterns. The researches have shown that different types of coatings determine properties of the obtained castings. Also, the critical processing parameters (polymer pattern density, casting temperature, permeability of refractory coating and sand, construction of patterns and gating of moulds significantly affect on castings quality. During the research a special consideration was given to control and optimization of these parameters with the goal of achieving applicable castings properties. The study of surface and internal error of castings was performed systematically in order to carry out preventive measures to avoid errors and minimize production costs. In order to achieve qualitative and profitable castings production by the method of Lost foam it is necessary to reach the balance in the system: evaporable polymer pattern - liquid metal - refractory coating - sandy cast in the phase of metal inflow, decomposition and evaporation of polymer pattern, formation and solidification of castings. By optimizing the processing

  4. Online measurement for geometrical parameters of wheel set based on structure light and CUDA parallel processing

    Science.gov (United States)

    Wu, Kaihua; Shao, Zhencheng; Chen, Nian; Wang, Wenjie

    2018-01-01

    The wearing degree of the wheel set tread is one of the main factors that influence the safety and stability of running train. Geometrical parameters mainly include flange thickness and flange height. Line structure laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD and CUDA parallel processing unit. The image acquisition was fulfilled by hardware interrupt mode. A high efficiency parallel segmentation algorithm based on CUDA was proposed. The algorithm firstly divides the image into smaller squares, and extracts the squares of the target by fusion of k_means and STING clustering image segmentation algorithm. Segmentation time is less than 0.97ms. A considerable acceleration ratio compared with the CPU serial calculation was obtained, which greatly improved the real-time image processing capacity. When wheel set was running in a limited speed, the system placed alone railway line can measure the geometrical parameters automatically. The maximum measuring speed is 120km/h.

  5. Modeling and Analysis of CNC Milling Process Parameters on Al3030 based Composite

    Science.gov (United States)

    Gupta, Anand; Soni, P. K.; Krishna, C. M.

    2018-04-01

    The machining of Al3030 based composites on Computer Numerical Control (CNC) high speed milling machine have assumed importance because of their wide application in aerospace industries, marine industries and automotive industries etc. Industries mainly focus on surface irregularities; material removal rate (MRR) and tool wear rate (TWR) which usually depends on input process parameters namely cutting speed, feed in mm/min, depth of cut and step over ratio. Many researchers have carried out researches in this area but very few have taken step over ratio or radial depth of cut also as one of the input variables. In this research work, the study of characteristics of Al3030 is carried out at high speed CNC milling machine over the speed range of 3000 to 5000 r.p.m. Step over ratio, depth of cut and feed rate are other input variables taken into consideration in this research work. A total nine experiments are conducted according to Taguchi L9 orthogonal array. The machining is carried out on high speed CNC milling machine using flat end mill of diameter 10mm. Flatness, MRR and TWR are taken as output parameters. Flatness has been measured using portable Coordinate Measuring Machine (CMM). Linear regression models have been developed using Minitab 18 software and result are validated by conducting selected additional set of experiments. Selection of input process parameters in order to get best machining outputs is the key contributions of this research work.

  6. Establishing Relationship between Process Parameters and Temperature during High Speed End Milling of Soda Lime Glass

    Science.gov (United States)

    Nasima Bagum, Mst.; Konneh, Mohamed; Yeakub Ali, Mohammad

    2018-01-01

    In glass machining crack free surface is required in biomedical and optical industry. Ductile mode machining allows materials removal from brittle materials in a ductile manner rather than by brittle fracture. Although end milling is a versatile process, it has not been applied frequently for machining soda lime glass. Soda lime glass is a strain rate and temperature sensitive material; especially around glass transition temperature Tg, ductility increased and strength decreased. Hence, it is envisaged that the generated temperature by high-speed end milling (HSEM) could be brought close to the glass transition temperature, which promote ductile machining. In this research, the objective is to investigate the effect of high speed machining parameters on generated temperature. The cutting parameters were optimized to generate temperature around glass transition temperature of soda lime using response surface methodology (RSM). Result showed that the most influencing process parameter is feed rate followed by spindle speed and depth of cut to generate temperature. Confirmation test showed that combination of spindle speed 30,173 rpm, feed rate 13.2 mm/min and depth of cut 37.68 µm generate 635°C, hence ductile chip removal with machined surface Ra 0.358 µm was possible to achieve.

  7. Behavioural design: A process for integrating behaviour change and design

    DEFF Research Database (Denmark)

    Cash, Philip; Hartlev, Charlotte Gram; Durazo, Christine Boysen

    2017-01-01

    Nudge, persuasion, and the influencing of human behaviour through design are increasingly important topics in design research and in the wider public consciousness. However, current theoretical approaches to behaviour change have yet to be operationalized this in design process support....... Specifically, there are few empirically grounded processes supporting designers in realising behaviour change projects. In response to this, 20 design projects from a case company are analysed in order to distil a core process for behavioural design. Results show a number of process stages and activities...... associated with project success, pointing to a new perspective on the traditional design process, and allowing designers to integrate key insights from behaviour change theory. Using this foundation we propose the Behavioural Design process....

  8. Supporting change processes in design: Complexity, prediction and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Claudia M. [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: cme26@cam.ac.uk; Keller, Rene [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: rk313@cam.ac.uk; Earl, Chris [Open University, Department of Design and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)]. E-mail: C.F.Earl@open.ac.uk; Clarkson, P. John [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: pjc10@cam.ac.uk

    2006-12-15

    Change to existing products is fundamental to design processes. New products are often designed through change or modification to existing products. Specific parts or subsystems are changed to similar ones whilst others are directly reused. Design by modification applies particularly to safety critical products where the reuse of existing working parts and subsystems can reduce cost and risk. However change is rarely a matter of just reusing or modifying parts. Changing one part can propagate through the entire design leading to costly rework or jeopardising the integrity of the whole product. This paper characterises product change based on studies in the aerospace and automotive industry and introduces tools to aid designers in understanding the potential effects of change. Two ways of supporting designers are described: probabilistic prediction of the effects of change and visualisation of change propagation through product connectivities. Change propagation has uncertainties which are amplified by the choices designers make in practice as they implement change. Change prediction and visualisation is discussed with reference to complexity in three areas of product development: the structural backcloth of connectivities in the existing product (and its processes), the descriptions of the product used in design and the actions taken to carry out changes.

  9. Production of furfural from pentosan-rich biomass: analysis of process parameters during simultaneous furfural stripping.

    Science.gov (United States)

    Agirrezabal-Telleria, I; Gandarias, I; Arias, P L

    2013-09-01

    Among the furan-based compounds, furfural (FUR) shows interesting properties as building-block or industrial solvent. It is produced from pentosan-rich biomass via xylose cyclodehydration. The current FUR production makes use of homogeneous catalysts and excessive amounts of steam. The development of greener furfural production and separation techniques implies the use of heterogeneous catalysts and innovative separation processes. This work deals with the conversion of corncobs as xylose source to be dehydrated to furfural. The results reveal differences between the use of direct corncob hydrolysis and dehydration to furfural and the prehydrolysis and dehydration procedures. Moreover, this work focuses on an economical analysis of the main process parameters during N2-stripping and its economical comparison to the current steam-stripping process. The results show a considerable reduction of the annual utility costs due to use of recyclable nitrogen and the reduction of the furfural purification stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Process parameter influence on Electro-sinter-forging (ESF) of titanium discs

    DEFF Research Database (Denmark)

    Cannella, Emanuele; Nielsen, Chris Valentin; Bay, Niels

    Electro-sinter-forging (ESF) is an innovative sintering process based on the principle of electrical Joule heating. The electrical current is flowing through the powder compact, which is under mechanical pressure. As compared to conventional sintering [1] and spark plasma sintering [2], the main...... advantages are the decreased sintering time and high relative density [3]. Near net-shape components can be manufactured and post-removal processing is limited to surface polishing. The present work is focused on analysing the influence of the main process parameters, namely compacting pressure, sintering...... time and electrical current density, on the final density of a disc sample made from commercially pure titanium powder. The maximum achieved relative density was 94% of the bulk density of pure titanium. The density estimation was carried out by using both Archimedes’ and 3D scanning....

  11. Effective parameters, effective processes: From porous flow physics to in situ remediation technology

    International Nuclear Information System (INIS)

    Pruess, K.

    1995-06-01

    This paper examines the conceptualization of multiphase flow processes on the macroscale, as needed in field applications. It emphasizes that upscaling from the pore-level will in general not only introduce effective parameters but will also give rise to ''effective processes,'' i.e., the emergence of new physical effects that may not have a microscopic counterpart. ''Phase dispersion'' is discussed as an example of an effective process for the migration and remediation of non-aqueous phase liquid (NAPL) contaminants in heterogeneous media. An approximate space-and-time scaling invariance is derived for gravity-driven liquid flow in unsaturated two-dimensional porous media (fractures). Issues for future experimental and theoretical work are identified

  12. Castor Oil: Properties, Uses, and Optimization of Processing Parameters in Commercial Production.

    Science.gov (United States)

    Patel, Vinay R; Dumancas, Gerard G; Kasi Viswanath, Lakshmi C; Maples, Randall; Subong, Bryan John J

    2016-01-01

    Castor oil, produced from castor beans, has long been considered to be of important commercial value primarily for the manufacturing of soaps, lubricants, and coatings, among others. Global castor oil production is concentrated primarily in a small geographic region of Gujarat in Western India. This region is favorable due to its labor-intensive cultivation method and subtropical climate conditions. Entrepreneurs and castor processors in the United States and South America also cultivate castor beans but are faced with the challenge of achieving high castor oil production efficiency, as well as obtaining the desired oil quality. In this manuscript, we provide a detailed analysis of novel processing methods involved in castor oil production. We discuss novel processing methods by explaining specific processing parameters involved in castor oil production.

  13. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    Science.gov (United States)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  14. RIGOROUS PHOTOGRAMMETRIC PROCESSING OF CHANG'E-1 AND CHANG'E-2 STEREO IMAGERY FOR LUNAR TOPOGRAPHIC MAPPING

    Directory of Open Access Journals (Sweden)

    K. Di

    2012-07-01

    Full Text Available Chang'E-1(CE-1 and Chang'E-2(CE-2 are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1 refining EOPs by correcting the attitude angle bias, 2 refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model and DOM (Digital Ortho Map are automatically generated.

  15. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    International Nuclear Information System (INIS)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-01-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  16. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Science.gov (United States)

    Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan

    2016-07-01

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  17. Effect of process parameters on hardness, temperature profile and solidification of different layers processed by direct metal laser sintering (DMLS)

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sazzad Hossain; Mian, Ahsan, E-mail: ahsan.mian@wright.edu; Srinivasan, Raghavan [Department of Mechanical and Materials Engineering, Wright State University, Dayton, Ohio 45435 (United States)

    2016-07-12

    In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.

  18. Time-Dependent Changes Of Hematological Parameters In Patients With Acute Organophosphate Poisoning

    Directory of Open Access Journals (Sweden)

    Zerrin Defne Dündar

    2015-10-01

    Full Text Available Objective: To investigate the prognostic value of the time-dependent changes of hematological parameters in patients with acute organophosphate poisoning. Methods: All patients admitted to emergency departments from 2010 through 2013 due to organophosphate poisoning were enrolled in the study. Demographic data, route of exposure, serum cholinesterase levels, complete blood count results of 5 consecutive days, mechanical ventilation requirement, length of stay in hospital, and outcomes were recorded. Results: Mechanically ventilated patients had higher leukocyte and neutrophil counts than nonventilated patients during the whole follow-up period, and both of them had a trend of decrease in both patient groups. There was no difference between patient groups in terms of lymphocyte counts at day 1, but mechanically ventilated patients had lower lymphocyte counts than nonventilated patients after day 2. Hemoglobin levels had a trend of decrease during the whole follow-up period in both patient groups. Conclusion: The parameters obtained from complete blood count can be used as sensitive follow-up parameters in patients with acute organophosphate poisoning by serial measurement.

