WorldWideScience

Sample records for change predict functional

  1. Diffusion changes predict cognitive and functional outcome

    DEFF Research Database (Denmark)

    Jokinen, Hanna; Schmidt, Reinhold; Ropele, Stefan

    2013-01-01

    A study was undertaken to determine whether diffusion-weighted imaging (DWI) abnormalities in normal-appearing brain tissue (NABT) and in white matter hyperintensities (WMH) predict longitudinal cognitive decline and disability in older individuals independently of the concomitant magnetic...... resonance imaging (MRI) findings....

  2. SIFT: predicting amino acid changes that affect protein function

    OpenAIRE

    Ng, Pauline C.; Henikoff, Steven

    2003-01-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in...

  3. SIFT: Predicting amino acid changes that affect protein function.

    Science.gov (United States)

    Ng, Pauline C; Henikoff, Steven

    2003-07-01

    Single nucleotide polymorphism (SNP) studies and random mutagenesis projects identify amino acid substitutions in protein-coding regions. Each substitution has the potential to affect protein function. SIFT (Sorting Intolerant From Tolerant) is a program that predicts whether an amino acid substitution affects protein function so that users can prioritize substitutions for further study. We have shown that SIFT can distinguish between functionally neutral and deleterious amino acid changes in mutagenesis studies and on human polymorphisms. SIFT is available at http://blocks.fhcrc.org/sift/SIFT.html.

  4. Using Prediction Markets to Generate Probability Density Functions for Climate Change Risk Assessment

    Science.gov (United States)

    Boslough, M.

    2011-12-01

    Climate-related uncertainty is traditionally presented as an error bar, but it is becoming increasingly common to express it in terms of a probability density function (PDF). PDFs are a necessary component of probabilistic risk assessments, for which simple "best estimate" values are insufficient. Many groups have generated PDFs for climate sensitivity using a variety of methods. These PDFs are broadly consistent, but vary significantly in their details. One axiom of the verification and validation community is, "codes don't make predictions, people make predictions." This is a statement of the fact that subject domain experts generate results using assumptions within a range of epistemic uncertainty and interpret them according to their expert opinion. Different experts with different methods will arrive at different PDFs. For effective decision support, a single consensus PDF would be useful. We suggest that market methods can be used to aggregate an ensemble of opinions into a single distribution that expresses the consensus. Prediction markets have been shown to be highly successful at forecasting the outcome of events ranging from elections to box office returns. In prediction markets, traders can take a position on whether some future event will or will not occur. These positions are expressed as contracts that are traded in a double-action market that aggregates price, which can be interpreted as a consensus probability that the event will take place. Since climate sensitivity cannot directly be measured, it cannot be predicted. However, the changes in global mean surface temperature are a direct consequence of climate sensitivity, changes in forcing, and internal variability. Viable prediction markets require an undisputed event outcome on a specific date. Climate-related markets exist on Intrade.com, an online trading exchange. One such contract is titled "Global Temperature Anomaly for Dec 2011 to be greater than 0.65 Degrees C." Settlement is based

  5. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti.

    Science.gov (United States)

    Williams, David G; Hultine, Kevin R; Dettman, David L

    2014-07-01

    Columnar cacti occur naturally in many habitats and environments in the Americas but are conspicuously dominant in very dry desert regions. These majestic plants are widely regarded for their cultural, economic, and ecological value and, in many ecosystems, support highly diverse communities of pollinators, seed dispersers, and frugivores. Massive amounts of water and other resources stored in the succulent photosynthetic stems of these species confer a remarkable ability to grow and reproduce during intensely hot and dry periods. Yet many columnar cacti are potentially under severe threat from environmental global changes, including climate change and loss of habitat. Stems in columnar cacti and other cylindrical-stemmed cacti are morphologically diverse; stem volume-to-surface area ratio (V:S) across these taxa varies by almost two orders of magnitude. Intrinsic functional trade-offs are examined here across a broad range of V:S in species of columnar cacti. It is proposed that variation in photosynthetic gas exchange, growth, and response to stress is highly constrained by stem V:S, establishing a mechanistic framework for understanding the sensitivity of columnar cacti to climate change and drought. Specifically, species that develop stems with low V:S, and thus have little storage capacity, are expected to express high mass specific photosynthesis and growth rates under favourable conditions compared with species with high V:S. But the trade-off of having little storage capacity is that low V:S species are likely to be less tolerant of intense or long-duration drought compared with high V:S species. The application of stable isotope measurements of cactus spines as recorders of growth, water relations, and metabolic responses to the environment across species of columnar cacti that vary in V:S is also reviewed. Taken together, our approach provides a coherent theory and required set of observations needed for predicting the responses of columnar cacti to

  6. Predictive Models for Pulmonary Function Changes After Radiotherapy for Breast Cancer and Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Nieto, Beatriz, E-mail: bsanchez@fis.puc.cl [Facultad de Fisica, Pontificia Universidad Catolica de Chile, Santiago (Chile); Goset, Karen C. [Unidad de Radioterapia, Clinica Alemana de Santiago, Santiago (Chile); Caviedes, Ivan [Servicio y Laboratorio Broncopulmonar, Clinica Alemana de Santiago, Santiago (Chile); Departamento de Medicina, Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago (Chile); Delgado, Iris O. [Instituto de Epidemiologia y Politicas de Salud Publica, Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago (Chile); Cordova, Andres [Unidad de Radioterapia, Clinica Alemana de Santiago, Santiago (Chile)

    2012-02-01

    Purpose: To propose multivariate predictive models for changes in pulmonary function tests ({Delta}PFTs) with respect to preradiotherapy (pre-RT) values in patients undergoing RT for breast cancer and lymphoma. Methods and Materials: A prospective study was designed to measure {Delta}PFTs of patients undergoing RT. Sixty-six patients were included. Spirometry, lung capacity (measured by helium dilution), and diffusing capacity of carbon monoxide tests were used to measure lung function. Two lung definitions were considered: paired lung vs. irradiated lung (IL). Correlation analysis of dosimetric parameters (mean lung dose and the percentage of lung volume receiving more than a threshold dose) and {Delta}PFTs was carried out to find the best dosimetric predictor. Chemotherapy, age, smoking, and the selected dose-volume parameter were considered as single and interaction terms in a multivariate analysis. Stability of results was checked by bootstrapping. Results: Both lung definitions proved to be similar. Modeling was carried out for IL. Acute and late damage showed the highest correlations with volumes irradiated above {approx}20 Gy (maximum R{sup 2} = 0.28) and {approx}40 Gy (maximum R{sup 2} = 0.21), respectively. RT alone induced a minor and transitory restrictive defect (p = 0.013). Doxorubicin-cyclophosphamide-paclitaxel (Taxol), when administered pre-RT, induced a late, large restrictive effect, independent of RT (p = 0.031). Bootstrap values confirmed the results. Conclusions: None of the dose-volume parameters was a perfect predictor of outcome. Thus, different predictor models for {Delta}PFTs were derived for the IL, which incorporated other nondosimetric parameters mainly through interaction terms. Late {Delta}PFTs seem to behave more serially than early ones. Large restrictive defects were demonstrated in patients pretreated with doxorubicin-cyclophosphamide-paclitaxel.

  7. Final technical report. Can microbial functional traits predict the response and resilience of decomposition to global change?

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Steven D. [Univ. of California, Irvine, CA (United States)

    2015-09-24

    The role of specific micro-organisms in the carbon cycle, and their responses to environmental change, are unknown in most ecosystems. This knowledge gap limits scientists’ ability to predict how important ecosystem processes, like soil carbon storage and loss, will change with climate and other environmental factors. The investigators addressed this knowledge gap by transplanting microbial communities from different environments into new environments and measuring the response of community composition and carbon cycling over time. Using state-of-the-art sequencing techniques, computational tools, and nanotechnology, the investigators showed that microbial communities on decomposing plant material shift dramatically with natural and experimentally-imposed drought. Microbial communities also shifted in response to added nitrogen, but the effects were smaller. These changes had implications for carbon cycling, with lower rates of carbon loss under drought conditions, and changes in the efficiency of decomposition with nitrogen addition. Even when transplanted into the same conditions, microbial communities from different environments remained distinct in composition and functioning for up to one year. Changes in functioning were related to differences in enzyme gene content across different microbial groups. Computational approaches developed for this project allowed the conclusions to be tested more broadly in other ecosystems, and new computer models will facilitate the prediction of microbial traits and functioning across environments. The data and models resulting from this project benefit the public by improving the ability to predict how microbial communities and carbon cycling functions respond to climate change, nutrient enrichment, and other large-scale environmental changes.

  8. Confirmation of linear system theory prediction: Changes in Herrnstein's k as a function of changes in reinforcer magnitude

    Science.gov (United States)

    McDowell, J. J; Wood, Helena M.

    1984-01-01

    Eight human subjects pressed a lever on a range of variable-interval schedules for 0.25¢ to 35.0¢ per reinforcement. Herrnstein's hyperbola described seven of the eight subjects' response-rate data well. For all subjects, the y-asymptote of the hyperbola increased with increasing reinforcer magnitude and its reciprocal was a linear function of the reciprocal of reinforcer magnitude. These results confirm predictions made by linear system theory; they contradict formal properties of Herrnstein's account and of six other mathematical accounts of single-alternative responding. PMID:16812366

  9. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning

    Science.gov (United States)

    Wallenstein, Matthew D.; Hall, Edward K.

    2012-01-01

    As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.

  10. Highlights, predictions, and changes.

    Science.gov (United States)

    Jeang, Kuan-Teh

    2012-11-15

    Recent literature highlights at Retrovirology are described. Predictions are made regarding "hot" retrovirology research trends for the coming year based on recent journal access statistics. Changes in Retrovirology editor and the frequency of the Retrovirology Prize are announced.

  11. Does physical activity change predict functional recovery in low back pain? Protocol for a prospective cohort study

    Directory of Open Access Journals (Sweden)

    McDonough Suzanne M

    2009-11-01

    Full Text Available Abstract Background Activity advice and prescription are commonly used in the management of low back pain (LBP. Although there is evidence for advising patients with LBP to remain active, facilitating both recovery and return to work, to date no research has assessed whether objective measurements of free living physical activity (PA can predict outcome, recovery and course of LBP. Methods An observational longitudinal study will investigate PA levels in a cohort of community-dwelling working age adults with acute and sub-acute LBP. Each participant's PA level, functional status, mood, fear avoidance behaviours, and levels of pain, psychological distress and occupational activity will be measured on three occasions during for 1 week periods at baseline, 3 months, and 1 year. Physical activity levels will be measured by self report, RT3 triaxial accelerometer, and activity recall questionnaires. The primary outcome measure of functional recovery will be the Roland Morris Disability Questionnaire (RMDQ. Free living PA levels and changes in functional status will be quantified in order to look at predictive relationships between levels and changes in free living PA and functional recovery in a LBP population. Discussion This research will investigate levels and changes in activity levels of an acute LBP cohort and the predictive relationship to LBP recovery. The results will assess whether occupational, psychological and behavioural factors affect the relationship between free living PA and LBP recovery. Results from this research will help to determine the strength of evidence supporting international guidelines that recommend restoration of normal activity in managing LBP. Trial registration [Clinical Trial Registration Number, ACTRN12609000282280

  12. Highlights, predictions, and changes

    Directory of Open Access Journals (Sweden)

    Jeang Kuan-Teh

    2012-11-01

    Full Text Available Abstract Recent literature highlights at Retrovirology are described. Predictions are made regarding “hot” retrovirology research trends for the coming year based on recent journal access statistics. Changes in Retrovirology editor and the frequency of the Retrovirology Prize are announced.

  13. Highlights, predictions, and changes

    OpenAIRE

    Jeang Kuan-Teh

    2012-01-01

    Abstract Recent literature highlights at Retrovirology are described. Predictions are made regarding “hot” retrovirology research trends for the coming year based on recent journal access statistics. Changes in Retrovirology editor and the frequency of the Retrovirology Prize are announced.

  14. Longitudinal Changes in Functional Brain Connectivity Predicts Conversion to Alzheimer's Disease.

    Science.gov (United States)

    Serra, Laura; Cercignani, Mara; Mastropasqua, Chiara; Torso, Mario; Spanò, Barbara; Makovac, Elena; Viola, Vanda; Giulietti, Giovanni; Marra, Camillo; Caltagirone, Carlo; Bozzali, Marco

    2016-01-01

    This longitudinal study investigates the modifications in structure and function occurring to typical Alzheimer's disease (AD) brains over a 2-year follow-up, from pre-dementia stages of disease, with the aim of identifying biomarkers of prognostic value. Thirty-one patients with amnestic mild cognitive impairment were recruited and followed-up with clinical, neuropsychological, and MRI assessments. Patients were retrospectively classified as AD Converters or Non-Converters, and the data compared between groups. Cross-sectional MRI data at baseline, assessing volume and functional connectivity abnormalities, confirmed previous findings, showing a more severe pattern of regional grey matter atrophy and default-mode network disconnection in Converters than in Non-Converters. Longitudinally, Converters showed more grey matter atrophy in the frontotemporal areas, accompanied by increased connectivity in the precuneus. Discriminant analysis revealed that functional connectivity of the precuneus within the default mode network at baseline is the parameter able to correctly classify patients in Converters and Non-Converters with high sensitivity, specificity, and accuracy.

  15. Confirmation of linear system theory prediction: Rate of change of Herrnstein's κ as a function of response-force requirement

    Science.gov (United States)

    McDowell, J. J; Wood, Helena M.

    1985-01-01

    Four human subjects worked on all combinations of five variable-interval schedules and five reinforcer magnitudes (¢/reinforcer) in each of two phases of the experiment. In one phase the force requirement on the operandum was low (1 or 11 N) and in the other it was high (25 or 146 N). Estimates of Herrnstein's κ were obtained at each reinforcer magnitude. The results were: (1) response rate was more sensitive to changes in reinforcement rate at the high than at the low force requirement, (2) κ increased from the beginning to the end of the magnitude range for all subjects at both force requirements, (3) the reciprocal of κ was a linear function of the reciprocal of reinforcer magnitude for seven of the eight data sets, and (4) the rate of change of κ was greater at the high than at the low force requirement by an order of magnitude or more. The second and third findings confirm predictions made by linear system theory, and replicate the results of an earlier experiment (McDowell & Wood, 1984). The fourth finding confirms a further prediction of the theory and supports the theory's interpretation of conflicting data on the constancy of Herrnstein's κ. PMID:16812408

  16. Are mean lung dose and changes in respiration during RT predictive for pulmonary function changes after RT?

    DEFF Research Database (Denmark)

    Jensen, K.; Bernchou, U.; Schytte, T.

    2015-01-01

    Purpose/Objective: Radiotherapy (RT) of lung cancer patients could be improved if patient specific dose tolerances can be estimated during the first weeks of a fractionated treatment course. Such tolerances may be estimated from the delivered dose distribution and changes in ventilation and respi......Purpose/Objective: Radiotherapy (RT) of lung cancer patients could be improved if patient specific dose tolerances can be estimated during the first weeks of a fractionated treatment course. Such tolerances may be estimated from the delivered dose distribution and changes in ventilation...... and respiration patterns extracted from frequently recorded 4DCone Beam CT. Materials and Methods: This is a study of 140 non-small-cell lung cancer (NSCLC) patients, which were treated with 60-66 Gy in 30-33 fractions. Measures of ventilation were generated by the freeware tool elastix (http...

  17. Can preoperative myocardial perfusion scintigraphy predict changes in left ventricular perfusion and function after coronary artery bypass graft surgery?

    DEFF Research Database (Denmark)

    Eckardt, Rozy; Kjeldsen, Bo Juel; Johansen, Allan;

    2012-01-01

    OBJECTIVESWe wanted to evaluate whether preoperative myocardial perfusion scintigraphy (MPS) could predict changes in cardiac symptoms and postoperative myocardial perfusion and left ventricular function after coronary artery bypass grafting (CABG).METHODSNinety-two patients with stable angina......%. Before CABG, one patient had normal perfusion; in the rest of them the defects were classified as follows: reversible (60%), partly reversible (27%) and irreversible (12%). Following CABG, 33% had normal perfusion; in the rest the defects were reversible in 29%, partly reversible in 12% and irreversible...... in 26%. Left ventricular ejection fraction (LVEF), which was normal before operation in 45%, improved in 40% of all patients. The increase in LVEF was not related to the preoperative pattern of perfusion defects. Of 30 patients with normalized perfusion after CABG, 29 (97%) had reversible defects...

  18. Pons to Posterior Cingulate Functional Projections Predict Affective Processing Changes in the Elderly Following Eight Weeks of Meditation Training.

    Science.gov (United States)

    Shao, Robin; Keuper, Kati; Geng, Xiujuan; Lee, Tatia M C

    2016-08-01

    Evidence indicates meditation facilitates affective regulation and reduces negative affect. It also influences resting-state functional connectivity between affective networks and the posterior cingulate (PCC)/precuneus, regions critically implicated in self-referential processing. However, no longitudinal study employing active control group has examined the effect of meditation training on affective processing, PCC/precuneus connectivity, and their association. Here, we report that eight-week meditation, but not relaxation, training 'neutralized' affective processing of positive and negative stimuli in healthy elderly participants. Additionally, meditation versus relaxation training increased the positive connectivity between the PCC/precuneus and the pons, the direction of which was largely directed from the pons to the PCC/precuneus, as revealed by dynamic causal modeling. Further, changes in connectivity between the PCC/precuneus and pons predicted changes in affective processing after meditation training. These findings indicate meditation promotes self-referential affective regulation based on increased regulatory influence of the pons on PCC/precuneus, which new affective-processing strategy is employed across both resting state and when evaluating affective stimuli. Such insights have clinical implications on interventions on elderly individuals with affective disorders.

  19. A new method of modelling early plasma creatinine changes predicts 1-year graft function after kidney transplantation

    DEFF Research Database (Denmark)

    Krogstrup, Nicoline V; Bibby, Bo Martin; Aulbjerg, Camilla;

    2016-01-01

    BACKGROUND: Delayed graft function after renal transplantation is associated with inferior long-term outcome. To evaluate the impact of slow onset graft function, we aimed to model and correlate early changes in plasma creatinine (p-cr) with long-term graft function. MATERIALS: In a single centre...

  20. Predicting Changes in Macrophyte Community Structure from Functional Traits in a Freshwater Lake: A Test of Maximum Entropy Model.

    Science.gov (United States)

    Fu, Hui; Zhong, Jiayou; Yuan, Guixiang; Guo, Chunjing; Lou, Qian; Zhang, Wei; Xu, Jun; Ni, Leyi; Xie, Ping; Cao, Te

    2015-01-01

    Trait-based approaches have been widely applied to investigate how community dynamics respond to environmental gradients. In this study, we applied a series of maximum entropy (maxent) models incorporating functional traits to unravel the processes governing macrophyte community structure along water depth gradient in a freshwater lake. We sampled 42 plots and 1513 individual plants, and measured 16 functional traits and abundance of 17 macrophyte species. Study results showed that maxent model can be highly robust (99.8%) in predicting the species relative abundance of macrophytes with observed community-weighted mean (CWM) traits as the constraints, while relative low (about 30%) with CWM traits fitted from water depth gradient as the constraints. The measured traits showed notably distinct importance in predicting species abundances, with lowest for perennial growth form and highest for leaf dry mass content. For tuber and leaf nitrogen content, there were significant shifts in their effects on species relative abundance from positive in shallow water to negative in deep water. This result suggests that macrophyte species with tuber organ and greater leaf nitrogen content would become more abundant in shallow water, but would become less abundant in deep water. Our study highlights how functional traits distributed across gradients provide a robust path towards predictive community ecology.

  1. Predicting protein structure classes from function predictions

    DEFF Research Database (Denmark)

    Sommer, I.; Rahnenfuhrer, J.; de Lichtenberg, Ulrik;

    2004-01-01

    We introduce a new approach to using the information contained in sequence-to-function prediction data in order to recognize protein template classes, a critical step in predicting protein structure. The data on which our method is based comprise probabilities of functional categories; for given...... query sequences these probabilities are obtained by a neural net that has previously been trained on a variety of functionally important features. On a training set of sequences we assess the relevance of individual functional categories for identifying a given structural family. Using a combination...... of the most relevant categories, the likelihood of a query sequence to belong to a specific family can be estimated. Results: The performance of the method is evaluated using cross-validation. For a fixed structural family and for every sequence, a score is calculated that measures the evidence for family...

  2. Are Some Semantic Changes Predictable?

    DEFF Research Database (Denmark)

    Schousboe, Steen

    2010-01-01

      Historical linguistics is traditionally concerned with phonology and syntax. With the exception of grammaticalization - the development of auxiliary verbs, the syntactic rather than localistic use of prepositions, etc. - semantic change has usually not been described as a result of regular deve...... developments, but only as specific meaning changes in individual words. This paper will suggest some regularities in semantic change, regularities which, like sound laws, have predictive power and can be tested against recorded languages....

  3. Myeloperoxidase levels predict executive function.

    Science.gov (United States)

    Haslacher, H; Perkmann, T; Lukas, I; Barth, A; Ponocny-Seliger, E; Michlmayr, M; Scheichenberger, V; Wagner, O; Winker, R

    2012-12-01

    The main purpose of the study was to investigate whether baseline myeloperoxidase (MPO) levels are associated with executive cognitive function in individuals with high physical activity. Baseline serum MPO levels of 56 elderly marathon runners and 58 controls were assessed by ELISA. Standardized tests were applied to survey domain-specific cognitive functions. Changes in brain morphology were visualized by magnetic resonance imaging (MRI). High baseline serum MPO levels correlated with worse outcome in tests assessing executive cognitive function in athletes but not in the control group (NAI maze test p<0.05, Trail Making Test ratio p<0.01). In control participants, subcortical white matter hyperintensities were associated with higher scores on the Geriatric Depression Scale (p<0.05), whereas athletes seem to be protected from this effect. During strenuous exercising, MPO as well as its educts may be elevated due to increased oxygen intake and excretion of pro-inflammatory mediators inducing host tissue damage via oxidative stress. This outweighs the potential benefits of physical activity on cognitive function.

  4. Scoring function to predict solubility mutagenesis

    Directory of Open Access Journals (Sweden)

    Deutsch Christopher

    2010-10-01

    Full Text Available Abstract Background Mutagenesis is commonly used to engineer proteins with desirable properties not present in the wild type (WT protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have to choose a small subset of mutations from a large number of candidates to obtain the desired change, and computational techniques are invaluable to make the choices. While several such methods have been proposed to predict stability and reactivity mutagenesis, solubility has not received much attention. Results We use concepts from computational geometry to define a three body scoring function that predicts the change in protein solubility due to mutations. The scoring function captures both sequence and structure information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-point solubility mutations. Our database is the largest such collection with structural information known so far. We optimize the scoring function using linear programming (LP methods to derive its weights based on training. Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in solubility are optimized. We compare the LP method to the standard machine learning techniques of support vector machines (SVM and the Lasso. Using statistics for leave-one-out (LOO, 10-fold, and 3-fold cross validations (CV for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the LP method has an overall accuracy of 81%. Availability Executables of programs, tables of weights, and datasets of mutants are available from the following web page: http://www.wsu.edu/~kbala/OptSolMut.html.

  5. Probabilistic Predictions of Regional Climate Change

    Science.gov (United States)

    Harris, G. R.; Sexton, D. M.; Booth, B. B.; Brown, K.; Collins, M.; Murphy, J. M.

    2009-12-01

    We present a methodology for quantifying the leading sources of uncertainty in climate change projections that allows more robust prediction of probability distribution functions (PDFs) for transient regional climate change than is possible, for example, with the multimodel ensemble in the the CMIP3 archive used for the IPCC Fourth Assessment. Uncertainty in equilibrium climate response has been systematically explored by varying uncertain parameters in the atmosphere, sea-ice and surface components in a ensemble of simulations with the third version of the Hadley Centre model coupled to a slab ocean. The ensemble is used to emulate the response for one million parameter combinations, ensuring robust prediction of the prior distributions of equilibrium response for this model. Posterior PDFs are estimated using a weighting scheme that calculates the likelihood for each model version, based upon its ability to reproduce a large set of observed seasonal-mean climate variables. Information from the CMIP3 simulations is used to assess the effect of structural uncertainty, and this is included as an additional variance in the weighting. The posterior distributions of equilibrium response are shown to be relatively robust to variation in key assumptions of the method. A time-scaling technique that maps equilibrium to transient change is then used to predict PDFs for transient regional climate change for specified emissions scenarios. The scaling uses a simple climate model (SCM), with global climate feedbacks and local response sampled from the equilibrium response, and other SCM parameters tuned to the response of other AOGCM ensembles. Use of the SCM allows efficient sampling of uncertainties not fully sampled by expensive GCM simulation, including uncertainty in aerosol radiative forcing, the rate of ocean heat uptake, and the strength of carbon-cycle feedbacks. Uncertainties arising from statistical components of the method, such as emulation or scaling, are

  6. Predicting Change in Adolescent Adjustment from Change in Marital Problems

    Science.gov (United States)

    Cui, Ming; Conger, Rand D.; Lorenz, Frederick O.

    2005-01-01

    The present prospective, longitudinal study of 451 adolescents and their parents extends earlier research by investigating whether change in marital problems predicts change in adolescent adjustment, after controlling for other marital problems and socioeconomic status. Latent growth curves over a period of 5 years were used, and the results…

  7. Holographic predictions for cosmological 3-point functions

    NARCIS (Netherlands)

    Bzowski, A.; McFadden, P.; Skenderis, K.

    2012-01-01

    We present the holographic predictions for cosmological 3-point correlators, involving both scalar and tensor modes, for a universe which started in a non-geometric holographic phase. Holographic formulae relate the cosmological 3-point functions to stress tensor correlation functions of a holograph

  8. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    Directory of Open Access Journals (Sweden)

    Shangkun Deng

    2014-01-01

    Full Text Available Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL and genetic algorithm (GA. MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  9. Year 2 Report: Protein Function Prediction Platform

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fully automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.

  10. Sivers function: SIDIS data, fits and predictions

    CERN Document Server

    Anselmino, M; D'Alesio, U; Kotzinian, A; Murgia, F; Prokudin, A

    2005-01-01

    The most recent data on the weighted transverse single spin asymmetry A_{UT}^{\\sin(\\phi_h-\\phi_S)} from HERMES and COMPASS collaborations are analysed within LO parton model; all transverse motions are taken into account. Extraction of the Sivers function for u and d quarks is performed. Based on the extracted Sivers functions, predictions for A_{UT}^{\\sin(\\phi_h-\\phi_S)} asymmetries at JLab are given; suggestions for further measurements at COMPASS, with a transversely polarized hydrogen target and selecting favourable kinematical ranges, are discussed. Predictions are also presented for Single Spin Asymmetries (SSA) in Drell-Yan processes at RHIC and GSI.

  11. PREDICTION OF YIELD FUNCTIONS ON BCC POLYCRYSTALS

    Institute of Scientific and Technical Information of China (English)

    Huang Mojia; Fu Mingfu; Zheng Chaomei

    2006-01-01

    By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill's criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs' model, where the volume average of the yield functions of all BCC crystallites in Ω is taken as the macroscopic yield function of the BCC polycrystal. In constructing the formula, we try to find the relationship among the macroscopic yield function, the orientation distribution function (ODF), and the single BCC crystal's plasticity. An expression for the yield stress of a uniaxial tensile problem is derived under Taylor's model in order to compare the expression with that of the macroscopic yield function.

  12. Predicting coastal morphological changes with empirical orthogonal functionmethod

    Directory of Open Access Journals (Sweden)

    Fernando Alvarez

    2016-01-01

    Full Text Available In order to improve the accuracy of prediction when using the empirical orthogonal function (EOF method, this paper describes a novel approach for two-dimensional (2D EOF analysis based on extrapolating both the spatial and temporal EOF components for long-term prediction of coastal morphological changes. The approach was investigated with data obtained from a process-based numerical model, COAST2D, which was applied to an idealized study site with a group of shore-parallel breakwaters. The progressive behavior of the spatial and temporal EOF components, related to bathymetric changes over a training period, was demonstrated, and EOF components were extrapolated with combined linear and exponential functions for long-term prediction. The extrapolated EOF components were then used to reconstruct bathymetric changes. The comparison of the reconstructed bathymetric changes with the modeled results from the COAST2D model illustrates that the presented approach can be effective for long-term prediction of coastal morphological changes, and extrapolating both the spatial and temporal EOF components yields better results than extrapolating only the temporal EOF component.

  13. Global perceived stress predicts cognitive change among older adults.

    Science.gov (United States)

    Munoz, Elizabeth; Sliwinski, Martin J; Scott, Stacey B; Hofer, Scott

    2015-09-01

    Research on stress and cognitive aging has primarily focused on examining the effects of biological and psychosocial indicators of stress, with little attention provided to examining the association between perceived stress and cognitive aging. We examined the longitudinal association between global perceived stress (GPS) and cognitive change among 116 older adults (M(age) = 80, SD = 6.40, range = 67-96) in a repeated measurement burst design. Bursts of 6 daily cognitive assessments were repeated every 6 months over a 2-year period, with self-reported GPS assessed at the start of every burst. Using a double-exponential learning model, 2 parameters were estimated: (a) asymptotic level (peak performance), and (b) asymptotic change (the rate at which peak performance changed across bursts). We hypothesized that greater GPS would predict slowed performance in tasks of attention, working memory, and speed of processing and that increases in GPS across time would predict cognitive slowing. Results from latent growth curve analyses were consistent with our first hypothesis and indicated that level of GPS predicted cognitive slowing across time. Changes in GPS did not predict cognitive slowing. This study extends previous findings by demonstrating a prospective association between level of GPS and cognitive slowing across a 2-year period, highlighting the role of psychological stress as a risk factor for poor cognitive function.

  14. Predicting Contextual Sequences via Submodular Function Maximization

    CERN Document Server

    Dey, Debadeepta; Hebert, Martial; Bagnell, J Andrew

    2012-01-01

    Sequence optimization, where the items in a list are ordered to maximize some reward has many applications such as web advertisement placement, search, and control libraries in robotics. Previous work in sequence optimization produces a static ordering that does not take any features of the item or context of the problem into account. In this work, we propose a general approach to order the items within the sequence based on the context (e.g., perceptual information, environment description, and goals). We take a simple, efficient, reduction-based approach where the choice and order of the items is established by repeatedly learning simple classifiers or regressors for each "slot" in the sequence. Our approach leverages recent work on submodular function maximization to provide a formal regret reduction from submodular sequence optimization to simple cost-sensitive prediction. We apply our contextual sequence prediction algorithm to optimize control libraries and demonstrate results on two robotics problems: ...

  15. Linear Prediction Using Refined Autocorrelation Function

    Directory of Open Access Journals (Sweden)

    M. Shahidur Rahman

    2007-07-01

    Full Text Available This paper proposes a new technique for improving the performance of linear prediction analysis by utilizing a refined version of the autocorrelation function. Problems in analyzing voiced speech using linear prediction occur often due to the harmonic structure of the excitation source, which causes the autocorrelation function to be an aliased version of that of the vocal tract impulse response. To estimate the vocal tract characteristics accurately, however, the effect of aliasing must be eliminated. In this paper, we employ homomorphic deconvolution technique in the autocorrelation domain to eliminate the aliasing effect occurred due to periodicity. The resulted autocorrelation function of the vocal tract impulse response is found to produce significant improvement in estimating formant frequencies. The accuracy of formant estimation is verified on synthetic vowels for a wide range of pitch frequencies typical for male and female speakers. The validity of the proposed method is also illustrated by inspecting the spectral envelopes of natural speech spoken by high-pitched female speaker. The synthesis filter obtained by the current method is guaranteed to be stable, which makes the method superior to many of its alternatives.

  16. Predicting functional recovery after acute ankle sprain.

    Directory of Open Access Journals (Sweden)

    Sean R O'Connor

    Full Text Available INTRODUCTION: Ankle sprains are among the most common acute musculoskeletal conditions presenting to primary care. Their clinical course is variable but there are limited recommendations on prognostic factors. Our primary aim was to identify clinical predictors of short and medium term functional recovery after ankle sprain. METHODS: A secondary analysis of data from adult participants (N = 85 with an acute ankle sprain, enrolled in a randomized controlled trial was undertaken. The predictive value of variables (age, BMI, gender, injury mechanism, previous injury, weight-bearing status, medial joint line pain, pain during weight-bearing dorsiflexion and lateral hop test recorded at baseline and at 4 weeks post injury were investigated for their prognostic ability. Recovery was determined from measures of subjective ankle function at short (4 weeks and medium term (4 months follow ups. Multivariate stepwise linear regression analyses were undertaken to evaluate the association between the aforementioned variables and functional recovery. RESULTS: Greater age, greater injury grade and weight-bearing status at baseline were associated with lower function at 4 weeks post injury (p<0.01; adjusted R square=0.34. Greater age, weight-bearing status at baseline and non-inversion injury mechanisms were associated with lower function at 4 months (p<0.01; adjusted R square=0.20. Pain on medial palpation and pain on dorsiflexion at 4 weeks were the most valuable prognostic indicators of function at 4 months (p< 0.01; adjusted R square=0.49. CONCLUSION: The results of the present study provide further evidence that ankle sprains have a variable clinical course. Age, injury grade, mechanism and weight-bearing status at baseline provide some prognostic information for short and medium term recovery. Clinical assessment variables at 4 weeks were the strongest predictors of recovery, explaining 50% of the variance in ankle function at 4 months. Further

  17. Predicting cognitive function from clinical measures of physical function and health status in older adults.

    Directory of Open Access Journals (Sweden)

    Niousha Bolandzadeh

    Full Text Available Current research suggests that the neuropathology of dementia-including brain changes leading to memory impairment and cognitive decline-is evident years before the onset of this disease. Older adults with cognitive decline have reduced functional independence and quality of life, and are at greater risk for developing dementia. Therefore, identifying biomarkers that can be easily assessed within the clinical setting and predict cognitive decline is important. Early recognition of cognitive decline could promote timely implementation of preventive strategies.We included 89 community-dwelling adults aged 70 years and older in our study, and collected 32 measures of physical function, health status and cognitive function at baseline. We utilized an L1-L2 regularized regression model (elastic net to identify which of the 32 baseline measures were strongly predictive of cognitive function after one year. We built three linear regression models: 1 based on baseline cognitive function, 2 based on variables consistently selected in every cross-validation loop, and 3 a full model based on all the 32 variables. Each of these models was carefully tested with nested cross-validation.Our model with the six variables consistently selected in every cross-validation loop had a mean squared prediction error of 7.47. This number was smaller than that of the full model (115.33 and the model with baseline cognitive function (7.98. Our model explained 47% of the variance in cognitive function after one year.We built a parsimonious model based on a selected set of six physical function and health status measures strongly predictive of cognitive function after one year. In addition to reducing the complexity of the model without changing the model significantly, our model with the top variables improved the mean prediction error and R-squared. These six physical function and health status measures can be easily implemented in a clinical setting.

  18. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  19. HESS Opinions: Hydrologic predictions in a changing environment: behavioral modeling

    Directory of Open Access Journals (Sweden)

    S. J. Schymanski

    2011-02-01

    Full Text Available Most hydrological models are valid at most only in a few places and cannot be reasonably transferred to other places or to far distant time periods. Transfer in space is difficult because the models are conditioned on past observations at particular places to define parameter values and unobservable processes that are needed to fully characterize the structure and functioning of the landscape. Transfer in time has to deal with the likely temporal changes to both parameters and processes under future changed conditions. This remains an important obstacle to addressing some of the most urgent prediction questions in hydrology, such as prediction in ungauged basins and prediction under global change. In this paper, we propose a new approach to catchment hydrological modeling, based on universal principles that do not change in time and that remain valid across many places. The key to this framework, which we call behavioral modeling, is to assume that there are universal and time-invariant organizing principles that can be used to identify the most appropriate model structure (including parameter values and responses for a given ecosystem at a given moment in time. These organizing principles may be derived from fundamental physical or biological laws, or from empirical laws that have been demonstrated to be time-invariant and to hold at many places and scales. Much fundamental research remains to be undertaken to help discover these organizing principles on the basis of exploration of observed patterns of landscape structure and hydrological behavior and their interpretation as legacy effects of past co-evolution of climate, soils, topography, vegetation and humans. Our hope is that the new behavioral modeling framework will be a step forward towards a new vision for hydrology where models are capable of more confidently predicting the behavior of catchments beyond what has been observed or experienced before.

  20. Hydrologic predictions in a changing environment: behavioral modeling

    Directory of Open Access Journals (Sweden)

    B. Schaefli

    2010-10-01

    Full Text Available Most hydrological models are valid at most only in a few places and cannot be reasonably transferred to other places or to far distant time periods. Transfer in space is difficult because the models are conditioned on past observations at particular places to define parameter values and unobservable processes that are needed to fully characterize the structure and functioning of the landscape. Transfer in time has to deal with the likely temporal changes to both parameters and processes under future changed conditions. This remains an important obstacle to addressing some of the most urgent prediction questions in hydrology, such as prediction in ungauged basins and prediction under global change. In this paper, we propose a new approach to catchment hydrological modeling, based on universal principles that do not change in time and that remain valid across many places. The key to this framework, which we call behavioral modeling, is to assume that these universal and time-invariant organizing principles can be used to identify the most appropriate model structure (including parameter values and responses for a given ecosystem at a given moment in time. The organizing principles may be derived from fundamental physical or biological laws, or from empirical laws that have been demonstrated to be time-invariant and to hold at many places and scales. Much fundamental research remains to be undertaken to help discover these organizing principles on the basis of exploration of observed patterns of landscape structure and hydrological behavior and their interpretation as legacy effects of past co-evolution of climate, soils, topography, vegetation and humans. Our hope is that the new behavioral modeling framework will be a step forward towards a new vision for hydrology where models are capable of more confidently predicting the behavior of catchments beyond what has been observed or experienced before.

  1. Executive function performance and change in aging is predicted by apolipoprotein E, intensified by catechol-O-methyltransferase and brain-derived neurotrophic factor, and moderated by age and lifestyle.

    Science.gov (United States)

    Sapkota, Shraddha; Bäckman, Lars; Dixon, Roger A

    2017-01-03

    Recent studies have reported several genetic, health, and aging interaction effects in predicting cognitive performance and change. We used an accelerated longitudinal design to examine interactions among genetic, lifestyle, and aging for executive function (EF) in non-demented older adults (n = 634; age range = 53-95 years). The polymorphisms were apolipoprotein E (APOE), catechol-O-methyltransferase (COMT), and brain-derived neurotrophic factor (BDNF). We tested (1) independent and additive effects of APOE, COMT, and BDNF and (2) APOE effect modification for COMT + BDNF, on EF performance and 9-year change as separated by age and lifestyle activities. First, APOE ε4+ carriers had poorer EF performance and steeper 9-year decline. Second, APOE ε4+ carriers with (1) BDNF Met/Met genotype and (2) increasing allelic risk in the COMT + BDNF risk panel had poorer EF performance; these effects were moderated by lifestyle activities (composite of everyday social, physical, and cognitive activities). Examining APOE effect modification for COMT + BDNF risk panel effects with other moderating factors may help identify complex neurobiological and genetic underpinnings of polygenic phenotypes such as EF in aging.

  2. The predictability of molecular evolution during functional innovation.

    Science.gov (United States)

    Blank, Diana; Wolf, Luise; Ackermann, Martin; Silander, Olin K

    2014-02-25

    Determining the molecular changes that give rise to functional innovations is a major unresolved problem in biology. The paucity of examples has served as a significant hindrance in furthering our understanding of this process. Here we used experimental evolution with the bacterium Escherichia coli to quantify the molecular changes underlying functional innovation in 68 independent instances ranging over 22 different metabolic functions. Using whole-genome sequencing, we show that the relative contribution of regulatory and structural mutations depends on the cellular context of the metabolic function. In addition, we find that regulatory mutations affect genes that act in pathways relevant to the novel function, whereas structural mutations affect genes that act in unrelated pathways. Finally, we use population genetic modeling to show that the relative contributions of regulatory and structural mutations during functional innovation may be affected by population size. These results provide a predictive framework for the molecular basis of evolutionary innovation, which is essential for anticipating future evolutionary trajectories in the face of rapid environmental change.

  3. Developmental Changes in Executive Functioning

    Science.gov (United States)

    Lee, Kerry; Bull, Rebecca; Ho, Ringo M. H.

    2013-01-01

    Although early studies of executive functioning in children supported Miyake et al.'s (2000) three-factor model, more recent findings supported a variety of undifferentiated or two-factor structures. Using a cohort-sequential design, this study examined whether there were age-related differences in the structure of executive functioning among…

  4. Spinal meningiomas: clinicoradiological factors predicting recurrence and functional outcome.

    Science.gov (United States)

    Maiti, Tanmoy K; Bir, Shyamal C; Patra, Devi Prasad; Kalakoti, Piyush; Guthikonda, Bharat; Nanda, Anil

    2016-08-01

    OBJECTIVE Spinal meningiomas are benign tumors with a wide spectrum of clinical and radiological features at presentation. The authors analyzed multiple clinicoradiological factors to predict recurrence and functional outcome in a cohort with a mean follow-up of more than 4 years. The authors also discuss the results of clinical studies regarding spinal meningiomas in the last 15 years. METHODS The authors retrospectively reviewed the clinical and radiological details of patients who underwent surgery for spinal tumors between 2001 and 2015 that were histopathologically confirmed as meningiomas. Demographic parameters, such as age, sex, race, and association with neurofibromatosis Type 2, were considered. Radiological parameters, such as tumor size, signal changes of spinal cord, spinal level, number of levels, location of tumor attachment, shape of tumor, and presence of dural tail/calcification, were noted. These factors were analyzed to predict recurrence and functional outcome. Furthermore, a pooled analysis was performed from 13 reports of spinal meningiomas in the last 15 years. RESULTS A total of 38 patients were included in this study. Male sex and tumors with radiological evidence of a dural tail were associated with an increased risk of recurrence at a mean follow-up of 51.2 months. Ventral or ventrolateral location, large tumors, T2 cord signal changes, and poor preoperative functional status were associated with poor functional outcome at 1-year follow-up. CONCLUSIONS Spine surgeons must be aware of the natural history and risk factors of spinal meningiomas to establish a prognosis for their patients.

  5. Predicting restoration of kidney function during CRRT-free intervals

    Directory of Open Access Journals (Sweden)

    Heise Daniel

    2012-01-01

    Full Text Available Abstract Background Renal failure is common in critically ill patients and frequently requires continuous renal replacement therapy (CRRT. CRRT is discontinued at regular intervals for routine changes of the disposable equipment or for replacing clogged filter membrane assemblies. The present study was conducted to determine if the necessity to continue CRRT could be predicted during the CRRT-free period. Materials and methods In the period from 2003 to 2006, 605 patients were treated with CRRT in our ICU. A total of 222 patients with 448 CRRT-free intervals had complete data sets and were used for analysis. Of the total CRRT-free periods, 225 served as an evaluation group. Twenty-nine parameters with an assumed influence on kidney function were analyzed with regard to their potential to predict the restoration of kidney function during the CRRT-free interval. Using univariate analysis and logistic regression, a prospective index was developed and validated in the remaining 223 CRRT-free periods to establish its prognostic strength. Results Only three parameters showed an independent influence on the restoration of kidney function during CRRT-free intervals: the number of previous CRRT cycles (medians in the two outcome groups: 1 vs. 2, the "Sequential Organ Failure Assessment"-score (means in the two outcome groups: 8.3 vs. 9.2 and urinary output after the cessation of CRRT (medians in two outcome groups: 66 ml/h vs. 10 ml/h. The prognostic index, which was calculated from these three variables, showed a satisfactory potential to predict the kidney function during the CRRT-free intervals; Receiver operating characteristic (ROC analysis revealed an area under the curve of 0.798. Conclusion Restoration of kidney function during CRRT-free periods can be predicted with an index calculated from three variables. Prospective trials in other hospitals must clarify whether our results are generally transferable to other patient populations.

  6. Prediction of the residual strength of clay using functional networks

    Institute of Scientific and Technical Information of China (English)

    S.Z. Khan; Shakti Suman; M. Pavani; S.K. Das

    2016-01-01

    Landslides are common natural hazards occurring in most parts of the world and have considerable adverse economic effects. Residual shear strength of clay is one of the most important factors in the determination of stability of slopes or landslides. This effect is more pronounced in sensitive clays which show large changes in shear strength from peak to residual states. This study analyses the prediction of the residual strength of clay based on a new prediction model, functional networks (FN) using data available in the literature. The performance of FN was compared with support vector machine (SVM) and artificial neural network (ANN) based on statistical parameters like correlation coefficient (R), Nash–Sutcliff coefficient of efficiency (E), absolute average error (AAE), maximum average error (MAE) and root mean square error (RMSE). Based on R and E parameters, FN is found to be a better prediction tool than ANN for the given data. However, the R and E values for FN are less than SVM. A prediction equation is presented that can be used by practicing geotechnical engineers. A sensitivity analysis is carried out to ascertain the importance of various inputs in the prediction of the output.

  7. Prediction technologies for assessment of climate change impacts

    Science.gov (United States)

    Temperatures, precipitation, and weather patterns are changing, in response to increasing carbon dioxide in the atmosphere. With these relatively rapid changes, existing soil erosion prediction technologies that rely upon climate stationarity are potentially becoming less reliable. This is especiall...

  8. Text mining improves prediction of protein functional sites.

    Science.gov (United States)

    Verspoor, Karin M; Cohn, Judith D; Ravikumar, Komandur E; Wall, Michael E

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  9. Text mining improves prediction of protein functional sites.

    Directory of Open Access Journals (Sweden)

    Karin M Verspoor

    Full Text Available We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites. The structure analysis was carried out using Dynamics Perturbation Analysis (DPA, which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  10. A Prediction Model of the Capillary Pressure J-Function

    Science.gov (United States)

    Xu, W. S.; Luo, P. Y.; Sun, L.; Lin, N.

    2016-01-01

    The capillary pressure J-function is a dimensionless measure of the capillary pressure of a fluid in a porous medium. The function was derived based on a capillary bundle model. However, the dependence of the J-function on the saturation Sw is not well understood. A prediction model for it is presented based on capillary pressure model, and the J-function prediction model is a power function instead of an exponential or polynomial function. Relative permeability is calculated with the J-function prediction model, resulting in an easier calculation and results that are more representative. PMID:27603701

  11. Predicting the persistence of coastal wetlands to global change stressors

    Science.gov (United States)

    Guntenspergen, G.; McKee, K.; Cahoon, D.; Grace, J.; Megonigal, P.

    2006-01-01

    Despite progress toward understanding the response of coastal wetlands to increases in relative sea-level rise and an improved understanding of the effect of elevated CO2 on plant species allocation patterns, we are limited in our ability to predict the response of coastal wetlands to the effects associated with global change. Static simulations of the response of coastal wetlands to sea-level rise using LIDAR and GIS lack the biological and physical feedback mechanisms present in such systems. Evidence from current research suggests that biotic processes are likely to have a major influence on marsh vulnerability to future accelerated rates of sea-level rise and the influence of biotic processes likely varies depending on hydrogeomorphic setting and external stressors. We have initiated a new research approach using a series of controlled mesocosm and field experiments, landscape scale studies, a comparative network of brackish coastal wetland monitoring sites and a suite of predictive models that address critical questions regarding the vulnerability of coastal brackish wetland systems to global change. Specifically, this research project evaluates the interaction of sea level rise and elevated CO2 concentrations with flooding, nutrient enrichment and disturbance effects. The study is organized in a hierarchical structure that links mesocosm, field, landscape and biogeographic levels so as to provide important new information that recognizes that coastal wetland systems respond to multiple interacting drivers and feedback effects controlling wetland surface elevation, habitat stability and ecosystem function. We also present a new statistical modelling technique (Structural Equation Modelling) that synthesizes and integrates our environmental and biotic measures in a predictive framework that forecasts ecosystem change and informs managers to consider adaptive shifts in strategies for the sustainable management of coastal wetlands.

  12. Predicting the Expected Rate of Change

    Institute of Scientific and Technical Information of China (English)

    吴梦想

    2016-01-01

    Since December 2013,Ebola outbreak in west Africa again, and the year's disease was the most serious Ebola serious, which arouse the global attention. We are consider that among the countries where outbreak Ebola disease, Nigeria has the most serious problem. So we choose Nigeria as our object, establish differential equation and take the initial value to calculate, expecting rate of change in the number of Ebola infections for the country from 2006 to 2015, in the absence of any additional drugs. Clearly giving the inspecting time, we can get the change of the number of healthy people and the patients.

  13. Fast dynamics perturbation analysis for prediction of protein functional sites

    Directory of Open Access Journals (Sweden)

    Cohn Judith D

    2008-01-01

    Full Text Available Abstract Background We present a fast version of the dynamics perturbation analysis (DPA algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites. Results The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis.

  14. Platelet serotonin transporter function predicts default-mode network activity.

    Directory of Open Access Journals (Sweden)

    Christian Scharinger

    Full Text Available The serotonin transporter (5-HTT is abundantly expressed in humans by the serotonin transporter gene SLC6A4 and removes serotonin (5-HT from extracellular space. A blood-brain relationship between platelet and synaptosomal 5-HT reuptake has been suggested, but it is unknown today, if platelet 5-HT uptake can predict neural activation of human brain networks that are known to be under serotonergic influence.A functional magnetic resonance study was performed in 48 healthy subjects and maximal 5-HT uptake velocity (Vmax was assessed in blood platelets. We used a mixed-effects multilevel analysis technique (MEMA to test for linear relationships between whole-brain, blood-oxygen-level dependent (BOLD activity and platelet Vmax.The present study demonstrates that increases in platelet Vmax significantly predict default-mode network (DMN suppression in healthy subjects independent of genetic variation within SLC6A4. Furthermore, functional connectivity analyses indicate that platelet Vmax is related to global DMN activation and not intrinsic DMN connectivity.This study provides evidence that platelet Vmax predicts global DMN activation changes in healthy subjects. Given previous reports on platelet-synaptosomal Vmax coupling, results further suggest an important role of neuronal 5-HT reuptake in DMN regulation.

  15. Changes of cognitive function and their predictive value to different subtypes of mild cognitive impairment among the elderly%老年人认知功能对不同亚型MCI预测作用

    Institute of Scientific and Technical Information of China (English)

    蒋芝月; 黄文湧; 杨敬源; 杨星; 汪俊华; 邓厚才

    2013-01-01

    目的 了解老年人认知功能领域在轻度认知功能损害(mild cognitive impairment,MCI)发生过程中的变化特点,探索不同认知功能领域对不同亚型MCI的预测价值.方法 于2008年7-10月对2004-2005年在贵州省贵阳市城区采用分层整群抽样方法抽取的26个社区居委会的2 197名≥60岁认知正常老年人进行随访调查,按照随访结局分为正常对照组及不同亚型MCI组,分析认知功能领域在MCI发生过程中的变化特点及不同认知领域对不同亚型MCI发生的预测作用.结果 本次调查完成随访者1 409人,随访率为64.13%;其中认知正常者1 279人,遗忘型轻度认知功能损害(aMCI)72例,非遗忘型轻度认知功能损害(naMCI) 34例,痴呆24例;aMCI组老年人基线语言词汇运用力得分为(3.65±0.56)分,低于正常对照组老年人的(3.78±0.46)分(t=-2.196,P =0.022);naMCI组老年人基线记忆力、计算力、视空间能力和总体认知功能得分分别为(7.97±1.66)、(3.15±1.46)、(0.41±0.49)和(25.32±2.67)分,均低于正常对照组老年人的(9.08±1.89)、(4.01 ±1.39)、(0.71±0.45)和(27.21±2.65)分(P<0.05);aMCI组老年人记忆力、计算力、视空间能力和总体认知功能得分分别下降(3.33±2.17)、(2.26±1.56)、(0.27±0.63)和(3.97±2.98)分,naMCI组老年人定向力、语言词汇运用力、语言词汇理解力和总体认知功能得分分别下降(1.59±1.81)、(0.41±0.70)、(0.62±1.18)和(3.82±2.61)分,与正常对照组老年人比较,差异均有统计学意义(P<0.05);在控制年龄、文化程度、职业后,记忆力和语言词汇运用力对aMCI组老年人的发生有预测意义(P=0.000);计算力和视空间能力对naMCI的发生有意义(P<0.05).结论 不同亚型MCI老年人认知功能领域变化不同,对早期区别不同亚型MCI有预测作用.%Objective To study the changes and determinants of cognitive function and to explore its predictive value to different

  16. Functional brain network efficiency predicts intelligence.

    Science.gov (United States)

    Langer, Nicolas; Pedroni, Andreas; Gianotti, Lorena R R; Hänggi, Jürgen; Knoch, Daria; Jäncke, Lutz

    2012-06-01

    The neuronal causes of individual differences in mental abilities such as intelligence are complex and profoundly important. Understanding these abilities has the potential to facilitate their enhancement. The purpose of this study was to identify the functional brain network characteristics and their relation to psychometric intelligence. In particular, we examined whether the functional network exhibits efficient small-world network attributes (high clustering and short path length) and whether these small-world network parameters are associated with intellectual performance. High-density resting state electroencephalography (EEG) was recorded in 74 healthy subjects to analyze graph-theoretical functional network characteristics at an intracortical level. Ravens advanced progressive matrices were used to assess intelligence. We found that the clustering coefficient and path length of the functional network are strongly related to intelligence. Thus, the more intelligent the subjects are the more the functional brain network resembles a small-world network. We further identified the parietal cortex as a main hub of this resting state network as indicated by increased degree centrality that is associated with higher intelligence. Taken together, this is the first study that substantiates the neural efficiency hypothesis as well as the Parieto-Frontal Integration Theory (P-FIT) of intelligence in the context of functional brain network characteristics. These theories are currently the most established intelligence theories in neuroscience. Our findings revealed robust evidence of an efficiently organized resting state functional brain network for highly productive cognitions.

