WorldWideScience

Sample records for change mitigation option

  1. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  2. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to Chi

  3. Essays on mitigation options

    OpenAIRE

    Peinl, Hannes

    2015-01-01

    Die kumulative Dissertation "Essays on mitigation options" untersucht in drei Artikeln Wälder, Erneuerbare Energien sowie technologische Treibhausgassenken (carbon capture and storage (CCS) als wesentliche Vermeidungsoptionen im Kontext des Klimawandels. Der erste Artikel analysiert im Rahmen eines forstökonomischen, dynamischen Partialmodells grundlegende theoretische Bedingungen einer erweiterten forstlichen Kohlenstoffeinspeicherung. Der zweite Artikel untersucht im Rahmen eines allgemeine...

  4. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  5. Mitigation options in forestry, land-use change and biomass burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.L. [Univ. of California, Lawrence Berkeley National Lab. (United States)

    1998-10-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs.

  6. Mitigation options in forestry, land-use change and biomass burning in Africa

    International Nuclear Information System (INIS)

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs

  7. Renewable and low-carbon energies as mitigation options of climate change for China

    OpenAIRE

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to China's present-day economy and power sector. We then developed different scenarios based on story lines for possible future developments in China. We simulated China's carbon-based electricity produc...

  8. Cotton and Climate Change: Impacts and Options to mitigate and adapt.

    Science.gov (United States)

    Ton, P.

    2012-04-01

    Cotton & Climate change: Impacts and Options to mitigate and adapt. Climate change will have major impacts on cotton production and trade depending on production location. This report to be presented analyses the impacts of climate change on cotton production and trade in the main producing areas world-wide, and the options available to mitigate and to adapt to these impacts. Cotton production is both a contributor to climate change and subject to its impacts. Agricultural production, processing, trade and consumption contribute up to 40% of the world's emissions when forest clearance is included in the calculation. Cotton production contributes to between 0.3% and 1% of total global GHG emissions. Cotton has a certain resilience to high temperatures and drought due to its vertical tap root. The crop is, however, sensitive to water availability, particularly at the height of flowering and boll formation. Rising temperatures favour plant development, unless day temperatures exceed 32°C. New production areas may be established where cotton was not grown before. Increases in atmospheric CO2 will also favour plant development. In turn, increased pests, water stress, diseases, and weather extremes will pose adaptation challenges. Overall, the negative impacts of climate change on cotton production relate to the reduced availability of water for irrigation, in particular in Xinjiang (China), Pakistan, Australia and the western United States. Heat stress risks creating depressed yields in Pakistan in particular, while in other countries limited increases in temperatures could favour cotton plant growth and lengthen the cotton growing season. The impacts of climate change on rainfall will likely be positive in the Yellow River area (China), in India, the south-eastern United States and south-eastern Anatolia (Turkey). Impacts on rainfall in Brazil and West and Central Africa are unclear. Mitigation and adaptation to climate change in cotton production, as in agriculture

  9. Regional transport sector mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Peter [EECG Consultants, Gaborone (Botswana)

    1998-10-01

    The rationale for conducting climate change mitigation studies in the transport sector is on the premise that: The transport sector is the second largest consumer of fossil fuels in the region; The regional transport sector is an area with high opportunity for infrastructural development under UNFCCC financial mechanism; The regional transport sector is crucial in the SADC region for trade and coupled with the Trade Protocol will play a major role in development hence the need to make it efficient in terms of energy demand and provision of services; The sector offers many mitigation options but with a challenge to evaluate their energy saving and GHG saving potential and yet there is need to quantify possible emission reduction for possible future emission trading. This is also a sector with potential to qualify for financing through Clean Development Mechanism (CDM) recently stipulated in the Kyoto Protocol. (au)

  10. Framework for multi-scale integrated impact analyses of climate change mitigation options

    NARCIS (Netherlands)

    Perez-Soba, M.; Parr, T.; Roupioz, L.F.S.; Winograd, M.; Peña-Claros, M.; Varela Ortega, C.; Ascarrunz, N.; Balvanera, P.; Bholanath, P.; Equihua, M.; Guerreiro, L.; Jones, L.; Maass, M.; Thonicke, K.

    2013-01-01

    Tropical forest ecosystems are hotspots for biodiversity and represent one of the largest terrestrial carbon stocks, making their role in climate change mitigation (CCM) programmes increasingly important (e.g. REDD+). In Latin America these ecosystems suffer from high land use pressures that have re

  11. Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture

    OpenAIRE

    Cerri, C. C.,; BERNOUX, MARTIAL,; Maia, S. M. F.,; Cerri, C. E. P.,; Costa, Ciniro Junior,; Feigl, B. J.,; Frazao, L. A.; Mello, F. F. D.,; Galdos, M. V.; Moreira, C. S.,; Carvalho, J. L. N.,

    2010-01-01

    National inventories of anthropogenic greenhouse gas (GHG) emissions (implementation of the National Communications) are organized according to five main sectors, namely: Energy, Industrial Processes, Agriculture, Land-Use Change and Forestry (LUCF) and Waste. The objective of this study was to review and calculate the potential of greenhouse gas mitigation strategies in Brazil for the Agricultural and LUCF. The first step consisted in an analysis of Brazilian official and unofficial document...

  12. Behavioural Climate Change Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Schroten, A.; Bles, M.; Sevenster, M.; Markowska, A.; Smit, M. [CE Delft, Delft (Netherlands); Rohde, C.; Duetschke, E.; Koehler, J.; Gigli, M. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Zimmermann, K.; Soboh, R.; Van ' t Riet, J. [Landbouw Economisch Instituut LEI, Wageningen (Netherlands)

    2012-01-15

    Changes in consumer behaviour can lead to major reductions in greenhouse gas emissions in the European Union, particularly in the areas of transport, housing and food. Behavioural changes can complement technological changes and can allow emission reduction targets to be achieved more cost-effectively overall. The study identifies 36 options for behavioural change that would cut greenhouse gas emissions. Of these, 11 particularly relevant options have been studied in detail. They include shifting to a more healthy and balanced diet, eating less meat and dairy products, buying and using a smaller car or an electric car, teleworking, adjusting room temperature and optimising ventilation. For each of the behavioural changes studied in depth, emission reduction potentials have been quantified for 2020, 2030 and 2050. The study identifies barriers to implementing the changes, and quantifies the likely effects of policy packages which could overcome these barriers. The results show that the behavioural changes that could take place simultaneously have the potential to save emissions totalling up to about 600 million tonnes of CO2-equivalent a year in 2020. This is about one-quarter of the projected annual emissions from sectors not covered by the EU emissions trading system. The savings potential is particularly high in the area of food.

  13. Report on adaptation and mitigation options in the showcase farms

    OpenAIRE

    Stienezen, M.W.J.; Sillebak Kristensen, Ib; Olesen, J.E.; Hutchings, N.; Mogensen, Lisbeth; Barioni, Luis; Veloso, Rui

    2015-01-01

    This deliverable collates the information on simulated effects of mitigation and adaptation options at the farm scale in the non-European study regions from AnimalChange, primarily using the FarmAC model for the mitigation options, and applying semi quantitative modelling for the adaptation options

  14. Cross-sectoral assessment of mitigation options

    DEFF Research Database (Denmark)

    Halsnæs, K.

    1997-01-01

    The paper addresses the relationship between national economic and social development objectives and climate change mitigation, with national studies for Tanzania and Zimbabwe as the starting point. The main activities driving GHG emissions in these countries are evaluated in order to identify key...... gas emissions, Forestry, land use and agriculture are at the same time key economic and social development areas, This means that options leading to improved performance of these activities can reduce future greenhouse gas emissions and imply increasing welfare, A potential for win-win options has...... emission sources and gases. The paper reports the result of the integrated assessment of CO2 and CH4 reduction options for energy, agriculture, forestry and waste management for Zimbabwe, This leads up to a final discussion on methodological issues involved in cross-sectoral mitigation assessment. (C) 1997...

  15. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and quantity

  16. Feasibility study on: Reforestation of degraded grasslands in Indonesia as a climate change mitigation option

    OpenAIRE

    Dalfelt, Arne; Næss, Lars Otto; Sutamihardja, R. T. M.; Gintings, Ngaloken

    1996-01-01

    Deforestation and changes in land use in the tropics contribute a significant share of the anthropogenic emissions of greenhouse gases, of which the most important is carbon dioxide (CO2). Increasing the uptake and storage of carbon in the terrestrial biosphere through reforestation has been proposed as one strategy to counteract the atmospheric build-up of greenhouse gases. This study investigates the feasibility of reforestation of degraded Imperata (alang-alang) grasslands in Indonesi...

  17. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A.; Naess, L.O.; Sutamihardja, R.T.M.; Gintings, N.

    1996-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  18. Greenhouse gas mitigation options for Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  19. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  20. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  1. Land use and desertification in the Binh Thuan Province of Southeastern Vietnam: mitigation and adaptation options now and under climate change

    Science.gov (United States)

    Gobin, A.; Le Trinh, H.; Pham Ha, L.; Hens, L.

    2012-04-01

    Desertification and drought affects approximately 300,000 ha of land in the southeastern provinces of Vietnam, much of which is located on agricultural land and forest in the Binh Thuan Province. The methodology for analysing mitigation and adaptation options follows a chain of risk approach that includes a spatio-temporal characterisation of (1) the hazard, (2) the bio-physical and socio-economic impact, (3) the vulnerability to different activities as related to land uses, and (4) risk management options. The present forms of land degradation include sand dune formation and severe erosion (63%), degradation due to laterisation (14%), salinisation (13%), and rock outcrops (10%). The climate is characterized by a distinct dry season with high temperatures, a lot of sunshine and a warm land wind resulting in high evapotranspiration rates. Delays in the onset of the rainy season, e.g. with 20 days in 2010, cause a shift in the growing season. Damages due to drought are estimated at hundreds billion VND (US 1 = VND 20,8900) and contribute to poverty in the rural areas. The current risk-exposure is exacerbated further by climate change. Combined effects of desertification and climate change cause increased degradation of natural resources including land cover. At the same time land use changes are crucial in influencing responses to climate change and desertification. A further SWOT analysis combined with spatio-temporal analysis for each of the major sectors (agriculture, forestry and nature protection, urban and rural development, water resources and fisheries, industry) demonstrates a series of adaptation and mitigation options. Land is a valuable and limited resource. An integrated approach to land use and management is therefore essential to combat environmental hazards such as desertification and climate change.

  2. Climate change mitigation studies in Sri Lanka

    International Nuclear Information System (INIS)

    In Sri Lanka, Climate Change Mitigation Studies have received low priority and have been limited to an ADB-sponsored preliminary study followed by an initial assessment of some mitigation options in the energy and agricultural sectors, with technical assistance from the US Country Studies Program. The major focus was on options of the mitigation of carbon dioxide emissions from the energy sector. Owing to funding constraints, only the potential for reduction of carbon dioxide emissions resulting from the various mitigation options were quantified; analysis of monetary costs and benefits or policy/programs for adoption of the options were not undertaken. For the non-energy sector, a very limited study on mitigation of methane emissions from rice fields was carried out. (au)

  3. Climate change mitigation studies in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Wickramaratne, Rupa [Ministry of Forestry and Environment, GEF/UNDP Enabling Activity Project (Sri Lanka)

    1998-12-01

    In Sri Lanka, Climate Change Mitigation Studies have received low priority and have been limited to an ADB-sponsored preliminary study followed by an initial assessment of some mitigation options in the energy and agricultural sectors, with technical assistance from the US Country Studies Program. The major focus was on options of the mitigation of carbon dioxide emissions from the energy sector. Owing to funding constraints, only the potential for reduction of carbon dioxide emissions resulting from the various mitigation options were quantified; analysis of monetary costs and benefits or policy/programs for adoption of the options were not undertaken. For the non-energy sector, a very limited study on mitigation of methane emissions from rice fields was carried out. (au)

  4. Mitigation options for the industrial sector in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Gelil, I.A.; El-Touny, S.; Korkor, H. [Organization for Energy Conservation and Planning (OECP), Cairo (Egypt)

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available in Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.

  5. Greenhouse Gas Mitigation Options Database(GMOD)and Tool

    Science.gov (United States)

    Greenhouse Gas Mitigation Options Database (GMOD) is a decision support database and tool that provides cost and performance information for GHG mitigation options for the power, cement, refinery, landfill and pulp and paper sectors. The GMOD includes approximately 450 studies fo...

  6. Greenhouse gases mitigation options and strategies for Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  7. Climate change mitigation options in the rural land use sector: Stakeholders’ perspectives on barriers, enablers and the role of policy in North East Scotland

    International Nuclear Information System (INIS)

    Highlights: • Farmers are mainly willing to expand the uptake of mitigation practices they already implement. • Main barriers and enablers to uptake are physical–environmental constraints and personal values. • Farmers consider that agriculture is a “special case” because their function is to produce food. • Lack of incentives is not the main barrier to the uptake of mitigation practices. • Policies should allow differentiation, and mitigation measures should be integrated with other mechanisms. - Abstract: The rural land use sector could potentially mitigate a large amount of GHG emissions. Implementation requires the engagement of farmers and other land managers. Understanding the barriers and enablers for the uptake of these practices is essential both to inform policy-makers and to achieve effective policy outreach. In Scotland, the rural land use sector is subject to a greenhouse gas (GHG) emission reduction target of 21% by 2020 relative to 1990 levels. This study contributes to the body of research on stakeholders’ perspectives about suitability of climate change mitigation practices at the regional level. Mixed-methods were used to collect the data, namely participatory workshops with scientists and relevant stakeholders, a farmer questionnaire, and focus groups with farmers. Findings show that farmers were mainly willing to expand the uptake of mitigation practices they were already implementing because they consider these are the most cost-effective. Barriers to the implementation of mitigation practices are mainly related to physical–environmental constraints, lack of information and education and personal interests and values. Similarly, enablers are also related to physical–environmental factors and personal interests and values. Economic incentives, voluntary approaches and provision of information have been identified by workshop participants as the most favourable approaches needed to promote the uptake of technically feasible

  8. Report on farm scale eco-efficiency of mitigation and adaption options : D10.3

    OpenAIRE

    Silleback Kristensen, Ib; Olesen, Jörgen E.; Hutchings, Nicholas John; Mogensen, Lisbeth; Faverdin, Philippe; Topp, Kairsty; Barradas, Ana; Godinho, Bruno; O'Brien, Donal; Shalloo, Laurence; Holshof , Gertjan; Perdok, Hink; Stienezen , Marcia

    2015-01-01

    This deliverable collates the information on simulated effects of mitigation and adaptation options at the farm scale in Europe, primarily using the FarmAC model for the mitigation options, and applying semi quantitative modelling for the adaptation options.

  9. Report on farm scale eco-efficiency of mitigation and adaption options. D10.3

    DEFF Research Database (Denmark)

    Kristensen, Ib Sillebak; Olesen, Jørgen Eivind; Hutchings, Nicholas John;

    2015-01-01

    This deliverable collates the information on simulated effects of mitigation and adaptation options at the farm scale in Europe, primarily using the FarmAC model for the mitigation options, and applying semi quantitative modelling for the adaptation options....

  10. Potential GHG mitigation options for agriculture in China

    Energy Technology Data Exchange (ETDEWEB)

    Erda, Lin; Yue, Li; Hongmin, Dong [Agrometeorology Institute, Beijing (China)

    1996-12-31

    Agriculture contributes more or less to anthropogenic emissions of carbon dioxide (CO{sub 2}), methane (CH{sub 4}), and nitrous oxide (N{sub 2}O). China`s agriculture accounts for about 5-15% of total emissions for these gases. Land-use changes related to agriculture are not major contributors in China. Mitigation options are available that could result in significant decrease in CH{sub 4} and N{sub 2}O emissions from agricultural systems. If implemented, they are likely to increase crop and animal productivity. Implementation has the potential to decrease CH{sub 4} emissions from rice, ruminants, and animal waste by 4-40%. The key to decreasing N{sub 2}O emissions is improving the efficiency of plant utilization of fertilizer N. This could decrease N{sub 2}O emissions from agriculture by almost 20%. Using animal waste to produce CH{sub 4} for energy and digested manure for fertilizer may at some time be cost effective. Economic analyses of options proposed should show positive economic as well as environmental benefits.

  11. Climate Change and Mitigation

    OpenAIRE

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session “Climate Change and Mitigation” the speake...

  12. Cost effectiveness of GHG mitigation options and policy implication

    Energy Technology Data Exchange (ETDEWEB)

    Lim, K. S. [Korea Institute for Industrial Economics and Trade, Seoul (Korea, Republic of)

    1998-04-01

    This paper represents the summary findings and conclusions of several studies implemented about microeconomics and macroeconomics marginal costs of GHG abatement policies. Financial, economic, and, where possible, environmental microeconomics costs of reducing GHGs are estimated by a World Bank team. Six energy-related CO{sub 2} mitigation policy options are applied to estimate the macroeconomics costs of GHG emission reduction, the macroeconomics impacts on the Chinese economy. In terms of policy, conservation is a better option to cope with a restrictive mitigation constraint, assuming a developing country can achieve planned energy-saving targets. Without a CO{sub 2} emission constraint or with less restrictive CO{sub 2} emission constraints, however, the simulation results indicate that a conservation strategy may be less attractive than fuel substitution in a developing country, mainly due to the economic dampening effect of reduced production in the energy sectors. This finding suggests that an often-cited costless or negative-cost energy conservation policy may not be a better option when a less restrictive mitigation target is in force. This does not mean that the potential for energy efficiency improvements in a developing country is not worthwhile, but that the overall macroeconomics impacts should be considered before implementing the policy option. (author). 9 refs., 3 figs., 3 tabs.

  13. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran;

    2015-01-01

    -scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration......Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects...

  14. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    OpenAIRE

    Kaul, M; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon ...

  15. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  16. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  17. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  18. Methane : its role in climate change and options for control

    OpenAIRE

    Amstel, van, R.J.

    2012-01-01

    This study on CH4, (its role in climate change and options for control), aimed at a scenario analysis to assess future climate change under reduced methane emissions. At the same time improving the quality of CH4 emission inventories and estimating the costs of emission reductions between 2010 and 2100. In this thesis 28 major options to control or mitigate methane emissions from different sources were identified. The effectiveness and costs of these options were assessed. This resulted in a ...

  19. How Do We Prioritize the GHG Mitigation Options?

    OpenAIRE

    Timilsina, Govinda; Sikharulidze, Anna; Karapoghosyan, Eduard; Shatvoryan, Suren

    2016-01-01

    Armenia and Georgia are taking the climate change agenda seriously and contributing to efforts for mitigating global climate change through various ways, including preparation of low-carbon development strategies for their future economic growth. The improvement of energy efficiency is one of the key elements of the low-carbon development strategies. This study develops a methodology to es...

  20. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  1. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  2. Climate change mitigation and electrification

    International Nuclear Information System (INIS)

    An increasing number of mitigation scenarios with deep cuts in greenhouse gas emissions have focused on expanded use of demand-side electric technologies, including battery electric vehicles, plug-in hybrid vehicles, and heat pumps. Here we review such “electricity scenarios” to explore commonalities and differences. Newer scenarios are produced by various interests, ranging from environmental organizations to industry to an international organization, and represent a variety of carbon-free power generation technologies on the supply side. The reviewed studies reveal that the electrification rate, defined here as the ratio of electricity to final energy demand, rises in baseline scenarios, and that its increase is accelerated under climate policy. The prospect of electrification differs from sector to sector, and is the most robust for the buildings sector. The degree of transport electrification differs among studies because of different treatment and assumptions about technology. Industry does not show an appreciable change in the electrification rate. Relative to a baseline scenario, an increase in the electrification rate often implies an increase in electricity demand but does not guarantee it. - Highlights: ► Until recently few mitigation scenarios paid attention to electrification. ► Recent scenarios show an increasing focus on demand-side electric technologies. ► They are represented by various interests. ► Level of electrification increases with stringency of climate policy. ► Prospect of electrification differs across sectors.

  3. Assessment of the mitigation options in the energy system in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Christov, C.; Vassilev, C.; Simenova, K. [and others

    1996-12-31

    Bulgaria signed the Framework Convention on Climate Change at the UNCEP in Rio in June 1992. The parliament ratified the Convention in March 1995. In compliance with the commitments arising under the Convention, Bulgaria elaborates climate change polity. The underlying principles in this policy are Bulgaria to joint the international efforts towards solving climate change problems to the extent that is adequate to both the possibilities of national economy and the options to attract foreign investments. All policies and measures implemented should be as cost-effective as possible. The Bulgarian GHG emission profile reveals the energy sector as the most significant emission source and also as an area where the great potential for GHG emissions reduction exists. This potential could be achieved in many cases by relatively low cost or even no-cost options. Mitigation analysis incorporates options in energy demand and energy supply within the period 1992-2020.

  4. Addressing mitigation options within the South African country study

    Energy Technology Data Exchange (ETDEWEB)

    Roos, Gina [Eskom (South Africa)

    1998-10-01

    The South African Country Study Programme is being executed under the auspices of the South African Department of Environmental Affairs and Tourism (DEAandT). The full study comprises the following four components, each headed by a technical coordinator: the 1990 greenhouse gas emissions inventory; a study of South Africa`s vulnerability to climate change and possible adaptation strategies; potential mitigation actions and; policy development. Ideally, these components should be executed in sequence. However, in view of South Africa`s commitments in terms of the Framework Convention on Climate Change (FCCC) and the need to draw up a national communication, it was decided to execute the components simultaneously, with an emphasis on coordination between the components. (EG)

  5. Addressing mitigation options within the South African country study

    International Nuclear Information System (INIS)

    The South African Country Study Programme is being executed under the auspices of the South African Department of Environmental Affairs and Tourism (DEA and T). The full study comprises the following four components, each headed by a technical coordinator: the 1990 greenhouse gas emissions inventory; a study of South Africa's vulnerability to climate change and possible adaptation strategies; potential mitigation actions and; policy development. Ideally, these components should be executed in sequence. However, in view of South Africa's commitments in terms of the Framework Convention on Climate Change (FCCC) and the need to draw up a national communication, it was decided to execute the components simultaneously, with an emphasis on coordination between the components. (EG)

  6. Climate change mitigation policies in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinaviciute, I.

    2003-09-01

    The Lithuanian climate change policy has to be considered in the framework of the Convention on Climate Change. The National Strategy for Implementation of Convention was the first step in evaluating the country's impact on climate change, adapting to the Convention and foreseeing the means and measures for climate change mitigation. The paper introduces main issues related to climate change mitigation policy in Lithuania. It presents an analysis of greenhouse gas emission trends in Lithuania and surveys institutional organizations as well as stakeholder associations related to climate change issues and their role in climate policy making. The main Lithuanian international environmental obligation and Lithuanian governmental climate change mitigation policy in the energy sector are presented as well. (Author)

  7. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Science.gov (United States)

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  8. Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2016-01-01

    Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.

  9. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review

    NARCIS (Netherlands)

    Gerber, P.J.; Hristov, A.N.; Henderson, B.L.; Makkar, H.P.S.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.T.; Yang, W.Z.; Tricarico, J.M.; Kebreab, E.; Waghorn, G.; Dijkstra, J.; Oosting, S.J.

    2013-01-01

    Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce C

  10. Can increased organic consumption mitigate climate changes?

    DEFF Research Database (Denmark)

    Heerwagen, Lennart Ravn; Andersen, Laura Mørch; Christensen, Tove;

    2014-01-01

    consumers. As some consumers believe that climate change can be mitigated by consuming organic food, the authors propose that this is taken into account in the development of organic farming. Originality/value – The authors propose a shift from analysing the climate-friendliness of production to addressing......Purpose – The purpose of this paper is to investigate the evidence for a positive correlation between increased consumption of organic products and potential climate change mitigation via decreased consumption of meat and it is discussed to what extent organic consumption is motivated by climate...... correlation between increasing organic budget shares and decreasing meat budget shares is found. People include food-related behaviour such as the purchase of organic food and reduced meat consumption as ways to mitigate climate change. However, other behavioural modifications such as reduction of car usage...

  11. Climate change mitigation policy paradigms — national objectives and alignments

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit; Christensen, John M.;

    2014-01-01

    for discussing how a multi objective policy paradigm can contribute to future climate change mitigation. The paper includes country case studies from Brazil, Canada, China, the European Union (EU), India, Japan, Mexico, Nigeria, South Africa, South Korea and the United States covering renewable energy options......, industry, transportation, the residential sector and cross-sectoral policies. These countries and regions together contribute more than two thirds of global GHG emissions. The paper finds that policies that are nationally driven and that have multiple objectives, including climate-change mitigation, have...... been widely applied for decades in both developing countries and industrialised countries. Many of these policies have a long history, and adjustments have taken place based on experience and cost effectiveness concerns. Various energy and climate-change policy goals have worked together...

  12. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Directory of Open Access Journals (Sweden)

    Sara Shields

    2015-05-01

    Full Text Available The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture.

  13. Agricultural mitigation of greenhouse gases: Science and policy options

    OpenAIRE

    Paustian, L.; Babcock, B.; Hatfield, Jerry L.; Lal, R.; McCarl, Bruce A.; McLaughlin, S.; Mosier, A.; Rice, C.; Roberton, G.P.; Rosenberg, N.; Rosenzweig, C.

    2001-01-01

    The focus of a forthcoming Council on Agricultural Science and Technology (CAST) report is to summarize and synthesize the most recent research on the potential to mitigate GHG emissions through improvements in agricultural and land management practices. The report is designed to inform policy and decision makers in government and industry, agricultural producers, environmental and other nongovernmental organizations, and the general public. A major objective of the report has been to bring t...

  14. University Leadership in Island Climate Change Mitigation

    Science.gov (United States)

    Coffman, Makena

    2009-01-01

    Purpose: The purpose of this paper is to present the University of Hawaii at Manoa's (UHM's) initiatives in achieving greenhouse gas (GHG) emissions reductions on campus and at the state level. Design/methodology/approach: UHM has taken a "lead by example" approach to climate change mitigation in terms of working to meet the American College &…

  15. Revaluing unmanaged forests for climate change mitigation

    Directory of Open Access Journals (Sweden)

    Krug Joachim

    2012-11-01

    Full Text Available Abstract Background Unmanaged or old-growth forests are of paramount importance for carbon sequestration and thus for the mitigation of climate change among further implications, e.g. biodiversity aspects. Still, the importance of those forests for climate change mitigation compared to managed forests is under controversial debate. We evaluate the adequacy of referring to CO2 flux measurements alone and include external impacts on growth (nitrogen immissions, increasing temperatures, CO2 enrichment, changed precipitation patterns for an evaluation of central European forests in this context. Results We deduce that the use of CO2 flux measurements alone does not allow conclusions on a superiority of unmanaged to managed forests for mitigation goals. This is based on the critical consideration of uncertainties and the application of system boundaries. Furthermore, the consideration of wood products for material and energetic substitution obviously overrules the mitigation potential of unmanaged forests. Moreover, impacts of nitrogen immissions, CO2 enrichment of the atmosphere, increasing temperatures and changed precipitation patterns obviously lead to a meaningful increase in growth, even in forests of higher age. Conclusions An impact of unmanaged forests on climate change mitigation cannot be valued by CO2 flux measurements alone. Further research is needed on cause and effect relationships between management practices and carbon stocks in different compartments of forest ecosystems in order to account for human-induced changes. Unexpected growth rates in old-growth forests – managed or not – can obviously be related to external impacts and additionally to management impacts. This should lead to the reconsideration of forest management strategies.

  16. Greenhouse gas emission mitigation in the Sri Lanka power sector supply side and demand side options

    Energy Technology Data Exchange (ETDEWEB)

    Wijayatunga, P.D.C. [University of Moratuwa (Sri Lanka). Centre for Energy Studies; Fernando, W.J.L.S. [Sri Lanka Energy Managers Association, Colombo (Sri Lanka); Shrestha, R.M. [Asian Inst. of Technology, Pathumthani (Thailand). Energy Program

    2003-12-01

    Sri Lanka has had a hydropower dominated electricity generation sector for many years with a gradually decreasing percentage contribution from hydroresources. At the same time, the thermal generation share has been increasing over the years. Therefore, the expected fuel mix in the future in the large scale thermal generation system would be dominated by petroleum products and coal. This will result in a gradual increase in greenhouse gas (GHG) and other environmental emissions in the power sector and, hence, require special attention to possible mitigation measures. This paper analyses both the supply side and demand side (DSM) options available in the Sri Lanka power sector in mitigating emissions in the sector considering the technical feasibility and potential of such options. Further, the paper examines the carbon abatement costs associated with such supply side and DSM interventions using an integrated resource planning model, which is not used in Sri Lanka at present. The sensitivities of the final generation costs and emissions to different input parameters, such as discount rates, fuel prices and capital costs, are also presented in the paper. It is concluded that while some DSM measures are economically attractive as mitigation measures, all the supply side options have a relatively high cost of mitigation, particularly in the context of GHG emission mitigation. Further it is observed that when compared with the projected price of carbon under different global carbon trading scenarios, these supply side options cannot provide economically beneficial CO{sub 2} mitigation in countries like Sri Lanka. (author)

  17. Greenhouse gas emission mitigation in the Sri Lanka power sector supply side and demand side options

    International Nuclear Information System (INIS)

    Sri Lanka has had a hydropower dominated electricity generation sector for many years with a gradually decreasing percentage contribution from hydroresources. At the same time, the thermal generation share has been increasing over the years. Therefore, the expected fuel mix in the future in the large scale thermal generation system would be dominated by petroleum products and coal. This will result in a gradual increase in greenhouse gas (GHG) and other environmental emissions in the power sector and, hence, require special attention to possible mitigation measures. This paper analyses both the supply side and demand side (DSM) options available in the Sri Lanka power sector in mitigating emissions in the sector considering the technical feasibility and potential of such options. Further, the paper examines the carbon abatement costs associated with such supply side and DSM interventions using an integrated resource planning model, which is not used in Sri Lanka at present. The sensitivities of the final generation costs and emissions to different input parameters, such as discount rates, fuel prices and capital costs, are also presented in the paper. It is concluded that while some DSM measures are economically attractive as mitigation measures, all the supply side options have a relatively high cost of mitigation, particularly in the context of GHG emission mitigation. Further it is observed that when compared with the projected price of carbon under different global carbon trading scenarios, these supply side options cannot provide economically beneficial CO2 mitigation in countries like Sri Lanka

  18. Energy-saving options for the mitigation of greenhouse gas emissions from the Mongolian energy sector

    Energy Technology Data Exchange (ETDEWEB)

    Dorjpurev, J.; Purevjal, O.; Erdenechimeg, Ch. [and others

    1996-12-31

    The Energy sector is the largest contributor to GHG emission in Mongolia. The Energy sector emits 54 percent of CO2 and 4 percent of methane. All emissions of other greenhouse gases are accounted from energy related activities. The activities in this sector include coal production, fuel combustion, and biomass combustion at the thermal power stations and in private houses (stoves) for heating purposes. This paper presents some important Demand-side options considered for mitigation of CO2 emissions from energy sector such as Energy Conservation in Industrial Sector and in Buildings. Changes in energy policies and programmes in the Mongolian situation that promote more efficient and sustainable practices are presented in the paper. These energy saving measures will not only help reduce greenhouse gas emissions, but will also promote economic development and alleviate other environmental problems.

  19. Real options valuation with changing volatility

    Directory of Open Access Journals (Sweden)

    Miroslav Čulík

    2016-03-01

    Full Text Available This paper aims at the valuation of real options with changing volatility. Volatility change is a typical feature of real investment projects, where the riskiness of cash flow generated by the project can change significantly during the project life span. In this paper, there is explained how the problem of changing volatility can be considered if binomial lattice and replication strategy is used for real option valuation. There are recombining and non-recombining lattice used and constant and increasing volatility are analysed and results compared. In situation when volatility is changing, two approaches overcoming this problem are employed and compared.

  20. Climate change adaptation strategies and mitigation policies

    Science.gov (United States)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  1. A New Strategy for Mitigating Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Y.; Akimoto, K./ Oda, J.

    2007-07-01

    This paper proposes a new strategy for mitigating climate change, both in short term and in long term. The basic character of the strategy is action oriented with multi-country collaboration, while the Framework Convention on Climate Change (FCCC) and Kyoto protocol is numerical target oriented within United Nation Framework. The introductory part of the paper briefly describes deficits of FCCC and Kyoto protocol and the needs of a different strategy for mitigating climate change. Then the short term strategy is focused on energy conservation and its effectiveness for mitigating climate change is illustrated by estimating the potential of reducing CO{sub 2} emission when intense collaboration is achieved for distributing main energy conservation measures in power generation and key industries among Asia Pacific Partnership countries. The long term strategy is developing novel types of renewables among countries. Geoheat and space solar power systems (SSPS) are candidates which may be developed among major developed countries. Necessity of international collaboration is stressed for R and D of these candidate renewables. (auth)

  2. Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options

    International Nuclear Information System (INIS)

    Rapid growth of population and economy during the past two decades has resulted in continuing growth of transport’s oil demand and greenhouse gas (GHG) emissions. The objectives of this study are to examine pattern and growth in energy demand as well as related GHG emissions from the transport sector and to analyze potential pathways of energy demand and GHG emissions reduction from this sector of the measures being set by the Thai Government. A set of econometric models has been developed to estimate the historical trend of energy demand and GHG emissions in the transport sector during 1989–2007 and to forecast future trends to 2030. Two mitigation option scenarios of fuel switching and energy efficiency options have been designed to analyze pathways of energy consumption and GHG emissions reduction potential in Thailand’s transport sector compared with the baseline business-as-usual (BAU) scenario, which assumed to do nothing influences the long-term trends of transport energy demand. It has been found that these two mitigation options can reduce the GHG emissions differently. The fuel-switching option could significantly reduce the amount of GHG emissions in a relatively short time frame, albeit it will be limited by its supply resources, whereas the energy efficiency option is more effective for GHG emissions mitigation in the long term. Therefore, both measures should be implemented simultaneously for both short and long term mitigation effects in order to more effectively achieve GHG emissions reduction target.

  3. Transport policies related to climate change mitigation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Kappel, Jannik

    and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report......This report presents the Danish national policies on reducing the emissions of greenhouse gasses and reducing Denmark’s dependency on fossil fuels in the transport sector, as well as some of the results of the policies. Systematic focus on efficient transport and climate mitigation started in 2008...... and 2009 with a change – not only in the wording and in the political visions – but also in the actual prioritisation of investments and policies to a very large extent. In March 2012 another milestone was set by the Government, to have Denmark based on 100% renewable energy in 2050. This entails large...