  19. Acute changes in foot strike pattern and cadence affect running parameters associated with tibial stress fractures.

    Science.gov (United States)

    Yong, Jennifer R; Silder, Amy; Montgomery, Kate L; Fredericson, Michael; Delp, Scott L

    2018-05-18

    Tibial stress fractures are a common and debilitating injury that occur in distance runners. Runners may be able to decrease tibial stress fracture risk by adopting a running pattern that reduces biomechanical parameters associated with a history of tibial stress fracture. The purpose of this study was to test the hypothesis that converting to a forefoot striking pattern or increasing cadence without focusing on changing foot strike type would reduce injury risk parameters in recreational runners. Running kinematics, ground reaction forces and tibial accelerations were recorded from seventeen healthy, habitual rearfoot striking runners while running in their natural running pattern and after two acute retraining conditions: (1) converting to forefoot striking without focusing on cadence and (2) increasing cadence without focusing on foot strike. We found that converting to forefoot striking decreased two risk factors for tibial stress fracture: average and peak loading rates. Increasing cadence decreased one risk factor: peak hip adduction angle. Our results demonstrate that acute adaptation to forefoot striking reduces different injury risk parameters than acute adaptation to increased cadence and suggest that both modifications may reduce the risk of tibial stress fractures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    Science.gov (United States)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  1. Evaluation of risk impact of changes to Completion Times addressing model and parameter uncertainties

    International Nuclear Information System (INIS)

    Martorell, S.; Martón, I.; Villamizar, M.; Sánchez, A.I.; Carlos, S.

    2014-01-01

    This paper presents an approach and an example of application for the evaluation of risk impact of changes to Completion Times within the License Basis of a Nuclear Power Plant based on the use of the Probabilistic Risk Assessment addressing identification, treatment and analysis of uncertainties in an integrated manner. It allows full development of a three tired approach (Tier 1–3) following the principles of the risk-informed decision-making accounting for uncertainties as proposed by many regulators. Completion Time is the maximum outage time a safety related equipment is allowed to be down, e.g. for corrective maintenance, which is established within the Limiting Conditions for Operation included into Technical Specifications for operation of a Nuclear Power Plant. The case study focuses on a Completion Time change of the Accumulators System of a Nuclear Power Plant using a level 1 PRA. It focuses on several sources of model and parameter uncertainties. The results obtained show the risk impact of the proposed CT change including both types of epistemic uncertainties is small as compared with current safety goals of concern to Tier 1. However, what concerns to Tier 2 and 3, the results obtained show how the use of some traditional and uncertainty importance measures helps in identifying high risky configurations that should be avoided in NPP technical specifications no matter the duration of CT (Tier 2), and other configurations that could take part of a configuration risk management program (Tier 3). - Highlights: • New approach for evaluation of risk impact of changes to Completion Times. • Integrated treatment and analysis of model and parameter uncertainties. • PSA based application to support risk-informed decision-making. • Measures of importance for identification of risky configurations. • Management of important safety issues to accomplish safety goals

  2. Complex changes in von Willebrand factor-associated parameters are acquired during uncomplicated pregnancy.

    Directory of Open Access Journals (Sweden)

    Danielle N Drury-Stewart

    Full Text Available The coagulation protein von Willebrand Factor (VWF is known to be elevated in pregnancy. However, the timing and nature of changes in VWF and associated parameters throughout pregnancy are not well understood.To better understand the changes in VWF provoked by pregnancy, we studied VWF-associated parameters in samples collected over the course of healthy pregnancies.We measured VWF antigen (VWF:Ag, VWF propeptide (VWFpp, Factor VIII (FVIII, and ADAMTS13 activity in samples collected from 46 women during pregnancy and at non-pregnant baseline. We also characterized pregnant vs. non-pregnant VWF multimer structure in 21 pregnancies, and performed isoelectric focusing (IEF of VWF in two pregnancies which had samples from multiple trimesters.VWF:Ag and FVIII levels were significantly increased during pregnancy. ADAMTS13 activity was unchanged. VWFpp levels increased much later in pregnancy than VWF:Ag, resulting in a progressive decrease in VWFpp:Ag ratios. FVIII:VWF ratios also decreased in pregnancy. Most pregnancies exhibited a clear loss of larger VWF multimers and altered VWF triplet structure. Further evidence of acquired VWF qualitative changes in pregnancy was found in progressive, reversible shifts in VWF IEF patterns over gestation.These data support a new view of pregnancy in which VWF can acquire qualitative changes associated with advancing gestational age. Modeling supports a scenario in which both increased VWF production and doubling of the VWF half-life would account for the data observed. We propose that gestation induces a prolongation in VWF survival, which likely contributes to increased total VWF levels and altered VWF structure.

  3. Regulation and optimization of the biogas process: Propionate as a key parameter

    DEFF Research Database (Denmark)

    Bangsø Nielsen, Henrik; Uellendahl, Hinrich; Ahring, Birgitte Kiær

    2007-01-01

    .6 to 2.9 mM. A process disturbance caused by overloading with industrial waste was reflected by a significant increase in all VFA concentrations. During the recovery of the process, the return of propionate back to the steady-state level was 2-3 days slower than any other VFA and propionate could best......, a process breakdown caused by organic overloading with meat and bone meal and lipids was indicated by changes in propionate concentration 12-18 days before a decrease in methane production was observed. Furthermore, a more efficient and stable utilization of the substrate was observed when propionate...

  4. Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    Directory of Open Access Journals (Sweden)

    Wang Chaochao

    2017-01-01

    Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.

  5. The process parameters effect of ovality in cross wedge rolling for hollow valve without mandril

    Directory of Open Access Journals (Sweden)

    Ji Hongchao

    2016-01-01

    Full Text Available This paper presents the experimental and numerical results of the effect process parameters on ovality in cross wedge rolling (CWR for hollow engine valve without mandrel. Numerical simulation model for ovality was established by means of the rigid-plastic finite element modeling (FEM method for hollow engine valve. The experiments and numerical analyses suggest that the following parameters represent the best conditions for CWR of hollow engine valve: 30°-34° for the forming angle(α, 5°-7° for the stretching angle(β, 0.2-0.3mm for the mold void width(L, and 65%-70% for the area reduction(Ψ.

  6. A novel membrane-based process to isolate peroxidase from horseradish roots: optimization of operating parameters.

    Science.gov (United States)

    Liu, Jianguo; Yang, Bo; Chen, Changzhen

    2013-02-01

    The optimization of operating parameters for the isolation of peroxidase from horseradish (Armoracia rusticana) roots with ultrafiltration (UF) technology was systemically studied. The effects of UF operating conditions on the transmission of proteins were quantified using the parameter scanning UF. These conditions included solution pH, ionic strength, stirring speed and permeate flux. Under optimized conditions, the purity of horseradish peroxidase (HRP) obtained was greater than 84 % after a two-stage UF process and the recovery of HRP from the feedstock was close to 90 %. The resulting peroxidase product was then analysed by isoelectric focusing, SDS-PAGE and circular dichroism, to confirm its isoelectric point, molecular weight and molecular secondary structure. The effects of calcium ion on HRP specific activities were also experimentally determined.

  7. Evaluation of process parameters in the industrial scale production of fish nuggets

    Directory of Open Access Journals (Sweden)

    Adriane da Silva

    2011-06-01

    Full Text Available This work reports the use of experimental design for the assessment of the effects of process parameters on the production of fish nuggets in an industrial scale environment. The effect of independent factors on the physicochemical and microbiological parameters was investigated through a full 24 experimental design. The studied factors included the temperature of fish fillet and pulp in the mixer, the temperature of the added fat, the temperature of water and the ratio of protein extraction time to emulsion time. The physicochemical analyses showed that the higher temperature of the pulp and fillet of fish, the lower the protein in the final product. Microbiological analyses revealed that the counting of Staphylococcus coagulase positive, total and thermo-tolerant coliforms were in accordance with the current legislation.

  8. Effect of Processing Parameters on Performance of Spray-Deposited Organic Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Jack W. Owen

    2011-01-01

    Full Text Available The performance of organic thin-film transistors (OTFTs is often strongly dependent on the fabrication procedure. In this study, we fabricate OTFTs of soluble small-molecule organic semiconductors by spray-deposition and explore the effect of processing parameters on film morphology and device mobility. In particular, we report on the effect of the nature of solvent, the pressure of the carrier gas used in deposition, and the spraying distance. We investigate the surface morphology using scanning force microscopy and show that the molecules pack along the π-stacking direction, which is the preferred charge transport direction. Our results demonstrate that we can tune the field-effect mobility of spray-deposited devices two orders of magnitude, from 10−3 cm2/Vs to 10−1 cm2/Vs, by controlling fabrication parameters.

  9. Trends and Cut-Point Changes in Obesity Parameters by Age Groups Considering Metabolic Syndrome.

    Science.gov (United States)

    Park, Hyung Jun; Hong, Young Ho; Cho, Yun Jung; Lee, Ji Eun; Yun, Jae Moon; Kwon, Hyuktae; Kim, Sang Hyuck

    2018-02-12

    Non-communicable diseases (NCDs) are an important issue worldwide. Obesity has a close relationship with NCDs. Various age-related changes should be considered when evaluating obesity. National representative cohort data from the National Health Insurance Service National Sample Cohort from 2012 to 2013 were used. Sex-specific and age group-specific (10-year intervals) means for body mass index (BMI), waist circumference (WC), and waist-to-height ratio (WtHR) were calculated. Optimal cut-points for obesity parameters were defined as the value predicting two or more components of metabolic syndrome (except WC). The mean value and optimal cut-point for BMI decreased with age for men. The mean BMI value for women increased with age, but optimal cut-points showed no remarkable difference. The mean WC of men increased with age, but the optimal cut-points were similar for age groups. For women, the mean value and optimal cut-point for WC increased with age. Regarding WtHR, the mean value and optimal cut-point increased with age for men and women. Differences across age groups were larger for women. The mean values of the obesity indices and the optimal cut-points were changed according to age groups. This study supports the necessity of applying age group-specific cut-points for the various obesity parameters. © 2018 The Korean Academy of Medical Sciences.

  10. A comparative study of parameters used in design and operation of desalination experimental facility versus the process parameters in a commercial desalination plant

    International Nuclear Information System (INIS)

    Hanra, M.S.; Verma, R.K.; Ramani, M.P.S.

    1982-01-01

    Desalination Experimental Facility (DEF) based on multistage flash desalination process has been set up by the Desalination Division of the Bhabha Atomic Research Centre, Bombay. The design parameters of DEF and materials used for various equipment and parts of DEF are mentioned. DEF was operated for 2300 hours in six operational runs. The range of operational parameters maintained during operation and observations on the performance of the materials of construction are given. Detailed comparison has been made for the orocess parameters in DEF and those in a large size plant. (M.G.B.)