  17. Model of local temperature changes in brain upon functional activation.

    Science.gov (United States)

    Collins, Christopher M; Smith, Michael B; Turner, Robert

    2004-12-01

    Experimental results for changes in brain temperature during functional activation show large variations. It is, therefore, desirable to develop a careful numerical model for such changes. Here, a three-dimensional model of temperature in the human head using the bioheat equation, which includes effects of metabolism, perfusion, and thermal conduction, is employed to examine potential temperature changes due to functional activation in brain. It is found that, depending on location in brain and corresponding baseline temperature relative to blood temperature, temperature may increase or decrease on activation and concomitant increases in perfusion and rate of metabolism. Changes in perfusion are generally seen to have a greater effect on temperature than are changes in metabolism, and hence active brain is predicted to approach blood temperature from its initial temperature. All calculated changes in temperature for reasonable physiological parameters have magnitudes <0.12 degrees C and are well within the range reported in recent experimental studies involving human subjects.

  18. Early executive function predicts reasoning development.

    Science.gov (United States)

    Richland, Lindsey E; Burchinal, Margaret R

    2013-01-01

    Analogical reasoning is a core cognitive skill that distinguishes humans from all other species and contributes to general fluid intelligence, creativity, and adaptive learning capacities. Yet its origins are not well understood. In the study reported here, we analyzed large-scale longitudinal data from the Study of Early Child Care and Youth Development to test predictors of growth in analogical-reasoning skill from third grade to adolescence. Our results suggest an integrative resolution to the theoretical debate regarding contributory factors arising from smaller-scale, cross-sectional experiments on analogy development. Children with greater executive-function skills (both composite and inhibitory control) and vocabulary knowledge in early elementary school displayed higher scores on a verbal analogies task at age 15 years, even after adjusting for key covariates. We posit that knowledge is a prerequisite to analogy performance, but strong executive-functioning resources during early childhood are related to long-term gains in fundamental reasoning skills.

  19. Probabilistic protein function prediction from heterogeneous genome-wide data.

    Directory of Open Access Journals (Sweden)

    Naoki Nariai

    Full Text Available Dramatic improvements in high throughput sequencing technologies have led to a staggering growth in the number of predicted genes. However, a large fraction of these newly discovered genes do not have a functional assignment. Fortunately, a variety of novel high-throughput genome-wide functional screening technologies provide important clues that shed light on gene function. The integration of heterogeneous data to predict protein function has been shown to improve the accuracy of automated gene annotation systems. In this paper, we propose and evaluate a probabilistic approach for protein function prediction that integrates protein-protein interaction (PPI data, gene expression data, protein motif information, mutant phenotype data, and protein localization data. First, functional linkage graphs are constructed from PPI data and gene expression data, in which an edge between nodes (proteins represents evidence for functional similarity. The assumption here is that graph neighbors are more likely to share protein function, compared to proteins that are not neighbors. The functional linkage graph model is then used in concert with protein domain, mutant phenotype and protein localization data to produce a functional prediction. Our method is applied to the functional prediction of Saccharomyces cerevisiae genes, using Gene Ontology (GO terms as the basis of our annotation. In a cross validation study we show that the integrated model increases recall by 18%, compared to using PPI data alone at the 50% precision. We also show that the integrated predictor is significantly better than each individual predictor. However, the observed improvement vs. PPI depends on both the new source of data and the functional category to be predicted. Surprisingly, in some contexts integration hurts overall prediction accuracy. Lastly, we provide a comprehensive assignment of putative GO terms to 463 proteins that currently have no assigned function.

  20. Initialized near-term regional climate change prediction.

    Science.gov (United States)

    Doblas-Reyes, F J; Andreu-Burillo, I; Chikamoto, Y; García-Serrano, J; Guemas, V; Kimoto, M; Mochizuki, T; Rodrigues, L R L; van Oldenborgh, G J

    2013-01-01

    Climate models are seen by many to be unverifiable. However, near-term climate predictions up to 10 years into the future carried out recently with these models can be rigorously verified against observations. Near-term climate prediction is a new information tool for the climate adaptation and service communities, which often make decisions on near-term time scales, and for which the most basic information is unfortunately very scarce. The Fifth Coupled Model Intercomparison Project set of co-ordinated climate-model experiments includes a set of near-term predictions in which several modelling groups participated and whose forecast quality we illustrate here. We show that climate forecast systems have skill in predicting the Earth's temperature at regional scales over the past 50 years and illustrate the trustworthiness of their predictions. Most of the skill can be attributed to changes in atmospheric composition, but also partly to the initialization of the predictions.

  1. Supporting change processes in design: Complexity, prediction and reliability

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Claudia M. [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: cme26@cam.ac.uk; Keller, Rene [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: rk313@cam.ac.uk; Earl, Chris [Open University, Department of Design and Innovation, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)]. E-mail: C.F.Earl@open.ac.uk; Clarkson, P. John [Engineering Design Centre, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)]. E-mail: pjc10@cam.ac.uk

    2006-12-15

    Change to existing products is fundamental to design processes. New products are often designed through change or modification to existing products. Specific parts or subsystems are changed to similar ones whilst others are directly reused. Design by modification applies particularly to safety critical products where the reuse of existing working parts and subsystems can reduce cost and risk. However change is rarely a matter of just reusing or modifying parts. Changing one part can propagate through the entire design leading to costly rework or jeopardising the integrity of the whole product. This paper characterises product change based on studies in the aerospace and automotive industry and introduces tools to aid designers in understanding the potential effects of change. Two ways of supporting designers are described: probabilistic prediction of the effects of change and visualisation of change propagation through product connectivities. Change propagation has uncertainties which are amplified by the choices designers make in practice as they implement change. Change prediction and visualisation is discussed with reference to complexity in three areas of product development: the structural backcloth of connectivities in the existing product (and its processes), the descriptions of the product used in design and the actions taken to carry out changes.

  2. Climate modelling, uncertainty and responses to predictions of change

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A. [Climatic Impacts Centre, Macquarie University, Sydney (Australia)

    1996-12-31

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can`t yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.

  3. Dopamine neurons share common response function for reward prediction error.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  4. Prediction-based estimating functions: Review and new developments

    DEFF Research Database (Denmark)

    Sørensen, Michael

    2011-01-01

    The general theory of prediction-based estimating functions for stochastic process models is reviewed and extended. Particular attention is given to optimal estimation, asymptotic theory and Gaussian processes. Several examples of applications are presented. In particular, partial observation...

  5. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    OpenAIRE

    Arvind Kumar Tiwari; Rajeev Srivastava

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational int...

  6. Changes in Pilot Behavior with Predictive System Status Information

    Science.gov (United States)

    Trujillo, Anna C.

    1998-01-01

    Research has shown a strong pilot preference for predictive information of aircraft system status in the flight deck. However, changes in pilot behavior associated with using this predictive information have not been ascertained. The study described here quantified these changes using three types of predictive information (none, whether a parameter was changing abnormally, and the time for a parameter to reach an alert range) and three initial time intervals until a parameter alert range was reached (ITIs) (1 minute, 5 minutes, and 15 minutes). With predictive information, subjects accomplished most of their tasks before an alert occurred. Subjects organized the time they did their tasks by locus-of-control with no predictive information and for the 1-minute ITI, and by aviatenavigate-communicate for the time for a parameter to reach an alert range and the 15-minute conditions. Overall, predictive information and the longer ITIs moved subjects to performing tasks before the alert actually occurred and had them more mission oriented as indicated by their tasks grouping of aviate-navigate-communicate.

  7. Predicting effects of environmental change on a migratory herbivore

    Science.gov (United States)

    Stillman, R A; Wood, K A; Gilkerson, Whelan; Elkinton, E; Black, J. M.; Ward, David H.; Petrie, M.

    2015-01-01

    Changes in climate, food abundance and disturbance from humans threaten the ability of species to successfully use stopover sites and migrate between non-breeding and breeding areas. To devise successful conservation strategies for migratory species we need to be able to predict how such changes will affect both individuals and populations. Such predictions should ideally be process-based, focusing on the mechanisms through which changes alter individual physiological state and behavior. In this study we use a process-based model to evaluate how Black Brant (Branta bernicla nigricans) foraging on common eelgrass (Zostera marina) at a stopover site (Humboldt Bay, USA), may be affected by changes in sea level, food abundance and disturbance. The model is individual-based, with empirically based parameters, and incorporates the immigration of birds into the site, tidal changes in availability of eelgrass, seasonal and depth-related changes in eelgrass biomass, foraging behavior and energetics of the birds, and their mass-dependent decisions to emigrate. The model is validated by comparing predictions to observations across a range of system properties including the time birds spent foraging, probability of birds emigrating, mean stopover duration, peak bird numbers, rates of mass gain and distribution of birds within the site: all 11 predictions were within 35% of the observed value, and 8 within 20%. The model predicted that the eelgrass within the site could potentially support up to five times as many birds as currently use the site. Future predictions indicated that the rate of mass gain and mean stopover duration were relatively insensitive to sea level rise over the next 100 years, primarily because eelgrass habitat could redistribute shoreward into intertidal mudflats within the site to compensate for higher sea levels. In contrast, the rate of mass gain and mean stopover duration were sensitive to changes in total eelgrass biomass and the percentage of time

  8. Adaptive bandwidth measurements of importance functions for speech intelligibility prediction.

    Science.gov (United States)

    Whitmal, Nathaniel A; DeRoy, Kristina

    2011-12-01

    The Articulation Index (AI) and Speech Intelligibility Index (SII) predict intelligibility scores from measurements of speech and hearing parameters. One component in the prediction is the "importance function," a weighting function that characterizes contributions of particular spectral regions of speech to speech intelligibility. Previous work with SII predictions for hearing-impaired subjects suggests that prediction accuracy might improve if importance functions for individual subjects were available. Unfortunately, previous importance function measurements have required extensive intelligibility testing with groups of subjects, using speech processed by various fixed-bandwidth low-pass and high-pass filters. A more efficient approach appropriate to individual subjects is desired. The purpose of this study was to evaluate the feasibility of measuring importance functions for individual subjects with adaptive-bandwidth filters. In two experiments, ten subjects with normal-hearing listened to vowel-consonant-vowel (VCV) nonsense words processed by low-pass and high-pass filters whose bandwidths were varied adaptively to produce specified performance levels in accordance with the transformed up-down rules of Levitt [(1971). J. Acoust. Soc. Am. 49, 467-477]. Local linear psychometric functions were fit to resulting data and used to generate an importance function for VCV words. Results indicate that the adaptive method is reliable and efficient, and produces importance function data consistent with that of the corresponding AI/SII importance function.

  9. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  10. Predicting vulnerabilities of North American shorebirds to climate change.

    Science.gov (United States)

    Galbraith, Hector; DesRochers, David W; Brown, Stephen; Reed, J Michael

    2014-01-01

    Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  11. A survey of computational intelligence techniques in protein function prediction.

    Science.gov (United States)

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction.

  12. In vivo measurement of protein functional changes

    Directory of Open Access Journals (Sweden)

    Aili Wang, Zhicheng Zhang, Qinyi Zhao

    2009-01-01

    Full Text Available Conformational changes in proteins are fundamental to all biological functions. In protein science, the concept of protein flexibility is widely used to describe protein dynamics and thermodynamic properties that control protein conformational changes. In this study, we show that urea, which has strong sedative potency, can be administered to fish at high concentrations, and that protein functional changes related to anesthesia induction can be measured in vivo. Ctenopharyngodon idellus (the grass carp has two different types of N-methyl d-aspartate (NMDA receptors, urea-insensitive and urea-sensitive, which are responsible for the heat endurance of fish. The urea-sensitive NMDA receptor showed high protein flexibility, the gamma aminobutyric acid (GABA receptor showed less flexibility, and the protein that is responsible for ethanol anesthesia showed the lowest flexibility. The results suggest that an increase in protein flexibility underlies the fundamental biophysical mechanisms of volatile general anesthetics.

  13. A Unitary Executive Function Predicts Intelligence in Children

    Science.gov (United States)

    Brydges, Christopher R.; Reid, Corinne L.; Fox, Allison M.; Anderson, Mike

    2012-01-01

    Executive functions (EF) and intelligence are of critical importance to success in many everyday tasks. Working memory, or updating, which is one latent variable identified in confirmatory factor analytic models of executive functions, predicts intelligence (both fluid and crystallised) in adults, but inhibition and shifting do not (Friedman et…

  14. Climate-induced boreal forest change: Predictions versus current observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart; Stackhouse, Paul W.

    2007-04-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  15. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  16. Protein Structure and Function Prediction Using I-TASSER.

    Science.gov (United States)

    Yang, Jianyi; Zhang, Yang

    2015-12-17

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets.

  17. Prospective prediction of functional difficulties among recently separated Veterans

    Directory of Open Access Journals (Sweden)

    Gerald E. Larson, PhD

    2014-06-01

    Full Text Available Reports of functional problems are common among Veterans who served post-9/11 (more than 25% report functional difficulties in at least one domain. However, little prospective work has examined the risk and protective factors for functional difficulties among Veterans. In a sample of recently separated Marines, we used stepwise logistic and multiple regressions to identify predictors of functional impairment, including work-related problems, financial problems, unlawful behavior, activity limitations due to mental health symptoms, and perceived difficulty reintegrating into civilian life. Posttraumatic stress disorder symptoms assessed both before and after military separation significantly predicted functional difficulties across all domains except unlawful behavior. Certain outcomes, such as unlawful behavior and activity limitations due to mental health symptoms, were predicted by other or additional predictors. Although several forms of functioning were examined, the list was not exhaustive. The results highlight a number of areas where targeted interventions may facilitate the reintegration of military servicemembers into civilian life.

  18. Regime shifts limit the predictability of land-system change

    DEFF Research Database (Denmark)

    Müller, Daniel; Sun, Zhanli; Vongvisouk, Thoumthone

    2014-01-01

    (China, Laos, Vietnam and Indonesia). The results show how sudden events and gradual changes in underlying drivers caused rapid, surprising and widespread land-system changes, including shifts to different regimes in China, Vietnam and Indonesia, whereas land systems in Laos remained stable in the study...... and livelihoods. This implies that long-term initiatives such as REDD must account for the substantial uncertainties inherent in future predictions of land-system change. Learning from past regime shifts and identifying early warning signs for future regime shifts are important challenges for land-system science....

  19. Predictions of avian Plasmodium expansion under climate change

    Science.gov (United States)

    Loiseau, Claire; Harrigan, Ryan J.; Bichet, Coraline; Julliard, Romain; Garnier, Stéphane; Lendvai, Ádám Z.; Chastel, Olivier; Sorci, Gabriele

    2013-01-01

    Vector-borne diseases are particularly responsive to changing environmental conditions. Diurnal temperature variation has been identified as a particularly important factor for the development of malaria parasites within vectors. Here, we conducted a survey across France, screening populations of the house sparrow (Passer domesticus) for malaria (Plasmodium relictum). We investigated whether variation in remotely-sensed environmental variables accounted for the spatial variation observed in prevalence and parasitemia. While prevalence was highly correlated to diurnal temperature range and other measures of temperature variation, environmental conditions could not predict spatial variation in parasitemia. Based on our empirical data, we mapped malaria distribution under climate change scenarios and predicted that Plasmodium occurrence will spread to regions in northern France, and that prevalence levels are likely to increase in locations where transmission already occurs. Our findings, based on remote sensing tools coupled with empirical data suggest that climatic change will significantly alter transmission of malaria parasites. PMID:23350033

  20. Drought Predictability and Prediction in a Changing Climate: Assessing Current Predictive Knowledge and Capabilities, User Requirements and Research Priorities

    Science.gov (United States)

    Schubert, Siegfried

    2011-01-01

    Drought is fundamentally the result of an extended period of reduced precipitation lasting anywhere from a few weeks to decades and even longer. As such, addressing drought predictability and prediction in a changing climate requires foremost that we make progress on the ability to predict precipitation anomalies on subseasonal and longer time scales. From the perspective of the users of drought forecasts and information, drought is however most directly viewed through its impacts (e.g., on soil moisture, streamflow, crop yields). As such, the question of the predictability of drought must extend to those quantities as well. In order to make progress on these issues, the WCRP drought information group (DIG), with the support of WCRP, the Catalan Institute of Climate Sciences, the La Caixa Foundation, the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration, and the National Science Foundation, has organized a workshop to focus on: 1. User requirements for drought prediction information on sub-seasonal to centennial time scales 2. Current understanding of the mechanisms and predictability of drought on sub-seasonal to centennial time scales 3. Current drought prediction/projection capabilities on sub-seasonal to centennial time scales 4. Advancing regional drought prediction capabilities for variables and scales most relevant to user needs on sub-seasonal to centennial time scales. This introductory talk provides an overview of these goals, and outlines the occurrence and mechanisms of drought world-wide.

  1. Changing the functionality of cocoa butter

    OpenAIRE

    De Clercq, Nathalie

    2011-01-01

    Cocoa butter is an essential ingredient in chocolate as it forms the continuous phase of chocolate. It’s therefore responsible for the gloss, texture and typical melting behaviour of ‘irresistible’ chocolate. The aim of this research was to change the functionality of cocoa butter by two different methods. In the first part, cocoa butter was modified by physical refining by using packed column steam refining with or without silica pretreatment. The physicochemical properties of the refined co...

  2. Radial basis function network design for chaotic time series prediction

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Chang Yong; Kim, Taek Soo; Park, Sang Hui [Yonsei University, Seoul (Korea, Republic of); Choi, Yoon Ho [Kyonggi University, Suwon (Korea, Republic of)

    1996-04-01

    In this paper, radial basis function networks with two hidden layers, which employ the K-means clustering method and the hierarchical training, are proposed for improving the short-term predictability of chaotic time series. Furthermore the recursive training method of radial basis function network using the recursive modified Gram-Schmidt algorithm is proposed for the purpose. In addition, the radial basis function networks trained by the proposed training methods are compared with the X.D. He A Lapedes`s model and the radial basis function network by non-recursive training method. Through this comparison, an improved radial basis function network for predicting chaotic time series is presented. (author). 17 refs., 8 figs., 3 tabs.

  3. Change in avian abundance predicted from regional forest inventory data

    Science.gov (United States)

    Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R.; Uihlein, William B.; Fitzgerald, Jane A.

    2010-01-01

    An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will

  4. Perlite exposure and 4-year change in lung function.

    Science.gov (United States)

    Polatli, M; Erdinç, M; Erdinç, E; Okyay, E

    2001-07-01

    Perlite is a volcanic glass or amorphous aluminium silicate composed of 71-75% SiO(2). When heated to 800-1100 degrees C, it expands to form processed perlite, which has a low density, high surface area, and a low thermal conductivity. The objective was to determine the effect of perlite exposure on pulmonary function tests. Pulmonary function tests in conjunction with chest radiogram were carried out in 36 perlite-exposed workers and 22 unexposed office workers in 1992 and 1996. Respirable dust level exceeded permissible dust levels in work places in the 4 years under study. Transfer coefficient (K(CO)) decline was significant in nonsmoker perlite-exposed workers (n=9), and found to be 5.28+/-0.71 (predicted 4.32+/-0.11) and 3.84+/-0.96 (predicted 4.18+/-0.18) 1/min/mmHg, in 1992 and 1996, respectively (Pperlite workers and office workers showed significant obstruction to airflow in small airways with respect to predicted values and 4-year change in transfer factor (T(L), CO) was significant. Although predicted, 12-year perlite exposure did not lead to a decrease in mean pulmonary function test parameters, there was a tendency to a decline in T(L), CO in the 4-year study period, which may be due to high perlite dust levels. As early effects of perlite dust exposure may not be detected by spirometric measurements alone, the transfer coefficient should be added to spirometry.

  5. Caregiver Confidence: Does It Predict Changes in Disability among Elderly Home Care Recipients?

    Science.gov (United States)

    Li, Lydia W.; McLaughlin, Sara J.

    2012-01-01

    Purpose of the study: The primary aim of this investigation was to determine whether caregiver confidence in their care recipients' functional capabilities predicts changes in the performance of activities of daily living (ADL) among elderly home care recipients. A secondary aim was to explore how caregiver confidence and care recipient functional…

  6. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  7. Climate change and predicted trend of fungal keratitis in Egypt.

    Science.gov (United States)

    Saad-Hussein, A; El-Mofty, H M; Hassanien, M A

    2011-06-01

    Rising rates of invasive fungal infections may be linked to global climate change. A study was made of the trend of ophthalmic fungal corneal keratitis in the greater Cairo area of Egypt and its association with climate records during the same period. Data on diagnosed cases of fungal keratitis were collected from records of ophthalmic departments of Cairo University hospital and atmospheric temperature and humidity for the greater Cairo area were obtained from online records. Statistical analysis showed a significant increase in the relative frequency of keratomycosis during 1997-2007. The rise correlated significantly with rises n min,mum temperature and the maximum atmospheric humidity in the greater Cairo area over the same period (after exclusion of the effect of the maximum atmos pheric temperature). The predicted increase in keratomycosis up to the year 2030 corresponds to predicted increases in CO2 emissions and surface temperature from climate change models for Egypt.

  8. Predicting real-world functional milestones in schizophrenia.

    Science.gov (United States)

    Olsson, Anna-Karin; Hjärthag, Fredrik; Helldin, Lars

    2016-08-30

    Schizophrenia is a severe disorder that often causes impairments in major areas of functioning, and most patients do not achieve expected real-world functional milestones. The aim of this study was to identify which variables of demography, illness activity, and functional capacity predict patients' ability to attain real-world functional milestones. Participants were 235 outpatients, 149 men and 86 women, diagnosed with schizophrenia spectrum disorder. Our results showed that younger patients managed to achieve a higher level of functioning in educational level, marital status, and social contacts. Patients' functional capacity was primarily associated with educational level and housing situation. We also found that women needed less support regarding housing and obtained a higher level of marital status as compared with men. Our findings demonstrate the importance of considering current symptoms, especially negative symptoms, and remission stability over time, together with age, duration of illness, gender, educational level, and current functional capacity, when predicting patients' future real-world functioning. We also conclude that there is an advantage in exploring symptoms divided into positive, negative, and general domains considering their probable impact on functional achievements.

  9. Predictability of Genetic Interactions from Functional Gene Modules

    Directory of Open Access Journals (Sweden)

    Jonathan H. Young

    2017-02-01

    Full Text Available Characterizing genetic interactions is crucial to understanding cellular and organismal response to gene-level perturbations. Such knowledge can inform the selection of candidate disease therapy targets, yet experimentally determining whether genes interact is technically nontrivial and time-consuming. High-fidelity prediction of different classes of genetic interactions in multiple organisms would substantially alleviate this experimental burden. Under the hypothesis that functionally related genes tend to share common genetic interaction partners, we evaluate a computational approach to predict genetic interactions in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae. By leveraging knowledge of functional relationships between genes, we cross-validate predictions on known genetic interactions and observe high predictive power of multiple classes of genetic interactions in all three organisms. Additionally, our method suggests high-confidence candidate interaction pairs that can be directly experimentally tested. A web application is provided for users to query genes for predicted novel genetic interaction partners. Finally, by subsampling the known yeast genetic interaction network, we found that novel genetic interactions are predictable even when knowledge of currently known interactions is minimal.

  10. Spatial prediction of soil penetration resistance using functional geostatistics

    Directory of Open Access Journals (Sweden)

    Diego Leonardo Cortés-D

    Full Text Available ABSTRACT Knowledge of agricultural soils is a relevant factor for the sustainable development of farming activities. Studies on agricultural soils usually begin with the analysis of data obtained from sampling a finite number of sites in a particular region of interest. The variables measured at each site can be scalar (chemical properties or functional (infiltration water or penetration resistance. The use of functional geostatistics (FG allows to perform spatial curve interpolation to generate prediction curves (instead of single variables at sites that lack information. This study analyzed soil penetration resistance (PR data measured between 0 and 35 cm depth at 75 sites within a 37 ha plot dedicated to livestock. The data from each site were converted to curves using non-parametric smoothing techniques. In this study, a B-splines basis of 18 functions was used to estimate PR curves for each of the 75 sites. The applicability of FG as a spatial prediction tool for PR curves was then evaluated using cross-validation, and the results were compared with classical spatial prediction methods (univariate geostatistics that are generally used for studying this type of information. We concluded that FG is a reliable tool for analyzing PR because a high correlation was obtained between the observed and predicted curves (R2 = 94 %. In addition, the results from descriptive analyses calculated from field data and FG models were similar for the observed and predicted values.

  11. Functional consequences of realistic biodiversity changes in a marine ecosystem.

    Science.gov (United States)

    Bracken, Matthew E S; Friberg, Sara E; Gonzalez-Dorantes, Cirse A; Williams, Susan L

    2008-01-22

    Declines in biodiversity have prompted concern over the consequences of species loss for the goods and services provided by natural ecosystems. However, relatively few studies have evaluated the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used randomly selected assemblages from a local species pool to construct diversity gradients. It is therefore difficult, based on current evidence, to predict the functional consequences of realistic declines in biodiversity. In this study, we used tide pool microcosms to demonstrate that the effects of real-world changes in biodiversity may be very different from those of random diversity changes. Specifically, we measured the relationship between the diversity of a seaweed assemblage and its ability to use nitrogen, a key limiting nutrient in nearshore marine systems. We quantified nitrogen uptake using both experimental and model seaweed assemblages and found that natural increases in diversity resulted in enhanced rates of nitrogen use, whereas random diversity changes had no effect on nitrogen uptake. Our results suggest that understanding the real-world consequences of declining biodiversity will require addressing changes in species performance along natural diversity gradients and understanding the relationships between species' susceptibility to loss and their contributions to ecosystem functioning.

  12. Ontology-Based Prediction and Prioritization of Gene Functional Annotations.

    Science.gov (United States)

    Chicco, Davide; Masseroli, Marco

    2016-01-01

    Genes and their protein products are essential molecular units of a living organism. The knowledge of their functions is key for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. The association of a gene or protein with its functions, described by controlled terms of biomolecular terminologies or ontologies, is named gene functional annotation. Very many and valuable gene annotations expressed through terminologies and ontologies are available. Nevertheless, they might include some erroneous information, since only a subset of annotations are reviewed by curators. Furthermore, they are incomplete by definition, given the rapidly evolving pace of biomolecular knowledge. In this scenario, computational methods that are able to quicken the annotation curation process and reliably suggest new annotations are very important. Here, we first propose a computational pipeline that uses different semantic and machine learning methods to predict novel ontology-based gene functional annotations; then, we introduce a new semantic prioritization rule to categorize the predicted annotations by their likelihood of being correct. Our tests and validations proved the effectiveness of our pipeline and prioritization of predicted annotations, by selecting as most likely manifold predicted annotations that were later confirmed.

  13. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik;

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...

  14. A large-scale evaluation of computational protein function prediction

    NARCIS (Netherlands)

    Radivojac, P.; Clark, W.T.; Oron, T.R.; Schnoes, A.M.; Wittkop, T.; Kourmpetis, Y.A.I.; Dijk, van A.D.J.; Friedberg, I.

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high

  15. Sexual abuse predicts functional somatic symptoms : An adolescent population study

    NARCIS (Netherlands)

    Bonvanie, Irma J.; van Gils, Anne; Janssens, Karin A. M.; Rosmalen, Judith G. M.

    2015-01-01

    The main aim of this study was to investigate the effect of childhood sexual abuse on medically not well explained or functional somatic symptoms (FSSs) in adolescents. We hypothesized that sexual abuse predicts higher levels of FSSs and that anxiety and depression contribute to this relationship. I

  16. Predicting plants -modeling traits as a function of environment

    Science.gov (United States)

    Franklin, Oskar

    2016-04-01

    A central problem in understanding and modeling vegetation dynamics is how to represent the variation in plant properties and function across different environments. Addressing this problem there is a strong trend towards trait-based approaches, where vegetation properties are functions of the distributions of functional traits rather than of species. Recently there has been enormous progress in in quantifying trait variability and its drivers and effects (Van Bodegom et al. 2012; Adier et al. 2014; Kunstler et al. 2015) based on wide ranging datasets on a small number of easily measured traits, such as specific leaf area (SLA), wood density and maximum plant height. However, plant function depends on many other traits and while the commonly measured trait data are valuable, they are not sufficient for driving predictive and mechanistic models of vegetation dynamics -especially under novel climate or management conditions. For this purpose we need a model to predict functional traits, also those not easily measured, and how they depend on the plants' environment. Here I present such a mechanistic model based on fitness concepts and focused on traits related to water and light limitation of trees, including: wood density, drought response, allocation to defense, and leaf traits. The model is able to predict observed patterns of variability in these traits in relation to growth and mortality, and their responses to a gradient of water limitation. The results demonstrate that it is possible to mechanistically predict plant traits as a function of the environment based on an eco-physiological model of plant fitness. References Adier, P.B., Salguero-Gómez, R., Compagnoni, A., Hsu, J.S., Ray-Mukherjee, J., Mbeau-Ache, C. et al. (2014). Functional traits explain variation in plant lifehistory strategies. Proc. Natl. Acad. Sci. U. S. A., 111, 740-745. Kunstler, G., Falster, D., Coomes, D.A., Hui, F., Kooyman, R.M., Laughlin, D.C. et al. (2015). Plant functional traits

  17. Advancing catchment hydrology to deal with predictions under change

    Directory of Open Access Journals (Sweden)

    U. Ehret

    2013-07-01

    Full Text Available Throughout its historical development, hydrology as an engineering discipline and earth science has relied strongly on the assumption of long-term stationary boundary conditions and system configurations, which allowed for simplified and sectoral descriptions of the dynamics of hydrological systems. However, in the face of rapid and extensive global changes (of climate, land use etc. which affect all parts of the hydrological cycle, the general validity of this assumption appears doubtful. Likewise, so does the application of hydrological concepts based on stationarity to questions of hydrological change. The reason is that transient system behaviours often develop through feedbacks between the system constituents, and with the environment, generating effects that could often be neglected under stationary conditions. In this context, the aim of this paper is to present and discuss paradigms and theories potentially helpful to advancing hydrology towards the goal of understanding and predicting hydrological systems under change. For the sake of brevity we focus on catchment hydrology. We begin with a discussion of the general nature of explanation in hydrology and briefly review the history of catchment hydrology. We then propose and discuss several perspectives on catchments: as complex dynamical systems, self-organizing systems, co-evolving systems and open dissipative thermodynamic systems. We discuss the benefits of comparative hydrology and of taking an information-theoretic view of catchments, including the flow of information from data to models to predictions. In summary, we suggest that the combination of these closely related perspectives can serve as a paradigm for the further development of catchment hydrology to address predictions under change.

  18. Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function.

    Science.gov (United States)

    Fry, Ellen L; Manning, Pete; Allen, David G P; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A

    2013-01-01

    Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species

  19. Plant functional group composition modifies the effects of precipitation change on grassland ecosystem function.

    Directory of Open Access Journals (Sweden)

    Ellen L Fry

    Full Text Available Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial

  20. Predictive functional control of integrating process based on impulse response

    Institute of Scientific and Technical Information of China (English)

    Bin ZHANG; Ping LI; Weidong ZHANG

    2004-01-01

    The predictive model is built according to the characteristics of the impulse response of integrating process. In order to eliminate the permanent offset between the setpoint and the process output in the presence of the load disturbance, a novel error compensation method is proposed. Then predictive functional control of integrating process is designed. The method given generates a simple control structure, which can significantly reduce online computation. Furthermore, the tuning of the controller is fairly straightforward. Simulation results indicate that the designed control system is relatively robust to the parameters variation of the process.

  1. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  2. Predicting Species-environment Relationships with Functional Traits for the Understory Flora of Wisconsin

    Science.gov (United States)

    Ash, J.; Li, D.; Johnson, S.; Rogers, D. A.; Waller, D. M.

    2015-12-01

    Understanding the processes that structure species' abundance patterns is a central problem in ecology, both for explaining current species' distributions and predicting future changes. Environmental gradients affect species' distribution patterns with these responses likely depending on species' functional traits. Thus, tracking shifts in species' traits can provide insight into the mechanisms by which species respond to dynamic environmental conditions. We examined how functional traits are associated with long-term changes in the distribution and abundance of understory plants in Wisconsin forests over the last 50+ years. We relied on detailed surveys and resurveys of the same Wisconsin forest plots, data on 12 functional traits, and site-level environmental variables including soil and climate conditions. We then related changes in the abundance of 293 species across a network of 249 sites to these environmental variables and explored whether functional traits served to predict these relationships using multilevel models. Species abundance patterns were strongly related to variation in environmental conditions among sites, but species appear to be responding to distinct sets of environmental variables. Functional traits only weakly predicted these species-environment relationships, limiting our ability to generalize these results to other systems. Nonetheless, understanding how traits interact with environmental gradients to structure species distribution patterns helps us to disentangle the drivers of ecological change across diverse landscapes.

  3. Plant functional traits predict green roof ecosystem services.

    Science.gov (United States)

    Lundholm, Jeremy; Tran, Stephanie; Gebert, Luke

    2015-02-17

    Plants make important contributions to the services provided by engineered ecosystems such as green roofs. Ecologists use plant species traits as generic predictors of geographical distribution, interactions with other species, and ecosystem functioning, but this approach has been little used to optimize engineered ecosystems. Four plant species traits (height, individual leaf area, specific leaf area, and leaf dry matter content) were evaluated as predictors of ecosystem properties and services in a modular green roof system planted with 21 species. Six indicators of ecosystem services, incorporating thermal, hydrological, water quality, and carbon sequestration functions, were predicted by the four plant traits directly or indirectly via their effects on aggregate ecosystem properties, including canopy density and albedo. Species average height and specific leaf area were the most useful traits, predicting several services via effects on canopy density or growth rate. This study demonstrates that easily measured plant traits can be used to select species to optimize green roof performance across multiple key services.

  4. Water hammer prediction and control: the Green's function method

    Institute of Scientific and Technical Information of China (English)

    Li-Jun Xuan; Feng Mao; Jie-Zhi Wu

    2012-01-01

    By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter,with an eddy viscosity depending solely on the space coordinates),and thus its hazardous effect can be rationally controlled and minimized.To this end,we generalize a laminar water hammer equation of Wang et al.(J.Hydrodynamics,B2,51,1995)to include arbitrary initial condition and variable viscosity,and obtain its solution by Green's function method.The predicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and,by adjusting the eddy viscosity coefficient,experimentally measured turbulent flow data.Optimal WH control principle is thereby constructed and demonstrated.

  5. Estimating Stochastic Volatility Models using Prediction-based Estimating Functions

    DEFF Research Database (Denmark)

    Lunde, Asger; Brix, Anne Floor

    In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are derived. The finite sample performance of the PBEF based estimator is investigated in a Monte Carlo study, and compared to the p......In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are derived. The finite sample performance of the PBEF based estimator is investigated in a Monte Carlo study, and compared...... to the performance of the GMM estimator based on conditional moments of integrated volatility from Bollerslev and Zhou (2002). The case where the observed log-price process is contaminated by i.i.d. market microstructure (MMS) noise is also investigated. First, the impact of MMS noise on the parameter estimates from...

  6. Cerebellar damage impairs internal predictions for sensory and motor function

    OpenAIRE

    Therrien, Amanda S.; Bastian, Amy J.

    2015-01-01

    The cerebellum is connected to cerebral areas that subserve a range of sensory and motor functions. In this review, we summarize new literature demonstrating deficits in visual perception, proprioception, motor control, and motor learning performance following cerebellar damage. In particular, we highlight novel results that together suggest a general role of the cerebellum in estimating and predicting movement dynamics of the body and environmental stimuli. These findings agree with the hypo...

  7. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    OpenAIRE

    He Cui; Xi Lan; Shemin Lu; Fujun Zhang; Wanggang Zhang

    2017-01-01

    Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA) gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 system in U937 cells...

  8. Achieving the Gaussian Rate-Distortion Function by Prediction

    CERN Document Server

    Zamir, Ram; Erez, Uri

    2007-01-01

    The "water-filling" solution for the quadratic rate-distortion function of a stationary Gaussian source is given in terms of its power spectrum. This formula naturally lends itself to a frequency domain "test-channel" realization. We provide an alternative time-domain realization for the rate-distortion function, based on linear prediction. This solution has some interesting implications, including the optimality at all distortion levels of pre/post filtered vector-quantized differential pulse code modulation (DPCM), and a duality relationship with decision-feedback equalization (DFE) for inter-symbol interference (ISI) channels.

  9. Fungal NRPS-dependent siderophores: From function to prediction

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Knudsen, Michael; Hansen, Frederik Teilfeldt

    2014-01-01

    discuss the function of siderophores in relation to fungal iron uptake mechanisms and their importance for coexistence with host organisms. The chemical nature of the major groups of siderophores and their regulation is described along with the function and architecture of the large multi-domain enzymes...... responsible for siderophore synthesis, namely the non-ribosomal peptide synthetases (NRPSs). Finally, we present the most recent advances in our understanding of the structural biology of fungal NRPSs and discuss opportunities for the development of a fungal NRPS prediction server...

  10. Cod Gadus morhua and climate change: processes, productivity and prediction

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    Environmental factors act on individual fishes directly and indirectly. The direct effects on rates and behaviour can be studied experimentally and in the field, particularly with the advent of ever smarter tags for tracking fishes and their environment. Indirect effects due to changes in food......, predators, parasites and diseases are much more difficult to estimate and predict. Climate can affect all life-history stages through direct and indirect processes and although the consequences in terms of growth, survival and reproductive output can be monitored, it is often difficult to determine...... can push it into decline unless the level of fishing is reduced: the idea of a stable carrying capacity is a dangerous myth. Overexploitation can be avoided by keeping fishing mortality low and by monitoring and responding rapidly to changes in productivity. There are signs that this lesson has been...

  11. Change in BMI accurately predicted by social exposure to acquaintances.

    Directory of Open Access Journals (Sweden)

    Rahman O Oloritun

    Full Text Available Research has mostly focused on obesity and not on processes of BMI change more generally, although these may be key factors that lead to obesity. Studies have suggested that obesity is affected by social ties. However these studies used survey based data collection techniques that may be biased toward select only close friends and relatives. In this study, mobile phone sensing techniques were used to routinely capture social interaction data in an undergraduate dorm. By automating the capture of social interaction data, the limitations of self-reported social exposure data are avoided. This study attempts to understand and develop a model that best describes the change in BMI using social interaction data. We evaluated a cohort of 42 college students in a co-located university dorm, automatically captured via mobile phones and survey based health-related information. We determined the most predictive variables for change in BMI using the least absolute shrinkage and selection operator (LASSO method. The selected variables, with gender, healthy diet category, and ability to manage stress, were used to build multiple linear regression models that estimate the effect of exposure and individual factors on change in BMI. We identified the best model using Akaike Information Criterion (AIC and R(2. This study found a model that explains 68% (p<0.0001 of the variation in change in BMI. The model combined social interaction data, especially from acquaintances, and personal health-related information to explain change in BMI. This is the first study taking into account both interactions with different levels of social interaction and personal health-related information. Social interactions with acquaintances accounted for more than half the variation in change in BMI. This suggests the importance of not only individual health information but also the significance of social interactions with people we are exposed to, even people we may not consider as

  12. Density functional theory predictions of isotropic hyperfine coupling constants.

    Science.gov (United States)

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  13. Should we believe model predictions of future climate change? (Invited)

    Science.gov (United States)

    Knutti, R.

    2009-12-01

    As computers get faster and our understanding of the climate system improves, climate models to predict the future are getting more complex by including more and more processes, and they are run at higher and higher resolution to resolve more of the small scale processes. As a result, some of the simulated features and structures, e.g. ocean eddies or tropical cyclones look surprisingly real. But are these deceptive? A pattern can look perfectly real but be in the wrong place. So can the current global models really provide the kind of information on local scales and on the quantities (e.g. extreme events) that the decision maker would need to know to invest for example in adaptation? A closer look indicates that evaluating skill of climate models and quantifying uncertainties in predictions is very difficult. This presentation shows that while models are improving in simulating the climate features we observe (e.g. the present day mean state, or the El Nino Southern Oscillation), the spread from multiple models in predicting future changes is often not decreasing. The main problem is that (unlike with weather forecasts for example) we cannot evaluate the model on a prediction (for example for the year 2100) and we have to use the present, or past changes as metrics of skills. But there are infinite ways of testing a model, and many metrics used to test models do not clearly relate to the prediction. Therefore there is little agreement in the community on metrics to separate ‘good’ and ‘bad’ models, and there is a concern that model development, evaluation and posterior weighting or ranking of models are all using the same datasets. While models are continuously improving in representing what we believe to be the key processes, many models also share ideas, parameterizations or even pieces of model code. The current models can therefore not be considered independent. Robustness of a model simulated result is often interpreted as increasing the confidence

  14. Predicting implementation from organizational readiness for change: a study protocol

    Directory of Open Access Journals (Sweden)

    Kelly P Adam

    2011-07-01

    Full Text Available Abstract Background There is widespread interest in measuring organizational readiness to implement evidence-based practices in clinical care. However, there are a number of challenges to validating organizational measures, including inferential bias arising from the halo effect and method bias - two threats to validity that, while well-documented by organizational scholars, are often ignored in health services research. We describe a protocol to comprehensively assess the psychometric properties of a previously developed survey, the Organizational Readiness to Change Assessment. Objectives Our objective is to conduct a comprehensive assessment of the psychometric properties of the Organizational Readiness to Change Assessment incorporating methods specifically to address threats from halo effect and method bias. Methods and Design We will conduct three sets of analyses using longitudinal, secondary data from four partner projects, each testing interventions to improve the implementation of an evidence-based clinical practice. Partner projects field the Organizational Readiness to Change Assessment at baseline (n = 208 respondents; 53 facilities, and prospectively assesses the degree to which the evidence-based practice is implemented. We will conduct predictive and concurrent validities using hierarchical linear modeling and multivariate regression, respectively. For predictive validity, the outcome is the change from baseline to follow-up in the use of the evidence-based practice. We will use intra-class correlations derived from hierarchical linear models to assess inter-rater reliability. Two partner projects will also field measures of job satisfaction for convergent and discriminant validity analyses, and will field Organizational Readiness to Change Assessment measures at follow-up for concurrent validity (n = 158 respondents; 33 facilities. Convergent and discriminant validities will test associations between organizational readiness and

  15. Integrating Gene Ontology and Blast to predict gene functions

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-gang; MO Zhi-hong

    2007-01-01

    A GoBlast system was built to predict gene function by integrating Blast search and Gene Ontology (GO) annotations together. The operation system was based on Debian Linux 3.1, with Apache as the web server and Mysql database as the data storage system. FASTA files with GO annotations were taken as the sequence source for blast alignment, which were formatted by wu-formatdb program. The GoBlast system includes three Bioperl modules in Perl: a data input module, a data process module and a data output module. A GoBlast query starts with an amino acid or nucleotide sequence. It ends with an output in an html page, presenting high scoring gene products which are of a high homology to the queried sequence and listing associated GO terms beside respective gene poducts. A simple click on a GO term leads to the detailed explanation of the specific gene function. This avails gene function prediction by Blast. GoBlast can be a very useful tool for functional genome research and is available for free at http://bioq.org/goblast.

  16. Executive functions predict the success of top-soccer players.

    Directory of Open Access Journals (Sweden)

    Torbjörn Vestberg

    Full Text Available While the importance of physical abilities and motor coordination is non-contested in sport, more focus has recently been turned toward cognitive processes important for different sports. However, this line of studies has often investigated sport-specific cognitive traits, while few studies have focused on general cognitive traits. We explored if measures of general executive functions can predict the success of a soccer player. The present study used standardized neuropsychological assessment tools assessing players' general executive functions including on-line multi-processing such as creativity, response inhibition, and cognitive flexibility. In a first cross-sectional part of the study we compared the results between High Division players (HD, Lower Division players (LD and a standardized norm group. The result shows that both HD and LD players had significantly better measures of executive functions in comparison to the norm group for both men and women. Moreover, the HD players outperformed the LD players in these tests. In the second prospective part of the study, a partial correlation test showed a significant correlation between the result from the executive test and the numbers of goals and assists the players had scored two seasons later. The results from this study strongly suggest that results in cognitive function tests predict the success of ball sport players.

  17. Remote sensing of vegetation ecophysiological function for improved hydrologic prediction

    Science.gov (United States)

    Drewry, D.; Ruddell, B. L.

    2014-12-01

    Land surface hydrology in vegetated landscapes is strongly controlled by ecophysiological function. The coupling between photosynthesis, stomatal dynamics and leaf energy balance fundamentally links the hydrologic and carbon cycles, and provides a basis for examining the utility of observations of functional plant traits for hydrologic prediction. Here we explore the potential of solar induced fluorescence (SIF) and thermal infrared (TIR) remote sensing observations to improve the accuracy and reduce the uncertainty in hydrologic prediction. While SIF represents an emission of radiation associated with photosynthesis, TIR provides information on foliage temperature and is related to stomatal function and water stress. A set of remote observing system simulation experiments are conducted to quantify the value of remotely sensed observations of SIF and TIR when assimilated into a detailed vegetation biophysical model. The MLCan model discretizes a dense plant canopy to resolve vertical variation in photosynthesis, water vapor and energy exchange. Here we present extensions to MLCan that allow for direct computation of the canopy emission of both SIF and TIR. The detailed representation of the physical environment and biological functioning of structurally complex canopies makes MLCan an ideal simulation tool for exploring the impact of these two unique, and potentially synergistic observables. This work specifically addresses remote sensing capabilities on both recently launched (OCO-2) and near-term (ECOSTRESS) satellite platforms. We contrast the information gained through the assimilation of SIF and TIR observations to that of the assimilation of data related to physical states such as soil moisture and leaf area index.

  18. Conserved functional motifs and homology modelling to predict hidden moonlighting functional sites

    Directory of Open Access Journals (Sweden)

    Helen R Irving

    2015-06-01

    Full Text Available Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here we review how hidden moonlighting functional centers which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico which in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.

  19. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites

    KAUST Repository

    Wong, Aloysius Tze

    2015-06-09

    Moonlighting functional centers within proteins can provide them with hitherto unrecognized functions. Here, we review how hidden moonlighting functional centers, which we define as binding sites that have catalytic activity or regulate protein function in a novel manner, can be identified using targeted bioinformatic searches. Functional motifs used in such searches include amino acid residues that are conserved across species and many of which have been assigned functional roles based on experimental evidence. Molecules that were identified in this manner seeking cyclic mononucleotide cyclases in plants are used as examples. The strength of this computational approach is enhanced when good homology models can be developed to test the functionality of the predicted centers in silico, which, in turn, increases confidence in the ability of the identified candidates to perform the predicted functions. Computational characterization of moonlighting functional centers is not diagnostic for catalysis but serves as a rapid screening method, and highlights testable targets from a potentially large pool of candidates for subsequent in vitro and in vivo experiments required to confirm the functionality of the predicted moonlighting centers.

  20. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers.

    Science.gov (United States)

    Lefcheck, Jonathan S; Duffy, J Emmett

    2015-11-01

    The use of functional traits to explain how biodiversity affects ecosystem functioning has attracted intense interest, yet few studies have a priori altered functional diversity, especially in multitrophic communities. Here, we manipulated multivariate functional diversity of estuarine grazers and predators within multiple levels of species richness to test how species richness and functional diversity predicted ecosystem functioning in a multitrophic food web. Community functional diversity was a better predictor than species richness for the majority of ecosystem properties, based on generalized linear mixed-effects models. Combining inferences from eight traits into a single multivariate index increased prediction accuracy of these models relative to any individual trait. Structural equation modeling revealed that functional diversity of both grazers and predators was important in driving final biomass within trophic levels, with stronger effects observed for predators. We also show that different species drove different ecosystem responses, with evidence for both sampling effects and complementarity. Our study extends experimental investigations of functional trait diversity to a multilevel food web, and demonstrates that functional diversity can be more accurate and effective than species richness in predicting community biomass in a food web context.

  1. Predicting impacts of climate change on Fasciola hepatica risk.

    Directory of Open Access Journals (Sweden)

    Naomi J Fox

    Full Text Available Fasciola hepatica (liver fluke is a physically and economically devastating parasitic trematode whose rise in recent years has been attributed to climate change. Climate has an impact on the free-living stages of the parasite and its intermediate host Lymnaea truncatula, with the interactions between rainfall and temperature having the greatest influence on transmission efficacy. There have been a number of short term climate driven forecasts developed to predict the following season's infection risk, with the Ollerenshaw index being the most widely used. Through the synthesis of a modified Ollerenshaw index with the UKCP09 fine scale climate projection data we have developed long term seasonal risk forecasts up to 2070 at a 25 km square resolution. Additionally UKCIP gridded datasets at 5 km square resolution from 1970-2006 were used to highlight the climate-driven increase to date. The maps show unprecedented levels of future fasciolosis risk in parts of the UK, with risk of serious epidemics in Wales by 2050. The seasonal risk maps demonstrate the possible change in the timing of disease outbreaks due to increased risk from overwintering larvae. Despite an overall long term increase in all regions of the UK, spatio-temporal variation in risk levels is expected. Infection risk will reduce in some areas and fluctuate greatly in others with a predicted decrease in summer infection for parts of the UK due to restricted water availability. This forecast is the first approximation of the potential impacts of climate change on fasciolosis risk in the UK. It can be used as a basis for indicating where active disease surveillance should be targeted and where the development of improved mitigation or adaptation measures is likely to bring the greatest benefits.

  2. Models for predicting objective function weights in prostate cancer IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Boutilier, Justin J., E-mail: j.boutilier@mail.utoronto.ca; Lee, Taewoo [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9, Canada and Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University of Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148 - 150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada and Techna Institute for the Advancement of Technology for Health, 124 - 100 College Street, Toronto, Ontario M5G 1P5 (Canada)

    2015-04-15

    Purpose: To develop and evaluate the clinical applicability of advanced machine learning models that simultaneously predict multiple optimization objective function weights from patient geometry for intensity-modulated radiation therapy of prostate cancer. Methods: A previously developed inverse optimization method was applied retrospectively to determine optimal objective function weights for 315 treated patients. The authors used an overlap volume ratio (OV) of bladder and rectum for different PTV expansions and overlap volume histogram slopes (OVSR and OVSB for the rectum and bladder, respectively) as explanatory variables that quantify patient geometry. Using the optimal weights as ground truth, the authors trained and applied three prediction models: logistic regression (LR), multinomial logistic regression (MLR), and weighted K-nearest neighbor (KNN). The population average of the optimal objective function weights was also calculated. Results: The OV at 0.4 cm and OVSR at 0.1 cm features were found to be the most predictive of the weights. The authors observed comparable performance (i.e., no statistically significant difference) between LR, MLR, and KNN methodologies, with LR appearing to perform the best. All three machine learning models outperformed the population average by a statistically significant amount over a range of clinical metrics including bladder/rectum V53Gy, bladder/rectum V70Gy, and dose to the bladder, rectum, CTV, and PTV. When comparing the weights directly, the LR model predicted bladder and rectum weights that had, on average, a 73% and 74% relative improvement over the population average weights, respectively. The treatment plans resulting from the LR weights had, on average, a rectum V70Gy that was 35% closer to the clinical plan and a bladder V70Gy that was 29% closer, compared to the population average weights. Similar results were observed for all other clinical metrics. Conclusions: The authors demonstrated that the KNN and MLR

  3. Community-Wide Evaluation of Computational Function Prediction.

    Science.gov (United States)

    Friedberg, Iddo; Radivojac, Predrag

    2017-01-01

    A biological experiment is the most reliable way of assigning function to a protein. However, in the era of high-throughput sequencing, scientists are unable to carry out experiments to determine the function of every single gene product. Therefore, to gain insights into the activity of these molecules and guide experiments, we must rely on computational means to functionally annotate the majority of sequence data. To understand how well these algorithms perform, we have established a challenge involving a broad scientific community in which we evaluate different annotation methods according to their ability to predict the associations between previously unannotated protein sequences and Gene Ontology terms. Here we discuss the rationale, benefits, and issues associated with evaluating computational methods in an ongoing community-wide challenge.