  4. Forest conversion can help to mitigate impacts of climate change on common forest birds

    OpenAIRE

    Gottschalk, Thomas K.; Reiners, Tobias E.

    2015-01-01

    International audience Key messageWe forecasted the effects of climate change and forest conversion options on common forest bird species by employing nation-wide high-resolution models. The results give details on how, where, and for which species forest conversion can mitigate climate change effects.Context To mitigate effects of climate change on forests, alterations are required to convert forests into less vulnerable forest types. Coniferous forest that has been cultivated extensively...

  5. Technology Prizes for Climate Change Mitigation

    OpenAIRE

    Newell, Richard; Wilson, Nathan

    2005-01-01

    We analyze whether technology inducement prizes could be a useful complement to standard research grants and contracts in developing climate change mitigation technologies. We find that there are important conceptual advantages to using inducement prizes in certain circumstances. These conceptual inferences are borne out by an examination of the track record of prizes inducing research into public goods, including relevant energy technologies. However, we also find that the prizes’ successes ...

  6. Greenhouse gas mitigation options in the forestry sector of The Gambia: Analysis based on COMAP model

    Energy Technology Data Exchange (ETDEWEB)

    Jallow, B.P.

    1996-12-31

    Results of the 1993 Greenhouse Gas Emissions Inventory of The Gambia showed net CO{sub 2} emissions of over (1.66 x 10{sup 6} tons) and 1% was due to uptake by plantations (0.01 x 10{sup 6} tons). This is a clear indication that there is need to identify changes in the land-use policy, law and tenure that discourages forest clearing at the same time significantly influencing the sustainable distribution of land among forestry, rangeland and livestock, and agriculture. About 11% of the total area of The Gambia is either fallow or barren flats that once supported vegetation and hence is still capable of supporting vegetation. The US Country Study Programme has provided the Government of The Gambia through the National Climate Committee funds to conduct Assessment of Mitigation Options to Reduce Greenhouse Gas Emissions. The Forestry Sector is one area for which assessment is being conducted. The assessment is expected to end in September 1996. The Comprehensive Mitigation Analysis Process (COMAP) is one of the Models supplied to the National Climate Committee by the Lawrence Berkeley Laboratory, on behalf of the US Country Study Programme, and is being used to conduct the analysis in The Gambia.

  7. Mitigating climate change: The Philippine case

    International Nuclear Information System (INIS)

    The Government of the Philippines signed the UN Framework Convention on Climate change on June 12, 1992 and the Philippine Congress ratified it in 1994. The Philippine Government has also subsequently created the Inter-Agency Committee on Climate Change (IACCC). The GOP is currently preparing the Philippine Country Study to address climate change. The first phase of the work was financed by a grant from the US Country Studies Program which is led by the US Department of Energy. The Study includes the following elements: a) development of a National Inventory of GHG emission and Sinks; b) vulnerability assessment and evaluation of adaptations of coastal resources; c) identification of alternative programs and measures to promote mitigation and/or adaptation to climate change; d) public information and education campaign; and e) development of the National Action Plan on Climate Change. (au)

  8. Development of bioenergy conversion alternatives for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Derkyi, Nana S.A.; Sekyere, Daniel [CSIR-FORIG, Kwame Nkrumah University of Science and Technology KNUST Box 63 (Ghana); Okyere, Philip Y. [Electrical Engineering Department, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Darkwa, Nicholas A. [FRNR, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Nketiah, Samuel K. [TROPENBOS International (Ghana)

    2011-07-01

    Traditional charcoal production, firewood sourcing and over-dependence on the national grid for electricity are associated with high greenhouse gas emissions relative to other common energy options. However, there have been few attempts to analyze the potential of cogeneration and briquetting as favourable energy options for climate change mitigation. The possibility of utilizing abundant wood residues to produce energy for domestic and industrial application through co-generation and sawdust briquetting was assessed. Annual residues generated in the three mills studied ranged from 19,230 m3 to 32,610 m3. Annual output of semi-carbonized and carbonized sawdust briquette from the briquette factory studied was 1400 tonnes. Heating values of the wood species ranged from 8.2 to 20.3 MJ/kg. Power requirements for the mills, necessary for sizing co-generation units were derived from their monthly electricity bills. Power ratings for co-generation units were specified between 400 kWe to 2000 kWe with heat to power ratios of 19 to 21. The energy generated could be used to produce electrical power and reduce dependency on the national grid. Conversion of sawdust in the briquette factory potentially contributes a saving of 5,600 tonnes of trees/year that would have been cut from the forest. Thus, adoption of co-generation and sawdust briquetting nationwide could be of immense benefit to the country in terms of climate change mitigation.

  9. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  10. Equity Concerns over Climate Change Mitigation

    Institute of Scientific and Technical Information of China (English)

    Chen Ying; Pan Jiahu

    2004-01-01

    As a complicated concept with ethical implications, equity or fairness in the field of climate change mitigation concerns the relations not only between individual human beings but also between human beings and the nature. In this paper, after the review of equity between individuals, market and non-market attributes of emissions rights are distinguished and discussed. Based on the argument of equal per capita emissions rights, three types of emissions rights and the concept of minimum emissions rights as social security are proposed.

  11. Integrated economic assessment of energy and forestry mitigation options using MARKAL

    International Nuclear Information System (INIS)

    There have been a number of economic assessment of GHG mitigation studies carried out in Indonesia. Several alternative mitigation options for energy and non-energy sectors have been described and the economic assessment of the options has been done for each sectors. However, most of the economic assessment particularly for non-energy sector, was not to find a least cost option but the lowest cost options. A program called MARKAL developed by a consortium of energy specialists from more than a dozen countries in the early 1980s, is a program that can be used for optimization, so that the least cost options could be selected. Indonesia has used this program intensively for energy system analysis. Attempt to use this program for other sector has not been developed as this program was designed for energy sector. Therefore, using MARKAL for other sector, all activities of the other sectors should be treated as energy activities. This study is aimed to use MARKAL for analysing both energy and forestry sector together. This paper described briefly the methodology of using MARKAL for both energy and forestry sectors. As the activities in energy sector have unique characteristics, thus only forest activities are described in more detail. (au)

  12. Benefits of Organic Agriculture as a Climate Change Adaptation and Mitigation Strategy in Developing Countries

    OpenAIRE

    Muller, Adrian

    2008-01-01

    Organic Agriculture (OA) as an adaptation strategy (AS) to Climate Change (CC) is a concrete and promising option for adaptation in rural communities. OA has additional potential as a mitigation strategy (MS). This text is a short review note on this topic. Adaptation and mitigation based on OA can build on well-established practice as OA is a sustainable livelihood strategy with decades of experience in several climate zones and under a wide range of specific local conditions. Given the larg...

  13. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  14. National action to mitigate global climate change

    International Nuclear Information System (INIS)

    Over 170 participants from 60 countries met for three days in Copenhagen from 7 to 9 June 1994 to discuss howe the aims of the United Nations Framework convention on Climate Change can be translated into practical action. The Conference was organised by the UNEP collaborating Centre on Energy and Environment (UCCEE), with financial support from the Danish International Development Agency (Danida), the Global Environment Facility (GEF), the United Nations Environment Programme (UNEP) and Risoe National Laboratory, Denmark. The main objective of the conference was to identify common approaches to national mitigation analysis for countries to use in meeting their commitments under the FCCC, and in setting priorities for national actions. Although addressing a broader theme, the conference marked the completion and publication of the second phase on UNEP Greenhouse Gas Abatement Costing Study. (au)

  15. Biochar soil application to mitigate climate change

    DEFF Research Database (Denmark)

    Bruun, Esben; Hauggaard-Nielsen, Henrik; Ambus, Per;

    2009-01-01

    in Copenhagen (COP15) December 2009, the use of biochar as a mitigation tool will be on the agenda and for the time being (July 2009) 20 countries and Parties to the United Nations Framework Convention on Climate Change (UNFCCC) have made submissions to the UNFCCC seeking the inclusion of biochar as a climate...... recalcitrant characteristics the microbial decomposition of biochar is much slower in comparison to the mineralization of the original feedstock. Conversion of organic residues like household waste or cereal straw to biochar is hence proposed a way to withdraw CO2 from the atmosphere and sequester it on a long...... term basis in the soil. The experiments presented here illustrate the C sequestration potentials of biochar originating from fast pyrolysis of wheat straw. It is documented that after 47 days in soil 95 % of the added biochar-C is still present in the soil as compared to only 56 % if straw is applied...

  16. IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned

    Science.gov (United States)

    Sokona, Youba

    2014-05-01

    The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.

  17. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  18. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  19. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    Science.gov (United States)

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. PMID:23998504

  20. Heat in the city - an inventory of knowledge and knowledge deficiencies regarding heat stress in Dutch cities and options for its mitigation.

    NARCIS (Netherlands)

    Salcedo Rahola, T.B.; Van Oppen, P.; Mulder, K.

    2009-01-01

    This report gives an overview of heat stress problems in urban areas of the Netherlands and various options for mitigating this stress. Climate change is causing more occurrences of heat waves. Urban areas in particular will suffer the most, as they are warmer than the countryside. * What is kn

  1. Climate change mitigation policies and poverty in developing countries

    International Nuclear Information System (INIS)

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation. (letter)

  2. Climate change mitigation policies and poverty in developing countries

    Science.gov (United States)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  3. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food

    OpenAIRE

    Hanlon, Paul; Brorby, Gregory P.; Krishan, Mansi

    2016-01-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed com...

  4. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use of bio...... of fossil fuels in silviculture, harvest, transport etc., and due to the fact that most managed forests have a lower carbon stock than unmanaged forests....... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...... orientated beech forest strategy and an unmanaged forest strategy. The studies of the growth potential of poplar showed that, with the right clone selection, stock density, and application of appropriate establishment methods, poplar could produce up to 14 Mg of dry matter ha-1 yr-1 on the best sites...

  5. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  6. Carbon Sequestration to Mitigate Climate Change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  7. Analysis and Optimization of Carbon Dioxide Emission Mitigation Options in the Cement Industry

    Directory of Open Access Journals (Sweden)

    Mohammed B. Shammakh

    2008-01-01

    Full Text Available The cement industry is responsible for approximately 5% of global anthropogenic carbon dioxide emissions emitting nearly 900 kg of CO2 for every 1000 kg of cement produced. Effective control strategies to mitigate these emissions are discussed and a mathematical programming model able to suggest the best cost effective strategy is outlined. Control costs consisting of operating and investment costs along with the efficiency of control options are taken into account in the model. A representative case study from the cement industry was considered in order to illustrate the use of the model in giving optimal control strategies. Efficiency improvement measures were found to be effective options for reduction targets up to 10 %. The model suggested that fuel switching and carbon capture must be considered at reduction targets higher than 10%. The cost of cement production was shown to increase dramatically with an increase in reduction target.

  8. Mitigation implications of midcentury targets that preserve long-term climate policy options

    OpenAIRE

    O'Neill, B.C.; Riahi, K.; Keppo, I.

    2010-01-01

    Midcentury targets have been proposed as a guide to climate change policy that can link long-term goals to shorter-term actions. However no explicit mitigation analyses have been carried out of the relationship between midcentury conditions and longer-term outcomes. Here we use an integrated assessment modeling framework with a detailed representation of the energy sector to examine the dependence of climate change outcomes in 2100 on emissions levels, atmospheric concentrations, and technolo...

  9. Indonesian National Policy on Adaptation and Mitigation of Climate Change

    OpenAIRE

    Wahyu Yun Santoso

    2015-01-01

    From its arousal, the issue of climate change or global warming has become a distinct global trend setter in multidisciplinary discussion, including in the law perspective. Within legal discourse, the issue of climate change developed rapidly into several aspect, not only about adaptation nor mitigation, especially since the plurality of moral conviction relevant to the climate change facts. As a global matter, each country has the responsibility to adapt and mitigate with its own characte...

  10. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  11. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    International Nuclear Information System (INIS)

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country's national greenhouse gas emission reduction targets. Contributions to net emission reductions in host countries is likely to become mandatory in new mechanisms under development such as in the framework for various approaches, a new market-based mechanism and even in a reformed JI. This research analysed the question if approaches for carbon market-based mechanisms exist that allow the generation of net emission reductions in host countries while keeping project initiation attractive. We present a criteria-based assessment method and apply it for four generic options in existing mechanisms and derive implications for future mechanism frameworks. We identified the application of “discounts” on the amount of avoided emissions for the issuance of carbon credits and “standardisation below business as usual” as most promising options over “limiting the crediting period” and “over-conservativeness”. We propose to apply these options differentiated over project types based on internal rate of return to ensure cost-efficiency and attractiveness. - Highlights: • Options for net emission reductions of market-based mechanisms are assessed. • Research combines past and current views for project and sector-based mechanisms. • Implementation ensures initiation of mitigation activities is not discouraged. • Important insights for methodological design of new market-based mechanisms. • Profitability-based approach for project-based mechanisms suggested

  12. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  13. Trade-Offs Associated with Soil Carbon Sequestration in ecosystems as Climate Change Mitigation (Invited)

    Science.gov (United States)

    Six, J. W.; Kong, A. Y.

    2010-12-01

    Ecosystems, especially agroecosystems, have been proposed to have the potential to mitigate anthropogenic contributions to climate change through management. It has been suggested that the adoption of agricultural soil management practices that decrease disturbance and/or increase C inputs to soils can transform soils from C ‘sources’ to C ‘sinks’. However, for these management practices to genuinely mitigate climate change, they must slow the increase of atmospheric CO2 levels by establishing a net transfer of C from atmospheric CO2 to the soil or vegetation. Furthermore, a change in land management must not increase the emission of any other greenhouse gases (e.g., nitrous oxide). Here, we expose the global warming ‘costs’ - tradeoffs - associated with management options that have been promoted as soil C sequestration strategies, but may not always achieve their goals of climate change mitigation. We also discuss fundamental mechanistic potentials and constraints to the sequestration of C in soils, which allow but also limit the potential of soil C sequestration as a means of climate change mitigation. Only by using a whole (agro)ecosystems approach that addresses the linked cycles of C, nitrogen, and phosphorous in soils, can management practices genuinely contribute to climate change mitigation.

  14. Air pollution may alter efforts to mitigate climate change

    Science.gov (United States)

    Yassaa, Noureddine

    2016-02-01

    Renewable energy, considered in the past as a mitigation option to climate change by reducing carbon emission, is now becoming a source of energy security and competing fossil fuels in many areas of the world. According to recent reports (e.g., IEA, IRENA, REN21), renewable energy has reached in 2014 a historical record of power generation capacity. With 1712 GW installed capacity in 2014, renewable energy represents 27.7% of the world's power generating capacity. Solar photovoltaic (PV) energy, conversion of solar light to electricity through solar panels, has increased to reach 177 GW mostly due to the political engagement for the deployment of renewable through targeted programs and the decrease of PV panels prize in the market (roughly 80% decrease since 2008 according to IRENA's report). Concentrated Solar Power (CSP), reaching a total capacity of 4.4 GW in 2014 (REN21 Report), is also demonstrating a clear growth and progresses have been made with regards to the efficiency, the storage capacity and the cost. In order to reduce the energy consumption and carbon emissions, water solar heaters are being installed in the rooftop of households and a total capacity of 406 GW thermal was recorded in 2014 (REN21 Report).

  15. Assessing climate change mitigation technology interventions by international institutions

    DEFF Research Database (Denmark)

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    Accelerating the international use of climate mitigation technologies is key if effortsto curb climate change are to succeed, especially in developing countries, where weakdomestic technological innovation systems constrain the uptake of climate change mitigationtechnologies. Several...... intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systematically review these programmes, with thedual aim of assessing their collective success in promoting...

  16. Mitigation options for methane emissions from rice fields in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Lantin, R.S.; Buendia, L.V.; Wassmann, R. [International Rice Research Institute, Laguna (Philippines)] [and others

    1996-12-31

    The contribution of Philippine rice production to global methane emission and breakthroughs in methane emission studies conducted in the country are presented in this paper. A significant impact in the reduction of GHG emissions from agriculture can be achieved if methane emissions from ricefields can be abated. This study presents the contribution of Philippine rice cultivation to global methane emission and breakthroughs in methane emission studies in the country which address the issue of mitigation. Using the derived emission factors from local measurements, rice cultivation contributes 566.6 Gg of methane emission in the Philippines. This value is 62% of the total methane emitted from the agriculture sector. The emission factors employed which are 78% of the IPCC value for irrigated rice and 95% for rainfed rice were derived from measurements with an automatic system taken during the growth duration in the respective ecosystems. Plots drained for 2 weeks at midtillering and before harvest gave a significant reduction in methane emission as opposed to continuously flooded plots and plots drained before harvest. The cultivar Magat reduced methane emission by 50% as compared to the check variety IR72. The application of ammonium sulfate instead of urea reduced methane emission by 10% to 34%. Addition of 6 t ha{sup {minus}1} phosphogypsum in combination with urea reduced emission by 74% as opposed to plots applied with urea alone. It is also from the results of such measurements that abatement strategies are based as regards to modifying treatments such as water management, fertilization, and choice of rice variety. It is not easy to identify and recommend mitigation strategies that will fit a particular cropping system. However, the identified mitigation options provide focus for the abatement of methane emission from ricefields.

  17. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers

    International Nuclear Information System (INIS)

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO2 Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  18. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  19. Indonesian National Policy on Adaptation and Mitigation of Climate Change

    Directory of Open Access Journals (Sweden)

    Wahyu Yun Santoso

    2015-12-01

    Full Text Available From its arousal, the issue of climate change or global warming has become a distinct global trend setter in multidisciplinary discussion, including in the law perspective. Within legal discourse, the issue of climate change developed rapidly into several aspect, not only about adaptation nor mitigation, especially since the plurality of moral conviction relevant to the climate change facts. As a global matter, each country has the responsibility to adapt and mitigate with its own character and policy. This normative research aims to explore and describe in brief the Indonesian national policy in climate change adaptation and mitigation. Gradually, the contribution of Indonesia is getting firm and solid to the climate change regime, especially after the Bali Action Plan 2007.

  20. Volume 3 Chapter 1: Mitigation and adaptation to climate change

    OpenAIRE

    Mechler, R.; Nakicenovic, N.

    2014-01-01

    This chapter focuses on the needs and opportunities as well as the constraints and barriers with respect to mitigation and adaptation to climate change. While the chapter concentrates mainly on Austria, information is provided on the global and EU level to the extent they are relevant for Austria. Section 1.1 discusses the targets already specified for mitigation at the global level, as well as technologies that are already available or are emerging with the potential to meet the challenges a...

  1. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R.; Newman, P. (Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia)); Dhar, S. (UNEP Risoe Centre, Roskilde (Denmark))

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  2. Climate change and agriculture: Mitigation and Adaptation

    NARCIS (Netherlands)

    Neeteson, J.J.; Verhagen, A.

    2010-01-01

    Human activities have changed the composition of the atmosphere resulting in rising global temperatures and sea levels. Agriculture contributes significantly to climate change through the emission of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Continuation of th

  3. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    International Nuclear Information System (INIS)

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600–700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial. (letters)

  4. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  5. Dolomite application to acidic soils: a promising option for mitigating N2O emissions.

    Science.gov (United States)

    Shaaban, Muhammad; Peng, Qi-An; Hu, Ronggui; Wu, Yupeng; Lin, Shan; Zhao, Jinsong

    2015-12-01

    Soil acidification is one of the main problems to crop productivity as well as a potent source of atmospheric nitrous oxide (N2O). Liming practice is usually performed for the amelioration of acidic soils, but the effects of dolomite application on N2O emissions from acidic soils are still not well understood. Therefore, a laboratory study was conducted to examine N2O emissions from an acidic soil following application of dolomite. Dolomite was applied to acidic soil in a factorial design under different levels of moisture and nitrogen (N) fertilizer. Treatments were as follows: dolomite was applied as 0, 1, and 2 g kg(-1) soil (named as CK, L, and H, respectively) under two levels of moisture [i.e., 55 and 90 % water-filled pore space (WFPS)]. All treatments of dolomite and moisture were further amended with 0 and 200 mg N kg(-1) soil as (NH4)2SO4. Soil properties such as soil pH, mineral N (NH4 (+)-N and NO3 (-)-N), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and soil N2O emissions were analyzed throughout the study period. Application of N fertilizer rapidly increased soil N2O emissions and peaked at 0.59 μg N2O-N kg(-1) h(-1) under 90 % WFPS without dolomite application. The highest cumulative N2O flux was 246.32 μg N2O-N kg(-1) under 90 % WFPS without dolomite addition in fertilized soil. Addition of dolomite significantly (p ≤ 0.01) mitigated N2O emissions as soil pH increased, and H treatment was more effective for mitigating N2O emissions as compared to L treatment. The H treatment decreased the cumulative N2O emissions by up to 73 and 67 % under 55 and 90 % WFPS, respectively, in fertilized soil, and 60 and 68 % under 55 and 90 % WFPS, respectively, in unfertilized soil when compared to those without dolomite addition. Results demonstrated that application of dolomite to acidic soils is a promising option for mitigating N2O emissions.

  6. Greenhouse gas mitigation options in Brazil for land-use change, livestock and agriculture Opções de mitigação de gases do efeito estufa na mudança do uso da terra, pecuária e agricultura no Brasil

    Directory of Open Access Journals (Sweden)

    Carlos Clemente Cerri

    2010-02-01

    Full Text Available National inventories of anthropogenic greenhouse gas (GHG emissions (implementation of the National Communications are organized according to five main sectors, namely: Energy, Industrial Processes, Agriculture, Land-Use Change and Forestry (LUCF and Waste. The objective of this study was to review and calculate the potential of greenhouse gas mitigation strategies in Brazil for the Agricultural and LUCF. The first step consisted in an analysis of Brazilian official and unofficial documents related to climate change and mitigation policies. Secondly, business as usual (BAU and mitigation scenarios were elaborated for the 2010-2020 timeframe, and calculations of the corresponding associated GHG emissions and removals were performed. Additionally, two complementary approaches were used to point out and quantify the main mitigation options: a following the IPCC 1996 guidelines and b based on EX-ACT. Brazilian authorities announced that the country will target a reduction in its GHG between 36.1 and 38.9% from projected 2020 levels. This is a positive stand that should also be adopted by other developing countries. To reach this government goal, agriculture and livestock sectors must contribute with an emission reduction of 133 to 166 Mt CO2-eq. This seems to be reachable when confronted to our mitigation option values, which are in between the range of 178.3 to 445 Mt CO2-eq. Government investments on agriculture are necessary to minimize the efforts from the sectors to reach their targets.Inventários nacionais acerca de emissões de gases do efeito estufa (GEE (refinamentos das Comunicações Nacionais são organizadas de acordo com cinco principais setores, a saber: Energia, Processos Industriais, Agropecuária, Mudanças do Uso da Terra e Florestas e Tratamento de Resíduos. O objetivo dessa revisão foi calcular o potencial das estratégias de mitigação de GEE no Brasil para agropecuária e mudança de uso da terra e florestas. A primeira

  7. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    Directory of Open Access Journals (Sweden)

    D. N. Bird

    2008-04-01

    Full Text Available Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal.

    In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada.

    In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure.

    We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as

  8. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  9. Methodological Issues on Climate Change Mitigation Studies

    DEFF Research Database (Denmark)

    Sørensen, Lene; Borges, Pedro Castro; Vidal, Rene Victor Valqui

    1999-01-01

    This paper uses national greenhouse gas emission abatement costing studies as a case to discuss influential factors that determine their outcome and achievement. Costing studies are seen as part of an interconnected whole social process where actors (decision makers, clients, facilitators, experts....... Some methodological principles are suggested to address such contradictions, structure, and change th einteractions between the different dimensions of hte social process framework. Two studies are mentioned in which ideas are presented on how to deal with the central contradictions. Applying...

  10. Climate change mitigation in the energy sector of developing countries

    International Nuclear Information System (INIS)

    The Framework Convention on Climate change, singed by more than 150 governments worldwide, calls on parties to the Convention to undertake inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. Several institutions, including UNEP, have initiated programs to assist developing countries and countries with economies in transition to meet this obligation. This paper describes a mitigation methodology that is being used for these country studies, and discusses issues that have arisen in conducting mitigation assessments for developing countries in the past. (EG)

  11. Valuation of climate change mitigation co-benefits

    DEFF Research Database (Denmark)

    Bakhtiari, Fatemeh

    This document describes tools for valuating in monetary terms the co-benefits associated with climate change mitigation actions. The term co-benefits refers to outcomes of those actions other than their primary outcome (reducing greenhouse-gas emissions). Such non-primary outcomes can fall under...... a broad range of economic or, more likely, environmental and social issues. Examples of positive environmental impacts that may not be the primary outcome of a climate change mitigation policy include reduced local air pollution or restored ecosystem health. Examples of positive social impacts include...

  12. Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options

    NARCIS (Netherlands)

    Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.L.; Makkar, H.P.S.; Dijkstra, J.

    2013-01-01

    This review analyzes published data on manure management practices used to mitigate methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Reducing excreted nitrogen (N) and degradable organic carbon (C) by diet manipulation to improve the balance of nutrient inputs with production

  13. THE EFFECTS OF CHANGING MARGIN LEVELS ON FUTURES OPTIONS PRICE

    Institute of Scientific and Technical Information of China (English)

    Yanling GU; Juan LI

    2006-01-01

    The paper studies the effects of changing margin levels on the price of futures options and how to organize a market maker's position. Black model (1976) becomes a special case of this paper.The paper prices futures options by duplicating them and adopting the theory of Backward Stochastic Differential Equations (BSDEs for short). Furthermore, the price of a futures option is the unique solution to a nonlinear BSDE.

  14. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Makundi, W.; Andrasko, K.; Boer, R.; Ravindranath, N.; Sudha, P.; Rao, S.; Lasco, R.; Pulhin, F.; Masera, O.; Ceron, A.; Ordonez, J.; Deying, X.; Zhang, X.; Zuomin, S.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.

  15. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options

    OpenAIRE

    Hristov, A.N.; Ott, T.; Tricarico, J; Rotz, A.; Waghorn, G; Adesogan, A.T.; Dijkstra, J.; Montes, F.; Oh, J; Kebreab, E.; Oosting, S.J.; Gerber, P.J.; Henderson, B.L.; H. P. S. Makkar; Firkins, J.L.

    2013-01-01

    The goal of this review was to analyze published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Increasing animal productivity can be a very effective strategy for reducing greenhouse gas (GHG) emissions per unit of livestock product. Improving the genetic potential of animals through planned cross-breeding or selection within breeds and achieving this genetic potential through proper nutrition and improvements...

  16. Developments in national climate change mitigation legislation and strategy

    NARCIS (Netherlands)

    Dubash, N.K.; Hagemann, M.; Höhne, N.; Upadhyaya, P.

    2013-01-01

    The results are presented from a survey of national legislation and strategies to mitigate climate change covering almost all United Nations member states between 2007 and 2012. This data set is distinguished from the existing literature in its breadth of coverage, its focus on national policies (ra

  17. China–Europe Relations in the Mitigation of Climate Change

    DEFF Research Database (Denmark)

    Berger, Axel; Fischer, Doris; Lema, Rasmus;

    2013-01-01

    Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these policy...

  18. Biological approaches to global environment change mitigation and remediation.

    Science.gov (United States)

    Woodward, F Ian; Bardgett, Richard D; Raven, John A; Hetherington, Alistair M

    2009-07-28

    One of the most pressing and globally recognized challenges is how to mitigate the effects of global environment change brought about by increasing emissions of greenhouse gases, especially CO(2). In this review we evaluate the potential contribution of four biological approaches to mitigating global environment change: reducing atmospheric CO(2) concentrations through soil carbon sequestration and afforestation; reducing predicted increases in global surface temperatures through increasing the albedo of crop plants; and fertilizing the oceans to increase primary productivity and CO(2) drawdown. We conclude that none of these biological approaches are 'magic bullets' capable of reversing environmental changes brought about by increasing emissions of greenhouse gases. However, it is possible that increasing crop albedo and soil carbon sequestration might contribute towards mitigation on a regional scale. In the absence of legally binding international agreements to reduce CO(2) emissions, we propose that: increased efforts are made to identify novel biological mitigatory strategies; further research is conducted to minimise the uncertainties present in all four of the biological approaches described; and pilot-level field work is conducted to examine the feasibility of the most promising strategies. Finally, it is essential to engage with the public concerning strategies for mitigating the effects of climate change because the majority of the biological approaches have effects, quite possibly of a negative nature, on ecosystem services and land usage.

  19. An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States

    Energy Technology Data Exchange (ETDEWEB)

    Froese, Robert E.; Miller, Chris A. [School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931-1295 (United States); Shonnard, David R.; Koers, Ken P. [Department of Chemical Engineering, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931-1295 (United States); Johnson, Dana M. [School of Business and Economics, Michigan Technological University, 1400 Townsend Dr., Houghton, MI 49931-1295 (United States)

    2010-03-15

    We assessed options for mitigating greenhouse gas emissions from electricity generation in the US Great Lakes States, a region heavily dependent on coal-fired power plants. A proposed 600 MW power plant in northern Lower Michigan, USA provided context for our evaluation. Options to offset fossil CO{sub 2} emissions by 20% included biomass fuel substitution from (1) forest residuals, (2) short-rotation woody crops, or (3) switchgrass; (4) biologic sequestration in forest plantations; and (5) geologic sequestration using CO{sub 2} capture. Review of timber product output data, land cover data, and expected energy crop productivity on idle agriculture land within 120 km of the plant revealed that biomass from forestry residuals has the potential to offset 6% and from energy crops 27% of the annual fossil fuel requirement. Furthermore, annual forest harvest in the region is only 26% of growth and the surplus represents a large opportunity for forest products and bioenergy applications. We used Life Cycle Assessment (LCA) to compare mitigation options, using fossil energy demand and greenhouse gas emissions per unit electricity generation as criteria. LCA results revealed that co-firing with forestry residuals is the most attractive option and geologic sequestration is the least attractive option, based on the two criteria. Biologic sequestration is intermediate but likely infeasible because of very large land area requirements. Our study revealed that biomass feedstock potentials from land and forest resources are not limiting mitigation activities, but the most practical approach is likely a combination of options that optimize additional social, environmental and economic criteria. (author)

  20. Options for support to agriculture and food security under climate change

    International Nuclear Information System (INIS)

    Agriculture and food security are key sectors for intervention under climate change. Agricultural production is highly vulnerable even to 2C (low-end) predictions for global mean temperatures in 2100, with major implications for rural poverty and for both rural and urban food security. Agriculture also presents untapped opportunities for mitigation, given the large land area under crops and rangeland, and the additional mitigation potential of aquaculture. This paper presents a summary of current knowledge on options to support farmers, particularly smallholder farmers, in achieving food security through agriculture under climate change. Actions towards adaptation fall into two broad overlapping areas: (1) accelerated adaptation to progressive climate change over decadal time scales, for example integrated packages of technology, agronomy and policy options for farmers and food systems, and (2) better management of agricultural risks associated with increasing climate variability and extreme events, for example improved climate information services and safety nets. Maximization of agriculture's mitigation potential will require investments in technological innovation and agricultural intensification linked to increased efficiency of inputs, and creation of incentives and monitoring systems that are inclusive of smallholder farmers. Food systems faced with climate change need urgent, broad-based action in spite of uncertainties.

  1. Net climate change mitigation of the Clean Development Mechanism

    International Nuclear Information System (INIS)

    The Clean Development Mechanism (CDM) has allowed industrialized countries to buy credits from developing countries for the purpose of meeting targets under the Kyoto Protocol. In principle, the CDM simply shifts the location of emission reductions, with no net mitigation impact. Departing from this zero-sum calculus, the Cancun Agreements reached at the sixteenth session of the Conference of the Parties (COP) in 2010 called for “one or more market-based mechanisms” capable of “ensuring a net decrease and/or avoidance of global greenhouse gas emissions”, an intention reiterated at COP 17 and COP 18. This article explores the extent to which the CDM may or may not already lead to such a “net decrease.” It finds that the CDM's net mitigation impact likely hinges on the additionality of large-scale power projects, which are expected to generate the majority of CDM credits going forward. If these projects are truly additional and continue to operate well beyond the credit issuance period, they will decrease global greenhouse gas emissions. However, if they are mostly non-additional, as research suggests, they could increase global greenhouse gas emissions. The article closes with a discussion of possible means to increase mitigation benefit. - Highlights: • The CDM's method for assessing additionality remains controversial and contested. • We develop two scenarios of the net emissions impact of the CDM. • The integrity of the CDM hinges on the emissions impact of power supply projects. • Additionality is hard to demonstrate with confidence for most power-supply projects. • A number of options are available to increase the mitigation benefit of the CDM

  2. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  3. Toward a protocol for quantifying the greenhouse gas balance and identifying mitigation options in smallholder farming systems

    Science.gov (United States)

    Rosenstock, T. S.; Rufino, M. C.; Butterbach-Bahl, K.; Wollenberg, E.

    2013-06-01

    GHG budgets for developing economies. This dearth of information constrains the capacity to transition to low-carbon agricultural development, opportunities for smallholders to capitalize on carbon markets, and the negotiating position of developing countries in global climate policy discourse. Concerns over the poor state of information, in terms of data availability and representation, have fueled appeals for new approaches to quantifying GHG emissions and removals from smallholder agriculture, for both existing conditions and mitigation interventions (Berry and Ryan 2013, Olander et al 2013). Considering the dependence of quantification approaches on data and the current data deficit for smallholder systems, it is clear that in situ measurements must be a core part of initial and future strategies to improve GHG inventories and develop mitigation measures for smallholder agriculture. Once more data are available, especially for farming systems of high priority (e.g., those identified through global and regional rankings of emission hotspots or mitigation leverage points), better cumulative estimates and targeted actions will become possible. Greenhouse gas measurements in agriculture are expensive, time consuming, and error prone. These challenges are exacerbated by the heterogeneity of smallholder systems and landscapes and the diversity of methods used. Concerns over methodological rigor, measurement costs, and the diversity of approaches, coupled with the demand for robust information suggest it is germane for the scientific community to establish standards of measurements—'a protocol'—for quantifying GHG emissions from smallholder agriculture. A standard protocol for use by scientists and development organizations will help generate consistent, comparable, and reliable data on emissions baselines and allow rigorous comparisons of mitigation options. Besides enhancing data utility, a protocol serves as a benchmark for non-experts to easily assess data

  4. Climate Change: The Evidence and Our Options

    Science.gov (United States)

    Thompson, Lonnie G.