  11. Dynamic changes in serum 25-hydroxyvitamin D during pregnancy and lack of effect on thyroid parameters.

    Directory of Open Access Journals (Sweden)

    Yuhang Zhao

    Full Text Available BACKGROUND & AIMS: To explore vitamin D status and its dynamic changes during pregnancy in women living in Northeast China. The association between 25-hydroxyvitamin D and serum calcium, phosphate and parathyroid hormone was studied. Because vitamin D deficiency or thyroid dysfunction/autoimmunity during pregnancy may lead to similar adverse events, the relationship between 25-hydroxyvitamin D and thyroid parameters was investigated. METHODS: Serum samples of 50 women (aged 22 to 36 years were selected retrospectively. The samples were collected at gestational 8 weeks ± 3 days, 20 weeks ± 3 days and 32 weeks ± 3 days for measurement of 25-hydroxyvitamin D, calcium, phosphate, parathyroid hormone, and thyroid parameters. RESULTS: The median 25-hydroxyvitamin D levels were 28.29, 39.23 and 40.03 nmol/L, respectively, from the first to the third trimester. The 25-hydroxyvitamin D concentration during the first trimester was significantly lower than the next two trimesters (p<0.01 and was unchanged between the second and the third trimester. Of these women, 96%, 78% and 76% showed 25-hydroxyvitamin D ≤ 50 nmol/L during each trimester. Season was associated with 25-hydroxyvitamin D during each trimester (p<0.05, and a significant association was found between calcium and 25-hydroxyvitamin D during the first and the second trimesters. Only triiodothyronine was associated with 25-hydroxyvitamin D in the first trimester (p = 0.024, but statistical significance was only a trend (p = 0.063 after excluding abnormal values. No association was observed between 25-hydroxyvitamin D and phosphate, parathyroid hormone, and other thyroid parameters. CONCLUSIONS: Vitamin D deficiency during pregnancy was prevalent in women from Northeast China who did not use supplementation. No significant relationships were observed between 25-hydroxyvitamin D and thyroid parameters during pregnancy.

  12. Angle parameter changes of phacoemulsification and combined phacotrabeculectomy for acute primary angle closure

    Directory of Open Access Journals (Sweden)

    Shi-Wei Li

    2015-08-01

    Full Text Available AIM: To evaluate the difference in angle parameters and clinical outcome following phacoemulsification and combined phacotrabeculectomy in patients with acute primary angle closure (APAC using ultrasound biomicroscopy (UBM.METHODS: Patients (n=23, 31 eyes were randomized to receive phacoemulsification or combined phacotrabeculectomy (n=24, 31 eyes. Best-corrected visual acuity (BCVA, intraocular pressure (IOP, the main complications following surgery, and indentation gonioscopy and angle parameters measured using UBM were documented preoperatively and postoperatively.RESULTS:The improvement in BCVA in the phacoemulsification group was significantly greater than in the combined group (P<0.05. IOP in the phacoemulsification group was slightly higher than in the combined group following 1wk of follow-up (P<0.05, whereas there was no significant difference between the two groups at the latter follow-up (P>0.05. Phacoemulsification alone resulted in a slight increase in the trabecular ciliary processes distance compared with the combined surgery (P<0.05, whereas the other angle parameters showed no significant difference between the groups. Complications in combined group were greater than phacoemulsification only group.CONCLUSION:Both surgeries effectively opened the drainage angle and deepened the anterior chamber, and IOP was well controlled postoperatively. However, phacoemulsification showed better efficacy in improving visual function and showed reduced complications following surgery.

  13. Effecting IT infrastructure culture change: management by processes and metrics

    Science.gov (United States)

    Miller, R. L.

    2001-01-01

    This talk describes the processes and metrics used by Jet Propulsion Laboratory to bring about the required IT infrastructure culture change to update and certify, as Y2K compliant, thousands of computers and millions of lines of code.

  14. Design of process parameters for the incremental tube forming (ITF) by FEM to control product properties

    Science.gov (United States)

    Nazari, Esmaeil; Löbbe, Christian; Gallus, Stefan; Izadyar, S. Ahmad; Tekkaya, A. Erman

    2018-05-01

    The incremental tube forming (ITF) is a process combination of the kinematic tube bending and spinning to shape high strength and tailored tubes with variable diameters and thicknesses. In contrast to conventional bending methods, the compressive stress superposition by the spinning process facilitates low bending stresses, so that geometrical errors are avoided and the shape accuracy is improved. The study reveals the interaction of plastic strains of the rolling and bending process through an explicit FEM investigation. For this purpose, the three-dimensional machine set-up is discretized and modeled in terms of the fully disclosed spinning process during the gradual deflection of the tube end for bending. The analysis shows that, depending on the forming tool shape, the stress superposition is accompanied by high plastic strains. Furthermore, this phenomenon is explained by the three dimensional normal and shear strains during the incremental spinning. Analyzing the strains history also shows a nonlinearity between the strains by bending and spinning. It is also shown that process parameters like rotational velocity of the spinning rolls have a huge influence on the deformation pattern. Finally, the method is used for the manufacturing of an example product, which reveals the high process flexibility. In one clamp a component with a graded wall thickness and outside diameter along the longitudinal axis is produced.

  15. The impact of semen processing on sperm parameters and pregnancy rates after intrauterine insemination.

    Science.gov (United States)

    Ruiter-Ligeti, Jacob; Agbo, Chioma; Dahan, Michael

    2017-06-01

    The objective of this retrospective study was to evaluate the effect of semen processing on computer analyzed semen parameters and pregnancy rates after intrauterine insemination (IUI). Over a two-year period, a total of 981 couples undergoing 2231 IUI cycles were evaluated and the freshly collected non-donor semen was analyzed before and after density gradient centrifugation (DGC). DGC led to significant increases in sperm concentration by 66±74 ×106/mL (P=0.0001), percentage of motile sperm by 24±22% (P=0.0001), concentration motile by 27±58 ×106/mL (P=0.0001), and forward sperm progression by 18±14 µ/s (P=0.0001). In 95% of cases, there was a decrease in the total motile sperm count (TMSC), with an average decrease of 50±124% compared to pre-processed samples (P=0.0001). Importantly, the decrease in TMSC did not negatively affect pregnancy rates (P=0.45). This study proves that DGC leads to significant increases in most sperm parameters, with the exception of TMSC. Remarkably, the decrease in TMSC did not affect the pregnancy rate. This should reassure clinicians when the TMSC is negatively affected by processing.

  16. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis.

    Science.gov (United States)

    Grassi, Silvia; Amigo, José Manuel; Lyndgaard, Christian Bøge; Foschino, Roberto; Casiraghi, Ernestina

    2014-07-15

    This work investigates the capability of Fourier-Transform near infrared (FT-NIR) spectroscopy to monitor and assess process parameters in beer fermentation at different operative conditions. For this purpose, the fermentation of wort with two different yeast strains and at different temperatures was monitored for nine days by FT-NIR. To correlate the collected spectra with °Brix, pH and biomass, different multivariate data methodologies were applied. Principal component analysis (PCA), partial least squares (PLS) and locally weighted regression (LWR) were used to assess the relationship between FT-NIR spectra and the abovementioned process parameters that define the beer fermentation. The accuracy and robustness of the obtained results clearly show the suitability of FT-NIR spectroscopy, combined with multivariate data analysis, to be used as a quality control tool in the beer fermentation process. FT-NIR spectroscopy, when combined with LWR, demonstrates to be a perfectly suitable quantitative method to be implemented in the production of beer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    Science.gov (United States)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  18. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  19. Investigation of effect of process parameters on multilayer builds by direct metal deposition

    International Nuclear Information System (INIS)

    Amine, Tarak; Newkirk, Joseph W.; Liou, Frank

    2014-01-01

    Multilayer direct laser deposition (DLD) is a fabrication process through which parts are fabricated by creating a molten pool into which metal powder is injected as. During fabrication, complex thermal activity occurs in different regions of the build; for example, newly deposited layers will reheat previously deposited layers. The objective of this study was to provide insight into the thermal activity that occurs during the DLD process. This work focused on the effect of the deposition parameters of deposited layers on the microstructure and mechanical properties of the previously deposited layers. It is important to characterize these effects in order to provide information for proper parameter selection in future DLD fabrication. Varying the parameters was shown to produce different effects on the microstructure morphology and property values, presumably resulting from in-situ quench and tempering of the steels. In general, the microstructure was secondary dendrite arm spacing. Typically, both the travel speed and laser power significantly affect the microstructure and hardness. A commercial ABAQUS/CAE software was used to model this process by developing a thermo-mechanical 3D finite element model. This work presents a 3D heat transfer model that considers the continuous addition of mass in front of a moving laser beam using ABAQUS/CAE software. The model assumes the deposit geometry appropriate to each experimental condition and calculates the temperature distribution, cooling rates and re-melted layer depth, which can affect the final microstructure. Model simulations were qualitatively compared with experimental results acquired in situ using a K-type thermocouple. - Highlights: • Direct laser deposition DLD. • Microstructure of stainless steel 316L. • Thermocouples measurement. • 3D finite element modeling

  20. Magnetic Parameter Changes in Soil and Sediments in the Presence of Hydrocarbon Contamination

    Science.gov (United States)

    Appel, E.; Porsch, K.; Rijal, M. L.; Ameen, N. N.; Kappler, A.

    2014-12-01

    Magnetic proxies were successfully used for fast and non-destructive detection of fly ash related heavy metal pollution. Correlations of magnetic signals with organic contaminants in soils and sediments were also reported; however, their significance is unclear because of co-existing heavy metal pollution. At a hydrocarbon (HC) contaminated former military airbase (Hradcany, Czech Rep.), where heavy metal contents are insignificant, we detected clearly higher magnetic concentrations at the top of the groundwater fluctuation (GWF) zone. Frequent GWF by up to ca. one meter was caused through remediation by air sparging. In this study and all previous ones magnetite was identified as the dominant phase for higher magnetic concentrations. To determine the importance of microbial activity and soil parameters on changes in magnetic susceptibility (MS) laboratory batch experiments with different microbially active and sterile soils without carbon addition and with gasoline amendment were setup. MS of these microcosms was followed weekly. Depending on the soil MS either increased or decreased by up to ~7% and remained constant afterwards. The main findings were that MS changes were mainly microbially driven and influenced by the bioavailable Fe content, the initial MS and the organic carbon content of the soils. Moreover, we tested magnetic changes in laboratory columns, filled with sand from the field site Hradcany, by simulating water level changes. The observed changes were small and hardly statistically significant. Our laboratory studies revealed that different factors influence changes in magnetic properties of soil/sediments after HC contamination, with much smaller effects than expected from anomalies observed at field sites. With the present results, the ambitious goal of using magnetic monitoring for detecting HC contaminations by oil spills seem far from practical application.

  1. RESEARCHES REGARDING THE MICROBIOLOGIC PARAMETERS VALUE FROM RAW MILK USED IN TELEMEA CHEESE TECHNOLOGICAL PROCESS

    Directory of Open Access Journals (Sweden)

    ANDRA SULER

    2008-10-01

    Full Text Available An important faze for food quality control is verification of microbiological parameters of food products. In this way is assuring the prevention of alimentation toxicological infections to consumer, avoiding the technological and economical losses as well as increasing the products conservation period. In this paper are presents the microbiological exam results from raw milk used in Telemea cheese technological process, for 5 stations studied. The determinations were made on 2 series with 57 samples each of them, prelevated in reception fase, in summer and winter season.