  4. Functional traits predict relationship between plant abundance dynamic and long-term climate warming.

    Science.gov (United States)

    Soudzilovskaia, Nadejda A; Elumeeva, Tatiana G; Onipchenko, Vladimir G; Shidakov, Islam I; Salpagarova, Fatima S; Khubiev, Anzor B; Tekeev, Dzhamal K; Cornelissen, Johannes H C

    2013-11-01

    Predicting climate change impact on ecosystem structure and services is one of the most important challenges in ecology. Until now, plant species response to climate change has been described at the level of fixed plant functional types, an approach limited by its inflexibility as there is much interspecific functional variation within plant functional types. Considering a plant species as a set of functional traits greatly increases our possibilities for analysis of ecosystem functioning and carbon and nutrient fluxes associated therewith. Moreover, recently assembled large-scale databases hold comprehensive per-species data on plant functional traits, allowing a detailed functional description of many plant communities on Earth. Here, we show that plant functional traits can be used as predictors of vegetation response to climate warming, accounting in our test ecosystem (the species-rich alpine belt of Caucasus mountains, Russia) for 59% of variability in the per-species abundance relation to temperature. In this mountain belt, traits that promote conservative leaf water economy (higher leaf mass per area, thicker leaves) and large investments in belowground reserves to support next year's shoot buds (root carbon content) were the best predictors of the species increase in abundance along with temperature increase. This finding demonstrates that plant functional traits constitute a highly useful concept for forecasting changes in plant communities, and their associated ecosystem services, in response to climate change.

  5. Selenium deficiency risk predicted to increase under future climate change

    Science.gov (United States)

    Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.

    2017-01-01

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487

  6. Preschool executive functioning abilities predict early mathematics achievement.

    Science.gov (United States)

    Clark, Caron A C; Pritchard, Verena E; Woodward, Lianne J

    2010-09-01

    Impairments in executive function have been documented in school-age children with mathematical learning difficulties. However, the utility and specificity of preschool executive function abilities in predicting later mathematical achievement are poorly understood. This study examined linkages between children's developing executive function abilities at age 4 and children's subsequent achievement in mathematics at age 6, 1 year after school entry. The study sample consisted of a regionally representative cohort of 104 children followed prospectively from ages 2 to 6 years. At age 4, children completed a battery of executive function tasks that assessed planning, set shifting, and inhibitory control. Teachers completed the preschool version of the Behavior Rating Inventory of Executive Function. Clinical and classroom measures of children's mathematical achievement were collected at age 6. Results showed that children's performance on set shifting, inhibitory control, and general executive behavior measures during the preschool period accounted for substantial variability in children's early mathematical achievement at school. These associations persisted even after individual differences in general cognitive ability and reading achievement were taken into account. Findings suggest that early measures of executive function may be useful in identifying children who may experience difficulties learning mathematical skills and concepts. They also suggest that the scaffolding of these executive skills could potentially be a useful additional component in early mathematics education.

  7. Betting and Belief: Prediction Markets and Attribution of Climate Change

    CERN Document Server

    Nay, John J; Gilligan, Jonathan M

    2016-01-01

    Despite much scientific evidence, a large fraction of the American public doubts that greenhouse gases are causing global warming. We present a simulation model as a computational test-bed for climate prediction markets. Traders adapt their beliefs about future temperatures based on the profits of other traders in their social network. We simulate two alternative climate futures, in which global temperatures are primarily driven either by carbon dioxide or by solar irradiance. These represent, respectively, the scientific consensus and a hypothesis advanced by prominent skeptics. We conduct sensitivity analyses to determine how a variety of factors describing both the market and the physical climate may affect traders' beliefs about the cause of global climate change. Market participation causes most traders to converge quickly toward believing the "true" climate model, suggesting that a climate market could be useful for building public consensus.

  8. Abrupt Climate Change: A Magnetic Coupling Model (MCM) Prediction.

    Science.gov (United States)

    Ely, John T. A.

    2002-04-01

    Recent findings [p.8 ISBN 0-309-07434-7] show major climate changes often occur in a decade. This is another of many MCM predictions (see refs). All of them tested from 1968 to date have been proven, including: Global warming is real and driven by fossil fuel (1970's); This CO2 forcing has ended Major Ice Ages; All Major and Minor Ice Ages are caused by decreases in existing (primarily subvisible and other thin, especially newly forming) cirrus at mid to high geomagnetic latitudes; Ionization of the atmosphere near 250 grams per square cm depth by GCR (galactic cosmic ray protons circa 1 gev) cause cirrus depression; Ice cores and other proxy records show ice ages exhibit increased beryllium-10, carbon-14, etc, due to GCR. As noted in the Mar and Apr abstracts, the MCM predictable climate ended in 2000, following over 30 yrs of our ignoring its easily testable warnings re fossil fuel. Hence, we now face the somber question of whether human intervention is still possible in a CO2 Runaway and sea level rise that may be on a decade time scale. [Ely, Session A8, APS Mtg, Seattle, Mar 01; Ely, Session H14.013, APS Mtg, Apr 01; MCM pub list http://faculty.washington.edu/ely/MCM.html

  9. Drought Monitoring, Prediction and Adaptation under Climatic Changes

    Science.gov (United States)

    Su, Z.; Ma, Y.; van der Velde, R.; Dente, L.; Wang, L.; Timmermans, J.; Menenti, M.; Sobrino, J.; Li, Z.-L.; Verhoef, W.; Jia, L.; Wen, J.; He, Y.; Wan, L.; Liu, Q. H.; Yu, Q.; Li, X.; Zhong, L.; Zeng, Y.; Tian, X.; Li, L.; Qin, C.; Timmermans, W.; van Helvoirt, M.; van der Tol, C.; Salama, M. S.; Vekerdy, Z.

    2013-01-01

    The objective of this project was to develop a quantitative and operational system for nationwide drought monitoring and drought impact assessment for application in agriculture and water resources and environment in China using ESA, Chinese and other relevant satellite data as major data source in combination with other data (e.g. meteorological and drought statistics, etc.). An extension to drought prediction and adaptation to climate change had been made compared to the Dragon I drought monitoring project. In detail the project generated: (1) a preoperational real time drought monitoring and prediction system, (2) improved understanding of land surface processes and land-atmosphere interactions over different terrains (e.g. agriculture land, forest, Gobi desert, high plateau, polar environment), (3) algorithms for estimation of land surface parameters and heat fluxes, (4) assessment of economic loss caused by drought and adaptation measures under climatic change, (5) training of young scientists in the area of water, climate and environment. An operational system will be established by the China Meteorological Administration’s National Meteorological Center (CMA/NMC) to provide information concerning the drought evolution situation and to support drought relief decision-making. We report on advances in retrievals of soil moisture using in-situ observations, satellite sensors and numerical modeling. The accuracy of available soil moisture products are assessed using in-situ data collected in the soil moisture monitoring networks developed for this and other projects. The use of these satellite retrievals in drought monitoring is demonstrated by analyzing the droughts in China and the generated drought assessment indices are compared to current practice by CMA.

  10. The Evolutionary Legacy of Diversification Predicts Ecosystem Function.

    Science.gov (United States)

    Yguel, Benjamin; Jactel, Hervé; Pearse, Ian S; Moen, Daniel; Winter, Marten; Hortal, Joaquin; Helmus, Matthew R; Kühn, Ingolf; Pavoine, Sandrine; Purschke, Oliver; Weiher, Evan; Violle, Cyrille; Ozinga, Wim; Brändle, Martin; Bartish, Igor; Prinzing, Andreas

    2016-10-01

    Theory suggests that the structure of evolutionary history represented in a species community may affect its functioning, but phylogenetic diversity metrics do not allow for the identification of major differences in this structure. Here we propose a new metric, ELDERness (for Evolutionary Legacy of DivERsity) to estimate evolutionary branching patterns within communities by fitting a polynomial function to lineage-through-time (LTT) plots. We illustrate how real and simulated community branching patterns can be more correctly described by ELDERness and can successfully predict ecosystem functioning. In particular, the evolutionary history of branching patterns can be encapsulated by the parameters of third-order polynomial functions and further measured through only two parameters, the "ELDERness surfaces." These parameters captured variation in productivity of a grassland community better than existing phylogenetic diversity or diversification metrics and independent of species richness or presence of nitrogen fixers. Specifically, communities with small ELDERness surfaces (constant accumulation of lineages through time in LTT plots) were more productive, consistent with increased productivity resulting from complementary lineages combined with niche filling within lineages. Overall, while existing phylogenetic diversity metrics remain useful in many contexts, we suggest that our ELDERness approach better enables testing hypotheses that relate complex patterns of macroevolutionary history represented in local communities to ecosystem functioning.

  11. Predicting Infrared Spectra of Nerve Agents Using Density Functional Theory

    Science.gov (United States)

    Zhang, Y.-P.; Wang, H.-T.; Zheng, W.-P.; Sun, C.; Bai, Y.; Guo, X.-D.; Sun, H.

    2016-09-01

    Vibration frequencies of four nerve agents and two simulators are calculated using B3LYP coupled with ten basis sets. To evaluate the accuracy of calculated spectra, root mean square error (RMSE) and weighted cross-correlation average (WCCA) are considered. The evaluation shows that B3LYP/6-311+g(d,p) performs best in predicting infrared spectra, and polarization functions are found to be more important than diffusion functions in spectra simulation. Moreover, B3LYP calculation underestimates frequencies related to the P atom. The WCCA metric derives 1.008 as a unique scaling factor for calculated frequencies. The results indicate that the WCCA metric can identify six agents based on calculated spectra.

  12. Predicting richness effects on ecosystem function in natural communities

    DEFF Research Database (Denmark)

    Dangles, Olivier; Crespo-Pérez, Verónica; Andino, Patricio

    2011-01-01

    . Despite the increased complexity of experimental and theoretical studies on the biodiversity-ecosystem functioning (B-EF) relationship, a major challenge is to demonstrate whether the observed importance of biodiversity in controlled experimental systems also persists in nature. Due...... revealed that richness and identity effects on decomposition rates were lost with increasing shredder community complexity. Our approach of combining experimental and empirical data with modeling in species-poor ecosystems may serve as an impetus for new B-EF studies. If theory can explain B-EF in low...... among the three shredder species, indicating complementary resource use and/or facilitation. By integrating survey and experimental data in surface response analyses we found that observed B-EF patterns fit those predicted by a linear model that described litter decomposition rates as a function...

  13. ON THE C.CHANG TYPE INEQUALITY OF ALGEBROID FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    Sun Daochun; Gao Zongsheng

    2011-01-01

    In this paper, we investigate the growth relations between algebroid functions and their derivatives, and extend famous C. Chang inequality (see [1, 4]) of meromorphic functions to algebroid functions.

  14. Greater attention problems during childhood predict poorer executive functioning in late adolescence.

    Science.gov (United States)

    Friedman, Naomi P; Haberstick, Brett C; Willcutt, Erik G; Miyake, Akira; Young, Susan E; Corley, Robin P; Hewitt, John K

    2007-10-01

    Attention problems (behavior problems including inattention, disorganization, impulsivity, and hyperactivity) are widely thought to reflect deficits in executive functions (EFs). However, it is unclear whether attention problems differentially relate to distinct EFs and how developmental stability and change predict levels of EFs in late adolescence. We investigated, in an unselected sample, how teacher-rated attention problems from ages 7 to 14 years related to three correlated but separable EFs, measured as latent variables at age 17. Attention problems at all ages significantly predicted later levels of response inhibition and working memory updating, and to some extent set shifting; the relation to inhibiting was stronger than the relations to the other EFs or IQ. Growth models indicated that attention problems were quite stable in this age range, and it was the initial levels of problems, rather than their changes across time, that predicted later EFs. These results support the hypothesis that attention problems primarily reflect difficulties with response inhibition.

  15. Soda consumption during ad libitum food intake predicts weight change.

    Science.gov (United States)

    Bundrick, Sarah C; Thearle, Marie S; Venti, Colleen A; Krakoff, Jonathan; Votruba, Susanne B

    2014-03-01

    Soda consumption may contribute to weight gain over time. Objective data were used to determine whether soda consumption predicts weight gain or changes in glucose regulation over time. Subjects without diabetes (128 men, 75 women; mean age 34.3±8.9 years; mean body mass index 32.5±7.4; mean percentage body fat 31.6%±8.6%) self-selected their food from an ad libitum vending machine system for 3 days. Mean daily energy intake was calculated from food weight. Energy consumed from soda was recorded as were food choices that were low in fat (30%). Food choices were expressed as percentage of daily energy intake. A subset of 85 subjects had measurement of follow-up weights and oral glucose tolerance (57 men, 28 women; mean follow-up time=2.5±2.1 years, range 6 months to 9.9 years). Energy consumed from soda was negatively related to age (r=-0.27, P=0.0001) and choosing low-fat foods (r=-0.35, Psoda correlated with change in weight (r=0.21, P=0.04). This relationship was unchanged after adjusting for follow-up time and initial weight. Soda consumption is a marker for excess energy consumption and is associated with weight gain.

  16. Selection, adaptation, and predictive information in changing environments

    Science.gov (United States)

    Feltgen, Quentin; Nemenman, Ilya

    2014-03-01

    Adaptation by means of natural selection is a key concept in evolutionary biology. Individuals better matched to the surrounding environment outcompete the others. This increases the fraction of the better adapted individuals in the population, and hence increases its collective fitness. Adaptation is also prominent on the physiological scale in neuroscience and cell biology. There each individual infers properties of the environment and changes to become individually better, improving the overall population as well. Traditionally, these two notions of adaption have been considered distinct. Here we argue that both types of adaptation result in the same population growth in a broad class of analytically tractable population dynamics models in temporally changing environments. In particular, both types of adaptation lead to subextensive corrections to the population growth rates. These corrections are nearly universal and are equal to the predictive information in the environment time series, which is also the characterization of the time series complexity. This work has been supported by the James S. McDonnell Foundation.

  17. Predictive equations using regression analysis of pulmonary function for healthy children in Northeast China.

    Directory of Open Access Journals (Sweden)

    Ya-Nan Ma

    Full Text Available BACKGROUND: There have been few published studies on spirometric reference values for healthy children in China. We hypothesize that there would have been changes in lung function that would not have been precisely predicted by the existing spirometric reference equations. The objective of the study was to develop more accurate predictive equations for spirometric reference values for children aged 9 to 15 years in Northeast China. METHODOLOGY/PRINCIPAL FINDINGS: Spirometric measurements were obtained from 3,922 children, including 1,974 boys and 1,948 girls, who were randomly selected from five cities of Liaoning province, Northeast China, using the ATS (American Thoracic Society and ERS (European Respiratory Society standards. The data was then randomly split into a training subset containing 2078 cases and a validation subset containing 1844 cases. Predictive equations used multiple linear regression techniques with three predictor variables: height, age and weight. Model goodness of fit was examined using the coefficient of determination or the R(2 and adjusted R(2. The predicted values were compared with those obtained from the existing spirometric reference equations. The results showed the prediction equations using linear regression analysis performed well for most spirometric parameters. Paired t-tests were used to compare the predicted values obtained from the developed and existing spirometric reference equations based on the validation subset. The t-test for males was not statistically significant (p>0.01. The predictive accuracy of the developed equations was higher than the existing equations and the predictive ability of the model was also validated. CONCLUSION/SIGNIFICANCE: We developed prediction equations using linear regression analysis of spirometric parameters for children aged 9-15 years in Northeast China. These equations represent the first attempt at predicting lung function for Chinese children following the ATS

  18. Utility functions predict variance and skewness risk preferences in monkeys.

    Science.gov (United States)

    Genest, Wilfried; Stauffer, William R; Schultz, Wolfram

    2016-07-26

    Utility is the fundamental variable thought to underlie economic choices. In particular, utility functions are believed to reflect preferences toward risk, a key decision variable in many real-life situations. To assess the validity of utility representations, it is therefore important to examine risk preferences. In turn, this approach requires formal definitions of risk. A standard approach is to focus on the variance of reward distributions (variance-risk). In this study, we also examined a form of risk related to the skewness of reward distributions (skewness-risk). Thus, we tested the extent to which empirically derived utility functions predicted preferences for variance-risk and skewness-risk in macaques. The expected utilities calculated for various symmetrical and skewed gambles served to define formally the direction of stochastic dominance between gambles. In direct choices, the animals' preferences followed both second-order (variance) and third-order (skewness) stochastic dominance. Specifically, for gambles with different variance but identical expected values (EVs), the monkeys preferred high-variance gambles at low EVs and low-variance gambles at high EVs; in gambles with different skewness but identical EVs and variances, the animals preferred positively over symmetrical and negatively skewed gambles in a strongly transitive fashion. Thus, the utility functions predicted the animals' preferences for variance-risk and skewness-risk. Using these well-defined forms of risk, this study shows that monkeys' choices conform to the internal reward valuations suggested by their utility functions. This result implies a representation of utility in monkeys that accounts for both variance-risk and skewness-risk preferences.

  19. Predicting activity approach based on new atoms similarity kernel function.

    Science.gov (United States)

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods.

  20. Predicting Offshore Swarm Rate Changes by Volumetric Strain Changes in Izu Peninsula, Japan

    Science.gov (United States)

    Kumazawa, T.; Ogata, Y.; Kimura, Y.; Maeda, K.; Kobayashi, A.

    2014-12-01

    The eastern offshore of Izu peninsula is one of the well known volcanic active regions in Japan, where magma intrusions have been observed several times since 1980s monitored by strain-meters located nearby. Major swarm activities have been synchronously associated with coseismic and preseismic significant sizes of a volumetric strain changes (Earthquake Research Committee, 2010). We investigated the background seismicity changes during these earthquake swarms using the nonstationary ETAS model (Kumazawa and Ogata, 2013), and have found the followings. The modified volumetric strain change data by removing the effect of earth tides and precipitation as well as removing coseismic jumps have much higher cross-correlations to the background rates of the ETAS model than to the whole seismicity rate change of the ETAS, and further the strain changes precede the background seismicity by lag of about a day. This relation suggests an enhanced prediction of earthquakes in this region using volumetric strain measurements. Thus we propose an extended ETAS model where the background seismicity rate is predicted by the time series of preceding volumetric strain changes. Our numerical results for Izu region show consistent outcomes throughout the major swarms in this region. References Earthquake Research Committee (2010). Report on "Prediction of seismic activity in the Izu Eastern Region" (in Japanese), http://www.jishin.go.jp/main/yosoku/izu/index.htm Kumazawa, T. and Ogata, Y. (2013). Quantitative description of induced seismic activity before and after the 2011 Tohoku-Oki earthquake by nonstationary ETAS model, J Geophys.Res. 118, 6165-6182.

  1. Dynamic Predictions of Semi-Arid Land Cover Change

    Science.gov (United States)

    Foster-Wittig, T. A.

    2011-12-01

    Savannas make up about 18% of the global landmass and contain about 22% of the world's population (Falkenmark and Rockstrom, 2008). They are unique ecosystems in that they consist of both grass and trees. Depending on the land use, amount of precipitation, herbivory, and fire frequency, either trees or grasses can be more prevalent than the other (Sankaran et al., 2005). Savannas in sub-Saharan Africa are usually considered water-limited ecosystems due to the seasonal rainfall. It has been shown that the vegetation responds on a short timescale to the rainfall (Scanlon et al, 2002). Therefore, savannas are foreseen as vulnerable ecosystems to future changes in the land use and climate change (Sankaran et al, 2005). The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in the savanna structure due to land use and climate change through the use of a dynamic vegetation model. This research will provide a better understanding of the relationship between precipitation and vegetation in savannas through the use of a Vegetation Dynamics Model developed to predict surface water fluxes and vegetation dynamics in water-limited ecosystems (Williams and Albertson, 2005). In this project, it will be used to model leaf area index (LAI) for point locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall and savanna type. With this model, future projections are developed for what can be anticipated in the future for the savanna structure based on three climate change scenarios; (1) decreased depth, (2) decreased frequency, and (3) decreased wet season length. The effect of the climate change scenarios on the plant water stress and plant water uptake will be analyzed in order to understand the dynamic effects of precipitation on vegetation. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect the sensitivity of savanna vegetation. It is

  2. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  3. Stand diameter distribution modelling and prediction based on Richards function.

    Directory of Open Access Journals (Sweden)

    Ai-guo Duan

    Full Text Available The objective of this study was to introduce application of the Richards equation on modelling and prediction of stand diameter distribution. The long-term repeated measurement data sets, consisted of 309 diameter frequency distributions from Chinese fir (Cunninghamia lanceolata plantations in the southern China, were used. Also, 150 stands were used as fitting data, the other 159 stands were used for testing. Nonlinear regression method (NRM or maximum likelihood estimates method (MLEM were applied to estimate the parameters of models, and the parameter prediction method (PPM and parameter recovery method (PRM were used to predict the diameter distributions of unknown stands. Four main conclusions were obtained: (1 R distribution presented a more accurate simulation than three-parametric Weibull function; (2 the parameters p, q and r of R distribution proved to be its scale, location and shape parameters, and have a deep relationship with stand characteristics, which means the parameters of R distribution have good theoretical interpretation; (3 the ordinate of inflection point of R distribution has significant relativity with its skewness and kurtosis, and the fitted main distribution range for the cumulative diameter distribution of Chinese fir plantations was 0.4∼0.6; (4 the goodness-of-fit test showed diameter distributions of unknown stands can be well estimated by applying R distribution based on PRM or the combination of PPM and PRM under the condition that only quadratic mean DBH or plus stand age are known, and the non-rejection rates were near 80%, which are higher than the 72.33% non-rejection rate of three-parametric Weibull function based on the combination of PPM and PRM.

  4. Stand diameter distribution modelling and prediction based on Richards function.

    Science.gov (United States)

    Duan, Ai-guo; Zhang, Jian-guo; Zhang, Xiong-qing; He, Cai-yun

    2013-01-01

    The objective of this study was to introduce application of the Richards equation on modelling and prediction of stand diameter distribution. The long-term repeated measurement data sets, consisted of 309 diameter frequency distributions from Chinese fir (Cunninghamia lanceolata) plantations in the southern China, were used. Also, 150 stands were used as fitting data, the other 159 stands were used for testing. Nonlinear regression method (NRM) or maximum likelihood estimates method (MLEM) were applied to estimate the parameters of models, and the parameter prediction method (PPM) and parameter recovery method (PRM) were used to predict the diameter distributions of unknown stands. Four main conclusions were obtained: (1) R distribution presented a more accurate simulation than three-parametric Weibull function; (2) the parameters p, q and r of R distribution proved to be its scale, location and shape parameters, and have a deep relationship with stand characteristics, which means the parameters of R distribution have good theoretical interpretation; (3) the ordinate of inflection point of R distribution has significant relativity with its skewness and kurtosis, and the fitted main distribution range for the cumulative diameter distribution of Chinese fir plantations was 0.4∼0.6; (4) the goodness-of-fit test showed diameter distributions of unknown stands can be well estimated by applying R distribution based on PRM or the combination of PPM and PRM under the condition that only quadratic mean DBH or plus stand age are known, and the non-rejection rates were near 80%, which are higher than the 72.33% non-rejection rate of three-parametric Weibull function based on the combination of PPM and PRM.

  5. Habitual fat intake predicts memory function in younger women

    Directory of Open Access Journals (Sweden)

    Edward Leigh eGibson

    2013-12-01

    Full Text Available High intakes of fat have been linked to greater cognitive decline in old age, but such associations may already occur in younger adults. We tested memory and learning in 38 women (25-45 years old, recruited for a larger observational study in women with polycystic ovary syndrome. These women varied in health status, though not significantly between cases (n=23 and controls (n=15. Performance on tests sensitive to medial temporal lobe function (CANTABeclipse, Cambridge Cognition Ltd., i.e. verbal memory, visuo-spatial learning and delayed pattern matching, were compared with intakes of macronutrients from 7-day diet diaries and physiological indices of metabolic syndrome. Partial correlations were adjusted for age, activity and verbal IQ (National Adult Reading Test. Greater intakes of saturated and trans fats, and higher saturated to unsaturated fat ratio (Sat:UFA, were associated with more errors on the visuo-spatial task and with poorer word recall and recognition. Unexpectedly, higher UFA intake predicted poorer performance on the word recall and recognition measures. Fasting insulin was positively correlated with poorer word recognition only, whereas higher blood total cholesterol was associated only with visuo-spatial learning errors. None of these variables predicted performance on a delayed pattern matching test. The significant nutrient-cognition relationships were tested for mediation by total energy intake: saturated and trans fat intakes, and Sat:UFA, remained significant predictors specifically of visuo-spatial learning errors, whereas total fat and UFA intakes now predicted only poorer word recall. Examination of associations separately for mono- (MUFA and polyunsaturated fats suggested that only MUFA intake was predictive of poorer word recall. Saturated and trans fats, and fasting insulin, may already be associated with cognitive deficits in younger women. The findings need extending but may have important implications for public

  6. Reference change values and power functions

    DEFF Research Database (Denmark)

    Iglesias Canadell, Natàlia; Hyltoft Petersen, Per; Jensen, Esther

    2004-01-01

    Repeated samplings and measurements in the monitoring of patients to look for changes are common clinical problems. The "reference change value", calculated as zp x [2 x (CVI2 + CVA2)](1/2), where zp is the z-statistic and CVI and CVA are within-subject and analytical coefficients of variation......, respectively, has been used to detect whether a measured difference between measurements is statistically significant. However, a reference change value only detects the probability of false-positives (type I error), and for this reason, a model to calculate the risk of missing significant changes in serial...

  7. The use of specialisation indices to predict vulnerability of coral-feeding butterflyfishes to environmental change

    KAUST Repository

    Lawton, Rebecca J.

    2011-07-14

    In the absence of detailed assessments of extinction risk, ecological specialisation is often used as a proxy of vulnerability to environmental disturbances and extinction risk. Numerous indices can be used to estimate specialisation; however, the utility of these different indices to predict vulnerability to future environmental change is unknown. Here we compare the performance of specialisation indices using coral-feeding butterflyfishes as a model group. Our aims were to 1) quantify the dietary preferences of three butterflyfish species across habitats with differing levels of resource availability; 2) investigate how estimates of dietary specialisation vary with the use of different specialisation indices; 3) determine which specialisation indices best inform predictions of vulnerability to environmental change; and 4) assess the utility of resource selection functions to inform predictions of vulnerability to environmental change. The relative level of dietary specialisation estimated for all three species varied when different specialisation indices were used, indicating that the choice of index can have a considerable impact upon estimates of specialisation. Specialisation indices that do not consider resource abundance may fail to distinguish species that primarily use common resources from species that actively target resources disproportionately more than they are available. Resource selection functions provided the greatest insights into the potential response of species to changes in resource availability. Examination of resource selection functions, in addition to specialisation indices, indicated that Chaetodon trifascialis was the most specialised feeder, with highly conserved dietary preferences across all sites, suggesting that this species is highly vulnerable to the impacts of climate-induced coral loss on reefs. Our results indicate that vulnerability assessments based on some specialisation indices may be misleading and the best estimates of

  8. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke

    Emissions of greenhouse gases among other things lead to increasing atmospheric CO2 concentrations, increasing temperatures, changed precipitation patterns and thus multi-factorial changes in the growth environment (1). Primary producers in both terrestrial and aquatic ecosystems and consumers in...

  9. The relationship between change in cognition and change in functional ability in schizophrenia during cognitive and psychosocial rehabilitation.

    Science.gov (United States)

    Rispaud, Samuel G; Rose, Jennifer; Kurtz, Matthew M

    2016-10-30

    While a wealth of studies have evaluated cross-sectional links between cognition and functioning in schizophrenia, few have investigated the relationship between change in cognition and change in functioning in the context of treatment trials targeted at cognition. Identifying cognitive skills that, when improved, predict improvement in functioning will guide the development of more targeted rehabilitation for this population. The present study identifies the relationship between change in specific cognitive skills and change in functional ability during one year of cognitive rehabilitation. Ninety-six individuals with schizophrenia were assessed with a battery of cognitive measures and a measure of performance-based functioning before and after cognitive training consisting of either drill-and-practice cognitive remediation or computer skills training. Results revealed that while working and episodic memory, problem-solving, and processing speed skills all improved during the trial, only improved working memory and processing speed skills predicted improvement in functional ability. Secondary analyses revealed these relationships were driven by individuals who showed a moderate level (SD≥0.5) of cognitive improvement during the trial. These findings suggest that while a variety of cognitive skills may improve during training targeted at cognition, only improvements in a subset of cognitive functions may translate into functional gains.

  10. The inventory-based approach for prediction of SOC change following land use change

    Directory of Open Access Journals (Sweden)

    van Wesemael B.

    2004-01-01

    Full Text Available This paper describes and illustrates an approach to predict soil organic carbon (SOC change in time after land use change as derived from SOC differences in space. The approach requires the availability of a SOC inventory for spatially explicit combinations of soil and land use type, further termed landscape units (LSU. SOC of LSU with equal soil type but different land use type are compared and the observed differences in SOC are interpreted as the expected SOC change after the corresponding land use change. From a confrontation with time series of agro-statistical data on crop and grassland areas and on animal manure production, we conclude that the approach is a low-cost alternative for more complex methods like multitemporal assessments and modelling, provided that (i an inventory reflecting current management and climate conditions and (ii additional information on the extent and type of recent land use changes are available. Examples of land use and land management changes are discussed, such as grassland – cropland conversions, the conversion of permanent to temporary grassland, or changes in manure application.

  11. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach

    Directory of Open Access Journals (Sweden)

    Xavier eLE ROUX

    2016-05-01

    Full Text Available Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global change scenarios for central California on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB. Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the ‘High CO2+Nitrogen+Precipitation’ treatment. The mechanistic trait-based model, which simulated ecological niches of NOB types consistent with previous ecophysiological reports, helped predicting the observed effects of global change on NOB and elucidating the underlying biotic and abiotic controls. Our results are a starting point for representing the overwhelming diversity of soil bacteria by a few functional types that can be incorporated into models of terrestrial ecosystems and biogeochemical processes.

  12. Climate change forecasts, long-term spatio-temporal prediction and the resilience of dry ecosystems

    Science.gov (United States)

    Shafran-Natan, Rakefet; Svoray, Tal; Avi, Perevolotsky

    2010-05-01

    Primary production is an important indicator to climatic changes in drylands, while reduction in productivity has many consequences on ecosystem functioning. We suggest that the response of dry ecosystems to climate change should lead to a change in spatial patterns of grasses without a substantial change in ecosystem resilience. We used field data and a recently published spatio-temporally explicit model to study factors affecting long-term variation in primary production in two dry ecosystems: semi-arid (SAE) and Mediterranean (DME) dominated by annual vegetation. The model was operated in both patch and landscape scales and was executed along 30 years (1979-2008) at SAE and along 21 years (1986-1990; 1993-2008) at DME. Model predictions were validated against samples that were harvested in each site at the end of the growing season, over 15 seasons (1994-2008) at SAE (0.63

  13. Does obesity predict functional outcome in the dysvascular amputee?

    Science.gov (United States)

    Kalbaugh, Corey A; Taylor, Spence M; Kalbaugh, Brooke A; Halliday, Matthew; Daniel, Grace; Cass, Anna L; Blackhurst, Dawn W; Cull, David L; Langan, Eugene M; Carsten, Christopher G; York, John W; Snyder, Bruce A; Youkey, Jerry R

    2006-08-01

    Limited information is available concerning the effects of obesity on the functional outcomes of patients requiring major lower limb amputation because of peripheral arterial disease (PAD). The purpose of this study was to examine the predictive ability of body mass index (BMI) to determine functional outcome in the dysvascular amputee. To do this, 434 consecutive patients (mean age, 65.8 +/- 13.3, 59% male, 71.4% diabetic) undergoing major limb amputation (225 below-knee amputation, 27 through-knee amputation, 132 above-knee amputation, and 50 bilateral) as a complication of PAD from January 1998 through May 2004 were analyzed according to preoperative BMI. BMI was classified according to the four-group Center for Disease Control system: underweight, 0 to 18.4 kg/m2; normal, 18.5 to 24.9 kg/m2; overweight, 25 to 29.9 kg/m2; and obese, > or = 30 kg/m2. Outcome parameters measured included prosthetic usage, maintenance of ambulation, survival, and maintenance of independent living status. The chi2 test for association was used to examine prosthesis wear. Kaplan-Meier curves were constructed to assess maintenance of ambulation, survival, and maintenance of independent living status. Multivariate analysis using the multiple logistic regression model and a Cox proportional hazards model were used to predict variables independently associated with prosthetic use and ambulation, survival, and independence, respectively. Overall prosthetic usage and 36-month ambulation, survival, and independent living status for the entire cohort was 48.6 per cent, 42.8 per cent, 48.1 per cent, 72.3 per cent, and for patients with normal BMI was 41.5 per cent, 37.4 per cent, 45.6 per cent, and 69.5 per cent, respectively. There was no statistically significant difference in outcomes for overweight patients (59.2%, 50.7%, 52.5%, and 75%) or obese patients (51.8%, 46.2%, 49.7%, and 75%) when compared with normal patients. Although there were significantly poorer outcomes for underweight

  14. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  15. Function and Phenotype prediction through Data and Knowledge Fusion

    KAUST Repository

    Vespoor, Karen

    2016-01-27

    The biomedical literature captures the most current biomedical knowledge and is a tremendously rich resource for research. With over 24 million publications currently indexed in the US National Library of Medicine’s PubMed index, however, it is becoming increasingly challenging for biomedical researchers to keep up with this literature. Automated strategies for extracting information from it are required. Large-scale processing of the literature enables direct biomedical knowledge discovery. In this presentation, I will introduce the use of text mining techniques to support analysis of biological data sets, and will specifically discuss applications in protein function and phenotype prediction, as well as analysis of genetic variants that are supported by analysis of the literature and integration with complementary structured resources.

  16. Link prediction boosted psychiatry disorder classification for functional connectivity network

    Science.gov (United States)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  17. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    DEFF Research Database (Denmark)

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey;

    2016-01-01

    change scenarios for central California) on the potential activity, abundance and dominant taxa of soil nitrite-oxidizing bacteria (NOB). Using a trait-based model, we then tested whether categorizing NOB into a few functional groups unified by physiological traits enables understanding and predicting......Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil...... how soil NOB respond to global environmental change. Contrasted responses to global change treatments were observed between three main NOB functional types. In particular, putatively mixotrophic Nitrobacter, rare under most treatments, became dominant under the 'High CO2+Nitrogen...

  18. Striatum-medial prefrontal cortex connectivity predicts developmental changes in reinforcement learning.

    Science.gov (United States)

    van den Bos, Wouter; Cohen, Michael X; Kahnt, Thorsten; Crone, Eveline A

    2012-06-01

    During development, children improve in learning from feedback to adapt their behavior. However, it is still unclear which neural mechanisms might underlie these developmental changes. In the current study, we used a reinforcement learning model to investigate neurodevelopmental changes in the representation and processing of learning signals. Sixty-seven healthy volunteers between ages 8 and 22 (children: 8-11 years, adolescents: 13-16 years, and adults: 18-22 years) performed a probabilistic learning task while in a magnetic resonance imaging scanner. The behavioral data demonstrated age differences in learning parameters with a stronger impact of negative feedback on expected value in children. Imaging data revealed that the neural representation of prediction errors was similar across age groups, but functional connectivity between the ventral striatum and the medial prefrontal cortex changed as a function of age. Furthermore, the connectivity strength predicted the tendency to alter expectations after receiving negative feedback. These findings suggest that the underlying mechanisms of developmental changes in learning are not related to differences in the neural representation of learning signals per se but rather in how learning signals are used to guide behavior and expectations.

  19. Planning versus action: Different decision-making processes predict plans to change one's diet versus actual dietary behavior.

    Science.gov (United States)

    Kiviniemi, Marc T; Brown-Kramer, Carolyn R

    2015-05-01

    Most health decision-making models posit that deciding to engage in a health behavior involves forming a behavioral intention which then leads to actual behavior. However, behavioral intentions and actual behavior may not be functionally equivalent. Two studies examined whether decision-making factors predicting dietary behaviors were the same as or distinct from those predicting intentions. Actual dietary behavior was proximally predicted by affective associations with the behavior. By contrast, behavioral intentions were predicted by cognitive beliefs about behaviors, with no contribution of affective associations. This dissociation has implications for understanding individual regulation of health behaviors and for behavior change interventions.

  20. Variability in functional brain networks predicts expertise during action observation.

    Science.gov (United States)

    Amoruso, Lucía; Ibáñez, Agustín; Fonseca, Bruno; Gadea, Sebastián; Sedeño, Lucas; Sigman, Mariano; García, Adolfo M; Fraiman, Ricardo; Fraiman, Daniel

    2017-02-01

    Observing an action performed by another individual activates, in the observer, similar circuits as those involved in the actual execution of that action. This activation is modulated by prior experience; indeed, sustained training in a particular motor domain leads to structural and functional changes in critical brain areas. Here, we capitalized on a novel graph-theory approach to electroencephalographic data (Fraiman et al., 2016) to test whether variability in functional brain networks implicated in Tango observation can discriminate between groups differing in their level of expertise. We found that experts and beginners significantly differed in the functional organization of task-relevant networks. Specifically, networks in expert Tango dancers exhibited less variability and a more robust functional architecture. Notably, these expertise-dependent effects were captured within networks derived from electrophysiological brain activity recorded in a very short time window (2s). In brief, variability in the organization of task-related networks seems to be a highly sensitive indicator of long-lasting training effects. This finding opens new methodological and theoretical windows to explore the impact of domain-specific expertise on brain plasticity, while highlighting variability as a fruitful measure in neuroimaging research.

  1. Human functional neuroimaging of brain changes associated with practice

    OpenAIRE

    GARAVAN, HUGH PATRICK

    2005-01-01

    PUBLISHED The discovery that experience-driven changes in the human brain can occur from a neural to a cortical level throughout the lifespan has stimulated a proliferation of research into how neural function changes in response to experience, enabled by neuroimaging methods such as positron emission tomography and functional magnetic resonance imaging. Studies attempt to characterize these changes by examining how practice on a task affects the functional anatomy underlying performance. ...

  2. Functional connectivity during rested wakefulness predicts vulnerability to sleep deprivation.

    Science.gov (United States)

    Yeo, B T Thomas; Tandi, Jesisca; Chee, Michael W L

    2015-05-01

    Significant inter-individual differences in vigilance decline following sleep deprivation exist. We characterized functional connectivity in 68 healthy young adult participants in rested wakefulness and following a night of total sleep deprivation. After whole brain signal regression, functionally connected cortical networks during the well-rested state exhibited reduced correlation following sleep deprivation, suggesting that highly integrated brain regions become less integrated during sleep deprivation. In contrast, anti-correlations in the well-rested state became less so following sleep deprivation, suggesting that highly segregated networks become less segregated during sleep deprivation. Subjects more resilient to vigilance decline following sleep deprivation showed stronger anti-correlations among several networks. The weaker anti-correlations overlapped with connectivity alterations following sleep deprivation. Resilient individuals thus evidence clearer separation of highly segregated cortical networks in the well-rested state. In contrast to corticocortical connectivity, subcortical-cortical connectivity was comparable across resilient and vulnerable groups despite prominent state-related changes in both groups. Because sleep deprivation results in a significant elevation of whole brain signal amplitude, the aforesaid signal changes and group contrasts may be masked in analyses omitting their regression, suggesting possible value in regressing whole brain signal in certain experimental contexts.

  3. Comparing Predictions and Outcomes : Theory and Application to Income Changes

    NARCIS (Netherlands)

    Das, J.W.M.; Dominitz, J.; van Soest, A.H.O.

    1997-01-01

    Household surveys often elicit respondents' intentions or predictions of future outcomes. The survey questions may ask respondents to choose among a selection of (ordered) response categories. If panel data or repeated cross-sections are available, predictions may be compared with realized outcomes.

  4. Short-term changes in arterial inflammation predict long-term changes in atherosclerosis progression

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Philip [Massachusetts General Hospital and Harvard Medical School, Cardiology Division and Cardiac MR PET CT Program, Boston, MA (United States); McMaster University, Population Health Research Institute, Department of Medicine, and Department of Radiology, Hamilton, ON (Canada); Ishai, Amorina; Tawakol, Ahmed [Massachusetts General Hospital and Harvard Medical School, Cardiology Division and Cardiac MR PET CT Program, Boston, MA (United States); Mani, Venkatesh [Icahn School of Medicine at Mount Sinai School of Medicine, Translational and Molecular Imaging Institute and Department of Radiology, New York, NY (United States); Kallend, David [The Medicines Company, Parsippany, NJ (United States); Rudd, James H.F. [University of Cambridge, Division of Cardiovascular Medicine, Cambridge (United Kingdom); Fayad, Zahi A. [Icahn School of Medicine at Mount Sinai School of Medicine, Translational and Molecular Imaging Institute and Department of Radiology, New York, NY (United States); Icahn School of Medicine at Mount Sinai School of Medicine, Hess CSM Building Floor TMII, Rm S1-104, Translational and Molecular Imaging Institute and Department of Radiology, New York, NY (United States)

    2017-01-15

    It remains unclear whether changes in arterial wall inflammation are associated with subsequent changes in the rate of structural progression of atherosclerosis. In this sub-study of the dal-PLAQUE clinical trial, multi-modal imaging was performed using 18-fludeoxyglucose (FDG) positron emission tomography (PET, at 0 and 6 months) and magnetic resonance imaging (MRI, at 0 and 24 months). The primary objective was to determine whether increasing FDG uptake at 6 months predicted atherosclerosis progression on MRI at 2 years. Arterial inflammation was measured by the carotid FDG target-to-background ratio (TBR), and atherosclerotic plaque progression was defined as the percentage change in carotid mean wall area (MWA) and mean wall thickness (MWT) on MRI between baseline and 24 months. A total of 42 participants were included in this sub-study. The mean age of the population was 62.5 years, and 12 (28.6 %) were women. In participants with (vs. without) any increase in arterial inflammation over 6 months, the long-term changes in both MWT (% change MWT: 17.49 % vs. 1.74 %, p = 0.038) and MWA (% change MWA: 25.50 % vs. 3.59 %, p = 0.027) were significantly greater. Results remained significant after adjusting for clinical and biochemical covariates. Individuals with no increase in arterial inflammation over 6 months had no significant structural progression of atherosclerosis over 24 months as measured by MWT (p = 0.616) or MWA (p = 0.373). Short-term changes in arterial inflammation are associated with long-term structural atherosclerosis progression. These data support the concept that therapies that reduce arterial inflammation may attenuate or halt progression of atherosclerosis. (orig.)

  5. Hemostatic system changes predictive value in patients with ischemic brain disorders

    Directory of Open Access Journals (Sweden)

    Raičević Ranko

    2002-01-01

    Full Text Available The aim of this research was to determine the importance of tracking the dynamics of changes of the hemostatic system factors (aggregation of thrombocytes, D-dimer, PAI-1, antithrombin III, protein C and protein S, factor VII and factor VIII, fibrin degradation products, euglobulin test and the activated partial thromboplastin time – aPTPV in relation to the level of the severity of ischemic brain disorders (IBD and the level of neurological and functional deficiency in the beginning of IBD manifestation from 7 to 10 days, 19 to 21 day, and after 3 to 6 months. The research results confirmed significant predictive value of changes of hemostatic system with the predomination of procoagulant factors, together with the insufficiency of fibrinolysis. Concerning the IBD severity and it's outcome, the significant predictive value was shown in the higher levels of PAI-1 and the lower level of antithrombin III, and borderline significant value was shown in the accelerated aggregation of thrombocytes and the increased concentration of D-dimer. It could be concluded that the tracking of the dynamics of changes in parameters of hemostatic system proved to be an easily accessible method with the significant predictive value regarding the development of more severe. IBD cases and the outcome of the disease itself.

  6. A data mining based approach to predict spatiotemporal changes in satellite images

    Science.gov (United States)

    Boulila, W.; Farah, I. R.; Ettabaa, K. Saheb; Solaiman, B.; Ghézala, H. Ben

    2011-06-01

    The interpretation of remotely sensed images in a spatiotemporal context is becoming a valuable research topic. However, the constant growth of data volume in remote sensing imaging makes reaching conclusions based on collected data a challenging task. Recently, data mining appears to be a promising research field leading to several interesting discoveries in various areas such as marketing, surveillance, fraud detection and scientific discovery. By integrating data mining and image interpretation techniques, accurate and relevant information (i.e. functional relation between observed parcels and a set of informational contents) can be automatically elicited. This study presents a new approach to predict spatiotemporal changes in satellite image databases. The proposed method exploits fuzzy sets and data mining concepts to build predictions and decisions for several remote sensing fields. It takes into account imperfections related to the spatiotemporal mining process in order to provide more accurate and reliable information about land cover changes in satellite images. The proposed approach is validated using SPOT images representing the Saint-Denis region, capital of Reunion Island. Results show good performances of the proposed framework in predicting change for the urban zone.

  7. PREDICTS: Projecting Responses of Ecological Diversity in Changing Terrestrial Systems

    Directory of Open Access Journals (Sweden)

    Georgina Mace

    2012-12-01

    Full Text Available The PREDICTS project (www.predicts.org.uk is a three-year NERC-funded project to model and predict at a global scale how local terrestrial diversity responds to human pressures such as land use, land cover, pollution, invasive species and infrastructure. PREDICTS is a collaboration between Imperial College London, the UNEP World Conservation Monitoring Centre, Microsoft Research Cambridge, UCL and the University of Sussex. In order to meet its aims, the project relies on extensive data describing the diversity and composition of biological communities at a local scale. Such data are collected on a vast scale through the committed efforts of field ecologists. If you have appropriate data that you would be willing to share with us, please get in touch (enquiries@predicts.org.uk. All contributions will be acknowledged appropriately and all data contributors will be included as co-authors on an open-access paper describing the database.

  8. Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays

    Energy Technology Data Exchange (ETDEWEB)

    Morton, M.J., E-mail: michael.morton@astrazeneca.com [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Armstrong, D.; Abi Gerges, N. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Bridgland-Taylor, M. [Discovery Sciences, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom); Pollard, C.E.; Bowes, J.; Valentin, J.-P. [Drug Safety and Metabolism, AstraZeneca, Macclesfield, Cheshire SK10 4TG (United Kingdom)

    2014-09-01

    Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity in the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.

  9. Investigating repetition and change in musical rhythm by functional MRI.

    Science.gov (United States)

    Danielsen, A; Otnæss, M K; Jensen, J; Williams, S C R; Ostberg, B C

    2014-09-05

    Groove-based rhythm is a basic and much appreciated feature of Western popular music. It is commonly associated with dance, movement and pleasure and is characterized by the repetition of a basic rhythmic pattern. At various points in the musical course, drum breaks occur, representing a change compared to the repeated pattern of the groove. In the present experiment, we investigated the brain response to such drum breaks in a repetitive groove. Participants were scanned with functional magnetic resonance imaging (fMRI) while listening to a previously unheard naturalistic groove with drum breaks at uneven intervals. The rhythmic pattern and the timing of its different parts as performed were the only aspects that changed from the repetitive sections to the breaks. Differences in blood oxygen level-dependent activation were analyzed. In contrast to the repetitive parts, the drum breaks activated the left cerebellum, the right inferior frontal gyrus (RIFG), and the superior temporal gyri (STG) bilaterally. A tapping test using the same stimulus showed an increase in the standard deviation of inter-tap-intervals in the breaks versus the repetitive parts, indicating extra challenges for auditory-motor integration in the drum breaks. Both the RIFG and STG have been associated with structural irregularity and increase in musical-syntactical complexity in several earlier studies, whereas the left cerebellum is known to play a part in timing. Together these areas may be recruited in the breaks due to a prediction error process whereby the internal model is being updated. This concurs with previous research suggesting a network for predictive feed-forward control that comprises the cerebellum and the cortical areas that were activated in the breaks.

  10. PREDICTION OF CHANGES IN VEGETATION DISTRIBUTION UNDER CLIMATE CHANGE SCENARIOS USING MODIS DATASET

    Directory of Open Access Journals (Sweden)

    H. Hirayama

    2016-06-01

    Full Text Available The distribution of vegetation is expected to change under the influence of climate change. This study utilizes vegetation maps derived from Terra/MODIS data to generate a model of current climate conditions suitable to beech-dominated deciduous forests, which are the typical vegetation of Japan’s cool temperate zone. This model will then be coordinated with future climate change scenarios to predict the future distribution of beech forests. The model was developed by using the presence or absence of beech forest as the dependent variable. Four climatic variables; mean minimum daily temperature of the coldest month (TMC,warmth index (WI, winter precipitation (PRW and summer precipitation (PRS: and five geophysical variables; topography (TOPO, surface geology (GEOL, soil (SOIL, slope aspect (ASP, and inclination (INCL; were adopted as independent variables. Previous vegetation distribution studies used point data derived from field surveys. The remote sensing data utilized in this study, however, should permit collecting of greater amounts of data, and also frequent updating of data and distribution maps. These results will hopefully show that use of remote sensing data can provide new insights into our understanding of how vegetation distribution will be influenced by climate change.

  11. Prediction of Changes in Vegetation Distribution Under Climate Change Scenarios Using Modis Dataset

    Science.gov (United States)

    Hirayama, Hidetake; Tomita, Mizuki; Hara, Keitarou

    2016-06-01

    The distribution of vegetation is expected to change under the influence of climate change. This study utilizes vegetation maps derived from Terra/MODIS data to generate a model of current climate conditions suitable to beech-dominated deciduous forests, which are the typical vegetation of Japan's cool temperate zone. This model will then be coordinated with future climate change scenarios to predict the future distribution of beech forests. The model was developed by using the presence or absence of beech forest as the dependent variable. Four climatic variables; mean minimum daily temperature of the coldest month (TMC) warmth index (WI) winter precipitation (PRW) and summer precipitation (PRS): and five geophysical variables; topography (TOPO), surface geology (GEOL), soil (SOIL), slope aspect (ASP), and inclination (INCL); were adopted as independent variables. Previous vegetation distribution studies used point data derived from field surveys. The remote sensing data utilized in this study, however, should permit collecting of greater amounts of data, and also frequent updating of data and distribution maps. These results will hopefully show that use of remote sensing data can provide new insights into our understanding of how vegetation distribution will be influenced by climate change.

  12. Genomic islands predict functional adaptation in marine actinobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  13. Performance-based and self-reported physical functioning in low-functioning older persons: Congruence of change and the impact of depressive symptoms

    NARCIS (Netherlands)

    Kempen, G.I J M; Sullivan, M.; van Sonderen, E.; Ormel, J.

    1999-01-01

    This prospective cohort study examines the impact of depressive symptoms on changes in self-reported physical functioning in 574 low-functioning older persons. The data were collected in two waves in 1993 and 1995. initial levels of depressive symptoms were not predictive for subsequent change in se

  14. Performance-based and self-reported physical functioning in low-functioning older persons : Congruence of change and the impact of depressive symptoms

    NARCIS (Netherlands)

    Kempen, GIJM; Sullivan, M; van Sonderen, E; Ormel, J

    1999-01-01

    This prospective cohort study examines the impact of depressive symptoms on changes in self-reported physical functioning in 574 low-functioning older persons. The data were collected in two waves in 1993 and 1995. initial levels of depressive symptoms were not predictive for subsequent change in se

  15. Prediction of crack density and electrical resistance changes in indium tin oxide/polymer thin films under tensile loading

    KAUST Repository

    Mora Cordova, Angel

    2014-06-11

    We present unified predictions for the crack onset strain, evolution of crack density, and changes in electrical resistance in indium tin oxide/polymer thin films under tensile loading. We propose a damage mechanics model to quantify and predict such changes as an alternative to fracture mechanics formulations. Our predictions are obtained by assuming that there are no flaws at the onset of loading as opposed to the assumptions of fracture mechanics approaches. We calibrate the crack onset strain and the damage model based on experimental data reported in the literature. We predict crack density and changes in electrical resistance as a function of the damage induced in the films. We implement our model in the commercial finite element software ABAQUS using a user subroutine UMAT. We obtain fair to good agreement with experiments. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Functional identity and functional structure change through succession in a rocky intertidal marine herbivore assemblage.