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low…

  5. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Schweitzer, M.; Scharre, P.; Pressman, B.

    1979-07-01

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability.

  6. Study of the Cherokee Nuclear Station: projected impacts, monitoring plan, and mitigation options for Cherokee County, South Carolina

    International Nuclear Information System (INIS)

    This report inventories Cherokee County's capabilities and CNS project characteristics, projects expected impacts from the interaction of the two defines four options for Cherokee County decision makers, and presents a range of possible mitigation and monitoring plans for dealing with the problems identified. The four options and general implementation guidelines for each are presented after reviewing pertinent features of other mitigation and monitoring plans. The four options include (1) no action, (2) preventing impacts by preventing growth, (3) selective growth in designated areas as services can be supplied, and (4) maximum growth designed to attract as many in-movers as possible through a major program of capital investiments in public and private services. With the exception of the no action option, all plans deal with impacts according to some strategy determined by how the County wishes to manage growth. Solutions for impact problems depend on which growth strategy is selected and what additional resources are secured during the impact period. A monitoring program deals with the problems of data and projections uncertainty, while direct action is proposed to deal with the institutional problems of delay of the needed access road, timeing and location problems from the tax base mismatch, and lack of local planning capability

  7. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  8. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    Science.gov (United States)

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  9. Methane : its role in climate change and options for control

    NARCIS (Netherlands)

    Amstel, van A.R.

    2012-01-01

    This study on CH4, (its role in climate change and options for control), aimed at a scenario analysis to assess future climate change under reduced methane emissions. At the same time improving the quality of CH4 emission inventories and estimating the costs of emission reducti

  10. Incorporating climate change mitigation programmes in local administration

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    2015-01-01

    This chapter discusses how a specific programme for climate change mitigation, the Cities/Communities for Climate Protection Program (CCP), was imported from the United States (US) to Australia and New Zealand through a process of translation and diffusion. It demonstrates that in the course...... of the programme’s implementation in Australia and New Zealand a substantial translation took place, especially in the larger local councils and where energy managers or climate change officers were appointed. This translation was supported by organisational norms related to project ownership and network creation...

  11. Climate change mitigation in Asia and financing mechanism (contributions from Bangladesh)

    International Nuclear Information System (INIS)

    The Department of Environment (DOE), Ministlry of Environment and forest, Government of the people's Republic of Bangladesh made a request for a grant to the U.S. Government for studying various aspects of climate change and its implications for Bangladesh. Upon its subsequent approval, a country Study on Climate Change (Bangladesh Climate Change study) was launched in October 1994 to address the following major issues: Preparation of a country-specific inventory of greenhouse gases (GHGs); Assessment of vulnerability of the country, with special respect to climate change; Assessment of mitigation options to develop appropriate strategies and policies for reducing GHG emission into the atmosphere; Recommendations for an appropriate awareness and dissemination programme based on findings of the above components. (au)

  12. Economy of climatic change. From mitigation to adaptation policies

    International Nuclear Information System (INIS)

    Climate change adaptation policies are the subject of this thesis. It has been showed that the United Nations Framework Convention on Climate Change (1992) and the response strategies construction are characteristic of a pollutionist approach. This approach led to envision the question of climate change as a classic pollution and environment issue. As a result, this approach has generated a double bias to the disadvantage of adaptation compared to mitigation policies: adaptation has been confined in a secondary and marginal role in climate policies structuring, and with an inoperative conceptual and methodological framework for its implementation. The thesis proposes a deconstruction of this climate change conceptualization. Moreover, the major limits that characterize mitigation policies call into question the predominance given to them in climate policies construction. The 'pollutionist' approach deconstruction allows at first to show that adaptation policies definition and operationalization need to go beyond (i) the standard analytic framework of climate policies and, (ii) the climate change conceptualization as a classic pollution and environment management issue. The thesis then argues that adaptation has to be integrated in development promoting policies, which means that adaptation needs to be conceptualized no longer as an ad hoc management of pollution effects issue, but as a development issue. Whether in the proper context of adaptation policies, or more largely of climate policies, the thesis leaves open the questions of the viability, but also of the organization and financing modalities, of a climate regime which fits within development promoting. (author)

  13. Mid-Career Change Options in Academe: Experience and Possibilities.

    Science.gov (United States)

    Palmer, David D.; Patton, Carl V.

    1981-01-01

    Mid-career change programs have the potential to open faculty positions during these times of decline. Most current programs are intended to shift faculty to a different specialty or discipline, but data indicate that academics would be receptive to opportunities to move out of academe. Specific options are identified. (Author/LB)

  14. Deliberative Mapping of options for tackling climate change: Citizens and specialists 'open up' appraisal of geoengineering.

    Science.gov (United States)

    Bellamy, Rob; Chilvers, Jason; Vaughan, Naomi E

    2016-04-01

    Appraisals of deliberate, large-scale interventions in the earth's climate system, known collectively as 'geoengineering', have largely taken the form of narrowly framed and exclusive expert analyses that prematurely 'close down' upon particular proposals. Here, we present the findings from the first 'upstream' appraisal of geoengineering to deliberately 'open up' to a broader diversity of framings, knowledges and future pathways. We report on the citizen strand of an innovative analytic-deliberative participatory appraisal process called Deliberative Mapping. A select but diverse group of sociodemographically representative citizens from Norfolk (United Kingdom) were engaged in a deliberative multi-criteria appraisal of geoengineering proposals relative to other options for tackling climate change, in parallel to symmetrical appraisals by diverse experts and stakeholders. Despite seeking to map divergent perspectives, a remarkably consistent view of option performance emerged across both the citizens' and the specialists' deliberations, where geoengineering proposals were outperformed by mitigation alternatives.

  15. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  16. Demographic aspects of climate change mitigation and adaptation.

    Science.gov (United States)

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.

  17. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food: Workshop Proceedings.

    Science.gov (United States)

    Hanlon, Paul; Brorby, Gregory P; Krishan, Mansi

    2016-05-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds. PMID:27102178

  18. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  19. China's strategy for energy development and climate change mitigation

    International Nuclear Information System (INIS)

    In recent years, China has made great efforts in energy saving and carbon emission reduction by pushing forward domestic sustainable development along with global climate change mitigation. The efforts have paid off with a dramatic decrease in carbon intensity. Nevertheless, China is still confronted with tough challenges in emission control due to the fast pace of industrialization, large total historical emission and high growth rate of emissions. Therefore, China should give priority to energy saving by improving energy efficiency and sectoral structure adjustment and upgrade, and develop sustainable and renewable energy to optimize energy mix and its carbon content. China should continue to regard significant reduction of energy intensity and carbon intensity as the main objective in the near future, strive to achieve peak emissions around 2030, and realize a relatively sharp emissions reduction by 2050 in order to address climate change to meet the goal of making the warming less than 2°. During the 12th Five Year Plan (FYP), China will further strengthen measures to control the amount of energy consumption, establish a statistics, accounting and evaluation system of carbon emissions, and promote a market-based carbon emissions trading mechanism to facilitate the low-carbon transformation of China's economy. - Highlights: ► This paper studies China's strategy for energy development and climate change mitigation. ► We suggest that China should focus on reducing the energy intensity and carbon intensity of GDP, and optimization of energy mix in the near term. ► In the long term, China should achieve the peak emission around 2030, and realize a relative sharp emission reduction by 2050. ► The paper also concludes some important measures which China should take during the 12th Five-Year-Plan (2011–2015).

  20. Urban Planning and Climate Change: Adaptation and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Fulvia Pinto

    2014-05-01

    Full Text Available Climate change is a current phenomenon: the temperatures rise, rainfall patterns are changing, glaciers melt and the average global sea level is rising. It is expected that these changes will continue and that the extreme weather events, such as floods and droughts, will become more frequent and intense. The impact and vulnerability factors for nature, for the economy and for our health are different, depending on the territorial, social and economic aspects. The current scientific debate is focused on the need to formulate effective policies for adaptation and mitigation to climate change. The city plays an important role in this issue: it emits the most greenhouse gas emissions (more than 60% of the world population currently lives in urban areas and the city is more exposed and vulnerable to the impacts of climate change. Urban planning and territorial governance play a crucial role in this context: the international debate on the sustainability of urban areas is increasing. It’s necessary to adapt the tools of building regulations to increase the quality of energy - environment of the cities.

  1. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Science.gov (United States)

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-01

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required. PMID:17868819

  2. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Science.gov (United States)

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-01

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  3. Adaptation to climate change in agriculture: evaluation of options

    International Nuclear Information System (INIS)

    Adaptation was defined as the responses by stakeholders to actual or expected climatic stimuli or their effects to reduce vulnerability to adverse impacts or damage potential, or to realize opportunities associated with climate change. Planned policy initiatives representing change in the agricultural system were discussed in this report. An evaluation of adaptation options needed to be carried out before one could determine which adaptations should be promoted or implemented. The overall merit, suitability, utility or appropriateness of potential adaptation strategies or measures were examined. One interesting methodology was the Multiple Criteria Evaluation (MCE), which is designed to assess alternatives using more than one criterion. The criteria selected for this evaluation were: effectiveness, economic efficiency, flexibility, institutional compatibility, farmer implementation, and independent benefits. A selection of three adaptation options was made to better illustrate the utility of the evaluation framework., as follows: crop diversification, adoption of irrigation, and increase use of crop insurance. 122 refs., 6 tabs., 6 figs

  4. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania

    International Nuclear Information System (INIS)

    Lithuania has developed several important climate change mitigation policy documents however there are no attempts in Lithuania to develop local climate change mitigation policies or to decentralize climate change mitigation policy. Seeking to achieve harmonization and decentralization of climate change mitigation and energy policies in Lithuania the framework for local climate change mitigation strategy need to be developed taking into account requirements, targets and measures set in national climate change mitigation and energy policy documents. The paper will describe how national climate change mitigation and energy policies can be implemented via local energy and climate change mitigation plans. The aim of the paper is to analyze the climate change mitigation policy and its relationship with policies promoting sustainable energy development in Lithuania and to present a framework for local approaches to climate change mitigation in Lithuania, in the context of the existing national and supra-national energy, climate change, and rural development policies. - Highlights: ► The framework for local energy action plans is offered. ► The structural support possibilities are assessed with respect to the Lithuanian legal base. ► The proposals are given for further promotion of sustainable energy at the local level.

  5. Climate Change: Seed Production and Options for Adaptation

    Directory of Open Access Journals (Sweden)

    John G. Hampton

    2016-07-01

    Full Text Available Food security depends on seed security and the international seed industry must be able to continue to deliver the quantities of quality seed required for this purpose. Abiotic stress resulting from climate change, particularly elevated temperature and water stress, will reduce seed yield and quality. Options for the seed industry to adapt to climate change include moving sites for seed production, changing sowing date, and the development of cultivars with traits which allow them to adapt to climate change conditions. However, the ability of seed growers to make these changes is directly linked to the seed system. In the formal seed system operating in developed countries, implementation will be reasonably straight forward. In the informal system operating in developing countries, the current seed production challenges including supply failing to meet demand and poor seed quality will increase with changing climates.

  6. Climate change mitigation for agriculture: water quality benefits and costs.

    Science.gov (United States)

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    impair wetland function to intercept and remove nitrate from drainage water, or even add to the overall N loading to waterways. DCD is water soluble and degrades rapidly in warm soil conditions. The recommended application rate of 10 kg DCD/ha corresponds to 6 kg N/ha and may be exceeded in warm climates. Of the N2O produced by agricultural systems, approximately 30% is emitted from indirect sources, which are waterways draining agriculture. It is important therefore to focus strategies for managing N inputs to agricultural systems generally to reduce inputs to wetlands and streams where these might be reduced to N2O. Waste management options include utilizing the CH4 resource produced in farm waste treatment ponds as a source of energy, with conversion to CO2 via combustion achieving a 21-fold reduction in GHG emissions. Both of these have co-benefits for waterways as a result of reduced loadings. A conceptual model derived showing the linkages between key land management practices for greenhouse gas mitigation and key waterway values and ecosystem attributes is derived to aid resource managers making decisions affecting waterways and atmospheric GHG emissions.

  7. Protected areas' role in climate-change mitigation.

    Science.gov (United States)

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100. PMID:26474765

  8. Forestry solutions for mitigating climate change in China

    Directory of Open Access Journals (Sweden)

    Guanglei Gao

    2014-03-01

    Full Text Available Aim of study: Forests have vital functions in global carbon cycle, and thus are of prime importance in efforts to curb climate change. This study intends to guide effective forestry solutions to combat climate change in China.Area of study: China, not only a major emitter of greenhouse gases, but also one of the five most-forest richest countries with the largest plantations in the world.Material and methods: We summarize and recommend carbon sequestration forestry by considering two Kyoto Protocol activities: afforestation/reforestation and forest management.Main results: Afforestation has a top priority of carbon sequestration forestry in China. However, the tree-based solution will reach its limits to growth in a predictable near future. Forest management contributes to break the deadlock. When scientifically and sustainably managed, forests still have a central role in climate change mitigation. Research highlights: China’s efforts on carbon sequestration forestry should shift the focus from afforestation to forest management.Key words: climate change; carbon sequestration forestry; afforestation; forest management.

  9. A review of accidents, prevention and mitigation options related to hazardous gases

    International Nuclear Information System (INIS)

    Statistics on industrial accidents are incomplete due to lack of specific criteria on what constitutes a release or accident. In this country, most major industrial accidents were related to explosions and fires of flammable materials, not to releases of chemicals into the environment. The EPA in a study of 6,928 accidental releases of toxic chemicals revealed that accidents at stationary facilities accounted for 75% of the total number of releases, and transportation accidents for the other 25%. About 7% of all reported accidents (468 cases) resulted in 138 deaths and 4,717 injuries ranging from temporary respiratory problems to critical injuries. In-plant accidents accounted for 65% of the casualties. The most efficient strategy to reduce hazards is to choose technologies which do not require the use of large quantities of hazardous gases. For new technologies this approach can be implemented early in development, before large financial resources and efforts are committed to specific options. Once specific materials and options have been selected, strategies to prevent accident initiating events need to be evaluated and implemented. The next step is to implement safety options which suppress a hazard when an accident initiating event occurs. Releases can be prevented or reduced with fail-safe equipment and valves, adequate warning systems and controls to reduce and interrupt gas leakage. If an accident occurs and safety systems fail to contain a hazardous gas release, then engineering control systems will be relied on to reduce/minimize environmental releases. As a final defensive barrier, the prevention of human exposure is needed if a hazardous gas is released, in spite of previous strategies. Prevention of consequences forms the final defensive barrier. Medical facilities close by that can accommodate victims of the worst accident can reduce the consequences of personnel exposure to hazardous gases

  10. A climate for development. Climate change policy options for Africa

    International Nuclear Information System (INIS)

    The seriousness of the potential impacts of climate change on development in Africa is now well recognized within, and increasingly outside, scientific circles. The United Nations Framework Convention on Climate Change is a landmark in international environmental governance, providing a mechanism for exchange, negotiation and institution-building to re-direct development towards more efficient use of resources, especially energy. The message of 'A climate for Development' is that unless policy-makers fully understand both the international commitments made under the Convention and the essential national development priorities of their own countries, effective action on climate change is unlikely to be realized. The action needed, however, can at the same time stimulate capacity-building, planning and policy change which would strengthen the economic and ecological base of African countries. The climate change issue has hence brought us face to face with the urgency of the basic issues of sustainable development in Africa. The book discusses key issues that cut across all African countries, such as emissions and their impacts, financial resources and technology transfer for emissions abatement strategies. It then provides a sectoral analysis of greenhouse gas emissions and abatement options focusing on energy, industry, agriculture, forestry and transportation. The book concludes with guidelines for options which may be considered by African countries to ensure that climate change concerns are effectively dealt with in the context of their development priorities. 113 refs

  11. Use of wastes as option for the mitigation of CO{sub 2} emissions in the Brazilian power sector

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Basto; Henriques, Rachel Martins [Virtual Institute of Climate Change (IVIG/COPPE/UFRJ), Caixa Postal 68565, CEP 21945-970, Ilha do Fundao, Rio de Janeiro (Brazil); Pereira, Amaro Olimpio Jr. [Center for Integrated Studies of the Environment and Climate Change (CentroClima/COPPE/UFRJ), Caixa Postal 68565, CEP 21945-970, Ilha do Fundao, Rio de Janeiro (Brazil)

    2010-12-15

    The present study presents an analysis of the options available for the mitigation of CO{sub 2} emissions in the Brazilian power sector. The objective is to verify the potential use of wastes for electrical energy generation and its competitiveness in comparison with other sources of renewable energy. A comparison was made using marginal abatement cost curves derived from a reference scenario obtained from earlier studies dealing with the expansion of the Brazilian power sector. The results showed that the availability of wastes is significant and that they can be used at a cost 20-60% lower than that of wind power generation, a subsidized source of energy in Brazil. It can therefore be concluded that it would be more efficient if incentives were applied to the use of wastes for electrical power generation since it offers socio-environmental benefits which go far beyond the reduction of CO{sub 2} emissions. (author)

  12. Developing a made-in-Canada climate change option

    International Nuclear Information System (INIS)

    A federal paper on Kyoto options served as a basis for this presentation. The author outlines the Alberta perspective on the federal options paper: (1) Alberta is impacted inequitably under all scenarios, (2) incomplete analysis, (3) export of Canadian capital, (4) open-ended liability, and (5) options need to reflect principles developed by Premiers and conveyed to Prime Minister in February. The principles for climate change action are: shared understanding of range of real costs, informed consultation, avoid competitive disadvantage, collaboration at all levels of government, no unreasonable share of the burden, encourage the use of new technology, Canadians need to be part of climate change solution, and focus on energy conservation and efficiency. The Alberta plan of action calls for a longer time frame and consultation with Albertans. With the topic of greenhouse gases (GHG), government leadership is required in the following areas: mandatory GHG reporting program, facilitate and negotiate agreements with key sectors, develop approach to emissions trading, and continue to pursue reductions in government operations. Some of the key initiatives include technology and innovation through the Alberta Energy Research Institute (AERI), build critical mass through partnerships, focus on clean hydrocarbon development and the transition to the hydrogen economy, carbon dioxide capture and storage, aggressive energy conservation, agricultural and forestry sinks, and adaptation. The consultation strategy is described. figs

  13. Climate change and groundwater: India's opportunities for mitigation and adaptation

    Science.gov (United States)

    Shah, Tushaar

    2009-07-01

    For millennia, India used surface storage and gravity flow to water crops. During the last 40 years, however, India has witnessed a decline in gravity-flow irrigation and the rise of a booming 'water-scavenging' irrigation economy through millions of small, private tubewells. For India, groundwater has become at once critical and threatened. Climate change will act as a force multiplier; it will enhance groundwater's criticality for drought-proofing agriculture and simultaneously multiply the threat to the resource. Groundwater pumping with electricity and diesel also accounts for an estimated 16-25 million mt of carbon emissions, 4-6% of India's total. From a climate change point of view, India's groundwater hotspots are western and peninsular India. These are critical for climate change mitigation as well as adaptation. To achieve both, India needs to make a transition from surface storage to 'managed aquifer storage' as the center pin of its water strategy with proactive demand- and supply-side management components. In doing this, India needs to learn intelligently from the experience of countries like Australia and the United States that have long experience in managed aquifer recharge.

  14. Potential contribution of wind energy to climate change mitigation

    Science.gov (United States)

    Barthelmie, R. J.; Pryor, S. C.

    2014-08-01

    It is still possible to limit greenhouse gas emissions to avoid the 2 °C warming threshold for dangerous climate change. Here we explore the potential role of expanded wind energy deployment in climate change mitigation efforts. At present, most turbines are located in extra-tropical Asia, Europe and North America, where climate projections indicate continuity of the abundant wind resource during this century. Scenarios from international agencies indicate that this virtually carbon-free source could supply 10-31% of electricity worldwide by 2050 (refs , ). Using these projections within Intergovernmental Panel on Climate Change Representative Concentration Pathway (RCP) climate forcing scenarios, we show that dependent on the precise RCP followed, pursuing a moderate wind energy deployment plan by 2050 delays crossing the 2 °C warming threshold by 1-6 years. Using more aggressive wind turbine deployment strategies delays 2 °C warming by 3-10 years, or in the case of RCP4.5 avoids passing this threshold altogether. To maximize these climate benefits, deployment of non-fossil electricity generation must be coupled with reduced energy use.

  15. Background document for climate change policy options in Northern Canada

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J. [John Newton Associates, Toronto, ON (Canada)

    2001-06-07

    This paper presents an initial compilation of background material in support of the development of climate change policy options for the jurisdictions of Yukon, Northwest Territories and Nunavut in Northern Canada. While Northern Canada contributes only a small fraction of the world's greenhouse gas (GHG) emissions, scientists forecast changes in average annual temperatures to be among the highest in the world. The Northern Climate Exchange at Yukon College was created in March 2001 to address this issue and to help guide northerners in what they can do now and in the future. This paper includes an annotated bibliography of a total of 75 international, national, and territorial policy documents and major reference documents relevant to climate change issues. It is meant to be a resource for researchers, policy analysts and government officials developing policy options and implementing programs for Northern Canada. While each of the three northern territories are at a different stage in the evolution of their climate change activities, they are all striving to develop strategies and action plans and to initiate the implementation of those plans. It is recognized that many long-standing programs and initiatives, particularly in the areas of energy efficiency and alternate energy, will help northern jurisdictions address their climate change objectives. The three territories are cooperating to deliver their message to the federal government. 75 refs., 4 figs.

  16. Implications of small modular reactors for climate change mitigation

    International Nuclear Information System (INIS)

    Achieving climate policy targets will require large-scale deployment of low-carbon energy technologies, including nuclear power. The small modular reactor (SMR) is viewed as a possible solution to the problems of energy security as well as climate change. In this paper, we use an integrated assessment model (IAM) to investigate the evolution of a global energy portfolio with SMRs under a stringent climate policy. Technology selection in the model is based on costs; we use results from previous expert elicitation studies of SMR costs. We find that the costs of achieving a 2 °C target are lower with SMRs than without. The costs are higher when large reactors do not compete for market share compared to a world in which they can compete freely. When both SMRs and large reactors compete for market share, reduction in mitigation cost is achieved only under advanced assumptions about SMR technology costs and future cost improvements. While the availability of SMRs could lower mitigation costs by a moderate amount, actual realization of these benefits would depend on the rapid up-scaling of SMRs in the near term. Such rapid deployment could be limited by several social, institutional and behavioral obstacles. - Highlights: • Costs of achieving a 2 °C target are lower with SMRs than without. • Costs are higher when large reactors do not compete for market share. • Under competition, cost is reduced only with advanced SMR technology. • Realization of benefits will depend on rapid near term up-scaling of SMRs

  17. CO2-mitigation options for the offshore oil and gas sector

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Tock, Laurence; Breuhaus, Peter;

    2016-01-01

    The offshore extraction of oil and gas is an energy-intensive process leading to the production of CO2and methane, discharged into the atmosphere, and of chemicals, rejected into the sea. The taxation of these emissions, in Norway, has encouraged the development of more energy-effcient and enviro......The offshore extraction of oil and gas is an energy-intensive process leading to the production of CO2and methane, discharged into the atmosphere, and of chemicals, rejected into the sea. The taxation of these emissions, in Norway, has encouraged the development of more energy......, using thermodynamic, economic and environmental indicators. The results indicate the benets of all these options, as the total CO2-emissions can be reduced by more than 15% in all cases, while the avoidance costs vary widely and are highly sensitive to the natural gas price and CO2-tax....

  18. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil

    Science.gov (United States)

    Soares, Johnny R.; Cassman, Noriko A.; Kielak, Anna M.; Pijl, Agata; Carmo, Janaína B.; Lourenço, Kesia S.; Laanbroek, Hendrikus J.; Cantarella, Heitor; Kuramae, Eiko E.

    2016-07-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4+-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane.

  19. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil.

    Science.gov (United States)

    Soares, Johnny R; Cassman, Noriko A; Kielak, Anna M; Pijl, Agata; Carmo, Janaína B; Lourenço, Kesia S; Laanbroek, Hendrikus J; Cantarella, Heitor; Kuramae, Eiko E

    2016-01-01

    Nitrous oxide (N2O) from nitrogen fertilizers applied to sugarcane has high environmental impact on ethanol production. This study aimed to determine the main microbial processes responsible for the N2O emissions from soil fertilized with different N sources, to identify options to mitigate N2O emissions, and to determine the impacts of the N sources on the soil microbiome. In a field experiment, nitrogen was applied as calcium nitrate, urea, urea with dicyandiamide or 3,4 dimethylpyrazone phosphate nitrification inhibitors (NIs), and urea coated with polymer and sulfur (PSCU). Urea caused the highest N2O emissions (1.7% of N applied) and PSCU did not reduce cumulative N2O emissions compared to urea. NIs reduced N2O emissions (95%) compared to urea and had emissions comparable to those of the control (no N). Similarly, calcium nitrate resulted in very low N2O emissions. Interestingly, N2O emissions were significantly correlated only with bacterial amoA, but not with denitrification gene (nirK, nirS, nosZ) abundances, suggesting that ammonia-oxidizing bacteria, via the nitrification pathway, were the main contributors to N2O emissions. Moreover, the treatments had little effect on microbial composition or diversity. We suggest nitrate-based fertilizers or the addition of NIs in NH4(+)-N based fertilizers as viable options for reducing N2O emissions in tropical soils and lessening the environmental impact of biofuel produced from sugarcane. PMID:27460335

  20. Sustainability of arsenic mitigation interventions—an evaluation of different alternative safe drinking water options provided in Matlab, an arsenic hot spot in Bangladesh

    OpenAIRE

    Hossain, Mohammed; Rahman, Shamsun N.; Bhattacharya, Prosun; Jacks, Gunnar; Saha, Ratnajit; Rahman, Marina

    2015-01-01

    The wide spread occurrence of geogenic arsenic in Bangladesh groundwater drastically reduced the safe water access across the country. Since its discovery in 1993, different mitigation options tested at household and community scale have resulted in limited success. The main challenge is to develop a simple, cost-effective, and socially acceptable option which the users can install, operate and maintain by themselves. In an arsenic hotspot of southeastern Bangladesh, 841 arsenic removal filte...

  1. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  2. Building synergies between climate change mitigation and energy poverty alleviation

    International Nuclear Information System (INIS)

    Even though energy poverty alleviation and climate change mitigation are inextricably linked policy goals, they have remained as relatively disconnected fields of research inquiry and policy development. Acknowledging this gap, this paper explores the mainstream academic and policy literatures to provide a taxonomy of interactions and identify synergies and trade-offs between them. The most important trade-off identified is the potential increase in energy poverty levels as a result of strong climate change action if the internalisation of the external costs of carbon emissions is not offset by efficiency gains. The most significant synergy was found in deep energy efficiency in buildings. The paper argues that neither of the two problems – deep reductions in GHG emissions by mid-century, and energy poverty eradication – is likely to be solved fully on their own merit, while joining the two policy goals may provide a very solid case for deep efficiency improvements. Thus, the paper calls for a strong integration of these two policy goals (plus other key related benefits like energy security or employment), in order to provide sufficient policy motivation to mobilise a wide-scale implementation of deep energy efficiency standards. - Highlights: ► A taxonomy of interactions between climate change and energy poverty is offered. ► Energy poverty levels may increase as a result of strong climate change action. ► However, strong synergies are offered by deep improvements of energy efficiency. ► Access to modern energy carriers is a key requirement in developing countries. ► Sufficiently solving both problems requires the integration of policy goals.

  3. The role of nuclear energy in Lithuania under various post-Kyoto climate change mitigation regimes

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia [Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas (Lithuania)], E-mail: dalia@mail.lei.lt

    2008-07-15

    The article aims to evaluate the potential role of nuclear energy in Lithuania under various post-Kyoto climate change mitigation regimes. Seeking to achieve this target the analysis of possible energy sector development scenarios in Lithuania was performed and CO{sub 2} emission projections for these scenarios were developed. The analysis of post-Kyoto climate change mitigation architectures was performed and the requirements of these possible climate change mitigation regimes for greenhouse gas (GHG) emission reduction in Lithuania were assessed. Based on these assessments the potential role of new nuclear power in Lithuania was identified under various future climate change mitigation regimes.

  4. Identifying potential local climate change impacts and adaptation options

    International Nuclear Information System (INIS)

    The subjects discussed in this presentation concern developing resilience to climate extremes and adapting to climate change as local issues; examples of two approaches in New Zealand to helping local groups identify impacts and adaptation options; providing guidance to help councils take a risk management approach; regional scenario numbers for assessments; local workshops in Eastern Regions; and resource kits. The presentation is summarized as follows: Adaptation to climate change is a local issue; Successful adaptation depends on local councils, farmers and industry; Guidance is now available in NZ to help councils address climate change impacts and adaptation within their operations, planning and risk management frameworks; Various approaches are being taken to effectively communicate this information; Personal interactions between local community members, council staff and scientists help with uptake; Approaches which help people draw on their own local knowledge and experience are appreciated

  5. Review: Soil management in mitigating the adverse effects of climate change

    OpenAIRE

    Aman Ullah BhattI; Muhammad Mumtaz Khan

    2012-01-01

    Emission of Green House Gases (GHGs) from various sources into the atmosphere causes rise in air temperature. This addition of GHGs has a great impact on the environment. Among the GHGs, carbon dioxide (CO2) is the major contributor. A variety of options exists for mitigation of GHGs emissions in agriculture. The most prominent options are improved soil management practices viz. integrated plant nutrient management, precision agriculture (variable rate fertilizer technology), use of nitrifica...

  6. Land-use protection for climate change mitigation

    Science.gov (United States)

    Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp

    2014-12-01

    Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.

  7. Impacts on Canadian Competitiveness of International Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Robin Somerville

    1998-06-01

    Full Text Available This article summarizes and provides additional perspective on a study that contributes to the growing body of analyses of the costs of limiting greenhouse gas emissions. The study estimates the economic costs to Canada of six planning scenarios. Four of these scenarios involve the use of tradable emission permits and two involved a carbon tax. In each case, the mechanism's target is to stabilize greenhouse gas emissions at some percentage of 1990 levels (100% or 90% by either 2010 or 2015. Policies that impose greater constraints on carbon dioxide emissions lead to higher economic costs in terms of foregone output. These costs, however, vary for the same objective, depending on the mechanism chosen and the economic assumptions made. In one typical scenario, in which tradable emission permits are used to achieve stabilization at 1990 levels by 2010, GDP is depressed from the "business-as-usual" scenario by about 2% for the first decade, after which it recovers to business-as-usual levels. Generally, for all scenarios, the economic impact of climate change mitigation imposes a transition cost on the economy, but the long-term productive capacity of the economy is not significantly affected.

  8. Climate Change Mitigation Activities in the Philippine Forestry Sector. Application of the COMAP Model

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, Rodel D.; Pulhin, Florencia B. [Environmental Forestry Programme (ENFOR), College of Forestry and Natural Resources, University of the Philippines at Los Banos College, 4031 Laguna (Philippines)

    2001-07-01

    The forest sector in the Philippines has the potential to be a major sink for carbon (C). The present study was conducted to evaluate potential forestry mitigation options in the Philippines using the Comprehensive Mitigation Assessment Process (COMAP) model. The baseline scenario (BAU) assumes that current trends continue up to the year 2030 ('business-as-usual'). Two mitigation scenarios were evaluated: high scenario (HS) and low scenario (LS). The former is patterned largely from the government's forest master plan while the latter assumes a 50% lower success rate of the master plan. The results of the analyses show that by 2030, the total C stock of the Philippine forest sector in the baseline scenario decreases to 814 x 10{sup 6} Mg C, down by 37% compared to the 1990 level. The C stocks of the HS and LS mitigation scenarios were 22% and 18% higher than the BAU, respectively. Of the mitigation options assessed, long rotation plantations and forest protection activities produce the greatest C gain (199 and 104 x 10{sup 6} Mg, respectively under HS). The not present value (NPV) of benefits is highest in the bioenergy option with $24.48 per Mg C (excluding opportunity costs) at a real discount rate of 12%. However, the investment and life cycle costs are also highest using bioenergy. The study also estimated potential investments needed under the mitigation scenarios. The investment requirement for the LS amounts to $263 x 10{sup 6} while for the HS it is $748 x 10{sup 6}. Finally, policy issues and decisions that may be useful for the Philippines to evaluate LULUCF mitigation options under the UNFCCC Kyoto Protocol, are identified and discussed. 30 refs.

  9. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    OpenAIRE

    Heather Keith; David Lindenmayer; Andrew Macintosh; Brendan Mackey

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Con...

  10. Soil management options to sequester carbon and mitigate the greenhouse effect

    NARCIS (Netherlands)

    Batjes, N.H.