  2. Effect of Process Parameters on Friction Model in Computer Simulation of Linear Friction Welding

    Directory of Open Access Journals (Sweden)

    A. Yamileva

    2014-07-01

    Full Text Available The friction model is important part of a numerical model of linear friction welding. Its selection determines the accuracy of the results. Existing models employ the classical law of Amonton-Coulomb where the friction coefficient is either constant or linearly dependent on a single parameter. Determination of the coefficient of friction is a time consuming process that requires a lot of experiments. So the feasibility of determinating the complex dependence should be assessing by analysis of effect of approximating law for friction model on simulation results.

  3. Mechanical properties correlation to processing parameters for advanced alumina based refractories

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija M.

    2012-01-01

    Full Text Available Alumina based refractories are usually used in metallurgical furnaces and their thermal shock resistance is of great importance. In order to improve thermal shock resistance and mechanical properties of alumina based refractories short ceramic fibers were added to the material. SEM technique was used to compare the microstructure of specimens and the observed images gave the porosity and morphological characteristics of pores in the specimens. Standard compression test was used to determine the modulus of elasticity and compression strength. Results obtained from thermal shock testing and mechanical properties measurements were used to establish regression models that correlated specimen properties to process parameters.

  4. Estimation of Spectral Exponent Parameter of 1/f Process in Additive White Background Noise

    Directory of Open Access Journals (Sweden)

    Semih Ergintav

    2007-01-01

    Full Text Available An extension to the wavelet-based method for the estimation of the spectral exponent, γ, in a 1/fγ process and in the presence of additive white noise is proposed. The approach is based on eliminating the effect of white noise by a simple difference operation constructed on the wavelet spectrum. The γ parameter is estimated as the slope of a linear function. It is shown by simulations that the proposed method gives reliable results. Global positioning system (GPS time-series noise is analyzed and the results provide experimental verification of the proposed method.

  5. Effect of sintering process parameters on the properties of 3Y-PSZ ceramics

    International Nuclear Information System (INIS)

    Chu, H L; Chen, R S; Wang, C L; Hwang, W S; Lee, H E; Sie, Y Y; Wang, M C

    2013-01-01

    The effect of sintering process parameters on the properties of 3 mol% yttria partially stability zirconia (3Y-PSZ) ceramics has been investigated. The relative density of the sintered pellet rapidly increases from 70.5 to 93.6% with rose temperature from 1473 to 1573 K. In addition, the relative density only slightly increases from 94.9 to 96.6 %, when rose sintered temperature from 1573 to 1773 K. This result shows that no significant influence on the densification behavior when sintering at 1573 to 1773 K for 2 h. The Vickers hardness and toughness also increase with the sintered temperature

  6. Influence of process parameters on the weld lines of a micro injection molded component

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2007-01-01

    The insufficient entanglement of the molecular chains and the stress amplification at the v-notch of a weld line compromise the mechanical strength of a plastic product, also in the micro scale. To investigate the influence of process parameters on the weld lines formation, a special micro cavity...... was designed and manufactured by µEDM (Electro Discharge Machining). Weld lines were quantitatively characterized both in the two-dimensional (direction and position) and three-dimensional range (surface topography characterization). Results showed that shape and position of weld lines are mainly influenced...

  7. Identity learning: the core process of educational change

    NARCIS (Netherlands)

    Geijsel, F.; Meijers, F.

    2005-01-01

    The aim of this paper is to offer an additional perspective to the understanding of educational change processes by clarifying the significance of identity learning. Today’s innovations require changes in teachers’ professional identity. Identity learning involves a relation between social‐cognitive

  8. Action Learning--A Process Which Supports Organisational Change Initiatives

    Science.gov (United States)

    Joyce, Pauline

    2012-01-01

    This paper reflects on how action learning sets (ALSs) were used to support organisational change initiatives. It sets the scene with contextualising the inclusion of change projects in a masters programme. Action learning is understood to be a dynamic process where a team meets regularly to help individual members address issues through a highly…

  9. Organizational Change, Leadership and Learning: Culture as Cognitive Process.

    Science.gov (United States)

    Lakomski, Gabriele

    2001-01-01

    Examines the claim that it is necessary to change an organization's culture in order to bring about organizational change. Considers the purported causal relationship between the role of the leader and organizational learning and develops the notion of culture as cognitive process based on research in cultural anthropology and cognitive science.…

  10. Measurements of gas parameters in plasma-assisted supersonic combustion processes using diode laser spectroscopy

    International Nuclear Information System (INIS)

    Bolshov, Mikhail A; Kuritsyn, Yu A; Liger, V V; Mironenko, V R; Leonov, S B; Yarantsev, D A

    2009-01-01

    We report a procedure for temperature and water vapour concentration measurements in an unsteady-state combustion zone using diode laser absorption spectroscopy. The procedure involves measurements of the absorption spectrum of water molecules around 1.39 μm. It has been used to determine hydrogen combustion parameters in M = 2 gas flows in the test section of a supersonic wind tunnel. The relatively high intensities of the absorption lines used have enabled direct absorption measurements. We describe a differential technique for measurements of transient absorption spectra, the procedure we used for primary data processing and approaches for determining the gas temperature and H 2 O concentration in the probed zone. The measured absorption spectra are fitted with spectra simulated using parameters from spectroscopic databases. The combustion-time-averaged (∼50 ms) gas temperature and water vapour partial pressure in the hot wake region are determined to be 1050 K and 21 Torr, respectively. The large signal-to-noise ratio in our measurements allowed us to assess the temporal behaviour of these parameters. The accuracy in our temperature measurements in the probed zone is ∼40 K. (laser applications and other topics in quantum electronics)

  11. Fault detection of feed water treatment process using PCA-WD with parameter optimization.

    Science.gov (United States)

    Zhang, Shirong; Tang, Qian; Lin, Yu; Tang, Yuling

    2017-05-01

    Feed water treatment process (FWTP) is an essential part of utility boilers; and fault detection is expected for its reliability improvement. Classical principal component analysis (PCA) has been applied to FWTPs in our previous work; however, the noises of T 2 and SPE statistics result in false detections and missed detections. In this paper, Wavelet denoise (WD) is combined with PCA to form a new algorithm, (PCA-WD), where WD is intentionally employed to deal with the noises. The parameter selection of PCA-WD is further formulated as an optimization problem; and PSO is employed for optimization solution. A FWTP, sustaining two 1000MW generation units in a coal-fired power plant, is taken as a study case. Its operation data is collected for following verification study. The results show that the optimized WD is effective to restrain the noises of T 2 and SPE statistics, so as to improve the performance of PCA-WD algorithm. And, the parameter optimization enables PCA-WD to get its optimal parameters in an automatic way rather than on individual experience. The optimized PCA-WD is further compared with classical PCA and sliding window PCA (SWPCA), in terms of four cases as bias fault, drift fault, broken line fault and normal condition, respectively. The advantages of the optimized PCA-WD, against classical PCA and SWPCA, is finally convinced with the results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Post-transfusion changes in serum hepcidin and iron parameters in preterm infants.

    Science.gov (United States)

    Stripeli, Fotini; Kapetanakis, John; Gourgiotis, Dimitris; Drakatos, Antonis; Tsolia, Maria; Kossiva, Lydia

    2018-02-01

    Packed red blood cell transfusion is common in preterm neonates. Hepcidin acts as a negative feedback iron regulator. Iron parameters such as immature reticulocyte fraction (IRF) and high-light-scatter reticulocytes (HLR) are used to clarify iron metabolism. Very little is known about the regulation of hepcidin in preterm infants because most reports have evaluated prohepcidin. The aim of this study was therefore to evaluate serum hepcidin and establish hematological parameters in preterm infants after transfusion. The subjects consisted of 19 newborns (10 boys) with mean gestational age 29.1 ± 2.0 weeks, who had been transfused at the chronological age of 44.84 ± 19.61 days. Blood sample was collected before the transfusion and thereafter at 5 days and at 1 month. Serum hepcidin and other iron parameters were evaluated. Mean serum hepcidin before and 5 days after transfusion was significantly different (5.5 ± 5.1 vs 10 ± 7.9 ng/mL respectively, P = 0.005). IRF and % HLR were also decreased significantly, 5 days after transfusion (0.4 ± 0.2 vs 0.2 ± 0.1, P = 0.009; 1.4 ± 1.5% vs 0.5 ± 0.4%, P = 0.012, respectively). Changes in hepcidin 5 days after transfusion were correlated significantly with changes in mean corpuscular hemoglobin (β, 0.13; SE, 0.05; P = 0.017), total iron binding capacity (β, 3.74; SE, 1.56; P = 0.016) and transferrin (β, 2.9, SE, 1.4; P = 0.039). Serum hepcidin concentration, along with IRF and HLR, are potentially useful in estimating pre- and post-transfusion iron status. Larger studies are needed to evaluate the sensitivity and specificity of hepcidin compared with ordinary iron parameters in premature infants. © 2017 Japan Pediatric Society.

  13. The influence of Ac parameters in the process of micro-arc oxidation film electric breakdown

    Directory of Open Access Journals (Sweden)

    Ma Jin

    2016-01-01

    Full Text Available This paper studies the electric breakdown discharge process of micro-arc oxidation film on the surface of aluminum alloy. Based on the analysis of the AC parameters variation in the micro-arc oxidation process, the following conclusions can be drawn: The growth of oxide film can be divided into three stages, and Oxide film breakdown discharge occurs twice in the micro-arc oxidation process. The first stage is the formation and disruptive discharge of amorphous oxide film, producing the ceramic oxide granules, which belong to solid dielectric breakdown. In this stage the membrane voltage of the oxide film plays a key role; the second stage is the formation of ceramic oxide film, the ceramic oxide granules turns into porous structure oxide film in this stage; the third stage is the growth of ceramic oxide film, the gas film that forms in the oxide film’s porous structure is electric broken-down, which is the second breakdown discharge process, the current density on the oxide film surface could affect the breakdown process significantly.

  14. Effect of pilot-scale aseptic processing on tomato soup quality parameters.

    Science.gov (United States)

    Colle, Ines J P; Andrys, Anna; Grundelius, Andrea; Lemmens, Lien; Löfgren, Anders; Buggenhout, Sandy Van; Loey, Ann; Hendrickx, Marc Van

    2011-01-01

    Tomatoes are often processed into shelf-stable products. However, the different processing steps might have an impact on the product quality. In this study, a model tomato soup was prepared and the impact of pilot-scale aseptic processing, including heat treatment and high-pressure homogenization, on some selected quality parameters was evaluated. The vitamin C content, the lycopene isomer content, and the lycopene bioaccessibility were considered as health-promoting attributes. As a structural characteristic, the viscosity of the tomato soup was investigated. A tomato soup without oil as well as a tomato soup containing 5% olive oil were evaluated. Thermal processing had a negative effect on the vitamin C content, while lycopene degradation was limited. For both compounds, high-pressure homogenization caused additional losses. High-pressure homogenization also resulted in a higher viscosity that was accompanied by a decrease in lycopene bioaccessibility. The presence of lipids clearly enhanced the lycopene isomerization susceptibility and improved the bioaccessibility. The results obtained in this study are of relevance for product formulation and process design of tomato-based food products. © 2011 Institute of Food Technologists®

  15. The x rescaling parameter' formula of the extended x rescaling model and the nuclear effect l-A DIS process

    International Nuclear Information System (INIS)

    Gao Yonghua; He Mingzhong; Duan Chungui

    2003-01-01

    The authors present an x rescaling parameters' formula for partons in the extended x rescaling model, where we have established the connection between the rescaling parameter and the mean binding energy. Using x rescaling parameters obtained by the x rescaling parameters' formula, we calculate the average nucleon structure function ratio of DIS process in l-A (Al, Ca, Pb) collision to l-C collision respectively. The result is in good agreement with experimental data

  16. OSUL2013: Fostering Organizational Change through a Grassroots Planning Process

    Science.gov (United States)

    Schlosser, Melanie

    2011-01-01

    This paper provides background on planning and organizational culture change in libraries and describes a grassroots planning process taking place at the Ohio State University Libraries. Now in its third phase, the process aims to create a long-term plan for the organization while fostering a more collaborative, innovative culture.