    Science.gov (United States)

    Aguilera, Moisés A; Navarrete, Sergio A

    2012-01-01

    Despite the great interest in characterizing the functional structure and resilience of functional groups in natural communities, few studies have examined in which way the roles and relationships of coexisting species change during community succession, a fundamental and natural process that follows the release of new resources in terrestrial and aquatic ecosystems. Variation in algal traits that characterize different phases and stages of community succession on rocky shores are likely to influence the magnitude, direction of effects, and the level of redundancy and complementarity in the diverse assemblage of herbivores. Two separate field experiments were conducted to quantify per capita and population effects and the functional relationship (i.e., redundancy or complementarity) of four herbivore species found in central Chile during early and late algal succession. The first experiment examined grazer effects on the colonization and establishment of early-succession algal species. The second experiment examined effects on the late-successional, dominant corticated alga Mazzaella laminarioides. Complementary laboratory experiments with all species and under natural environmental conditions allowed us to further characterize the collective effects of these species. We found that, during early community succession, all herbivore species had similar effects on the ephemeral algae, ulvoids, but only during the phase of colonization. Once these algae were established, only a subset of the species was able to control their abundance. During late succession, only the keyhole limpet Fissurella crassa could control corticated Mazzaella. The functional relationships among these species changed dramatically from redundant effects on ephemeral algae during early colonization, to a more complementary role on established early-successional algae, to a dominant (i.e., keystone) effect on late succession. This study highlights that functional relationship within consumer

  17. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke;

    directions of ecosystem change due to differing adaptive capacities and new species assemblages. Within the framework ‘ecosystem services’ both marketed and non-marketed utilities of the natural environment are formulated (3). Provisioning, cultural, supporting, and regulating ecosystem services have been...... ecosystems and between ecosystems. A common metric may thus show high variability. Plural metrics may be needed to adequately describe the variety of different ecosystem services in different regional settings. By evaluation of available data from e.g. global monitoring initiatives of ecosystem services...... from the natural environment, how these can be related to life cycle inventory results for GHG emissions and what would be appropriate metrics for the resulting damage to the area of protection ‘Natural environment’. References [1] Fischlin A, Midgley JT et al 2007. Chapter 4 Ecosystems...

  18. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  19. Gene function prediction based on the Gene Ontology hierarchical structure.

    Science.gov (United States)

    Cheng, Liangxi; Lin, Hongfei; Hu, Yuncui; Wang, Jian; Yang, Zhihao

    2014-01-01

    The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure. Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall: 48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification model applies to the set of texts in an ontology structure or with a hierarchical relationship.

  20. Aggressive behavior and change in salivary testosterone concentrations predict willingness to engage in a competitive task.

    Science.gov (United States)

    Carré, Justin M; McCormick, Cheryl M

    2008-08-01

    The current study investigated relationships among aggressive behavior, change in salivary testosterone concentrations, and willingness to engage in a competitive task. Thirty-eight male participants provided saliva samples before and after performing the Point Subtraction Aggression Paradigm (a laboratory measure that provides opportunity for aggressive and defensive behavior while working for reward; all three involve pressing specific response keys). Baseline testosterone concentrations were not associated with aggressive responding. However, aggressive responding (but not point reward or point protection responding) predicted the pre- to post-PSAP change in testosterone: Those with the highest aggressive responding had the largest percent increase in testosterone concentrations. Together, aggressive responding and change in testosterone predicted willingness to compete following the PSAP. Controlling for aggression, men who showed a rise in testosterone were more likely to choose to compete again (p=0.03) and controlling for testosterone change, men who showed the highest level of aggressive responding were more likely to choose the non-competitive task (p=0.02). These results indicate that situation-specific aggressive behavior and testosterone responsiveness are functionally relevant predictors of future social behavior.

  1. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions

    Science.gov (United States)

    Bernardino, Angelo F.; Netto, Sérgio A.; Pagliosa, Paulo R.; Barros, Francisco; Christofoletti, Ronaldo A.; Rosa Filho, José S.; Colling, André; Lana, Paulo C.

    2015-12-01

    Estuaries are threatened coastal ecosystems that support relevant ecological functions worldwide. The predicted global climate changes demand actions to understand, anticipate and avoid further damage to estuarine habitats. In this study we reviewed data on polychaete assemblages, as a surrogate for overall benthic communities, from 51 estuaries along five Marine Ecoregions of Brazil (Amazonia, NE Brazil, E Brazil, SE Brazil and Rio Grande). We critically evaluated the adaptive capacity and ultimately the resilience to decadal changes in temperature and rainfall of the polychaete assemblages. As a support for theoretical predictions on changes linked to global warming we compared the variability of benthic assemblages across the ecoregions with a 40-year time series of temperature and rainfall data. We found a significant upward trend in temperature during the last four decades at all marine ecoregions of Brazil, while rainfall increase was restricted to the SE Brazil ecoregion. Benthic assemblages and climate trends varied significantly among and within ecoregions. The high variability in climate patterns in estuaries within the same ecoregion may lead to correspondingly high levels of noise on the expected responses of benthic fauna. Nonetheless, we expect changes in community structure and productivity of benthic species at marine ecoregions under increasing influence of higher temperatures, extreme events and pollution.

  2. Error estimates for density-functional theory predictions of surface energy and work function

    Science.gov (United States)

    De Waele, Sam; Lejaeghere, Kurt; Sluydts, Michael; Cottenier, Stefaan

    2016-12-01

    Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of reliable surface properties, this work calculates surface energies and work functions for a large and diverse test set of crystalline solids. They are compared to experimental values by performing a linear regression, which results in a measure of the predictable and material-specific error of the theoretical result. Two of the most prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision. LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE significantly underestimates the surface energy for materials with a large correlation energy.

  3. Executive functions in 5- to 8-year olds: Developmental changes and relationship to academic achievement

    OpenAIRE

    Röthlisberger, Marianne; Neuenschwander, Regula; Cimeli, Patrizia; Roebers, Claudia M.

    2013-01-01

    Pronounced improvements in executive functions (EF) during preschool years have been documented in cross-sectional studies. However, longitudinal evidence on EF development during the transition to school and predictive associations between early EF and later school achievement are still scarce. This study examined developmental changes in EF across three time-points, the predictive value of EF for mathematical, reading and spelling skills and explored children's specific academic attainment ...

  4. Ways that Social Change Predicts Personal Quality of Life

    Science.gov (United States)

    Cheung, Chau-Kiu; Leung, Kwok

    2010-01-01

    A notable way that social change affects personal quality of life would rely on the person's experience with social change. This experience may influence societal quality of life and quality of work life, which may in turn affect personal quality of life. Additionally, the experience of social change is possibly less detrimental to personal…

  5. Plant physiological models of heat, water and photoinhibition stress for climate change modelling and agricultural prediction

    Science.gov (United States)

    Nicolas, B.; Gilbert, M. E.; Paw U, K. T.

    2015-12-01

    Soil-Vegetation-Atmosphere Transfer (SVAT) models are based upon well understood steady state photosynthetic physiology - the Farquhar-von Caemmerer-Berry model (FvCB). However, representations of physiological stress and damage have not been successfully integrated into SVAT models. Generally, it has been assumed that plants will strive to conserve water at higher temperatures by reducing stomatal conductance or adjusting osmotic balance, until potentially damaging temperatures and the need for evaporative cooling become more important than water conservation. A key point is that damage is the result of combined stresses: drought leads to stomatal closure, less evaporative cooling, high leaf temperature, less photosynthetic dissipation of absorbed energy, all coupled with high light (photosynthetic photon flux density; PPFD). This leads to excess absorbed energy by Photosystem II (PSII) and results in photoinhibition and damage, neither are included in SVAT models. Current representations of photoinhibition are treated as a function of PPFD, not as a function of constrained photosynthesis under heat or water. Thus, it seems unlikely that current models can predict responses of vegetation to climate variability and change. We propose a dynamic model of damage to Rubisco and RuBP-regeneration that accounts, mechanistically, for the interactions between high temperature, light, and constrained photosynthesis under drought. Further, these predictions are illustrated by key experiments allowing model validation. We also integrated this new framework within the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA). Preliminary results show that our approach can be used to predict reasonable photosynthetic dynamics. For instances, a leaf undergoing one day of drought stress will quickly decrease its maximum quantum yield of PSII (Fv/Fm), but it won't recover to unstressed levels for several days. Consequently, cumulative effect of photoinhibition on photosynthesis can cause

  6. SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins.

    Science.gov (United States)

    Hu, Jing; Ng, Pauline C

    2013-01-01

    Indels in the coding regions of a gene can either cause frameshifts or amino acid insertions/deletions. Frameshifting indels are indels that have a length that is not divisible by 3 and subsequently cause frameshifts. Indels that have a length divisible by 3 cause amino acid insertions/deletions or block substitutions; we call these 3n indels. The new amino acid changes resulting from 3n indels could potentially affect protein function. Therefore, we construct a SIFT Indel prediction algorithm for 3n indels which achieves 82% accuracy, 81% sensitivity, 82% specificity, 82% precision, 0.63 MCC, and 0.87 AUC by 10-fold cross-validation. We have previously published a prediction algorithm for frameshifting indels. The rules for the prediction of 3n indels are different from the rules for the prediction of frameshifting indels and reflect the biological differences of these two different types of variations. SIFT Indel was applied to human 3n indels from the 1000 Genomes Project and the Exome Sequencing Project. We found that common variants are less likely to be deleterious than rare variants. The SIFT indel prediction algorithm for 3n indels is available at http://sift-dna.org/

  7. Gradient radial basis function networks for nonlinear and nonstationary time series prediction.

    Science.gov (United States)

    Chng, E S; Chen, S; Mulgrew, B

    1996-01-01

    We present a method of modifying the structure of radial basis function (RBF) network to work with nonstationary series that exhibit homogeneous nonstationary behavior. In the original RBF network, the hidden node's function is to sense the trajectory of the time series and to respond when there is a strong correlation between the input pattern and the hidden node's center. This type of response, however, is highly sensitive to changes in the level and trend of the time series. To counter these effects, the hidden node's function is modified to one which detects and reacts to the gradient of the series. We call this new network the gradient RBF (GRBF) model. Single and multistep predictive performance for the Mackey-Glass chaotic time series were evaluated using the classical RBF and GRBF models. The simulation results for the series without and with a tine-varying mean confirm the superior performance of the GRBF predictor over the RBF predictor.

  8. Enhancing the Executive Functions of 3-Year-Olds in the Dimensional Change Card Sort Task

    Science.gov (United States)

    Perone, Sammy; Molitor, Stephen J.; Buss, Aaron T.; Spencer, John P.; Samuelson, Larissa K.

    2015-01-01

    Executive functions enable flexible thinking, something young children are notoriously bad at. For instance, in the dimensional change card sort (DCCS) task, 3-year-olds can sort cards by one dimension (shape), but continue to sort by this dimension when asked to switch (to color). This study tests a prediction of a dynamic neural field model that…

  9. Predicted responses of invasive mammal communities to climate-related changes in mast frequency in forest ecosystems.

    Science.gov (United States)

    Tompkins, Daniel M; Byrom, Andrea E; Pech, Roger P

    2013-07-01

    Predicting the dynamics and impacts of multiple invasive species can be complex because ecological relationships, which occur among several trophic levels, are often incompletely understood. Further, the complexity of these trophic relationships exacerbates our inability to predict climate change effects on invaded ecosystems. We explore the hypothesis that interactions between two global change drivers, invasive vertebrates and climate change, will potentially make matters worse for native biodiversity. In New Zealand beech (Nothofagus spp.) forests, a highly irruptive invasive mammal community is driven by multi-annual resource pulses of beech seed (masting). Because mast frequency is predicted to increase with climate change, we use this as a model system to explore the extent to which such effects may influence invasive vertebrate communities, and the implications of such interactions for native biodiversity and its management. We build on an established model of trophic interactions in the system, combining it with a logistic probability mast function, the parameters of which were altered to simulate either contemporary conditions or conditions of more or less frequent masting. The model predicts that increased mast frequency will lead to populations of a top predator (the stoat) and a mesopredator (the ship rat) becoming less irruptive and being maintained at appreciably higher average abundances in this forest type. In addition, the ability of both current and in-development management approaches to suppress invasive mammals is predicted to be compromised. Because invasive mammals are key drivers of native fauna extinction in New Zealand, with the additional loss of associated functions such as pollination and seed dispersal, these predictions imply potentially serious adverse impacts of climate change for the conservation of biodiversity and ecosystem function. Our study also highlights the importance of long-term monitoring data for assessing and managing

  10. Abrupt climate change and thermohaline circulation: Mechanisms and predictability

    OpenAIRE

    J. Marotzke

    2000-01-01

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

  11. Abrupt climate change and thermohaline circulation: mechanisms and predictability.

    Science.gov (United States)

    Marotzke, J

    2000-02-15

    The ocean's thermohaline circulation has long been recognized as potentially unstable and has consequently been invoked as a potential cause of abrupt climate change on all timescales of decades and longer. However, fundamental aspects of thermohaline circulation changes remain poorly understood.

  12. Early Brain changes May Help Predict Autism Among High-Risk Infants

    Science.gov (United States)

    ... Media Resources Interviews & Selected Staff Profiles Multimedia Early brain changes may help predict autism among high-risk ... Share this: Page Content NIH-funded researchers link brain changes at 6 and 12 months of age ...

  13. Prediction of hospital mortality by changes in the estimated glomerular filtration rate (eGFR).

    LENUS (Irish Health Repository)

    Berzan, E

    2015-03-01

    Deterioration of physiological or laboratory variables may provide important prognostic information. We have studied whether a change in estimated glomerular filtration rate (eGFR) value calculated using the (Modification of Diet in Renal Disease (MDRD) formula) over the hospital admission, would have predictive value. An analysis was performed on all emergency medical hospital episodes (N = 61964) admitted between 1 January 2002 and 31 December 2011. A stepwise logistic regression model examined the relationship between mortality and change in renal function from admission to discharge. The fully adjusted Odds Ratios (OR) for 5 classes of GFR deterioration showed a stepwise increased risk of 30-day death with OR\\'s of 1.42 (95% CI: 1.20, 1.68), 1.59 (1.27, 1.99), 2.71 (2.24, 3.27), 5.56 (4.54, 6.81) and 11.9 (9.0, 15.6) respectively. The change in eGFR during a clinical episode, following an emergency medical admission, powerfully predicts the outcome.

  14. Soil ecosystem functioning under climate change: plant species and community effects

    Energy Technology Data Exchange (ETDEWEB)

    Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

    2010-01-01

    impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.

  15. Soil ecosystem functioning under climate change: plant species and community effects.

    Science.gov (United States)

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.

  16. Lung function changes in wildland firefighters working at prescribed burns.

    Energy Technology Data Exchange (ETDEWEB)

    Adetona, Olorunfemi; Hall, Daniel, B.; Naeher, L,P.

    2011-10-01

    Although decline in lung function across workshift has been observed in wildland firefighters, measurements have been restricted to days when they worked at fires. Consequently, such results could have been confounded by normal circadian variation associated with lung function. We investigated the across-shift changes in lung function of wildland firefighters, and the effect of cumulative exposure on lung function during the burn season.

  17. Fine-grained code changes and bugs: Improving bug prediction

    OpenAIRE

    Giger, Emanuel

    2012-01-01

    Software development and, in particular, software maintenance are time consuming and require detailed knowledge of the structure and the past development activities of a software system. Limited resources and time constraints make the situation even more difficult. Therefore, a significant amount of research effort has been dedicated to learning software prediction models that allow project members to allocate and spend the limited resources efficiently on the (most) critical parts of their s...

  18. Prediction of Factors Determining Changes in Stability in Protein Mutants

    OpenAIRE

    Parthiban, Vijayarangakannan

    2006-01-01

    Analysing the factors behind protein stability is a key research topic in molecular biology and has direct implications on protein structure prediction and protein-protein docking solutions. Protein stability upon point mutations were analysed using a distance dependant pair potential representing mainly through-space interactions and torsion angle potential representing neighbouring effects as a basic statistical mechanical setup for the analysis. The synergetic effect of accessible surface ...

  19. Diversity experiences predict changes in attitudes toward affirmative action.

    Science.gov (United States)

    Aberson, Christopher L

    2007-10-01

    The current study examined the role of diversity experiences in promoting changes in attitudes toward affirmative action (AA). Using longitudinal data from a survey of over 1000 college students at admission and in their fourth year, results demonstrated that participation in diversity-related campus activities related to positive changes in attitudes toward affirmative action. This result was consistent across samples of White, African American, and Asian American students. Positive changes in attitudes persisted despite statistical controls for established predictors of attitudes toward AA such as merit and prevalence of discrimination beliefs, and individual-level characteristics such as experiences of discrimination and political liberalism. I discuss the relevance of this finding to the AA literature and to changing attitudes toward AA.

  20. Prediction Study on PCI Failure of Reactor Fuel Based on a Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Xinyu Wei

    2016-01-01

    Full Text Available Pellet-clad interaction (PCI is one of the major issues in fuel rod design and reactor core operation in water cooled reactors. The prediction of fuel rod failure by PCI is studied in this paper by the method of radial basis function neural network (RBFNN. The neural network is built through the analysis of the existing experimental data. It is concluded that it is a suitable way to reduce the calculation complexity. A self-organized RBFNN is used in our study, which can vary its structure dynamically in order to maintain the prediction accuracy. For the purpose of the appropriate network complexity and overall computational efficiency, the hidden neurons in the RBFNN can be changed online based on the neuron activity and mutual information. The presented method is tested by the experimental data from the reference, and the results demonstrate its effectiveness.

  1. Are Psychotherapeutic Changes Predictable? Comparison of a Chicago Counseling Center Project with a Penn Psychotherapy Project.

    Science.gov (United States)

    Luborsky, Lester; And Others

    1979-01-01

    Compared studies predicting outcomes of psychotherapy. Level of prediction success in both projects was modest. Particularly for the rated benefits score, the profile of variables showed similar levels of success between the projects. Successful predictions were based on adequacy of personality functioning, match on marital status, and length of…

  2. The Prediction of Jet Noise Ground Effects Using an Acoustic Analogy and a Tailored Green's Function

    Science.gov (United States)

    Miller, Steven A. E.

    2013-01-01

    An assessment of an acoustic analogy for the mixing noise component of jet noise in the presence of an infinite surface is presented. The reflection of jet noise by the ground changes the distribution of acoustic energy and is characterized by constructive and destructive interference patterns. The equivalent sources are modeled based on the two-point cross- correlation of the turbulent velocity fluctuations and a steady Reynolds-Averaged Navier-Stokes (RANS) solution. Propagation effects, due to reflection by the surface and refaction by the jet shear layer, are taken into account by calculating the vector Green's function of the linearized Euler equations (LEE). The vector Green's function of the LEE is written in relation to Lilley's equation; that is, approximated with matched asymptotic solutions and the Green's function of the convective Helmholtz equation. The Green's function of the convective Helmholtz equation for an infinite flat plane with impedance is the Weyl-van der Pol equation. Predictions are compared with an unheated Mach 0.95 jet produced by a nozzle with an exit diameter of 0.3302 meters. Microphones are placed at various heights and distances from the nozzle exit in the peak jet noise direction above an acoustically hard and an asphalt surface. The predictions are shown to accurately capture jet noise ground effects that are characterized by constructive and destructive interference patterns in the mid- and far-field and capture overall trends in the near-field.

  3. Cognitive function predicts neural activity associated with pre-attentive temporal processing.

    Science.gov (United States)

    Foster, Shannon M; Kisley, Michael A; Davis, Hasker P; Diede, Nathaniel T; Campbell, Alana M; Davalos, Deana B

    2013-01-01

    Temporal processing, or processing time-related information, appears to play a significant role in a variety of vital psychological functions. One of the main confounds to assessing the neural underpinnings and cognitive correlates of temporal processing is that behavioral measures of timing are generally confounded by other supporting cognitive processes, such as attention. Further, much theorizing in this field has relied on findings from clinical populations (e.g., individuals with schizophrenia) known to have temporal processing deficits. In this study, we attempted to avoid these difficulties by comparing temporal processing assessed by a pre-attentive event-related brain potential (ERP) waveform, the mismatch negativity (MMN) elicited by time-based stimulus features, to a number of cognitive functions within a non-clinical sample. We studied healthy older adults (without dementia), as this population inherently ensures more prominent variability in cognitive function than a younger adult sample, allowing for the detection of significant relationships between variables. Using hierarchical regression analyses, we found that verbal memory and executive functions (i.e., planning and conditional inhibition, but not set-shifting) uniquely predicted variance in temporal processing beyond that predicted by the demographic variables of age, gender, and hearing loss. These findings are consistent with a frontotemporal model of MMN waveform generation in response to changes in the temporal features of auditory stimuli.

  4. Ability of Functional Independence Measure to accurately predict functional outcome of stroke-specific population: Systematic review

    OpenAIRE

    Madeleine Spencer, DPT, PT; Karen Skop, DPT, PT; Kristina Shesko, DPT, PT; Kristen Nollinger, DPT, PT; Douglas Chumney, DPT, PT; Roberta A. Newton, PT, PhD

    2010-01-01

    Stroke is a leading cause of functional impairments. The ability to quantify the functional ability of poststroke patients engaged in a rehabilitation program may assist in prediction of their functional outcome. The Functional Independence Measure (FIM) is widely used and accepted as a functional-level assessment tool that evaluates the functional status of patients throughout the rehabilitation process. From February to March 2009, we searched MEDLINE, Ovid, CINAHL, and EBSCO for full-text ...

  5. Predicting the Response of Electricity Load to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Colman, Jesse [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kalendra, Eric [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  6. Cloud Prediction of Protein Structure and Function with PredictProtein for Debian

    Directory of Open Access Journals (Sweden)

    László Kaján

    2013-01-01

    Full Text Available We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd, nuclear localization signals (predictnls, and intrinsically disordered regions (norsnet. We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  7. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  8. Improving models to predict phenological responses to global change

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Andrew D. [Harvard College, Cambridge, MA (United States)

    2015-11-25

    The term phenology describes both the seasonal rhythms of plants and animals, and the study of these rhythms. Plant phenological processes, including, for example, when leaves emerge in the spring and change color in the autumn, are highly responsive to variation in weather (e.g. a warm vs. cold spring) as well as longer-term changes in climate (e.g. warming trends and changes in the timing and amount of rainfall). We conducted a study to investigate the phenological response of northern peatland communities to global change. Field work was conducted at the SPRUCE experiment in northern Minnesota, where we installed 10 digital cameras. Imagery from the cameras is being used to track shifts in plant phenology driven by elevated carbon dioxide and elevated temperature in the different SPRUCE experimental treatments. Camera imagery and derived products (“greenness”) is being posted in near-real time on a publicly available web page (http://phenocam.sr.unh.edu/webcam/gallery/). The images will provide a permanent visual record of the progression of the experiment over the next 10 years. Integrated with other measurements collected as part of the SPRUCE program, this study is providing insight into the degree to which phenology may mediate future shifts in carbon uptake and storage by peatland ecosystems. In the future, these data will be used to develop improved models of vegetation phenology, which will be tested against ground observations collected by a local collaborator.

  9. Can We Predict Types of Code Changes? An Empirical Analysis

    NARCIS (Netherlands)

    Giger, E.; Pinzger, M.; Gall, H.C.

    2012-01-01

    Preprint of paper published in: 9th IEEE Working Conference on Mining Software Repositories (MSR), 2-3 June 2012; doi:10.1109/MSR.2012.6224284 There exist many approaches that help in pointing developers to the change-prone parts of a software system. Although beneficial, they mostly fall short in

  10. Predicting when climate-driven phenotypic change affects population dynamics

    NARCIS (Netherlands)

    McLean, Nina; Lawson, C.R.; Leech, David; Van de Pol, M.

    2016-01-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that

  11. Predictors and Predictive Effects of Attitudinal Inconsistency Towards Organizational Change

    Science.gov (United States)

    2012-03-01

    in Organizations: Minimizing Resistance to Change, Basil Blackwell, Cambridge, MA. Kanter, R., Stein, B., & Jick, T. (1992). The challenge of...and graduate programs’ ethics training for life scientists. In S. Frickel & K. Moor (Eds.) The New political Sociology of Science: Institutions

  12. Functional brain imaging predicts public health campaign success.

    Science.gov (United States)

    Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence

    2016-02-01

    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns.

  13. A Quantum Annealing Computer Team Addresses Climate Change Predictability

    Science.gov (United States)

    Halem, M. (Principal Investigator); LeMoigne, J.; Dorband, J.; Lomonaco, S.; Yesha, Ya.; Simpson, D.; Clune, T.; Pelissier, C.; Nearing, G.; Gentine, P.; Fang, B.; Shehab, A.; Radov, Asen; Tikak, N.; Prouty, Roy; Harrison, Kenneth

    2016-01-01

    The near confluence of the successful launch of the Orbiting Carbon Observatory2 on July 2, 2014 and the acceptance on August 20, 2015 by Google, NASA Ames Research Center and USRA of a 1152 qubit D-Wave 2X Quantum Annealing Computer (QAC), offered an exceptional opportunity to explore the potential of this technology to address the scientific prediction of global annual carbon uptake by land surface processes. At UMBC,we have collected and processed 20 months of global Level 2 light CO2 data as well as fluorescence data. In addition we have collected ARM data at 2sites in the US and Ameriflux data at more than 20 stations. J. Dorband has developed and implemented a multi-hidden layer Boltzmann Machine (BM) algorithm on the QAC. Employing the BM, we are calculating CO2 fluxes by training collocated OCO-2 level 2 CO2 data with ARM ground station tower data to infer to infer measured CO2 flux data. We generate CO2 fluxes with a regression analysis using these BM derived weights on the level 2 CO2 data for three Ameriflux sites distinct from the ARM stations. P. Gentine has negotiated for the access of K34 Ameriflux data in the Amazon and is applying a neural net to infer the CO2 fluxes. N. Talik validated the accuracy of the BM performance on the QAC against a restricted BM implementation on the IBM Softlayer Cloud with the Nvidia co-processors utilizing the same data sets. G. Nearing and K. Harrison have extended the GSFC LIS model with the NCAR Noah photosynthetic parameterization and have run a 10 year global prediction of the net ecosystem exchange. C. Pellisier is preparing a BM implementation of the Kalman filter data assimilation of CO2 fluxes. At UMBC, R. Prouty is conducting OSSE experiments with the LISNoah model on the IBM iDataPlex to simulate the impact of CO2 fluxes to improve the prediction of global annual carbon uptake. J. LeMoigne and D. Simpson have developed a neural net image registration system that will be used for MODIS ENVI and will be

  14. Microbial response to simulated global change is phylogenetically conserved and linked with functional potential.

    Science.gov (United States)

    Amend, Anthony S; Martiny, Adam C; Allison, Steven D; Berlemont, Renaud; Goulden, Michael L; Lu, Ying; Treseder, Kathleen K; Weihe, Claudia; Martiny, Jennifer B H

    2016-01-01

    The high diversity of microbial communities hampers predictions about their responses to global change. Here we investigate the potential for using a phylogenetic, trait-based framework to capture the response of bacteria and fungi to global change manipulations. Replicated grassland plots were subjected to 3+ years of drought and nitrogen fertilization. The responses of leaf litter bacteria and fungi to these simulated changes were significantly phylogenetically conserved. Proportional changes in abundance were highly correlated among related organisms, such that relatives with approximately 5% ribosomal DNA genetic distance showed similar responses to the treatments. A microbe's change in relative abundance was significantly correlated between the treatments, suggesting a compromise between numerical abundance in undisturbed environments and resistance to change in general, independent of disturbance type. Lineages in which at least 90% of the microbes shared the same response were circumscribed at a modest phylogenetic depth (τD 0.014-0.021), but significantly larger than randomized simulations predict. In several clades, phylogenetic depth of trait consensus was higher. Fungal response to drought was more conserved than was response to nitrogen fertilization, whereas bacteria responded equally to both treatments. Finally, we show that a bacterium's response to the manipulations is correlated with its potential functional traits (measured here as the number of glycoside hydrolase genes encoding the capacity to degrade different types of carbohydrates). Together, these results suggest that a phylogenetic, trait-based framework may be useful for predicting shifts in microbial composition and functioning in the face of global change.

  15. Omega-6 and omega-3 fatty acids predict accelerated decline of peripheral nerve function in older persons

    OpenAIRE

    Lauretani, F.; BANDINELLI, S.; Benedetta, B.; Cherubini, A; Iorio, A. D.; Blè, A.; Giacomini, V.; Corsi, A.M.; Guralnik, J.M.; Ferrucci, L.

    2007-01-01

    Pre-clinical studies suggest that both omega-6 and omega-3 fatty acids have beneficial effects on peripheral nerve function. Rats feed a diet rich in polyunsaturated fatty acids (PUFAs) showed modification of phospholipid fatty acid composition in nerve membranes and improvement of sciatic nerve conduction velocity (NCV). We tested the hypothesis that baseline plasma omega-6 and omega-3 fatty acids levels predict accelerated decline of peripheral nerve function. Changes between baseline and t...

  16. How the cerebral serotonin homeostasis predicts environmental changes

    DEFF Research Database (Denmark)

    Kalbitzer, Jan; Kalbitzer, Urs; Knudsen, Gitte Moos;

    2013-01-01

    Molecular imaging studies with positron emission tomography have revealed that the availability of serotonin transporter (5-HTT) in the human brain fluctuates over the course of the year. This effect is most pronounced in carriers of the short allele of the 5-HTT promoter region (5-HTTLPR), which...... has in several previous studies been linked to an increased risk to develop mood disorders. We argue that long-lasting fluctuations in the cerebral serotonin transmission, which is regulated via the 5-HTT, are responsible for mediating responses to environmental changes based on an assessment...... of cerebral serotonin transmission to seasonal and other forms of environmental change imparts greater behavioral flexibility, at the expense of increased vulnerability to stress. This model may explain the somewhat higher prevalence of the s-allele in some human populations dwelling at geographic latitudes...

  17. Improving the reliability of fishery predictions under climate change

    DEFF Research Database (Denmark)

    Brander, Keith

    2015-01-01

    The increasing number of publications assessing impacts of climate change on marine ecosystems and fisheries attests to rising scientific and public interest. A selection of recent papers, dealing more with biological than social and economic aspects, is reviewed here, with particular attention...... to the reliability of projections of climate impacts on future fishery yields. The 2014 Intergovernmental Panel on Climate Change (IPCC) report expresses high confidence in projections that mid- and high-latitude fish catch potential will increase by 2050 and medium confidence that low-latitude catch potential...... will decline. These levels of confidence seem unwarranted, since many processes are either absent from or poorly represented in the models used, data are sparse and, unlike terrestrial crop projections, there are no controlled experiments.This review discusses methodological issues that affect our...

  18. Advancing catchment hydrology to deal with predictions under change

    OpenAIRE

    Ehret, U.; Gupta, H.V.; Sivapalan, M.; Weijs, S.V.; Schymanski, S.J.; Blöschl, G.; Gelfan, A. N.; Harman, C; Kleidon, A.; Bogaard, T.A.; Wang, D.; Wagener, T.; U. Scherer; Zehe, E.; Bierkens, M.F.P.

    2014-01-01

    Throughout its historical development, hydrology as an engineering discipline and earth science has relied strongly on the assumption of long-term stationary boundary conditions and system configurations, which allowed for simplified and sectoral descriptions of the dynamics of hydrological systems. However, in the face of rapid and extensive global changes (of climate, land use etc.) which affect all parts of the hydrological cycle, the general validity of this assumption appears doub...

  19. Functional MRI in Awake Dogs Predicts Suitability for Assistance Work

    Science.gov (United States)

    Berns, Gregory S.; Brooks, Andrew M.; Spivak, Mark; Levy, Kerinne

    2017-03-01

    The overall goal of this work was to measure the efficacy of fMRI for predicting whether a dog would be a successful service dog. The training and imaging were performed in 49 dogs entering service training at 17–21 months of age. 33 dogs completed service training and were matched with a person, while 10 were released for behavioral reasons (4 were selected as breeders and 2 were released for medical reasons.) After 2 months of training, fMRI responses were measured while each dog observed hand signals indicating either reward or no reward and given by both a familiar handler and a stranger. Using anatomically defined ROIs in the caudate, amygdala, and visual cortex, we developed a classifier based on the dogs’ subsequent training outcomes. The classifier had a positive predictive value of 94% and a negative predictive value of 67%. The area under the ROC curve was 0.91 (0.80 with 4-fold cross-validation, P = 0.01), indicating a significant predictive capability. The magnitude of response in the caudate was positively correlated with a successful outcome, while the response in the amygdala depended on the interaction with the visual cortex during the stranger condition and was negatively correlated with outcome (higher being associated with failure). These results suggest that, as indexed by caudate activity, successful service dogs generalize associations to hand signals regardless who gives them but without excessive arousal as measured in the amygdala.

  20. Functional MRI in Awake Dogs Predicts Suitability for Assistance Work

    Science.gov (United States)

    Berns, Gregory S.; Brooks, Andrew M.; Spivak, Mark; Levy, Kerinne

    2017-01-01

    The overall goal of this work was to measure the efficacy of fMRI for predicting whether a dog would be a successful service dog. The training and imaging were performed in 49 dogs entering service training at 17–21 months of age. 33 dogs completed service training and were matched with a person, while 10 were released for behavioral reasons (4 were selected as breeders and 2 were released for medical reasons.) After 2 months of training, fMRI responses were measured while each dog observed hand signals indicating either reward or no reward and given by both a familiar handler and a stranger. Using anatomically defined ROIs in the caudate, amygdala, and visual cortex, we developed a classifier based on the dogs’ subsequent training outcomes. The classifier had a positive predictive value of 94% and a negative predictive value of 67%. The area under the ROC curve was 0.91 (0.80 with 4-fold cross-validation, P = 0.01), indicating a significant predictive capability. The magnitude of response in the caudate was positively correlated with a successful outcome, while the response in the amygdala depended on the interaction with the visual cortex during the stranger condition and was negatively correlated with outcome (higher being associated with failure). These results suggest that, as indexed by caudate activity, successful service dogs generalize associations to hand signals regardless who gives them but without excessive arousal as measured in the amygdala. PMID:28266550

  1. Proteinuria predicts relapse in adolescent and adult minimal change disease

    Directory of Open Access Journals (Sweden)

    Cristiane Bitencourt Dias

    2012-11-01

    Full Text Available OBJECTIVE: This study sought to outline the clinical and laboratory characteristics of minimal change disease in adolescents and adults and establish the clinical and laboratory characteristics of relapsing and non-relapsing patients. METHODS: We retrospectively evaluated patients with confirmed diagnoses of minimal change disease by renal biopsy from 1979 to 2009; the patients were aged >13 years and had minimum 1-year follow-ups. RESULTS: Sixty-three patients with a median age (at diagnosis of 34 (23-49 years were studied, including 23 males and 40 females. At diagnosis, eight (12.7% patients presented with microscopic hematuria, 17 (27% with hypertension and 17 (27% with acute kidney injury. After the initial treatment, 55 (87.3% patients showed complete remission, six (9.5% showed partial remission and two (3.1% were nonresponders. Disease relapse was observed in 34 (54% patients who were initial responders (n = 61. In a comparison between the relapsing patients (n = 34 and the non-relapsing patients (n = 27, only proteinuria at diagnosis showed any significant difference (8.8 (7.1-12.0 vs. 6.0 (3.6-7.3 g/day, respectively, p = 0.001. Proteinuria greater than 7 g/day at the initial screening was associated with relapsing disease. CONCLUSIONS: In conclusion, minimal change disease in adults may sometimes present concurrently with hematuria, hypertension, and acute kidney injury. The relapsing pattern in our patients was associated with basal proteinuria over 7 g/day.

  2. SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control

    Institute of Scientific and Technical Information of China (English)

    钟伟民; 何国龙; 皮道映; 孙优贤

    2005-01-01

    A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.

  3. Geomagnetism, volcanoes, global climate change, and predictability. A progress report

    Directory of Open Access Journals (Sweden)

    G. P. Gregori

    1994-06-01

    Full Text Available A model is investigated, by which the encounters of the solar system with dense interstellar clouds ought to trigger either geomagnetic field reversals or excursions, that produce extra electric currents within the Earth dynamo, that cause extra Joule's heating, that supplies volcanoes and endogenous processes. Volcanoes increase the Earth degassing into the atmosphere, hence the concentration of the minor atmospheric constituents, including the greenhouse gases, hence they affect climate temperature, glacier melting, sea level and global change. This investigation implies both theoretical studies and observational data handling on different time scales, including present day phenomena, instrumental data series, historical records, proxy data, and geological and palaeontological evidences. The state of the art is briefly outlined, mentioning some already completed achievements, investigations in progress, and future perspectives.

  4. Application of the Condensed Fukui Function to Predict Reactivity in Core–Shell Transition Metal Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Thomas C.; Tong, Yu ye J.

    2013-07-01

    Chemical reactivity descriptors are a powerful means for understanding reactivity in a wide variety of chemical compounds. These descriptors, rooted in density functional theory, have found broad application in organic chemical reactions, but have not been as widely applied for other classes of chemical species such as nanoparticles, which are the subject of this article. Specifically, we explore application of the Fukui function, the global hardness and softness, the local softness, and the dual descriptor to pure metallic and core–shell nanoparticles, with and without a CO molecule bound to the surface. We find that the Fukui function is useful in predicting and interpreting chemical reactivity, and that it correlates well with the results of the popular d-band center method. Differences in the Fukui function before and after bonding of a CO molecule to the surface of a nanoparticle reveal interesting information about the reactivity of the nanoparticle surface. The change in the Fukui function when an electric field is applied to the molecule is also considered. Though the results are generally good, some of the limitations of this approach become clear.

  5. The role of plant functional trade-offs for biodiversity changes and biome shifts under scenarios of global climatic change

    Directory of Open Access Journals (Sweden)

    B. Reu

    2010-10-01

    Full Text Available The global geographic distribution of biodiversity and biomes is determined by species-specific physiological tolerances to climatic constraints. Current models implement empirical bioclimatic relationships to predict present-day vegetation patterns and to forecast biodiversity changes and biome shifts under climatic change. In this paper, we consider plant functional trade-offs and their interactions with climatic changes to forecast and explain biodiversity changes and biome shifts.

    The Jena Diversity model (JeDi simulates plant survival according to essential plant functional trade-offs, including eco-physiological processes such as water uptake, photosynthesis, allocation, reproduction and phenology. We apply JeDi to quantify biodiversity changes and biome shifts between present-day and a range of possible future climates from two scenarios (A2 and B1 and seven global climate models using metrics of plant functional richness and functional identity.

    Our results show (i a significant biodiversity loss in the tropics, (ii an increase in biodiversity at mid and high latitudes, and (iii a poleward shift of biomes. While these results are consistent with the findings of empirical approaches, we are able to explain them in terms of the plant functional trade-offs involved in the allocation, metabolic and reproduction strategies of plants.

    We conclude that general aspects of plant physiological tolerances can be derived from plant functional trade-offs, which may provide a useful process- and trait-based alternative to bioclimatic relationships in order to address questions about the causes of biodiversity changes and biome shifts.

  6. Biodiversity decreases disease through predictable changes in host community competence.

    Science.gov (United States)

    Johnson, Pieter T J; Preston, Daniel L; Hoverman, Jason T; Richgels, Katherine L D

    2013-02-14

    Accelerating rates of species extinctions and disease emergence underscore the importance of understanding how changes in biodiversity affect disease outcomes. Over the past decade, a growing number of studies have reported negative correlations between host biodiversity and disease risk, prompting suggestions that biodiversity conservation could promote human and wildlife health. Yet the generality of the diversity-disease linkage remains conjectural, in part because empirical evidence of a relationship between host competence (the ability to maintain and transmit infections) and the order in which communities assemble has proven elusive. Here we integrate high-resolution field data with multi-scale experiments to show that host diversity inhibits transmission of the virulent pathogen Ribeiroia ondatrae and reduces amphibian disease as a result of consistent linkages among species richness, host composition and community competence. Surveys of 345 wetlands indicated that community composition changed nonrandomly with species richness, such that highly competent hosts dominated in species-poor assemblages whereas more resistant species became progressively more common in diverse assemblages. As a result, amphibian species richness strongly moderated pathogen transmission and disease pathology among 24,215 examined hosts, with a 78.4% decline in realized transmission in richer assemblages. Laboratory and mesocosm manipulations revealed an approximately 50% decrease in pathogen transmission and host pathology across a realistic diversity gradient while controlling for host density, helping to establish mechanisms underlying the diversity-disease relationship and their consequences for host fitness. By revealing a consistent link between species richness and community competence, these findings highlight the influence of biodiversity on infection risk and emphasize the benefit of a community-based approach to understanding infectious diseases.

  7. Intrinsic functional connectivity predicts individual differences in distractibility.

    Science.gov (United States)

    Poole, Victoria N; Robinson, Meghan E; Singleton, Omar; DeGutis, Joseph; Milberg, William P; McGlinchey, Regina E; Salat, David H; Esterman, Michael

    2016-06-01

    Distractor suppression, the ability to filter and ignore task-irrelevant information, is critical for efficient task performance. While successful distractor suppression relies on a balance of activity in neural networks responsible for attention maintenance (dorsal attention network; DAN), reorientation (ventral attention network; VAN), and internal thought (default mode network, DMN), the degree to which intrinsic connectivity within and between these networks contributes to individual differences in distractor suppression ability is not well-characterized. For the purposes of understanding these interactions, the current study collected resting-state fMRI data from 32 Veterans and, several months later (7±5 months apart), performance on the additional singleton paradigm, a measure of distractor suppression. Using multivariate support vector regression models composed of resting state connectivity between regions of the DAN, VAN, and DMN, and a leave-one-subject-out cross-validation procedure, we were able to predict an individual's task performance, yielding a significant correlation between the actual and predicted distractor suppression (r=0.48, p=0.0053). Network-level analyses revealed that greater within-network DMN connectivity was predictive of better distractor suppression, while greater connectivity between the DMN and attention networks was predictive of poorer distractor suppression. The strongest connection hubs were determined to be the right frontal eye field and temporoparietal junction of the DAN and VAN, respectively, and medial (ventromedial prefrontal and posterior cingulate cortices) and bilateral prefrontal regions of the DMN. These results are amongst a small but growing number of studies demonstrating that resting state connectivity is related to stable individual differences in cognitive ability, and suggest that greater integrity and independence of the DMN is related to better attentional ability.

  8. Predicting functional capacity during treadmill testing independent of exercise protocol.

    Science.gov (United States)

    Foster, C; Crowe, A J; Daines, E; Dumit, M; Green, M A; Lettau, S; Thompson, N N; Weymier, J

    1996-06-01

    Clinically useful estimates of VO2max from treadmill tests (GXT) may be made using protocol-specific equations. In many cases, GXT may proceed more effectively if the clinician is free to adjust speed and grade independent of a specific protocol. We sought to determine whether VO2max could be predicted from the estimated steady-state VO2 of the terminal exercise stage. Seventy clinically stable individuals performed GXT with direct measurement of VO2. Exercise was incremented each minute to optimize clinical examination. Measured VO2max was compared to the estimated steady-state VO2 of the terminal stage based on ACSM equations. Equations for walking or running were used based on the patient's observed method of ambulation. The measured VO2max was always less than the ACSM estimate, with a regular relationship between measured and estimated VO2max. No handrail support: VO2max = 0.869.ACSM -0.07; R2 = 0.955, SEE = 4.8 ml.min-1.kg-1 (N = 30). With handrail support: VO2max = 0.694.ACSM + 3.33; R2 = 0.833, SEE = 4.4 ml.min-1.kg-1 (N = 40). The equations were cross-validated with 20 patients. The correlation between predicted and observed values was r = 0.98 and 0.97 without and with handrail support, respectively. The mean absolute prediction error (3.1 and 4.1 ml.min-1.kg-1) were similar to protocol-specific equations. We conclude that VO2max can be predicted independent of treadmill protocol with approximately the same error as protocol-specific equations.

  9. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions.

    Science.gov (United States)

    Baert, Jan M; Janssen, Colin R; Sabbe, Koen; De Laender, Frederik

    2016-08-18

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions.

  10. Predictive functional control(PFC) and its application in Chlorinated polyethylene process

    Institute of Scientific and Technical Information of China (English)

    李鸿亮; 苏宏业; 刘军; 褚健

    2003-01-01

    The main principle and the characteristic of Predictive Functional Control (PFC) strategy are presented in this paper and the corresponding control system aid design software APC-PFC is also introduced. For a chlorinated polyethylene (CPE) process, a design scheme of cascade predictive functional control system is described and the control performance is improved obviously.

  11. Gain-Scheduled Model Predictive Control of Wind Turbines using Laguerre Functions

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Wisniewski, Rafal; Larsen, Lars Finn Sloth

    2014-01-01

    This paper presents a systematic approach to design gain-scheduled predictive controllers for wind turbines. The predictive control law is based on Laguerre functions to parameterize control signals and a parameter-dependent cost function that is analytically determined from turbine data. These p...

  12. The Functional Integration in the Sensory-Motor System Predicts Aging in Healthy Older Adults.

    Science.gov (United States)

    He, Hui; Luo, Cheng; Chang, Xin; Shan, Yan; Cao, Weifang; Gong, Jinnan; Klugah-Brown, Benjamin; Bobes, Maria A; Biswal, Bharat; Yao, Dezhong

    2016-01-01

    Healthy aging is typically accompanied by a decrease in the motor capacity. Although the disrupted neural representations and performance of movement have been observed in older age in previous studies, the relationship between the functional integration of sensory-motor (SM) system and aging could be further investigated. In this study, we examine the impact of healthy aging on the resting-state functional connectivity (rsFC) of the SM system, and investigate as to how aging is affecting the rsFC in SM network. The SM network was identified and evaluated in 52 healthy older adults and 51 younger adults using two common data analytic approaches: independent component analysis and seed-based functional connectivity (seed at bilateral M1 and S1). We then evaluated whether the altered rsFC of the SM network could delineate trajectories of the age of older adults using a machine learning methodology. Compared with the younger adults, the older demonstrated reduced functional integration with increasing age in the mid-posterior insula of SM network and increased rsFC among the sensorimotor cortex. Moreover, the reduction in the rsFC of mid-posterior insula is associated with the age of older adults. Critically, the analysis based on two-aspect connectivity-based prediction frameworks revealed that the age of older adults could be reliably predicted by this reduced rsFC. These findings further indicated that healthy aging has a marked influence on the SM system that would be associated with a reorganization of SM system with aging. Our findings provide further insight into changes in sensorimotor function in the aging brain.

  13. Wiggle-predicting functionally flexible regions from primary sequence.

    Directory of Open Access Journals (Sweden)

    Jenny Gu

    2006-07-01

    Full Text Available The Wiggle series are support vector machine-based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and structure. This work contributes to those efforts by making strides to understand the relationship between protein sequence and flexibility. A coarse-grained protein dynamic modeling approach was used to generate the dataset required for support vector machine training. We define our regions of interest based on the participation of residues in correlated large-scale fluctuations. Even with this structure-based approach to computationally define regions of functional flexibility, predictors successfully extract sequence-flexibility relationships that have been experimentally confirmed to be functionally important. Thus, a sequence-based tool to identify flexible regions important for protein function has been created. The ability to identify functional flexibility using a sequence based approach complements structure-based definitions and will be especially useful for the large majority of proteins with unknown structures. The methodology offers promise to identify structural genomics targets amenable to crystallization and the possibility to engineer more flexible or rigid regions within proteins to modify their bioactivity.

  14. Dissociable changes in functional network topology underlie early category learning and development of automaticity.

    Science.gov (United States)

    Soto, Fabian A; Bassett, Danielle S; Ashby, F Gregory

    2016-11-01

    Recent work has shown that multimodal association areas-including frontal, temporal, and parietal cortex-are focal points of functional network reconfiguration during human learning and performance of cognitive tasks. On the other hand, neurocomputational theories of category learning suggest that the basal ganglia and related subcortical structures are focal points of functional network reconfiguration during early learning of some categorization tasks but become less so with the development of automatic categorization performance. Using a combination of network science and multilevel regression, we explore how changes in the connectivity of small brain regions can predict behavioral changes during training in a visual categorization task. We find that initial category learning, as indexed by changes in accuracy, is predicted by increasingly efficient integrative processing in subcortical areas, with higher functional specialization, more efficient integration across modules, but a lower cost in terms of redundancy of information processing. The development of automaticity, as indexed by changes in the speed of correct responses, was predicted by lower clustering (particularly in subcortical areas), higher strength (highest in cortical areas), and higher betweenness centrality. By combining neurocomputational theories and network scientific methods, these results synthesize the dissociative roles of multimodal association areas and subcortical structures in the development of automaticity during category learning.

  15. Functional Brain Network Changes Associated with Maintenance of Cognitive Function in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Santosh A Helekar

    2010-11-01

    Full Text Available In multiple sclerosis (MS functional changes in connectivity due to cortical reorganization could lead to cognitive impairment (CI, or reflect a re-adjustment to reduce the clinical effects of widespread tissue damage. Such alterations in connectivity could result in changes in neural activation as assayed by executive function tasks. We examined cognitive function in MS patients with mild to moderate cognitive impairment and age-matched controls. We evaluated brain activity using functional magnetic resonance imaging (fMRI during the successful performance of the Wisconsin-card sorting (WCS task by MS patients, showing compensatory maintenance of normal function, as measured by response latency and error rate. To assess changes in functional connectivity throughout the brain, we performed a global functional brain network analysis by computing voxel by voxel correlations on the fMRI time series data and carrying out a hierarchical cluster analysis. We found that during the WCS task there is a significant reduction in the number of smaller size brain functional networks, and a change in the brain areas representing the nodes of these networks in MS patients compared to age-matched controls. There is also a concomitant increase in the strength of functional connections between brain loci separated at intermediate scale distances in these patients. These functional alterations might reflect compensatory neuroplastic reorganization underlying maintenance of relatively normal cognitive function in the face of white matter lesions and cortical atrophy produced by MS.

  16. General functioning predicts reward and punishment learning in schizophrenia.

    Science.gov (United States)

    Somlai, Zsuzsanna; Moustafa, Ahmed A; Kéri, Szabolcs; Myers, Catherine E; Gluck, Mark A

    2011-04-01

    Previous studies investigating feedback-driven reinforcement learning in patients with schizophrenia have provided mixed results. In this study, we explored the clinical predictors of reward and punishment learning using a probabilistic classification learning task. Patients with schizophrenia (n=40) performed similarly to healthy controls (n=30) on the classification learning task. However, more severe negative and general symptoms were associated with lower reward-learning performance, whereas poorer general psychosocial functioning was correlated with both lower reward- and punishment-learning performances. Multiple linear regression analyses indicated that general psychosocial functioning was the only significant predictor of reinforcement learning performance when education, antipsychotic dose, and positive, negative and general symptoms were included in the analysis. These results suggest a close relationship between reinforcement learning and general psychosocial functioning in schizophrenia.

  17. Exploring aggregate economic damage functions due to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Patwardhan, A. [and others

    1994-12-31

    A number of issues need to be considered when developing aggregated economic damage functions due to climate change. These include: (i) identification of production processes vulnerable to climate change, (ii) an understanding of the mechanism of vulnerability, (iii) the rate of technological advance and diffusion (iv) the issue of detection of damages and availability of response options. In this paper we will explore the implications of these considerations with the aid of an illustrative model. The findings suggest that there is a significant upward bias in damage functions calculated without consideration of these issues. Furthermore, this systematic bias is larger as climate change increases. We believe the approach explored here is a more suitable model for adoption in future integrated assessments of climate change.

  18. Exploring aggregate economic damage functions due to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H.; Kandlikar, M.; Patwardhan, A. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Engineering and Public Policy

    1994-12-31

    A number of issues need to be considered when developing aggregated economic damage functions due to climate change. These include: (1) identification of production processes vulnerable to climate change, (2) an understanding of the mechanism of vulnerability, (3) the rate of technological advance and diffusion, (4) the issue of detection of damages and availability of response options. In this paper the authors will explore the implications of these considerations with the aid of an illustrative model. The findings suggest that there is a significant upward bias in damage functions calculated without consideration of these issues. Furthermore, this systematic bias is larger as climate change increases. The authors believe the approach explored here is a more suitable model for adoption in future integrated assessments of climate change.

  19. Predicting Improvement in Depression Across Therapies Using Indicators of Romantic Relationship Functioning: A Preliminary Investigation.