    2000-01-01

    The imbalance between global sources and sinks in the global budget of atmospheric CO2 is one of the most important problems in the study of global change. At present there is a 'missing sink' of about 1-2 Pg C yr -1. It is likely that a major part of this sink for carbon is to be found in the funct

  11. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  12. Monitoring needs to transform Amazonian forest maintenance into a global warming-mitigation option

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, P.M. [National Institute for Research in the Amazon, Manaus (Brazil)

    1997-10-01

    Two approaches are frequently mentioned in proposals to use tropical forest maintenance as a carbon offset. One is to set up specific reserves, funding the establishment, demarcation, and guarding of these units. Monitoring, in this case, consists of the relatively straightforward process of confirming that the forest stands in question continue to exist. In Amazonia, where large expanses of tropical forests still exist, the reserve approach has the logical weakness of being completely open to `leakage`: with the implantation of any given reserve, the people who would have been deforesting in the reserve area will probably continue to clear the same amount of forest somewhere else in the region. The second approach is through policy changes aimed at reducing the rate of clearing, but not limited to specific reserves or areas of forest. This second approach addresses more fundamental aspects of the tropical deforestation problem, but has the disadvantages of not assuring the permanence of forest and of not resulting in a visible product that can be convincingly credited to the existence of the project. In order for credit to be assigned to policy change projects, functioning models of the deforestation process must be developed that are capable of producing scenarios with and without different policy changes. This requires understanding the process of deforestation, which depends on monitoring in order to have information as a time series. Information is needed both from satellite imagery and from on-the-ground observations on who occupies the land and why the observed changes occur. Monitoring must be done by individual property if causal factors are to be identified reliably; this is best achieved using a database in Geographical Information System (GIS) that includes property boundaries. Once policy changes are made in practice, not only deforestation but also the policies themselves must be monitored. Decrees and laws are not the same as changes in practice; the

  13. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    Science.gov (United States)

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  14. Sustainability of arsenic mitigation interventions – an evaluation of different alternative safe drinking water options provided in Matlab, an arsenic hot spot in Bangladesh

    Directory of Open Access Journals (Sweden)

    MOHAMMED eHOSSAIN

    2015-05-01

    Full Text Available The wide spread occurrence of geogenic arsenic (As in Bangladesh groundwater drastically reduced the safe water access across the country. Since its discovery in 1993, different mitigation options tested at household and community scale have resulted in limited success. In an arsenic hotspot of southeastern Bangladesh, 841 arsenic removal filter (ARF, 190 surface water filter membrane, 23 pond sand filter (PSF, 147 rain water harvester (RWH and 59 As-safe tubewell were distributed among the severely exposed population by AsMat, a Sida supported project. After three-four years of providing these safe water options, this study was carried out during 2010-2011 for performance analysis of these options, in terms of technical viability and effectiveness and thus to evaluate the preference of different options to the end users. Household and community based surveys were done to make an assessment of the current water use pattern as impact of the distributed options, overall condition of the options provided and to identify the reasons why these options are in use and/or abandoned. In total, 284 households were surveyed and information was collected for 23 PSF, 147 RWH and 59 tubewells. None of the filters was found in use. Among other options distributed, 13% of PSF, 40% RWH and 93% of tubewell were found functioning. In all cases, tubewells were found As-safe. About 89% of households are currently using tubewell water which was 58% before. Filter was abandoned for high cost and complicated maintenance. The use of RWH and PSF was not found user friendly and ensuring year round water quality is a big challenge. Arsenic-safe tubewell was found as a widely accepted option mainly because of its easy operation and availability of water, good water quality and negligible maintenance. This study validated tubewell as the most feasible option and holds significance for planning water supply projects, improving mitigation policy as well as developing awareness

  15. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. human capacities are already in place. However, overall climate variability appears significantly higher than current plans and policies take into account. To improve livelihoods, reduce poverty, and food insecurity for rural Namibians in marginal/hyper-arid lands through sustainable climate change adaptation these objectives will be implemented: 1. Identify, assess and evaluate indigenous management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified

  16. Soil management options to sequester carbon and mitigate the greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Batjes, N.H. [International Soil Reference and Information Centre ISRIC, ICSU World Data Centre for Soils, Wageningen (Netherlands)

    2000-07-01

    The imbalance between global sources and sinks in the global budget of atmospheric CO2 is one of the most important problems in the study of global change. At present there is a 'missing sink' of about 1-2 Pg C/yr. It is likely that a major part of this sink for carbon is to be found in the functioning of terrestrial ecosystems. The Kyoto Protocol currently restricts the allowable terrestrial sequestration of carbon to strictly defined cases of 'afforestation, reforestation and deforestation'. Appropriate conservation and management of the terrestrial natural resources and especially of soils, however, can substantially reduce the buildup of atmospheric greenhouse gases over the next 25 to 50 years while new, 'clean' technologies for energy production are being developed and overall anthropogenic emissions are being curtailed. 1 ref.

  17. Narrative scenario development based on cross-impact analysis for the evaluation of global-warming mitigation options

    International Nuclear Information System (INIS)

    Social, technological, economic and environmental issues should be considered comprehensively for the evaluation of global-warming mitigation options. Existing integrated assessment models include assessment of quantitative factors; however, these models do not explicitly consider interactions among qualitative factors in the background - for example, introductions of nuclear power stations interact with social acceptability. In this paper, we applied a technological forecasting method - the cross-impact method - which explicitly deals with the relationships among relevant factors, and we then developed narrative scenarios having consistency with qualitative social contexts. An example of developed scenarios in 2050, assuming the global population and the gross domestic product are the same as those of the A1 scenario of the IPCC Special Report on Emissions Scenarios, tells us that: (1) the Internet will be extensively used in all regions; (2) the global unified market will appear; (3) regional cultures will tend to converge; (4) long-term investments (of more than 30 years) will become difficult and therefore nuclear-power stations will not increase so remarkably; (5) the self-sufficient supply and diversification of primary energy sources will not progress so rapidly; and (6) due to the widespread use of the Internet, people will be more educated in global environmental issues and environmental costs will be more socially acceptable

  18. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic

  19. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    Science.gov (United States)

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  20. Norwegian Arctic climate. Climate influencing emissions, scenarios and mitigation options at Svalbard

    Energy Technology Data Exchange (ETDEWEB)

    Vestreng, Vigdis; Kallenborn, Roland; Oekstad, Elin

    2010-07-01

    The goal of this study was to establish an emission inventory and emission scenarios for climate influencing compounds at Svalbard, as a basis to develop strategies for emission reduction measures and policies. Emissions for the years 2000-2007 have been estimated for the Svalbard Zone. This area, covering about 173 000 km{sub 2}, ranges from 10 E to 35 E longitude and 74 N to 81 N latitude (Figure 1). In addition, air and ship transport between Tromsoe at the Norwegian mainland and Svalbard has been included. Pollutants considered in our inventory are carbon dioxide (CO{sub 2}), methane (CH{sub 4}), Sulphur dioxide (SO{sub 2}), Nitrogen oxides (NO{sub x} as NO{sub 2}), and for the first time also estimates of black carbon (BC, soot) and organic carbon (OC) have been included. Our results show that emissions of all pollutants have increased over the time span 2000-2007 (Figure 2), and are expected to increase also in the future if additional measures are not implemented (Figure 12). The emissions from Svalbard are minuscule compared to emission released from the Norwegian mainland and waters (1% in the case of CO{sub 2}). Even so, local releases of climate influencing compounds in the vulnerable Arctic may turn out to make a difference both with respect to adverse environmental effects and to climate change. Emissions have been estimated for all activities of any significance taking place at and around Svalbard. Combustion sources as well as fugitive emissions of methane are included. The main sectors are coal mining, energy production and transportation. Pollution from 28 sub sectors related to these activities has been estimated. The scope of this work differs from that covered by national inventories since emission estimates are based on the fuel consumed and include emissions from international shipping and aviation. Fuel consumption data were collected from local authorities, institutions and industry. Emission factors have been selected from relevant

  1. International energy technology collaboration and climate change mitigation. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Justus, D. [Environment Directorate, Organisation for Economic Co-operation and Development OECD, Paris (France); Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2005-11-18

    This paper is the last in an AIXG (Annex 1 Expert Group of the UNFCC) series that looks at international collaboration, particularly for energy technologies, in the context of climate change mitigation. The papers and case studies point out that there is little information to indicate that technology collaboration alone leads to emission reductions on the scale needed to limit growth in greenhouse gas emissions. For many energy production and consumption activities, technology change is a slow process. So to improve the environmental performance of energy technologies and accelerate their uptake, governments need a portfolio approach that includes technology and complementary economic and social policies that provide an adequate framework for essential private sector investment. As the papers and case studies show, international collaboration can help in the quest by speeding momentum, sharing risks, exchanging knowledge and resources, sharing learning investments and harmonising standards. The incentives for collaboration include the need to 'learn' from technical and operational solutions and failed approaches of others, to improve the reliability of tools and techniques, to develop standards across market areas and to foster technical expertise for regulatory and standard setting processes. Technology collaboration can also provide a framework for long-term co-operation on climate change and energy challenges in which Annex I and Non-Annex I Parties can participate. The rationale for governments to engage in international collaboration is considered in the second part of this paper including the benefits and possible drawbacks of co-operative endeavours. Long-term and large-scale transformative energy technologies and systems that entail significant costs and risks are well suited for broad collaboration, as illustrated in the examples of hydrogen-fuel cells and fusion power (see annex) and carbon capture and storage. As new technologies progress

  2. Effort sharing in ambitious, global climate change mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [TKK Helsinki University of Technology, Espoo (Finland); Soimakallio, Sampo; Syri, Sanna; Savolainen, Ilkka [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); Moltmann, Sara; Hoehne, Niklas [Ecofys Germany GmbH, Cologne (Germany)

    2010-04-15

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either or from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system. (author)

  3. Rockfall hazard assessment, risk quantification, and mitigation options for reef cove resort development, False Cape, Queensland, Australia

    Science.gov (United States)

    Schlotfeldt, P.

    2009-04-01

    GIS and 2-D rock fall simulations were used as the primary tools during a rock fall hazard assessment and analyses for a major resort and township development near Cairns, Queensland in Australia. The methods used included 1) the development of a digital elevation model (DEM); undertaking rock fall trajectory analyses to determine the end points of rockfalls, the distribution of kinetic energy for identified rock fall runout Zones, and 3) undertaking event tree analyses based on a synthesis of all data in order to establish Zones with the highest risk of fatalities. This paper describes the methodology used and the results of this work. Recommendations to mitigate the hazard included having exclusions zones with no construction, scaling (including trim blasting), construction of berms and rockfall catch fences. Keywords: GIS, rockfall simulation, rockfall runout Zones, mitigation options INTRODUCTION False Cape is located on the east side of the Trinity inlet near Cairns (Figure 1). Construction is underway for a multi-million dollar development close the beach front. The development will ultimately cover about 1.5 km of prime coast line. The granite slopes above the development are steep and are covered with a number of large, potentially unstable boulders. Sheet jointing is present in the in-situ bedrock and these combined with other tectonic joint sets have provided a key mechanism for large side down slope on exposed bedrock. With each rock fall (evidence by boulders strew in gullies, over the lower parts of the slope, and on the beach) the failure mechanism migrates upslope. In order for the Developer to proceed with construction he needs to mitigate the identified rock fall hazard. The method used to study the hazard and key finding are presented in this paper. Discussion is provided in the conclusion on mitigation options. KEY METHODS USED TO STUDY THE HAZARD In summary the methods used to study the hazard for the False Cape project include; 1. The

  4. Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

    Science.gov (United States)

    Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.

    2016-01-01

    In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.

  5. Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism

    Directory of Open Access Journals (Sweden)

    Sasaki N

    2011-01-01

    Full Text Available Inclusion of improved forest management as a way to enhance carbon sinks in the Copenhagen Accord of the United Nations Framework Convention on Climate Change (December 2009 suggests that forest restoration will play a role in global climate change mitigation under the post-Kyoto agreement. Although discussions about restoration strategies often pertain solely to severely degraded tropical forests and invoke only the enrichment planting option, different approaches to restoration are needed to counter the full range of degrees of degradation. We propose approaches for restoration of forests that range from being slightly to severely degraded. Our methods start with ceasing the causes of degradation and letting forests regenerate on their own, progress through active management of natural regeneration in degraded areas to accelerate tree regeneration and growth, and finally include the stage of degradation at which re-planting is necessary. We argue that when the appropriate techniques are employed, forest restoration is cost-effective relative to conventional planting, provides abundant social and ecological co-benefits, and results in the sequestration of substantial amounts of carbon. For forest restoration efforts to succeed, a supportive post-Kyoto agreement is needed as well as appropriate national policies, institutional arrangements, and local participation.

  6. Why Technical Fixes Won’t Mitigate Climate Change

    OpenAIRE

    Moriarty, Patrick; Honnery, Damon

    2015-01-01

    We may have already surpassed prudent limits for atmospheric greenhouse gas concentrations, and have exceeded (or are near) safe limits for a number of other Earth system processes. If fossil fuels maintain their present share, bringing the expected year 2050 world population up to US primary energy levels would involve a 6-fold rise in energy consumption, with a similar rise in CO2 emissions. We argue that even a combination of the various conventional approaches for climate mitigation will ...

  7. Co-benefits of Near-Term Climate Change Mitigation

    OpenAIRE

    Z. Klimont

    2012-01-01

    While mitigation of carbon dioxide remains the principal climate target, addressing the so-called short-lived climate forcers including black carbon, tropospheric ozone, and methane offers significant co-benefits for near-term climate, human health, food security, and the cryosphere. Using IIASA’s GAINS (Greenhouse Gas and Air Pollution Interactions and Synergies) model we identified 14 specific emission control measures targeting black carbon and methane, an ozone precursor, that were select...

  8. Climate change mitigation in Asia and financing Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.R.; Deo, P. [eds.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  9. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  10. Sustainability of arsenic mitigation interventions – an evaluation of different alternative safe drinking water options provided in Matlab, an arsenic hot spot in Bangladesh

    OpenAIRE

    MOHAMMED eHOSSAIN; Shamsun Naima Rahman; Prosun eBhattacharya; Gunnar eJacks; Ratnajit eSaha; Marina eRahman

    2015-01-01

    The wide spread occurrence of geogenic arsenic (As) in Bangladesh groundwater drastically reduced the safe water access across the country. Since its discovery in 1993, different mitigation options tested at household and community scale have resulted in limited success. In an arsenic hotspot of southeastern Bangladesh, 841 arsenic removal filter (ARF), 190 surface water filter membrane, 23 pond sand filter (PSF), 147 rain water harvester (RWH) and 59 As-safe tubewell were distributed among ...

  11. Climate Change and Air Pollution: Exploring the Synergies and Potential for Mitigation in Industrializing Countries

    Directory of Open Access Journals (Sweden)

    Frances C. Moore

    2009-03-01

    Full Text Available Air pollutants such as tropospheric ozone and black carbon (soot also contribute to the greenhouse effect. Black carbon is thought to be the second or third most important anthropogenic contributor to global warming, while troposheric ozone is the fourth most important. Both are also major components of indoor and outdoor air pollution. This paper reviews the existing literature of the health, economic, and climatic impacts of tropospheric ozone and black carbon emissions, together with mitigation options. The local nature of many of the impacts, combined with their short atmospheric lifetime and the existence of cost-effective abatement technologies that are already widely deployed in developed countries means reducing these emissions provides a highly climatically-effective mitigation option that is also appropriate to the development strategy of industrializing countries.

  12. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  13. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    OpenAIRE

    Eugene L. Chia; Kalame Fobissie; Markku Kanninen

    2016-01-01

    There is growing interest in designing and implementing climate change mitigation and adaptation (M + A) in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It ex...

  14. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    OpenAIRE

    Holmner, Åsa; Ng, Nawi; Nilsson, Maria; Rocklöv, Joacim

    2012-01-01

    Climate change is one of today’s most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health inf...

  15. Synergies between mitigation of, and adaptation to, climate change in agriculture

    DEFF Research Database (Denmark)

    Smith, P; Olesen, Jørgen E

    2010-01-01

    There is a very significant, cost effective greenhouse gas (GHG) mitigation potential in agriculture. The annual mitigation potential in agriculture is estimated to be 4200, 2600 and 1600 Mt CO2 equiv/yr at C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. The value of GHG mitigated each...... year is equivalent to 420 000, 130 000 and 32 000 million US$/yr for C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. From both the mitigation and economic perspectives, we cannot afford to miss out on this mitigation potential. The challenge of agriculture within the climate change context...... of the agroecosystem in some way. This often not only affects the GHG emissions but also the soil properties and nutrient cycling. Adaptation to increased variability of temperature and rainfall involves increasing the resilience of the production systems. This may be done by improving soil water holding capacities...

  16. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    Science.gov (United States)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  17. The role of biomass in climate change mitigation : Assessing the long-term dynamics of bioenergy and biochemicals in the land and energy systems

    OpenAIRE

    Daioglou, V.

    2016-01-01

    Scientific literature addressing climate change mitigation options have highlighted the potentially important role of biomass as a substitute for fossil fuels in the provision of energy and materials. However significant uncertainties remain concerning the drivers and constraints of the available biomass, the overall greenhouse gas (GHG) benefit, and the most effective supply and demand chains. This thesis builds on the IMAGE integrated assessment model in order to improve the representation ...

  18. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO2) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  19. SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options

    OpenAIRE

    Hristov, AN; Ott, T.; Tricarico, J; Rotz, A.; Waghorn, G; Adesogan, A; Dijkstra, J.; Montes, F.; Oh, J; Kebreab, E.; Oosting, SJ; Gerber, PJ; Henderson, B.; Makkar, HPS.; Firkins, JL

    2013-01-01

    The goal of this review was to analyze published data on animal management practices that mitigate enteric methane (CH4) and nitrous oxide (N2O) emissions from animal operations. Increasing animal productivity can be a very effective strategy for reducing greenhouse gas (GHG) emissions per unit of livestock product. Improving the genetic potential of animals through planned cross-breeding or selection within breeds and achieving this genetic potential through proper nutrition and improvements...

  20. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    Science.gov (United States)

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  1. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  2. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  3. Climate Change Issues and Mitigation Actions in Indonesia

    OpenAIRE

    Arief Anshory Yusuf

    2011-01-01

    This paper first highlights at least four important issues relevant to be discussed in the context of climate change in Indonesia: (1) Indonesia is among the most vulnerable to climate change impact; (2) Indonesia is the second biggest contributor to global GHG emissions from land use change or deforestation; (3) As the fourth biggest country in term of population, Indonesia is also the candidate to become among the most important carbon emitters from energy consumption; (4) Indonesia is stil...

  4. Sugarcane ethanol: contributions to climate change mitigation and the environment

    NARCIS (Netherlands)

    Zuurbier, P.J.P.; Vooren, van de J.G.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages

  5. Mitigating the Impact of Climate Change through Waste Recycling

    Directory of Open Access Journals (Sweden)

    Anselm E.O. Eneh

    2012-08-01

    Full Text Available This study reviews the impact of disposal of liquid and solid waste on earth’s environment and their emittance of Greenhouse Gases (GHG into the atmosphere. They trap re-radiated solar heat energy in the atmosphere and subsequently overheat the earth. It advocates that instead of production of materials from earth’s virgin resources and disposal of wastes by burning or degradation, minimal production from virgin materials and total recycling of wastes drastically reduce the emission of such gases and vapours that would otherwise have had damaging effects on the environment. This was based on the European Commission Study on Environment’s Report, (Smith et al., 2001, which showed that reduced dependence on fresh production of goods and overall source segregation of Municipal Solid Waste (MSW, followed by recycling, gives the lowest net flux of greenhouse gases, compared with other options for industrial production processes and treatment of bulk MSW. The text recommends global action on treatment of wastes and concludes that GHG emission is not a regional phenomena and should therefore receive local, state and national attention.

  6. The Paradox of Climate Change Mitigation and Adaptation in Danish Housing

    DEFF Research Database (Denmark)

    Marsh, Rob

    2012-01-01

    Climate change means that buildings must greatly reduce their energy consumption. It is however paradoxical that climate mitigation in Denmark has created negative energy and indoor climate problems in housing that may be made worse by climate change. A literature review has been carried out...... that reducing space heating with high levels of thermal insulation and passive solar energy results in overheating and a growing demand for cooling. Climate change is expected to reduce space heating and increase cooling de-mand in housing. An analysis of new build housing using passive solar energy...... as a climate mitigation strategy has therefore been carried out in relation to future climate change scenarios. It is shown that severe indoor comfort problems can occur, ques-tioning the relevance of passive solar energy as a climate mitigation strategy. In con-clusion, a theoretical study of the interplay...

  7. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized.

  8. Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies

    OpenAIRE

    Duli Zhao; Yang-Rui Li

    2015-01-01

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. The increasing greenhouse gas emission and global warming during climate change result in the increased frequency and intensity of extreme weather events. Climate change is expected to have important consequences for sugarcane production in the world, especially in the developing countries because of relatively low adaptive capacity, high vulnerability to natural hazards, and poor forecasting systems ...

  9. Sugarcane ethanol: contributions to climate change mitigation and the environment

    OpenAIRE

    Zuurbier, P.J.P.; Vooren, van de, J.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages to people, the environment and the economy. Not surprisingly, governments currently enact powerful incentives for the development and exploitation of bio ethanol. However, every inch we come closer...

  10. Green Fiscal Policy and Climate Change Mitigation in Indonesia

    OpenAIRE

    Budy P. Resosudarmo; Abdurohman

    2011-01-01

    In common with other archipelagic countries, Indonesia is vulnerable to such impacts of climate change as prolonged droughts, increased frequency in extreme weather events, and heavy rainfall resulting in floods. These threats, coupled with the fact that Indonesia has been declared one of the three biggest greenhouse gases emitters, has induced the Indonesian government to place a high priority on climate change issues. In particular, the government considers its fiscal policy to be a key ins...

  11. Mitigation of climate change: which technologies for Vietnam?

    OpenAIRE

    Chu, Thi Thu Ha

    2012-01-01

    Vietnam is one of the countries suffering from the most serious adverse effects due to climate change and sea level rise. The main cause of climate change is the increased activities generating greenhouse gases. Organic waste is the main source of carbon dioxide emission, which has the largest concentration among different kinds of greenhouse gases in the earth’s atmosphere. The conversion of organic waste and biomass into energy contributes not only to supply cleaner energy but also to reduc...

  12. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... concentration development scenario. The potential mitigation value depends on the timing of sequestration and re-emission of CO2. The suggested CTP approach enables inclusion of the potential benefit from temporary carbon storage in the environmental profile of biomaterials. This should be seen as supplement...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  13. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    Directory of Open Access Journals (Sweden)

    Nophea Sasaki

    2011-04-01

    Full Text Available As a member of the Annex 1 countries to the Kyoto Protocol of the United Nations Framework Convention on Climate Change, Japan is committed to reducing 6% of the greenhouse gas emissions. In order to achieve this commitment, Japan has undertaken several major mitigation measures, one of which is the domestic measure that includes ecologically friendly lifestyle programs, utilizing natural energy, participating in local environmental activities, and amending environmental laws. Mitigation policies could be achieved if public responses were strong. As the internet has increasingly become an online platform for sharing environmental information, public responses to the need for reducing greenhouse gas emissions may be assessed using available online tools. We used Google Insights for Search, Google AdWords Keyword Tool, and Google Timeline View to assess public responses in Japan based on the interest shown for five search terms that define global climate change and its mitigation policies. Data on online search interests from January 04, 2004 to July 18, 2010 were analyzed according to locations and categories. Our study suggests that the search interests for the five chosen search terms dramatically increased, especially when new mitigation policies were introduced or when climate change related events were organized. Such a rapid increase indicates that the Japanese public strongly responds to climate change mitigation policies.

  14. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    Directory of Open Access Journals (Sweden)

    Åsa Holmner

    2012-06-01

    Full Text Available Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  15. Climate change mitigation and adaptation in strategic environmental assessment

    International Nuclear Information System (INIS)

    Countries are implementing CO2 emission reduction targets in order to meet a globally agreed global warming limit of +2 °C. However, it was hypothesised that these national reduction targets are not translated to regional or state level planning, and are not considered through Strategic Environmental Assessment (SEA) in order to meet emission reduction obligations falling on the transport, energy, housing, agriculture, and forestry sectors. SEAs of land use plans in the German state of Saxony, and the English region of the East of England were examined for their consideration of climate change impacts based on a set of criteria drawn from the literature. It was found that SEAs in both cases failed to consider climate change impacts at scales larger than the boundary of the spatial plan, and that CO2 reduction targets were not considered. This suggests a need for more clarity in the legal obligations for climate change consideration within the text of the SEA Directive, a requirement for monitoring of carbon emissions, a need for methodological guidance to devolve global climate change targets down to regional and local levels, and a need for guidance on properly implementing climate change protection in SEA. - Highlights: ► Strategic Environmental Assessments (SEA) of 12 land use plans from Germany and England have been examined. ► SEA failed to consider climate change impacts at scales larger than the boundary of the land use plans. ► SEA should be an important instrument for climate protection. ► Concrete steps for climate protection mainstreaming into SEA at the European Union and national levels have been suggested.

  16. Forestry solutions for mitigating climate change in China

    OpenAIRE

    Guanglei Gao; Guodong Ding; Yuanyuan Zhao; Yanfeng Bao; Minghan Yu

    2014-01-01

    Aim of study: Forests have vital functions in global carbon cycle, and thus are of prime importance in efforts to curb climate change. This study intends to guide effective forestry solutions to combat climate change in China.Area of study: China, not only a major emitter of greenhouse gases, but also one of the five most-forest richest countries with the largest plantations in the world.Material and methods: We summarize and recommend carbon sequestration forestry by considering two Kyoto Pr...

  17. Framework for Climate Change Mitigation and Adaption in Cities by Utilizing Green Infrastructure

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Davidson, Cliff I.; Jindal, Ranjina;

    roofs and urban forestry are viewed as ones of the best climate adaptation strategies in cities. This study aims to develop a framework for climate change mitigation and adaptation (CCMA) in cities by using green infrastructure technologies. The framework is established by integrating existing green......Climate change has threatened global security of ecosystems, human health and natural resources. These threats have increased demand for various mitigation technology solutions as well as effective strategies for adapting to anticipated impacts. Green infrastructure (GI) technologies such as green...... infrastructure frameworks with indicators from green building rating systems (LEED 2009, BCA Green Mark 4.0, CASBEE, and TREES-NC 1.0). The climate change mitigation and adaptation framework addresses benefits from applying different GI technologies as well as limitations in existing rating systems and the green...

  18. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  19. Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    CERN Document Server

    Hamwey, R M

    2005-01-01

    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.

  20. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  1. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    Science.gov (United States)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  2. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs.

    Science.gov (United States)

    Crabbe, M J C

    2009-12-01

    Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.

  3. Tanzanian rangelands in a changing climate: Impacts, adaptations and mitigation

    Directory of Open Access Journals (Sweden)

    Sangeda A. Z.

    2014-01-01

    Full Text Available Livestock are central to the livelihoods of Tanzanians who rely on them for income via sales of milk, meat, skins and draught power. Owning livestock is amongst the ways in which many Tanzanians could diversify their risks, increase assets and improve their resilience to changes in climate. Though local coping strategies can deal with shocks in the short-term, they are hardly able to cope with more frequent and severe climate events. Observably, temperature, rainfall and atmospheric CO2 concentration interact with grazing and land cover change to influence rangeland quality and composition. Increased temperature increases drought stress and tissue lignifications in plants and, consequently, affects their digestibility and decomposition rate. Increased temperature and lower rainfall also increases vegetation flammability resulting in a shift in species composition due to increased fire frequency. Literature indicates that, Tanzania rangelands receiving between 400 and 1000 mm of rain per year (e.g. Kongwa, Monduli, Kiteto, Simanjiro, Ngorongoro, Babati, Hanang, Mbulu and Karatu have greatest impact on climate change on surface drainage. A 10% drop in rainfall of 1000 mm per year in a rangeland results in a decline in surface drainage of only 17%, while in areas of 500 mm per year will result in a 50% decline. Interventions such as controlled animal stocking rates, sustainable yield and use of good pasture will lessen the negative impacts of climate change on rangelands. Opportunities for reducing greenhouse gas emissions on rangelands include maintaining or increasing carbon sequestration through better soil management and reducing methane production by altering animal management practices on rangelands. There is a need to focus on enabling herd mobility through securing better access to water resources, land use planning, and improve early warning systems and supporting a diversification of livelihoods.

  4. Least cost supply-side options for mitigating greenhouse gas and other harmful emissions from the power sector. Sri Lanka case study

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, W.J.L.S. [Sri Lanka Energy Managers' Association, Colombo (Sri Lanka); Priyantha, D.C. [Wijayatunga Department of Electrical Engineering, University of Moratuwa, Moratuwa (Sri Lanka); Shrestha, Ram [Energy Program, Asian Institute of Technology, Klong Luang, Pathumthani (Thailand)

    2002-03-01

    Sri Lanka is predominantly a fossil fuel-importing country with relatively high rainfall mainly in the central hilly region. This factor has led to its heavy dependence on hydro-power to satisfy its power generation needs during the past century since electricity was first introduced into the country. However, the economic hydro-power resources are limited, as Sri Lanka has already exploited the major component of these economic resources. The long-term least-cost option of power generation has given rise to the installation of approximately 600 MW of oil-fired plants. Further, this planning process will result in the addition of 1800 MW of coal-fired plants within the next 15 years. These thermal plant additions will undoubtedly increase harmful emissions, which at present stand at a relatively low level, from the power sector. This paper analyses various clean coal options and renewable energy technologies as supply-side options for mitigating harmful emissions from the power sector, considering their technical potential and economic feasibility with emphasis on carbon dioxide emissions, given their global warming potential. The sensitivities of the results of the study to different input parameters are also presented in the paper. It is concluded that the least expensive supply-side options for emission reduction in Sri Lanka are the use of renewable energy technologies such as wind power and fuelwood-fired dendrothermal plants. Further, in percentage terms, the incremental cost of these reductions is only half the value of the emission reductions achieved.

  5. Saltwater Intrusion: Climate change mitigation or just water resources management?

    Science.gov (United States)

    Ferguson, G. A.; Gleeson, T.

    2011-12-01

    Climate change and population growth are expected to substantially increase the vulnerability of global water resources throughout the 21st century. Coastal groundwater systems are a nexus of the world's changing oceanic and hydrologic systems and a critical resource for the over one billion people living in coastal areas as well as for terrestrial and offshore ecosystems. Synthesis studies and detailed simulations predict that rising sea levels could negatively impact coastal aquifers by causing saltwater to intrude landward within coastal aquifers or by saltwater inundation of coastal regions. Saltwater intrusion caused by excessive extraction is already impacting entire island nations and globally in diverse regions such as Nile River delta in Egypt, Queensland, Australia and Long Island, USA. However, the vulnerability of coastal aquifers to sea level rise and excessive extraction has not been systematically compared. Here we show that coastal aquifers are much more vulnerable to groundwater extraction than predicted sea level rise in wide-ranging hydrogeologic conditions and population densities. Low lying areas with small hydraulic gradients are more sensitive to climate change but a review of existing coastal aquifer indicates that saltwater intrusion problems are more likely to arise where water demand is high. No cases studies were found linking saltwater intrusion to sea level rise during the past century. Humans are a key driver in the hydrology of coastal aquifers and that adapting to sea level rise at the expense of better water management is misguided.

  6. Review: Sugarcane production: Impact of climate change and its mitigation

    Directory of Open Access Journals (Sweden)

    ASHOK K. SRIVASTAVA

    2012-10-01

    Full Text Available Sugarcane is a climatic sensitive crop: therefore, its spatial distribution on the globe is restricted as per the suitability of various climatic parameters. The climate change, though, a very slow phenomenon is now accelerated due to natural, as well as enormous human activities disturbing the composition of atmosphere. The predications of various climatic models for probable rise in temperature, rainfall, sea level show an alarming condition in forthcoming decades. As the sugarcane is very sensitive to temperature, rainfall, solar radiations etc. therefore, a significant effect on its production and sugar yield is expected in future. It is also well known that sugarcane is one of the precious crops of the world and its end products i.e. sugar and ethanol have a continuous growing demand on global level. Hence, the studies related to good production of sugarcane in changing conditions of climate has become one among the front line area of research and is a major concern of scientist’s world over. Advance agronomic measures including development of suitable cane varieties susceptible to changed climatic conditions, land preparation, time and pattern of plantation, weed, disease and pest managements, nutrients managements, proper timing and adequate water management seems to be the affective measures for obtaining high production of crop with good quality juice in future.

  7. Data of a willingness to pay survey for national climate change mitigation policies in Germany.

    Science.gov (United States)

    Uehleke, Reinhard

    2016-06-01

    The dataset includes responses from a contingent valuation study about the national climate change mitigation policies in Germany. The online survey was carried out in the spring of 2014. It assesses the willingness to pay for an increase of the national CO2 reduction target by 10 percentage points, which closely represents Germany׳s climate change mitigation strategy. Respondents were randomly allocated to one of the following three question formats: The dichotomous choice referendum, the dissonance minimizing referendum and the two-sided payment ladder. The data can be used to investigate the influence of alternative statistical approaches on the willingness to pay measures and their comparison across question formats.

  8. Mitigation of agriculture emissions in the tropics: comparing forest land-sparing options at the national level

    Directory of Open Access Journals (Sweden)

    S. Carter

    2015-04-01

    Full Text Available Emissions from agriculture-driven deforestation are of global concern, but forest land-sparing interventions such as agricultural intensification and utilization of available land offer opportunities for mitigation. In many tropical countries, where agriculture is the major driver of deforestation, interventions in the agriculture sector can reduce deforestation emissions as well as reducing emissions in the agriculture sector. Our study uses a novel approach to quantify agriculture-driven deforestation and associated emissions in the tropics. Emissions from agriculture-driven deforestation in the tropics between 2000 and 2010 are 4.3 Gt CO2 eq yr−1 (97 countries. We investigate the national potential to mitigate these emissions through forest land-sparing interventions, which can potentially be implemented under REDD+. We consider intensification, and utilization of available non-forested land as forest land-sparing opportunities since they avoid the expansion of agriculture into forested land. In addition, we assess the potential to reduce agriculture emissions on existing agriculture land, interventions that fall under climate-smart agriculture (CSA. The use of a systematic framework demonstrates the selection of mitigation interventions by considering sequentially the level of emissions, mitigation potential of various interventions, enabling environment and associated risks to livelihoods at the national level. Our results show that considering only countries with high emissions from agriculture-driven deforestation, where there is a potential for forest-sparing interventions, and where there is a good enabling environment (e.g. effective governance or engagement in REDD+, the potential to mitigate is 1.3 Gt CO2 eq yr−1 (20 countries of 78 with sufficient data. For countries where we identify agriculture emissions as priority for mitigation, up to 1 Gt CO2 eq yr−1 could be reduced from the agriculture sector including livestock. Risks

  9. Integration of Adaptation and Mitigation in Climate Change and Forest Policies in Indonesia and Vietnam

    Directory of Open Access Journals (Sweden)

    Pham Thu Thuy

    2014-08-01

    Full Text Available Forests play a major role in both climate change mitigation and adaptation, but few policies, if any, integrate these two aspects. Using Indonesia and Vietnam as case studies, we identify challenges at the national level but opportunities at the local level. Although both countries demonstrate political commitment to integrating adaptation and mitigation in their development plans, guidelines for policy and planning treat the two approaches separately. The main challenges identified are lack of knowledge, lack of political will, lack of financial incentives, and fragmentation of mandates and tasks of different government agencies. In contrast, at the local level, integration of mitigation and adaptation is facilitated by subnational autonomy, where mitigation projects might have adaptation co-benefits, and vice versa. Our results also show that many actors have a dual mandate that could bridge adaptation and mitigation if appropriate political and financial incentives are put in place. Successful integration of mitigation and adaptation policies would not only remove contradictions between policies, but also encourage governments that are designing domestic policies to exploit the potential for positive spillovers and realize the benefits of both approaches.

  10. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.