  17. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    Science.gov (United States)

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  18. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    Science.gov (United States)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  19. Optimisation of process parameters in friction stir welding based on residual stress analysis: a feasibility study

    DEFF Research Database (Denmark)

    Tutum, Cem Celal; Hattel, Jesper Henri

    2010-01-01

    The present paper considers the optimisation of process parameters in friction stir welding (FSW). More specifically, the choices of rotational speed and traverse welding speed have been investigated using genetic algorithms. The welding process is simulated in a transient, two......-dimensional sequentially coupled thermomechanical model in ANSYS. This model is then used in an optimisation case where the two objectives are the minimisation of the peak residual stresses and the maximisation of the welding speed. The results indicate that the objectives for the considered case are conflicting......, and this is presented as a Pareto optimal front. Moreover, a higher welding speed for a fixed rotational speed results, in general, in slightly higher stress levels in the tension zone, whereas a higher rotational speed for a fixed welding speed yields somewhat lower peak residual stress, however, a wider tension zone...

  20. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  1. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature an...

  2. Analysis of parameter and interaction between parameter of the microwave assisted transesterification process of coconut oil using response surface methodology

    Science.gov (United States)

    Hidayanti, Nur; Suryanto, A.; Qadariyah, L.; Prihatini, P.; Mahfud, Mahfud

    2015-12-01

    A simple batch process was designed for the transesterification of coconut oil to alkyl esters using microwave assisted method. The product with yield above 93.225% of alkyl ester is called the biodiesel fuel. Response surface methodology was used to design the experiment and obtain the maximum possible yield of biodiesel in the microwave-assisted reaction from coconut oil with KOH as the catalyst. The results showed that the time reaction and concentration of KOH catalyst have significant effects on yield of alkyl ester. Based on the response surface methodology using the selected operating conditions, the time of reaction and concentration of KOH catalyst in transesterification process were 150 second and 0.25%w/w, respectively. The largest predicted and experimental yield of alkyl esters (biodiesel) under the optimal conditions are 101.385% and 93.225%, respectively. Our findings confirmed the successful development of process for the transesterification reaction of coconut oil by microwave-assisted heating, which is effective and time-saving for alkyl ester production.

  3. Multi criteria decision making of machining parameters for Die Sinking EDM Process

    Directory of Open Access Journals (Sweden)

    G. K. Bose

    2015-04-01

    Full Text Available Electrical Discharge Machining (EDM is one of the most basic non-conventional machining processes for production of complex geometries and process of hard materials, which are difficult to machine by conventional process. It is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat-treated tool steels, composites, super alloys, ceramics, carbides, heat resistant steels etc. The present study is focusing on the die sinking electric discharge machining (EDM of AISI H 13, W.-Nr. 1.2344 Grade: Ovar Supreme for finding out the effect of machining parameters such as discharge current (GI, pulse on time (POT, pulse off time (POF and spark gap (SG on performance response like Material removal rate (MRR, Surface Roughness (Ra & Overcut (OC using Square-shaped Cu tool with Lateral flushing. A well-designed experimental scheme is used to reduce the total number of experiments. Parts of the experiment are conducted with the L9 orthogonal array based on the Taguchi methodology and significant process parameters are identified using Analysis of Variance (ANOVA. It is found that MRR is affected by gap current & Ra is affected by pulse on time. Moreover, the signal-to-noise ratios associated with the observed values in the experiments are determined by which factor is most affected by the responses of MRR, Ra and OC. These experimental data are further investigated using Grey Relational Analysis to optimize multiple performances in which different levels combination of the factors are ranked based on grey relational grade. The analysis reveals that substantial improvement in machining performance takes place following this technique.

  4. Thermoforming of glass fibre reinforced polypropylene: A study on the influence of different process parameters

    Science.gov (United States)

    Schug, Alexander; Winkelbauer, Jonas; Hinterhölzl, Roland; Drechsler, Klaus

    2017-10-01

    The aim of this study was to analyse the forming behaviour of glass fibre reinforced polypropylene and to identify the influence of several process parameters on the resulting part quality. For this purpose, a complex forming tool was designed, consisting of several areas with single and double curvature. The specimens were produced from unidirectional (UD) tape using the Fiberforge RELAY2000® automated tape laying machine and a subsequent consolidation step. They were then fixed in a support frame, pre-heated in an infrared oven, and formed in the forming tool, which was mounted into a hydraulic heating press. The investigated process parameters were the number and force of the springs in the support frame, the tool temperature and the forming pressure and speed. The layups of the specimens were [0/90/0/90/0¯]s and [0/45/90/-45/0¯]s. After the forming process, the parts were analysed in terms of their quality, with a special focus on wrinkles, undulations, gaps and surface roughness. In addition to optical analysis with a statistical evaluation of the results, 3D scans of the specimens at different steps of the forming process were made to gain an impression of the forming mechanisms and the development of failures. The ATOS system of GOM was used for these 3D scans. The results show that the undulations were influenced by the tool temperature and the spring force. By contrast, the surface quality was most strongly dependent on the forming pressure, which also influenced the size and the number of gaps. The forming speed affected the gaps as well. The tool temperature had the largest influence on the development of wrinkles. As expected, the quasi-isotropic layup showed distinctly more wrinkles and undulations, but it also presented a better surface quality than the orthotropic layup.

  5. Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening

    Science.gov (United States)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2017-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  6. Land use change on climate parameters at Samin subwatershed in Central Java, Indonesia

    Science.gov (United States)

    Sutarno; Komariah; Gunawan, T.; Purnomo, D.; Suntoro

    2018-03-01

    The Samin sub-watershed (SSW) is one of the critical watersheds in Indonesia which need conservation. The identification of land-use/land-cover changes (LUCC) can help in deciding the priority of conservation areas as well as limiting the widespread of critical lands in the watershed, which can contribute to climate change. The purpose of this study is to determine the impact of land use change on climate parameters, i.e. precipitation, air temperature and relative air humidity. The method is by using the descriptive explorative. The study employed Indonesian topographic map and Landsat's imageries of 1996, 2001, 2006, 2011 and 2016. The climate data from 1996 to 2016 were obtained from surroundings weather station. Data were analyzed using Geographic Information System (GIS) and SPSS. The results showed that land use was dominated by rice fields 22,552.83 ha (69.20%), and converted to non-agricultural lands 165.05 hectares/year for the last 20 years. Forest area decreased 65.8 ha/year, and settlement (housing and industrial estates) increased 253.87 ha/year (11.07%). The statistical analysis resulted in a negative relationship between forest area and air temperature and, but no significant correlation with rainfall.

  7. Contribution of land use changes to meteorological parameters in Greater Jakarta: Case 17 January 2014

    Science.gov (United States)

    Nuryanto, D. E.; Pawitan, H.; Hidayat, R.; Aldrian, E.

    2018-05-01

    The impact of land use changes on meteorological parameters during a heavy rainfall event on 17 January 2014 in Greater Jakarta (GJ) was examined using the Weather Research and Forecasting (WRF) model. This study performed two experimental simulation methods. The first WRF simulation uses default land use (CTL). The second simulation applies the experiment by changing the size of urban and built-up land use (SCE). The Global Forecast System (GFS) data is applied to provide more realistic initial and boundary conditions for the nested model domains (3 km, 1 km). The simulations were initiated at 00:00 UTC January 13, 2014 and the period of modeling was equal to six days. The air temperature and the precipitation pattern in GJ shows a good agreement between the observed and simulated data. The results show a consistent significant contribution of urban development and accompany land use changes in air temperature and precipitation. According to the model simulation, urban and built-up land contributed about 6% of heavy rainfall and about 0.2 degrees of air temperatures in the morning. Simulations indicate that new urban developments led to an intensification and expansion of the rain area. The results can support the decision-making of flooding and watershed management.

  8. Optimization of process parameters for spark plasma sintering of nano structured SAF 2205 composite

    Directory of Open Access Journals (Sweden)

    Samuel Ranti Oke

    2018-04-01

    Full Text Available This research optimized spark plasma sintering (SPS process parameters in terms of sintering temperature, holding time and heating rate for the development of a nano-structured duplex stainless steel (SAF 2205 grade reinforced with titanium nitride (TiN. The mixed powders were sintered using an automated spark plasma sintering machine (model HHPD-25, FCT GmbH, Germany. Characterization was performed using X-ray diffraction and scanning electron microscopy. Density and hardness of the composites were investigated. The XRD result showed the formation of FeN0.068. SEM/EDS revealed the presence of nano ranged particles of TiN segregated at the grain boundaries of the duplex matrix. A decrease in hardness and densification was observed when sintering temperature and heating rate were 1200 °C and 150 °C/min respectively. The optimum properties were obtained in composites sintered at 1150 °C for 15 min and 100 °C/min. The composite grades irrespective of the process parameters exhibited similar shrinkage behavior, which is characterized by three distinctive peaks, which is an indication of good densification phenomena. Keywords: Spark plasma sintering, Duplex stainless steel (SAF 2205, Titanium nitride (TiN, Microstructure, Density, Hardness

  9. Deterministic flows of order-parameters in stochastic processes of quantum Monte Carlo method

    International Nuclear Information System (INIS)

    Inoue, Jun-ichi

    2010-01-01

    In terms of the stochastic process of quantum-mechanical version of Markov chain Monte Carlo method (the MCMC), we analytically derive macroscopically deterministic flow equations of order parameters such as spontaneous magnetization in infinite-range (d(= ∞)-dimensional) quantum spin systems. By means of the Trotter decomposition, we consider the transition probability of Glauber-type dynamics of microscopic states for the corresponding (d + 1)-dimensional classical system. Under the static approximation, differential equations with respect to macroscopic order parameters are explicitly obtained from the master equation that describes the microscopic-law. In the steady state, we show that the equations are identical to the saddle point equations for the equilibrium state of the same system. The equation for the dynamical Ising model is recovered in the classical limit. We also check the validity of the static approximation by making use of computer simulations for finite size systems and discuss several possible extensions of our approach to disordered spin systems for statistical-mechanical informatics. Especially, we shall use our procedure to evaluate the decoding process of Bayesian image restoration. With the assistance of the concept of dynamical replica theory (the DRT), we derive the zero-temperature flow equation of image restoration measure showing some 'non-monotonic' behaviour in its time evolution.