    Science.gov (United States)

    Woods, Sarah B; Priest, Jacob B; Denton, Wayne H

    2015-01-01

    Depression is a common presenting problem, often affected by couple interactions in unique ways. However, research in the area of romantic relationship functioning and depression often replicates previous research or consists of literature reviews, limiting the clinical relevancy. The purpose of this preliminary study is to expand the research on the effects of relational processes on depression treatment outcomes. We tested whether initiator tendency, attachment anxiety, attachment avoidance, and marital satisfaction predicted improvement in depression for women with Major Depressive Disorder enrolled in a depression treatment clinical trial (n = 17). Women completed treatments of either pharmacotherapy or combined Emotionally Focused Therapy for couples and pharmacotherapy. We found that higher baseline levels of partner initiator tendency resulted in less change in depression (worse outcomes), regardless of treatment type and that higher baseline levels of attachment avoidance predicted better depression outcomes in treatment. Marital satisfaction, however, was not linked to change in depression. Initiator tendency is discussed as a critical romantic relationship factor for depression treatment outcomes.

  20. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    GAO Lei; LI Xia; GUO Zheng; ZHU MingZhu; LI YanHui; RAO ShaoQi

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interaction data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automatically selects the most appropriate functional classes as specific as possible during the learning process, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to "biology process" by three measures particularly designed for functional classes organized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  1. Widely predicting specific protein functions based on protein-protein interaction data and gene expression profile

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.

  2. The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project

    DEFF Research Database (Denmark)

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity ...

  3. Modelling land Use Change : Improving the prediction of future land use patterns

    NARCIS (Netherlands)

    de Nijs, A.C.M.

    2009-01-01

    Modelling land Use Change: Improving the prediction of future land use patterns. Man has been altering his living environment since prehistoric times and will continue to do so. It is predicted that by 2030 about 90,000 ha will be needed for residential developments in the Netherlands and 55,000 ha

  4. Emotional attentional control predicts changes in diurnal cortisol secretion following exposure to a prolonged psychosocial stressor

    OpenAIRE

    Lenaert, Bert; Barry, Tom; Schruers, Koen; Vervliet, Bram; Hermans, Dirk

    2015-01-01

    Hypothalamic-pituitary-adrenal (HPA) axis irregularities have been associated with several psychological disorders. Hence, the identification of individual difference variables that predict variations in HPA-axis activity represents an important challenge for psychiatric research. We investigated whether self-reported attentional control in emotionally demanding situations prospectively predicted changes in diurnal salivary cortisol secretion following exposure to a prolonged psychosocial str...

  5. Predicting Change in Career Indecision from a Self-Psychology Perspective.

    Science.gov (United States)

    Robbins, Steven B.

    1987-01-01

    Proposes a hierarchical model based on self-psychology that predicts a reduction in career indecision after a career intervention. Tested model's validity in a study of college students (N=107). Study showed model partially supported with goal instability, self-esteem, and interest pattern predicting change in career indecision level after career…

  6. Aqueous acidities of primary benzenesulfonamides: Quantum chemical predictions based on density functional theory and SMD.

    Science.gov (United States)

    Aidas, Kęstutis; Lanevskij, Kiril; Kubilius, Rytis; Juška, Liutauras; Petkevičius, Daumantas; Japertas, Pranas

    2015-11-05

    Aqueous pK(a) of selected primary benzenesulfonamides are predicted in a systematic manner using density functional theory methods and the SMD solvent model together with direct and proton exchange thermodynamic cycles. Some test calculations were also performed using high-level composite CBS-QB3 approach. The direct scheme generally does not yield a satisfactory agreement between calculated and measured acidities due to a severe overestimation of the Gibbs free energy changes of the gas-phase deprotonation reaction by the used exchange-correlation functionals. The relative pK(a) values calculated using proton exchange method compare to experimental data very well in both qualitative and quantitative terms, with a mean absolute error of about 0.4 pK(a) units. To achieve this accuracy, we find it mandatory to perform geometry optimization of the neutral and anionic species in the gas and solution phases separately, because different conformations are stabilized in these two cases. We have attempted to evaluate the effect of the conformer-averaged free energies in the pK(a) predictions, and the general conclusion is that this procedure is highly too costly as compared with the very small improvement we have gained.

  7. Predicting Adaptive Functioning of Mentally Retarded Persons in Community Settings.

    Science.gov (United States)

    Hull, John T.; Thompson, Joy C.

    1980-01-01

    The impact of a variety of individual, residential, and community variables on adaptive functioning of 369 retarded persons (18 to 73 years old) was examined using a multiple regression analysis. Individual characteristics (especially IQ) accounted for 21 percent of the variance, while environmental variables, primarily those related to…

  8. Changes in bird functional diversity across multiple land uses: interpretations of functional redundancy depend on functional group identity.

    Science.gov (United States)

    Luck, Gary W; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse

  9. Brain Events Underlying Episodic Memory Changes in Aging: A Longitudinal Investigation of Structural and Functional Connectivity.

    Science.gov (United States)

    Fjell, Anders M; Sneve, Markus H; Storsve, Andreas B; Grydeland, Håkon; Yendiki, Anastasia; Walhovd, Kristine B

    2016-03-01

    Episodic memories are established and maintained by close interplay between hippocampus and other cortical regions, but degradation of a fronto-striatal network has been suggested to be a driving force of memory decline in aging. We wanted to directly address how changes in hippocampal-cortical versus striatal-cortical networks over time impact episodic memory with age. We followed 119 healthy participants (20-83 years) for 3.5 years with repeated tests of episodic verbal memory and magnetic resonance imaging for quantification of functional and structural connectivity and regional brain atrophy. While hippocampal-cortical functional connectivity predicted memory change in young, changes in cortico-striatal functional connectivity were related to change in recall in older adults. Within each age group, effects of functional and structural connectivity were anatomically closely aligned. Interestingly, the relationship between functional connectivity and memory was strongest in the age ranges where the rate of reduction of the relevant brain structure was lowest, implying selective impacts of the different brain events on memory. Together, these findings suggest a partly sequential and partly simultaneous model of brain events underlying cognitive changes in aging, where different functional and structural events are more or less important in various time windows, dismissing a simple uni-factorial view on neurocognitive aging.

  10. Endothelial function predicts progression of carotid intima-media thickness

    DEFF Research Database (Denmark)

    Halcox, J.P.; Donald, A.E.; Ellins, E.;

    2009-01-01

    investigated endothelial dysfunction, risk factors, and progression of carotid intima-media thickness (cIMT) in late-middle-aged individuals at low to intermediate cardiovascular risk in a prospective study between 1997 and 2005. METHODS AND RESULTS: Brachial artery flow-mediated dilatation and cIMT were...... measured in 213 nonsmoking British civil servants recruited from a prospective cohort (Whitehall II study). Participants (age, 45 to 66 years) were free of clinical cardiovascular disease and diabetes mellitus. Risk factors and Framingham Risk Score were determined at baseline. cIMT was repeated 6...... to its impact on the evolution of the atherosclerotic substrate. Flow-mediated dilatation testing provides an integrated vascular measure that may aid the prediction of structural disease evolution and represents a potential short- to intermediate-term outcome measure for evaluation of preventive...

  11. Microbial community functional change during vertebrate carrion decomposition.

    Science.gov (United States)

    Pechal, Jennifer L; Crippen, Tawni L; Tarone, Aaron M; Lewis, Andrew J; Tomberlin, Jeffery K; Benbow, M Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  12. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  13. Modified estimators for the change point in hazard function

    Science.gov (United States)

    Karasoy, Durdu; Kadilar, Cem

    2009-07-01

    We propose the consistent estimators for the change point in hazard function by improving the estimators in [A.P. Basu, J.K. Ghosh, S.N. Joshi, On estimating change point in a failure rate, in: S.S. Gupta, J.O. Berger (Eds.), Statistical Decision Theory and Related Topics IV, vol. 2, Springer-Verlag, 1988, pp. 239-252] and [H.T. Nguyen, G.S. Rogers, E.A. Walker, Estimation in change point hazard rate model, Biometrika 71 (1984) 299-304]. By a simulation study, we show that the proposed estimators are more efficient than the original estimators in many cases.

  14. Association between binge eating disorder and changes in cognitive functioning following bariatric surgery.

    Science.gov (United States)

    Lavender, Jason M; Alosco, Michael L; Spitznagel, Mary Beth; Strain, Gladys; Devlin, Michael; Cohen, Ronald; Paul, Robert; Crosby, Ross D; Mitchell, James E; Wonderlich, Stephen A; Gunstad, John

    2014-12-01

    Evidence suggests that both obesity and binge eating disorder (BED) may be associated with deficits in cognitive functioning. The purpose of this study was to examine whether a lifetime history of BED would be associated with changes in several domains of cognitive functioning (attention, executive function, language, and memory) following bariatric surgery. Participants were 68 bariatric surgery patients who completed a computerized battery of cognitive tests within 30 days prior to undergoing surgery and again at a 12-Month postoperative follow-up. Results revealed that on the whole, participants displayed improvements from baseline to follow-up in attention, executive function, and memory, even after controlling for diagnostic history of depression; no changes were observed for language. However, individuals with and without a history of BED did not differ in changes in body mass index or in the degree of improvement in cognitive functioning from baseline to follow-up. Such results suggest that a history of BED does not influence changes in cognitive functioning following bariatric surgery. Future research will be needed to further clarify the role of BED in predicting cognitive function over time.

  15. Structural and Function Prediction of Musa acuminata subsp. Malaccensis Protein

    Directory of Open Access Journals (Sweden)

    Anum Munir

    2016-03-01

    Full Text Available Hypothetical proteins (HPs are the proteins whose presence has been anticipated, yet in vivo function has not been built up. Illustrating the structural and functional privileged insights of these HPs might likewise prompt a superior comprehension of the protein-protein associations or networks in diverse types of life. Bananas (Musa acuminata spp., including sweet and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister grouped to the all-around considered Poales, which incorporate oats. Bananas are crucial for nourishment security in numerous tropical and subtropical nations and the most prominent organic product in industrialized nations. In the present study, the hypothetical protein of M. acuminata (Banana was chosen for analysis and modeling by distinctive bioinformatics apparatuses and databases. As indicated by primary and secondary structure analysis, XP_009393594.1 is a stable hydrophobic protein containing a noteworthy extent of α-helices; Homology modeling was done utilizing SWISS-MODEL server where the templates identity with XP_009393594.1 protein was less which demonstrated novelty of our protein. Ab initio strategy was conducted to produce its 3D structure. A few evaluations of quality assessment and validation parameters determined the generated protein model as stable with genuinely great quality. Functional analysis was completed by ProtFun 2.2, and KEGG (KAAS, recommended that the hypothetical protein is a transcription factor with cytoplasmic domain as zinc finger. The protein was observed to be vital for translation process, involved in metabolism, signaling and cellular processes, genetic information processing and Zinc ion binding. It is suggested that further test approval would help to anticipate the structures and functions of other uncharacterized proteins of different plants and living being.

  16. Multi-Instance Multilabel Learning with Weak-Label for Predicting Protein Function in Electricigens

    Directory of Open Access Journals (Sweden)

    Jian-Sheng Wu

    2015-01-01

    Full Text Available Nature often brings several domains together to form multidomain and multifunctional proteins with a vast number of possibilities. In our previous study, we disclosed that the protein function prediction problem is naturally and inherently Multi-Instance Multilabel (MIML learning tasks. Automated protein function prediction is typically implemented under the assumption that the functions of labeled proteins are complete; that is, there are no missing labels. In contrast, in practice just a subset of the functions of a protein are known, and whether this protein has other functions is unknown. It is evident that protein function prediction tasks suffer from weak-label problem; thus protein function prediction with incomplete annotation matches well with the MIML with weak-label learning framework. In this paper, we have applied the state-of-the-art MIML with weak-label learning algorithm MIMLwel for predicting protein functions in two typical real-world electricigens organisms which have been widely used in microbial fuel cells (MFCs researches. Our experimental results validate the effectiveness of MIMLwel algorithm in predicting protein functions with incomplete annotation.

  17. In silico predicted structural and functional robustness of piscine steroidogenesis.

    Science.gov (United States)

    Hala, D; Huggett, D B

    2014-03-21

    Assessments of metabolic robustness or susceptibility are inherently dependent on quantitative descriptions of network structure and associated function. In this paper a stoichiometric model of piscine steroidogenesis was constructed and constrained with productions of selected steroid hormones. Structural and flux metrics of this in silico model were quantified by calculating extreme pathways and optimal flux distributions (using linear programming). Extreme pathway analysis showed progestin and corticosteroid synthesis reactions to be highly participant in extreme pathways. Furthermore, reaction participation in extreme pathways also fitted a power law distribution (degree exponent γ=2.3), which suggested that progestin and corticosteroid reactions act as 'hubs' capable of generating other functionally relevant pathways required to maintain steady-state functionality of the network. Analysis of cofactor usage (O2 and NADPH) showed progestin synthesis reactions to exhibit high robustness, whereas estrogen productions showed highest energetic demands with low associated robustness to maintain such demands. Linear programming calculated optimal flux distributions showed high heterogeneity of flux values with a near-random power law distribution (degree exponent γ≥2.7). Subsequently, network robustness was tested by assessing maintenance of metabolite flux-sum subject to targeted deletions of rank-ordered (low to high metric) extreme pathway participant and optimal flux reactions. Network robustness was susceptible to deletions of extreme pathway participant reactions, whereas minimal impact of high flux reaction deletion was observed. This analysis shows that the steroid network is susceptible to perturbation of structurally relevant (extreme pathway) reactions rather than those carrying high flux.

  18. Dynamic Associations of Change in Physical Activity and Change in Cognitive Function: Coordinated Analyses of Four Longitudinal Studies

    Directory of Open Access Journals (Sweden)

    Magnus Lindwall

    2012-01-01

    Full Text Available The present study used a coordinated analyses approach to examine the association of physical activity and cognitive change in four longitudinal studies. A series of multilevel growth models with physical activity included both as a fixed (between-person and time-varying (within-person predictor of four domains of cognitive function (reasoning, memory, fluency, and semantic knowledge was used. Baseline physical activity predicted fluency, reasoning and memory in two studies. However, there was a consistent pattern of positive relationships between time-specific changes in physical activity and time-specific changes in cognition, controlling for expected linear trajectories over time, across all four studies. This pattern was most evident for the domains of reasoning and fluency.

  19. Changes in brain functional network connectivity after stroke

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Yapeng Li; Wenzhen Zhu; Xi Chen

    2014-01-01

    Studies have shown that functional network connection models can be used to study brain net-work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their ifrst ever stroke. Using independent component analysis, six spatially independent components highly correlat-ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our ifndings suggest that functional network connectivity in stroke patients is more complex than that in hea-lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.

  20. Individual differences in cognitive functioning predict effectiveness of a heads-up lane departure warning for younger and older drivers.

    Science.gov (United States)

    Aksan, Nazan; Sager, Lauren; Hacker, Sarah; Lester, Benjamin; Dawson, Jeffrey; Rizzo, Matthew; Ebe, Kazutoshi; Foley, James

    2017-02-01

    The effectiveness of an idealized lane departure warning (LDW) was evaluated in an interactive fixed base driving simulator. Thirty-eight older (mean age=77years) and 40 younger drivers (mean age=35years) took four different drives/routes similar in road culture composition and hazards encountered with and without LDW. The four drives were administered over visits separated approximately by two weeks to examine changes in long-term effectiveness of LDW. Performance metrics were number of LDW activations and average correction time to each LDW. LDW reduced correction time to re-center the vehicle by 1.34s on average (95% CI=1.12-1.57s) but did not reduce the number of times the drivers drifted enough in their lanes to activate the system (LDW activations). The magnitude of reductions in average correction RT was similar for older and younger drivers and did not change with repeated exposures across visits. The contribution of individual differences in basic visual and motor function, as well as cognitive function to safety gains from LDW was also examined. Cognitive speed of processing predicted lane keeping performance for older and younger drivers. Differences in memory, visuospatial construction, and executive function tended to predict performance differences among older but not younger drivers. Cognitive functioning did not predict changes in the magnitude of safety benefits from LDW over time. Implications are discussed with respect to real-world safety systems.

  1. [Change in pancreatic exocrine function in acute appendicitis].

    Science.gov (United States)

    Ivanov, Iu A

    1979-10-01

    In order to study changes in the functional state of the pancreas 1572 investigations of the blood and urine amylase, atoxylresistant lipase of the blood serum before operation were performed in different postoperative periods in 131 patients with acute appendicitis. The enzyme activity was established to increase, especially in destructive forms of appendicitis and in elderly patients.

  2. P-1138 - Changes in occupational functioning in patients after psychotherapy

    DEFF Research Database (Denmark)

    Fenger, Morten Munthe; Poulsen, Stig Bernt; Mortensen, Erik Lykke;

    2012-01-01

    Introduction Mental disorders are a primary cause of occupational impairments. This study investigated long-term changes in occupational functioning for patients referred to psychotherapeutic treatment at a Danish mental healthcare centre in 2004 and 2005. Method We recruited 761 consecutive pati...

  3. Changes in occupational functioning in patients after psychotherapy

    DEFF Research Database (Denmark)

    Fenger, Morten Munthe; Poulsen, Stig Bernt; Mortensen, Erik Lykke;

    2012-01-01

    Introduction Mental disorders are a primary cause of occupational impairments. This study investigated long-term changes in occupational functioning for patients referred to psychotherapeutic treatment at a Danish mental healthcare centre in 2004 and 2005. Method We recruited 761 consecutive pati...

  4. Predictive functional control of an expansion valve for minimizing the superheat of an evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Fallahsohi, H.; Place, S. [EDF R and D, Av. des Renardieres, 77818 Moret-sur-Loing (France); Changenet, C. [Universite de Lyon, ECAM, Laboratoire d' Energetique, 40 Montee Saint-Barthelemy, 69321 Lyon cedex 05 (France); Ligeret, C. [Schneider-Electric, 37 Quai Paul Louis Merlin, 38050 Grenoble (France); Lin-Shi, X. [Universite de Lyon, INSA-Lyon, Ampere, CNRS UMR5005, 24 avenue Jean Capelle, 69621 Villeurbanne cedex (France)

    2010-03-15

    In a previous paper, a Predictive Functional Control (PFC) method was proposed to control the evaporator superheat with an electronic expansion valve. It has been shown that superheat may be more accurately controlled by PFC than the conventional Proportional-Integral-Derivative (PID) control. In this paper, the proposed methodology is extended to regulate the condensing pressure. In order to study the influence of this control method on the Coefficient of Performance (COP), experiments are conducted on a refrigerating machine by changing the cooling capacity from 120 to 30 kW. As PFC improves disturbance rejection compared to a PID control, it is possible to reduce the superheat setting value and to prevent any unevaporated refrigerant liquid from reaching the compressor. As a consequence the use of PFC leads to an increase of COP which depends on operating conditions. (author)

  5. Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe

    DEFF Research Database (Denmark)

    Thuiller, Wilfried; Lavorel, Sandra; Sykes, Martin T.;

    2006-01-01

    Rapid anthropogenic climate change is already affecting species distributions and ecosystem functioning worldwide. We applied niche-based models to analyse the impact of climate change on tree species and functional diversity in Europe. Present-day climate was used to predict the distributions...... role in the future of different European regions. Temperate areas were projected to lose both species richness and functional diversity due to the loss of broadleaved deciduous trees. These were projected to migrate to boreal forests, thereby increasing their species richness and functional diversity....... Atlantic areas provided an intermediate case, with a predicted reduction in the numbers of species and occasional predicted gains in functional diversity. This resulted from a loss in species within the broadleaved deciduous FT, but overall maintenance of the group. Our results illustrate the fact...

  6. Age-related changes in task related functional network connectivity.

    Directory of Open Access Journals (Sweden)

    Jason Steffener

    Full Text Available Aging has a multi-faceted impact on brain structure, brain function and cognitive task performance, but the interaction of these different age-related changes is largely unexplored. We hypothesize that age-related structural changes alter the functional connectivity within the brain, resulting in altered task performance during cognitive challenges. In this neuroimaging study, we used independent components analysis to identify spatial patterns of coordinated functional activity involved in the performance of a verbal delayed item recognition task from 75 healthy young and 37 healthy old adults. Strength of functional connectivity between spatial components was assessed for age group differences and related to speeded task performance. We then assessed whether age-related differences in global brain volume were associated with age-related differences in functional network connectivity. Both age groups used a series of spatial components during the verbal working memory task and the strength and distribution of functional network connectivity between these components differed across the age groups. Poorer task performance, i.e. slower speed with increasing memory load, in the old adults was associated with decreases in functional network connectivity between components comprised of the supplementary motor area and the middle cingulate and between the precuneus and the middle/superior frontal cortex. Advancing age also led to decreased brain volume; however, there was no evidence to support the hypothesis that age-related alterations in functional network connectivity were the result of global brain volume changes. These results suggest that age-related differences in the coordination of neural activity between brain regions partially underlie differences in cognitive performance.

  7. Stability of executive function and predictions to adaptive behavior from middle childhood to pre-adolescence

    Directory of Open Access Journals (Sweden)

    Madeline eHarms

    2014-04-01

    Full Text Available The shift from childhood to adolescence is characterized by rapid remodeling of the brain and increased risk-taking behaviors. Current theories hypothesize that developmental enhancements in sensitivity to affective environmental cues in adolescence may undermine executive function (EF and increase the likelihood of problematic behaviors. In the current study, we examined the extent to which EF in childhood predicts EF in early adolescence. We also tested whether individual differences in neural responses to affective cues (rewards/punishments in childhood serve as a biological marker for EF, sensation-seeking, academic performance, and social skills in early adolescence. At age 8, 84 children completed a gambling task while event-related potentials (ERPs were recorded. We examined the extent to which selections resulting in rewards or losses in this task elicited (i the P300, a post-stimulus waveform reflecting the allocation of attentional resources toward a stimulus, and (ii the SPN, a pre-stimulus anticipatory waveform reflecting a neural representation of a hunch about an outcome that originates in insula and ventromedial PFC. Children also completed a Dimensional Change Card-Sort (DCCS and Flanker task to measure EF. At age 12, 78 children repeated the DCCS and Flanker and completed a battery of questionnaires. Flanker and DCCS accuracy at age 8 predicted Flanker and DCCS performance at age 12, respectively. Individual differences in the magnitude of P300 (to losses vs. rewards and SPN (preceding outcomes with a high probability of punishment at age 8 predicted self-reported sensation seeking (lower and teacher-rated academic performance (higher at age 12. We suggest there is stability in EF from age 8 to 12, and that childhood neural sensitivity to reward and punishment predicts individual differences in sensation seeking and adaptive behaviors in children entering adolescence.

  8. Electrocardiographic changes improve risk prediction in asymptomatic persons age 65 years or above without cardiovascular disease

    DEFF Research Database (Denmark)

    Jørgensen, Peter Godsk; Jensen, Jan S; Marott, Jacob L;

    2014-01-01

    : In all, 6,991 participants from the Copenhagen Heart Study attending an examination at age ≥65 years were included. ECG changes were defined as Q waves, ST-segment depression, T-wave changes, ventricular conduction defects, and left ventricular hypertrophy based on the Minnesota code. The primary...... with conventional risk factors. All ECG changes except 1 univariably predicted both endpoints. Event rates of ECG changes versus no ECG changes were respectively 41.4% versus 27.8% and 64.6% versus 50.8%. When added to existing risk scores, ECG changes independently increased the risk of both endpoints. Fatal CVD......BACKGROUND: Risk prediction in elderly patients is increasingly relevant due to longer life expectancy. OBJECTIVES: This study sought to examine whether electrocardiographic (ECG) changes provide prognostic information incremental to current risk models and to the conventional risk factors. METHODS...

  9. COMPASS: A computational model to predict changes in MMSE scores 24-months after initial assessment of Alzheimer’s disease

    Science.gov (United States)

    Zhu, Fan; Panwar, Bharat; Dodge, Hiroko H.; Li, Hongdong; Hampstead, Benjamin M.; Albin, Roger L.; Paulson, Henry L.; Guan, Yuanfang

    2016-01-01

    We present COMPASS, a COmputational Model to Predict the development of Alzheimer’s diSease Spectrum, to model Alzheimer’s disease (AD) progression. This was the best-performing method in recent crowdsourcing benchmark study, DREAM Alzheimer’s Disease Big Data challenge to predict changes in Mini-Mental State Examination (MMSE) scores over 24-months using standardized data. In the present study, we conducted three additional analyses beyond the DREAM challenge question to improve the clinical contribution of our approach, including: (1) adding pre-validated baseline cognitive composite scores of ADNI-MEM and ADNI-EF, (2) identifying subjects with significant declines in MMSE scores, and (3) incorporating SNPs of top 10 genes connected to APOE identified from functional-relationship network. For (1) above, we significantly improved predictive accuracy, especially for the Mild Cognitive Impairment (MCI) group. For (2), we achieved an area under ROC of 0.814 in predicting significant MMSE decline: our model has 100% precision at 5% recall, and 91% accuracy at 10% recall. For (3), “genetic only” model has Pearson’s correlation of 0.15 to predict progression in the MCI group. Even though addition of this limited genetic model to COMPASS did not improve prediction of progression of MCI group, the predictive ability of SNP information extended beyond well-known APOE allele. PMID:27703197

  10. Climate change and plant distribution: local models predict high-elevation persistence

    DEFF Research Database (Denmark)

    Randin, Christophe F.; Engler, Robin; Normand, Signe

    2009-01-01

    of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolutions and geographic extents. Here, we assess whether climate change-induced habitat losses predicted at the European scale (10 × 10' grid...... in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10 × 10' cells. The greatest prediction discrepancy for alpine species occurs in the area......Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range, and spatial resolution of data used in making these models, different rates...

  11. Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties.

    Science.gov (United States)

    Powell, Jeff R; Welsh, Allana; Hallin, Sara

    2015-07-01

    Microorganisms drive biogeochemical processes, but linking these processes to real changes in microbial communities under field conditions is not trivial. Here, we present a model-based approach to estimate independent contributions of microbial community shifts to ecosystem properties. The approach was tested empirically, using denitrification potential as our model process, in a spatial survey of arable land encompassing a range of edaphic conditions and two agricultural production systems. Soil nitrate was the most important single predictor of denitrification potential (the change in Akaike's information criterion, corrected for sample size, ΔAIC(c) = 20.29); however, the inclusion of biotic variables (particularly the evenness and size of denitrifier communities [ΔAIC(c) = 12.02], and the abundance of one denitrifier genotype [ΔAIC(c) = 18.04]) had a substantial effect on model precision, comparable to the inclusion of abiotic variables (biotic R2 = 0.28, abiotic R2 = 0.50, biotic + abiotic R2 = 0.76). This approach provides a valuable tool for explicitly linking microbial communities to ecosystem functioning. By making this link, we have demonstrated that including aspects of microbial community structure and diversity in biogeochemical models can improve predictions of nutrient cycling in ecosystems and enhance our understanding of ecosystem functionality.

  12. Scoring protein relationships in functional interaction networks predicted from sequence data.

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    Full Text Available UNLABELLED: The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins. AVAILABILITY: Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data and python scripts to compute these scores are available at http://web.cbio.uct.ac.za/~gmazandu/scoringschemes.

  13. Predicting future changes in climate and its impact on change in land use: a case study of Cauvery Basin

    Science.gov (United States)

    Poyil, Rohith P.; Dhanalakshmi, S.; Goyal, Pramila

    2016-05-01

    The study involves the climate change prediction and its effects over a local sub grid scale of smaller area in Cauvery basin. The consequences of global warming due to anthropogenic activities are reflected in global as well as regional climate in terms of changes in key climatic variables such as temperature, precipitation, humidity and wind speed. The key objectives of the study are to define statistical relationships between different climate parameters, to estimate the sensitivities of climate variables to future climate scenarios by integrating with GIS and to predict the land use/ land cover change under the climate change scenarios. The historical data set was analyzed to predict the climate change and its impact on land use/land cover (LULC) is observed by correlating the Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) values for two different times for the same area. It is so evident that due to the rise in temperature there is a considerable change in the land use affecting the vegetation index; increased temperature results in very low NDVI values or vegetation abundance.

  14. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  15. Functional reorganization of the auditory pathways (or lack thereof) in callosal agenesis is predicted by monaural sound localization performance.

    Science.gov (United States)

    Paiement, Philippe; Champoux, François; Bacon, Benoit A; Lassonde, Maryse; Mensour, Boualem; Leroux, Jean-Maxime; Lepore, Franco

    2010-01-01

    Neuroimaging studies show that permanent peripheral lesions such as unilateral deafness cause functional reorganization in the auditory pathways. However, functional reorganization of the auditory pathways as a result of higher-level damage or abnormalities remains poorly investigated. A relatively recent behavioural study points to functional changes in the auditory pathways in some, but interestingly not in all, of the acallosal individuals that were tested. The present study uses fMRI to investigate auditory activities in both cerebral hemispheres in those same acallosal subjects in order to directly investigate the contributions of ipsilateral and contralateral functional pathways reorganization. Predictions were made that functional reorganization could be predicted from behavioural performance. As reported previously in a number of neuroimaging studies, results showed that in neurologically intact subjects, binaural stimulation induced balanced activities between both hemispheres, while monaural stimulation induced strong contralateral activities and weak ipsilateral activities. In accordance with behavioural predictions, some acallosal subjects showed patterns of auditory cortical activities that were similar to those observed in neurologically intact subjects while others showed functional reorganization of the auditory pathways. Essentially they showed a significant increase and a significant decrease of neural activities in the contralateral and/or ipsilateral pathways, respectively. These findings indicate that at least in some acallosal subjects, functional reorganization inside the auditory pathways does contribute to compensate for the absence of the corpus callosum.

  16. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety

    Science.gov (United States)

    Makovac, Elena; Watson, David R.; Meeten, Frances; Garfinkel, Sarah N.; Cercignani, Mara; Critchley, Hugo D.

    2016-01-01

    Generalized anxiety disorder (GAD) is characterized by excessive worry, autonomic dysregulation and functional amygdala dysconnectivity, yet these illness markers have rarely been considered together, nor their interrelationship tested longitudinally. We hypothesized that an individual’s capacity for emotion regulation predicts longer-term changes in amygdala functional connectivity, supporting the modification of GAD core symptoms. Sixteen patients with GAD (14 women) and individually matched controls were studied at two time points separated by 1 year. Resting-state fMRI data and concurrent measurement of vagally mediated heart rate variability were obtained before and after the induction of perseverative cognition. A greater rise in levels of worry following the induction predicted a stronger reduction in connectivity between right amygdala and ventromedial prefrontal cortex, and enhanced coupling between left amygdala and ventral tegmental area at follow-up. Similarly, amplified physiological responses to the induction predicted increased connectivity between right amygdala and thalamus. Longitudinal shifts in a distinct set of functional connectivity scores were associated with concomitant changes in GAD symptomatology over the course of the year. Results highlight the prognostic value of indices of emotional dysregulation and emphasize the integral role of the amygdala as a critical hub in functional neural circuitry underlying the progression of GAD symptomatology. PMID:27369066

  17. Using quantitative CT to predict postoperative pulmonary function in patients with lung cancer

    Institute of Scientific and Technical Information of China (English)

    LIU Fang; HAN Ping; FENG Gan-sheng; LIANG Bo; XIAO Jie; TIAN Zhi-liang; LEI Zi-qiao

    2005-01-01

    Background At present, the therapy for patients with lung cancer that achieves a high rate of cure is surgical resection at an early stage of the disease. The aim of this study is to evaluate quantitative computed tomography (QCT) for predicting postoperative pulmonary function in patients with lung cancer. Methods The data of thirty-one patients with lung cancer who underwent both pulmonary functional tests and QCT scan before operations were collected. A CT program was used to quantify the volume of whole lung parenchyma with attenuation of -910 HU to -600 HU, which was defined as total functional lung volume (TFLV). Similarly, the volume of lung (lobes or segments) with attenuation of -910 HU to -600 HU was defined as regional functional lung volume (RFLV). Forced vital capacity (FVC), forced expiratory volume in first second (FEV1), FVC% and FEV1% (ratio to reference values of the matched population) were obtained from preoperational pulmonary functional tests. According to the formula: predicted FVC (pre-FVC)=preoperative FVC×[1-(RFLV/TFLV)]; predicted FEV1 (pre-FEV1)=preoperative FEV1×[1-(RFLV/TFLV)], we obtained values of predicted FVC, predicted FEV1, predicted FVC% (pre-FVC/reference values of the matched population), and predicted FEV1% (pre-FEV1/reference values of the matched population). The paired t test and Pearson correlation test were used to assess significance of differences and correlations between CT predicted values and postoperative measured results of FVC, FEV1, FVC% and FEV1%. Results QCT predicted values correlated well with postoperative FVC, FEV1, FVC% and FEV1% (r=0.873, 0.809, 0.849 and 0.801 respectively, all P<0.01).Conclusions QCT is an effective and accurate way to predict postoperative pulmonary function in patients undergoing pulmonary resection, regardless of the patients' preoperative pulmonary functional status.

  18. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    Directory of Open Access Journals (Sweden)

    Lubin Wang

    Full Text Available The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI. In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  19. A new statistical tool to predict phenology under climate change scenarios

    NARCIS (Netherlands)

    Gienapp, P.; Hemerik, L.; Visser, M.E.

    2005-01-01

    Climate change will likely affect the phenology of trophic levels differently and thereby disrupt the phenological synchrony between predators and prey. To predict this disruption of the synchrony under different climate change scenarios, good descriptive models for the phenology of the different sp

  20. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Directory of Open Access Journals (Sweden)

    Manuel Irimia

    Full Text Available Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans factors that bind to different sequence (cis elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.

  1. Changes in pulmonary function after definitive radiotherapy for NSCLC

    DEFF Research Database (Denmark)

    Schytte, Tine; Bentzen, Søren M; Brink, Carsten

    2015-01-01

    a negative impact on FVC. Long-term FEV1 and FVC were analyzed using linear regression. Treatment year and V60 had a significant impact on loss of FEV1. V60 had a significant impact on FVC changes. CONCLUSION: In this study, early PF change reached a plateau at 6months after the start of radiotherapy......INTRODUCTION: The objective of this study was to identify factors associated with early and long-term pulmonary function (PF) changes after definitive radiotherapy for NSCLC patients. PF was measured by spirometry i.e. forced expiratory volume in 1s (FEV1), and forced vital capacity (FVC......, they were tested as covariates in multivariable analysis. RESULTS: Early PF change was quantified at six months after the start of radiotherapy. Smoking status and increasing V60 was associated with a significant decrease in PF, whereas smoking was protective. In addition, neoadjuvant chemotherapy had...

  2. NARX prediction of some rare chaotic flows: Recurrent fuzzy functions approach

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Sobhan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Jafari, Sajad, E-mail: sajadjafari@aut.ac.ir [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Moradi, Mohammad Hassan [Biomedical Engineering Department, Amirkabir University of Technology, Tehran 15875-4413 (Iran, Islamic Republic of); Sprott, J.C. [Department of Physics, University of Wisconsin–Madison, Madison, WI 53706 (United States)

    2016-02-15

    The nonlinear and dynamic accommodating capability of time domain models makes them a useful representation of chaotic time series for analysis, modeling and prediction. This paper is devoted to the modeling and prediction of chaotic time series with hidden attractors using a nonlinear autoregressive model with exogenous inputs (NARX) based on a novel recurrent fuzzy functions (RFFs) approach. Case studies of recently introduced chaotic systems with hidden attractors plus classical chaotic systems demonstrate that the proposed modeling methodology exhibits better prediction performance from different viewpoints (short term and long term) compared to some other existing methods. - Highlights: • A new method is proposed for prediction of chaotic time series. • This method is based on novel recurrent fuzzy functions (RFFs) approach. • Some rare chaotic flows are used as test systems. • The new method shows proper performance in short-term prediction. • It also shows proper performance in prediction of attractor's topology.

  3. Predictive functional control based on fuzzy T-S model for HVAC systems temperature control

    Institute of Scientific and Technical Information of China (English)

    Hongli L(U); Lei JIA; Shulan KONG; Zhaosheng ZHANG

    2007-01-01

    In heating,ventilating and air-conditioning(HVAC)systems,there exist severe nonlinearity,time-varying nature,disturbances and uncertainties.A new predictive functional control based on Takagi-Sugeno(T-S)fuzzy model was proposed to control HVAC systems.The T-S fuzzy model of stabilized controlled process was obtained using the least squares method,then on the basis of global linear predictive model from T-S fuzzy model,the process was controlled by the predictive functional controller.Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model.Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness.Compared with the conventional PID controller,this control strategy has the advantages of less overshoot and shorter setting time,etc.

  4. Emotion-Induced Topological Changes in Functional Brain Networks.

    Science.gov (United States)

    Park, Chang-Hyun; Lee, Hae-Kook; Kweon, Yong-Sil; Lee, Chung Tai; Kim, Ki-Tae; Kim, Young-Joo; Lee, Kyoung-Uk

    2016-01-01

    In facial expression perception, a distributed network is activated according to stimulus context. We proposed that an interaction between brain activation and stimulus context in response to facial expressions could signify a pattern of interactivity across the whole brain network beyond the face processing network. Functional magnetic resonance imaging data were acquired for 19 young healthy subjects who were exposed to either emotionally neutral or negative facial expressions. We constructed group-wise functional brain networks for 12 face processing areas [bilateral inferior occipital gyri (IOG), fusiform gyri (FG), superior temporal sulci (STS), amygdalae (AMG), inferior frontal gyri (IFG), and orbitofrontal cortices (OFC)] and for 73 whole brain areas, based on partial correlation of mean activation across subjects. We compared the topological properties of the networks with respect to functional distance-based measures, global and local efficiency, between the two types of face stimulus. In both face processing and whole brain networks, global efficiency was lower and local efficiency was higher for negative faces relative to neutral faces, indicating that network topology differed according to stimulus context. Particularly in the face processing network, emotion-induced changes in network topology were attributable to interactions between core (bilateral IOG, FG, and STS) and extended (bilateral AMG, IFG, and OFC) systems. These results suggest that changes in brain activation patterns in response to emotional face stimuli could be revealed as changes in the topological properties of functional brain networks for the whole brain as well as for face processing areas.

  5. Human Motor Cortex Functional Changes in Acute Stroke: Gender Effects

    Directory of Open Access Journals (Sweden)

    Vincenzo eDi Lazzaro

    2016-01-01

    Full Text Available The acute phase of stroke is accompanied by functional changes in the activity and interplay of both hemispheres. In healthy subjects, gender is known to impact the functional brain organization.We investigated whether gender influences also acute stroke functional changes. In thirty-five ischemic stroke patients, we evaluated the excitability of the affected (AH and unaffected hemisphere (UH by measuring resting and active motor threshold and motor-evoked potential amplitude under baseline conditions and after intermittent theta burst stimulation (iTBS of AH. We also computed an index of the excitability balance between the hemispheres, laterality indexes (LI, to evidence hemispheric asymmetry. Active motor threshold differed significantly between AH and UH only in the male group (p=0.004, not in females (p>0.200, and both LIAMT and LIRMT were significantly higher in males than in females (respectively p=0.033 and p=0.042. LTP-like activity induced by iTBS in AH was more frequent in females. Gender influences the functional excitability changes that take place after human stroke and the level of LTP that can be induced by repetitive stimulation. This knowledge is of high value in the attempt of individualizing to different genders any non-invasive stimulation strategy designed to foster stroke recovery.

  6. Structural descriptor database: a new tool for sequence-based functional site prediction

    Directory of Open Access Journals (Sweden)

    Vasconcelos Ana

    2008-11-01

    Full Text Available Abstract Background The Structural Descriptor Database (SDDB is a web-based tool that predicts the function of proteins and functional site positions based on the structural properties of related protein families. Structural alignments and functional residues of a known protein set (defined as the training set are used to build special Hidden Markov Models (HMM called HMM descriptors. SDDB uses previously calculated and stored HMM descriptors for predicting active sites, binding residues, and protein function. The database integrates biologically relevant data filtered from several databases such as PDB, PDBSUM, CSA and SCOP. It accepts queries in fasta format and predicts functional residue positions, protein-ligand interactions, and protein function, based on the SCOP database. Results To assess the SDDB performance, we used different data sets. The Trypsion-like Serine protease data set assessed how well SDDB predicts functional sites when curated data is available. The SCOP family data set was used to analyze SDDB performance by using training data extracted from PDBSUM (binding sites and from CSA (active sites. The ATP-binding experiment was used to compare our approach with the most current method. For all evaluations, significant improvements were obtained with SDDB. Conclusion SDDB performed better when trusty training data was available. SDDB worked better in predicting active sites rather than binding sites because the former are more conserved than the latter. Nevertheless, by using our prediction method we obtained results with precision above 70%.

  7. Applications of Displacement Transfer Functions to Deformed Shape Predictions of the GIII Swept-Wing Structure

    Science.gov (United States)

    Lung, Shun-Fat; Ko, William L.

    2016-01-01

    The displacement transfer functions (DTFs) were applied to the GIII swept wing for the deformed shape prediction. The calculated deformed shapes are very close to the correlated finite element results as well as the measured data. The convergence study showed that using 17 strain stations, the wing-tip displacement prediction error was 1.6 percent, and that there is no need to use a large number of strain stations for G-III wing shape predictions.

  8. Emotionally biased cognitive processes: the weakest link predicts prospective changes in depressive symptom severity.

    Science.gov (United States)

    Everaert, Jonas; Duyck, Wouter; Koster, Ernst H W

    2015-01-01

    Emotional biases in attention, interpretation, and memory are predictive of future depressive symptoms. It remains unknown, however, how these biased cognitive processes interact to predict depressive symptom levels in the long-term. In the present study, we tested the predictive value of two integrative approaches to model relations between multiple biased cognitive processes, namely the additive (i.e., cognitive processes have a cumulative effect) vs. the weakest link (i.e., the dominant pathogenic process is important) model. We also tested whether these integrative models interacted with perceived stress to predict prospective changes in depressive symptom severity. At Time 1, participants completed measures of depressive symptom severity and emotional biases in attention, interpretation, and memory. At Time 2, one year later, participants were reassessed to determine depressive symptom levels and perceived stress. Results revealed that the weakest link model had incremental validity over the additive model in predicting prospective changes in depressive symptoms, though both models explained a significant proportion of variance in the change in depressive symptoms from Time 1 to Time 2. None of the integrative models interacted with perceived stress to predict changes in depressive symptomatology. These findings suggest that the best cognitive marker of the evolution in depressive symptoms is the cognitive process that is dominantly biased toward negative material, which operates independent from experienced stress. This highlights the importance of considering idiographic cognitive profiles with multiple cognitive processes for understanding and modifying effects of cognitive biases in depression.

  9. Bioretention function under climate change scenarios in North Carolina, USA

    Science.gov (United States)

    Hathaway, J. M.; Brown, R. A.; Fu, J. S.; Hunt, W. F.

    2014-11-01

    The effect of climate change on stormwater controls is largely unknown. Evaluating such effects is important for understanding how well resiliency can be built into urban watersheds by implementing these systems. Bioretention areas with varied media depths, in situ soil types, drainage configurations, and surface infiltration capabilities have previously been monitored, modelled, and calibrated using the continuous simulation model, DRAINMOD. In this study, data from downscaled climate projections for 2055 through 2058 were utilized in these models to evaluate changes in system hydrologic function under two climate change scenarios (RCP 4.5 and 8.5). The results were compared to those generated using a “Base” scenario of observed data from 2001 to 2004. The results showed a modest change in the overall water balance of the system. In particular, the frequency and magnitude of overflow from the systems substantially increased under the climate change scenarios. As this represents an increase in the amount of uncontrolled, untreated runoff from the contributing watersheds, it is of particular concern. Further modelling showed that between 9.0 and 31.0 cm of additional storage would be required under the climate change scenarios to restrict annual overflow to that of the base scenario. Bioretention surface storage volume and infiltration rate appeared important in determining a system's ability to cope with increased yearly rainfall and higher rainfall magnitudes. As climate change effects vary based on location, similar studies should be performed in other locations to determine localized effects on stormwater controls.

  10. Comparison of statistical and clinical predictions of functional outcome after ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Douglas D Thompson

    Full Text Available To determine whether the predictions of functional outcome after ischemic stroke made at the bedside using a doctor's clinical experience were more or less accurate than the predictions made by clinical prediction models (CPMs.A prospective cohort study of nine hundred and thirty one ischemic stroke patients recruited consecutively at the outpatient, inpatient and emergency departments of the Western General Hospital, Edinburgh between 2002 and 2005. Doctors made informal predictions of six month functional outcome on the Oxford Handicap Scale (OHS. Patients were followed up at six months with a validated postal questionnaire. For each patient we calculated the absolute predicted risk of death or dependence (OHS≥3 using five previously described CPMs. The specificity of a doctor's informal predictions of OHS≥3 at six months was good 0.96 (95% CI: 0.94 to 0.97 and similar to CPMs (range 0.94 to 0.96; however the sensitivity of both informal clinical predictions 0.44 (95% CI: 0.39 to 0.49 and clinical prediction models (range 0.38 to 0.45 was poor. The prediction of the level of disability after stroke was similar for informal clinical predictions (ordinal c-statistic 0.74 with 95% CI 0.72 to 0.76 and CPMs (range 0.69 to 0.75. No patient or clinician characteristic affected the accuracy of informal predictions, though predictions were more accurate in outpatients.CPMs are at least as good as informal clinical predictions in discriminating between good and bad functional outcome after ischemic stroke. The place of these models in clinical practice has yet to be determined.

  11. Effect of land use change on soil properties and functions

    Science.gov (United States)

    Tonutare, Tonu; Kõlli, Raimo; Köster, Tiina; Rannik, Kaire; Szajdak, Lech; Shanskiy, Merrit

    2014-05-01

    For good base of sustainable land management and ecologically sound protection of soils are researches on soil properties and functioning. Ecosystem approach to soil properties and functioning is equally important in both natural and cultivated land use conditions. Comparative analysis of natural and agro-ecosystems formed on similar soil types enables to elucidate principal changes caused by land use change (LUC) and to elaborate the best land use practices for local pedo-ecological conditions. Taken for actual analysis mineral soils' catena - rendzina → brown soils → pseudopodzolic soils → gley-podzols - represent ca 1/3 of total area of Estonian normal mineral soils. All soils of this catena differ substantially each from other by calcareousness, acidity, nutrition conditions, fabric and humus cover type. This catena (representative to Estonian pedo-ecological conditions) starts with drought-prone calcareous soils. Brown (distributed in northern and central Estonia) and pseudopodzolic soils (in southern Estonia) are the most broadly acknowledged for agricultural use medium-textured high-quality automorphic soils. Dispersedly distributed gley-podzols are permanently wet and strongly acid, low-productivity sandy soils. In presentation four complex functions of soils are treated: (1) being a suitable soil environment for plant cover productivity (expressed by annual increment, Mg ha-1 yr-1); (2) forming adequate conditions for decomposition, transformation and conversion of fresh falling litter (characterized by humus cover type); (3) deposition of humus, individual organic compounds, plant nutrition elements, air and water, and (4) forming (bio)chemically variegated active space for soil type specific edaphon. Capacity of soil cover as depositor (3) depends on it thickness, texture, calcareousness and moisture conditions. Biological activity of soil (4) is determined by fresh organic matter influx, quality and quantity of biochemical substances and humus

  12. Predicting College Students' Positive Psychology Associated Traits with Executive Functioning Dimensions

    Science.gov (United States)

    Marshall, Seth

    2016-01-01

    More research is needed that investigates how positive psychology-associated traits are predicted by neurocognitive processes. Correspondingly, the purpose of this study was to ascertain how, and to what extent, four traits, namely, grit, optimism, positive affect, and life satisfaction were predicted by the executive functioning (EF) dimensions…

  13. Predicting maize phenology: Intercomparison of functions for developmental response to temperature

    Science.gov (United States)

    Accurate prediction of phenological development in maize is fundamental to determining crop adaptation and yield potential. A number of thermal functions are used in crop models, but their relative precision in predicting maize development has not been quantified. The objectives of this study were t...

  14. Which Moral Foundations Predict Willingness to Make Lifestyle Changes to Avert Climate Change in the USA?

    Science.gov (United States)

    Dickinson, Janis L.; McLeod, Poppy; Bloomfield, Robert; Allred, Shorna

    2016-01-01

    Jonathan Haidt’s Moral Foundations Theory identifies five moral axes that can influence human motivation to take action on vital problems like climate change. The theory focuses on five moral foundations, including compassion, fairness, purity, authority, and ingroup loyalty; these have been found to differ between liberals and conservatives as well as Democrats and Republicans. Here we show, based on the Cornell National Social Survey (USA), that valuations of compassion and fairness were strong, positive predictors of willingness to act on climate change, whereas purity had a non-significant tendency in the positive direction (p = 0.07). Ingroup loyalty and authority were not supported as important predictor variables using model selection (ΔAICc__). Compassion and fairness were more highly valued by liberals, whereas purity, authority, and in-group loyalty were more highly valued by conservatives. As in previous studies, participants who were younger, more liberal, and reported greater belief in climate change, also showed increased willingness to act on climate change. Our research supports the potential importance of moral foundations as drivers of intentions with respect to climate change action, and suggests that compassion, fairness, and to a lesser extent, purity, are potential moral pathways for personal action on climate change in the USA. PMID:27760207

  15. EnzymeDetector: an integrated enzyme function prediction tool and database

    OpenAIRE

    Schomburg Dietmar; Quester Susanne

    2011-01-01

    Abstract Background The ability to accurately predict enzymatic functions is an essential prerequisite for the interpretation of cellular functions, and the reconstruction and analysis of metabolic models. Several biological databases exist that provide such information. However, in many cases these databases provide partly different and inconsistent genome annotations. Description We analysed nine prokaryotic genomes and found about 70% inconsistencies in the enzyme predictions of the main a...

  16. Age-related changes in predictive capacity versus internal model adaptability: electrophysiological evidence that individual differences outweigh effects of age

    Directory of Open Access Journals (Sweden)

    Ina eBornkessel-Schlesewsky

    2015-11-01

    Full Text Available Hierarchical predictive coding has been identified as a possible unifying principle of brain function, and recent work in cognitive neuroscience has examined how it may be affected by age–related changes. Using language comprehension as a test case, the present study aimed to dissociate age-related changes in prediction generation versus internal model adaptation following a prediction error. Event-related brain potentials (ERPs were measured in a group of older adults (60–81 years; n=40 as they read sentences of the form The opposite of black is white/yellow/nice. Replicating previous work in young adults, results showed a target-related P300 for the expected antonym (white; an effect assumed to reflect a prediction match, and a graded N400 effect for the two incongruous conditions (i.e. a larger N400 amplitude for the incongruous continuation not related to the expected antonym, nice, versus the incongruous associated condition, yellow. These effects were followed by a late positivity, again with a larger amplitude in the incongruous non-associated versus incongruous associated condition. Analyses using linear mixed-effects models showed that the target-related P300 effect and the N400 effect for the incongruous non-associated condition were both modulated by age, thus suggesting that age-related changes affect both prediction generation and model adaptation. However, effects of age were outweighed by the interindividual variability of ERP responses, as reflected in the high proportion of variance captured by the inclusion of by-condition random slopes for participants and items. We thus argue that – at both a neurophysiological and a functional level – the notion of general differences between language processing in young and older adults may only be of limited use, and that future research should seek to better understand the causes of interindividual variability in the ERP responses of older adults and its relation to cognitive

  17. PRISM offers a comprehensive genomic approach to transcription factor function prediction

    KAUST Repository

    Wenger, A. M.

    2013-02-04

    The human genome encodes 1500-2000 different transcription factors (TFs). ChIP-seq is revealing the global binding profiles of a fraction of TFs in a fraction of their biological contexts. These data show that the majority of TFs bind directly next to a large number of context-relevant target genes, that most binding is distal, and that binding is context specific. Because of the effort and cost involved, ChIP-seq is seldom used in search of novel TF function. Such exploration is instead done using expression perturbation and genetic screens. Here we propose a comprehensive computational framework for transcription factor function prediction. We curate 332 high-quality nonredundant TF binding motifs that represent all major DNA binding domains, and improve cross-species conserved binding site prediction to obtain 3.3 million conserved, mostly distal, binding site predictions. We combine these with 2.4 million facts about all human and mouse gene functions, in a novel statistical framework, in search of enrichments of particular motifs next to groups of target genes of particular functions. Rigorous parameter tuning and a harsh null are used to minimize false positives. Our novel PRISM (predicting regulatory information from single motifs) approach obtains 2543 TF function predictions in a large variety of contexts, at a false discovery rate of 16%. The predictions are highly enriched for validated TF roles, and 45 of 67 (67%) tested binding site regions in five different contexts act as enhancers in functionally matched cells.