    Science.gov (United States)

    Li, Li; Xu, Jianhua; Hu, Jianxin; Han, Jiarui

    2014-05-01

    Reducing nitrous oxide (N2O) emissions offers the combined benefits of mitigating climate change and protecting the ozone layer. This study estimates historical and future N2O emissions and explores the mitigation potential for China's chemical industry. The results show that (1) from 1990 to 2012, industrial N2O emissions in China grew by some 37-fold from 5.07 to 174 Gg (N2O), with total accumulated emissions of 1.26 Tg, and (2) from 2012 to 2020, the projected emissions are expected to continue growing rapidly from 174 to 561 Gg under current policies and assuming no additional mitigation measures. The total accumulated mitigation potential for this forecast period is about 1.54 Tg, the equivalent of reducing all the 2011 greenhouse gases from Australia or halocarbon ozone-depleting substances from China. Adipic acid production, the major industrial emission source, contributes nearly 80% of the industrial N2O emissions, and represents about 96.2% of the industrial mitigation potential. However, the mitigation will not happen without implementing effective policies and regulatory programs.

  11. Review: Soil management in mitigating the adverse effects of climate change

    Directory of Open Access Journals (Sweden)

    Aman Ullah BhattI

    2012-05-01

    Full Text Available Emission of Green House Gases (GHGs from various sources into the atmosphere causes rise in air temperature. This addition of GHGs has a great impact on the environment. Among the GHGs, carbon dioxide (CO2 is the major contributor. A variety of options exists for mitigation of GHGs emissions in agriculture. The most prominent options are improved soil management practices viz. integrated plant nutrient management, precision agriculture (variable rate fertilizer technology, use of nitrification inhibitors, crop residue management, moisture restoration and restoration of crop productivity of degraded lands, which increase crop production per unit area, enhancing crop production and withdraw atmospheric CO2 through enhanced photosynthesis. This paper shows that such improved soil management practices can restore the crop productivity of marginal lands and purify the air by withdrawing atmospheric CO2.

  12. Climate Change Adaptation Options for the Congo Basin Countries

    NARCIS (Netherlands)

    Garderen, van L.; Ludwig, F.

    2012-01-01

    During the last decades, the importance and seriousness of climate change and it’s impacts have become more and more understood. The climate is already changing and therefor adaptation to these changes need to be made. Central Africa needs to adapt to climate change just as much as the rest of the w

  13. Pricing European option under the time-changed mixed Brownian-fractional Brownian model

    Science.gov (United States)

    Guo, Zhidong; Yuan, Hongjun

    2014-07-01

    This paper deals with the problem of discrete time option pricing by a mixed Brownian-fractional subdiffusive Black-Scholes model. Under the assumption that the price of the underlying stock follows a time-changed mixed Brownian-fractional Brownian motion, we derive a pricing formula for the European call option in a discrete time setting.

  14. Time-changed geometric fractional Brownian motion and option pricing with transaction costs

    Science.gov (United States)

    Gu, Hui; Liang, Jin-Rong; Zhang, Yun-Xiu

    2012-08-01

    This paper deals with the problem of discrete time option pricing by a fractional subdiffusive Black-Scholes model. The price of the underlying stock follows a time-changed geometric fractional Brownian motion. By a mean self-financing delta-hedging argument, the pricing formula for the European call option in discrete time setting is obtained.

  15. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  16. Nuclear Energy's Role in Mitigating Climate Change and Air Pollution

    International Nuclear Information System (INIS)

    Energy experts expect energy demand to rise dramatically in the 21st century, especially in developing countries, where today, over one billion people have no access to modern energy services. Meeting global energy demand will require a 75% expansion in primary energy supply by 2050. If no steps are taken to reduce emissions, the energy-related CO2 emissions would nearly double in the same period. The increased levels of this greenhouse gas in the atmosphere could raise average global temperatures 3oC or more above pre-industrial levels, which may trigger the dangerous anthropogenic interference with the climate system, which the United Nations Framework Convention on Climate Change seeks to prevent.

  17. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    International Nuclear Information System (INIS)

    In order to reduce energy-related CO2 emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO2 emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: → A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. → The role of demand is a lot higher in transport than in the residential sector. → Contribution of demand reduction is higher in early periods of the 21st century. → Societal welfare loss is found to be high when the price elasticity of demand is low. → Regional shares in residual emissions vary under different elasticity scenarios.

  18. A review of renewable energy sources, sustainability issues and climate change mitigation

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The study suggested some measures and policy recommendations which when considered would help achieve the goal of renewable energy thus to reduce emissions, mitigate climate change and provide a clean environment as well as clean energy for all and future generations.

  19. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  20. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    Science.gov (United States)

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation

  1. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    Directory of Open Access Journals (Sweden)

    Heather Keith

    Full Text Available Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize

  2. Including adaptation and mitigation responses to climate change in a multiobjective evolutionary algorithm framework for urban water supply systems incorporating GHG emissions

    Science.gov (United States)

    Paton, F. L.; Maier, H. R.; Dandy, G. C.

    2014-08-01

    Cities around the world are increasingly involved in climate action and mitigating greenhouse gas (GHG) emissions. However, in the context of responding to climate pressures in the water sector, very few studies have investigated the impacts of changing water use on GHG emissions, even though water resource adaptation often requires greater energy use. Consequently, reducing GHG emissions, and thus focusing on both mitigation and adaptation responses to climate change in planning and managing urban water supply systems, is necessary. Furthermore, the minimization of GHG emissions is likely to conflict with other objectives. Thus, applying a multiobjective evolutionary algorithm (MOEA), which can evolve an approximation of entire trade-off (Pareto) fronts of multiple objectives in a single run, would be beneficial. Consequently, the main aim of this paper is to incorporate GHG emissions into a MOEA framework to take into consideration both adaptation and mitigation responses to climate change for a city's water supply system. The approach is applied to a case study based on Adelaide's southern water supply system to demonstrate the framework's practical management implications. Results indicate that trade-offs exist between GHG emissions and risk-based performance, as well as GHG emissions and economic cost. Solutions containing rainwater tanks are expensive, while GHG emissions greatly increase with increased desalinated water supply. Consequently, while desalination plants may be good adaptation options to climate change due to their climate-independence, rainwater may be a better mitigation response, albeit more expensive.

  3. Climate Change Adaptation Options for the Congo Basin Countries

    OpenAIRE

    Garderen, van, K.J.; Ludwig, F

    2012-01-01

    During the last decades, the importance and seriousness of climate change and it’s impacts have become more and more understood. The climate is already changing and therefor adaptation to these changes need to be made. Central Africa needs to adapt to climate change just as much as the rest of the world. This report is focused on the COMIFAC countries, or the Congo River Basin countries: Cameroon, Equatorial Guinea, Sao Tome & Principe, Gabon, Republic of Congo, Central African Republic, ...

  4. Implications of land ecosystem-atmosphere interactions for strategies for climate change adaptation and mitigation

    OpenAIRE

    Betts, Richard

    2011-01-01

    The standard approach to predicting climate change, assessing its impacts and planning mitigation strategies tends to be compartmentalized, leading to inadequate or incomplete advice for climate policy. Climate models used for future global warming predictions and attribution of past changes generally consider only global climate drivers, ignoring local drivers, such as land use change and urban effects. Impacts studies are generally carried out in isolation from each other and hence ignore i...

  5. Update of indicators for climate change mitigation in Greece

    International Nuclear Information System (INIS)

    This paper analyses the factors affecting greenhouse gas (GHG) emissions in Greece, (i.e. the drivers of pressures on climate change), using environmental indicators related to energy, demographics and economic growth. The analysis is based on the data of 2008 and considers types of fuel and sectors. The Kaya identity is used to identify the relationship between drivers and pressures, using annual time series data of National GHG emissions, population, energy consumption and gross domestic product. The analysis shows that over the period 2000-2008, GHG emissions show a slight variation, but they are almost stabilised, with a total increase of 1.6%. Despite the economic growth over that period, this stabilisation may be considered as a combination of reductions in the energy intensity of GDP and the carbon intensity of energy, which are affected by improvements in energy efficiency and introduction of 'cleaner' fuels, such as natural gas and renewables in the energy mixture of the country. - Highlights: → We analyse drivers affecting GHG emissions (pressures on climate) in Greece, using indicators. → Indicators relate to energy, demographics and economic growth. → Kaya identity identifies the relationship between drivers and pressures. → GHG emissions are almost stable due to reductions in energy intensity and carbon intensity of energy. → Improvements in energy efficiency and introduction of clean fuels in energy mix reduce emissions.

  6. Reservoir management and environmental protection: The mitigation of climate change

    International Nuclear Information System (INIS)

    It is widely accepted that human activities which produce greenhouse gases have had a discernible effect upon global mean temperatures over the last 50 years. A number of gases entering the atmosphere as a result of human activities can act as greenhouse gases. The most important is carbon dioxide the atmospheric concentration of which has risen by about 30% compared to pre-industrial concentrations. Energy related emissions arising from the use of fossil fuels account for more than 80% of the CO2 released to the atmosphere each year with these fuels accounting for around 90% of the world's commercial energy production. The provisions of the 1997 Kyoto protocol go some way to promote reductions in emissions of greenhouse gases and are an important first step. However, according to this presentation, current energy production and consumption patterns violate principles of sustainability. As a result the world is committed to warming as a result of emissions of greenhouse gases from the use of these fuels. Pragmatically, one should limit the use of fossil fuels and eventually replace them by renewable energy sources.and efforts to increase the overall energy efficiency. Given this, proposals to sequester and dump/store carbon dioxide are an unsustainable solution in their own right, but also perpetuate unsustainable energy use based on fossil fuels. Probably attempts to limit the impacts of climate change by the capture and disposal of CO2 will result in undesirable and unanticipated impacts. The presentation recommends that resources currently deployed in investigating disposal schemes for CO2 should rather go to the development of renewable energy generation and energy efficiency

  7. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    Directory of Open Access Journals (Sweden)

    Jude C. Dike

    2014-01-01

    Full Text Available This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and South America, the EU, the Middle East, and North America. Results show that there is a positive relationship between crude oil prices and carbon intensity, and a 1% change in carbon intensity is expected to cause about 1.6% change in crude oil prices in the short run and 8.4% change in crude oil prices in the long run while the speed of adjustment is 19%.

  8. Mitigation and adaptation within a climate change policy portfolio: A research program

    Science.gov (United States)

    It is now recognized that optimal global climate policy is a portfolio of the two key responses for reducing the risks of climate change: mitigation and adaptation. Significant differences between the two responses have inhibited understanding of how to appropriately view these...

  9. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    Science.gov (United States)

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  10. Challenging the claims on the potential of biochar to mitigate climate change

    NARCIS (Netherlands)

    Francischinelli Rittl, T.

    2015-01-01

    Summary In this PhD thesis I studied the influence of biochar discourses on the political practices in Brazil and the impact of biochar on soil organic carbon (SOC) stocks, thus contributing to the current debate on the potential of biochar to mitigate climate change. Biochar is the solid material o

  11. The optimal paths of climate change mitigation and adaptation under certainty and uncertainty

    NARCIS (Netherlands)

    Felgenhauer, T.; Bruin, de K.C.

    2009-01-01

    Tradeoffs between climate change mitigation and adaptation policies are explored under both certainty and uncertainty with learning using a numerical two-period decision model. We first replicate a version of the Adaptation in DICE climate model (AD-DICE) (de Bruin et al., 2009), which modifies the

  12. Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift

    International Nuclear Information System (INIS)

    We decompose the contribution of five drivers of energy use and CO2 emissions reductions in achieving climate change goals over 2005–2100 for various climate policy scenarios. This study contributes to the decomposition literature in three ways. First, it disaggregates drivers of energy demand into technological progress and demand for energy services, represented in terms of useful energy, allowing us to estimate their contributions independently — an improvement over other economy-wide decomposition studies. Secondly, this approach reduces the ambiguity present in many previous measures of structural change. We delineate structural shifts into two separate measures: changes in fuel mix within a given resource or service pathway; and changes in mix among distinct energy resources or end-use services. Finally, this study applies decomposition methods to energy and emission trajectories from two mutually informing perspectives: (i) primary energy resources — crude oil, natural gas, coal, nuclear, and renewables; and (ii) end-uses of energy services — residential and commercial buildings, industry, and transportation. Our results show that technological improvements and energy conservation are important in meeting climate goals in the first half of the coming century; and that nuclear and renewable energy and CCS technology are crucial in meeting more stringent goals in the second half of the century. We examine the relative roles of the drivers in reducing CO2 emissions separately for developed and developing regions. Although the majority of energy and emission growth – and by extension the greatest opportunities for mitigation – will occur in developing countries, the decomposition shows that the relative roles of the five drivers are broadly consistent between these two regions. - Highlights: • We decompose the contribution of five drivers of energy use and CO2 emissions reductions in achieving climate change goals • We analyze differences across

  13. Option Pricing for Time-Change Exponential Levy Model Under Memm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this article is to study the rational evaluation of European options price when the underlying price process is described by a time-change Levy process. European option pricing formula is obtained under the minimal entropy martingale measure (MEMM) and applied to several examples of particular time-change Levy processes. It can be seen that the framework in this paper encompasses the Black-Scholes model and almost all of the models proposed in the subordinated market.

  14. Ethical implications of co-benefits rationale within climate change mitigation strategy

    Directory of Open Access Journals (Sweden)

    Rita Vasconcellos Oliveira

    2016-10-01

    Full Text Available Climate change mitigation effort is being translated into several actions and discourses that make collateral benefits and their rationale increasingly relevant for sustainability, in such a way that they are now a constant part of the political agenda. Taking a border and consensual perspective, co-benefits are considered here to be emerging advantages of the implementation of measures regarding the lowering of greenhouse gases.Departing from the analysis of policy documents referring to two European urban transportation strategies, the emergent co-benefits are problematized and discussed to better understand their moral aspect. Further ethical reflection is conducted after an analysis of some unintended consequences of co-benefits rationale coming from the mentioned examples. The focus is primarily on the challenges of an integrative moral justification for co-benefits and also for their role in the climate change mitigation effort. We also discuss the limitations of the current normative models that frame co-benefits rationale, from a moral viewpoint and in relation to the overall climate change mitigation strategy.In this article, we propose the concepts of well-being and freedom, as portrayed by Capabilities Approach, as possible guiding notions for the moral and social evaluation of goodness of these emergent benefits and their rationale too. Additionally, some preliminary conclusions are drawn regarding the potential of the presented concepts to favour the climate change mitigation action. Finally, a scenario is drawn where Capabilities Approach is the moral guideline for co-benefits rationale showing this way its potential in terms of enhancing climate change mitigation strategy.

  15. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations

    Energy Technology Data Exchange (ETDEWEB)

    Randall, D. (ed.); Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; Just-in-Time'' precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  16. Technical Note on Mitigation and Adaptation to Climate Change in Brazil

    OpenAIRE

    Ludena, Carlos E.; Maria Netto

    2011-01-01

    This Mitigation and Adaptation to Climate Change in Brazil sector note has been elaborated as input to the Bank's Country Strategy with Brazil for the 2012-2014 period. Some of the most significant aspects of this note are: background and context, sector problems and priorities, Bank Actions related to climate change, strategic framework, necessary actions to achieve strategic objectives, expected results, risks and indicators.

  17. Climate change and climate variability: personal motivation for adaptation and mitigation

    OpenAIRE

    Jan C Semenza; Ploubidis, George B; George, Linda A

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate...

  18. Climate change and climate variability: personal motivation for adaptation and mitigation

    OpenAIRE

    Semenza, JC; Ploubidis, GB; George, LA

    2011-01-01

    BACKGROUND: Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivat...

  19. Climate change and climate variability: personal motivation for adaptation and mitigation

    OpenAIRE

    Ploubidis George B; Semenza Jan C; George Linda A

    2011-01-01

    Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to...

  20. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    OpenAIRE

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An a...

  1. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  2. An assessment of the potentials of nuclear power and carbon capture and storage in the long-term global warming mitigation options based on Asian Modeling Exercise scenarios

    International Nuclear Information System (INIS)

    This paper presents an evaluation of global warming mitigation options based on scenarios from the Asian Modeling Exercise. Using an extended version of the integrated assessment model MARIA-23 (Multiregional Approach for Resource and Industry Allocation), we analyze nuclear fuel recycling options, carbon capture and storage technologies (CCS), and biomass utilization. To assess the potential implications of decreased social acceptance of nuclear power in the wake of the Fukushima nuclear accident, additional scenarios including a nuclear power expansion limitation, are analyzed. We also evaluate MARIA-23 model simulation estimates of long-term contributions and interrelationships among nuclear power, biomass, and CCS. Finally, potential costs of nuclear limitation under carbon control policies are assessed. The simulation results in this paper suggest the following: (1) under the reference scenario, global GDP losses in climate limitation scenarios range from 1.3% per year to 3.9% per year in 2060, rising to between 3.5% per year and 4.5% per year in 2100; (2) the use of nuclear fuel reprocessing technologies increase rapidly in all carbon control policy scenarios; (3) under a scenario where the price of CO2 is $30 and nuclear power expansion is strictly limited, GDP losses increase significantly—from 4.5% per year to 6.4% per year by 2100; (4) nuclear power and CCS are substitute mitigation technologies. With nuclear power technology available CCS deployment reaches approximately 15,000 Mt-CO2 per year by 2010; without a nuclear power option, CCS deployment rises to more than 80,000 Mt-CO2 per year; and (5) biomass utilization cannot fully compensate for limitations to nuclear power expansion in policy scenarios. In addition to examining the role of these three technologies on global scales, we report results for several major Asian regions, namely Japan, China, and India. China tends to deploy nuclear power (if available) in response to rapidly growing power

  3. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  4. Agroforestry, livestock, fodder production and climate change adaptation and mitigation in East Africa: issues and options

    DEFF Research Database (Denmark)

    Dawson, Ian K; Carsan, Sammy; Franzel, Steve;

    Agroforestry and livestock-keeping both have the potential to promote anthropogenic climate changeresilience, and understanding how they can support each other in this context is crucial. Here, we discuss relevant issues in East Africa, where recent agroforestry interventions to support...

  5. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Directory of Open Access Journals (Sweden)

    K. Becker

    2012-10-01

    Full Text Available We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas – if established in hot, dry coastal areas around the world – could capture 17–25 tonnes of carbon dioxide per hectare per year from the atmosphere (averaged over 20 yr. Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to reduce significantly the current upward trend in atmospheric CO2 levels.

    In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42–63 € per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS. In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level.

  6. Balance between climate change mitigation benefits and land use impacts of bioenergy : Conservation implications for European birds

    NARCIS (Netherlands)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-e

  7. Climate change, loss of (bio)diversity, natural ressource depletion, social marginalization etc: Our adaptation and mitigation contribution

    OpenAIRE

    Gattinger, A.; Horneburg, B.; Sundberg, C; Medina, C.P.

    2014-01-01

    The environmental and social challenges of the planet are a sad reality. Organic Agriculture advocates often espouse its contributions to mitigating the negative effects of farming. But mitigation alone is not enough. Farmers also need to adapt to a changed climate, reduced biodiversity and depleted resources as well as to an ever-changing socio-cultural environment.

  8. Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study

    Science.gov (United States)

    Mu, Jianhong E.; Wein, Anne; McCarl, Bruce

    2015-01-01

    We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.

  9. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    International Nuclear Information System (INIS)

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B). (letter)

  10. International technology transfer for climate change mitigation and the cases of Russia and China

    International Nuclear Information System (INIS)

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs

  11. Co-creation of climate change mitigation policies: the superiority of a community-based approach

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    research project and spread over the continuum from local government initiated to citizen initiated, and from projects aimed at changing individual behaviour to projects involving bigger communities (housing association, villages, etc.), it will be argued that both from a governance perspective (CO2......-reductions), as well as from a democratic perspective, citizen initiated projects involving communities of different kinds are clearly superior to for example government initiated campaigns aimed at the behaviour of individuals. This finding has clear policy-implications meaning that local climate change...... mitigation policies should be aimed at finding ways to support citizen initiated initiatives to a greater extent than is currently the case. Keywords: climate change mitigation, co-creation, behaviour, communities, citizen driven innovation....

  12. A Comprehensive Approach to Climate Change: Options and Obstacles

    Energy Technology Data Exchange (ETDEWEB)

    Fuglestvedt, J.S.; Skodvin, T.

    1996-06-01

    The main topics of this report are: (1) key elements in the development of a formula for a comprehensive approach to climate change, (2) relations between gases due to atmospheric chemistry interactions and common emission sources, (3) climate effects of existing international agreements on atmospheric emissions, and (4) methods for comparing gases. Building on the text of the climate convention itself, the authors develop an operational definition of a comprehensive approach and list 13 gases which should be included. There are not many adequate methods of comparing gases with different properties. At present the best choice is the Global Warming Potentials method (GWP), although it leaves the environmentally and politically important issue of the time horizon unresolved. An appendix comments on difficulties of including NOx emitted from surface sources in a comprehensive approach under the FCCC (UN`s Framework Convention on Climate Change). 73 refs., 20 figs., 13 tabs.

  13. Global Change Drought in the Southwest: New Management Options

    Science.gov (United States)

    Udall, B. H.; Overpeck, J. T.

    2015-12-01

    Long held worries about future runoff declines in the Colorado River under climate change are proving to be more than just theory. Fifteen years into this century flows of the Colorado are already declining due mostly to unprecedented temperatures, and as warming proceeds, declines in river flow will grow larger. Temperature-driven droughts, some lasting decades and much more severe than the current 15-year drought, will also become more commonplace if climate change continues unabated. Current projections of future water availability almost universally understate the risk of large Colorado flow reductions under business-as-usual warming. Betting on highly uncertain projections of increased precipitation to overcome even part of the flow reductions due to virtually certain warming is a poor risk management strategy. Many of the existing water policy arrangements in the Colorado River Basin will fail in the 21st century unless innovative new solutions are developed under leadership from the federal government and its basin state partners.

  14. Integrated assessment of vulnerability to climate change and adaptation options in the Netherlands

    International Nuclear Information System (INIS)

    In recent decades, it has become increasingly clear that the global climate is becoming warmer and that regional climates are changing. This report summarizes the results of an integrated assessment of vulnerability to climate change and adaptation options in the Netherlands carried out between July 2000 and July 2001 within the framework of the Dutch National Research Program on Global Air Pollution and Climate Change (NRP-2). The project's main aims were: - to provide an overview of scientific insights, expert judgements and stakeholders' perceptions of current and future impacts (positive and negative) of climate change for several economic sectors, human health, and natural systems in the Netherlands, considering various cross-sectoral interactions, - to develop a set of adaptation options for these sectors through a participatory process with the main stakeholders, - to perform an integrated assessment of cross-sectoral interactions of climate change impacts and adaptation options. Climate change impacts and adaptation options have been investigated for several important economic sectors (including agriculture, forestry, fisheries, industry, energy, transport, insurance and recreation and tourism), human health and natural systems (including soils, water and biodiversity issues).The results of this study are based on literature survey, a dialogue with experts and stakeholders. We are convinced that the report represents the most essential and relevant aspects of the impacts and adaptation options for climate change in the Netherlands, given the scenario setting of this study, the state of the art of current scientific knowledge, and today's expert and stakeholders' perceptions of the issues at stake. 215 refs

  15. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    Directory of Open Access Journals (Sweden)

    Nadja Kabisch

    2016-06-01

    Full Text Available Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.

  16. Towards a representative assessment of methane and nitrous oxide emissions and mitigation options from manure management of beef cattle feedlots in Brazil

    OpenAIRE

    Costa, C; Cerri, C. E. P.,; Dorich, C. D.; Maia, S. M. F.; Bernoux, MARTIAL,; Cerri, C.C.

    2015-01-01

    We conducted an inventory to estimate methane (CH4) and nitrous oxide (N2O) emissions from beef cattle feedlot manure in Brazil for the year of 2010. The aim was to determine (CH4) and (N2O) emissions from beef cattle feedlot manure in Brazil using the IPCC United Nations Intergovernmental Panel on Climate Change approach and present a framework that structures priority research for decreasing uncertainties and assessing mitigation scenarios. The analysis consisted of the use of specific farm...

  17. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Tomas Lundmark

    2014-03-01

    Full Text Available In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials.

  18. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    Science.gov (United States)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  19. Etude Climat no. 40 'The contribution of European forest to climate change mitigation'

    International Nuclear Information System (INIS)

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: In a framework where no common forestry policy exists at the EU level (such as the Common Agriculture Policy for agriculture), this report lists EU policies that have an impact on climate change mitigation that can be achieved by the forestry sector. With the objective of analyzing the coherence of these policies, we have established a typology and a hierarchy firstly by laying out the legal status and the financial and institutional resources associated with each policy, and secondly by reviewing the objectives of each policy in regards to climate change mitigation in the forestry sector. We finally analyze potentials synergies and conflicts between them

  20. Climate Change mitigation opportunities in the Energy sector for the Caribbean region

    DEFF Research Database (Denmark)

    Doral, Wenceslao Carrera; Chinchilla, Oscar Coto; Delgado, Ivan Relova;

    The “Climate change mitigation opportunities in the energy sector for the Caribbean region” has been prepared as part of the implementation of the Caribbean Regional Subcomponent of the MEAs Program for Africa, the Caribbean and the Pacific (ACP MEAs)1. The study has being executed...... in the region interested in linking energyclimate change benefits as part of the on-going and future scaling up efforts for Renewable Energy (RE) dissemination in the Caribbean. The study is based on an analysis of the mitigation potential in 16 countries in the Caribbean Region, due to the interconnection...... of renewable energy to the grid, the modeling of in-country energy sector development and its associated emissions for different scenarios; that include both the “business as usual” and “mitigation” due to the scaling up of Renewable Energy Technology. The study also looks at the experience from participation...

  1. The role of HFCs in mitigating 21st century climate change

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2013-06-01

    Full Text Available There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs, in addition to reducing emissions of CO2. The SLCPs include methane (CH4, black carbon aerosols (BC, tropospheric ozone (O3 and hydrofluorocarbons (HFCs. Recent studies have estimated that by mitigating emissions of CH4, BC, and O3 using available technologies, about 0.5 to 0.6 °C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5 °C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2 °C warming threshold during this century.

  2. Management Options for Organic Winter Wheat Production under Climate Change

    Directory of Open Access Journals (Sweden)

    Ralf Bloch

    2016-04-01

    Full Text Available An effective adaptive strategy for reducing climate change risks and increasing agro-system resiliency is broadening cropping system diversity, heightening the flexibility of cultivation and tillage methods. Climate change impacts on standard cultivation practices such as mineralisation and nitrate leaching due to mild and rainy winters, as well as frequent drought or water saturation, not only limiting fieldwork days, but also restricting ploughing. This calls for alternative methods to counteract these propensities. From 2010 to 2013, a farming system experiment was conducted on a distinctly heterogeneous organic farm in Brandenburg, Germany. With the intention of devising a more varied and flexible winter wheat cultivation method, standard organic farming practices (winter wheat cultivation after two years of alfalfa-clover-grass and ploughing in mid-October were compared to four alternative test methods, which were then evaluated for their robustness and suitability as adaptive strategies. Two of the alternative methods, early sowing and catch crop, entailed moving up the date for alfalfa-clover-grass tilling to July. Instead of a plough, a ring-cutter was used to shallowly (8 cm cut through and mix the topsoil. In the early sowing test method, winter wheat was sown at the end of August, after repeated ring-cutter processing. With the catch crop method, winter wheat seeding followed a summer catch crop and October tillage. The two oat methods (oat/plough; oat/ring-cutter entailed sowing winter wheat in September, following oat cultivation. Overall, the cultivation methods demonstrated the following robustness gradation: standard practice = catch crop ≥ early sowing > oat/plough > oat/ring-cutter. When compared to standard procedures, the catch crop and early sowing test methods showed no remarkable difference in grain yields. Measured against early sowing, the catch crop test method was significantly more robust when it came to winterkill

  3. The Nuclear Power Options for the Climate Change Dilemma

    International Nuclear Information System (INIS)

    The world population is currently about 6.5 billion and expected to reach 9 billion by 2050.This population increase and economic development will bring dramatic increase of energy demand in all over the world, especially in developing countries. Global electricity demand grows at 2.4% per year. To meet this growth, the worlds electricity generating capacity grows from about 3700 G We in 2004 to 7303 G We in 2030.The world may run short of fossil fuels, in particular oil. The protection of the global environment including the reduction of carbon dioxide emissions will be an important issue also. Nuclear energy is clean, safe, reliable and cost-effective, with many environmental benefits. It does not emit greenhouse gases that contribute to climate change, or combustion products and acid gases that cause air , water resource and land pollution. As of 14 January 2008 there were 439 nuclear power plants in operation around the world. They total about 372 G We of generating capacity and supply about 16% of the world electricity, 7 % of global energy. The present article briefly summaries the environmental aspects of the nuclear power and varies factors which support the attractiveness of it for many countries all over the world.

  4. The mitigation of the climate change: discourse and actions in APEC

    Directory of Open Access Journals (Sweden)

    Silvia Guadalupe Figueroa González

    2011-08-01

    Full Text Available Climate change is a shared problem that requires concerted action to meet the challenge on the best terms. The social, economic and political issue, pressed implications for designing mechanisms for cooperation on mitigation and adaptation. In Asia Pacific the largest emitters of greenhouse gases (GHGs that contribute to climate change are located; therefore becomes important convergence of national policies leading to a regional protocol on sustainable development. The Forum Asia Pacific Economic Cooperation (APEC has added to its agenda commitment to sustainable development and addressing climate change from different approaches: energy, agriculture, transport, and from different areas: the city and the region.

  5. Strategic and legal framework in forestry and related sectors: Climate change mitigation in European Union and Serbia

    OpenAIRE

    Ranković Nenad; Stanišić Mirjana; Nedeljković Jelena; Nonić Dragan

    2016-01-01

    The important role of forests in mitigating and adapting to climate changes is recognized and widely accepted. Therefore, it becomes a subject of universal interest and support. However, in the national strategies relating to climate change, the importance of the forestry sector in mitigating these changes is quite often not discussed in detail. In addition, the problem of climate change is not fully represented and included in national forestry policies. T...

  6. Balance between climate change mitigation benefits and land use impacts of bioenergy : Conservation implications for European birds

    OpenAIRE

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity ha...

  7. Challenging the claims on the potential of biochar to mitigate climate change

    OpenAIRE

    Francischinelli Rittl, T.

    2015-01-01

    Summary In this PhD thesis I studied the influence of biochar discourses on the political practices in Brazil and the impact of biochar on soil organic carbon (SOC) stocks, thus contributing to the current debate on the potential of biochar to mitigate climate change. Biochar is the solid material obtained from the carbonization of biomass. The deliberate production and application to soil distinguishes biochar from other carbonized products, e.g. charcoal. Inspired by the aged charcoal found...

  8. Reforestation and climate change mitigation: A background study for Joint Implementation in China and Indonesia

    OpenAIRE

    Gan, Lin; Næss, Lars Otto; Kasa, Sjur; O'Brien, Karen

    1998-01-01

    This paper discusses the importance of institutional barriers in promoting reforestation as a means of mitigating global climate change. It is argued that cost-effective implementation of reforestation depends on proper institutional settings in host countries. The study is motivated by the growing interest for reforestation projects in developing countries through the Joint Implementation (JI) mechanism. Particular emphasis is given to the role of property rights. The relationship between va...

  9. Implementing climate change mitigation in health services: the importance of context.

    Science.gov (United States)

    Desmond, Sharon

    2016-10-01

    Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies.

  10. Deliberative Mapping of options for tackling climate change: Citizens and specialists ‘open up’ appraisal of geoengineering

    Science.gov (United States)

    Bellamy, Rob; Chilvers, Jason; Vaughan, Naomi E.

    2014-01-01

    Appraisals of deliberate, large-scale interventions in the earth’s climate system, known collectively as ‘geoengineering’, have largely taken the form of narrowly framed and exclusive expert analyses that prematurely ‘close down’ upon particular proposals. Here, we present the findings from the first ‘upstream’ appraisal of geoengineering to deliberately ‘open up’ to a broader diversity of framings, knowledges and future pathways. We report on the citizen strand of an innovative analytic–deliberative participatory appraisal process called Deliberative Mapping. A select but diverse group of sociodemographically representative citizens from Norfolk (United Kingdom) were engaged in a deliberative multi-criteria appraisal of geoengineering proposals relative to other options for tackling climate change, in parallel to symmetrical appraisals by diverse experts and stakeholders. Despite seeking to map divergent perspectives, a remarkably consistent view of option performance emerged across both the citizens’ and the specialists’ deliberations, where geoengineering proposals were outperformed by mitigation alternatives. PMID:25224904

  11. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  12. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  13. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  14. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Directory of Open Access Journals (Sweden)

    José Manuel Ortega-Egea

    Full Text Available The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change and socio-demographics (especially country-level variables in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  15. Vulnerability of drained and rewetted organic soils to climate change impacts and associated adaptation options

    Science.gov (United States)

    Renou-Wilson, Florence; Müller, Christoph; Wilson, David

    2016-04-01

    With 20% of the land covered with peat soils, Ireland needs to develop a deeper understanding among stakeholders of the potential vulnerability of peatlands and organic soils to climate change (both gradual and extreme events) in the context of current land use changes. The fate of carbon in organic soils is critical for predicting future greenhouse gas (GHG) concentrations in the atmosphere. While keeping carbon stock in organic soils (for example by rewetting drained sites) can be an effective mitigation measures to reduce CO2 emissions, adaptation options are also required to ensure their 'resilience'. Rewetting of drained organic soils has been initiated at several sites across the country with the aim to (i) reduce net GHG emissions at the source and/or (ii) create suitable conditions for carbon sequestration in active peatland habitats. We present here two sites: an industrial cutaway peatland and an extensive grassland over organic soil, where long-term (> 4 years) environmental and GHG flux (chamber) datasets in both drained and rewetted areas have provided information on the impact of annual weather variability on net ecosystem exchange (NEE). Statistical response functions estimated for gross primary production (GPP) and ecosystem respiration (Reco) were used to reconstruct annual CO2 balances using site-specific models driven by soil temperature, solar radiation, soil water table levels and leaf area index. The modification of some of the model parameters to fit predicted future climate scenarios for the region allowed potential changes in modelled NEE to be assessed. Both sites were, on average, an annual source of CO2 when drained (138 - 232 g C m‑2 yr‑1) and a sink when rewetted (ranging from -40 g C m‑2 yr‑1 in the ungrazed rewetted grassland to a maximum of -260 g C m‑2 yr‑1 in the rewetted cutaway). At both sites, soil temperatures and water table levels varied significantly between all years. Average NEE at each site displayed a very

  16. Balancing expenditures on mitigation of and adaptation to climate change : an exploration of Issues relevant to developing countries

    OpenAIRE

    Lecocq, Franck; Shalizi, Zmarak

    2007-01-01

    Although climate policies have been so far mostly focused on mitigation, adaptation to climate change is a growing concern in developed and developing countries. This paper discusses how adaptation fits into the global climate strategy, at the global and national levels. To do so, a partial equilibrium optimization model of climate policies-which includes mitigation, proactive adaptation (...