  10. Sensitivity study and parameter optimization of OCD tool for 14nm finFET process

    Science.gov (United States)

    Zhang, Zhensheng; Chen, Huiping; Cheng, Shiqiu; Zhan, Yunkun; Huang, Kun; Shi, Yaoming; Xu, Yiping

    2016-03-01

    Optical critical dimension (OCD) measurement has been widely demonstrated as an essential metrology method for monitoring advanced IC process in the technology node of 90 nm and beyond. However, the rapidly shrunk critical dimensions of the semiconductor devices and the increasing complexity of the manufacturing process bring more challenges to OCD. The measurement precision of OCD technology highly relies on the optical hardware configuration, spectral types, and inherently interactions between the incidence of light and various materials with various topological structures, therefore sensitivity analysis and parameter optimization are very critical in the OCD applications. This paper presents a method for seeking the optimum sensitive measurement configuration to enhance the metrology precision and reduce the noise impact to the greatest extent. In this work, the sensitivity of different types of spectra with a series of hardware configurations of incidence angles and azimuth angles were investigated. The optimum hardware measurement configuration and spectrum parameter can be identified. The FinFET structures in the technology node of 14 nm were constructed to validate the algorithm. This method provides guidance to estimate the measurement precision before measuring actual device features and will be beneficial for OCD hardware configuration.

  11. Process Parameters Optimization of 14nm MOSFET Using 2-D Analytical Modelling

    Directory of Open Access Journals (Sweden)

    Noor Faizah Z.A.

    2016-01-01

    Full Text Available This paper presents the modeling and optimization of 14nm gate length CMOS transistor which is down-scaled from previous 32nm gate length. High-k metal gate material was used in this research utilizing Hafnium Dioxide (HfO2 as dielectric and Tungsten Silicide (WSi2 and Titanium Silicide (TiSi2 as a metal gate for NMOS and PMOS respectively. The devices are fabricated virtually using ATHENA module and characterized its performance evaluation via ATLAS module; both in Virtual Wafer Fabrication (VWF of Silvaco TCAD Tools. The devices were then optimized through a process parameters variability using L9 Taguchi Method. There were four process parameter with two noise factor of different values were used to analyze the factor effect. The results show that the optimal value for both transistors are well within ITRS 2013 prediction where VTH and IOFF are 0.236737V and 6.995705nA/um for NMOS device and 0.248635 V and 5.26nA/um for PMOS device respectively.

  12. Effect of Formulation and Process Parameters on Chitosan Microparticles Prepared by an Emulsion Crosslinking Technique.

    Science.gov (United States)

    Rodriguez, Lidia B; Avalos, Abraham; Chiaia, Nicholas; Nadarajah, Arunan

    2017-05-01

    There are many studies about the synthesis of chitosan microparticles; however, most of them have very low production rate, have wide size distribution, are difficult to reproduce, and use harsh crosslinking agents. Uniform microparticles are necessary to obtain repeatable drug release behavior. The main focus of this investigation was to study the effect of the process and formulation parameters during the preparation of chitosan microparticles in order to produce particles with narrow size distribution. The technique evaluated during this study was emulsion crosslinking technique. Chitosan is a biocompatible and biodegradable material but lacks good mechanical properties; for that reason, chitosan was ionically crosslinked with sodium tripolyphosphate (TPP) at three different ratios (32, 64, and 100%). The model drug used was acetylsalicylic acid (ASA). During the preparation of the microparticles, chitosan was first mixed with ASA and then dispersed in oil containing an emulsifier. The evaporation of the solvents hardened the hydrophilic droplets forming microparticles with spherical shape. The process and formulation parameters were varied, and the microparticles were characterized by their morphology, particle size, drug loading efficiency, and drug release behavior. The higher drug loading efficiency was achieved by using 32% mass ratio of TPP to chitosan. The average microparticle size was 18.7 μm. The optimum formulation conditions to prepare uniform spherical microparticles were determined and represented by a region in a triangular phase diagram. The drug release analyses were evaluated in phosphate buffer solution at pH 7.4 and were mainly completed at 24 h.

  13. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Influence of processing parameters on microstructure and tensile properties of TG6 titanium alloy

    International Nuclear Information System (INIS)

    Wang Tao; Guo Hongzhen; Wang Yanwei; Yao Zekun

    2010-01-01

    Research highlights: → This paper highlights the relationships among processing parameters, microstructure and tensile properties of TG6 high temperature titanium alloy. → The microstructural evolutions under different processing parameters were studied by the quantitative metallography, and the effects of microstructure on room and high temperature tensile properties of TG6 alloy were analysed by SEM and TEM. → Linear relationships of elongation vs. volume fraction of primary α phase and ultimate tensile strength vs. thickness of lamellar α phase were determined. - Abstract: Near-isothermal forging of the TG6 titanium alloy was conducted on microprocessor-controlled 630 ton hydraulic press at the deformation temperatures ranging from 850 deg. C to 1045 deg. C, the strain rates of 0.0008 s -1 , 0.003 s -1 and 0.008 s -1 and the deformation degree from 10% to 70%, and then different double heat treatments were applied to the forged specimens. The microstructural evolutions were researched by optical microscope and the microstructural features, i.e. volume fraction of primary α phase and thickness of lamellar α phase, were measured by means of the image analysis software. The room and high temperature tensile properties were obtained for all the specimens. Effects of microstructure on the properties were analysed by scanning electronic microscope. It was found that tenslie properties depended on microstructural features strongly. The plots of ultimate tensile strength vs. thickness of α lamellae and elongation vs. volume fraction of primary α phase produced straight lines. The liner equations were determined by fitting the experimental date, respectively. Compared to other parameters, heat treatment had more influence on the tensile strength and the tensile plasticity was more sensitive to the forging temperature.

  15. Incorporating Human Factors into design change processes - a regulator's perspective

    International Nuclear Information System (INIS)

    Staples, L.; McRobbie, H.

    2003-01-01

    Nuclear power plants in Canada must receive written approval from the Canadian Nuclear Safety Commission (CNSC) when making certain changes that are defined in their licenses. The CNSC expects the design change process to include a method for ensuring that the human-machine interface and workplace design support the safe and reliable performance of required tasks. When reviewing design changes for approval, the CNSC looks for evidence of analysis work, use of appropriate human factors design guide-lines, and verification and validation testing of the design. In addition to reviewing significant design changes, evaluations are conducted to ensure design change processes adequately address human performance. Findings from reviews and evaluations highlight the need to integrate human factors into the design change process, provide human factors training and support to engineering staff, establish processes to ensure coordination between the various groups with a vested interest in human factors, and develop more rigorous methods to validate changes to maintenance, field operations and testing interfaces. (author)

  16. ADAPTATION PROCESS TO CLIMATE CHANGE IN AGRICULTURE- AN EMPIRICAL STUDY

    Directory of Open Access Journals (Sweden)

    Ghulam Mustafa

    2017-10-01

    Full Text Available Climatic variations affect agriculture in a process with no known end means. Adaptations help to reduce the adverse impacts of climate change. Unfortunately, adaptation has never been considered as a process. Current study empirically identified the adaptation process and its different stages. Moreover, little is known about the farm level adaptation strategies and their determinants. The study in hand found farm level adaptation strategies and determinants of these strategies. The study identified three stages of adaptation i.e. perception, intention and adaptation. It was found that 71.4% farmers perceived about climate change, 58.5% intended to adapt while 40.2% actually adapted. The study further explored that farmers do adaptations through changing crop variety (56.3%, changing planting dates (44.6%, tree plantation (37.5%, increase/conserve irrigation (39.3% and crop diversification (49.2%. The adaptation strategies used by farmers were autonomous and mostly determined perception to climate change. It was also noted that the adaptation strategies move in a circular process and once they are adapted they remained adapted for a longer period of time. Some constraints slow the adaptation process so; we recommend farmers should be given price incentives to speed-up this process.

  17. Nonclinical comparability studies of recombinant human arylsulfatase A addressing manufacturing process changes.

    Science.gov (United States)

    Wright, Teresa; Li, Aiqun; Lotterhand, Jason; Graham, Anne-Renee; Huang, Yan; Avila, Nancy; Pan, Jing

    2018-01-01

    Recombinant human arylsulfatase A (rhASA) is in clinical development for the treatment of patients with metachromatic leukodystrophy (MLD). Manufacturing process changes were introduced to improve robustness and efficiency, resulting in higher levels of mannose-6-phosphate and sialic acid in post-change (process B) compared with pre-change (process A) rhASA. A nonclinical comparability program was conducted to compare process A and process B rhASA. All doses were administered intrathecally. Pharmacodynamic comparability was evaluated in immunotolerant MLD mice, using immunohistochemical staining of lysosomal-associated membrane protein-1 (LAMP-1). Pharmacokinetic comparability was assessed in juvenile cynomolgus monkeys dosed once with 6.0 mg (equivalent to 100 mg/kg of brain weight) process A or process B rhASA. Biodistribution was compared by quantitative whole-body autoradiography in rats. Potential toxicity of process B rhASA was evaluated by repeated rhASA administration at doses of 18.6 mg in juvenile cynomolgus monkeys. The specific activities for process A and process B rhASA were 89 U/mg and 106 U/mg, respectively, which were both well within the target range for the assay. Pharmacodynamic assessments showed no statistically significant differences in LAMP-1 immunohistochemical staining in the spinal cord and in most of the brain areas assessed between process A and B rhASA-dosed mice. LAMP-1 staining was reduced with both process A and B rhASA compared with vehicle, supporting its activity. Concentration-time curves in cerebrospinal fluid and serum of cynomolgus monkeys were similar with process A and B rhASA. Process A and B rhASA were similar in terms of their pharmacokinetic parameters and biodistribution data. No process B rhASA-related toxicity was detected. In conclusion, manufacturing process changes did not affect the pharmacodynamic, pharmacokinetic or safety profiles of process B rhASA relative to process A rhASA.

  18. Multi-response optimization of process parameters in friction stir welded AM20 magnesium alloy by Taguchi grey relational analysis

    Directory of Open Access Journals (Sweden)

    Prakash Kumar Sahu

    2015-03-01

    Full Text Available The purpose of this paper is to optimize the process parameter to get the better mechanical properties of friction stir welded AM20 magnesium alloy using Taguchi Grey relational analysis (GRA. The considered process parameters are welding speed, tool rotation speed, shoulder diameter and plunging depth. The experiments were carried out by using Taguchi's L18 factorial design of experiment. The processes parameters were optimized and ranked the parameters based on the GRA. The percentage influence of each process parameter on the weld quality was also quantified. A validation experimental run was conducted using optimal process condition, which was obtained from the analysis, to show the improvement in mechanical properties of the joint. This study also shows the feasibility of the GRA with Taguchi technique for improvement in welding quality of magnesium alloy.

  19. Diffusion tensor imaging parameters' changes of cerebellar hemispheres in Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Mormina, Enricomaria; Arrigo, Alessandro; Granata, Francesca; Anastasi, Giuseppe P.; Gaeta, Michele [University of Messina, Department of Biomedical Science and Morphological and Functional Images, Messina (Italy); Calamuneri, Alessandro; Quartarone, Angelo [University of Messina, Department of Neurosciences, Messina (Italy); Ghilardi, Maria F.; Inglese, Matilde; Di Rocco, Alessandro [Mount Sinai Hospital, New York, NY (United States); Milardi, Demetrio [University of Messina, Department of Biomedical Science and Morphological and Functional Images, Messina (Italy); IRCCS Centro Neurolesi Bonino Pulejo, Messina (Italy)

    2015-03-01

    Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson's disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD. We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings. We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls. The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance. (orig.)