  18. Visual functional changes during acute elevation of intraocular pressure

    Institute of Scientific and Technical Information of China (English)

    Tian-De SHOU

    2006-01-01

    Glaucoma is closely related to elevation of intraocular pressure (IOP). Many studies have done on the effect of chronic elevation of IOP on the retina and optic nerve, but less attention was paid to the effect of acute elevated IOP. Here we briefly review experimental studies on functional changes of the visual system from the retina to the visual cortex under acute elevated IOP condition, which is similar to that of acute primary angle-closure glaucoma.

  19. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  20. Structural and Functional Changes With the Aging Kidney.

    Science.gov (United States)

    Denic, Aleksandar; Glassock, Richard J; Rule, Andrew D

    2016-01-01

    Senescence or normal physiologic aging portrays the expected age-related changes in the kidney as compared to a disease that occurs in some but not all individuals. The microanatomical structural changes of the kidney with older age include a decreased number of functional glomeruli from an increased prevalence of nephrosclerosis (arteriosclerosis, glomerulosclerosis, and tubular atrophy with interstitial fibrosis), and to some extent, compensatory hypertrophy of remaining nephrons. Among the macroanatomical structural changes, older age associates with smaller cortical volume, larger medullary volume until middle age, and larger and more numerous kidney cysts. Among carefully screened healthy kidney donors, glomerular filtration rate (GFR) declines at a rate of 6.3 mL/min/1.73 m(2) per decade. There is reason to be concerned that the elderly are being misdiagnosed with CKD. Besides this expected kidney function decline, the lowest risk of mortality is at a GFR of ≥75 mL/min/1.73 m(2) for age kidney functional reserve when they do actually develop CKD, and they are at higher risk for acute kidney injury.

  1. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I.; Bedford, Felicity E.; Bennett, Dominic J.; Booth, Hollie; Burton, Victoria J.; Chng, Charlotte W. T.; Choimes, Argyrios; Correia, David L.P.

    2017-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  2. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L L; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R P; Alhusseini, Tamera I.; Bedford, Felicity E.; Bennett, Dominic J.; Booth, Hollie; Burton, Victoria J.; Chng, Charlotte W. T.; Choimes, Argyrios; Correia, David L.P.

    2016-01-01

    The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  3. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L.L.; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R. P.; Alhusseini, Tamera I.; Bedford, Felicity E.; Bennett, Dominic J.; Booth, Hollie; Burton, Victoria J.; Chng , Charlotte W. T.; Choimes, Argyrios; Correia, David L.P.

    2017-01-01

    The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make free...

  4. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project

    OpenAIRE

    Hudson, Lawrence N; Newbold, Tim; Contu, Sara; Hill, Samantha L.L.; Lysenko, Igor; De Palma, Adriana; Phillips, Helen R. P.; Alhusseini, Tamera I.; Bedford, Felicity E.; Bennett, Dominic J.; Booth, Hollie; Burton, Victoria J.; Chng , Charlotte W. T.; Choimes, Argyrios; Correia, David L.P.

    2016-01-01

    Abstract The PREDICTS project—Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)—has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and ...

  5. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change?

    Science.gov (United States)

    Gienapp, Phillip; Lof, Marjolein; Reed, Thomas E; McNamara, John; Verhulst, Simon; Visser, Marcel E

    2013-01-19

    Populations need to adapt to sustained climate change, which requires micro-evolutionary change in the long term. A key question is how the rate of this micro-evolutionary change compares with the rate of environmental change, given that theoretically there is a 'critical rate of environmental change' beyond which increased maladaptation leads to population extinction. Here, we parametrize two closely related models to predict this critical rate using data from a long-term study of great tits (Parus major). We used stochastic dynamic programming to predict changes in optimal breeding time under three different climate scenarios. Using these results we parametrized two theoretical models to predict critical rates. Results from both models agreed qualitatively in that even 'mild' rates of climate change would be close to these critical rates with respect to great tit breeding time, while for scenarios close to the upper limit of IPCC climate projections the calculated critical rates would be clearly exceeded with possible consequences for population persistence. We therefore tentatively conclude that micro-evolution, together with plasticity, would rescue only the population from mild rates of climate change, although the models make many simplifying assumptions that remain to be tested.

  6. Change in Depression Symptomatology and Cognitive Function in Twins

    DEFF Research Database (Denmark)

    Petersen, Inge; McGue, Matt; Tan, Qihua

    2016-01-01

    A complex interrelation exists between change in depression symptomatology and cognitive decline. Studies indicate either that depression is a direct risk factor for cognitive change over time, or vice versa. Longitudinal twin studies provide the possibility to unravel cause and effect...... of correlated traits. Here, we have applied twin modeling approaches to shed light on the genetic correlation between both level and change of depression symptomatology and cognitive functioning, and to further explore the bidirectionality of any such correlation using assessments of both phenotypes at two......-sectional heritability estimates of approximately 60% for general cognitive abilities and 30% for affective depressive symptoms. There was a considerable decline in the mean cognitive performance over 10 years, whereas the mean affective depression symptoms score was stable and with no genetic contribution to any...

  7. High energy factorization predictions for the charm structure function $F_{2}^{c}$ at HERA

    CERN Document Server

    Munier, S

    1998-01-01

    High energy factorization predictions for F2^c are derived using BFKL descriptions of the proton structure function F2 at HERA. The model parameters are fixed by a fit of F2 at small x. Two different approaches of the non perturbative proton input are shown to correspond to the factorization at the gluon or quark level, respectively. The predictions for F2^c are in agreement with the data within the present error bars. However, the photon wave-function formulation (factorization at quark level) predicts significantly higher F2^c than both gluon factorization and a next-leading order DGLAP model.

  8. Functional connectivity changes in second language vocabulary learning.

    Science.gov (United States)

    Ghazi Saidi, Ladan; Perlbarg, Vincent; Marrelec, Guillaume; Pélégrini-Issac, Mélani; Benali, Habib; Ansaldo, Ana-Inés

    2013-01-01

    Functional connectivity changes in the language network (Price, 2010), and in a control network involved in second language (L2) processing (Abutalebi & Green, 2007) were examined in a group of Persian (L1) speakers learning French (L2) words. Measures of network integration that characterize the global integrative state of a network (Marrelec, Bellec et al., 2008) were gathered, in the shallow and consolidation phases of L2 vocabulary learning. Functional connectivity remained unchanged across learning phases for L1, whereas total, between- and within-network integration levels decreased as proficiency for L2 increased. The results of this study provide the first functional connectivity evidence regarding the dynamic role of the language processing and cognitive control networks in L2 learning (Abutalebi, Cappa, & Perani, 2005; Altarriba & Heredia, 2008; Leonard et al., 2011; Parker-Jones et al., 2011). Thus, increased proficiency results in a higher degree of automaticity and lower cognitive effort (Segalowitz & Hulstijn, 2005).

  9. Automatic single- and multi-label enzymatic function prediction by machine learning

    Science.gov (United States)

    Paragios, Nikos

    2017-01-01

    The number of protein structures in the PDB database has been increasing more than 15-fold since 1999. The creation of computational models predicting enzymatic function is of major importance since such models provide the means to better understand the behavior of newly discovered enzymes when catalyzing chemical reactions. Until now, single-label classification has been widely performed for predicting enzymatic function limiting the application to enzymes performing unique reactions and introducing errors when multi-functional enzymes are examined. Indeed, some enzymes may be performing different reactions and can hence be directly associated with multiple enzymatic functions. In the present work, we propose a multi-label enzymatic function classification scheme that combines structural and amino acid sequence information. We investigate two fusion approaches (in the feature level and decision level) and assess the methodology for general enzymatic function prediction indicated by the first digit of the enzyme commission (EC) code (six main classes) on 40,034 enzymes from the PDB database. The proposed single-label and multi-label models predict correctly the actual functional activities in 97.8% and 95.5% (based on Hamming-loss) of the cases, respectively. Also the multi-label model predicts all possible enzymatic reactions in 85.4% of the multi-labeled enzymes when the number of reactions is unknown. Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7.

  10. Automatic single- and multi-label enzymatic function prediction by machine learning

    Directory of Open Access Journals (Sweden)

    Shervine Amidi

    2017-03-01

    Full Text Available The number of protein structures in the PDB database has been increasing more than 15-fold since 1999. The creation of computational models predicting enzymatic function is of major importance since such models provide the means to better understand the behavior of newly discovered enzymes when catalyzing chemical reactions. Until now, single-label classification has been widely performed for predicting enzymatic function limiting the application to enzymes performing unique reactions and introducing errors when multi-functional enzymes are examined. Indeed, some enzymes may be performing different reactions and can hence be directly associated with multiple enzymatic functions. In the present work, we propose a multi-label enzymatic function classification scheme that combines structural and amino acid sequence information. We investigate two fusion approaches (in the feature level and decision level and assess the methodology for general enzymatic function prediction indicated by the first digit of the enzyme commission (EC code (six main classes on 40,034 enzymes from the PDB database. The proposed single-label and multi-label models predict correctly the actual functional activities in 97.8% and 95.5% (based on Hamming-loss of the cases, respectively. Also the multi-label model predicts all possible enzymatic reactions in 85.4% of the multi-labeled enzymes when the number of reactions is unknown. Code and datasets are available at https://figshare.com/s/a63e0bafa9b71fc7cbd7.

  11. How different from random are docking predictions when ranked by scoring functions?

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Oliva, Baldomero

    2010-01-01

    Docking algorithms predict the structure of protein-protein interactions. They sample the orientation of two unbound proteins to produce various predictions about their interactions, followed by a scoring step to rank the predictions. We present a statistical assessment of scoring functions used...... to rank near-native orientations, applying our statistical analysis to a benchmark dataset of decoys of protein-protein complexes and assessing the statistical significance of the outcome in the Critical Assessment of PRedicted Interactions (CAPRI) scoring experiment. A P value was assigned that depended...

  12. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  13. Predicting accurate fluorescent spectra for high molecular weight polycyclic aromatic hydrocarbons using density functional theory

    Science.gov (United States)

    Powell, Jacob; Heider, Emily C.; Campiglia, Andres; Harper, James K.

    2016-10-01

    The ability of density functional theory (DFT) methods to predict accurate fluorescence spectra for polycyclic aromatic hydrocarbons (PAHs) is explored. Two methods, PBE0 and CAM-B3LYP, are evaluated both in the gas phase and in solution. Spectra for several of the most toxic PAHs are predicted and compared to experiment, including three isomers of C24H14 and a PAH containing heteroatoms. Unusually high-resolution experimental spectra are obtained for comparison by analyzing each PAH at 4.2 K in an n-alkane matrix. All theoretical spectra visually conform to the profiles of the experimental data but are systematically offset by a small amount. Specifically, when solvent is included the PBE0 functional overestimates peaks by 16.1 ± 6.6 nm while CAM-B3LYP underestimates the same transitions by 14.5 ± 7.6 nm. These calculated spectra can be empirically corrected to decrease the uncertainties to 6.5 ± 5.1 and 5.7 ± 5.1 nm for the PBE0 and CAM-B3LYP methods, respectively. A comparison of computed spectra in the gas phase indicates that the inclusion of n-octane shifts peaks by +11 nm on average and this change is roughly equivalent for PBE0 and CAM-B3LYP. An automated approach for comparing spectra is also described that minimizes residuals between a given theoretical spectrum and all available experimental spectra. This approach identifies the correct spectrum in all cases and excludes approximately 80% of the incorrect spectra, demonstrating that an automated search of theoretical libraries of spectra may eventually become feasible.

  14. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.

    Science.gov (United States)

    Tang, Yat T; Marshall, Garland R

    2011-02-28

    Binding affinity prediction is one of the most critical components to computer-aided structure-based drug design. Despite advances in first-principle methods for predicting binding affinity, empirical scoring functions that are fast and only relatively accurate are still widely used in structure-based drug design. With the increasing availability of X-ray crystallographic structures in the Protein Data Bank and continuing application of biophysical methods such as isothermal titration calorimetry to measure thermodynamic parameters contributing to binding free energy, sufficient experimental data exists that scoring functions can now be derived by separating enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing availability of experimental data to improve binding affinity predictions by the following: model training and testing using high-resolution crystallographic data to minimize structural noise, independent models of enthalpic and entropic contributions fitted to thermodynamic parameters assumed to be thermodynamically biased to calculate binding free energy, use of shape and volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112 protein-ligand complexes were used to derive functions using partial least-squares for change of enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG), resulting in a predictive r2 (r(pred)2) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External validation using the 2009 version of the PDBbind "refined set" (n = 1612) resulted in a Pearson correlation coefficient (R(p)) of 0.575 and a mean error (ME) of 1.41 pK(d). Enthalpy and entropy predictions were of limited accuracy individually. However, their difference resulted in a relatively accurate binding free energy. While the development of an accurate and applicable

  15. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  16. Assessing conservation relevance of organism-environment relations using predicted changes in response variables

    Science.gov (United States)

    Gutzwiller, Kevin J.; Barrow, Wylie C.; White, Joseph D.; Johnson-Randall, Lori; Cade, Brian S.; Zygo, Lisa M.

    2010-01-01

    1. Organism–environment models are used widely in conservation. The degree to which they are useful for informing conservation decisions – the conservation relevance of these relations – is important because lack of relevance may lead to misapplication of scarce conservation resources or failure to resolve important conservation dilemmas. Even when models perform well based on model fit and predictive ability, conservation relevance of associations may not be clear without also knowing the magnitude and variability of predicted changes in response variables. 2. We introduce a method for evaluating the conservation relevance of organism–environment relations that employs confidence intervals for predicted changes in response variables. The confidence intervals are compared to a preselected magnitude of change that marks a threshold (trigger) for conservation action. To demonstrate the approach, we used a case study from the Chihuahuan Desert involving relations between avian richness and broad-scale patterns of shrubland. We considered relations for three winters and two spatial extents (1- and 2-km-radius areas) and compared predicted changes in richness to three thresholds (10%, 20% and 30% change). For each threshold, we examined 48 relations. 3. The method identified seven, four and zero conservation-relevant changes in mean richness for the 10%, 20% and 30% thresholds respectively. These changes were associated with major (20%) changes in shrubland cover, mean patch size, the coefficient of variation for patch size, or edge density but not with major changes in shrubland patch density. The relative rarity of conservation-relevant changes indicated that, overall, the relations had little practical value for informing conservation decisions about avian richness. 4. The approach we illustrate is appropriate for various response and predictor variables measured at any temporal or spatial scale. The method is broadly applicable across ecological

  17. Impairment of executive function and attention predicts onset of affective disorder in healthy high-risk twins

    DEFF Research Database (Denmark)

    Vinberg, Maj; Miskowiak, Kamilla W; Kessing, Lars Vedel

    2013-01-01

    To investigate whether measures of cognitive function can predict onset of affective disorder in individuals at heritable risk.......To investigate whether measures of cognitive function can predict onset of affective disorder in individuals at heritable risk....

  18. A probabilistic framework to predict protein function from interaction data integrated with semantic knowledge

    Directory of Open Access Journals (Sweden)

    Ramanathan Murali

    2008-09-01

    Full Text Available Abstract Background The functional characterization of newly discovered proteins has been a challenge in the post-genomic era. Protein-protein interactions provide insights into the functional analysis because the function of unknown proteins can be postulated on the basis of their interaction evidence with known proteins. The protein-protein interaction data sets have been enriched by high-throughput experimental methods. However, the functional analysis using the interaction data has a limitation in accuracy because of the presence of the false positive data experimentally generated and the interactions that are a lack of functional linkage. Results Protein-protein interaction data can be integrated with the functional knowledge existing in the Gene Ontology (GO database. We apply similarity measures to assess the functional similarity between interacting proteins. We present a probabilistic framework for predicting functions of unknown proteins based on the functional similarity. We use the leave-one-out cross validation to compare the performance. The experimental results demonstrate that our algorithm performs better than other competing methods in terms of prediction accuracy. In particular, it handles the high false positive rates of current interaction data well. Conclusion The experimentally determined protein-protein interactions are erroneous to uncover the functional associations among proteins. The performance of function prediction for uncharacterized proteins can be enhanced by the integration of multiple data sources available.

  19. Gastric microbiota and predicted gene functions are altered after subtotal gastrectomy in patients with gastric cancer.

    Science.gov (United States)

    Tseng, Ching-Hung; Lin, Jaw-Town; Ho, Hsiu J; Lai, Zi-Lun; Wang, Chang-Bi; Tang, Sen-Lin; Wu, Chun-Ying

    2016-02-10

    Subtotal gastrectomy (i.e., partial removal of the stomach), a surgical treatment for early-stage distal gastric cancer, is usually accompanied by highly selective vagotomy and Billroth II reconstruction, leading to dramatic changes in the gastric environment. Based on accumulating evidence of a strong link between human gut microbiota and host health, a 2-year follow-up study was conducted to characterize the effects of subtotal gastrectomy. Gastric microbiota and predicted gene functions inferred from 16S rRNA gene sequencing were analyzed before and after surgery. The results demonstrated that gastric microbiota is significantly more diverse after surgery. Ralstonia and Helicobacter were the top two genera of discriminant abundance in the cancerous stomach before surgery, while Streptococcus and Prevotella were the two most abundant genera after tumor excision. Furthermore, N-nitrosation genes were prevalent before surgery, whereas bile salt hydrolase, NO and N2O reductase were prevalent afterward. To our knowledge, this is the first report to document changes in gastric microbiota before and after surgical treatment of stomach cancer.

  20. Optical Spectroscopy Approach for the Predictive Assessment of Kidney Functional Recovery Following Ischemic Injury

    Energy Technology Data Exchange (ETDEWEB)

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2010-02-11

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  1. Information theory applied to the sparse gene ontology annotation network to predict novel gene function

    Science.gov (United States)

    Tao, Ying; Li, Jianrong

    2010-01-01

    Motivation Despite advances in the gene annotation process, the functions of a large portion of the gene products remain insufficiently characterized. In addition, the “in silico” prediction of novel Gene Ontology (GO) annotations for partially characterized gene functions or processes is highly dependent on reverse genetic or function genomics approaches. Results We propose a novel approach, Information Theory-based Semantic Similarity (ITSS), to automatically predict molecular functions of genes based on Gene Ontology annotations. We have demonstrated using a 10-fold cross-validation that the ITSS algorithm obtains prediction accuracies (Precision 97%, Recall 77%) comparable to other machine learning algorithms when applied to similarly dense annotated portions of the GO datasets. In addition, such method can generate highly accurate predictions in sparsely annotated portions of GO, in which previous algorithm failed to do so. As a result, our technique generates an order of magnitude more gene function predictions than previous methods. Further, this paper presents the first historical rollback validation for the predicted GO annotations, which may represent more realistic conditions for an evaluation than generally used cross-validations type of evaluations. By manually assessing a random sample of 100 predictions conducted in a historical roll-back evaluation, we estimate that a minimum precision of 51% (95% confidence interval: 43%–58%) can be achieved for the human GO Annotation file dated 2003. Availability The program is available on request. The 97,732 positive predictions of novel gene annotations from the 2005 GO Annotation dataset are available at http://phenos.bsd.uchicago.edu/mphenogo/prediction_result_2005.txt. PMID:17646340

  2. Determination of intensity functions for predicting subsidence from coal mining, potash mining, and groundwater withdrawal using the influence function technique

    Energy Technology Data Exchange (ETDEWEB)

    Triplett, T.; Yurchak, D. [Twin Cities Research Center, Bureau of Mines, US Dept. of the Interior, Minneapolis, MN (United States)

    1996-12-31

    This paper presents research, conducted by the Bureau of Mines, on modifying the influence function method to predict subsidence. According to theory, this technique must incorporate an intensity function to represent the relative significance of the causes of subsidence. This paper shows that the inclusion of a reasonable intensity function increases the accuracy of the technique, then presents the required functions for case studies of longwall coal mining subsidence in Illinois, USA, potash mining subsidence in new Mexico, USA, and subsidence produced by ground water withdrawal in California, USA. Finally, the paper discusses a method to predict the resultant strain from a simply measured site constant and ground curvatures calculated by the technique. (orig.)

  3. Moderate land use changes plant functional composition without loss of functional diversity in India's Western Ghats.

    Science.gov (United States)

    Mandle, Lisa; Ticktin, Tamara

    2015-09-01

    The fields of ecology and conservation science increasingly recognize the importance of managing for functional composition and functional diversity to maintain critical ecosystem processes and services. However, little is known about the degree to which widespread but moderate forms of land use that maintain overall vegetation structure are compatible with the conservation of functional diversity. We assessed differences in plani functional composition and functional diversity across savanna woodlands in the Western Ghats, India, managed with varying degrees of biomass extraction, livestock grazing, and ground fire. Across the gradient of moderate land uses, we found shifts in functional composition but no overall decline in functional diversity with land, use intensification. Biomass extraction was associated with changes in dispersal mode, reduced seed mass, and lower overstory functional diversity. Livestock grazing was associated with shorter overstory species, reduced seed mass, and increased understory functional diversity. Nonnative invasive species contributed to shifts in understory functional composition with livestock grazing and increased functional diversity with more intensive land use. Our study highlights both the utility and some limitations of assessing conservation value with functional diversity. These results suggest that moderate-intensity local land use can be compatible with maintenance of functional diversity in savanna woodlands of the Western Ghats, and further efforts to maximize this compatibility would benefit conservation in South India's extensive human-managed landscapes. However, using functional diversity as the sole metric by which to gauge conservation value can mask threats from invasive species and loss of diversity within categories of biotic dispersal. Therefore, functional diversity metrics are likely to provide a valuable complement to, but not replacement for, other management targets such as species composition.

  4. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; Phillips, T.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Spiering, B. A.; Stenger, M. B.; Taylor, L. C.; Wickwire, P. J.; Wood, S. J.

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  5. Prediction of Reagents Needs Using Radial Basis Function in Teaching Hospital

    Directory of Open Access Journals (Sweden)

    Indrabayu

    2015-08-01

    Full Text Available A robust reagents prediction is able to support the service improvement in laboratories. In this paper, Radial Basis Function Networks (RBFN method with (3, Q, 1 architecture is used to predict two types of reagents needs, i.e. SD Bioline HBsAg and SD Bioline Anti HCV. Data of reagents from 2012 - 2013 are used as training data, whereas 2014 data are used as comparative data for the prediction result. In RBFN training, the best condition obtained when the spread value is 4 with RMSE 1.63E-06 for both types of reagents. The prediction results with RBFN methods reached 99% with correlation value of 0.99 for each reagents. RBFN method shows better prediction result compared to BPNN method with prediction of 92%.

  6. Detecting functional divergence after gene duplication through evolutionary changes in posttranslational regulatory sequences.

    Science.gov (United States)

    Nguyen Ba, Alex N; Strome, Bob; Hua, Jun Jie; Desmond, Jonathan; Gagnon-Arsenault, Isabelle; Weiss, Eric L; Landry, Christian R; Moses, Alan M

    2014-12-01

    Gene duplication is an important evolutionary mechanism that can result in functional divergence in paralogs due to neo-functionalization or sub-functionalization. Consistent with functional divergence after gene duplication, recent studies have shown accelerated evolution in retained paralogs. However, little is known in general about the impact of this accelerated evolution on the molecular functions of retained paralogs. For example, do new functions typically involve changes in enzymatic activities, or changes in protein regulation? Here we study the evolution of posttranslational regulation by examining the evolution of important regulatory sequences (short linear motifs) in retained duplicates created by the whole-genome duplication in budding yeast. To do so, we identified short linear motifs whose evolutionary constraint has relaxed after gene duplication with a likelihood-ratio test that can account for heterogeneity in the evolutionary process by using a non-central chi-squared null distribution. We find that short linear motifs are more likely to show changes in evolutionary constraints in retained duplicates compared to single-copy genes. We examine changes in constraints on known regulatory sequences and show that for the Rck1/Rck2, Fkh1/Fkh2, Ace2/Swi5 paralogs, they are associated with previously characterized differences in posttranslational regulation. Finally, we experimentally confirm our prediction that for the Ace2/Swi5 paralogs, Cbk1 regulated localization was lost along the lineage leading to SWI5 after gene duplication. Our analysis suggests that changes in posttranslational regulation mediated by short regulatory motifs systematically contribute to functional divergence after gene duplication.

  7. Changes in household composition as determinant of changes in functional ability among old men and women

    DEFF Research Database (Denmark)

    Avlund, Kirsten; Due, Pernille; Holstein, Bjorn E;

    2002-01-01

    participated in the NORA follow-up study of 75-80 year-old men and women in Jyväskylä, Finland (N=243), Göteborg, Sweden (N=226), and Glostrup, Denmark (N=274). Functional ability was measured by tiredness and need for help in Physical and Instrumental Activities of Daily Living (PADL and IADL). Changes...

  8. Predictability problems of global change as seen through natural systems complexity description. 2. Approach

    Directory of Open Access Journals (Sweden)

    Vladimir V. Kozoderov

    1998-01-01

    Full Text Available Developing the general statements of the proposed global change theory, outlined in Part 1 of the publication, Kolmogorov's probability space is used to study properties of information measures (unconditional, joint and conditional entropies, information divergence, mutual information, etc.. Sets of elementary events, the specified algebra of their sub-sets and probability measures for the algebra are composite parts of the space. The information measures are analyzed using the mathematical expectance operator and the adequacy between an additive function of sets and their equivalents in the form of the measures. As a result, explanations are given to multispectral satellite imagery visualization procedures using Markov's chains of random variables represented by pixels of the imagery. The proposed formalism of the information measures application enables to describe the natural targets complexity by syntactically governing probabilities. Asserted as that of signal/noise ratios finding for anomalies of natural processes, the predictability problem is solved by analyses of temporal data sets of related measurements for key regions and their background within contextually coherent structures of natural targets and between particular boundaries of the structures.

  9. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology.

    Science.gov (United States)

    Moore, Sean; Shrestha, Sourya; Tomlinson, Kyle W; Vuong, Holly

    2012-05-07

    Climate warming over the next century is expected to have a large impact on the interactions between pathogens and their animal and human hosts. Vector-borne diseases are particularly sensitive to warming because temperature changes can alter vector development rates, shift their geographical distribution and alter transmission dynamics. For this reason, African trypanosomiasis (sleeping sickness), a vector-borne disease of humans and animals, was recently identified as one of the 12 infectious diseases likely to spread owing to climate change. We combine a variety of direct effects of temperature on vector ecology, vector biology and vector-parasite interactions via a disease transmission model and extrapolate the potential compounding effects of projected warming on the epidemiology of African trypanosomiasis. The model predicts that epidemics can occur when mean temperatures are between 20.7°C and 26.1°C. Our model does not predict a large-range expansion, but rather a large shift of up to 60 per cent in the geographical extent of the range. The model also predicts that 46-77 million additional people may be at risk of exposure by 2090. Future research could expand our analysis to include other environmental factors that influence tsetse populations and disease transmission such as humidity, as well as changes to human, livestock and wildlife distributions. The modelling approach presented here provides a framework for using the climate-sensitive aspects of vector and pathogen biology to predict changes in disease prevalence and risk owing to climate change.

  10. Livestock Helminths in a Changing Climate: Approaches and Restrictions to Meaningful Predictions

    Directory of Open Access Journals (Sweden)

    Ross S. Davidson

    2012-03-01

    Full Text Available Climate change is a driving force for livestock parasite risk. This is especially true for helminths including the nematodes Haemonchus contortus, Teladorsagia circumcincta, Nematodirus battus, and the trematode Fasciola hepatica, since survival and development of free-living stages is chiefly affected by temperature and moisture. The paucity of long term predictions of helminth risk under climate change has driven us to explore optimal modelling approaches and identify current bottlenecks to generating meaningful predictions. We classify approaches as correlative or mechanistic, exploring their strengths and limitations. Climate is one aspect of a complex system and, at the farm level, husbandry has a dominant influence on helminth transmission. Continuing environmental change will necessitate the adoption of mitigation and adaptation strategies in husbandry. Long term predictive models need to have the architecture to incorporate these changes. Ultimately, an optimal modelling approach is likely to combine mechanistic processes and physiological thresholds with correlative bioclimatic modelling, incorporating changes in livestock husbandry and disease control. Irrespective of approach, the principal limitation to parasite predictions is the availability of active surveillance data and empirical data on physiological responses to climate variables. By combining improved empirical data and refined models with a broad view of the livestock system, robust projections of helminth risk can be developed.

  11. Using neural networks to predict the functionality of reconfigurable nano-material networks

    NARCIS (Netherlands)

    Greff, Klaus; Damme, van Ruud; Koutnik, Jan; Broersma, Hajo; Mikhal, Julia; Lawrence, Celestine; Wiel, van der Wilfred; Schmidhuber, Jürgen

    2017-01-01

    This paper demonstrates how neural networks can be applied to model and predict the functional behaviour of disordered nano-particle and nano-tube networks. In recently published experimental work, nano-particle and nano-tube networks show promising functionality for future reconfigurable devices, w

  12. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    Science.gov (United States)

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-01

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue.

  13. Weaknesses in executive functioning predict the initiating of adolescents’ alcohol use.

    NARCIS (Netherlands)

    Peeters, Margot; Janssen, T.; Monshouwer, Karin; Boendermaker, Wouter; Pronk, Thomas; Wiers, Reinout; Vollebergh, Wilma

    2015-01-01

    Recently, it has been suggested that impairments in executive functioning might be risk factors for the onset of alcohol use rather than a result of heavy alcohol use. In the present study, we examined whether two aspects of executive functioning, working memory and response inhibition, predicted th

  14. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment.

    Science.gov (United States)

    Shameer, Khader; Tripathi, Lokesh P; Kalari, Krishna R; Dudley, Joel T; Sowdhamini, Ramanathan

    2016-09-01

    Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical genomics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various mutations using in silico approaches is an important step toward the identification of functionally significant or clinically actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss the currently available approaches and major challenges from the perspective of protein sequence, structure, function and interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches and strategies for incorporation of variant assessment within electronic health records.

  15. Amphiphile regulation of ion channel function by changes in the bilayer spring constant

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Koeppe, R.E.; Andersen, Oluf Sten

    2010-01-01

    Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e. g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function b......-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles....... by altering the energetic cost (Delta G(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in Delta G(bilayer) cannot...... be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net...

  16. Determinants of rate of change in functional disability: An application of latent growth curve modeling.

    Science.gov (United States)

    Chen, Ya-Mei; Chen, Duan-Rung; Chiang, Tung-Liang; Tu, Yu-Kang; Yu, Hsiao-Wei

    2016-01-01

    Our aim was to identify disablement factors, including predisposing, intra-individual, and extra-individual factors, which predict the rate of change in general functional disability (GFD) in older adults. This study utilized the Taiwan Longitudinal Study on Aging Survey in 1996-2007 (N=3,186). Multiple-indicator latent growth curve modeling was used to examine how 12 disablement factors predicted the rate of change in GFD. GFD trajectories were modeled using Nagi's functional limitations, activities of daily living, and instrumental activities of daily living. Greater age (B=.025), female gender (B=.114), and greater numbers of comorbidities (B=.038) were associated with faster increase in GFD. Education (B=-.005) and participation in physically active leisure time activities (B=-.031) were associated with slower increase in GFD. Our findings add to the understanding of how disablement factors contribute to the rate of change in GFD. Predisposing factors played the main role. However, the factors we found to be associated with the rate of change in GFD in older adults were slightly different from the factors reported in the literature. Decreasing the number of comorbidities and increasing the level of physically active leisure time activity should be considered priorities for preventing disability as people age.

  17. Executive functioning predicts reading, mathematics, and theory of mind during the elementary years.

    Science.gov (United States)

    Cantin, Rachelle H; Gnaedinger, Emily K; Gallaway, Kristin C; Hesson-McInnis, Matthew S; Hund, Alycia M

    2016-06-01

    The goal of this study was to specify how executive functioning components predict reading, mathematics, and theory of mind performance during the elementary years. A sample of 93 7- to 10-year-old children completed measures of working memory, inhibition, flexibility, reading, mathematics, and theory of mind. Path analysis revealed that all three executive functioning components (working memory, inhibition, and flexibility) mediated age differences in reading comprehension, whereas age predicted mathematics and theory of mind directly. In addition, reading mediated the influence of executive functioning components on mathematics and theory of mind, except that flexibility also predicted mathematics directly. These findings provide important details about the development of executive functioning, reading, mathematics, and theory of mind during the elementary years.

  18. Woody plants and the prediction of climate-change impacts on bird diversity

    OpenAIRE

    Kissling, W. D.; Field, R.; Korntheuer, H.; Heyder, U.; Böhning-Gaese, K

    2010-01-01

    Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climat...

  19. Early changes in scores of chronic damage on transplant kidney protocol biopsies reflect donor characteristics, but not future graft function

    OpenAIRE

    Caplin, B; Veighey, K.; Mahenderan, A.; Manook, M.; Henry, J; Nitsch, D; Harber, M.; Dupont, P.; Wheeler, D.C.; G. Jones; Fernando, B.; Howie, A J; Veitch, P

    2013-01-01

    The amount of irreversible injury on renal allograft biopsy predicts function, but little is known about the early evolution of this damage. In a single-center cohort, we examined the relationship between donor-, recipient-, and transplantation-associated factors and change in a morphometric index of chronic damage (ICD) between protocol biopsies performed at implantation and at 2-3 months. We then investigated whether early delta ICD predicted subsequent biochemical outcomes. We found little...

  20. Incremental multivariable predictive functional control and its application in a gas fractionation unit

    Institute of Scientific and Technical Information of China (English)

    施惠元; 苏成利; 曹江涛; 李平; 宋英莉; 李宁波

    2015-01-01

    The control of gas fractionation unit (GFU) in petroleum industry is very difficult due to multivariable characteristics and a large time delay. PID controllers are still applied in most industry processes. However, the traditional PID control has been proven not sufficient and capable for this particular petro-chemical process. In this work, an incremental multivariable predictive functional control (IMPFC) algorithm was proposed with less online computation, great precision and fast response. An incremental transfer function matrix model was set up through the step-response data, and predictive outputs were deduced with the theory of single-value optimization. The results show that the method can optimize the incremental control variable and reject the constraint of the incremental control variable with the positional predictive functional control algorithm, and thereby making the control variable smoother. The predictive output error and future set-point were approximated by a polynomial, which can overcome the problem under the model mismatch and make the predictive outputs track the reference trajectory. Then, the design of incremental multivariable predictive functional control was studied. Simulation and application results show that the proposed control strategy is effective and feasible to improve control performance and robustness of process.

  1. Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Yinhui Zhang

    2015-01-01

    Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.

  2. Modeled changes of cerebellar activity in mutant mice are predictive of their learning impairments

    Science.gov (United States)

    Badura, Aleksandra; Clopath, Claudia; Schonewille, Martijn; de Zeeuw, Chris I.

    2016-11-01

    Translating neuronal activity to measurable behavioral changes has been a long-standing goal of systems neuroscience. Recently, we have developed a model of phase-reversal learning of the vestibulo-ocular reflex, a well-established, cerebellar-dependent task. The model, comprising both the cerebellar cortex and vestibular nuclei, reproduces behavioral data and accounts for the changes in neural activity during learning in wild type mice. Here, we used our model to predict Purkinje cell spiking as well as behavior before and after learning of five different lines of mutant mice with distinct cell-specific alterations of the cerebellar cortical circuitry. We tested these predictions by obtaining electrophysiological data depicting changes in neuronal spiking. We show that our data is largely consistent with the model predictions for simple spike modulation of Purkinje cells and concomitant behavioral learning in four of the mutants. In addition, our model accurately predicts a shift in simple spike activity in a mutant mouse with a brainstem specific mutation. This combination of electrophysiological and computational techniques opens a possibility of predicting behavioral impairments from neural activity.

  3. [Effects of sampling plot number on tree species distribution prediction under climate change].

    Science.gov (United States)

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  4. Stellar and HI Mass Functions Predicted by a Simple Preheating Galaxy Formation Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the new preheating mechanism of galaxy formation suggested by Mo et al., we construct a simple model of formation of disk galaxies within the current paradigm of galaxy formation. It incorporates preheating, gas cooling, bulge formation and star formation. The predicted stellar and HI mass functions of galaxies are discussed and compared with the observations. It is found that our model can roughly match both the observed galaxy luminosity function and the observed HI-mass function.

  5. Executive function does not predict coping with symptoms in stable patients with a diagnosis of schizophrenia

    Directory of Open Access Journals (Sweden)

    Walraven Wil

    2008-05-01

    Full Text Available Abstract Background Associations between coping with and control over psychotic symptoms were examined using the Maastricht Assessment of Coping Strategies-24, testing the hypothesis that the cognitive domain of executive functioning predicted quality and quantity of coping. Methods MACS-24 was administered to 32 individuals with a diagnosis of schizophrenia. For each of 24 symptoms, experience of distress, type of coping and the resulting degree of perceived control were assessed. Coping types were reduced to two contrasting coping categories: symptomatic coping (SC and non-symptomatic coping (NSC; combining active problem solving, passive illness behaviour, active problem avoiding, and passive problem avoiding. Cognitive functioning was assessed using the GIT (Groninger Intelligence Test, the Zoo map (BADS: Behavioural Assessment of Dysexecutive function, Stroop-test and Trail making. Results Cognitive function was not associated with frequency of coping, nor did cognitive function differentially predict SC or NSC. Cognitive function similarly was not associated with symptom distress or level of perceived control over the symptom. Conclusion There was no evidence that cognitive function predicts quantity or quality of coping with symptoms in people with a diagnosis of schizophrenia. Variation in the realm of emotion regulation and social cognition may be more predictive of coping with psychotic symptoms.

  6. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  7. Differential changes in retina function with normal aging in humans.

    Science.gov (United States)

    Freund, Paul R; Watson, Juliane; Gilmour, Gregory S; Gaillard, Frédéric; Sauvé, Yves

    2011-06-01

    We evaluated the full field electroretinogram (ERG) to assess age-related changes in retina function in humans. ERG recordings were performed on healthy subjects with normal fundus appearance, lack of cataract and 20/20 acuity, aged 20-39 years (n = 27; mean age 25 ± 5, standard deviation), 40-59 years (n = 20; mean 53 ± 5), and 60-82 years (n = 18; mean 69 ± 5). Multiple ERG tests were applied, including light and dark-adapted stimulus-response function, dark adaptation and dynamic of recovery from a single bright flash under dark-adapted conditions. Changes in ERG properties were found in the oldest age group when compared with the two younger age groups. (1) The photopic hill effect was less pronounced. (2) Both photopic a-wave and b-wave amplitudes and implicit times were increased at high stimulus strengths. (3) Dark adaptation time was delayed for pure rod and L/M cone-driven responses, respectively. (4) Dark-adapted a-wave but not b-wave amplitudes were reduced, yielding higher B/A ratios. (5) Dark-adapted a- and b-waves implicit times were prolonged: there was a direct proportional correlation between minimal a-wave implicit times and age. (6) The dynamic of dark current recovery from a bright flash, under dark-adapted conditions, was transiently faster at intervals between 0.9 and 2 s. These results denote that aging of the healthy retina is accompanied by specific functional changes, which must be taken into account to optimally diagnose potential pathologies.

  8. Changes in cognitive state alter human functional brain networks

    Directory of Open Access Journals (Sweden)

    Malaak Nasser Moussa

    2011-08-01

    Full Text Available The study of the brain as a whole system can be accomplished using network theory principles. Research has shown that human functional brain networks during a resting state exhibit small-world properties and high degree nodes, or hubs, localized to brain areas consistent with the default mode network (DMN. However, the study of brain networks across different tasks and or cognitive states has been inconclusive. Research in this field is important because the underpinnings of behavioral output are inherently dependent on whether or not brain networks are dynamic. This is the first comprehensive study to evaluate multiple network metrics at a voxel-wise resolution in the human brain at both the whole brain and regional level under various conditions: resting state, visual stimulation, and multisensory (auditory and visual stimulation. Our results show that despite global network stability, functional brain networks exhibit considerable task-induced changes in connectivity, efficiency, and community structure at the regional level.

  9. Defining functional biomes and monitoring their change globally.

    Science.gov (United States)

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function.

  10. Age-related neuroinflammatory changes negatively impact on neuronal function

    Directory of Open Access Journals (Sweden)

    Marina A Lynch

    2010-01-01

    Full Text Available Neuroinflammatory changes, characterized by an increase in microglial activation and often accompanied by upregulation of inflammatory cytokines like interleukin-1β (IL-1β, are common to many, if not all, neurodegenerative diseases. Similar, though less dramatic neuroinflammatory changes are also known to occur with age. Among the consequences of these changes is an impairment in synaptic function and the evidence suggests that inflammatory cytokines may be the primary contributory factor responsible for the deficits in synaptic plasticity which have been identified in aged rodents. Specifically a decrease in the ability of aged rats to sustain long-term potentiation (LTP in perforant path-granule cells of the hippocampus is associated with increased microglial activation. This review considers the evidence which suggests a causal relationship between these changes and the factors which contribute to the age-related microglial activation, and reflects on data which demonstrate that agents which inhibit microglial activation also improve ability of rats to sustain LTP.

  11. Predicting Climate Change using Response Theory: Global Averages and Spatial Patterns

    CERN Document Server

    Lucarini, Valerio; Ragone, Francesco

    2015-01-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O($10^5$) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting - at any lead time and in an ensemble sense - the change in climate properties resulting from increase in the concentration of CO$_2$ using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as their spatial patter...

  12. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network.

  13. Predicting the functions of long noncoding RNAs using RNA-seq based on Bayesian network.

    Science.gov (United States)

    Xiao, Yun; Lv, Yanling; Zhao, Hongying; Gong, Yonghui; Hu, Jing; Li, Feng; Xu, Jinyuan; Bai, Jing; Yu, Fulong; Li, Xia

    2015-01-01

    Long noncoding RNAs (lncRNAs) have been shown to play key roles in various biological processes. However, functions of most lncRNAs are poorly characterized. Here, we represent a framework to predict functions of lncRNAs through construction of a regulatory network between lncRNAs and protein-coding genes. Using RNA-seq data, the transcript profiles of lncRNAs and protein-coding genes are constructed. Using the Bayesian network method, a regulatory network, which implies dependency relations between lncRNAs and protein-coding genes, was built. In combining protein interaction network, highly connected coding genes linked by a given lncRNA were subsequently used to predict functions of the lncRNA through functional enrichment. Application of our method to prostate RNA-seq data showed that 762 lncRNAs in the constructed regulatory network were assigned functions. We found that lncRNAs are involved in diverse biological processes, such as tissue development or embryo development (e.g., nervous system development and mesoderm development). By comparison with functions inferred using the neighboring gene-based method and functions determined using lncRNA knockdown experiments, our method can provide comparable predicted functions of lncRNAs. Overall, our method can be applied to emerging RNA-seq data, which will help researchers identify complex relations between lncRNAs and coding genes and reveal important functions of lncRNAs.

  14. Integrating comparative functional response experiments into global change research.

    Science.gov (United States)

    O'Gorman, Eoin J

    2014-05-01

    There is a growing appreciation for the importance of non-consumptive effects in predator-prey interaction research, which can often outweigh the importance of direct feeding. Barrios-O'Neill et al. (2014) report a novel method to characterize such effects by comparing the functional response of native and introduced intermediate consumers in the presence and absence of a higher predator. The invader exhibited stronger direct feeding and was also more resistant to intimidation by the higher predator. This experimental framework may be incorporated into mainstream global change research, for example, to quantify the importance of non-consumptive effects for the success or failure of biological invasions.

  15. The Predictive Utility of Hypnotizability: The Change in Suggestibility Produced by Hypnosis

    Science.gov (United States)

    Milling, Leonard S.; Coursen, Elizabeth L.; Shores, Jessica S.; Waszkiewicz, Jolanta A.

    2010-01-01

    Objective: The predictive utility of hypnotizability, conceptualized as the change in suggestibility produced by a hypnotic induction, was investigated in the suggested reduction of experimental pain. Method: One hundred and seventy-three participants were assessed for nonhypnotic imaginative suggestibility. Thereafter, participants experienced…

  16. Burrowing Behavior of a Deposit Feeding Bivalve Predicts Change in Intertidal Ecosystem State

    NARCIS (Netherlands)

    Compton, T.J.; Bodnar, W.; Koolhaas, A.; Dekinga, A.; Holthuijsen, S.; Ten Horn, J.; McSweeney, N.; van Gils, J.A.; Piersma, T,

    2016-01-01

    Behavior has a predictive power that is often underutilized as a tool for signaling ecological change. The burrowing behavior of the deposit feeding bivalve Macoma balthica reflects a typical food-safety trade-off. The choice to live close to the sediment surface comes at a risk of predation and is

  17. Burrowing behavior of a deposit feeding bivalve predicts change in intertidal ecosystem state

    NARCIS (Netherlands)

    Compton, Tanya J.; Bodnar, Wanda; Koolhaas, Anita; Dekinga, Anne; Holthuijsen, Sander; ten Horn, Job; McSweeney, Niamh; van Gils, Jan; Piersma, Theunis

    2016-01-01

    Behavior has a predictive power that is often underutilized as a tool for signaling ecological change. The burrowing behavior of the deposit feeding bivalve Macoma balthica reflects a typical food-safety trade-off. The choice to live close to the sediment surface comes at a risk of predation and is

  18. Predicting Changes in Cultural Sensitivity among Students of Spanish during Short-Term Study Abroad

    Science.gov (United States)

    Martinsen, Rob

    2011-01-01

    Short-term study abroad programs of less than a semester are becoming increasingly popular among undergraduate students in the United States. However, little research has examined the changes in students' cultural sensitivity through their participation in such programs or what factors may predict growth and improvement in such areas. This study…

  19. Predicted soil management and climate change effects on SOC in South Carolina

    Science.gov (United States)

    Extensive use of inversion tillage has contributed to the loss of soil organic carbon (SOC) and degraded soil health in the southeast U.S.A. Our objective was to predict changes in SOC in a Norfolk loamy sand in Florence, SC under several crop rotations (corn (Zea mays L.)-cotton (Gossypium ssp.), C...

  20. Emotion regulation predicts change of perceived health in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    van Middendorp, H; Geenen, R; Sorbi, MJ; van Doornen, LJP; Bijlsma, JWJ

    2005-01-01

    Objectives: To examine whether emotion regulation predicts change of perceived health in patients with rheumatoid arthritis ( RA). Methods: Sixty six patients ( 44 female, 22 male; mean (SD) age 57.7 (11.6) years) participated in a prospective study. Hierarchical regression analysis was used to pred

  1. Fat or lean: adjustment of endogenous energy stores to predictable and unpredictable changes in allostatic load

    Science.gov (United States)

    Schultner, Jannik; Kitaysky, Alexander S.; Welcker, Jorg; Hatch, Scott

    2013-01-01

    1. The ability to store energy endogenously is an important ecological mechanism that allows animals to buffer predictable and unpredictable variation in allostatic load. The secretion of glucocorticoids, which reflects changes in allostatic load, is suggested to play a major role in the adjustment of endogenous stores to these varying conditions.

  2. Steps/day ability to predict anthropometric changes is not affected by its plausibility

    Science.gov (United States)

    We evaluated whether treating steps/day data for implausible values (30,000) affected the ability of these data to predict intervention-induced anthropometric (waist circumference, body mass index, percent body fat, and fat mass) changes. Data were from 269 African American participants wh...

  3. Changes in family functions in patients with secondary premature ejaculation

    Directory of Open Access Journals (Sweden)

    Mustafa Arı

    2011-06-01

    Full Text Available We aimed to inverstigate changes in family functions in patients with premature ejaculation.Materials and methods: In the present study, study group were randomly selected from Mustafa Kemal University Medical School Research and Training Hospital Urology Department outpatients clinic. Control group were selected among healthy volunteers. Totally 30 patients were included in the PE group and 30 healthy volunteers were included in the control group. Subjects were examined by the same psychiatrist. Beck Anxiety Inventory and Family Assessment Scale were applied to both groupsResults: Compared with the control group, premature ejaculation patients had significantly higher anxiety scores (p=0.001 and more deterioration in problem solving (p=0.001, communication (p=0.022, affective responsiveness (p=0.011, behavior control (p=0.032, and affective involvement in their families (p=0.011. There were no difference in terms of roles and general functions scores (p>0.05.Conclusion: It can be concluded that there is deterioration in family functions in patients with premature ejaculation, Therefore, approaches targeting family functions may be beneficial in the treatment of these patients.

  4. Functional traits predict drought performance and distribution of Mediterranean woody species

    Science.gov (United States)

    Lopez-Iglesias, Bárbara; Villar, Rafael; Poorter, Lourens

    2014-04-01

    Water availability is one of the key environmental factors that affect plant establishment and distribution. In many regions water availability will decline with climate change, exposing small seedlings to a greater likelihood of drought. In this study, 17 leaves, stem, root, and whole-plant traits of ten woody Mediterranean species were measured under favourable growing conditions and seedling drought survival was evaluated during a simulated dry-down episode. The aims of this study were: i) to assess drought survival of different species, ii) to analyse which functional traits predict drought survival time, and iii) to explain species distribution in the field, based on species drought survival and drought strategies. Drought survival time varied ten-fold across species, from 19 to 192 days. Across species, drought survival was positively related to the rooting depth per leaf area, i.e., the ability to acquire water from deeper soil layers while reducing transpiring leaf area. Drought survival time was negatively related to species ability to grow quickly, as indicated by high relative growth and net assimilation rates. Drought survival also explained species distribution in the field. It was found that species were sorted along a continuum, ranging between two contrasting species functional extremes based on functional traits and drought performance. One extreme consisted of acquisitive fast-growing deciduous species, with thin, soft metabolically active leaves, with high resource use and vulnerability to drought. The opposite extreme consisted of conservative slow-growing evergreen species with sclerophyllous leaves, deep roots, a low transpiring area, and low water use, resulting in high drought survival and drought tolerance. The results show that these drought strategies shape species distribution in this Mediterranean area.

  5. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    Science.gov (United States)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  6. Resistance to change of forgetting functions and response rates.

    Science.gov (United States)

    Odum, Amy L; Shahan, Timothy A; Nevin, John A

    2005-07-01

    This experiment examined the effects of reinforcement probability on resistance to change of remembering and response rate. Pigeons responded on a two-component multiple schedule in which completion of a variable-interval 20-s schedule produced delayed matching-to-sample trials in both components. Each session included four delays (0.1 s, 2 s, 4 s, and 8 s) between sample termination and presentation of comparison stimuli in both components. The two components differed in the probability of reinforcement arranged for correct matches (i.e., rich, p = .9; lean, p = .1). Response rates during the variable-interval portion of the procedure were higher in the rich component during baseline and more resistant to the disruptive effects of intercomponent food and extinction. Forgetting functions were constructed by examining matching accuracy as a function of delay duration. Baseline accuracy was higher in the rich component than in the lean component as measured by differences in the gamma-intercept of the forgetting functions (i.e., initial discrimination), rather than from differences in the slope of the forgetting function (i.e., rate of forgetting). Intercomponent food increased the rate of forgetting relatively more in the lean component than in the rich component, but initial discrimination was not systematically affected. Extinction reduced initial discrimination relatively more in the lean component than in the rich component, but did not systematically affect rate of forgetting. These results are consistent with our previous data suggesting that, as for response rate, accuracy and resistance to change of discriminating are positively related to rate of reinforcement. These data also suggest that the disruptability of remembering depends on the conditions of reinforcement, but the way in which remembering is disrupted depends on the nature of the disruptor.

  7. Local structure based method for prediction of the biochemical function of proteins: Applications to glycoside hydrolases.

    Science.gov (United States)

    Parasuram, Ramya; Mills, Caitlyn L; Wang, Zhouxi; Somasundaram, Saroja; Beuning, Penny J; Ondrechen, Mary Jo

    2016-01-15

    Thousands of protein structures of unknown or uncertain function have been reported as a result of high-throughput structure determination techniques developed by Structural Genomics (SG) projects. However, many of the putative functional assignments of these SG proteins in the Protein Data Bank (PDB) are incorrect. While high-throughput biochemical screening techniques have provided valuable functional information for limited sets of SG proteins, the biochemical functions for most SG proteins are still unknown or uncertain. Therefore, computational methods for the reliable prediction of protein function from structure can add tremendous value to the existing SG data. In this article, we show how computational methods may be used to predict the function of SG proteins, using examples from the six-hairpin glycosidase (6-HG) and the concanavalin A-like lectin/glucanase (CAL/G) superfamilies. Using a set of predicted functional residues, obtained from computed electrostatic and chemical properties for each protein structure, it is shown that these superfamilies may be sorted into functional families according to biochemical function. Within these superfamilies, a total of 18 SG proteins were analyzed according to their predicted, local functional sites: 13 from the 6-HG superfamily, five from the CAL/G superfamily. Within the 6-HG superfamily, an uncharacterized protein BACOVA_03626 from Bacteroides ovatus (PDB 3ON6) and a hypothetical protein BT3781 from Bacteroides thetaiotaomicron (PDB 2P0V) are shown to have very strong active site matches with exo-α-1,6-mannosidases, thus likely possessing this function. Also in this superfamily, it is shown that protein BH0842, a putative glycoside hydrolase from Bacillus halodurans (PDB 2RDY), has a predicted active site that matches well with a known α-L-galactosidase. In the CAL/G superfamily, an uncharacterized glycosyl hydrolase family 16 protein from Mycobacterium smegmatis (PDB 3RQ0) is shown to have local structural

  8. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory.