  17. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    Science.gov (United States)

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. PMID:27420171

  18. Long-term climate change mitigation potential with organic matter management on grasslands.

    Science.gov (United States)

    Ryals, Rebecca; Hartman, Melannie D; Parton, William J; DeLonge, Marcia S; Silver, Whendee L

    2015-03-01

    Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation. PMID:26263673

  19. Optionality: Social Cognitive Factors in Changing Linguistic Complexity in the Dialects of Estonia

    Directory of Open Access Journals (Sweden)

    Anne Tamm

    2013-03-01

    Full Text Available Estonian dialects provide several examples of increasing and decreasing linguistic complexity. The goal of the article is to clarify the notion of optionality. Optionality is clarified by discussing its relationships with social cognition in the Estonian dialect phenomena. Examples are derived from two areas of rapid grammatical change, negation and evidentiality in Standard versus South Estonian. In languages, it is possible to derive negative and evidential interpretations without grammatical encoding by using cognitive mechanisms to derive the intended interpretation. However, languages tend to encode nega- tion and have negators. There are dialects in Estonia that optionally omit the negative auxiliary for language-internal reasons. Optionality may but need not result in an impoverished system. Some categories, such as evidentiality in Standard Estonian, are the result of enriched grammar. Evidentiality can be optionally encoded because of its interaction with social cognition. In the category of evidentiality the optionality of a grammatical form enhances the spread of a category instead of obstructing it.

  20. Strategic and legal framework in forestry and related sectors: Climate change mitigation in European Union and Serbia

    Directory of Open Access Journals (Sweden)

    Ranković Nenad

    2016-01-01

    Full Text Available The important role of forests in mitigating and adapting to climate changes is recognized and widely accepted. Therefore, it becomes a subject of universal interest and support. However, in the national strategies relating to climate change, the importance of the forestry sector in mitigating these changes is quite often not discussed in detail. In addition, the problem of climate change is not fully represented and included in national forestry policies. The aim of this research was to determine the compliance and differences of strategic and legislative frameworks in forestry and related sectors, relating to climate change mitigation in the EU and Serbia. At the EU level, there are two strategies and a policy framework, and in Serbia, eight sectoral strategies, referring and discussing the climate change mitigation through forestry. At the same time, these issues are highlighted as the primary objective, only in the Climate and Energy Package of the EU and the Forestry Development Strategy in Serbia. In terms of legislative framework in Serbia, two laws have climate change mitigation through forestry as the primary objective, while for the analyzed relevant EU legislation, this is a secondary objective. In Serbia, only the Forest law has a direct impact on climate change mitigation through forestry, while at EU level, there is no regulation, directive or communication, with the same direct influence. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studies of climate changes and their impact on the environment-monitoring impacts, adaptation and mitigation, podprojekat, 43007/16-III: Socio-economic development, mitigation and adaptation to climate change

  1. Public attention to science and political news and support for climate change mitigation

    Science.gov (United States)

    Hart, P. Sol; Nisbet, Erik C.; Myers, Teresa A.

    2015-06-01

    We examine how attention to science and political news may influence public knowledge, perceived harm, and support for climate mitigation policies. Previous research examining these relationships has not fully accounted for how political ideology shapes the mental processes through which the public interprets media discourses about climate change. We incorporate political ideology and the concept of motivated cognition into our analysis to compare and contrast two prominent models of opinion formation, the scientific literacy model, which posits that disseminating scientific information will move public opinion towards the scientific consensus, and the motivated reasoning model, which posits that individuals will interpret information in a biased manner. Our analysis finds support for both models of opinion formation with key differences across ideological groups. Attention to science news was associated with greater perceptions of harm and knowledge for conservatives, but only additional knowledge for liberals. Supporting the literacy model, greater knowledge was associated with more support for climate mitigation for liberals. In contrast, consistent with motivated reasoning, more knowledgeable conservatives were less supportive of mitigation policy. In addition, attention to political news had a negative association with perceived harm for conservatives but not for liberals.

  2. Environmental and socio-economic impacts of global climate change: An overview on mitigation approaches

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2013-12-01

    Full Text Available Climate change is expected to bring about major change in freshwater availability, the productive capacity of soils, and in patterns of human settlement. Likewise, climate change is intimately linked to human health either directly or indirectly. However, considerable uncertainties exist with regard to the extent and geographical distribution of these changes. Predicting scenarios for how climate-related environmental change may influence human societies and political systems necessarily involves an even higher degree of uncertainty. Societies have a long record of adapting to climate risks and, climate changes. Household asset portfolios and livelihood choices are shaped by the need to manage climatic risks, especially in rural areas and for lowincome households. Likewise, disaggregated analysis revealed that demographic and environmental variables have a very profound effect on the risk of civil conflict and hence peace. In nutshell, we can say that there may be multifaceted impact of climate change in its totality. Further, different views, issues and mitigation measures are discussed particularly in Indian scenario. In this direction, The "National Action Plan on Climate Change" was set by Indian Prime Minister which encompasses a broad and extensive range of measures, and focuses on eight missions, which will be pursued as key components of the strategy for sustainable development. These include missions on solar energy, enhanced energy efficiency, sustainable habitat, conserving water, sustaining the Himalayan ecosystem, creating a "Green India," sustainable agriculture and, finally, establishing a strategic knowledge platform for climate change. Finally, different steps/approaches pertaining to green, eco-friendly and sustainable technology has been discussed in order to mitigate the impact of global environmental damage originating from increased industrialization and hence appropriately address this global disaster which is being the

  3. Uncertainty assessment of climate change adaptation options in urban flash floods

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    2012-01-01

    Introduction. Adaptation is necessary to cope with the increasing flood risk in cities due to climate change in many regions of the world. Decision marking of adaptation strategies often requires a comprehensive risk-based economic analysis to indicate the net benefits of proposed options. Priority...

  4. Climate change risks and adaptation options across Australian seafood supply chains – A preliminary assessment

    Directory of Open Access Journals (Sweden)

    A. Fleming

    2014-01-01

    Full Text Available Climate change is already impacting the biology of the oceans and some dependent industries are in turn responding to these impacts. The development of response options for users of marine resources, such as fishers, is important in guiding adaptation efforts. However, harvesting fish is only the first step in a supply chain that delivers seafood to consumers. Impacts higher up the chain have seldom been considered in fisheries-climate research yet an understanding of these impacts and how climate risks and adaptation information are interpreted and used by stakeholders across the chain is vital for developing viable and sustainable adaptation options. We examined stakeholder perceptions of points where climate change impacts and adaptations currently occur, or may occur in the future, across the supply chains of several Australian fisheries (southern rock lobster, tropical rock lobster, prawn and aquaculture sectors (oyster, aquaculture prawn. We found that climate change impacts are well understood at the harvest stage and there is evidence of potential impacts and disruption to supply chains. Yet, there currently is no strong driver for change higher up the chain. Holistic adaptation planning along the supply chain, underpinned by targeted information and policy for the catch, processing and distribution, and marketing phases is needed. This effort is needed now, as some adaptation options have long lead times, and a delay in adaptation planning may limit future options. Given potential lead times and associated uncertainty, a risk-based approach is recommended with regard to adaptation planning for Australia’s seafood sector.

  5. Mitigating the Urban Heat Island under Climate Change through Urban Management

    Science.gov (United States)

    Zhao, L.; Lee, X.; Oleson, K. W.; Schultz, N. M.; Smith, R. B.

    2015-12-01

    The urban heat island (UHI) represents ubiquitous urban warmth compared to surrounding rural areas. This phenomenon, when compounded with future climate warming, will exacerbate heat stress on urban residents who will comprise 70% of the world's population by 2070. At the same time, urban climate adaptation plans have shown great potential for reducing the impacts of global change. In this study, we assess three mitigation strategies, including reflective roofs, green roofs, and street trees, to ameliorate the warming under climate change through both "online" and "offline" methods. The "online" method compares modeling results from a modified urban roof albedo configuration (ALB-MOD) where the roof albedo is raised to a high reflective value to the modeling results from the default configuration (CTRL), both using the Community Earth System Model (CESM). Three pairs of simulations under current climate forcing and two future scenarios (RCP4.5 and RCP8.5) are conducted. The "offline" method uses a surface temperature attribution solution derived previously for partitioning the UHI intensity to assess the efficacy of the mitigation strategies. The "offline" method supplements the "online" method in assessing green roof and street tree strategies, because the current design of CESM does not have explicit vegetation in the urban canopy configuration. The excellent agreement between the "online" and "offline" results confirms the validity of the offline scheme, supporting that the "offline" method can be used to predict the impacts of various urban adaptation strategies for development planning. Results show that albedo management is the most effective and viable way to mitigate UHIs, whereas although green roof and street trees strategies have evaporative cooling effects, the cooling is compensated by vegetation's lower albedo, showing much less effectiveness on UHI mitigation. Although convection efficiency associated with the surface roughness is an important

  6. Mitigation scenario analysis: modelling the impacts of changes in agricultural management practices on surface water quality at the catchment scale

    Science.gov (United States)

    Taylor, Sam; He, Yi; Hiscock, Kevin

    2014-05-01

    ) within the program SWAT-CUP (SWAT Calibration and Uncertainty Programs). Model performance is assessed against a variety of statistical measures including the Nash-Sutcliffe efficiency coefficient (NSE) and percentage bias (PBIAS). Various mitigation scenarios are modelled within the catchment, including changes in fertiliser application rates and timing and the introduction of different tillage techniques and cover-crop regimes. The effects of the applied measures on water quality are examined and recommendations made on which measures have the greatest potential to be applied within the catchment to improve water quality. This study reports the findings of that analysis and presents techniques by which diffuse agricultural pollution can be reduced within catchments through the implementation of multiple on-farm measures. The methodology presented has the potential to be applied within other catchments, allowing tailored mitigation strategies to be developed. Ultimately, this research provides 'tested' mitigation options that can be applied within the Wensum and similar catchments to improve water quality and to ensure that certain obligatory water quality standards are achieved.

  7. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Balbus, John M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenblatt, Jeffery B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chari, Ramya [Rand Corporation, Santa Monica, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ebi, Kristie L. [ClimAdapt, Inc., Los Altos, CA (United States)

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  8. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johns, T.C.; Hewitt, C.D. [Met Office, Hadley Centre, Exeter (United Kingdom); Royer, J.F.; Salas y. Melia, D. [Centre National de Recherches Meteorologiques-Groupe d' Etude de l' Atmosphere Meteorologique (CNRM-GAME Meteo-France CNRS), Toulouse (France); Hoeschel, I.; Koerper, J. [Freie Universitaet Berlin, Institute for Meteorology, Berlin (Germany); Huebener, H. [Hessian Agency for the Environment and Geology, Wiesbaden (Germany); Roeckner, E.; Giorgetta, M.A. [Max Planck Institute for Meteorology, Hamburg (Germany); Manzini, E. [Max Planck Institute for Meteorology, Hamburg (Germany); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); May, W.; Yang, S. [Danish Meteorological Institute, Danish Climate Centre, Copenhagen (Denmark); Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD/IPSL), UMR 8539 CNRS, ENS, UPMC, Ecole Polytechnique, Paris Cedex 05 (France); Otteraa, O.H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Uni. Bjerknes Centre, Bergen (Norway); Vuuren, D.P. van [Utrecht University, Utrecht (Netherlands); Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands); Denvil, S. [Institut Pierre Simon Laplace (IPSL), FR 636 CNRS, UVSQ, UPMC, Paris Cedex 05 (France); Fogli, P.G. [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Tjiputra, J.F. [University of Bergen, Department of Geophysics, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Stehfest, E. [Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands)

    2011-11-15

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  9. Limited potential of no-till agriculture for climate change mitigation

    Science.gov (United States)

    Powlson, David S.; Stirling, Clare M.; Jat, M. L.; Gerard, Bruno G.; Palm, Cheryl A.; Sanchez, Pedro A.; Cassman, Kenneth G.

    2014-08-01

    The Emissions Gap Report 2013 from the United Nations Environment Programme restates the claim that changing to no-till practices in agriculture, as an alternative to conventional tillage, causes an accumulation of organic carbon in soil, thus mitigating climate change through carbon sequestration. But these claims ignore a large body of experimental evidence showing that the quantity of additional organic carbon in soil under no-till is relatively small: in large part apparent increases result from an altered depth distribution. The larger concentration near the surface in no-till is generally beneficial for soil properties that often, though not always, translate into improved crop growth. In many regions where no-till is practised it is common for soil to be cultivated conventionally every few years for a range of agronomic reasons, so any soil carbon benefit is then lost. We argue that no-till is beneficial for soil quality and adaptation of agriculture to climate change, but its role in mitigation is widely overstated.

  10. EFFECT OF CLIMATE CHANGE ON DAIRY PRODUCTION IN BOTSWANA AND ITS SUITABLE MITIGATION STRATEGIES

    Directory of Open Access Journals (Sweden)

    J. C. MOREKI

    2013-11-01

    Full Text Available This paper explores the effects of climate change on dairy production in Botswana and mitigation strategies are suggested. Dairy farming has not experienced growth over time rendering the country heavily dependent on milk imports. National dairy herd is estimated to be approximately 5000 and per capita consumption of milk about 32.5 litres per person per year. Currently, Botswana is experiencing average high temperatures and low rainfall, frequent droughts and scarcity of both ground and surface water, which all contribute to low livestock and crop productivity. Changes in rainfall patterns, frequent droughts, high incidences of animal diseases (e.g., mastitis and FMD and parasites, and high environmental temperatures cause significant decrease in livestock productivity. For dairy animals, there is a decline in milk yield and reduced animal weight gain due mainly to high temperatures and inadequate feeds. Mitigation strategies comprise using smaller dairy breeds such as Jersey and Brown Swiss and local Tswana breed, growing fodder crops and utilization of crop residues and constructing cow sheds. Thus, the effects of climate change on dairy cattle production are real and require immediate attention if they are to be minimized or managed properly to attain higher milk production.

  11. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation

    International Nuclear Information System (INIS)

    Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, ‘urban ecosystem modeling (UEM)’ is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation. - Highlights: • Urban ecosystems modeling (UEM) is defined in an interdisciplinary context. • State-of-the-art models for UEM are critically reviewed and compared. • An integrated framework for explicit UEM is proposed under global change. - State-of-the-art models of urban ecosystem modeling (UEM) are reviewed for rational urban management and emissions mitigation

  12. Climate change mitigation in the Forest Sector: what Happened in Poznan

    International Nuclear Information System (INIS)

    Climate change mitigation in the forestry sector was an important topic during the recent Climate Convention conference in Poznan (1- 12 December 2008). Forests appeared in various agenda items of the formal negotiations: - under the Ad Hoc Working Group on Long-term Cooperative Action under the Convention (AWG-LCA) concerning policy approaches and positives incentives on issues relating to reducing emissions from deforestation and forest degradation in developing countries; and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries ('REDD+'), - under the Subsidiary Body for Scientific and Technological Advice (SBSTA) concerning methodological aspects on the above, - under the Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol (AWG-KP) concerning the treatment of greenhouse gas emissions and removals related to land use, land use change and forestry (LULUCF) in Annex I Parties in the context of post-2012 commitments. This note recalls what happened under these agenda items and also on the margins of formal negotiations in relation to climate change mitigation in the forest sector. (author)

  13. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    Science.gov (United States)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  14. Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change

    Science.gov (United States)

    Mu, J. E.; McCarl, B.

    2011-12-01

    Land use and management change interact with climate change. Land uses such as forestry, cropping and grazing depend on specific ecosystems that will be affected by climate change. Furthermore, this change will not be uniform across land uses or regions. Consequently, land use productivity will change as will the mix of land uses (Mendelsohn and Dinar 2009). On the other hand, land use has been a major contributor to greenhouse gas emissions (IPCC 2007). Therefore, research focusing on land use change, climate change and greenhouse gas mitigation should consider the interaction between these effects. The research to be reported in this presentation investigates how agricultural and forestry land use and management decisions change across the coterminous U.S. under climate change with and without adaptation plus how a carbon price policy influences decisions, mitigates GHG emissions and alters carbon sequestration. Our approach is to simulate behavior under climate scenarios by 2030 using data from alternative two climate and two vegetation models while allowing for adaptive responses and imposing carbon prices. To do this, we use the Forest and Agricultural Optimization model with Greenhouse Gases (FASOMGHG) (Adams et al. 2005). In total, 16 scenarios are considered involving climate change and GHG prices relative to a base case with no climate change and no adaptation or mitigation. After analyzing results across regions and sectors, our findings include: 1.More land is converted to forestry use and less land is used for agricultural purposes under both the adaptation and mitigation strategies. 2. Harvest rotation of hardwood is lengthened and harvest of softwood and hardwood are reduced when a carbon price is included. However, such management changes were insignificant when only the adaptation strategy is used. 3. The total GHG emissions from agricultural and forestry sector are increased by 2-3 millions tones CO2 equivalent under climate change and adaptation

  15. Electricity supply options, sustainable development and climate change priorities. Case studies for South Africa

    International Nuclear Information System (INIS)

    This report summarizes the results of the project Projecting future energy demand: Balancing development, energy and climate priorities in large developing economies, which has been managed by UNEP Risoe Centre on behalf of UNEP DTIE. The report argues that starting from development objectives is critical to mitigation efforts in developing countries. Instead of defining local benefits as ancillary to mitigation, reductions of GHG emissions should be seen as the co-benefits of policies that drive local sustainable development. A development-focused approach seems more likely to be implemented than the imposition of GHG targets by the international community - especially as South Africa has adopted development targets such as the Millennium Development Goals and promoted the Johannesburg Plan of Action. The case studies presented take as their starting point development objectives, rather than climate change targets. The form of climate action which it investigates is sustainable development policies and measures. (BA)

  16. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

    Science.gov (United States)

    Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leon; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander

    2016-08-01

    Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.

  17. Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects

    International Nuclear Information System (INIS)

    Ongoing negotiations under the UNFCCC center around the possibilities for stabilization of greenhouse gases at a “safe” level. New energy technologies are assumed to make major contributions to this goal. However, in the light of scientific uncertainty (e.g. about climate sensitivity, feedback effects, etc.), market uncertainty (e.g. fuel price volatility), technological uncertainty (e.g. availability of renewable technology), socio-economic uncertainty (e.g. development of different macroeconomic factors) and policy uncertainty (e.g. about commitment to specific targets and stability of CO2 prices), it is difficult to assess the importance of different technologies in achieving robust long-term climate risk mitigation. One example currently debated in this context is biomass-based energy, which can be used to produce both carbon-neutral electricity and at the same time offer the possibility of “negative emissions” by capturing carbon from biomass combustion at the conversion facility and permanently storing it. In this study, we analyze the impact of uncertainty on investment decision-making at the plant level in a real options valuation framework, and then use the GGI Scenario Database () as a point of departure for deriving optimal technology portfolios across different socio-economic scenarios for a range of stabilization targets, focusing, in particular, on the new, low-emission targets using alternative risk measures.

  18. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  19. Climate Change Mitigation Challenge for Wood Utilization-The Case of Finland.

    Science.gov (United States)

    Soimakallio, Sampo; Saikku, Laura; Valsta, Lauri; Pingoud, Kim

    2016-05-17

    The urgent need to mitigate climate change invokes both opportunities and challenges for forest biomass utilization. Fossil fuels can be substituted by using wood products in place of alternative materials and energy, but wood harvesting reduces forest carbon sink and processing of wood products requires material and energy inputs. We assessed the extended life cycle carbon emissions considering substitution impacts for various wood utilization scenarios over 100 years from 2010 onward for Finland. The scenarios were based on various but constant wood utilization structures reflecting current and anticipated mix of wood utilization activities. We applied stochastic simulation to deal with the uncertainty in a number of input variables required. According to our analysis, the wood utilization decrease net carbon emissions with a probability lower than 40% for each of the studied scenarios. Furthermore, large emission reductions were exceptionally unlikely. The uncertainty of the results were influenced clearly the most by the reduction in the forest carbon sink. There is a significant trade-off between avoiding emissions through fossil fuel substitution and reduction in forest carbon sink due to wood harvesting. This creates a major challenge for forest management practices and wood utilization activities in responding to ambitious climate change mitigation targets. PMID:27074531

  20. Tooling up urban planning for climate change mitigation in Malaysian cities

    International Nuclear Information System (INIS)

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' inner working, unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability

  1. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  2. Tooling up urban planning for climate change mitigation in Malaysian cities

    Science.gov (United States)

    Chau, L. W.; Yap, Z. C.; Ho, C. S.

    2014-02-01

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' "inner working", unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability.

  3. ¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Karena Shaw

    2013-05-01

    Full Text Available Shale gas proponents argue this unconventional fossil fuel offers a “bridge” towards a cleaner energy system by offsetting higher-carbon fuels such as coal. The technical feasibility of reconciling shale gas development with climate action remains contested. However, we here argue that governance challenges are both more pressing and more profound. Reconciling shale gas and climate action requires institutions capable of responding effectively to uncertainty; intervening to mandate emissions reductions and internalize costs to industry; and managing the energy system strategically towards a lower carbon future. Such policy measures prove challenging, particularly in jurisdictions that stand to benefit economically from unconventional fuels. We illustrate this dilemma through a case study of shale gas development in British Columbia, Canada, a global leader on climate policy that is nonetheless struggling to manage gas development for mitigation. The BC case is indicative of the constraints jurisdictions face both to reconcile gas development and climate action, and to manage the industry adequately to achieve social licence and minimize resistance. More broadly, the case attests to the magnitude of change required to transform our energy systems to mitigate climate change.

  4. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Science.gov (United States)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  5. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  6. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).

    Science.gov (United States)

    Bogner, Jean; Pipatti, Riitta; Hashimoto, Seiji; Diaz, Cristobal; Mareckova, Katarina; Diaz, Luis; Kjeldsen, Peter; Monni, Suvi; Faaij, Andre; Gao, Qingxian; Zhang, Tianzhu; Ahmed, Mohammed Abdelrafie; Sutamihardja, R T M; Gregory, Robert

    2008-02-01

    Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints

  7. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).

    Science.gov (United States)

    Bogner, Jean; Pipatti, Riitta; Hashimoto, Seiji; Diaz, Cristobal; Mareckova, Katarina; Diaz, Luis; Kjeldsen, Peter; Monni, Suvi; Faaij, Andre; Gao, Qingxian; Zhang, Tianzhu; Ahmed, Mohammed Abdelrafie; Sutamihardja, R T M; Gregory, Robert

    2008-02-01

    Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints

  8. Mitigation of climate change: back to IPCC's fifth report

    International Nuclear Information System (INIS)

    This article provides an overview of current knowledge on climate change mitigation, based on the Intergovernmental Panel on Climate Change (IPCC) Working Group III fifth assessment report. The report emphasizes how little room for manoeuvre there is to meet the target of a global mean surface temperature increase below 2 deg. C, if ambitious policies to reduce greenhouse gases are not implemented by 2020. It also assesses sectoral potentials for emissions reductions and addresses emerging questions, in particular regarding the financing of decarbonization pathways. The report finally highlights the need for integrated policies to take advantage of co-benefits of climate policies (health, energy security, etc.), the evaluation of which is becoming more systematic. (authors)

  9. Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2002-11-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

  10. Climate change, insurance and the building sector: technological synergisms between adaptation and mitigation

    International Nuclear Information System (INIS)

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy-efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to understand better this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognised are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to expanding these efforts significantly. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups. (author)

  11. A trinity of sense: Using biomass in the transport sector for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindfeldt, Erik G.

    2008-11-15

    This thesis analyses two strategies for decreasing anthropogenic carbon dioxide (CO_2) emissions: to capture and store CO_2, and to increase the use of biomass. First, two concepts for CO_2 capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO_2 is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO_2 will always induce significant efficiency penalties. Other strategies are also needed if CO_2 emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO_2 emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO_2 emissions by comparatively easy and cost-efficient CO_2 capture from concentrated CO_2 streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production - since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO_2-inefficient use of biomass, but the thesis explores how biofuels' climate change mitigation effects may be increased by introducing low-cost CO_2 capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels - among them their climate change mitigation benefits - are far greater than the disadvantages

  12. A trinity of sense: Using biomass in the transport sector for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindfeldt, Erik G.

    2008-10-15

    This thesis analyses two strategies for decreasing anthropogenic carbon dioxide emissions: to capture and store CO{sub 2}, and to increase the use of biomass. First, two concepts for CO{sub 2} capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO{sub 2} is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO{sub 2} will always induce significant efficiency penalties. Other strategies are also needed if CO{sub 2} emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO{sub 2} emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO{sub 2} emissions by comparatively easy and cost-efficient CO{sub 2} capture from concentrated CO{sub 2} streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production - since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO{sub 2}-inefficient use of biomass, but the thesis explores how biofuels' climate change mitigation effects may be increased by introducing low-cost CO{sub 2} capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels - among them their climate change mitigation

  13. Towards mitigation of greenhouse gases by small changes in farming practices: understanding local barriers in Spain (Article in press)

    OpenAIRE

    Sánchez, Berta; Álvaro Fuentes, Jorge; Ann Cunningham, Ruth; Iglesias Picazo, Ana

    2014-01-01

    Small changes in agricultural practices have a large potential for reducing greenhouse gas emissions. However, the implementation of such practices at the local level is often limited by a range of barriers. Understanding the barriers is essential for defining effective measures, the actual mitigation potential of the measures, and the policy needs to ensure implementation. Here we evaluate behavioural, cultural, and policy barriers for implementation of mitigation practices at the local leve...

  14. Adapting to climate change in The Netherlands: an inventory of climate adaptation options and ranking of alternatives

    NARCIS (Netherlands)

    K. de Bruin (Kelly); R.B. Dellink (Rob); A. Ruijs (Arjan); L. Bolwidt; M.W. van Buuren (Arwin); J. Graveland (Jaap); R.S. de Groot; P.J. Kuikman; S. Reinhard; R.P. Roetter (Reimund); V.C. Tassone (Valentina); A.P. Verhagen (Arianne); E.C. van Ierland (Ekko)

    2009-01-01

    textabstractIn many countries around the world impacts of climate change are assessed and adaptation options identified. We describe an approach for a qualitative and quantitative assessment of adaptation options to respond to climate change in the Netherlands. The study introduces an inventory and

  15. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  16. Climate change mitigation in developing countries through interregional collaboration by local governments: Japanese citizens' preference

    International Nuclear Information System (INIS)

    This study explores the motivation of domestic and international interregional collaboration on climate change mitigation through carbon crediting by Japanese local governments, using a social survey. The study finds balanced collaboration with domestic partner regions and developing countries is preferred in the case of collaboration, given that the unit cost of collaboration is assumed lower than that of no collaboration. Appreciation of benefits such as technology transfer and local environmental improvement in developing countries increases the preference of collaboration with developing countries. Two factors hinder Japanese local governments' collaboration with developing countries from the perspective of citizens: a sense of environmental responsibility to reduce greenhouse gas (GHG) emissions within the city and a preference for domestic orientation even if the collaboration with developing countries is less costly and has benefits of technology transfer and local environmental improvement. The preference for a lower total cost of GHG emissions reductions is confirmed except for those with a sense of environmental responsibility. The study also finds that provision of information on mitigation projects and co-benefits would increase the preference for interregional collaboration with developing countries depending on the types of collaborative project, except for those with a sense of environmental responsibility. - Highlights: → We surveyed views of Japanese citizens on interregional/international cooperation of their cities for GHG reduction. → Sense of environmental responsibility is negatively correlated with the needs for cooperation. → Information on co-benefits of collaboration would strengthen preference for cooperation.

  17. Climate Change Vulnerabilities and Adaptation Options for Forest Vegetation Management in the Northwestern USA

    Directory of Open Access Journals (Sweden)

    Jessica E. Halofsky

    2016-03-01

    Full Text Available Recent vulnerability assessments, conducted in diverse regions in the northwestern United States, indicate that many commonalities exist with respect to projected vulnerabilities to climate change. Dry forests are projected to have significant changes in distribution and abundance of species, partially in response to higher temperature and lower soil moisture, but mostly in response to projected increases in extreme events and disturbances—drought, wildfire, and insect outbreaks. Wildfire and mountain pine beetles have caused extensive mortality across millions of hectares in this region during the past decade, and wildfire area burned is projected to increase 200%–300% by mid-21st century. Science–management partnerships associated with recent assessments have identified an extensive list of adaptation options, including both strategies (general planning and tactics (on-the-ground projects. Most of the options focus on increasing resilience to disturbances and on reducing current stressors to resource conditions. Adaptation options are generally similar across the biogeographically diverse region covered by assessments, suggesting that there may be a limit on the number of feasible responses to climate change. Federal agencies in the northwestern United States are now using these assessments and adaptation approaches to inform sustainable resource management and planning, mostly through fine tuning of existing practices and policies.

  18. Benefits of collaborative and comparative research on land use change and climate mitigation

    Science.gov (United States)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  19. Budgeting of major nutrients and the mitigation options for nutrient mining in semi-arid tropical agro-ecosystem of Tamil Nadu, India using NUTMON model.

    Science.gov (United States)

    Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V

    2016-04-01

    Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed. PMID:27021693

  20. Simulating N2O emissions from irrigated cotton wheat rotations in Australia using DAYCENT: Mitigation options by optimized fertilizer and irrigation management

    Science.gov (United States)

    Scheer, Clemens; DelGrosso, Stephen; Parton, William; Rowlings, David; Grace, Peter

    2014-05-01

    Irrigation and fertilization do not only stimulate plant growth, but also accelerate microbial C- and N-turnover in the soil and thus can lead to enhanced emissions of nitrous oxide (N2O) from soils. In Australia there are more than 2 million hectares of agricultural land under irrigation and research has now focused on a combination of nitrogen fertilizer and irrigation management to maintain crop yields, maximize nitrogen use efficiency and reduce N2O emissions. Process-based models are now being used to estimate N2O emissions and assess mitigation options of N2O fluxes by improving management at field, regional and national scales. To insure that model predictions are reliable it is important to rigorously test the model so that uncertainty bounds for N2O emissions can be reduced and the impacts of different management practices on emissions can be better quantified. We used high temporal frequency dataset of N2O emissions to validate the performance of the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. Furthermore, we evaluated potential N2O mitigation strategies in irrigated cotton-wheat rotations in Australia by simulating different fertilizer and irrigation management scenarios over a climatically variable 25 year time span. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. The simulations of different fertilization and irrigation practices in cotton-wheat rotations over a 25 year time frame clearly showed that there is scope for reducing N2O emissions by modified fertilizer and irrigation management. For wheat and for cotton the model predicted that a

  1. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  2. Impact of Real-world Factors Influencing Investment Decisions on the Costs and Distribution of Climate Change Mitigation

    Science.gov (United States)

    Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.

    2015-12-01

    Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment

  3. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    International Nuclear Information System (INIS)

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  4. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Raju, K.V. [Institute for Social and Economic Change, Bangalore (India). Centre for Ecological Economics and Natural Resources; Rao, K.S. [Delhi Univ. (India). Dept. of Botany; Kaechele, Harald [Leibniz Centre for Agricultural Landscape Research, Muencheberg (Germany). Inst. of Socioeconomics; Schaldach, Ruediger (ed.) [Kassel Univ. (Germany). Centre for Environmental System Research

    2013-07-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  5. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Arvesen, Anders, E-mail: anders.arvesen@ntnu.no [Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491 (Norway); Bright, Ryan M.; Hertwich, Edgar G. [Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)

    2011-11-15

    This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the climate policy arena, we argue that unrealistic technology optimism exists in current climate change mitigation assessments, and, consequently, world energy and climate policy. The overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect of interactions between parts of physical and social sub-systems, systematically leads to overly optimistic assessments. Society must likely seek deeper changes in social and economic structures to preserve the climatic conditions to which the human civilization is adapted. We call for priority to be given to research evaluating aspects of mitigation in a broad, system-wide perspective. - Highlights: > We highlight some of the simplifying assumptions in climate change mitigation scenarios. > Mitigation assessments are the basis of unfounded technology optimism in climate policy. > Society must likely seek deeper changes in social and economic structures to stabilize climate.

  6. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation

    International Nuclear Information System (INIS)

    This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the climate policy arena, we argue that unrealistic technology optimism exists in current climate change mitigation assessments, and, consequently, world energy and climate policy. The overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect of interactions between parts of physical and social sub-systems, systematically leads to overly optimistic assessments. Society must likely seek deeper changes in social and economic structures to preserve the climatic conditions to which the human civilization is adapted. We call for priority to be given to research evaluating aspects of mitigation in a broad, system-wide perspective. - Highlights: → We highlight some of the simplifying assumptions in climate change mitigation scenarios. → Mitigation assessments are the basis of unfounded technology optimism in climate policy. → Society must likely seek deeper changes in social and economic structures to stabilize climate.

  7. Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R

    International Nuclear Information System (INIS)

    We use the ReMIND-R model to analyze the role of Asia in the context of a global effort to mitigate climate change. We introduce a novel method of secondary energy based mitigation shares, which allows us to quantify the economic mitigation potential of technologies in different regions and final energy carriers. The 2005 share of Asia in global CO2 emissions amounts to 38%, and is projected to grow to 53% under business-as-usual until the end of the century. Asia also holds a large fraction of the global mitigation potential. A broad portfolio of technologies is deployed in the climate policy scenarios. We find that biomass in combination with CCS, other renewables, and end-use efficiency each make up a large fraction of the global mitigation potential, followed by nuclear and fossil CCS. We find considerable differences in decarbonization patterns across the final energy types electricity, heat and transport fuels. Regional differences in technology use are a function of differences in resource endowments, and structural differences in energy end use. Under climate policy, a substantial mitigation potential of non-biomass renewables emerges for China and other developing countries of Asia (OAS). Asia also accounts for the dominant share of the global mitigation potential of nuclear energy. In view of the substantial near term investments into new energy infrastructure in China and India, early adoption of climate policy prevents lock-in into carbon intensive infrastructure and thus leads to a much higher long-term mitigation potential. - Highlights: ► We develop a novel methodology for the attribution of emission reductions to technologies. ► Asia accounts for a substantial and increasing share of global CO2 emissions. ► A broad portfolio of technologies contributes to emission reductions. ► Early action increases the long term mitigation potential of China and India.