  20. Diffusion tensor imaging parameters' changes of cerebellar hemispheres in Parkinson's disease

    International Nuclear Information System (INIS)

    Mormina, Enricomaria; Arrigo, Alessandro; Granata, Francesca; Anastasi, Giuseppe P.; Gaeta, Michele; Calamuneri, Alessandro; Quartarone, Angelo; Ghilardi, Maria F.; Inglese, Matilde; Di Rocco, Alessandro; Milardi, Demetrio

    2015-01-01

    Studies with diffusion tensor imaging (DTI) analysis have produced conflicting information about the involvement of the cerebellar hemispheres in Parkinson's disease (PD). We, thus, used a new approach for the analysis of DTI parameters in order to ascertain the involvement of the cerebellum in PD. We performed a fiber tract-based analysis of cerebellar peduncles and cerebellar hemispheres in 16 healthy subjects and in 16 PD patients with more than 5 years duration of disease, using a 3T MRI scanner and a constrained spherical deconvolution (CSD) approach for tractographic reconstructions. In addition, we performed statistical analysis of DTI parameters and fractional anisotropy (FA) XYZ direction samplings. We found a statistically significant decrement of FA values in PD patients compared to controls (p < 0.05). In addition, extrapolating and analyzing FA XYZ direction samplings for each patient and each control, we found that this result was due to a stronger decrement of FA values along the Y axis (antero-posterior direction) (p < 0.01); FA changes along X and Z axes were not statistically significant (p > 0.05). We confirmed also no statistically significant differences of FA and apparent diffusion coefficient (ADC) for cerebellar peduncles in PD patients compared to healthy controls. The DTI-based cerebellar abnormalities in PD could constitute an advance in the knowledge of this disease. We demonstrated a statistically significant reduction of FA in cerebellar hemispheres of PD patients compared to healthy controls. Our work also demonstrated that the use of more sophisticated approaches in the DTI parameter analysis could potentially have a clinical relevance. (orig.)

  1. Urtica dioica attenuate effect of Doxorobicin‐Induced changes on sperm parameters in the mice

    Directory of Open Access Journals (Sweden)

    Zahra Baninameh

    2016-11-01

    Full Text Available Doxorubicin (DXR is used as an antitumor agent for the treatment of human neoplasm. The use of DXR has adverse effect on reproductive system including testicular toxicity and alteration in semen quality. The aim of this study was to evaluate the protective effects of Urtica dioica against Doxorobicin‐Induced changes on sperm parameters. 24 male mice were randomly divided into 4 groups. Control group received normal saline solution throughout the course of the study. Urtica dioica (UD control group, received UD (100 mg/kg body weight thrice in a week and DOX (3 mg/kg body weight once in a week injected intraperitoneally in Doxorubicin (DXR control group and Urtica dioica- Doxorubicin (UD-DXR group, received Urtica dioica (100 mg/kg body weight three times in a week and DOX (3 mg/kg body weight once in a week through the route for a period of 2 weeks. At the end of experimental period, all animal were sacrificed by cervical dislocation, their epididymes were removed and sperm analysis were done. In mice with DXR administration, epididymal sperm motility, progressive motility, sperm count and viability significantly decrease while sperm cells with abnormal morphology significantly increase when compared with control groups. Co-treatment with UD attenuate toxicity effect of DXR and improve sperm parameters. Results of our study showed that UD diminished DXR-induced testicular toxicity and improve semen parameters, thus suggesting its co-administration as a protective agent during doxorubicin treatment. Further studies should be aimed to determine protective effect of UD against chemotherapeutic agents such as DXR.

  2. Early changes in parameters of bone and mineral metabolism during therapy for hyper- and hypothyroidism.

    Science.gov (United States)

    Sabuncu, T; Aksoy, N; Arikan, E; Ugur, B; Tasan, E; Hatemi, H

    2001-01-01

    The effects of thyroid hormones on various organs and metabolic systems have been the focus of intensive research. In this study we investigated the mechanisms of the changes in some parameters of bone and mineral metabolism before and during treatment of hyper- and hypothyroidism. Our study groups were as follows; 1) Untreated hyperthyroid patients (n= 38), 2) Hyperthyroid patients treated for three months (n=21), 3) Untreated hypothyroid patients (n=27), 4) Hypothyroid patients treated for three months (n= 20), and 5) Euthyroid control subjects (age, weight, sex and menopausal status matched) (n = 47). As expected, the mean serum calcium (Ca), phosphorus (P), alkaline phosphatase (ALP), and urinary Ca/creatinine and deoxypyridinoline (D-Pyr)/creatinine levels were higher in group-1 than in the control group. Serum PTH level was lower in group-1 than in group-5. However, after treatment for three months (group-2) we found that the serum and urinary levels of these parameters (except ALP) were not different than in the control group. Group-3 and group-4 did not show any differences in these parameters compared with group-5. Covariance analysis showed that urinary D-Pyr excretion had a positive, independent relationship to the serum free T3 level and age (P hyperthyroid patients, and with the treatment, particularly, in the period of first three months the bone resorption markers decrease rapidly. If the treatment is maintained the decrease slows, becoming more gradual. However, bone formation markers like ALP remain high in hyperthyroid patients during the treatment. In the light of this data, it is possible to conclude that osteoblastic activity lasts longer in hyperthyroidism. On the other hand, we demonstrated that these bone formation and resorption markers do not seem to be different in hypothyroid patients, even during the treatment, compared to the euthyroid controls.

  3. The analysis of radiation parameters dependence of rectangular waveguide on its dimensions change

    Directory of Open Access Journals (Sweden)

    Manoilov V.P.

    2016-04-01

    Full Text Available Analysis of radiation from 3 centimeter waveband rectangular waveguide at the change of the side sizes is carried out for the purpose of efficiency estimation of its use as reflector parabolic antenna exciter. Some performance characteristics of radioelectronic systems depend on antennas types which are used. Recently, the development of antenna systems occurred mainly not by creating new, and by improving the parameters and characteristics of existing antennas. Therefore, there is a practical need to find ways to improve their elements. A detailed analysis of the radiation from the open end of the rectangular waveguide allows to specify exactly which of its parameters and characteristics need to be improved. Dependence charts of directional diagram (DD in planes E and H, radiation power, directivity upon variation of side sizes a, b are received. Dependence charts of attenuation coefficient upon frequency for wave types H10, H01, H02, H11, E11 are drawn up. Estimation of reasonability of using rectangular waveguide as reflector parabolic antenna exciter is received.

  4. Changes in bone mineral metabolism parameters, including FGF23, after discontinuing cinacalcet at kidney transplantation.

    Science.gov (United States)

    Barros, Xoana; Fuster, David; Paschoalin, Raphael; Oppenheimer, Federico; Rubello, Domenico; Perlaza, Pilar; Pons, Francesca; Torregrosa, Jose V

    2015-05-01

    Little is known about the effects of the administration of cinacalcet in dialytic patients who are scheduled for kidney transplantation, and in particular about the changes in FGF23 and other mineral metabolism parameters after surgery compared with recipients not on cinacalcet at kidney transplantation. We performed a prospective observational cohort study with recruitment of consecutive kidney transplant recipients at our institution. Patients were classified according to whether they were under treatment with cinacalcet before transplantation. Bone mineral metabolism parameters, including C-terminal FGF23, were measured at baseline, on day 15, and at 1, 3, and 6 months after transplantation. In previously cinacalcet-treated patients, cinacalcet therapy was discontinued on the day of surgery and was not restarted after transplantation. A total of 48 kidney transplant recipients, 20 on cinacalcet at surgery and 28 cinacalcet non-treated patients, completed the follow-up. Serum phosphate declined significantly in the first 15 days after transplantation with no differences between the two groups, whereas cinacalcet-treated patients showed higher FGF23 levels, although not significant. After transplantation, PTH and serum calcium were significantly higher in cinacalcet-treated patients. We conclude that patients receiving cinacalcet on dialysis presented similar serum phosphate levels but higher PTH and serum calcium levels during the initial six months after kidney transplantation than cinacalcet non-treated patients. The group previously treated with cinacalcet before transplantation showed higher FGF23 levels without significant differences, so further studies should investigate its relevance in the management of these patients.

  5. Geometrical and electrical properties of NTC polycrystalline thermistors vs. Changes of sintering parameters

    Directory of Open Access Journals (Sweden)

    Savić S.M.

    2006-01-01

    Full Text Available NTC thermistor powder was made of a Mn, Ni, Fe and Co oxide mixture calcinated at 1050°C / 60 min. The powder was milled in a ball mill down to an average particle diameter of 0.9 μm. Small disc shaped pills of the powder obtained were made by pressing with a pressure of 2.5 MPa. The pills were sintered in the temperature range of 900-1400 °C for 30-240 min. The volume and specific volume resistivity change were measured as a function of sintering conditions. Microstructure development was observed using a SEM microscope. Using the results obtained, optimization of sintering parameters was performed in order to determine optimal electrical properties of the selected thermistor composition.

  6. Optimization of HTST process parameters for production of ready-to-eat potato-soy snack.

    Science.gov (United States)

    Nath, A; Chattopadhyay, P K; Majumdar, G C

    2012-08-01

    Ready-to-eat (RTE) potato-soy snacks were developed using high temperature short time (HTST) air puffing process and the process was found to be very useful for production of highly porous and light texture snack. The process parameters considered viz. puffing temperature (185-255 °C) and puffing time (20-60 s) with constant initial moisture content of 36.74% and air velocity of 3.99 m.s(-1) for potato-soy blend with varying soy flour content from 5% to 25% were investigated using response surface methodology following central composite rotatable design (CCRD). The optimum product in terms of minimum moisture content (11.03% db), maximum expansion ratio (3.71), minimum hardness (2,749.4 g), minimum ascorbic acid loss (9.24% db) and maximum overall acceptability (7.35) were obtained with 10.0% soy flour blend in potato flour at the process conditions of puffing temperature (231.0 °C) and puffing time (25.0 s).

  7. Adhesion properties of inverted polymer solarcells: Processing and film structure parameters

    KAUST Repository

    Dupont, Stephanie R.

    2013-05-01

    We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10-40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO 3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.© 2013 Elsevier B.V. All rights reserved.

  8. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    Science.gov (United States)

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  9. Adhesion properties of inverted polymer solarcells: Processing and film structure parameters

    KAUST Repository

    Dupont, Stephanie R.; Voroshazi, Eszter; Heremans, Paul; Dauskardt, Reinhold H.

    2013-01-01

    We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10-40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO 3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.© 2013 Elsevier B.V. All rights reserved.

  10. Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga

    Directory of Open Access Journals (Sweden)

    Chukwuma Onumaegbu

    2018-03-01

    Full Text Available Cell disruption is an integral part of microalga production process, which improves the release of intracellular products that are essential for biofuel production. In this work, pre-treatment parameters that will enhance the efficiency of lipid production using high-pressure homogenizer on microalgae biomass will be investigated. The high-pressure homogenizer that is considered is a GYB40-10S/GY60-6S; with a pre-treatment pressure of 1000 psi, 2000 psi, and 3000 psi, the number of passes; 1, 2, and 3, a reaction time of 3, 3.5, and 4 h. Pressure and cavitation increase the efficiency of the pre-treatment process of the homogenizer. In addition, homogenization shear force and pressure are the basic significant factors that enhance the efficiency of microalgae cell rupture. Also, the use of modelling to simulate pre-treatment processes (Response Surface Methodology (RSM, Box-Behnken Designs (BBD, and design of experiment (DOE for process optimization will be adopted in this study. The results clearly demonstrate that high-pressure homogenization pre-treatment can effectively disrupt microalga cell walls to enhance lipid recovery efficiency, with a relatively short extraction time, both that are essential for maintaining a good quality of lipids for biofuel production. A maximum of 18% lipid yields were obtained after 3 h of HPH pre-treatment at 3000 psi.

  11. Modeling and parameter identification of the simultaneous saccharification-fermentation process for ethanol production.