    Directory of Open Access Journals (Sweden)

    Luis-Miguel Chevin

    Full Text Available Many species are experiencing sustained environmental change mainly due to human activities. The unusual rate and extent of anthropogenic alterations of the environment may exceed the capacity of developmental, genetic, and demographic mechanisms that populations have evolved to deal with environmental change. To begin to understand the limits to population persistence, we present a simple evolutionary model for the critical rate of environmental change beyond which a population must decline and go extinct. We use this model to highlight the major determinants of extinction risk in a changing environment, and identify research needs for improved predictions based on projected changes in environmental variables. Two key parameters relating the environment to population biology have not yet received sufficient attention. Phenotypic plasticity, the direct influence of environment on the development of individual phenotypes, is increasingly considered an important component of phenotypic change in the wild and should be incorporated in models of population persistence. Environmental sensitivity of selection, the change in the optimum phenotype with the environment, still crucially needs empirical assessment. We use environmental tolerance curves and other examples of ecological and evolutionary responses to climate change to illustrate how these mechanistic approaches can be developed for predictive purposes.

  9. Predictive modelling of the spatial pattern of past and future forest cover changes in India

    Indian Academy of Sciences (India)

    C Sudhakar Reddy; Sonali Singh; V K Dadhwal; C S Jha; N Rama Rao; P G Diwakar

    2017-02-01

    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km², which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880–2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multilayer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  10. Predictive modelling of the spatial pattern of past and future forest cover changes in India

    Science.gov (United States)

    Reddy, C. Sudhakar; Singh, Sonali; Dadhwal, V. K.; Jha, C. S.; Rao, N. Rama; Diwakar, P. G.

    2017-02-01

    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km2, which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880-2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multi-layer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  11. Functional Activities Questionnaire items that best discriminate and predict progression from clinically normal to mild cognitive impairment

    Science.gov (United States)

    Marshall, Gad A.; Zoller, Amy S.; Lorius, Natacha; Amariglio, Rebecca E.; Locascio, Joseph J.; Johnson, Keith A.; Sperling, Reisa A.; Rentz, Dorene M.

    2015-01-01

    Background Impairment in instrumental activities of daily living (IADL) emerges in the transition from mild cognitive impairment (MCI) to Alzheimer’s disease (AD) dementia. Some IADL scales are sensitive to early deficits in MCI, but none have been validated for detecting subtle functional changes in clinically normal (CN) elderly at risk for AD. Methods Data from 624 subjects participating in the Alzheimer’s Disease Neuroimaging Initiative and 524 subjects participating in the Massachusetts Alzheimer’s Disease Research Center, which are two large cohorts including CN elderly and MCI subjects, were used to determine which Functional Activities Questionnaire items best discriminate between and predict progression from CN to MCI. Results We found that “Remembering appointments” and “assembling tax records” best discriminated between CN and MCI subjects, while worse performance on “paying attention and understanding a TV program”, “paying bills/balancing checkbook”, and “heating water and turning off the stove” predicted greater hazard of progressing from a diagnosis of CN to MCI. Conclusions These results demonstrate that certain questions are especially sensitive in detecting the earliest functional changes in CN elderly at risk for AD. As the field moves toward earlier intervention in preclinical AD, it is important to determine which IADL changes can be detected at that stage and track decline over time. PMID:26017560

  12. Application of Excitation Function to the Prediction of RI Level Caused by Corona Discharge

    Institute of Scientific and Technical Information of China (English)

    ZHU Lingyu; JI Shengchang; HUI Sisi; GUO Jun; LI Yansong; FU Chenzhao

    2012-01-01

    Radio interference (RI), as an aftereffect of corona discharge, is an important research topic in the field of electromagnetic compatibility, where excitation function is applied broadly to the prediction of RI level. This paper presents the theory of excitation function method used in the RI level prediction. Then, some practical problems related to this method are discussed. The propagation procedure of corona current is solved by the phase-modal transformation, and the impedance matrix of multi transmission lines is calculated by a double logarithmic approximate model of Carson's Ground-Return impedance. At the same time, in order to calculate the RI level when total line corona is assumed, an analytical formula is deduced for integral operation. Based on the above solutions, an algorithm is presented and applied to the prediction of RI level of a practical overhead transmission line. Comparison of prediction and measurement results indicates that the algorithm proposed in this paper is effective and feasible.

  13. Using compound similarity and functional domain composition for prediction of drug-target interaction networks.

    Science.gov (United States)

    Chen, Lei; He, Zhi-Song; Huang, Tao; Cai, Yu-Dong

    2010-11-01

    Study of interactions between drugs and target proteins is an essential step in genomic drug discovery. It is very hard to determine the compound-protein interactions or drug-target interactions by experiment alone. As supplementary, effective prediction model using machine learning or data mining methods can provide much help. In this study, a prediction method based on Nearest Neighbor Algorithm and a novel metric, which was obtained by combining compound similarity and functional domain composition, was proposed. The target proteins were divided into the following groups: enzymes, ion channels, G protein-coupled receptors, and nuclear receptors. As a result, four predictors with the optimal parameters were established. The overall prediction accuracies, evaluated by jackknife cross-validation test, for four groups of target proteins are 90.23%, 94.74%, 97.80%, and 97.51%, respectively, indicating that compound similarity and functional domain composition are very effective to predict drug-target interaction networks.

  14. Prediction of GPCR-G Protein Coupling Specificity Using Features of Sequences and Biological Functions

    Institute of Scientific and Technical Information of China (English)

    Toshihide Ono; Haretsugu Hishigaki

    2006-01-01

    Understanding the coupling specificity between G protein-coupled receptors (GPCRs) and specific classes of G proteins is important for further elucidation of receptor functions within a cell. Increasing information on GPCR sequences and the G protein family would facilitate prediction of the coupling properties of GPCRs. In this study, we describe a novel approach for predicting the coupling specificity between GPCRs and G proteins. This method uses not only GPCR sequences but also the functional knowledge generated by natural language processing, and can achieve 92.2% prediction accuracy by using the C4.5 algorithm.Furthermore, rules related to GPCR-G protein coupling are generated. The combination of sequence analysis and text mining improves the prediction accuracy for GPCR-G protein coupling specificity, and also provides clues for understanding GPCR signaling.

  15. A noise level prediction method based on electro-mechanical frequency response function for capacitors.

    Science.gov (United States)

    Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao

    2013-01-01

    The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.

  16. Quantitative Analysis of Lithium-Ion Battery Capacity Prediction via Adaptive Bathtub-Shaped Function

    Directory of Open Access Journals (Sweden)

    Shaomin Wu

    2013-06-01

    Full Text Available Batteries are one of the most important components in many mechatronics systems, as they supply power to the systems and their failures may lead to reduced performance or even catastrophic results. Therefore, the prediction analysis of remaining useful life (RUL of batteries is very important. This paper develops a quantitative approach for battery RUL prediction using an adaptive bathtub-shaped function (ABF. ABF has been utilised to model the normalised battery cycle capacity prognostic curves, which attempt to predict the remaining battery capacity with given historical test data. An artificial fish swarm algorithm method with a variable population size (AFSAVP is employed as the optimiser for the parameter determination of the ABF curves, in which the fitness function is defined in the form of a coefficient of determination (R2. A 4 x 2 cross-validation (CV has been devised, and the results show that the method can work valuably for battery health management and battery life prediction.

  17. Alternative growth functions for predicting body, carcass, and breast weight in ducks: Lomolino equation and extreme value function.

    Science.gov (United States)

    Faridi, A; Murawska, D; Golian, A; Mottaghitalab, M; Gitoee, A; Lopez, S; France, J

    2014-04-01

    In this study, 2 alternative growth functions, the Lomolino and the extreme value function (EVF), are introduced and their ability to predict body, carcass, and breast weight in ducks evaluated. A comparative study was carried out of these equations with standard growth functions: Gompertz, exponential, Richards, and generalized Michaelis-Menten. Goodness of fit of the functions was evaluated using R(2), mean square error, Akaike information criterion, and Bayesian information criterion, whereas bias factor, accuracy factor, Durbin-Watson statistic, and number of runs of sign were the criteria used for analysis of residuals. Results showed that predictive performance of all functions was acceptable, though the Richards and exponential equations failed to converge in a few cases for both male and female ducks. Based on goodness-of-fit statistics, the Richards, Gompertz, and EVF were the best equations whereas the worst fits to the data were obtained with the exponential. Analysis of residuals indicated that, for the different traits investigated, the least biased and the most accurate equations were the Gompertz, EVF, Richards, and generalized Michaelis-Menten, whereas the exponential was the most biased and least accurate. Based on the Durbin-Watson statistic, all models generally behaved well and only the exponential showed evidence of autocorrelation for all 3 traits investigated. Results showed that with all functions, estimated final weights of males were higher than females for the body, carcass, and breast weight profiles. The alternative functions introduced here have desirable advantages including flexibility and a low number of parameters. However, because this is probably the first study to apply these functions to predict growth patterns in poultry or other animals, further analysis of these new models is suggested.

  18. The predicted influence of climate change on lesser prairie-chicken reproductive parameters

    Science.gov (United States)

    Grisham, Blake A.; Boal, Clint W.; Haukos, David A.; Davis, Dawn M.; Boydston, Kathy K.; Dixon, Charles; Heck, Willard R.

    2013-01-01

    The Southern High Plains is anticipated to experience significant changes in temperature and precipitation due to climate change. These changes may influence the lesser prairie-chicken (Tympanuchus pallidicinctus) in positive or negative ways. We assessed the potential changes in clutch size, incubation start date, and nest survival for lesser prairie-chickens for the years 2050 and 2080 based on modeled predictions of climate change and reproductive data for lesser prairie-chickens from 2001–2011 on the Southern High Plains of Texas and New Mexico. We developed 9 a priori models to assess the relationship between reproductive parameters and biologically relevant weather conditions. We selected weather variable(s) with the most model support and then obtained future predicted values from climatewizard.org. We conducted 1,000 simulations using each reproductive parameter’s linear equation obtained from regression calculations, and the future predicted value for each weather variable to predict future reproductive parameter values for lesser prairie-chickens. There was a high degree of model uncertainty for each reproductive value. Winter temperature had the greatest effect size for all three parameters, suggesting a negative relationship between above-average winter temperature and reproductive output. The above-average winter temperatures are correlated to La Niña events, which negatively affect lesser prairie-chickens through resulting drought conditions. By 2050 and 2080, nest survival was predicted to be below levels considered viable for population persistence; however, our assessment did not consider annual survival of adults, chick survival, or the positive benefit of habitat management and conservation, which may ultimately offset the potentially negative effect of drought on nest survival.

  19. Plant Functional Variability in Response to Late-Quaternary Climate Change Recorded in Ancient Packrat Middens

    Science.gov (United States)

    Holmgren, C. A.; Potts, D. L.

    2006-12-01

    Responses of plant functional traits to environmental variability are of enduring interest because they constrain organism performance and ecosystem function. However, most inferences regarding plant functional trait response to climatic variability have been limited to the modern period. To better understand plant functional response to long-term climate variability and how adjustments in leaf morphology may contribute to patterns of species establishment, persistence, or extirpation, we measured specific leaf area (SLA) from macrofossils preserved in ancient packrat middens collected along the Arizona/New Mexico border, USA. Our record spanned more than 32,000 years and included six woodland and Chihuahuan Desert species: Berberis cf. haematocarpa, Juniperus cf. coahuilensis, Juniperus osteosperma, Larrea tridentata, Prosopis glandulosa and Parthenium incanum. We predicted that regional climatic warming and drying since the late Pleistocene would result in intraspecific decreases in SLA. As predicted, SLA was positively correlated with midden age for three of the six species (L. tridentata, J. osteosperma, B. cf. haematocarpa). SLA was also negatively correlated with December (L. tridentata, J. cf. coahuilensis) or June (B. cf. haematocarpa, J. osteosperma) insolation. A unique record of vegetation community dynamics, plant macrofossils preserved in packrat middens also represent a rich and largely untapped source of information on long-term trends in species functional response to environmental change.

  20. Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines

    OpenAIRE

    Black, Paul Randall

    2007-01-01

    Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines Design and prediction of thermoacoustic instabilities is a major challenge in aerospace propulsion and the operation of power generating gas turbine engines. This is a complex problem in which multiple physical systems couple together. Traditionally, thermoacoustic models can be reduced to dominant physics which depend only on flame dynamics and acoustics. Th...

  1. Upset Prediction in Friction Welding Using Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2013-01-01

    Full Text Available This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW, a radial basis function (RBF neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW and continuous drive friction welding (CDFW. The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.

  2. Modeling and prediction of children’s growth data via functional principal component analysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We use the functional principal component analysis(FPCA) to model and predict the weight growth in children.In particular,we examine how the approach can help discern growth patterns of underweight children relative to their normal counterparts,and whether a commonly used transformation to normality plays any constructive roles in a predictive model based on the FPCA.Our work supplements the conditional growth charts developed by Wei and He(2006) by constructing a predictive growth model based on a small number of principal components scores on individual’s past.

  3. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions.

    Science.gov (United States)

    Imamizu, Hiroshi; Kawato, Mitsuo

    2009-07-01

    Humans can guide their actions toward the realization of their intentions. Flexible, rapid and precise realization of intentions and goals relies on the brain learning to control its actions on external objects and to predict the consequences of this control. Neural mechanisms that mimic the input-output properties of our own body and other objects can be used to support prediction and control, and such mechanisms are called internal models. We first summarize functional neuroimaging, behavioral and computational studies of the brain mechanisms related to acquisition, modular organization, and the predictive switching of internal models mainly for tool use. These mechanisms support predictive control and flexible switching of intentional actions. We then review recent studies demonstrating that internal models are crucial for the execution of not only immediate actions but also higher-order cognitive functions, including optimization of behaviors toward long-term goals, social interactions based on prediction of others' actions and mental states, and language processing. These studies suggest that a concept of internal models can consistently explain the neural mechanisms and computational principles needed for fundamental sensorimotor functions as well as higher-order cognitive functions.

  4. Recursive Parameter Method for Computing the Predicting Function of the Multivariable ARMAX Model

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New method for computing the predicting function of the ARMAX model is proposed. The proposed method constructs a set of schemes for recursively computing the parameters in predicting function of the ARMAX model. In contrast to the existing method, that only gives results for the special case of the ARX model, the method presented is suitable not only for an SISO system, but also for an MIMO system. For the SISO system, the method presented here is even more convenient than the exisiting ones.

  5. Does changing pain-related knowledge reduce pain and improve function through changes in catastrophizing?

    Science.gov (United States)

    Lee, Hopin; McAuley, James H; Hübscher, Markus; Kamper, Steven J; Traeger, Adrian C; Moseley, G Lorimer

    2016-04-01

    Evidence from randomized controlled studies shows that reconceptualizing pain improves patients' knowledge of pain biology, reduces catastrophizing thoughts, and improves pain and function. However, causal relationships between these variables remain untested. It is hypothesized that reductions in catastrophizing could mediate the relationship between improvements in pain knowledge and improvements in pain and function. To test this causal mechanism, we conducted longitudinal mediation analyses on a cohort of 799 patients who were exposed to a pain education intervention. Patients provided responses to the neurophysiology of pain questionnaire, catastrophic thoughts about pain scale, visual analogue pain scale, and the patient specific functional scale, at baseline, 1-month, 6-month, and 12-month follow-up. With adjustment for potential confounding variables, an improvement in pain biology knowledge was significantly associated with a reduction in pain intensity (total effect = -2.20, 95% confidence interval [CI] = -2.96 to -1.44). However, this effect was not mediated by a reduction in catastrophizing (indirect effect = -0.16, 95% CI = -0.36 to 0.02). This might be due to a weak, nonsignificant relationship between changes in catastrophizing and pain intensity (path b = 0.19, 95% CI = -0.03 to 0.41). Similar trends were found in models with function as the outcome. Our findings indicate that change in catastrophizing did not mediate the effect of pain knowledge acquisition on change in pain or function. The strength of this conclusion is moderated, however, if patient-clinician relational factors are conceptualized as a consequence of catastrophizing, rather than a cause.

  6. The predictive skill of species distribution models for plankton in a changing climate.

    Science.gov (United States)

    Brun, Philipp; Kiørboe, Thomas; Licandro, Priscilla; Payne, Mark R

    2016-09-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one of the longest running and most extensive marine biological monitoring programs, to investigate the reliability of predicted plankton distributions. We apply three commonly used SDMs to 20 representative plankton species, including copepods, diatoms, and dinoflagellates, all found in the North Atlantic and adjacent seas. We fit the models to decadal subsets of the full (1958-2012) dataset, and then use them to predict both forward and backward in time, comparing the model predictions against the corresponding observations. The probability of correctly predicting presence was low, peaking at 0.5 for copepods, and model skill typically did not outperform a null model assuming distributions to be constant in time. The predicted prevalence increasingly differed from the observed prevalence for predictions with more distance in time from their training dataset. More detailed investigations based on four focal species revealed that strong spatial variations in skill exist, with the least skill at the edges of the distributions, where prevalence is lowest. Furthermore, the scores of traditional single-value model performance metrics were contrasting and some implied overoptimistic conclusions about model skill. Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against null models, is essential to assess the robustness of projections of marine planktonic species under climate change.

  7. Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Mark Preiss

    2005-12-01

    Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.

  8. Can we predict the direction of marine primary production change under global warming?

    Science.gov (United States)

    Taucher, J.; Oschlies, A.

    2011-01-01

    A global Earth System model is employed to investigate the role of direct temperature effects in the response of marine ecosystems to climate change. While model configurations with and without consideration of explicit temperature effects can reproduce observed current biogeochemical tracer distributions and estimated carbon export about equally well, carbon flow through the model ecosystem reveals strong temperature sensitivities. Depending on whether biological processes are assumed temperature sensitive or not, simulated marine net primary production (NPP) increases or decreases under projected climate change driven by a business-as-usual CO2 emission scenario for the 21st century. This suggests that indirect temperature effects such as changes in the supply of nutrients and light are not the only relevant factors to be considered when modeling the response of marine ecosystems to climate change. A better understanding of direct temperature effects on marine ecosystems is required before even the direction of change in NPP can be reliably predicted.

  9. USGS "iCoast - Did the Coast Change?" Project: Crowd-Tagging Aerial Photographs to Improve Coastal Change Prediction Models

    Science.gov (United States)

    Liu, S. B.; Poore, B. S.; Plant, N. G.; Stockdon, H. F.; Morgan, K.; Snell, R.

    2014-12-01

    The U.S. Geological Survey (USGS) has been acquiring oblique aerial photographs of the coast before and after major storms since 1995 and has amassed a database of over 140,000 photographs of the Gulf, Atlantic, and Pacific coasts. USGS coastal scientists use these photographs to document and characterize coastal change caused by storms. The images can also be used to evaluate the accuracy of predictive models of coastal erosion. However, the USGS does not have the personnel to manually analyze all of the photographs taken after a storm. Also, computers cannot yet automatically identify damages and geomorphic changes to the coast from the oblique aerial photographs. There is a high public interest in accessing the limited number of pre- and post-storm photographic pairs the USGS is currently able to share. Recent federal policies that encourage open data and open innovation initiatives have resulted in many federal agencies developing new ways of using citizen science and crowdsourcing techniques to share data and collaborate with the public to accomplish large tasks. The USGS launched a crowdsourcing application in June 2014 called "iCoast - Did the Coast Change?" (http://coastal.er.usgs.gov/icoast) to allow citizens to help USGS scientists identify changes to the coast by comparing USGS aerial photographs taken before and after storms, and then selecting pre-defined tags like "dune scarp" and "sand on road." The tags are accompanied by text definitions and pictorial examples of these coastal morphology terms and serve to informally and passively educate users about coastal hazards. The iCoast application facilitates greater citizen awareness of coastal change and is an educational resource for teachers and students interested in learning about coastal vulnerability. We expect that the citizen observations from iCoast will assist with probabilistic model development to produce more accurate predictions of coastal vulnerability.

  10. Prediction of the Functional Performance of Machined Components Based on Surface Topography: State of the Art

    Science.gov (United States)

    Grzesik, Wit

    2016-10-01

    This survey overviews the functional performance of manufactured components produced by typical finishing machining operations in terms of their topographical characteristics. Surface topographies were characterized using both profile (2D) and 3D (areal) surface roughness parameters. The prediction of typical functional properties such as fatigue, friction, wear, bonding and corrosion is discussed based on appropriate surface roughness parameters. Some examples of real 3D surface topographies produced with desired functional characteristics are provided. This survey highlights technological possibilities of producing surfaces with enhanced functional properties by machining processes.

  11. A novel domain-based method for predicting the functional classes of proteins

    Institute of Scientific and Technical Information of China (English)

    YU Xiaojing; LIN Jiancheng; SHI Tieliu; LI Yixue

    2004-01-01

    Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional categories. We have therefore developed a method based on protein domain composition and the maximum likelihood estimation (MLE) algorithm to classify proteins according to functions. Using the Saccharomyces cerevisiae genome, we compared the effectiveness of the MLE approach with that of an intuitive and simple method. The MLE method outperformed the simple method, achieving an estimated specificity of 75.45% and an estimated sensitivity of 40.26%. These results indicate that domain is an important feature of proteins and is closely related to protein function.

  12. Comparison of an Imaging Software and Manual Prediction of Soft Tissue Changes after Orthognathic Surgery

    Directory of Open Access Journals (Sweden)

    M. S. Ahmad Akhoundi

    2012-01-01

    Full Text Available Objective: Accurate prediction of the surgical outcome is important in treating dentofacial deformities. Visualized treatment objectives usually involve manual surgical simulation based on tracing of cephalometric radiographs. Recent technical advancements have led to the use of computer assisted imaging systems in treatment planning for orthognathic surgical cases. The purpose of this study was to examine and compare the ability and reliability of digitization using Dolphin Imaging Software with traditional manual techniques and to compare orthognathic prediction with actual outcomes.Materials and Methods: Forty patients consisting of 35 women and 5 men (32 class III and 8 class II with no previous surgery were evaluated by manual tracing and indirect digitization using Dolphin Imaging Software. Reliability of each method was assessed then the two techniques were compared using paired t test.Result: The nasal tip presented the least predicted error and higher reliability. The least accurate regions in vertical plane were subnasal and upper lip, and subnasal and pogonion in horizontal plane. There were no statistically significant differences between the predictions of groups with and without genioplasty.Conclusion: Computer-generated image prediction was suitable for patient education and communication. However, efforts are still needed to improve accuracy and reliability of the prediction program and to include changes in soft tissue tension and muscle strain.

  13. EnzymeDetector: an integrated enzyme function prediction tool and database

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar

    2011-09-01

    Full Text Available Abstract Background The ability to accurately predict enzymatic functions is an essential prerequisite for the interpretation of cellular functions, and the reconstruction and analysis of metabolic models. Several biological databases exist that provide such information. However, in many cases these databases provide partly different and inconsistent genome annotations. Description We analysed nine prokaryotic genomes and found about 70% inconsistencies in the enzyme predictions of the main annotation resources. Therefore, we implemented the annotation pipeline EnzymeDetector. This tool automatically compares and evaluates the assigned enzyme functions from the main annotation databases and supplements them with its own function prediction. This is based on a sequence similarity analysis, on manually created organism-specific enzyme information from BRENDA (Braunschweig Enzyme Database, and on sequence pattern searches. Conclusions EnzymeDetector provides a fast and comprehensive overview of the available enzyme function annotations for a genome of interest. The web interface allows the user to work with customisable weighting schemes and cut-offs for the different prediction methods. These customised quality criteria can easily be applied, and the resulting annotation can be downloaded. The summarised view of all used annotation sources provides up-to-date information. Annotation errors that occur in only one of the databases can be recognised (because of their low relevance score. The results are stored in a database and can be accessed at http://enzymedetector.tu-bs.de.

  14. Renographic indices for evaluation of changes in graft function

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghraby, T.A.F.; Eck-Smit, B.L.F. van; Pauwels, E.K.J. [Division of Nuclear Medicine, Department of Radiology, Leiden University Medical Centre, Leiden (Netherlands); Fijter, J.W. de [Department of Nephrology, Leiden University Medical Centre, Leiden (Netherlands); Zwinderman, A.H. [Department of Medical Statistics, Leiden University Medical Centre, Leiden (Netherlands); El-Haddad, S.I. [Department of Oncology and Nuclear Medicine, Cairo University (Egypt)

    1998-11-01

    Radionuclide renal diagnostic studies play an important role in assessing renal allograft function, especially in the early post-transplant period. In the past two decades various quantitative parameters have been derived from the radionuclide renogram to evaluate changes in perfusion and/or function of the kidney allograft. In this review article we discuss the quantitative parameters that have been used to assess graft condition, with emphasis on the early postoperative period. These quantitative methods are divided into parameters used for assessing renal graft perfusion and parameters used for evaluating parenchymal function. The blood flow in renal transplants can be quantified (a) by measuring the rate of activity appearance in the kidney graft, (b) by calculating the ratio of the integral activity under the transplanted kidney and arterial curves and (c) by calculating the renal vascular transit time. In this article we review a number of parenchymal uptake and excretion indices, such as the accumulation index, the graft uptake capacity at 2 and 10 min, the excretion index and the elimination index. The literature on these parameters shows that they have some practical disadvantages. In addition, values suffer from significant overlap when various graft pathologies coexist. A retrospective study was designed in our institution to evaluate the clinical usefulness of some of the frequently used previously published methods in which the graft function is quantitatively assessed in the early post-transplant period. The quantitative parameters studied which were reasonably reproducible in our hands included: global perfusion index (GPI), cortical perfusion index (CPI), vascular transit time, and the parenchymal parameters uptake capacity at 2 min (UC{sub 2}) and elimination index (K{sub 3/20}). The patient population in this study consisted of 43 patients with 157 technetium-99m mercaptylacetyltriglycine renograms. The perfusion indices GPI and CPI did not allow

  15. Temporal changes in milk proteomes reveal developing milk functions.

    Science.gov (United States)

    Gao, Xinliu; McMahon, Robert J; Woo, Jessica G; Davidson, Barbara S; Morrow, Ardythe L; Zhang, Qiang

    2012-07-06

    Human milk proteins provide essential nutrition for growth and development, and support a number of vital developmental processes in the neonate. A complete understanding of the possible functions of human milk proteins has been limited by incomplete knowledge of the human milk proteome. In this report, we have analyzed the proteomes of whey from human transitional and mature milk using ion-exchange and SDS-PAGE based protein fractionation methods. With a larger-than-normal sample loading approach, we are able to largely extend human milk proteome to 976 proteins. Among them, 152 proteins are found to render significant regulatory changes between transitional milk and mature milk. We further found that immunoglobulins sIgA and IgM are more abundant in transitional milk, whereas IgG is more abundant in mature milk, suggesting a transformation in defense mechanism from newborns to young infants. Additionally, we report a more comprehensive view of a complement system and associated regulatory apparatus in human milk, demonstrating the presence and function of a system similar to that found in the circulation but prevailed by alternative pathway in complement activation. Proteins involved in various aspects of carbohydrate metabolism are also described, revealing either a transition in milk functionality to accommodate carbohydrate-rich secretions as lactation progresses, or a potentially novel way of looking at the metabolic state of the mammary tissue. Lately, a number of extracellular matrix (ECM) proteins are found to be in higher abundance in transitional milk and may be relevant to the development of infants' gastrointestinal tract in early life. In contrast, the ECM protein fibronectin and several of the actin cytoskeleton proteins that it regulates are more abundant in mature milk, which may indicate the important functional role for milk in regulating reactive oxygen species.

  16. Predicting acute recovery of physical function following total knee joint arthroplasty.

    Science.gov (United States)

    Robbins, Shawn M; Rastogi, Ravi; McLaughlin, Terry-Lyne

    2014-02-01

    The objective was to explore predictors of physical function during acute in-patient rehabilitation within a few days after TKA. Physical function status of participants (n = 72) three days after total knee arthroplasty (TKA) was measured using the Timed Up and Go Test (TUG) and the function subscale of the Western Ontario McMaster Universities Index of Osteoarthritis (WOMAC-function). Potential predictors of physical function were measured day one post-TKA. Their relationship with physical function was examined using backward elimination, multiple regression analyses. Older age and increased comorbidity were associated (R(2) = 0.20) with worse TUG times. Increased pain severity was associated (R(2) = 0.08) with worse WOMAC-function scores. Age, comorbidity, and pain severity should be considered when predicting which patients will struggle with acute recovery post-TKA.

  17. Serial Change in Cervical Length for the Prediction of Emergency Cesarean Section in Placenta Previa.

    Directory of Open Access Journals (Sweden)

    Jae Eun Shin

    Full Text Available To evaluate whether serial change in cervical length (CL over time can be a predictor for emergency cesarean section (CS in patients with placenta previa.This was a retrospective cohort study of patients with placenta previa between January 2010 and November 2014. All women were offered serial measurement of CL by transvaginal ultrasound at 19 to 23 weeks (CL1, 24 to 28 weeks (CL2, 29 to 31 weeks (CL3, and 32 to 34 weeks (CL4. We compared clinical characteristics, serial change in CL, and outcomes between the emergency CS group (case group and elective CS group (control group. The predictive value of change in CL for emergency CS was evaluated.A total of 93 women were evaluated; 31 had emergency CS due to massive vaginal bleeding. CL tended to decrease with advancing gestational age in each group. Until 29-31 weeks, CL showed no significant differences between the two groups, but after that, CL in the emergency CS group decreased abruptly, even though CL in the elective CS group continued to gradually decrease. On multivariate analysis to determine risk factors, only admissions for bleeding (odds ratio, 34.710; 95% CI, 5.239-229.973 and change in CL (odds ratio, 3.522; 95% CI, 1.210-10.253 were significantly associated with emergency CS. Analysis of the receiver operating characteristic curve showed that change in CL could be the predictor of emergency CS (area under the curve 0.734, p < 0.001, with optimal cutoff for predicting emergency cesarean delivery of 6.0 mm.Previous admission for vaginal bleeding and change in CL are independent predictors of emergency CS in placenta previa. Women with change in CL more than 6 mm between the second and third trimester are at high risk of emergency CS in placenta previa. Single measurements of short CL at the second or third trimester do not seem to predict emergency CS.

  18. An integrative approach to ortholog prediction for disease-focused and other functional studies

    Directory of Open Access Journals (Sweden)

    Perrimon Norbert

    2011-08-01

    Full Text Available Abstract Background Mapping of orthologous genes among species serves an important role in functional genomics by allowing researchers to develop hypotheses about gene function in one species based on what is known about the functions of orthologs in other species. Several tools for predicting orthologous gene relationships are available. However, these tools can give different results and identification of predicted orthologs is not always straightforward. Results We report a simple but effective tool, the Drosophila RNAi Screening Center Integrative Ortholog Prediction Tool (DIOPT; http://www.flyrnai.org/diopt, for rapid identification of orthologs. DIOPT integrates existing approaches, facilitating rapid identification of orthologs among human, mouse, zebrafish, C. elegans, Drosophila, and S. cerevisiae. As compared to individual tools, DIOPT shows increased sensitivity with only a modest decrease in specificity. Moreover, the flexibility built into the DIOPT graphical user interface allows researchers with different goals to appropriately 'cast a wide net' or limit results to highest confidence predictions. DIOPT also displays protein and domain alignments, including percent amino acid identity, for predicted ortholog pairs. This helps users identify the most appropriate matches among multiple possible orthologs. To facilitate using model organisms for functional analysis of human disease-associated genes, we used DIOPT to predict high-confidence orthologs of disease genes in Online Mendelian Inheritance in Man (OMIM and genes in genome-wide association study (GWAS data sets. The results are accessible through the DIOPT diseases and traits query tool (DIOPT-DIST; http://www.flyrnai.org/diopt-dist. Conclusions DIOPT and DIOPT-DIST are useful resources for researchers working with model organisms, especially those who are interested in exploiting model organisms such as Drosophila to study the functions of human disease genes.

  19. Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns

    Science.gov (United States)

    Lucarini, Valerio; Ragone, Francesco; Lunkeit, Frank

    2016-04-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(10^5 ) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO_2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  20. Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns

    Science.gov (United States)

    Lucarini, Valerio; Ragone, Francesco; Lunkeit, Frank

    2017-02-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(10^5) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO_2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  1. On the importance of paleoclimate modelling for improving predictions of future climate change

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2009-12-01

    Full Text Available We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation.

  2. Predicting critical temperatures of iron(II) spin crossover materials: density functional theory plus U approach.

    Science.gov (United States)

    Zhang, Yachao

    2014-12-07

    A first-principles study of critical temperatures (T(c)) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T(c) of a pair of iron(II) SCO molecular crystals (α and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE(HL) and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T(c) by exploiting the ΔH/T - T and ΔS - T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T(c) of the two phases. This study shows the applicability of the DFT+U approach for predicting T(c) of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.

  3. Tools for Consumer Rights Protection in the Prediction of Electronic Virtual Market and Technological Changes

    Directory of Open Access Journals (Sweden)

    Mikuláš Gangur

    2014-05-01

    Full Text Available Electronic virtual markets can serve as an alternative tool for collecting information that is spread among numerous experts. This is the principal market functionality from the operators’ point of view. On the other hand it is profits that are the main interest of the market participants. What they expect from the market is liquidity as high as possible and the opportunity for unrestricted trading. Both the operator and the electronic market participant can be considered consumers of this particular market with reference to the requirements for the accuracy of its outputs but also for the market liquidity. Both the above mentioned groups of consumers (the operators and the participants themselves expect protection of their specific consumer rights, i.e. securing the two above mentioned functionalities of the market. These functionalities of the electronic market are, however, influenced by many factors, among others by participants’ activity. The article deals with the motivation tools that may improve the quality of the prediction market. In the prediction electronic virtual market there may be situations in which the commonly used tools for increasing business activities described in the published literature are not significantly effective. For such situations we suggest a new type of motivation incentive consisting in penalizing the individual market participants whose funds are not placed in the market. The functionality of the proposed motivation incentive is presented on the example of the existing data gained from the electronic virtual prediction market which is actively operated.

  4. Physical activity as an indicator of predictive functional disability in elderly.

    Science.gov (United States)

    Virtuoso Júnior, Jair Sindra; Tribess, Sheilla; Paulo, Thais Reis Silva De; Martins, Cristiane Alves; Romo-Perez, Vicente

    2012-01-01

    To analyze the time spent on physical activity in female and male individuals as a predictor of the absence of functional disability in older adults, a cross-sectional study was conducted with 624 individuals. Receiver Operating Characteristic curves (ROC) were constructed and compared to areas of physical activity by gender and the absence of functional disability. We identified cutoffs of physical activity (minutes / week) to predict the absence of functional disability (CI 95%). It was found that there is a higher area under the ROC curve for the time spent on physical activities in females. It was observed that 280 minutes / week (women) or 410 minutes / week (men) were the best cutoff points for predicting the absence of functional disability. Time spent on physical activity practices can serve as an important indicator to sort priority groups for certain interventions.

  5. Factors predicting work outcome in Japanese patients with schizophrenia: role of multiple functioning levels

    Directory of Open Access Journals (Sweden)

    Chika Sumiyoshi

    2015-09-01

    Full Text Available Functional outcomes in individuals with schizophrenia suggest recovery of cognitive, everyday, and social functioning. Specifically improvement of work status is considered to be most important for their independent living and self-efficacy. The main purposes of the present study were 1 to identify which outcome factors predict occupational functioning, quantified as work hours, and 2 to provide cut-offs on the scales for those factors to attain better work status. Forty-five Japanese patients with schizophrenia and 111 healthy controls entered the study. Cognition, capacity for everyday activities, and social functioning were assessed by the Japanese versions of the MATRICS Cognitive Consensus Battery (MCCB, the UCSD Performance-based Skills Assessment-Brief (UPSA-B, and the Social Functioning Scale Individuals’ version modified for the MATRICS-PASS (Modified SFS for PASS, respectively. Potential factors for work outcome were estimated by multiple linear regression analyses (predicting work hours directly and a multiple logistic regression analyses (predicting dichotomized work status based on work hours. ROC curve analyses were performed to determine cut-off points for differentiating between the better- and poor work status. The results showed that a cognitive component, comprising visual/verbal learning and emotional management, and a social functioning component, comprising independent living and vocational functioning, were potential factors for predicting work hours/status. Cut-off points obtained in ROC analyses indicated that 60–70% achievements on the measures of those factors were expected to maintain the better work status. Our findings suggest that improvement on specific aspects of cognitive and social functioning are important for work outcome in patients with schizophrenia.

  6. On the adequacy of wall functions to predict condensation rates from steam-noncondensable gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dehbi, A., E-mail: abdel.dehbi@psi.ch

    2013-12-15

    Highlights: • Work investigates the effect of near-wall mesh resolution on CFD predictions. • Case study: turbulent condensation in the presence of noncondensable gases. • Wall functions largely underpredict condensation rates at boundary layer onset. • When boundary layer is developed, wall functions predictions are reasonable. • Prescribed wall functions must be compatible with prevailing flow regime. - Abstract: As one looks forward to applying CFD based methods to simulate turbulent flows in larger volumes up to containment scales, the mesh resolution, especially near the walls, becomes one of the main issues dictating the feasibility of the simulation. The wall-function approach is a natural choice to minimize the computational size of the problem and make it tractable. In the current investigation, we compare the wall-function to the fully resolved boundary layer approaches for the prediction of vapor condensation rates on cold walls in the presence of noncondensable gases. We simulate three sets of geometric configurations. The first two sets relate to domains which are small (height of 2 m) and medium (height 4.8 m), and for which experimental heat transfer data are available. In the third set, we look at a hypothetical large 2D rectangular domain in which the condenser height is comparable to that of typical NPP containments (20 m). In the developing region of the boundary layer, it is found that the wall function treatment leads to substantial deviations from the wall resolved approach and available experimental data. Further downstream, however, when the boundary layer is fully developed, the discrepancy is greatly reduced. It is therefore concluded that the wall-function formulation is able to provide predictions of condensation rates that are similar to wall-resolved treatments in simple forced flows for which fully developed boundary layers can be assumed over most of the domain. Care must however be exercised to ensure the chosen wall

  7. Computational RNomics:Structure identification and functional prediction of non-coding RNAs in silico

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The eukaryotic genome contains varying numbers of non-coding RNA(ncRNA) genes."Computational RNomics" takes a multidisciplinary approach,like information science,to resolve the structure and function of ncRNAs.Here,we review the main issues in "Computational RNomics" of data storage and management,ncRNA gene identification and characterization,ncRNA target identification and functional prediction,and we summarize the main methods and current content of "computational RNomics".

  8. Integrating protein-protein interactions and text mining for protein function prediction

    Directory of Open Access Journals (Sweden)

    Leser Ulf

    2008-07-01

    Full Text Available Abstract Background Functional annotation of proteins remains a challenging task. Currently the scientific literature serves as the main source for yet uncurated functional annotations, but curation work is slow and expensive. Automatic techniques that support this work are still lacking reliability. We developed a method to identify conserved protein interaction graphs and to predict missing protein functions from orthologs in these graphs. To enhance the precision of the results, we furthermore implemented a procedure that validates all predictions based on findings reported in the literature. Results Using this procedure, more than 80% of the GO annotations for proteins with highly conserved orthologs that are available in UniProtKb/Swiss-Prot could be verified automatically. For a subset of proteins we predicted new GO annotations that were not available in UniProtKb/Swiss-Prot. All predictions were correct (100% precision according to the verifications from a trained curator. Conclusion Our method of integrating CCSs and literature mining is thus a highly reliable approach to predict GO annotations for weakly characterized proteins with orthologs.

  9. Climate Change Policies for the XXIst Century: Mechanisms, Predictions and Recommendations

    CERN Document Server

    Khmelinskii, Igor

    2011-01-01

    Recent experimental works demonstrated that the Anthropogenic Global Warming (AGW) hypothesis, embodied in a series of Intergovernmental Panel on Climate Change (IPCC) global climate models, is erroneous. These works prove that atmospheric carbon dioxide contributes only very moderately to the observed warming, and that there is no climatic catastrophe in the making, independent on whether or not carbon dioxide emissions will be reduced. In view of these developments, we discuss climate predictions for the XXIst century. Based on the solar activity tendencies, a new Little Ice Age is predicted by the middle of this century, with significantly lower global temperatures. We also show that IPCC climate models can't produce any information regarding future climate, due to essential physical phenomena lacking in those, and that the current budget deficit in many EU countries is mainly caused by the policies promoting renewable energies and other AGW-motivated measures. In absence of any predictable adverse climate...

  10. Using Wannier functions to improve solid band gap predictions in density functional theory

    Science.gov (United States)

    Ma, Jie; Wang, Lin-Wang

    2016-04-01

    Enforcing a straight-line condition of the total energy upon removal/addition of fractional electrons on eigen states has been successfully applied to atoms and molecules for calculating ionization potentials and electron affinities, but fails for solids due to the extended nature of the eigen orbitals. Here we have extended the straight-line condition to the removal/addition of fractional electrons on Wannier functions constructed within the occupied/unoccupied subspaces. It removes the self-interaction energies of those Wannier functions, and yields accurate band gaps for solids compared to experiments. It does not have any adjustable parameters and the computational cost is at the DFT level. This method can also work for molecules, providing eigen energies in good agreement with experimental ionization potentials and electron affinities. Our approach can be viewed as an alternative approach of the standard LDA+U procedure.

  11. Local network topology in human protein interaction data predicts functional association.

    Directory of Open Access Journals (Sweden)

    Hua Li

    Full Text Available The use of high-throughput techniques to generate large volumes of protein-protein interaction (PPI data has increased the need for methods that systematically and automatically suggest functional relationships among proteins. In a yeast PPI network, previous work has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional association. In this study we improved the prediction scheme by developing a new algorithm and applied it on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting function-associated protein pairs. We used the annotations of the Gene Ontology (GO and the Kyoto Encyclopedia of Genes and Genomes (KEGG as benchmarks to compare and evaluate the function relevance. The application of our algorithms to human PPI data yielded 4,233 significant functional associations among 1,754 proteins. Further functional comparisons between them allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made functional inferences from detailed analysis on one subcluster highly enriched in the TGF-beta signaling pathway (P<10(-50. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotation in this post-genomic era.

  12. Functional Task Test: 2. Spaceflight-Induced Cardiovascular Change and Recovery During NASA's Functional Task Test

    Science.gov (United States)

    Phillips, Tiffany; Arzeno, Natalia M.; Stenger, Michael; Lee, Stuart M. C.; Bloomberg, Jacob J.; Platts, Steven H.

    2011-01-01

    The overall objective of the functional task test (FTT) is to correlate spaceflight-induced physiological adaptations with changes in performance of high priority exploration mission-critical tasks. This presentation will focus on the recovery from fall/stand test (RFST), which measures the cardiovascular response to the transition from the prone posture (simulated fall) to standing in normal gravity, as well as heart rate (HR) during 11 functional tasks. As such, this test describes some aspects of spaceflight-induced cardiovascular deconditioning and the course of recovery in Space Shuttle and International Space Station (ISS) astronauts. The sensorimotor and neuromuscular components of the FTT are described in two separate abstracts: Functional Task Test 1 and 3.

  13. Ligand-induced conformational changes: Improved predictions of ligand binding conformations and affinities

    DEFF Research Database (Denmark)

    Frimurer, T.M.; Peters, Günther H.J.; Iversen, L.F.

    2003-01-01

    A computational docking strategy using multiple conformations of the target protein is discussed and evaluated. A series of low molecular weight, competitive, nonpeptide protein tyrosine phosphatase inhibitors are considered for which the x-ray crystallographic structures in complex with protein...... tyrosine phosphatase 1 B (PTP1B) are known. To obtain a quantitative measure of the impact of conformational changes induced by the inhibitors, these were docked to the active site region of various structures of PTP1B using the docking program FlexX. Firstly, the inhibitors were docked to a PTP1B crystal...... predicted binding energy and a correct docking mode. Thirdly, to improve the predictability of the docking procedure in the general case, where only a single target protein structure is known, we evaluate an approach which takes possible protein side-chain conformational changes into account. Here, side...

  14. Tire Changes, Fresh Air, and Yellow Flags: Challenges in Predictive Analytics for Professional Racing.

    Science.gov (United States)

    Tulabandhula, Theja; Rudin, Cynthia

    2014-06-01

    Our goal is to design a prediction and decision system for real-time use during a professional car race. In designing a knowledge discovery process for racing, we faced several challenges that were overcome only when domain knowledge of racing was carefully infused within statistical modeling techniques. In this article, we describe how we leveraged expert knowledge of the domain to produce a real-time decision system for tire changes within a race. Our forecasts have the potential to impact how racing teams can optimize strategy by making tire-change decisions to benefit their rank position. Our work significantly expands previous research on sports analytics, as it is the only work on analytical methods for within-race prediction and decision making for professional car racing.

  15. [Bleomycin and pulmonary function changes in children with malignant lymphomas].

    Science.gov (United States)

    Kuijten, R R; Voûte, P A; van Nierop, J C; van Leeuwen, E F; Griffioen, R W; Wagner-Soeters, R E

    1991-02-09

    In 25 patients under 18 years of age with Hodgkin's disease or non-Hodgkin lymphoma treated with bleomycin as part of the treatment with several cytostatics, the diffusion capacity of the lung for carbon monoxide (DLCO) was determined before, during and after this treatment to investigate the damaging effect of bleomycin on the lungs. The DLCO decreased in 18 of the 25 children; the degree of decrease depended both on the total dosage (max. 120 mg/sq.m body surface) and on the dose per administration (5 or 10 mg/sq.m). Eight of these 18 children were followed up for some time after discontinuation of bleomycin treatment. During the relatively brief follow-up period of one year on average, complete recovery of pulmonary function was seen in none of these children; in two, partial recovery occurred. It is necessary to study the changes of DLCO for a longer period after bleomycin treatment, as well as the factors that influence recovery of pulmonary function in children.

  16. Practice induces function-specific changes in brain activity.

    Directory of Open Access Journals (Sweden)

    Tamar R van Raalten

    Full Text Available BACKGROUND: Practice can have a profound effect on performance and brain activity, especially if a task can be automated. Tasks that allow for automatization typically involve repeated encoding of information that is paired with a constant response. Much remains unknown about the effects of practice on encoding and response selection in an automated task. METHODOLOGY: To investigate function-specific effects of automatization we employed a variant of a Sternberg task with optimized separation of activity associated with encoding and response selection by means of m-sequences. This optimized randomized event-related design allows for model free measurement of BOLD signals over the course of practice. Brain activity was measured at six consecutive runs of practice and compared to brain activity in a novel task. PRINCIPAL FINDINGS: Prompt reductions were found in the entire cortical network involved in encoding after a single run of practice. Changes in the network associated with response selection were less robust and were present only after the third run of practice. CONCLUSIONS/SIGNIFICANCE: This study shows that automatization causes heterogeneous decreases in brain activity across functional regions that do not strictly track performance improvement. This suggests that cognitive performance is supported by a dynamic allocation of multiple resources in a distributed network. Our findings may bear importance in understanding the role of automatization in complex cognitive performance, as increased encoding efficiency in early stages of practice possibly increases the capacity to otherwise interfering information.

  17. A seepage erosion sediment transport function and geometric headcut relationships for predicting seepage erosion undercutting

    Science.gov (United States)

    Seepage erosion is an important factor in hillslope instability and failure. However, predicting erosion by subsurface flow or seepage and incorporating its effects into stability models remain a challenge. Limitations exist with all existing seepage erosion sediment transport functions, including n...

  18. Endothelial function predicts the development of renal damage after combined nephrectomy and myocardial infarction

    NARCIS (Netherlands)

    Ochodnicky, Peter; de Zeeuw, Dick; Henning, Robert H.; Kluppel, C. Alex; van Dokkum, Richard P. E.

    2006-01-01

    It was demonstrated that individual renal endothelial dilatory function of the healthy rat predicts susceptibility to subsequent renal damage induced by 5/6 nephrectomy. In addition, it is reported that myocardial infarction (MI) that was performed upon unilateral nephrectomy (UNx) induced highly va

  19. Value of plasma ADMA in predicting cardiac structure and function of patients with chronic kidney diseases

    Institute of Scientific and Technical Information of China (English)

    叶建华

    2012-01-01

    Objective To explore the predicting value of plasma asymmetric dimethylarginine (ADMA) in cardiac structure and function of patients with chronic kidney diseases(CKD). Methods A total of 100 CKD patients were enrolled in this cross-sectional study. According to staging of the

  20. Can Functional Capacity Tests Predict Future Work Capacity in Patients With Whiplash-Associated Disorders?

    NARCIS (Netherlands)

    Trippolini, Maurizio A.; Dijkstra, Pieter U.; Cote, Pierre; Scholz-Odermatt, Stefan M.; Geertzen, J.H.B.; Reneman, Michiel F.

    2014-01-01

    Objective: To determine whether functional capacity evaluation (FCE) tests predict future work capacity (WC) of patients with whiplash-associated disorders (WADs) grades I and II who did not regain full WC 6 to 12 weeks after injury. Design: Prospective cohort study. Setting: Rehabilitation center.

  1. Cognitive functioning differentially predicts different dimensions of older drivers' on-road safety.

    Science.gov (United States)

    Aksan, Nazan; Anderson, Steve W; Dawson, Jeffrey; Uc, Ergun; Rizzo, Matthew

    2015-02-01

    The extent to which deficits in specific cognitive domains contribute to older drivers' safety risk in complex real-world driving tasks is not well understood. We selected 148 drivers older than 70 years of age both with and without neurodegenerative diseases (Alzheimer disease-AD and Parkinson disease-PD) from an existing driving database of older adults. Participant assessments included on-road driving safety and cognitive functioning in visuospatial construction, speed of processing, memory, and executive functioning. The standardized on-road drive test was designed to examine multiple facets of older driver safety including navigation performance (e.g., following a route, identifying landmarks), safety errors while concurrently performing secondary navigation tasks ("on-task" safety errors), and safety errors in the absence of any secondary navigation tasks ("baseline" safety errors). The inter-correlations of these outcome measures were fair to moderate supporting their distinctiveness. Participants with diseases performed worse than the healthy aging group on all driving measures and differences between those with AD and PD were minimal. In multivariate analyses, different domains of cognitive functioning predicted distinct facets of driver safety on road. Memory and set-shifting predicted performance in navigation-related secondary tasks, speed of processing predicted on-task safety errors, and visuospatial construction predicted baseline safety errors. These findings support broad assessments of cognitive functioning to inform decisions regarding older driver safety on the road and suggest navigation performance may be useful in evaluating older driver fitness and restrictions in licensing.

  2. Prediction of human protein function from post-translational modifications and localization features

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Blom, Nikolaj;

    2002-01-01

    a number of functional attributes that are more directly related to the linear sequence of amino acids, and hence easier to predict, than protein structure. These attributes include features associated with post-translational modifications and protein sorting, but also much simpler aspects...

  3. Exposure-response functions for (or versus?) the prediction of annoyance in specific situations

    NARCIS (Netherlands)

    Janssen, S.A.; Vos, H.

    2012-01-01

    Based on data from many surveys, exposure-response functions have been derived to describe the average expected annoyance response at a certain noise level. These have been used to define acceptable levels of environmental noise for separate noise sources. However, the prediction of the annoyance re

  4. Individual Differences in Executive Functioning Predict Preschoolers' Improvement from Theory-of-Mind Training

    Science.gov (United States)

    Benson, Jeannette E.; Sabbagh, Mark A.; Carlson, Stephanie M.; Zelazo, Philip David

    2013-01-01

    Twenty-four 3.5-year-old children who initially showed poor performance on false-belief tasks participated in a training protocol designed to promote performance on these tasks. Our aim was to determine whether the extent to which children benefited from training was predicted by their performance on a battery of executive functioning tasks.…

  5. Mothers' Predictions of Their Son's Executive Functioning Skills: Relations to Child Behavior Problems

    Science.gov (United States)

    Johnston, Charlotte

    2011-01-01

    This study examined mothers' ability to accurately predict their sons' performance on executive functioning tasks in relation to the child's behavior problems. One-hundred thirteen mothers and their 4-7 year old sons participated. From behind a one-way mirror, mothers watched their sons perform tasks assessing inhibition and planning skills.…

  6. Executive Functioning Predicts School Readiness and Success: Implications for Assessment and Intervention

    Science.gov (United States)

    Cantin, Rachelle H.; Mann, Trisha D.; Hund, Alycia M.