  8. China–Europe Relations in the Mitigation of Climate Change: A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Axel Berger

    2013-01-01

    Full Text Available Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these policy fields, empirical research has to go beyond simplistic narratives. This paper suggests a conceptual apparatus that will help researchers better understand the complexities of the real world. The relevant actors operate at different levels and in the public and private sectors. The main message of the paper is that combining the multi-level governance and value-chain approaches helps clarify the multiple relationships between these actors.

  9. Linking climate change mitigation and coastal eutrophication management through biogas technology

    DEFF Research Database (Denmark)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael;

    2016-01-01

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy...... concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under...... strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen...

  10. Combating the effects of climatic change on forests by mitigation strategies

    Directory of Open Access Journals (Sweden)

    Dieter Matthias

    2010-11-01

    Full Text Available Abstract Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES. We used the scenarios A1B (rapid and successful economic development and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development. Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.

  11. Carbon sequestration in soils - has the potential for climate change mitigation been over-stated?

    Science.gov (United States)

    Powlson, David

    2013-04-01

    The term "carbon sequestration" is commonly used to describe any increase in soil organic carbon (SOC) content caused by a change in land management, with the implication that increased soil carbon (C) storage mitigates climate change. But this only true if the management practice causes additional net transfer of C from atmosphere to land. Limitations of C sequestration for climate change mitigation include: (1) the quantity of C stored in soil is finite; (2) the process is reversible; (3) even if SOC is increased there may be changes in the fluxes of other greenhouse gases especially nitrous oxide (N2O). Removing land from annual cropping and converting to forest, grassland or perennial crops will remove C from atmospheric CO2 and genuinely contribute to climate change mitigation. However, indirect effects such as conversion of land elsewhere under native vegetation to agriculture could negate the benefit due to increased CO2 emission. Re-vegetating degraded land, of limited value for food production, avoids this problem. Adding organic materials such as crop residues or animal manure to soil, whilst increasing SOC, generally does not constitute an additional transfer of C from atmosphere to land - it depends on the alternative fate of the residue. Increases in SOC from reduced tillage now appear to be much smaller than previously claimed, at least in temperate regions, and in some situations increased nitrous oxide emission may outweigh any increase in stored C. The climate change benefit of increased SOC from enhanced crop growth (e.g. from the use of fertilizers) must be balanced against greenhouse gas emissions associated with manufacture and use of fertilizer. For soils under long-term grassland there is less scope for increasing soil C stock than in arable soils because these already have a higher SOC content. A key issue with grasslands is to ensure good management practices that maintain the high SOC content. Any form of soil degradation, such as

  12. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  13. Informed public opinion in the Netherlands. Evaluation of CO2 capture and storage technologies in comparison with other CO2 mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    De Best-Waldhober, M. [Energy Research of the Netherlands ECN, Unit Policy Studies, Radarweg 60, 1043 NT Amsterdam (Netherlands); Daamen, D.D.L. [Centre for Energy and Environmental Studies, Dept. of Psychology, Leiden University, Wassenaarseweg 52, 2333 AK Leiden (Netherlands); Ramirez-Ramirez, A.; Faaij, A. [Copernicus Institute, Faculty of Geosciences, Utrecht University, Budapestlaat 6, 3584 CD Utrecht (Netherlands); Hendriks, C.; De Visser, E. [Ecofys Netherlands, Kanaalweg 16-a, 3526 KL Utrecht (Netherlands)

    2012-09-15

    In this study, 995 respondents in a representative sample of the Dutch general population are set in the situation of policymakers: they are faced with the issue of fulfilling the Dutch demand for energy in 2030 in such a way that emissions of carbon dioxide will be reduced by 50%. In the Information-Choice Questionnaire (ICQ) that was developed for this, respondents evaluated information from experts on seven options for CO2 emission reduction and their consequences. Two CCS options were compared to two energy efficiency options, a wind energy option, a biomass energy option, and a nuclear energy option. Results show that people are not that enthusiastic regarding the two CCS options. These are evaluated 5.3 and 5.9 on average on a scale of 1-10 and not often chosen as one of the three preferred options, but they are also rarely rejected. Most of the other options in the questionnaire were evaluated rather positively, except nuclear energy and the more ambitious efficiency option. Analysis shows that the evaluation of the information regarding consequences moderately influences how options are evaluated overall. The results further indicate that the CCS options are evaluated less positively due to the comparison with other options.

  14. Perpetual American vanilla option pricing under single regime change risk: an exhaustive study

    Science.gov (United States)

    Montero, Miquel

    2009-07-01

    Perpetual American options are financial instruments that can be readily exercised and do not mature. In this paper we study in detail the problem of pricing this kind of derivatives, for the most popular flavour, within a framework in which some of the properties—volatility and dividend policy—of the underlying stock can change at a random instant of time but in such a way that we can forecast their final values. Under this assumption we can model actual market conditions because most relevant facts usually entail sharp predictable consequences. The effect of this potential risk on perpetual American vanilla options is remarkable: the very equation that will determine the fair price depends on the solution to be found. Sound results are found under the optics both of finance and physics. In particular, a parallelism among the overall outcome of this problem and a phase transition is established.

  15. The mitigation framework in the 2015 climate change agreement: from targets to pathways

    International Nuclear Information System (INIS)

    This paper is an effort between researchers from different countries and with different backgrounds to achieve an agreed text on an important issue in the climate negotiations through a thought experiment of 'think tank level negotiation'. It is a significant achievement for two groups of authors from China and Europe to have come this far. Countries have agreed to negotiate a new climate agreement by 2015. One of the key elements of this negotiation process will be a new mitigation framework and new emissions targets for all. How should the information that Parties put forward be structured, in order to promote participation, equity, transparency and ambition? The new agreement needs to find a way to allow the continuous strengthening of the action of sovereign states, to reflect the 2 deg. C objective. It will also need to provide a flexible and equitable framework for mitigation targets, to reflect both different levels of uncertainty and the large spectrum of countries and gaps in the development of different country groups. There is a need to shift out of the 'target mentality' and towards an understanding of climate change as the challenge of shifting long-term social, technological, investment and infra-structural pathways, as well as behaviours. Uncertainties in such structural processes may be particularly high in developing or emerging countries still undergoing industrialization, demographic shift, and urbanization. Mastering them requires long-term policy horizons, cooperation, technology innovation and policy learning, focusing on the drivers of emissions reductions. The Warsaw decision stated in 2013 that mitigation targets would be nationally-determined. In this context, the discussion around a global goal should no longer be seen as a basis for top-down allocation, but rather as a directional reference against which global progress must be assessed to identify the gap to be filled to foster enhanced action. It is essential to

  16. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  17. Climate change and groundwater: India's opportunities for mitigation and adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Tushaar, E-mail: t.shah@cgiar.or [International Water Management Institute, Colombo (Sri Lanka)

    2009-07-15

    For millennia, India used surface storage and gravity flow to water crops. During the last 40 years, however, India has witnessed a decline in gravity-flow irrigation and the rise of a booming 'water-scavenging' irrigation economy through millions of small, private tubewells. For India, groundwater has become at once critical and threatened. Climate change will act as a force multiplier; it will enhance groundwater's criticality for drought-proofing agriculture and simultaneously multiply the threat to the resource. Groundwater pumping with electricity and diesel also accounts for an estimated 16-25 million mt of carbon emissions, 4-6% of India's total. From a climate change point of view, India's groundwater hotspots are western and peninsular India. These are critical for climate change mitigation as well as adaptation. To achieve both, India needs to make a transition from surface storage to 'managed aquifer storage' as the center pin of its water strategy with proactive demand- and supply-side management components. In doing this, India needs to learn intelligently from the experience of countries like Australia and the United States that have long experience in managed aquifer recharge.

  18. Modeling climate change mitigation from alternative methods of charcoal production in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Bailis, Rob [Yale School of Forestry and Environmental Studies, 195 Prospect St, New Haven, CT 06511 (United States)

    2009-11-15

    Current carbon accounting methodologies do not accommodate activities that involve emissions reductions from both land-use change and energy production. This paper analyzes the climate change mitigation potential of charcoal production in East Africa by examining the impact of changing both land management and technology. Current production in a major charcoal producing region of Kenya where charcoal is made as a by-product of land clearance for commercial grain production is modeled as the ''business-as-usual'' scenario. Alternative production systems are proposed based on coppice management of native or exotic trees. Improved kilns are also considered. Changes in aboveground, belowground, and soil carbon are modeled and two distinct baseline assessments are analyzed: one is based on a fixed area of land and one is based on the quantity of non-renewable fuel that is displaced by project activities. The magnitude of carbon emissions reductions varies depending on land management as well as the choice of carbonization technology. However, these variations are smaller than the variations arising from the choice of baseline methodology. The fixed-land baseline yields annualized carbon emission reductions equivalent to 0.5-2.8 tons per year (t y{sup -1}) with no change in production technology and 0.7-3.5 t y{sup -1} with improved kilns. In contrast, the baseline defined by the quantity of displaced non-renewable fuel is 2-6 times larger, yielding carbon emissions reductions of 1.4-12.9 t y{sup -1} with no change in production technology and 3.2-20.4 t y{sup -1} with improved kilns. The results demonstrate the choice of baseline, often a political rather than scientific decision, is critical in assessing carbon emissions reductions. (author)

  19. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy

    OpenAIRE

    Lalisa A. Duguma; Minang, Peter A.; van Noordwijk, Meine

    2014-01-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual fra...

  20. Climate change mitigation and adaptation in the land use sector: from complementarity to synergy

    OpenAIRE

    Duguma, L.A.; Minang, P.A.; Noordwijk, van, M.

    2014-01-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual fra...

  1. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  2. Integrated assessment of global water scarcity over the 21st century – Part 2: Climate change mitigation policies

    Directory of Open Access Journals (Sweden)

    M. I. Hejazi

    2013-03-01

    Full Text Available We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM, a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m−2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively, under two carbon tax regimes (a universal carbon tax (UCT which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT which excludes land use change emissions are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy with radiative forcing reaching 8.8 W m−2 (equivalent to the SRES A1Fi emission scenario by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  3. Minimizing the cost of keeping options open for conservation in a changing climate

    Science.gov (United States)

    Mills, Morena; Nicol, Samuel; Wells, Jessie A.; Lahoz-Monfort, José J.; Wintle, Brendan; Bode, Michael; Wardrop, Martin; Walshe, Terry; Probert, William J. M.; Runge, Michael C.; Possingham, Hugh P.; McDonald Madden, Eve

    2014-01-01

    Policy documents advocate that managers should keep their options open while planning to protect coastal ecosystems from climate-change impacts. However, the actual costs and benefits of maintaining flexibility remain largely unexplored, and alternative approaches for decision making under uncertainty may lead to better joint outcomes for conservation and other societal goals. For example, keeping options open for coastal ecosystems incurs opportunity costs for developers. We devised a decision framework that integrates these costs and benefits with probabilistic forecasts for the extent of sea-level rise to find a balance between coastal ecosystem protection and moderate coastal development. Here, we suggest that instead of keeping their options open managers should incorporate uncertain sea-level rise predictions into a decision-making framework that evaluates the benefits and costs of conservation and development. In our example, based on plausible scenarios for sea-level rise and assuming a risk-neutral decision maker, we found that substantial development could be accommodated with negligible loss of environmental assets. Characterization of the Pareto efficiency of conservation and development outcomes provides valuable insight into the intensity of trade-offs between development and conservation. However, additional work is required to improve understanding of the consequences of alternative spatial plans and the value judgments and risk preferences of decision makers and stakeholders.

  4. Understanding the systemic nature of cities to improve health and climate change mitigation.

    Science.gov (United States)

    Chapman, Ralph; Howden-Chapman, Philippa; Capon, Anthony

    2016-09-01

    Understanding cities comprehensively as systems is a costly challenge and is typically not feasible for policy makers. Nevertheless, focusing on some key systemic characteristics of cities can give useful insights for policy to advance health and well-being outcomes. Moreover, if we take a coevolutionary systems view of cities, some conventional assumptions about the nature of urban development (e.g. the growth in private vehicle use with income) may not stand up. We illustrate this by examining the coevolution of urban transport and land use systems, and institutional change, giving examples of policy implications. At a high level, our concern derives from the need to better understand the dynamics of urban change, and its implications for health and well-being. At a practical level, we see opportunities to use stylised findings about urban systems to underpin policy experiments. While it is now not uncommon to view cities as systems, policy makers appear to have made little use so far of a systems approach to inform choice of policies with consequences for health and well-being. System insights can be applied to intelligently anticipate change - for example, as cities are subjected to increasing natural system reactions to climate change, they must find ways to mitigate and adapt to it. Secondly, systems insights around policy cobenefits are vital for better informing horizontal policy integration. Lastly, an implication of system complexity is that rather than seeking detailed, 'full' knowledge about urban issues and policies, cities would be well advised to engage in policy experimentation to address increasingly urgent health and climate change issues. PMID:27126780

  5. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    Science.gov (United States)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of

  6. Evaluation of forestry strategies for climate change mitigation in continental France. Scientific literature and main actors' positioning review

    International Nuclear Information System (INIS)

    This work contributes to the current scientific debate regarding the optimization of the forest sector's contribution to mitigating climate change. A scientific literature review has pointed out some uncertainties on the contribution to emission reduction objectives in the short to medium-term of an increasing harvest of forest resources for wood construction and energy generation. Timing of mitigation benefits for a managed forest depends on forestry upstream characteristics(forest and soil type and silviculture method) and downstream characteristics (transport distance, use of wood, efficiency of wood based energy production, fossil-fuel based reference system that is substituted,etc). A survey conducted among national forest experts points out debates concerning optimal silviculture practices to mitigating climate change. These discussions are due to the trades-off between sequestering carbon in forest ecosystems and climatic benefits obtained by sustainable forest harvesting and use of wood products to displace fossil emissions. (author)

  7. Public Perception of Climate Change and Mitigation Technologies; Percepcion Publica del Cambio Climatico y las Tecnologias de Mitigacion

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Sala, R.; Oltra, C.

    2007-09-27

    Public perception and understanding of climate change and mitigation policies may have a significant influence on the development of political programs as well as on individual behavioral intentions to address climate change. The study of public attitudes and beliefs about climate change and energy policy may be useful in the design of suitable communication strategies and in the efficient implementation of climate change mitigation and adaptation strategies. Based on a survey to the Spanish population, we analyze different issues such as the level of concern towards climate change, the existing knowledge about the contribution of different energy technologies to global warming, the attitudes toward energy technologies and the beliefs about potential adaptation strategies. Comparisons with other countries based on similar public opinion surveys are established to obtain a broader view of policy preferences and attitudes regarding climate change. (Author) 5 refs.

  8. The Contribution of Managed and Unmanaged Forests to Climate Change Mitigation—A Model Approach at Stand Level for the Main Tree Species in Bavaria

    OpenAIRE

    Christoph Schulz; Markus Blaschke; Sebastian Höllerl; Daniel Klein

    2013-01-01

    Forestry-based carbon sequestration projects demand a comprehensive quantification of the different climate change mitigation effects. In our study, we modeled a life cycle of managed pure stands consisting of the four main tree species in Bavaria (spruce, pine, beech and oak). For spruce and beech, an unmanaged stand was additionally integrated in order to analyze the differences in climate change mitigation effects compared to the managed stands. We developed a climate change mitigation mod...

  9. Human Amplified Natural Change: An approach for vulnerability assessment and mitigation planning

    Science.gov (United States)

    Wilcock, P.; Belmont, P.; Gran, K. B.

    2011-12-01

    Addressing the environmental impacts of agricultural development is made difficult by the scale and complexity of the natural system, the pervasive human alteration of that system, the contingent and nonlinear nature of system response, and the web of natural-human interactions driving social, economic, and regulatory decisions over periods of decades to centuries. One of the most difficult challenges is determining those locations within the landscape that are most sensitive to change. One approach is the concept of human-amplified natural change (HANC), a hypothesis that states that areas of the landscape that are most susceptible to human, climatic, and other external changes are those that are undergoing the highest rates of natural change. High variability in system response implies that there are locations and moments that are especially vulnerable to changes in climate and human actions. These 'critical areas' are not only essential to understand for mitigation purposes, but also serve as targeted locations in which to monitor change in an accelerated environment. Under the HANC hypothesis, it is these locations that should be the focus for both research and management. We explore the HANC hypothesis using the case of sediment delivery to the Upper Mississippi River. Work on Lake Pepin, a natural lake on the Mississippi River, has shown that sediment supply has increased ten-fold over the past 150 years. This period corresponds with widespread implementation of drainage and row cropping in the Minnesota River Basin, the primary contributor of sediment to the Upper Mississippi. Although this development is clearly important, the watershed was geologically primed to produce large amounts of sediment as it incises through soft glacial sediments in response to a base level fall associated with the carving of the Minnesota River valley over 13,000 years before present. The nearly complete transformation of the land surface, vegetation, and hydrology over the past

  10. Forest policy implications of climate change: Economic impacts and potential mitigation strategies

    International Nuclear Information System (INIS)

    Increasing mean global temperatures due to rising levels of carbon dioxide and other ''greenhouse'' gases in the atmosphere could affect the distribution of commercially important forests in North America significantly. The temperature increases might outpace the ability of forests to adapt, causing considerable stress and mortality to trees in the southern part of their range without a commensurate increase in growth across the expanding range. If realized, these potential biological impacts on forest distribution and health would affect management decisions substantially and could adversely impact forest-based economies in the United States. Specific effects on forest management include changes in the methods and costs of fire, insect, and disease protection; greater demands on forest lands for conversion to food production; and uncertain changes in site quality. One means of mitigating the effects of CO2 emissions is to establish tree plantations for carbon sequestration. Preliminary analyses suggest that a program aimed at marginal cropland in the South could store more than 563 million tons of carbon over 45 years, although 90 million tons would be lost due to risks associated with plantations

  11. Voluntary business activities to mitigate climate change: Case studies in Japan

    International Nuclear Information System (INIS)

    Voluntary business activities, such as the voluntary action plans conducted by comprehensive business associations in Japan to reduce environmental damage, are viable policy instruments alongside regulations and economic incentives (e.g. taxes and emissions trading schemes). This paper examines three case studies in which voluntary activities have played a successful role in mitigating climate change. Based on interviews with business organisations together with a literature review and data analysis, we show why businesses are motivated to take socially responsible actions and describe the major benefits of such activities. One of the important benefits of voluntary activities is their flexibility in phasing measures. This flexibility is greatly appreciated, since industries are able to retain control of their responses to future uncertainties, which allows them to tackle climate change issues aggressively. We conclude that voluntary activities have been more environmentally effective than alternative policy measures under a proper institutional framework, which consists of effective motivation mechanisms for businesses, governmental measures to encourage their compliance, and capable industrial associations that can lessen the transaction costs both of the government and of industry. - Highlights: • Businesses are well motivated to take suitable, technologically feasible actions. • Capability of industrial associations is a key to successful voluntary activities. • Flexibility allows businesses to manage uncertainty and aim for ambitious goals

  12. A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change

    Science.gov (United States)

    Winslow, Anne

    2011-06-01

    The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels—particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a "nuclear renaissance", this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.

  13. Implications of electric power sector restructuring on climate change mitigation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, G.; Bouille, D. [Instituto de Economia Energetica, (Argentina); Redlinger, R. [UNEP, (Denmark)

    2000-05-01

    The Argentine electricity industry has undergone fundamental reforms since 1992, involving large-scale privatisation, and competition in generation and wholesale power markets. In terms of climate change mitigation, these reforms have had the beneficial effect of encouraging improved generation efficiency among thermal power plants and improved end-use consumption efficiency among large industrial firms. However, the reforms have also had the negative effect (from a climate change perspective) of encouraging an ever-increasing use of natural gas combustion for electricity generation, greatly diminishing the role of hydroelectric power which had previously played an important role in the Agentine electricity sector. This report examines the current structure and regulations of the Argentine electricity system and analyses the forces at work which are influencing current technology choices, both in terms of power generation and end-use consumption. The report goes on to examine international experiences in promoting renewable energy and energy efficiency technologies; and finally, the report considers the applicability of these various policy mechanisms within the Agentine context. (EHS)

  14. US/Japan workshop on mitigation and adaptation technologies related to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bernthal, F.M.

    1993-12-31

    It is a great pleasure for me to have the honor of delivering the keynote address for this important gathering, an honor enhanced further because of the many activities and historic relationships represented by this workshop. First of all, it represents the spirit of continuing cooperation and good relations between the United States and Japan. With the aid of the framework provided by the U.S./Japan Science and Technology Agreement, our two nations can come together to address a problem that has no national boundaries {hor_ellipsis} and we can think about solutions of potential benefit to all citizens of the global community. This workshop also symbolizes the spirit of cooperation so characteristic of the conduct of research in science and technology -- cooperation between us as individual scientists and engineers, between the various institutions we represent, and across our diverse disciplines. This workshop is only the second of its kind. The first US/Japan Workshop on global climate change was held last year in Japan. That workshop focused on cooperative scientific research in the United States and Japan. Out of it came a general agreement to continue collaborative work and to extend cooperation into the area of global change-related technologies, in particular those technologies that hold promise for mitigation and adaptation.

  15. The monitoring evaluation, reporting and verification of climate change mitigation projects

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1998-05-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues involved in MERV activities. They identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  16. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe

    OpenAIRE

    Mujuru, L.

    2014-01-01

    Climate change adversely affects human livelihoods and the environment through alteration of temperatures, rainfall patterns, sea level rise and ecosystem productivity. Developing countries are more vulnerable to climate change because they directly depend on agriculture and natural ecosystem products for their livelihoods. Mitigation of climate change impacts includes practices that can store carbon (C) in soil and biomass thus, reducing concentrations of atmospheric carbon dioxide (CO2) and...

  17. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems

    DEFF Research Database (Denmark)

    del Prado, A; Crosson, P; Olesen, Jørgen E;

    2013-01-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quant......The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed...

  18. Climate Change Impact Assessment and Adaptation Options in Vulnerable Agro-Landscapes in East-Africa

    Science.gov (United States)

    Manful, D.; Tscherning, K.; Kersebaum, K.; Dietz, J.; Dietrich, O.; Gomani, C.; Böhm, H.; Büchner, M.; Lischeid, G.,; Ojoyi, M.,

    2009-04-01

    Climate change poses a risk to the livelihoods of large populations in the developing world, especially in Africa. In East Africa, climate change is expected to affect the spatial distribution and quantity of precipitation. The proposed project will assess aspects of climate impacts and adaptation options in Tanzania. The project will attempt to quantify (1) projected impacts including: variability in temperature, rainfall, flooding and drought (2) the affect changes in 1. will have on specific sectors namely agriculture (food security), water resources and ecosystem services. The cumulative effects of diminished surface and ground water flow on agricultural production coupled with increasing demand for food due to increase in human pressure will also be evaluated. Expected outputs of the project include (1) downscaled climate change scenarios for different IPCC emission scenarios (2) model based estimations of climate change impacts on hydrological cycle and assessment of land use options (3) scenarios of sustainable livelihoods and resilient agro-landscapes under climate change (4) assessment of adaptive practices and criteria for best adaptation practices. The presentation will focus on novel approaches that focus on the use of agro-ecosystem models to predict local and regional impacts of climate variability on food with specific needs of the end-user factored into model set-up process. In other words, model configurations adapted to the information needs of a specific end-user or audience are evaluated. The perception of risk within different end-users (small scale farmer versus a regional or state level policy maker) are explicitly taken into consideration with the overarching aim of maximizing the impact of the results obtained from computer-based simulations.

  19. Land Management Restrictions and Options for Change in Perpetual Conservation Easements

    Science.gov (United States)

    Rissman, Adena; Bihari, Menka; Hamilton, Christopher; Locke, Christina; Lowenstein, David; Motew, Melissa; Price, Jessica; Smail, Robert

    2013-07-01

    Conservation organizations rely on conservation easements for diverse purposes, including protection of species and natural communities, working forests, and open space. This research investigated how perpetual conservation easements incorporated property rights, responsibilities, and options for change over time in land management. We compared 34 conservation easements held by one federal, three state, and four nonprofit organizations in Wisconsin. They incorporated six mechanisms for ongoing land management decision-making: management plans (74 %), modifications to permitted landowner uses with discretionary consent (65 %), amendment clauses (53 %), easement holder rights to conduct land management (50 %), reference to laws or policies as compliance terms (47 %), and conditional use permits (12 %). Easements with purposes to protect species and natural communities had more ecological monitoring rights, organizational control over land management, and mechanisms for change than easements with general open space purposes. Forestry purposes were associated with mechanisms for change but not necessarily with ecological monitoring rights or organizational control over land management. The Natural Resources Conservation Service-Wetland Reserve Program had a particularly consistent approach with high control over land use and some discretion to modify uses through permits. Conservation staff perceived a need to respond to changing social and ecological conditions but were divided on whether climate change was likely to negatively impact their conservation easements. Many conservation easements involved significant constraints on easement holders' options for altering land management to achieve conservation purposes over time. This study suggests the need for greater attention to easement drafting, monitoring, and ongoing decision processes to ensure the public benefits of land conservation in changing landscapes.

  20. Land management restrictions and options for change in perpetual conservation easements.

    Science.gov (United States)

    Rissman, Adena; Bihari, Menka; Hamilton, Christopher; Locke, Christina; Lowenstein, David; Motew, Melissa; Price, Jessica; Smail, Robert

    2013-07-01

    Conservation organizations rely on conservation easements for diverse purposes, including protection of species and natural communities, working forests, and open space. This research investigated how perpetual conservation easements incorporated property rights, responsibilities, and options for change over time in land management. We compared 34 conservation easements held by one federal, three state, and four nonprofit organizations in Wisconsin. They incorporated six mechanisms for ongoing land management decision-making: management plans (74 %), modifications to permitted landowner uses with discretionary consent (65 %), amendment clauses (53 %), easement holder rights to conduct land management (50 %), reference to laws or policies as compliance terms (47 %), and conditional use permits (12 %). Easements with purposes to protect species and natural communities had more ecological monitoring rights, organizational control over land management, and mechanisms for change than easements with general open space purposes. Forestry purposes were associated with mechanisms for change but not necessarily with ecological monitoring rights or organizational control over land management. The Natural Resources Conservation Service-Wetland Reserve Program had a particularly consistent approach with high control over land use and some discretion to modify uses through permits. Conservation staff perceived a need to respond to changing social and ecological conditions but were divided on whether climate change was likely to negatively impact their conservation easements. Many conservation easements involved significant constraints on easement holders' options for altering land management to achieve conservation purposes over time. This study suggests the need for greater attention to easement drafting, monitoring, and ongoing decision processes to ensure the public benefits of land conservation in changing landscapes.

  1. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    decisions, the operation of the upstream reservoir (Como Lake) is optimised with respect to the real irrigation demand of the crops. Then, the farmers can re-adapt their decisions according with the new optimal operating strategy, thus activating a loop between the two systems that exchange expected supply and irrigation demand. Results show that the proposed interaction between farmers and water managers is able to enhance the efficiency of water management practices, foster crop production and mitigate climate change impacts.

  2. Potential for Climate Change Mitigation in Degraded Forests: A Study from La Primavera, México

    Directory of Open Access Journals (Sweden)

    Arturo Balderas Torres

    2013-11-01

    Full Text Available Forests contribute to climate change mitigation by removing atmospheric carbon dioxide and storing it in biomass and other carbon pools. Additionally, since appropriate forest management can reduce emissions from deforestation and forest degradation, it is important to estimate the magnitude of these services to include them into climate policy. We used a forest inventory stratified by canopy cover in the oak-pine forest of La Primavera Biosphere Reserve in México (30,500 ha, to assess the potential provision of forest carbon services. Inventory results were used in combination with a Landsat image to estimate carbon stocks in arboreal biomass. Potential carbon removals were calculated from published allometric equations and models estimating tree growth rates, for enhancements in forested areas and for reforestation/afforestation. Carbon stocks estimated in arboreal biomass at the time of the inventory were 4.16 MtCO2eq (3.42–4.89. The potential for further carbon sequestration and enhancement could take the level of stocks up to 9.77 MtCO2eq (7.66–11.89, 95% confidence interval; previous fires have degraded carbon stocks below their natural potential. The results present a gradient of carbon stocks for different degradation levels and are consistent with national and international estimates and previous local research. The baseline for the estimation of reduced emissions is critical for assessing the overall contribution of forests to mitigate climate change. The local baseline of emissions might be around 1% according to historical data; however, when enhancements and reduced emissions are valuated together, a baseline of 3.7% is required to prevent the creation of perverse incentives favouring previously degraded areas; considering these figures for reduced emissions, the yearly carbon services provided by La Primavera, including enhancements, sequestration and reduced emissions, could be between 169.4 ktCO2eq/year (134.8–204.5 and

  3. Crop-Cattle Integrated Farming System: An Alternative of Climatic Change Mitigation

    Directory of Open Access Journals (Sweden)

    Munandar

    2015-08-01

    Full Text Available An integrated farming system is one of the alternatives for climatic change mitigation. This paper reports the application of corn-cattle based integrated farming system in Agrotechno Park Center of Palembang, and discusses its impact on CO2 fixation and the reduction of methane emissions. The study was based on the data of the first 6 yr from 2003 until 2009. The CO2 fixed in the soil and plants was determined based on the content of organic C which was multiplied by the index of 3.67. The methane gas produced by Balinese cattle and its dung was observed and modified into feed rations. The results showed that soil organic C increased from 40.80 tons C/ha in the 1st yr to 66.40 tons C/ha in the 6th yr. In addition, there was organic C fixation equivalent to 93.95 tons of CO2e. Corn biomass increased from 6.67 tons/ha to 18.66 tons/ha, equivalent to an increase in the fixation of atmospheric CO2e as much as 19.80 tons CO2e/ha. The supplementation of 60%-80% grass fodder with concentrate lowered the concentration of methane gas in cattle breathing by 28.7%, from 617 ppm to 440 ppm, while the methane emissions from cattle manure decreased by 31%, from 1367 mL/head/d to 943 mL/head/d. Installing a bio digester that generates biogas served to accommodate methane gas emissions from cattle dung and used it for bioenergy. Composting reduced the formation of methane gas from cattle manure through a regular process of turning over that gives aeration and forms aerobic condition in the heap of cattle dung. Recycling produces a variety of organic products that store carbon for a longer period of time and slowed the conversion of organic C into CO2. This study showed that the diverse activities of an integrated crop-cattle farming could be an alternative solution to climatic change mitigation.

  4. Mitigating GHG emissions from agriculture under climate change constrains - a case study for the State of Saxony, Germany

    Science.gov (United States)

    Haas, E.; Kiese, R.; Klatt, S.; Butterbach-Bahl, K.

    2012-12-01

    Mitigating greenhouse gas (N2O, CO2, CH4) emissions from agricultural soils under conditions of projected climate change (IPCC SRES scenarios) is a prerequisite to limit global warming. In this study we used the recently developed regional biogeochemical ecosystem model LandscapeDNDC (Haas et al., 2012, Landscape Ecology) and two time slices for present day (1998 - 2018) and future climate (2078-2098) (regional downscale of IPCC SRES A1B climate simulation) and compared a business as usual agricultural management scenario (winter rape seed - winter barley - winter wheat rotation; fertilization: 170 / 150 / 110 kg-N mineral fertilizer; straw harvest barley/wheat: 90 %) with scenarios where either one or all of the following options were realized: no-till, residue return to fields equal 100%, reduction of fertilization rate s were left on the field or reduction of N fertilization by 10%. The spatial domain is the State of Saxony (1 073 523 hectares of arable land), a typical region for agricultural production in Central Europe. The simulations are based on a high resolution polygonal datasets (5 517 agricultural grid cells) for which relevant information on soil properties is available. The regionalization of the N2O emissions was validated against the IPCC Tier I methodology resulting in N2O emissions of 1 824 / 1 610 / 1 180 [t N2O-N yr-1] for of the baseline years whereas the simulations results in 6 955 / 6 039 / 2 207 [t N2O-N yr-1] for the first three years of the baseline scenarios and ranging between 621 and 6 955 [t N2O-N yr-1] within the following years (mean of 2 923). The influence of climate change (elevated mean temperature of approx. 2°C and minor changes in precipitation) results in an increase of 259 [t N2O-N yr-1] (mean 3 182) or approx. 9 percent on average (with a minimum of 618 and a maximum of 6 553 [t N2O-N yr-1]). Focusing on the mitigation , the recarbonization did result in an increase of soil carbon stocks of 2 585 [kg C/ha] within the

  5. The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective

    NARCIS (Netherlands)

    Gössling, S.; Hall, C.M.; Peeters, P.M.; Scott, D.

    2010-01-01

    Tourism is an increasingly significant contributor to greenhouse gas (GHG) emissions. Emissions growth in the sector is in substantial conflict with global climate policy goals that seek to mitigate climate change through deep emission reductions. This article discusses the role of various tourism s

  6. Yes in my backyard : market based mechanisms for forest conservation and climate change mitigation in La Primavera, México

    NARCIS (Netherlands)

    Balderas Torres, A.