    Science.gov (United States)

    Ochoa, Silvia; Yoo, Ahrim; Repke, Jens-Uwe; Wozny, Günter; Yang, Dae Ryook

    2007-01-01

    Despite many environmental advantages of using alcohol as a fuel, there are still serious questions about its economical feasibility when compared with oil-based fuels. The bioethanol industry needs to be more competitive, and therefore, all stages of its production process must be simple, inexpensive, efficient, and "easy" to control. In recent years, there have been significant improvements in process design, such as in the purification technologies for ethanol dehydration (molecular sieves, pressure swing adsorption, pervaporation, etc.) and in genetic modifications of microbial strains. However, a lot of research effort is still required in optimization and control, where the first step is the development of suitable models of the process, which can be used as a simulated plant, as a soft sensor or as part of the control algorithm. Thus, toward developing good, reliable, and simple but highly predictive models that can be used in the future for optimization and process control applications, in this paper an unstructured and a cybernetic model are proposed and compared for the simultaneous saccharification-fermentation process (SSF) for the production of ethanol from starch by a recombinant Saccharomyces cerevisiae strain. The cybernetic model proposed is a new one that considers the degradation of starch not only into glucose but also into dextrins (reducing sugars) and takes into account the intracellular reactions occurring inside the cells, giving a more detailed description of the process. Furthermore, an identification procedure based on the Metropolis Monte Carlo optimization method coupled with a sensitivity analysis is proposed for the identification of the model's parameters, employing experimental data reported in the literature.

  12. Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations

    International Nuclear Information System (INIS)

    Do, Duy Minh; Gao, Wei; Song, Chongmin; Tangaramvong, Sawekchai

    2014-01-01

    This paper presents the non-deterministic dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations. Random ground acceleration from earthquake motion is adopted to illustrate the stochastic process force. The exact change ranges of natural frequencies, random vibration displacement and stress responses of structures are investigated under the interval analysis framework. Formulations for structural reliability are developed considering the safe boundary and structural random vibration responses as interval parameters. An improved particle swarm optimization algorithm, namely randomised lower sequence initialized high-order nonlinear particle swarm optimization algorithm, is employed to capture the better bounds of structural dynamic characteristics, random vibration responses and reliability. Three numerical examples are used to demonstrate the presented method for interval random vibration analysis and reliability assessment of structures. The accuracy of the results obtained by the presented method is verified by the randomised Quasi-Monte Carlo simulation method (QMCSM) and direct Monte Carlo simulation method (MCSM). - Highlights: • Interval uncertainty is introduced into structural random vibration responses. • Interval dynamic reliability assessments of structures are implemented. • Boundaries of structural dynamic response and reliability are achieved

  13. A Comparative Analysis of Taguchi Methodology and Shainin System DoE in the Optimization of Injection Molding Process Parameters

    Science.gov (United States)

    Khavekar, Rajendra; Vasudevan, Hari, Dr.; Modi, Bhavik

    2017-08-01

    Two well-known Design of Experiments (DoE) methodologies, such as Taguchi Methods (TM) and Shainin Systems (SS) are compared and analyzed in this study through their implementation in a plastic injection molding unit. Experiments were performed at a perfume bottle cap manufacturing company (made by acrylic material) using TM and SS to find out the root cause of defects and to optimize the process parameters for minimum rejection. Experiments obtained the rejection rate to be 8.57% from 40% (appx.) during trial runs, which is quiet low, representing successful implementation of these DoE methods. The comparison showed that both methodologies gave same set of variables as critical for defect reduction, but with change in their significance order. Also, Taguchi methods require more number of experiments and consume more time compared to the Shainin System. Shainin system is less complicated and is easy to implement, whereas Taguchi methods is statistically more reliable for optimization of process parameters. Finally, experimentations implied that DoE methods are strong and reliable in implementation, as organizations attempt to improve the quality through optimization.

  14. Predictable anomalies of process parameters on failure mode of internal structures in RPV by transient thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Maki, Akira; Mori, Michitsugu; Kanemoto, Shigeru; Konishi, Hideo

    1997-01-01

    A study has been conducted to evaluate how process parameters will exhibit the change in the event of the troubles related to reactor internal by using transient thermal-hydraulic analysis codes (RETRAN3D-MOD002, etc.). In the present study, the following six events are analytically investigated: 1) a leak from the upper plenum; 2) a leak from the middle part of a shroud; 3) a leak from the lower plenum; 4) a leak from the riser pipe for the jet-pump; 5) the blockage of the jet-pump nozzle; and 6) a leak from the jet-pump diffuser. The results by analyses indicated that the leak from the upper plenum resulted in increasing in the inlet temperature of primary loop recirculation (PLR) and in the differential pressure at the core support plate, and decreasing in the neutron flux (reactor power). Similar analyses were made for the five other events to identify the pattern of relevant process parameter variation in each event. (author)

  15. OPPORTUNITY TO REDUCE RESISTANCE TO CHANGE IN A PROCESS OF ORGANIZATIONAL CHANGE

    Directory of Open Access Journals (Sweden)

    Prediscan Mariana

    2011-12-01

    Full Text Available This paper aims to present the research results conducted on several models of organizational change regarding the identification of the appropriate moment in which the managers interest should turn towards the reduction of the employees resistance to change. More specifically, we intend to identify when is the best moment to reduce the resistance to change, depending on the change we want to achieve. After more research of organizational change models, we have reached the following conclusions: -not all models of organizational change present reducing resistance to change as a necessary stage; -the place of this phase in the models of organizational change is not considered to be the same; -some models of organizational change recommend indirectly reducing employee resistance to change by indicating the use of some methods, techniques, processes that would lead to this result. Here we include mainly: communication, training, positive motivation of employees; -we recommended that the place of this stage should vary depending on the desired change to achieve; -in strategic changes, which are extremely important for an organization and which affect a large number of employees, we recommend that the reduction of the employee resistance to change be achieved before passing to the implementation of the plan developed to implement the change; -in imposed changes, in conditions of crisis when we have no time available to plan the change, immediately after it had been implemented it is necessary to conduct effective actions meant to ensure, even if the change has been made, the reduction of the resistance to change of the affected employees -to achieve time savings in the process of organizational change, we recommend that after having obtained a certain attachment of some employees to change, the implementation of the methods, of the techniques that would increase their commitment to continue to be developed in parallel with the implementation of the

  16. Implicit Processes, Self-Regulation, and Interventions for Behavior Change.

    Science.gov (United States)

    St Quinton, Tom; Brunton, Julie A

    2017-01-01

    The ability to regulate and subsequently change behavior is influenced by both reflective and implicit processes. Traditional theories have focused on conscious processes by highlighting the beliefs and intentions that influence decision making. However, their success in changing behavior has been modest with a gap between intention and behavior apparent. Dual-process models have been recently applied to health psychology; with numerous models incorporating implicit processes that influence behavior as well as the more common conscious processes. Such implicit processes are theorized to govern behavior non-consciously. The article provides a commentary on motivational and volitional processes and how interventions have combined to attempt an increase in positive health behaviors. Following this, non-conscious processes are discussed in terms of their theoretical underpinning. The article will then highlight how these processes have been measured and will then discuss the different ways that the non-conscious and conscious may interact. The development of interventions manipulating both processes may well prove crucial in successfully altering behavior.

  17. Assessment of changes in gait parameters and vertical ground reaction forces after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Bhargava P

    2007-01-01

    the control group. Vertical ground reaction force variables are also altered. Conclusion: Significant changes ( P value < .05 in gait parameters and vertical ground reaction forces show that gait pattern is not normalized after THR and weight-bearing is not equally shared by both hips. Patient walks with residual antalgic gait even after surgery, which results in abnormal loading around hip joints and the integrity of the prosthesis fixation could be compromised.

  18. E-commerce influence on changes in logistics processes

    Directory of Open Access Journals (Sweden)

    Jadwiga Żurek

    2015-06-01

    Full Text Available   Background: The aim of this publication is to address the changes in retail trade, which have a direct influence on the development of e-commerce which in turn causes modifications to logistics chain management strategies and methods of flow control. Materials: The article has been written on the basis of an analysis of subject literature together with determining the influence of e-commerce to changes in logistics processes. The publications included in this study have been selected in order to present the subject of e-commerce development as well as evaluate changes in methods of flow control. The analysis has been prepared based on the author's experience and available reports and publications. Results: As a result of the conducted analysis, an assessment of the proficiency level of the changes in logistics processes on the local and international market as well as of the trends for these changes has been made. Conclusions: With the development of e-commerce, a new logistics chain management strategy began to appear, which covered both the process of handling the online and offline sales channel. Therefore, it can be concluded that properly adapted flow control methods will be the means for achieving the goal. Tasks will include: streamlining flow processes, improving the efficiency of logistic processes as well as adjusting them to market requirements.    

  19. Prediction of changes in important physical parameters during composting of separated animal slurry solid fractions

    DEFF Research Database (Denmark)

    Chowdhury, Md Albarune; de Neergaard, Andreas; Jensen, Lars Stoumann

    2014-01-01

    Solid-liquid separation of animal slurry, with solid fractions used for composting, has gained interest recently. However, efficient composting of separated animal slurry solid fractions (SSFs) requires a better understanding of the process dynamics in terms of important physical parameters...... and their interacting physical relationships in the composting matrix. Here we monitored moisture content, bulk density, particle density and air-filled porosity (AFP) during composting of SSF collected from four commercially available solid-liquid separators. Composting was performed in laboratory-scale reactors...... for 30 days (d) under forced aeration and measurements were conducted on the solid samples at the beginning of composting and at 10-d intervals during composting. The results suggest that differences in initial physical properties of SSF influence the development of compost maximum temperatures (40...

  20. The changes in biochemical parameters due to wine consumption depending on gender

    Directory of Open Access Journals (Sweden)

    Martina Gažarová

    2016-10-01

    Full Text Available The aim of this study was to investigate the effect of red wine consumption on the lipid profile and glucose in the group of male (13 men aged 34 - 64 years and the group of female (11 women aged 28 - 57 years. Research consisted of moderate red wine consumption for 6 weeks. The dose of alcohol ranged from 200 to 300 mL per day of red wine Lemberger (Winery Masaryk, Slovakia. The blood samples were obtained after overnight fasting and were collected at baseline and after three days, three weeks and six weeks of wine consumption. Differences between male and female subjects were reflected in the results of different biochemical parameters in the dynamics of wine consumption. We found out that while in females the total cholesterol level did not change significantly and had a predominantly downward trend, for male subjects we observed at the beginning the slight increase of the levels, which, however, after 6 weeks of consumption significantly decreased from an initial value of 5.75 ±1.32 mmol.L-1 to 5.35 ±1.25 mmol.L-1 (p <0.05. The blood concentration of triglycerides in the dynamics of the experiment did not change significantly in either one gender, although small differences were observed, because while the female subjects had triglyceride development over consumption upward trend in male subjects it was vice versa. LDL-cholesterol changed significantly only in the group of female. Level of this lipid parameter decreased significantly during the six weeks of consumption of Lemberger from an initial value 3.37 ±0.68 mmol.L-1 to the lowest 2.99 ±0.61 mmol.L-1, which was recorded in the third week of consumption (p <0.0001, but statistically significant differences versus baseline we monitored after three days and six weeks of consumption (p <0.01. In the group of male, we did not observe such significant changes, but it should be noted, that the men had changes in LDL-cholesterol downward direction and all the values were in the range of