    2012-01-01

    In recent years, executive functioning (EF) has received increasing attention from researchers and practitioners focusing on how EF predicts important outcomes such as success at school and in life. For example, EF has been described as the single best predictor of school readiness (Blair & Razza, 2007). Moreover, EF has been implicated in…

  7. Identification of the best DFT functionals for a reliable prediction of lignin vibrational properties

    DEFF Research Database (Denmark)

    Barsberg, Soren

    2015-01-01

    set was used. B98, X3LYP and B97-1 were the overall best-performing functionals, and “fingerprint” band positions were predicted by single-factor scaling of harmonic frequencies to an average error of ±3 cm−1 by optimized scaling factors of 1.017, 1.021 and 1.016, respectively. Their performance using...

  8. Predicting literacy in children with a high-functioning autism spectrum disorder.

    Science.gov (United States)

    Jacobs, Diane W; Richdale, Amanda L

    2013-08-01

    The most commonly reported reading profile for children with a high-functioning autism spectrum disorder (HFASD) is one of intact decoding combined with reduced reading comprehension. Whether or not the variables that predict decoding and reading comprehension for children with a HFASD are exactly the same as those identified for a non-ASD population is unknown. Therefore, the ability of cognition, phonological processing, oral language, and vision to predict decoding and reading comprehension was investigated. Regression analysis revealed that cognition, phonological processing, and syntax predicted decoding and reading comprehension for the HFASD and non-ASD groups. One notable difference was that semantics predicted literacy for the non-ASD children but not their HFASD peers.

  9. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes......,998 controls. Finally, we determined whether g. -660A>G altered transcriptional activity of the ZNF202 promoter in vitro. Results Cross-sectionally, ZNF202 g. -660 GG versus AA homozygosity predicted an odds ratio for severe atherosclerosis of 2.01 ( 95% confidence interval [CI]: 1.34 to 3.01). Prospectively...... were highly correlated with g. -660A>G, also predicted risk of severe atherosclerosis and IHD. Finally, ZNF202 g. -660G versus g. -660A was associated with a 60% reduction in transcriptional activity in vitro, whereas none of the 2 correlated SNPs were predicted to be functional. Conclusions...

  10. Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets

    DEFF Research Database (Denmark)

    Swanton, C.; Larkin, J.M.; Gerlinger, M.

    2010-01-01

    RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients. PREDICT's approach to predictive biomarker discovery differs from conventional associative learning approaches, which can be susceptible to the detection...... inhibitor. Through the analysis of tumour tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumour-derived genomic data with personalised tumour-derived shRNA and high throughput si......, reducing ineffective therapy in drug resistant disease, leading to improved quality of life and higher cost efficiency, which in turn should broaden patient access to beneficial therapeutics, thereby enhancing clinical outcome and cancer survival. The consortium will also establish and consolidate...

  11. Metabolic and functional connectivity changes in mal de debarquement syndrome.

    Directory of Open Access Journals (Sweden)

    Yoon-Hee Cha

    Full Text Available BACKGROUND: Individuals with mal de debarquement syndrome (MdDS experience a chronic illusion of self-motion triggered by prolonged exposure to passive motion, such as from sea or air travel. The experience is one of rocking dizziness similar to when the individual was originally on the motion trigger such as a boat or airplane. MdDS represents a prolonged version of a normal phenomenon familiar to most individuals but which persists for months or years in others. It represents a natural example of the neuroplasticity of motion adaptation. However, the localization of where that motion adaptation occurs is unknown. Our goal was to localize metabolic and functional connectivity changes associated with persistent MdDS. METHODS: Twenty subjects with MdDS lasting a median duration of 17.5 months were compared to 20 normal controls with (18F FDG PET and resting state fMRI. Resting state metabolism and functional connectivity were calculated using age, grey matter volume, and mood and anxiety scores as nuisance covariates. RESULTS: MdDS subjects showed increased metabolism in the left entorhinal cortex and amygdala (z>3.3. Areas of relative hypometabolism included the left superior medial gyrus, left middle frontal gyrus, right amygdala, right insula, and clusters in the left superior, middle, and inferior temporal gyri. MdDS subjects showed increased connectivity between the entorhinal cortex/amygdala cluster and posterior visual and vestibular processing areas including middle temporal gyrus, motion sensitive area MT/V5, superior parietal lobule, and primary visual cortex, while showing decreased connectivity to multiple prefrontal areas. CONCLUSION: These data show an association between resting state metabolic activity and functional connectivity between the entorhinal cortex and amygdala in a human disorder of abnormal motion perception. We propose a model for how these biological substrates can allow a limited period of motion exposure to lead

  12. Sexual selection predicts advancement of avian spring migration in response to climate change

    DEFF Research Database (Denmark)

    Spottiswoode, Claire N; Tøttrup, Anders P; Coppack, Timothy

    2006-01-01

    Global warming has led to earlier spring arrival of migratory birds, but the extent of this advancement varies greatly among species, and it remains uncertain to what degree these changes are phenotypically plastic responses or microevolutionary adaptations to changing environmental conditions. We...... with stronger female choice. We test this hypothesis comparatively by investigating the degree of long-term change in spring passage at two ringing stations in northern Europe in relation to a synthetic estimate of the strength of female choice, composed of degree of extra-pair paternity, relative testes size...... in the timing of first-arriving individuals, suggesting that selection has not only acted on protandrous males. These results suggest that sexual selection may have an impact on the responses of organisms to climate change, and knowledge of a species' mating system might help to inform attempts at predicting...

  13. A Regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data

    Directory of Open Access Journals (Sweden)

    Ruzzo Walter L

    2006-03-01

    Full Text Available Abstract Background As a variety of functional genomic and proteomic techniques become available, there is an increasing need for functional analysis methodologies that integrate heterogeneous data sources. Methods In this paper, we address this issue by proposing a general framework for gene function prediction based on the k-nearest-neighbor (KNN algorithm. The choice of KNN is motivated by its simplicity, flexibility to incorporate different data types and adaptability to irregular feature spaces. A weakness of traditional KNN methods, especially when handling heterogeneous data, is that performance is subject to the often ad hoc choice of similarity metric. To address this weakness, we apply regression methods to infer a similarity metric as a weighted combination of a set of base similarity measures, which helps to locate the neighbors that are most likely to be in the same class as the target gene. We also suggest a novel voting scheme to generate confidence scores that estimate the accuracy of predictions. The method gracefully extends to multi-way classification problems. Results We apply this technique to gene function prediction according to three well-known Escherichia coli classification schemes suggested by biologists, using information derived from microarray and genome sequencing data. We demonstrate that our algorithm dramatically outperforms the naive KNN methods and is competitive with support vector machine (SVM algorithms for integrating heterogenous data. We also show that by combining different data sources, prediction accuracy can improve significantly. Conclusion Our extension of KNN with automatic feature weighting, multi-class prediction, and probabilistic inference, enhance prediction accuracy significantly while remaining efficient, intuitive and flexible. This general framework can also be applied to similar classification problems involving heterogeneous datasets.

  14. Location and Pressures Change Prediction of Bromo Volcano Magma Chamber Using Inversion Scheme

    Science.gov (United States)

    Kumalasari, Ratih; Srigutomo, Wahyu

    2016-08-01

    Bromo volcano is one of active volcanoes in Indonesia. It has erupted at least 50 times since 1775 and has been monitored by Global Positioning System (GPS) since 1989. We applied the Levenberg-Marquardt inversion scheme to estimate the physical parameters contributing to the surface deformation. Physical parameters obtained by the inversion scheme such as magma chamber location and volume change are useful in monitoring and predicting the activity of Bromo volcano. From our calculation it is revealed that the depth of the magma chamber d = 6307.6 m, radius of magma chamber α = 1098.6 m and pressure change ΔP ≈ 1.0 MPa.

  15. The predictive skill of species distribution models for plankton in a changing climate

    DEFF Research Database (Denmark)

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla;

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change....... Plankton may be particularly challenging to model, due to its short life span and the dispersive effects of constant water movements on all spatial scales, however there are few other studies against which to compare these results. We conclude that rigorous model validation, including comparison against...

  16. Predicting short-term weight loss using four leading health behavior change theories

    Directory of Open Access Journals (Sweden)

    Barata José T

    2007-04-01

    Full Text Available Abstract Background This study was conceived to analyze how exercise and weight management psychosocial variables, derived from several health behavior change theories, predict weight change in a short-term intervention. The theories under analysis were the Social Cognitive Theory, the Transtheoretical Model, the Theory of Planned Behavior, and Self-Determination Theory. Methods Subjects were 142 overweight and obese women (BMI = 30.2 ± 3.7 kg/m2; age = 38.3 ± 5.8y, participating in a 16-week University-based weight control program. Body weight and a comprehensive psychometric battery were assessed at baseline and at program's end. Results Weight decreased significantly (-3.6 ± 3.4%, p Conclusion The present models were able to predict 20–30% of variance in short-term weight loss and changes in weight management self-efficacy accounted for a large share of the predictive power. As expected from previous studies, exercise variables were only moderately associated with short-term outcomes; they are expected to play a larger explanatory role in longer-term results.

  17. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China

    Directory of Open Access Journals (Sweden)

    Huiran Han

    2015-04-01

    Full Text Available Land use and land cover (LULC models are essential for analyzing LULC change and predicting land use requirements and are valuable for guiding reasonable land use planning and management. However, each LULC model has its own advantages and constraints. In this paper, we explore the characteristics of LULC change and simulate future land use demand by combining a CLUE-S model with a Markov model to deal with some shortcomings of existing LULC models. Using Beijing as a case study, we describe the related driving factors from land-adaptive variables, regional spatial variables and socio-economic variables and then simulate future land use scenarios from 2010 to 2020, which include a development scenario (natural development and rapid development and protection scenarios (ecological and cultivated land protection. The results indicate good consistency between predicted results and actual land use situations according to a Kappa statistic. The conversion of cultivated land to urban built-up land will form the primary features of LULC change in the future. The prediction for land use demand shows the differences under different scenarios. At higher elevations, the geographical environment limits the expansion of urban built-up land, but the conversion of cultivated land to built-up land in mountainous areas will be more prevalent by 2020; Beijing, however, still faces the most pressure in terms of ecological and cultivated land protection.

  18. Less-structured time in children’s daily lives predicts self-directed executive functioning

    Directory of Open Access Journals (Sweden)

    Jane Elizabeth Barker

    2014-06-01

    Full Text Available Executive functions in childhood predict important life outcomes. Thus, there is great interest in attempts to improve executive functions early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children’s externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children’s experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6-7 year-old children’s daily, annual, and typical schedules. We categorized children’s activities as structured or less-structured based on categorization schemes from prior studies on child leisure time use. We assessed children’s self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time and specific (time use did not predict externally-driven executive functioning. We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental

  19. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Science.gov (United States)

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, Plinear regression modeling, R(2) = 0.598, P<0.0001). Logarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  20. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Directory of Open Access Journals (Sweden)

    Makoto Suzuki

    Full Text Available Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2 = 0.676, P<0.0001; linear regression modeling, R(2 = 0.598, P<0.0001. Logarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  1. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  2. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  3. Changes in household composition as determinant of changes in functional ability among old men and women

    DEFF Research Database (Denmark)

    Avlund, Kirsten; Due, Pernille; Holstein, Bjørn Evald

    2002-01-01

    /21% deteriorated, 3/6% improved, and 14/14% had sustained poor function. Among the women in need of help at age 75, those who lived alone/became alone had a higher risk of sustained need for help from age 75 to 80 compared to women who lived with others [adjusted OR=4.0 (1.3-12.2/4.4 (0.7-26.9)]. This was not seen...... in functional ability are described as 1) sustained good, 2) decreased, 3) improved, and 4) sustained poor, and changes in household composition as 1) sustained living alone, 2) from living with others to living alone, and 3) sustained living with others. Number of chronic diseases and home help were included...

  4. Estimation of accuracies and expected genetic change from selection for selection indexes that use multiple-trait predictions of breeding values.

    Science.gov (United States)

    Barwick, S A; Tier, B; Swan, A A; Henzell, A L

    2013-10-01

    Procedures are described for estimating selection index accuracies for individual animals and expected genetic change from selection for the general case where indexes of EBVs predict an aggregate breeding objective of traits that may or may not have been measured. Index accuracies for the breeding objective are shown to take an important general form, being able to be expressed as the product of the accuracy of the index function of true breeding values and the accuracy with which that function predicts the breeding objective. When the accuracies of the individual EBVs of the index are known, prediction error variances (PEVs) and covariances (PECs) for the EBVs within animal are able to be well approximated, and index accuracies and expected genetic change from selection estimated with high accuracy. The procedures are suited to routine use in estimating index accuracies in genetic evaluation, and for providing important information, without additional modelling, on the directions in which a population will move under selection.

  5. Longitudinal changes of cardiac structure and function in CKD (CASCADE study).

    Science.gov (United States)

    Cai, Qi-Zhe; Lu, Xiu-Zhang; Lu, Ye; Wang, Angela Yee-Moon

    2014-07-01

    Little is known regarding the natural longitudinal changes in cardiac structure and function in CKD. We hypothesized that baseline CKD stage is associated with progressive worsening in cardiac structure and function. We conducted a prospective longitudinal study, recruiting 300 patients with stages 3-5 CKD from a major regional tertiary center and university teaching hospital in Hong Kong. Baseline CKD stages were studied in relation to natural longitudinal changes in echocardiographic and tissue Doppler imaging-derived parameters. Over 1 year, the prevalence of left ventricular (LV) hypertrophy increased from 40.3% to 48.9%, median left atrial volume index increased 4.8 (interquartile range [IQR], 2.1, 7.7) ml/m(2) (Pcardiac structure and function and predicted greater longitudinal progression in LV mass index (odds ratio [OR], 3.02; 95% confidence interval [95% CI], 1.39 to 6.58), volume index (OR, 2.58; 95% CI, 1.18 to 5.62), and left atrial volume index (OR, 2.61; 95% CI, 1.20 to 5.69) and worse diastolic dysfunction grade (OR, 3.17; 95% CI, 1.16 to 8.69) compared with stage 3a in the fully adjusted analysis. In conclusion, more advanced CKD at baseline may be associated with larger longitudinal increases in LV mass and volume and greater deterioration in diastolic function.

  6. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.

    Science.gov (United States)

    Kumar, Prateek; Henikoff, Steven; Ng, Pauline C

    2009-01-01

    The effect of genetic mutation on phenotype is of significant interest in genetics. The type of genetic mutation that causes a single amino acid substitution (AAS) in a protein sequence is called a non-synonymous single nucleotide polymorphism (nsSNP). An nsSNP could potentially affect the function of the protein, subsequently altering the carrier's phenotype. This protocol describes the use of the 'Sorting Tolerant From Intolerant' (SIFT) algorithm in predicting whether an AAS affects protein function. To assess the effect of a substitution, SIFT assumes that important positions in a protein sequence have been conserved throughout evolution and therefore substitutions at these positions may affect protein function. Thus, by using sequence homology, SIFT predicts the effects of all possible substitutions at each position in the protein sequence. The protocol typically takes 5-20 min, depending on the input. SIFT is available as an online tool (http://sift.jcvi.org).

  7. Extracting the Sivers function from polarized SIDIS data and making predictions

    CERN Document Server

    Anselmino, M; D'Alesio, U; Kotzinian, A; Murgia, F; Prokudin, A

    2005-01-01

    The most recent data on the weighted transverse single spin asymmetry $A_{UT}^{\\sin(\\phi_h-\\phi_S)}$ from HERMES and COMPASS collaborations are analysed within LO parton model with unintegrated parton distribution and fragmentation functions; all transverse motions are taken into account, with exact kinematics, in the elementary interactions. The overall quality of the data is such that, for the first time, a rather well constrained extraction of the Sivers function for $u$ and $d$ quarks is possible and is performed. Comparisons with models are made. Based on the extracted Sivers functions, predictions for $A_{UT}^{\\sin(\\phi_h-\\phi_S)}$ asymmetries at JLab are given; suggestions for further measurements at COMPASS, with a transversely polarized hydrogen target and selecting favourable kinematical ranges, are discussed. Predictions are also presented for Single Spin Asymmetries (SSA) in Drell-Yan processes at RHIC and GSI.

  8. Saccadic gain adaptation is predicted by the statistics of natural fluctuations in oculomotor function

    Directory of Open Access Journals (Sweden)

    Mark V Albert

    2012-12-01

    Full Text Available Due to multiple factors such as fatigue, muscle strengthening, and neural plasticity, the responsiveness of the motor apparatus to neural commands changes over time. To enable precise movements the nervous system must adapt to compensate for these changes. Recent models of motor adaptation derive from assumptions about the way the motor apparatus changes. Characterizing these changes is difficult because motor adaptation happens at the same time, masking most of the effects of ongoing changes. Here, we analyze eye movements of monkeys with lesions to the posterior cerebellar vermis that impair adaptation. Their fluctuations better reveal the underlying changes of the motor system over time. When these measured, unadapted changes are used to derive optimal motor adaptation rules the prediction precision significantly improves. Among three models that similarly fit single-day adaptation results, the model that also matches the temporal correlations of the nonadapting saccades most accurately predicts multiple day adaptation. Saccadic gain adaptation is well matched to the natural statistics of fluctuations of the oculomotor plant.

  9. Architectural analysis and predicted functional capability of the human latissimus dorsi muscle.

    Science.gov (United States)

    Gerling, Michael E; Brown, Stephen H M

    2013-08-01

    The latissimus dorsi is primarily considered a muscle with actions at the shoulder, despite its widespread attachments at the spine. There is some dispute regarding the potential contribution of this muscle to lumbar spine function. The architectural design of a muscle is one of the most accurate predictors of muscle function; however, detailed architectural data on the latissimus dorsi muscle are limited. Therefore, the aim of this study was to quantify the architectural properties of the latissimus dorsi muscle and model mechanical function in light of these new data. One latissimus dorsi muscle was removed from each of 12 human cadavers, separated into regions, and micro-dissected for quantification of fascicle length, sarcomere length, and physiological cross-sectional area. From these data, sarcomere length operating ranges were modelled to determine the force-length characteristics of latissimus dorsi across the spine and shoulder ranges of motion. The physiological cross-sectional area of latissimus dorsi was 5.6±0.5 cm2 and normalized fascicle length was 26.4±1.0 cm, indicating that this muscle is designed to produce a moderate amount of force over a large range of lengths. Measured sarcomere length in the post-mortem neutral spine posture was nearly optimal at 2.69±0.06 μm. Across spine range of motion, biomechanical modelling predicted latissimus dorsi acts across both the ascending and descending limbs of the force-length curve during lateral bend, and primarily at or near the plateau region (where maximum force generation is possible) during flexion/extension and axial twist. Across shoulder range of motion, latissimus dorsi acts primarily on the plateau region and descending limbs of the force length curve during both flexion/extension and abduction/adduction. These data provide novel insights into the ability of the latissimus dorsi muscle to generate force and change length throughout the spine and shoulder ranges of motion. In addition, these

  10. Soil Erosion Prediction Based on Land Use Changes (A Case in Neka Watershed

    Directory of Open Access Journals (Sweden)

    Karim Solaimani

    2009-01-01

    Full Text Available Problem statement: Land use change has transformed a vast part of the natural landscapes of the developing world for the last 50 years. Land is a fundamental factor of production and though much of the course of human history, it has been tightly coupled with economic growth. Soil erosion by water is one of the most important land degradation processes in the Mediterranean basins. The unplanned land use change within and near a fast growing agricultural land in Neka River Basin, led to an accelerated erosion of soil in the area. Approach: This study aims to find the relationships between land use pattern, erosion and the sediment yield in the study area. The land use coefficient (Xa has applied in the model of Erosion Potential Method (EPM to forecast the effect of the land type to reduce the erosion. Land cover and land use change was projected for the next decade using topography, geology, land use maps and remote sensing data of the study area. Results: The results of this study indicated that the total sediment yield of the study area has notably decreased to 89.24% after an appropriate land use/cover alteration. The estimated special erosion for the Southern Neka Basin is about 144465.1 m3 km-2 where after management policy is predicted 15542.9 m3 km-2 year?1, therefore the total difference for the study area has estimated about 128922.2 m3 km-2 year-1. Conclusion: The land use changes assessed among the different land cover classes. It is important to mention that conducting of the present study a very severe land cover changes taken place as the result of agricultural land development. These changes in land cover led to the forest degradation of the study area. Relationship between land-use changes and agricultural growth offered a more robust prediction of soil erosion in Neka watershed.

  11. Less-structured time in children's daily lives predicts self-directed executive functioning.

    Science.gov (United States)

    Barker, Jane E; Semenov, Andrei D; Michaelson, Laura; Provan, Lindsay S; Snyder, Hannah R; Munakata, Yuko

    2014-01-01

    Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6-7 year-old children's daily, annual, and typical schedules. We categorized children's activities as "structured" or "less-structured" based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up.

  12. MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Ghosh, Dip; Mitra, Ramkrishna; Zhao, Zhongming

    2015-01-01

    MicroRNA (miRNA) regulates gene expression by binding to specific sites in the 3'untranslated regions of its target genes. Machine learning based miRNA target prediction algorithms first extract a set of features from potential binding sites (PBSs) in the mRNA and then train a classifier to distinguish targets from non-targets. However, they do not consider whether the PBSs are functional or not, and consequently result in high false positive rates. This substantially affects the follow up functional validation by experiments. We present a novel machine learning based approach, MBSTAR (Multiple instance learning of Binding Sites of miRNA TARgets), for accurate prediction of true or functional miRNA binding sites. Multiple instance learning framework is adopted to handle the lack of information about the actual binding sites in the target mRNAs. Biologically validated 9531 interacting and 973 non-interacting miRNA-mRNA pairs are identified from Tarbase 6.0 and confirmed with PAR-CLIP dataset. It is found that MBSTAR achieves the highest number of binding sites overlapping with PAR-CLIP with maximum F-Score of 0.337. Compared to the other methods, MBSTAR also predicts target mRNAs with highest accuracy. The tool and genome wide predictions are available at http://www.isical.ac.in/~bioinfo_miu/MBStar30.htm.

  13. Protein Function Prediction Based on Active Semi-sup ervised Learning

    Institute of Scientific and Technical Information of China (English)

    WANG Xuesong,CHENG Yuhu; LI Lijing

    2016-01-01

    In our study, the active learning and semi-supervised learning methods are comprehensively used for label delivery of proteins with known functions in Protein-protein interaction (PPI) network so as to predict the func-tions of unknown proteins. Because the real PPI network is generally observed with overlapping protein nodes with multiple functions, the mislabeling of overlapping protein may result in accumulation of prediction errors. For this reason, prior to executing the label delivery process of semi-supervised learning, the adjacency matrix is used to detect overlapping proteins. As the topological structure description of interactive relation between proteins, PPI network is observed with party hub protein nodes that play an important role, in co-expression with its neighborhood. Therefore, to reduce the manual labeling cost, party hub proteins most beneficial for improvement of prediction ac-curacy are selected for class labeling and the labeled party hub proteins are added into the labeled sample set for semi-supervised learning later. As the experimental results of real yeast PPI network show, the proposed algorithm can achieve high prediction accuracy with few labeled samples.

  14. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change.

    Science.gov (United States)

    Valtonen, Anu; Ayres, Matthew P; Roininen, Heikki; Pöyry, Juha; Leinonen, Reima

    2011-01-01

    Ecological systems have naturally high interannual variance in phenology. Component species have presumably evolved to maintain appropriate phenologies under historical climates, but cases of inappropriate phenology can be expected with climate change. Understanding controls on phenology permits predictions of ecological responses to climate change. We studied phenological control systems in Lepidoptera by analyzing flight times recorded at a network of sites in Finland. We evaluated the strength and form of controls from temperature and photoperiod, and tested for geographic variation within species. Temperature controls on phenology were evident in 51% of 112 study species and for a third of those thermal controls appear to be modified by photoperiodic cues. For 24% of the total, photoperiod by itself emerged as the most likely control system. Species with thermal control alone should be most immediately responsive in phenology to climate warming, but variably so depending upon the minimum temperature at which appreciable development occurs and the thermal responsiveness of development rate. Photoperiodic modification of thermal controls constrains phenotypic responses in phenologies to climate change, but can evolve to permit local adaptation. Our results suggest that climate change will alter the phenological structure of the Finnish Lepidoptera community in ways that are predictable with knowledge of the proximate physiological controls. Understanding how phenological controls in Lepidoptera compare to that of their host plants and enemies could permit general inferences regarding climatic effects on mid- to high-latitude ecosystems.

  15. Personality traits and individual differences predict threat-induced changes in postural control.

    Science.gov (United States)

    Zaback, Martin; Cleworth, Taylor W; Carpenter, Mark G; Adkin, Allan L

    2015-04-01

    This study explored whether specific personality traits and individual differences could predict changes in postural control when presented with a height-induced postural threat. Eighty-two healthy young adults completed questionnaires to assess trait anxiety, trait movement reinvestment (conscious motor processing, movement self-consciousness), physical risk-taking, and previous experience with height-related activities. Tests of static (quiet standing) and anticipatory (rise to toes) postural control were completed under low and high postural threat conditions. Personality traits and individual differences significantly predicted height-induced changes in static, but not anticipatory postural control. Individuals less prone to taking physical risks were more likely to lean further away from the platform edge and sway at higher frequencies and smaller amplitudes. Individuals more prone to conscious motor processing were more likely to lean further away from the platform edge and sway at larger amplitudes. Individuals more self-conscious about their movement appearance were more likely to sway at smaller amplitudes. Evidence is also provided that relationships between physical risk-taking and changes in static postural control are mediated through changes in fear of falling and physiological arousal. Results from this study may have indirect implications for balance assessment and treatment; however, further work exploring these factors in patient populations is necessary.

  16. Evaluation of a patient-specific cost function to predict the influence of foot path on the knee adduction torque during gait.

    Science.gov (United States)

    Fregly, Benjamin J; Reinbolt, Jeffery A; Chmielewski, Terese L

    2008-02-01

    A large external knee adduction torque during gait has been correlated with the progression of knee osteoarthritis (OA). Though foot path changes (e.g. toeing out) can reduce the adduction torque, no method currently exists to predict whether an optimal foot path exists for a specific patient. This study evaluates a patient-specific optimization cost function to predict how foot path changes influence both adduction torque peaks. Video motion and ground reaction data were collected from a patient with knee OA performing normal, toe out, and wide stance gait. Joint and inertial parameters in a dynamic, 27 degree-of-freedom, full-body gait model were calibrated to the patient's normal gait data. The model was then used in gait optimizations that predicted how the patient's adduction torque peaks would change due to changes in foot path. The cost function tracked the patient's normal gait data using weight factors calibrated to toe out gait and tested using wide stance gait. For both gait motions, the same cost function weights predicted the change in both adduction torque peaks to within 7% error. With further development, this approach may eventually permit the design of patient-specific rehabilitation procedures such as an optimal foot path for patients with knee OA.

  17. Does Perceived Racial Discrimination Predict Changes in Psychological Distress and Substance Use over Time? An Examination among Black Emerging Adults

    Science.gov (United States)

    Hurd, Noelle M.; Varner, Fatima A.; Caldwell, Cleopatra H.; Zimmerman, Marc A.

    2014-01-01

    We assessed whether perceived discrimination predicted changes in psychological distress and substance use over time and whether psychological distress and substance use predicted change in perceived discrimination over time. We also assessed whether associations between these constructs varied by gender. Our sample included 607 Black emerging…

  18. Music-induced changes in functional cerebral asymmetries.

    Science.gov (United States)

    Hausmann, Markus; Hodgetts, Sophie; Eerola, Tuomas

    2016-04-01

    After decades of research, it remains unclear whether emotion lateralization occurs because one hemisphere is dominant for processing the emotional content of the stimuli, or whether emotional stimuli activate lateralised networks associated with the subjective emotional experience. By using emotion-induction procedures, we investigated the effect of listening to happy and sad music on three well-established lateralization tasks. In a prestudy, Mozart's piano sonata (K. 448) and Beethoven's Moonlight Sonata were rated as the most happy and sad excerpts, respectively. Participants listened to either one emotional excerpt, or sat in silence before completing an emotional chimeric faces task (Experiment 1), visual line bisection task (Experiment 2) and a dichotic listening task (Experiment 3 and 4). Listening to happy music resulted in a reduced right hemispheric bias in facial emotion recognition (Experiment 1) and visuospatial attention (Experiment 2) and increased left hemispheric bias in language lateralization (Experiments 3 and 4). Although Experiments 1-3 revealed an increased positive emotional state after listening to happy music, mediation analyses revealed that the effect on hemispheric asymmetries was not mediated by music-induced emotional changes. The direct effect of music listening on lateralization was investigated in Experiment 4 in which tempo of the happy excerpt was manipulated by controlling for other acoustic features. However, the results of Experiment 4 made it rather unlikely that tempo is the critical cue accounting for the effects. We conclude that listening to music can affect functional cerebral asymmetries in well-established emotional and cognitive laterality tasks, independent of music-induced changes in the emotion state.

  19. Bilirubin binding with liver cystatin induced structural and functional changes.

    Science.gov (United States)

    Mustafa, Mir Faisal; Bano, Bilqees

    2014-05-01

    Cysteine proteinases and their inhibitors play a significant role in the proteolytic environment of the cells. Inhibitors of cysteine proteinases regulate the activity of these enzymes helping in checking the degdration activity of cathepsins. The bilirubin secreated by liver cells can bind to cystatin present in the liver resulting in its functional inactivation, which may further lead to the increase in cathepsins level causing liver cirrhosis. In case of some pathophysiological conditions excess bilirubin gets accumulated e.g. in presence of Fasciola hepatica (liver fluke) in mammals and humans, leading to liver cirrhosis and possibly jaundice or normal blockade of bile duct causing increased level of bilirubin in blood. Protease-cystatin imbalance causes disease progression. In the present study, Bilirubin (BR) and liver cystatin interaction was studied to explore the cystatin inactivation and structural alteration. The binding interaction was studied by UV-absorption, FT-IR and fluorescence spectroscopy. The quenching of protein fluorescence confirmed the binding of BR with buffalo liver cystatin (BLC). Stern-Volmer analysis of BR-BLC system indicates the presence of static component in the quenching mechanism and the number of binding sites to be close to 1. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR-cystatin complex formation. FTIR analysis of BR-Cystatin complex revealed change in the secondary structure due to perturbation in the microenvironment further confirmed by the decreased caseinolytic activity of BLC against papain. Fluorescence measurements also revealed quenching of fluorescence and shift in peak at different time intervals and at varying pH values. Photo-illumination of BR-cystatin complex causes change in the surrounding environment of liver cystatin as indicated by red-shift. The binding constant for BR-BLC complex was found to be 9.279 × 10(4) M(-1). The cystatin binding with

  20. Functional changes in the human auditory cortex in ageing.

    Directory of Open Access Journals (Sweden)

    Oliver Profant

    Full Text Available Hearing loss, presbycusis, is one of the most common sensory declines in the ageing population. Presbycusis is characterised by a deterioration in the processing of temporal sound features as well as a decline in speech perception, thus indicating a possible central component. With the aim to explore the central component of presbycusis, we studied the function of the auditory cortex by functional MRI in two groups of elderly subjects (>65 years and compared the results with young subjects (changes at the level of the auditory cortex. The fMRI showed only minimal activation in response to the 8 kHz stimulation, despite the fact that all subjects heard the stimulus. Both elderly groups showed greater activation in response to acoustical stimuli in the temporal lobes in comparison with young subjects. In addition, activation in the right temporal lobe was more expressed than in the left temporal lobe in both elderly groups, whereas in the young control subjects (YC leftward lateralization was present. No statistically significant differences in activation of the auditory cortex were found between the MP and EP groups. The greater extent of cortical activation in elderly subjects in comparison with young subjects, with an asymmetry towards the right side, may serve as a compensatory mechanism for the impaired processing of auditory information appearing as a consequence of ageing.

  1. Social justice in education: how the function of selection in educational institutions predicts support for (non)egalitarian assessment practices.

    Science.gov (United States)

    Autin, Frédérique; Batruch, Anatolia; Butera, Fabrizio

    2015-01-01

    Educational institutions are considered a keystone for the establishment of a meritocratic society. They supposedly serve two functions: an educational function that promotes learning for all, and a selection function that sorts individuals into different programs, and ultimately social positions, based on individual merit. We study how the function of selection relates to support for assessment practices known to harm vs. benefit lower status students, through the perceived justice principles underlying these practices. We study two assessment practices: normative assessment-focused on ranking and social comparison, known to hinder the success of lower status students-and formative assessment-focused on learning and improvement, known to benefit lower status students. Normative assessment is usually perceived as relying on an equity principle, with rewards being allocated based on merit and should thus appear as positively associated with the function of selection. Formative assessment is usually perceived as relying on corrective justice that aims to ensure equality of outcomes by considering students' needs, which makes it less suitable for the function of selection. A questionnaire measuring these constructs was administered to university students. Results showed that believing that education is intended to select the best students positively predicts support for normative assessment, through increased perception of its reliance on equity, and negatively predicts support for formative assessment, through reduced perception of its ability to establish corrective justice. This study suggests that the belief in the function of selection as inherent to educational institutions can contribute to the reproduction of social inequalities by preventing change from assessment practices known to disadvantage lower-status student, namely normative assessment, to more favorable practices, namely formative assessment, and by promoting matching beliefs in justice principles.

  2. Predicting the impact of climate change on threatened species in UK waters.

    Directory of Open Access Journals (Sweden)

    Miranda C Jones

    Full Text Available Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis and angelshark (Squatina squatina.

  3. Predicting objective function weights from patient anatomy in prostate IMRT treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoo, E-mail: taewoo.lee@utoronto.ca; Hammad, Muhannad [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S 3G8 (Canada); Chan, Timothy C. Y. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S 3G8 (Canada); Techna Institute for the Advancement of Technology for Health, 124-100 College Street, Toronto, Ontario M5G 1P5 (Canada); Craig, Tim [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148-150 College Street, Toronto, Ontario M5S 3S2 (Canada); Sharpe, Michael B. [Radiation Medicine Program, UHN Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5T 2M9 (Canada); Department of Radiation Oncology, University of Toronto, 148-150 College Street, Toronto, Ontario M5S 3S2 (Canada); Techna Institute for the Advancement of Technology for Health, 124-100 College Street Toronto, Ontario M5G 1P5 (Canada)

    2013-12-15

    Purpose: Intensity-modulated radiation therapy (IMRT) treatment planning typically combines multiple criteria into a single objective function by taking a weighted sum. The authors propose a statistical model that predicts objective function weights from patient anatomy for prostate IMRT treatment planning. This study provides a proof of concept for geometry-driven weight determination. Methods: A previously developed inverse optimization method (IOM) was used to generate optimal objective function weights for 24 patients using their historical treatment plans (i.e., dose distributions). These IOM weights were around 1% for each of the femoral heads, while bladder and rectum weights varied greatly between patients. A regression model was developed to predict a patient's rectum weight using the ratio of the overlap volume of the rectum and bladder with the planning target volume at a 1 cm expansion as the independent variable. The femoral head weights were fixed to 1% each and the bladder weight was calculated as one minus the rectum and femoral head weights. The model was validated using leave-one-out cross validation. Objective values and dose distributions generated through inverse planning using the predicted weights were compared to those generated using the original IOM weights, as well as an average of the IOM weights across all patients. Results: The IOM weight vectors were on average six times closer to the predicted weight vectors than to the average weight vector, usingl{sub 2} distance. Likewise, the bladder and rectum objective values achieved by the predicted weights were more similar to the objective values achieved by the IOM weights. The difference in objective value performance between the predicted and average weights was statistically significant according to a one-sided sign test. For all patients, the difference in rectum V54.3 Gy, rectum V70.0 Gy, bladder V54.3 Gy, and bladder V70.0 Gy values between the dose distributions generated by

  4. Prediction of Protein-protein Interactions on the Basis of Evolutionary Conservation of Protein Functions

    Directory of Open Access Journals (Sweden)

    Ekaterina Kotelnikova

    2007-01-01

    Full Text Available Motivation: Although a great deal of progress is being made in the development of fast and reliable experimental techniques to extract genome-wide networks of protein-protein and protein-DNA interactions, the sequencing of new genomes proceeds at an even faster rate. That is why there is a considerable need for reliable methods of in-silico prediction of protein interaction based solely on sequence similarity information and known interactions from well-studied organisms. This problem can be solved if a dependency exists between sequence similarity and the conservation of the proteins’ functions.Results: In this paper, we introduce a novel probabilistic method for prediction of protein-protein interactions using a new empirical probabilistic formula describing the loss of interactions between homologous proteins during the course of evolution. This formula describes an evolutional process quite similar to the process of the Earth’s population growth. In addition, our method favors predictions confi rmed by several interacting pairs over predictions coming from a single interacting pair. Our approach is useful in working with “noisy” data such as those coming from high-throughput experiments. We have generated predictions for fi ve “model” organisms: H. sapiens, D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae and evaluated the quality of these predictions.

  5. Filaggrin genotype in ichthyosis vulgaris predicts abnormalities in epidermal structure and function.

    Science.gov (United States)

    Gruber, Robert; Elias, Peter M; Crumrine, Debra; Lin, Tzu-Kai; Brandner, Johanna M; Hachem, Jean-Pierre; Presland, Richard B; Fleckman, Philip; Janecke, Andreas R; Sandilands, Aileen; McLean, W H Irwin; Fritsch, Peter O; Mildner, Michael; Tschachler, Erwin; Schmuth, Matthias

    2011-05-01

    Although it is widely accepted that filaggrin (FLG) deficiency contributes to an abnormal barrier function in ichthyosis vulgaris and atopic dermatitis, the pathomechanism of how FLG deficiency provokes a barrier abnormality in humans is unknown. We report here that the presence of FLG mutations in Caucasians predicts dose-dependent alterations in epidermal permeability barrier function. Although FLG is an intracellular protein, the barrier abnormality occurred solely via a paracellular route in affected stratum corneum. Abnormal barrier function correlated with alterations in keratin filament organization (perinuclear retraction), impaired loading of lamellar body contents, followed by nonuniform extracellular distribution of secreted organelle contents, and abnormalities in lamellar bilayer architecture. In addition, we observed reductions in corneodesmosome density and tight junction protein expression. Thus, FLG deficiency provokes alterations in keratinocyte architecture that influence epidermal functions localizing to the extracellular matrix. These results clarify how FLG mutations impair epidermal permeability barrier function.

  6. Integration of relational and hierarchical network information for protein function prediction

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoyu

    2008-08-01

    Full Text Available Abstract Background In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions. Results We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing. Conclusion A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased

  7. Can tail damage outbreaks in the pig be predicted by behavioural change?

    DEFF Research Database (Denmark)

    Larsen, Mona Lilian Vestbjerg; Andersen, Heidi Mai-Lis; Pedersen, Lene Juul

    2016-01-01

    damage outbreak. Behaviours found to change prior to an outbreak include increased activity level, increased performance of enrichment object manipulation, and a changed proportion of tail posture with more tails between the legs. Monitoring these types of behaviours is also discussed for the purpose...... preventive methods. One strategy is the surveillance of the pigs' behaviour for known preceding indicators of tail damage, which makes it possible to predict a tail damage outbreak and prevent it in proper time. This review discusses the existing literature on behavioural changes observed prior to a tail...... of developing an automatic warning system for tail damage outbreaks, with activity level showing promising results for being monitored automatically. Encouraging results have been found so far for the development of an automatic warning system; however, there is a need for further investigation and development...

  8. Prediction of changes in groundwater dynamics caused by relocation of river embankments

    Directory of Open Access Journals (Sweden)

    U. Mohrlok

    2003-01-01

    Full Text Available Ecosystems in river valleys are affected mainly by the hydraulic conditions in wetlands including groundwater dynamics. The quantitative prediction of changes in groundwater dynamics caused by river embankment relocation requires numerical modelling using a physically-based approach. Groundwater recharge from the intermittently flooded river plains was determined by a leakage approach considering soil hydraulic properties. For the study area in the Elbe river valley north of Magdeburg, Germany, a calibrated groundwater flow model was established and the groundwater dynamics for the present situation as well as for the case of embankment relocation were simulated over a 14-year time period. Changes in groundwater depth derived from simulated groundwater levels occurred only during flood periods. By analysing the spatial distributions of changes in statistical parameters, those areas with significant impact on the ecosystems by embankment relocation can be determined. Keywords: groundwater dynamics,groundwater recharge, flood plains, soil hydraulic properties, numerical modelling, river embankment relocation

  9. Pre-operative Tei Index does not predict left ventricular function immediately after mitral valve repair

    Directory of Open Access Journals (Sweden)

    Chirojit Mukherjee

    2012-01-01

    Full Text Available Echocardiographic assessment of systolic left ventricular (LV function in patients with severe mitral regurgitation (MR undergoing mitral valve (MV repair can be challenging because the measurement of ejection fraction (EF or fractional area change (FAC in pathological states is of questionable value. The aim of our study was to evaluate the usefulness of the pre-operative Tei Index in predicting left ventricular EF or FAC immediately after MV repair. One hundred and thirty patients undergoing MV repair with sinus rhythm pre- and post-operatively were enrolled in this prospective study. Twenty-six patients were excluded due to absence of sinus rhythm post-operatively. Standard transesophageal examination(IE 33,Philips,Netherlands was performed before and after cardiopulmonary bypass according to the guidelines of the ASE/SCA. FAC was determined in the transgastric midpapillary short-axis view. LV EF was measured in the midesophageal four- and two-chamber view. For calculation of the Tei Index, the deep transgastric and the midesophageal four-chamber view were used. Statistical analysis was performed with SPSS 17.0. values are expressed as mean with standard deviation. LV FAC and EF decreased significantly after MV repair (FAC: 56±12% vs. 50±14%, P<0.001; EF: 58±11 vs. 50±12Έ P<0.001. The Tei Index decreased from 0.66±0.23 before MV repair to 0.41±0.19 afterwards (P<0.001. No relationship between pre-operative Tei Index and post-operative FAC or post-operative EF were found (FAC: r=−0.061, P=0.554; EF: r=−0.29, P=0.771. Conclusion: Pre-operative Tei Index is not a good predictor for post-operative FAC and EF in patients undergoing MV repair.

  10. The local sub-mm luminosity functions and predictions from Spitzer to Herschel

    CERN Document Server

    Serjeant, S; Serjeant, Stephen; Harrison, Diana

    2004-01-01

    We present new determinations of the local sub-mm luminosity functions, solving the ``sub-mm Olbers' Paradox.'' We also present predictions of source counts and luminosity functions in current and future far-infrared to sub-mm surveys. Using the sub-mm colour temperature relations from the SCUBA Local Universe Galaxy Survey, and the discovery of excess 450 micron excess emission in these galaxies, we interpolate and extrapolate the IRAS detections to make predictions of the SEDs of all 15411 PSC-z galaxies from 50-1300 microns. Despite the long extrapolations we find excellent agreement with (a) the 90 micron luminosity function of Serjeant et al. (2001), (b) the 850 micron luminosity function of Dunne et al. (2000), (c) the mm-wave photometry of Andreani & Franceschini (1996); (d) the asymptotic differential and integral source count predictions at 50-1300 microns by Rowan-Robinson (2001). We find the local 850 micron sub-mm luminosity density converges to (7.3+/-0.2)x10^{19} h_{65} W/Hz/Mpc^3. Remarkabl...

  11. Climate change and peripheral populations: predictions for a relict Mediterranean viper

    Directory of Open Access Journals (Sweden)

    José C. Brito

    2011-06-01

    Full Text Available Ecological niche-based models were developed in peripheral populations of Vipera latastei North Africa to: 1 identify environmental factors related to species occurrence; 2 identify present suitable areas; 3 estimate future areas according to forecasted scenarios of climate change; and 4 quantify habitat suitability changes between present and future climatic scenarios. Field observations were combined with environmental factors to derive an ensemble of predictions of species occurrence. The resulting models were projected to the future North African environmental scenarios. Species occurrence was most related to precipitation variation. Present suitable habitats were fragmented and ranged from coastal to mountain habitats, and the overall fragmented range suggests a relict distribution from wider past ranges. Future projections suggest a progressive decrease in suitable areas. The relationship with precipitation supports the current unsuitability of most North Africa for the species and predicts future increased extinction risk. Monitoring of population trends and full protection of mountain forests are key-targets for long-term conservation of African populations of this viper. Predicted trends may give indications about other peripheral populations of Palearctic vertebrates in North Africa which should be assessed in detail.

  12. Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.

    Science.gov (United States)

    Chavez, Robert S; Heatherton, Todd F

    2017-06-01

    Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.

  13. Risk factors and prediction for functional and chronic inflammatory bowel diseases in infants

    Directory of Open Access Journals (Sweden)

    Marushko RV

    2014-03-01

    Full Text Available Objective — to determine mainly significant risk factors and prediction for development of functional bowel disease and chronic non-ulcerative non-specific colitis in infants. Materials and methods. Retrospective studies were conducted using the method of questioning parents and analysis of medical records of 344 infants in the age from 6 months to 3 years of life, including 134 infants with functional constipation (FC , 64 infants with functional diarrhea (FD and 146 children with chronic non-specific not-ulcerative colitis (CNNC. The control group included 50 healthy children of similar age and gender. In groups of children retrospectively determined the frequency of risk factors. To compare the data between different groups was used analysis of Pearson c2 criteria and relative risks (relative risk, RR with 95% confidence intervals. Prediction for the development of FC, FD and CNNC was applied the method of discriminant function analysis based on the analysis of 51 essential marks. Results. Mathematical analysis of risk factors for bowel diseases allowed to identify the most important of them, in particular, family history of diseases of the digestive system, including bowel disease, complications during pregnancy and at birth disorders, women chronic extragenital diseases, chronic diseases of women characterized by prolonged exposure in the body to opportunistic or pathogenic bacteria, nutritional and feeding disorders, high infection index and history of infectious diseases. Revealed by the discriminant function analysis significant risk factors, represent their important role in the development of functional bowel disorders and chronic non-specific non-ulcerative colitis. Conclusions. Identifying the risk factors for the development and application of prediction algorithm for functional bowel diseases and chronic non-specific non-ulcerative colitis is enable to develop the effective treatment and preventive measures to reduce the

  14. Assessing physiological responses of dune forest functional groups to changing water availability: from Tropics to Mediterranean.

    Science.gov (United States)

    Antunes, Cristina; Lo Cascio, Mauro; Correia, Otília; Vieira, Simone; Cruz Diaz Barradas, Maria; Zunzunegui, Maria; Ramos, Margarida; João Pereira, Maria; Máguas, Cristina

    2014-05-01

    Alterations in water availability are important to vegetation as can produce dramatic changes in plant communities, on physiological performance or survival of plant species. Particularly, groundwater lowering and surface water diversions will affect vulnerable coastal dune forests, ecosystems particularly sensitive to groundwater limitation. Reduction of water tables can prevent the plants from having access to one of their key water sources and inevitably affect groundwater-dependent species. The additional impact of drought due to climatic change on groundwater-dependent ecosystems has become of increasing concern since it aggravates groundwater reduction impacts with consequent uncertainties about how vegetation will respond over the short and long term. Sand dune plant communities encompass a diverse number of species that differ widely in root depth, tolerance to drought and capacity to shift between seasonal varying water sources. Plant functional groups may be affected by water distribution and availability differently. The high ecological diversity of sand dune forests, characterized by sandy soils, well or poorly drained, poor in nutrients and with different levels of salinity, can occur in different climatic regions of the globe. Such is the case of Tropical, Meso-mediterranean and Mediterranean areas, where future climate change is predicted to change water availability. Analyses of the relative natural abundances of stable isotopes of carbon (13C/12C) and oxygen (18O/16O) have been used across a wide range of scales, contributing to our understanding of plant ecology and interactions. This approach can show important temporal and spatial changes in utilization of different water sources by vegetation. Accordingly, the core idea of this work is to evaluate, along a climatic gradient, the responses and capacity of different coastal plant communities to adapt to changing water availability. This large-climatic-scale study, covering Brazil, Portugal and

  15. Astrocytic metabolic and inflammatory changes as a function of age.

    Science.gov (United States)

    Jiang, Tianyi; Cadenas, Enrique

    2014-12-01

    This study examines age-dependent metabolic-inflammatory axis in primary astrocytes isolated from brain cortices of 7-, 13-, and 18-month-old Sprague-Dawley male rats. Astrocytes showed an age-dependent increase in mitochondrial oxidative metabolism respiring on glucose and/or pyruvate substrates; this increase in mitochondrial oxidative metabolism was accompanied by increases in COX3/18SrDNA values, thus suggesting an enhanced mitochondrial biogenesis. Enhanced mitochondrial respiration in astrocytes limits the substrate supply from astrocytes to neurons; this may be viewed as an adaptive mechanism to altered cellular inflammatory-redox environment with age. These metabolic changes were associated with an age-dependent increase in hydrogen peroxide generation (largely ascribed to an enhanced expression of NOX2) and NFκB signaling in the cytosol as well as its translocation to the nucleus. Astrocytes also displayed augmented responses with age to inflammatory cytokines, IL-1β, and TNFα. Activation of NFκB signaling resulted in increased expression of nitric oxide synthase 2 (inducible nitric oxide synthase), leading to elevated nitric oxide production. IL-1β and TNFα treatment stimulated mitochondrial oxidative metabolism and mitochondrial biogenesis in astrocytes. It may be surmised that increased mitochondrial aerobic metabolism and inflammatory responses are interconnected and support the functionality switch of astrocytes, from neurotrophic to neurotoxic with age.

  16. Predicting the impact of alternative splicing on plant MADS domain protein function.

    Directory of Open Access Journals (Sweden)

    Edouard I Severing

    Full Text Available Several genome-wide studies demonstrated that alternative splicing (AS significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1-3 subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP, resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the

  17. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    Science.gov (United States)

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ .

  18. Volumetry may predict early renal function after nephron sparing surgery in solitary kidney patients.

    Science.gov (United States)

    Kuru, Timur H; Zhu, Jie; Popeneciu, Ionel V; Rudhardt, Nora S; Hadaschik, Boris A; Teber, Dogu; Roethke, Matthias; Hohenfellner, Markus; Zeier, Martin; Pahernik, Sascha A

    2014-01-01

    We investigate the impact of the residual kidney volume measured by tumor volumetry on preoperative imaging in predicting post-operative renal function. Nephron sparing surgery (NSS) in renal cell carcinoma (RCC) is the standard treatment for T1 kidney tumors. Resection of kidney tumors in solidary kidneys needs precise preoperative counseling of patients regarding post-operative renal function. Patients planned for renal tumor surgery who underwent prior nephrectomy on the contralateral side were included. We identified 35 patients in our database that underwent NSS in solitary kidneys and met the inclusion criteria. Tumor volumetry was performed on computer tomography (CT) or magnetic resonance imaging (MRI) with the Medical Imaging Interaction Toolkit (MITK). Clinical and pathological data were assessed. Follow-up data included renal function over 3 years. Mean age was 64 ± 8.1 years. Mean tumor volume on imaging was 27.5 ± 48.6 cc. Mean kidney volume was 195.2 ± 62.8 cc and mean residual kidney volume was 173.4 ± 65.3 cc. We found a correlation between renal function (MDRD) and residual kidney volume on imaging 1-week post-surgery (p = 0.038). Mid- and long-term renal function was not associated with residual kidney volume. In conclusion, renal volumetry may predict early renal function after NSS.

  19. Prediction and Assignment of Function for a Divergent N-succinyl Amino Acid Racemase

    Energy Technology Data Exchange (ETDEWEB)

    Song,L.; Kalyanaraman, C.; Fedorov, A.; Fedorov, E.; Glasner, M.; Brown, S.; Imker, H.; Babbitt, P.; Almo, S.; et al.

    2007-01-01

    The protein databases contain many proteins with unknown function. A computational approach for predicting ligand specificity that requires only the sequence of the unknown protein would be valuable for directing experiment-based assignment of function. We focused on a family of unknown proteins in the mechanistically diverse enolase superfamily and used two approaches to assign function: (i) enzymatic assays using libraries of potential substrates, and (ii) in silico docking of the same libraries using a homology model based on the most similar (35% sequence identity) characterized protein. The results matched closely; an experimentally determined structure confirmed the predicted structure of the substrate-liganded complex. We assigned the N-succinyl arginine/lysine racemase function to the family, correcting the annotation (L-Ala-D/L-Glu epimerase) based on the function of the most similar characterized homolog. These studies establish that ligand docking to a homology model can facilitate functional assignment of unknown proteins by restricting the identities of the possible substrates that must be experimentally tested.