    2012-01-01

    This work makes a multidisciplinary analysis of the potential of market-based mechanisms in the provision of forest carbon services based on local demand in the context of climate change mitigation. The analysis contrasts, from the perspective of an emerging economy (Mexico), the possibilities of lo

  7. Offshore CCS and ocean acidification : A global long-term probabilistic cost-benefit analysis of climate change mitigation

    NARCIS (Netherlands)

    van der Zwaan, B.C.C.; Gerlagh, Reyer

    2016-01-01

    Public fear over environmental and health impacts of CO2 storage, or over potential leakage of CO2 from geological reservoirs, is among the reasons why over the past decade CCS has not yet been deployed on a scale large enough so as to meaningfully contribute to mitigate climate change. Storage of C

  8. The Study on Ecological Treatment of Saline Lands to Mitigate the Effects of Climate Change

    Science.gov (United States)

    Xie, Jiancang; Zhu, Jiwei; Wang, Tao

    2010-05-01

    The soil water and salt movement is influenced strongly by the frequent droughts, floods and climate change. Additionally, as continued population growth, large-scale reclaiming of arable land and long-term unreasonable irrigation, saline land is increasing at the rate of 1,000,000~15,000,000 mu each year all over the world. In the tradition management, " drainage as the main " measure has series of problem, which appears greater project, more occupation of land, harmful for water saving and downstream pollution. To response the global climate change, it has become the common understanding, which promote energy-saving and environment protection, reflect the current model, explore the ecological management model. In this paper, we take severe saline land—Lubotan in Shaanxi Province as an example. Through nearly 10 years harnessing practice and observing to meteorology, hydrology, soil indicators of climate, we analyze the influence of climate change to soil salinity movement at different seasons and years, then put forward and apply a new model of saline land harnessing to mitigate the Effects of Climate Change and self-rehabilitate entironment. This model will be changed "drainage" to "storage", through the establishment engineering of " storage as the main ", taken comprehensive measures of " project - biology - agriculture ", we are changing saline land into arable land. Adapted to natural changes of climate, rainfall, irrigation backwater, groundwater level, reduced human intervention to achieve system dynamic equilibrium. During the ten years, the salt of plough horizon has reduced from 0.74% to 0.20%, organic matter has increased from 0.7% to 0.92%, various indicators of soil is begining to go better. At the same time, reduced the water for irrigation, drainage pollution and investment costs. Through the model, reformed severe saline land 18,900 mu, increased new cultivated land 16,500 mu, comprehensive efficient significant, ensured the coordinated

  9. Powerful agent of change? The global insurance industry as a driver for greenhouse mitigation and adaptation

    International Nuclear Information System (INIS)

    1964b). From the mid-nineties, environmentalists have looked to the insurance sector as a potential driver on climate change response. Yet by and large, environmentalists' hopes for action by insurers have not been met (Paterson 2001). More recent work suggests that insurers could indeed play constructive roles (Mills and Lecomte 2006). The paper reviews prospects for application of the insurance function in support of climate change mitigation and adaptation. The specific focus is potential for insurance industry action, consistent with the industry's historical interest in loss reduction and prevention

  10. Butterfly effect: understanding and mitigating the local consequences of climate change impacts

    International Nuclear Information System (INIS)

    Full text: The Butterfly Effect is the notion that tiny differences in initial conditions are amplified in the evolution of a dynamic system and directly affect the eventual outcome. In 1963 mathematician and meteorologist Edward Lorenz proposed that the flapping of a butterfly's wing would cause a disturbance that becomes exponentially amplified so as to eventually affect large-scale atmospheric motion. This was to illustrate the 'sensitive dependence on initial conditions'; sensitivity also true in affecting the extent of damages experienced as a result of climate change. In a climate change context, The Butterfly Effect suggests the local consequences of climate change impacts will depend on their interaction with the economic, environmental, institutional, technological and demographic attributes unique to a city or region. It is this mix of factors that will determine the extent, both positively and negatively, to which climate change will be experienced locally. For a truly effective climate change response, it is imperative that regional risk assessments and adaptation strategies take into account not only the projected impacts but the full range of flow-on implications of those impacts and their sensitivity factors. Understanding of the sensitivity factors that will amplify or mitigate climate change impacts and implications enables government and business leaders to calculate the likely extent of localised damages if no adaptation is undertaken. This allows industries and communities to evaluate the likely significance of a particular impact and to consider how to adjust or counter the sensitivity factor to build resilience and reduce vulnerability. Thus, it also assists in the local prioritisation of issues and responses. Such a strategic response can also mean the required adaptation measures may be less extensive and thereby require less cost and time to implement. This paper discusses the flow-on implications of Australia's projected climate change

  11. AnimalChange

    OpenAIRE

    Van den Pol-van Dasselaar, Agnes; Bellocchi, Gianni; Hutchings, Nicholas John; Olesen, Jørgen Eivind; Saetnan, Eli Rudinow

    2014-01-01

    The EU-FP7 project AnimalChange (AN Integration of Mitigation and Adaptation options for sustainable Livestock production under climate CHANGE, http://www.animalchange.eu, 2011-2015) addresses mitigation and adaptation options and provides scientific guidance for their integration in sustainable development pathways for livestock production under climate change in Europe, Northern and Sub-Saharan Africa, and Latin America. The project provides insights, innovations, tools and models for lives...

  12. Marginal abatement cost curves and abatement strategies: Taking option interdependency and investments unrelated to climate change into account

    International Nuclear Information System (INIS)

    Firms usually have optimization tools for evaluating various investment options; policymakers likewise need tools for designing economically efficient policies. One such tool is the MACC (marginal abatement cost curve), used to capture the least-cost sequence of abatement options. Such curves are also used for understanding the implications of government policies for markets and firms. This article explores dynamic path-dependent aspects of the Stockholm district heating system case, in which the performance of some discrete options is conditioned by others. In addition, it proposes adding a feedback loop to handle option redundancy when implementing a sequence of options. Furthermore, in an energy system, actions unrelated to climate change abatement might likewise affect the performance of abatement options. This is discussed together with implications for climate change policy and corporate investment optimization. Our results indicate that a systems approach coupled with a feedback loop could help overcome some of the present methodological limitations. - Highlights: • We propose changes to the method for constructing marginal abatement cost curves. • We use district heating in Stockholm as an illustrative example. • Option interdependency and system transformation must be accounted for. • This could include changes not resulting in reduced greenhouse gas emissions

  13. The economics of climate change mitigation in developing countries -methodological and empirical results

    International Nuclear Information System (INIS)

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs

  14. Market of innovative timber products in Europe and Serbia and their contribution to climate change mitigation

    Directory of Open Access Journals (Sweden)

    Sretenović Predrag

    2014-01-01

    Full Text Available The paper shows results of researching the market of glued laminated timber as the most frequent innovative timber product in constructing timber framed residential facilities in Europe and Serbia. The research included the development of production, consumption and trade flows for the most significant countries in the European Union and Serbia. Additionally, the paper gives characteristics of this innovative timber product regarding dimensions, allowed deviations of dimensions defined in adequate European standard, wood species it is made of and fire resistance. The last part of the paper shows results of econometric modeling of the impact of building timber-framed houses on the consumption of glued laminated timber in Austria as one of the countries belonging to the group of the largest consumers of this innovative timber product in Europe. Taking into consideration that the substitution of classic building materials, primarily concrete, steel and aluminum, with glued laminated timber in residential construction contributes to the reduction of carbon-dioxide emission and climate change mitigation, research results of the effects of such substitution are presented in the last chapter in this paper. [Projekat Ministarstva nauke Republike Srbije, br. III43007: Istraživanje klimatskih promena na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje

  15. The economics of climate change mitigation in developing countries - methodological and empirical results

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.

    1997-12-01

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs.

  16. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  17. Political Challenges and Opportunities to Climate Change Mitigation: A View from the Front Lines

    Science.gov (United States)

    Weaver, A. J.

    2014-12-01

    Subsequent to the release of the 2007 Report of the Intergovernmental Panel on Climate Change, the Province of British Columbia in Canada became an international leader in the development and implementation of innovative climate change mitigation policies. These include, but are not limited to, the 2008 Greenhouse Gas Reductions Target Act, the 2008 Carbon Tax Act and the 2010 Clean Energy Act. British Columbia's Cleantech sector quickly responded to, and thrived as a result of, the signal sent by government to the market. But with a change in Premier in 2011 came a change in priorities. A number of the previous initiatives have either been weakened or no longer followed through with as the Province sets its vision of being a major exporter of Liquified Natural Gas. As a member of the British Columbia Climate Action Team set up by Premier Gordon Campbell in 2007 to provide advice to government on a variety of policy-related matters, I was fortunate to be able to watch first hand as the Province aggressively moved towards reducing its Greenhouse gas emissions. Rather than stand on the sidelines as the government lost its direction on the climate file I chose to run with the BC Green Party in the 2013 provincial election. I was subsequently elected as a Member of the Legislative Assembly representing the constituents of Oak Bay Gordon Head. While science can and should inform policy deliberations, in and of itself, science cannot and should not prescribe policy outcomes. Whether or not we deal with today's challenge of climate change boils down to a question of intergeneration equity. Does the present generation owe anything to future generations in terms of the quality of the environment that they inherit? Many of today's elected decision-makers are focused on short-term decision-making. Yet those who will be affected by the consequences of these decisions are not part of the decision making process — hence the political conundrum. In this presentation I detail

  18. Protected Areas' Role in Climate-change Mitigation in Northern Eurasia

    Science.gov (United States)

    Kicklighter, David; Lu, Xiaoliang; Monier, Erwan; Sokolov, Andrei; Melillo, Jerry; Reilly, John; Zhuang, Qianlai

    2016-04-01

    In Northern Eurasia, about 2.0 million square kilometers of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. These areas represent about 13% of the protected areas identified across the globe. Combining a global database of protected areas, a reconstruction of global land-use history, and a terrestrial biogeochemistry model, we estimate that protected areas in Northern Eurasia currently sequester 0.05 Pg C annually, which is about one tenth of the carbon sequestered by all land ecosystems annually in this region (0.5 Pg C/yr) and also about one tenth of the carbon sequestered in all protected areas across the globe. Using an integrated earth systems model to generate climate and land-use scenarios for the 21st century, we project that rapid climate change, similar to high-end projections in the 5th Assessment Report of the Intergovernmental Panel on Climate Change, would cause the annual carbon sequestration rate in the protected areas of Northern Eurasia to increase to about 0.07 Pg C/yr by 2100. In contrast, the annual carbon sequestration rate for all protected areas across the globe drops to 0.3 Pg C/yr by the end of the 21st century. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures so that development encroaches upon designated "protected areas", we project that 0.6 million square kilometers of the protected areas in Northern Eurasia would be converted to other uses (10.7% of global protected area losses), and carbon sequestration in the remaining protected areas of Northern Eurasia would drop to 0.03 Pg C/yr by 2100. This small regional carbon sink is compensated by carbon losses in the remaining protected areas outside of the region so that overall no net carbon would be sequestered by global protected areas at the end of the 21st century if these areas are not truly protected.

  19. Soil management system for water conservation and mitigation of global change effect

    Science.gov (United States)

    Ospina, A.; Florentino, A.; Lorenzo, V.

    2012-04-01

    One of the main constraints in rained agriculture is the water availability for plant growth which depends largely on the ability of the soil to allow water flow, infiltration and its storage. In Venezuela, the interaction between aggressive climatic conditions, highly susceptible soils and inadequate management systems have caused soil degradation which together with global change threatened the food production sustainability. To address this problem, we need to implement conservationist management strategies that improve infiltration rate, permeability and water holding capacity in soil and reduce water loss by protecting the soil surface. In order to study the impact of different management systems on soil water balance in a Fluventic Haplustept, the effects of 11 years of tillage and crops rotation management were evaluated in a long term field experiment located in Turén (Portuguesa state). The evaluated tillage systems were no tillage (NT) and conventional tillage (CT) and crop rotation treatments were maize (Zea mays)-cotton (Gossypium hirsutum) and maize-bean (Vigna unguiculata). Treatments were established in plots arranged in a randomized block design with three replicates. The gravimetric moisture content was determined in the upper 20 cm of soil, at eight different sampling dates. Results showed increased in time of the water availability with the use of tillage and corn-cotton rotation and, better protection of the soil against raindrop impact with crop residues. Water retention capacity also increased and improved structural condition on soil surface such as infiltration, storage and water flow distribution in the rooting zone. We conclude that these strategies of land use and management would contribute to mitigate the climate change effects on food production in this region of Venezuela. Key words: Soil quality; rained agriculture; plant water availability

  20. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  1. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Arturo Balderas [Environment Department, University of York, YO10 5DD (United Kingdom); Instituto Tecnologico y de Estudios Superiores de Occidente (ITESO), Tlaquepaque CP (Mexico); Technology and Sustainable Development Section, Center for Clean Technology and Environmental Policy, University of Twente/CSTM, P.O. Box 217, 7500 AE Enschede (Netherlands); Marchant, Rob; Smart, James C.R. [Environment Department, University of York, YO10 5DD (United Kingdom); Lovett, Jon C. [Environment Department, University of York, YO10 5DD (United Kingdom); Technology and Sustainable Development Section, Center for Clean Technology and Environmental Policy, University of Twente/CSTM, P.O. Box 217, 7500 AE Enschede (Netherlands); Tipper, Richard [Ecometrica, Edinburgh, EH9 1PJ (United Kingdom)

    2010-01-15

    Carbon sequestration in forest sinks is an important strategy to remove greenhouse gases and to mitigate climate change; however its implementation has been limited under the Clean Development Mechanism of the Kyoto Protocol which has not created the incentives for widespread implementation. The objective of this paper is to analyze the sequestration costs of agroforestry afforestation and reforestation projects (ARPs) following a partial market equilibrium using average cost curves and economic break even analysis to identify the supply costs. The modelling done in this work contrasts the voluntary and clean development mechanism transaction costs. Data is based on the voluntary project, Scolel Te, being implemented in Mexico. Cost curves are developed for seven different sequestration options considering transaction and implementation costs; information from agricultural production in Chiapas Mexico is used to integrate opportunity costs of two agroforestry practices suggesting that sequestration costs may follow a 'U' shape, with an initial reduction due to economies of scale and a subsequent increase caused by high opportunity costs. The widespread implementation of agroforestry options not requiring complete land conversion (e.g. living fences and coffee under shade) might be cost effective strategies not generating high opportunity costs. Results also suggest that payments in the early years of the project and lower transaction costs favour the development of ARPs in the voluntary market especially in marginal rural areas with high discount rates. (author)

  2. The Role of Proactive Adaptation in International Climate Change Mitigation Agreements

    OpenAIRE

    Bruin, de, B.; Weikard, H.P.; Dellink, R.B.

    2011-01-01

    This paper investigates the role of proactive adaptation in international mitigation coalition formation. Adaptation is introduced into a three stage cartel game of coalition formation. We analytically derive the optimal level of mitigation and proactive adaptation for the singletons and coalition members. We introduce the AD-STACO model which is constructed based on the STACO model, which is an applied three-stage cartel formation model with 12 heterogenous regions. Simulating all possible c...

  3. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-01

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  4. Climate change and the biosphere option: moving to a sustainable future

    International Nuclear Information System (INIS)

    Human activities resulting in greenhouse gas (GHG) emissions have been implicated as the primary factor forcing climate change. This evidence led to a landmark international agreement in Kyoto, (1997) committing the developed countries of the world to reductions in GHG emissions. In Canada, fossil fuel use over the past few centuries has released about 5200 Mt C into the atmosphere. An equivalent amount has probably been added as a result of deforestation and agricultural practice in this country. If we can manage our biosphere better and return even a fraction of the lost biosphere C, we can make a significant contribution to reducing Canada's current annual GHG emission. In the process, plants ( including trees) will trap the sun's energy and build an energy-rich biomass that we can learn to utilize as an energy, chemical and material resource for the future. In doing so, we will relieve the escalating demand for fossil fuels. The BIOCAP Network will be a multidisciplinary group of university, government and industry researchers dedicated to exploring the scientific, technological and policy implications of this 'biosphere option'. Canada's 'biosphere option' for GHG management is both a national opportunity and a global responsibility

  5. Changes in the creditability of the Black-Scholes option pricing model due to financial turbulences

    OpenAIRE

    Angeli, Andrea; Bonz, Cornelius

    2010-01-01

    This study examines whether the performance of the Black-Scholes model to price stock index options is influenced by the general conditions of the financial markets. For this purpose we calculated the theoretical values of 5814 options (3366 put option price observations and 2448 call option price observations) under the Black-Scholes assumptions. We compared these theoretical values with the real market prices in order to put the degree of deviations in two different time windows built aroun...

  6. DETERMINANTS OF CHOICE OF CROP VARIETY AS CLIMATE CHANGE ADAPTATION OPTION IN ARID REGIONS OF ZIMBABWE

    Directory of Open Access Journals (Sweden)

    James Zivanomoyo

    2013-03-01

    Full Text Available Impacts of climate change in developing countries remain poorly understood because few studies have successfully analyses the overall impact of climate on developing country economies. Agricultural growth is widely viewed as an effective and most important way to reduce poverty in developing countries which are hardly hit by the adverse effects of climate change (Datt and Ravallion, 1996. Despite this knowledge the main challenge is how to increase agricultural productivity to improve household welfare and increase food security in these changing and challenging climatic conditions. This study used the multinomial logit model to analyse the determinants of farmers' choice of crop variety in the face of climate change. The estimation of the multinomial logit was done by using the sorghum variety options as dependent variable and where farmers grow other crop different from sorghum as the reference state. Results show that the key determinants of choosing crop variety are; the price of existing crop variety, level of education of farmers, the size of the farms, government policies and incentives and credit availability.

  7. Dietary 2-oxoglutarate mitigates gastrectomy-evoked structural changes in cartilage of female rats.

    Science.gov (United States)

    Dobrowolski, Piotr; Tomaszewska, Ewa; Kurlak, Paulina; Pierzynowski, Stefan G

    2016-01-01

    Gastrectomy (Gx) leads to osteopenia/osteoporosis in humans and animals. However, little is known about the influence of Gx on the cartilage in this regard. Recent studies have demonstrated a protective effect of 2-oxoglutaric acid (2-Ox) on bone and cartilage. Hence, the purpose of this study was to investigate whether 2-Ox can mitigate eventual Gx-induced cartilage impairment. Twenty female Sprague-Dawley rats were subjected to Gx and randomly divided into two groups: Gx + 2-Ox and Gx. Another 20 rats were sham-operated (ShO) and randomly divided into two groups: ShO + 2-Ox and ShO. The daily dose of 2-Ox administered to the rats in the drinking water was 0.43 g per 100 g rat. After eight weeks, rats were euthanized and femora and tibiae were collected. Histology and histomorphometry analyses of the articular cartilage and the growth plate were done. Gx resulted in a 32% (±44.5 femur, ±35.8 tibia) decrease in overall thickness of articular cartilage in both bones (femur: ShO 279.1 ± 48.5 vs. Gx 190.2 ± 38.4 µm, tibia: ShO 222.9 ± 50.3 µm vs. Gx 151.3 ± 52.6 µm) (in some zones up to 58 ± 28.0%), and in the growth plate up to 20% (±22.4) (femur: ShO 243.0 ± 34.0 vs. Gx 207.0 ± 33.7 µm, tibia: ShO 220.0 ± 24.6 µm vs. Gx 171.1 ± 16.1 µm). Gx altered the spatial distribution of thick and thin collagen fibers, and chondrocyte shape and size. 2-Ox administration prevented the reduction in both cartilages thickness (Gx + 2-Ox: articular cartilage 265.2 ± 53.8 µm, 235.6 ± 42.7 µm, growth plate 236.7 ± 39.2 µm, 191.3 ± 16.5 µm in femur and tibia, respectively), and abolished the spatial changes in collagen distribution and structure induced by Gx. Gx affects cartilage structure and thickness, however, 2-Ox administration mitigates these effects and showed protective and stimulatory properties. Our observations suggest that dietary 2-Ox can be used to offset

  8. Presentation of an Innovative Zero-Emission Cycle for Mitigating the Global Climate Change

    Directory of Open Access Journals (Sweden)

    Philippe Mathieu

    1998-06-01

    Full Text Available In the spectrum of possible options to cope with the global climate change, a novel technology based on the zero CO2 emission MATIANT cycle (contraction of the names of the 2 designers : MATHIEU and IANTOVSKI is presented here. This latter is basically a regenerative gas cycle operating on CO2 as the working fluid and using O2 as the fuel oxidiser in the combustion chambers. The cycle uses the highest temperatures and pressures compatible with the most advanced materials in the steam and gas turbines. In addition, reheat and staged compression with intercooling are used. Therefore the optimized cycle efficiency rises up to around 45% when operating on natural gas. A big asset of the system is its ability to remove totally the CO2 produced in the combustion process in liquid or supercritical state and at high pressure, making it ready for transportation, for reuse or for final storage. It avoids the cost in performance (decrease of efficiency and power output and in money of the CO2 capture by a MEA scrubber. The assets and drawbacks of the cycle are mentioned. The technical issues for the design of a prototype plant are examined.

  9. Mitigation : Closed Basin Project

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The upcoming meeting on waterfowl mitigation for the Closed Basin Project will have several people talk about possible changes to the waterfowl mitigation program....

  10. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    Science.gov (United States)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  11. Uncertainty assessment of climate change adaptation options in urban flash floods

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Arnbjerg-Nielsen, Karsten

    adaptation options. The case study is a small urban catchment where no significant city development is anticipated. Therefore the main focus is on estimation of impact of uncertainties related to present and future hydrological conditions, impacts on assets, and costing of the damages. The uncertainties....... However, the analysis is complicated by irreducible uncertainties about present and future hydrologic conditions as well as the present and future vulnerability of the area in question. Further, modelling of the actual hazards given the hydrologic conditions also entails substantial uncertainty. The work...... presented is based on a flood risk framework that is in accordance with the EU flood directive, but adapted and extended to incorporate anticipated future changes due to city development and hydrologic extremes. The framework is used to study the importance of inherent uncertainties in order to find robust...

  12. USDA Southwest Regional Hub for Adaptation to and Mitigation of Climate Change

    Science.gov (United States)

    Rango, A.; Elias, E.; Steele, C. M.; Havstad, K.

    2014-12-01

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up of six states: New Mexico, Arizona, Utah, Nevada, California and Hawaii (plus the Trust Territories of the Pacific Islands). The SW Climate Hub has a subsidiary hub located in Davis, California. The Southwest region has high climatic diversity, with the lowest and highest average annual rainfall in the U.S.(6.0 cm in Death Valley, CA and 1168 cm at Mt. Waialeale, HI). There are major deserts in five of the six states, yet most of the states, with exception of Hawaii, depend upon the melting of mountain snowpacks for their surface water supply. Additionally, many of the agricultural areas of the SW Regional Hub depend upon irrigation water to maintain productivity. Scientific climate information developed by the Hub will be used for climate-smart decision making. To do this, the SW Regional Hub will rely upon existing infrastructure of the Cooperative Extension Service at Land-Grant State Universities. Extension service and USDA-NRCS personnel have existing networks to communicate with stakeholders (farmers, ranchers, and forest landowners) through meetings and workshops which have already started in the six states. Outreach through the development of a weather and climate impact modules designed for seventh grade students and their teachers will foster education of future generations of rural land managers. We will be synthesizing and evaluating existing reports, literature and information on regional climate projections, water resources, and agricultural adaptation strategies related to climate in the Southwest. The results will be organized in a spatial format and provided through the SW Hub website (http://swclimatehub.info) and peer-reviewed articles.

  13. Evaluation of mitigation scenarios of climate change in the electric sector

    International Nuclear Information System (INIS)

    The electricity generation contributes to development and to improve the quality of life, But it is ones of the most important contributors to the Greenhouse Gas and particle emissions particularly in Cuba where 99.4% of electricity in the National Electric System is generated from fossil fuels. In the paper from mitigation measures three mitigation scenarios are evaluated for the Expansion of the Cuban electric system using DECADES Tools. Evaluated scenarios include the Use of 60% of the biomass potential, the combinations of this with nuclear power reactors, Hydraulic energy and combined cycle power plants. Finally in the paper the Greenhouse Gas level reduction, investment, fuel, operation and Maintenance costs and Carbon Intensity in generation are analyzed for evaluated mitigation Scenarios and conclusions are offered

  14. Are changes in weather masking the efficacy of measures aimed at mitigating diffuse pollution?

    Science.gov (United States)

    Mellander, Per-Erik; Jordan, Phil; Shore, Mairead; McDonald, Noeleen; Shortle, Ger

    2016-04-01

    Interpretations of the efficacy of mitigation measures for reducing nitrogen (N) and phosphorus (P) losses from agricultural sources to water bodies are challenged by the temporal variability of air temperature and rainfall. Influences are different depending on flow controls, associated time lags and nutrient transformations that may occur along the pathways. In Europe weather patterns and trends are influenced by large-scale weather systems over the North Atlantic. One of the most prominent teleconnection patterns that affect the weather across all seasons is the North Atlantic Oscillation (NAO). In northwestern Europe a positive phase in the NAO index over the winter period is often associated with elevated air temperatures in summer and more frequent large rain events in winter than normal. The objective of this study was to investigate the catchment-scale influences and relationships of naturally altered hydro-meteorological processes on the diffuse N and P losses to waters, in order to distinguish natural climate effects from those caused by adaptive management (increased agricultural intensity, decreased nutrient use etc.). Here we present six years of monthly nitrate-N and total reactive P concentrations in stream water (aggregated from sub-hourly monitoring) in six, ca. 10 km2, Irish agricultural catchments with different hydrological flow controls and land use. The locations of the catchments make them susceptible to sudden and/or seasonal shifts in weather. Changes in long term air temperatures and rainfall were investigated and annual N and P concentrations were compared to the NAO. During the monitored period (2009-2015) there was a steady increase in wintertime NAO index, reaching positive values in recent years, resulting in higher air temperatures and more frequent large rain events in winter. In some settings annual N and/or P concentrations were positively correlated to the three-year moving average NAO index (R2 > 0.90). Catchments with free

  15. Special report on renewable energy sources and climate change mitigation, (SRREN). Summary for policy makers; FNs klimapanel: Spesialrapport om fornybar energi, sammendrag for beslutningstakere

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-15

    In May 2011 the Intergovernmental Panel on Climate Change published a report on six renewable energy sources and their role in climate change mitigation. This is a Norwegian, unofficial translation of the Summary for Policy makers. (Author)

  16. Near-term limits to mitigation: Challenges arising from contrary mitigation effects from indirect land-use change and sulfur emissions

    International Nuclear Information System (INIS)

    We explore the implications of potentially counteractive greenhouse gas mitigation responses to carbon prices and the complications that could ensue for limiting radiative forcing in the near-term. Specifically we consider the problem of reproducing the radiative forcing pathway for Representative Concentration Pathway, RCP4.5, which stabilizes radiative forcing at 4.5 W m−2 (650 ppm CO2-e) under a different terrestrial policy assumption. We show that if indirect land-use change emissions are not priced, carbon prices that can replicate this pathway in the near-term may not exist. We further show that additional complexities could emerge as a consequence of the co-production of CO2 and sulfur emissions as byproducts of fossil fuel combustion. - Highlights: • Explores the interplay between energy system CO2 emissions, land-use change CO2 emissions, and sulfur emissions • Discusses challenges with stabilizing radiative forcing in the near- and long-term • Replicates the RCP4.5 under different policy assumptions

  17. Climate change adaptation options for sustainable management of agriculture in the Eastern Lower Danube Plain, Romania

    Science.gov (United States)

    Popovici, Elena-Ana; Sima, Mihaela; Balteanu, Dan; Dragota, Carmen-Sofia; Grigorescu, Ines; Kucsicsa, Gheorghe

    2013-04-01

    The current study was carried out within the FP7 ECLISE project in the Eastern Lower Danube Plain (Bărăgan Plain), one of the major agricultural areas in Romania. In this region, climate change signals are becoming more evident being predominantly characterized by increasing temperatures, decreasing of precipitations and intensification of extreme events in terms of frequency, intensity and duration. Over the past decades, the effects of extreme climatic phenomena on crop production have been ever more severe (very low outputs in the droughty years, significant crop losses during flooding periods, hailstorms, etc.). Concurrently, these effects have been the result of a whole range of complex interactions with other environmental, social, economic and political factors over the post-communist period. Using questionnaires survey for small individual households and large agricultural farms, focus group interviews and direct field observation, this study analyses the farmers' perception in terms of climate change, the impact of climate change on agriculture and how the farmers react and adapt to these changes. The current study have revealed that all farmers believe drought as being by far the most important climatic factor with major impact on agricultural production, followed by acid rains, hail storms and ground frost, facts evidenced also by the climatic diagnosis of the region. The majority of respondents have taken adaptation agricultural measures in response to changes in climate conditions (drought resistant seeds, modern technology to keep the moisture in the soil, etc.), but they consider that a national strategy for mitigating the effects of climate change would be more effective in this respect. Also, in order to correlate the farmers' perception of climate change and climatic factors, the authors used and processed a wide range of meteorological data (daily, monthly and annual from the most representative meteorological stations in the study-area), as

  18. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report

    DEFF Research Database (Denmark)

    Bogner, J.P.; Pipatti, R.; Hashimoto, S.;

    2008-01-01

    protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition...... through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste...... quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline...

  19. District Heating and CHP - Local Possibilities for Global Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Difs, Kristina

    2010-07-01

    Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO{sub 2}) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linkoeping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed. In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO{sub 2} reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO{sub 2} reduction and savings potential. However, the global CO{sub 2} reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on

  20. Key landscape ecology metrics for assessing climate change adaptation options: rate of change and patchiness of impacts

    Science.gov (United States)

    López-Hoffman, Laura; Breshears, David D.; Allen, Craig D.; Miller, Marc L.

    2013-01-01

    sum, understanding how the rate of change and degree of patchiness of change will constrain adaptive options is a critical consideration in preparing for climate change.

  1. Climate Change under aggressive mitigation: The ENSEMBLES multi-model experiment

    NARCIS (Netherlands)

    Johns, T.C.; Royer, J.F.; Hoeschel, I.; Huebener, H.; Roeckner, E.; Manzini, E.; May, W.; Dufresne, J.L.; Ottera, O.H.; van Vuuren, D.P.; Salas y Melia, D.; Giorgetta, M.A.; Denvil, S.; Yang, S.; Fogli, P.G.; Koerper, J.; Tjiputra, J.F.; Stehfest, E.; Hewitt, C.D.

    2011-01-01

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental

  2. Adaptation versus mitigation broadens need for societal capacity building coping with climate change

    DEFF Research Database (Denmark)

    Buch-Hansen, Mogens

    2009-01-01

    Kampen for at nedbringe koncentrationen af drivhusgasser i atmossfæren, på engelsk betegnet mitigation, har i vid udstrækning været ført an af naturvidenskaberne, ikke mindst i opstillingen af forskellige klimamodeller. Tilpasningen til de uundgåelige klimaforandringer, som vil være mest omfatten...

  3. Ecotourism and Climates changes: the ecolodge contribution in global warming mitigation

    OpenAIRE

    Lukman Hakim; Nobukazu Nakagoshi

    2014-01-01

    Global attention to the global warming reduction has invite numerous strategy implemented with the objectives is mitigating greenhouse gasses emission which threats to the future of living in biosphere. Essentially, absorbing CO2 from atmosphere and sequestering in terrestrial ecosystem is one of the significant strategy. While in developing countries it is become essential, support for forest conservation, afforestation and effort to increase te...

  4. Mitigating greenhouse gas emissions with agricultural land management changes: What practices hold the best potential?

    Science.gov (United States)

    Eagle, A. J.; Olander, L.; Rice, C. W.; Haugen-Kozyra, K.; Henry, L. R.; Baker, J. S.; Jackson, R. B.

    2010-12-01

    Agricultural land management practices within the United States have significant potential to mitigate greenhouse gases (GHGs) in voluntary market or regulatory contexts - by sequestering soil carbon or reducing N2O or CH4 emissions. Before these practices can be utilized in active protocols or within a regulatory or farm bill framework, we need confidence in our ability to determine their impact on GHG emissions. We develop a side-by-side comparison of mitigation potential and implementation readiness for agricultural GHG mitigation practices, with an extensive literature review. We also consider scientific certainty, environmental and social co-effects, economic factors, regional specificity, and possible implementation barriers. Biophysical GHG mitigation potential from agricultural land management activities could reach more than 500 Mt CO2e/yr in the U.S. (7.1% of annual emissions). Up to 75% of the total potential comes from soil C sequestration. Economic potential is lower, given necessary resources to incentivize on-farm adaptations, but lower cost activities such as no-till, fertilizer N management, and cover crops show promise for near-term implementation in certain regions. Scientific uncertainty or the need for more research limit no-till and rice water management in some areas; and technical or other barriers need to be addressed before biochar, advanced crop breeding, and agroforestry can be widely embraced for GHG mitigation. Significant gaps in the current research and knowledge base exist with respect to interactions between tillage and N2O emissions, and with fertilizer application timing impacts on N2O emissions.

  5. Climate Change Impacts on US Agriculture and the Benefits of Greenhouse Gas Mitigation

    Science.gov (United States)

    Monier, E.; Sue Wing, I.; Stern, A.

    2014-12-01

    As contributors to the US EPA's Climate Impacts and Risk Assessment (CIRA) project, we present empirically-based projections of climate change impacts on the yields of five major US crops. Our analysis uses a 15-member ensemble of climate simulations using the MIT Integrated Global System Model (IGSM) linked to the NCAR Community Atmosphere Model (CAM), forced by 3 emissions scenarios (a "business as usual" reference scenario and two stabilization scenarios at 4.5W/m2 and 3.7 W/m2 by 2100), quantify the agricultural impacts avoided due to greenhouse gas emission reductions. Our innovation is the coupling of climate model outputs with empirical estimates of the long-run relationship between crop yields and temperature, precipitation and soil moisture derived from the co-variation between yields and weather across US counties over the last 50 years. Our identifying assumption is that since farmers' planting, management and harvesting decisions are based on land quality and expectations of weather, yields and meteorological variables share a long-run equilibrium relationship. In any given year, weather shocks cause yields to diverge from their expected long-run values, prompting farmers to revise their long-run expectations. We specify a dynamic panel error correction model (ECM) that statistically distinguishes these two processes. The ECM is estimated for maize, wheat, soybeans, sorghum and cotton using longitudinal data on production and harvested area for ~1,100 counties from 1948-2010, in conjunction with spatial fields of 3-hourly temperature, precipitation and soil moisture from the Global Land Data Assimilation System (GLDAS) forcing and output files, binned into annual counts of exposure over the growing season and mapped to county centroids. For scenarios of future warming the identical method was used to calculate counties' current (1986-2010) and future (2036-65 and 2086-2110) distributions of simulated 3-hourly growing season temperature, precipitation

  6. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others

    1996-12-31

    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  7. Changing Profiles of Diagnostic and Treatment Options in Subclavian Artery Aneurysms

    NARCIS (Netherlands)

    Vierhout, B. P.; Zeebregts, C. J.; van den Dungen, J. J. A. M.; Reijnen, M. M. P. J.

    2010-01-01

    Background: Subclavian artery aneurysms (SAAs) are rare and may cause life- and limb-threatening complications. Therapeutic options greatly differ as do access alternatives. The aim of the study was to assess its clinical presentation, diagnostics and therapeutic options as reported in the literatur

  8. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  9. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    Directory of Open Access Journals (Sweden)

    Karine Princé

    Full Text Available Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform

  10. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  11. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  12. Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)

    Science.gov (United States)

    Heimann, M.

    2014-01-01

    Becker et al. (2013) argue that an afforestation of 0.73 × 109 ha with Jatropha curcas plants would generate an additional terrestrial carbon sink of 4.3 PgC yr-1, enough to stabilise the atmospheric mixing ratio of carbon dioxide (CO2) at current levels. However, this is not consistent with the dynamics of the global carbon cycle. Using a well-established global carbon cycle model, the effect of adding such a hypothetical sink leads to a reduction of atmospheric CO2 levels in the year 2030 by 25 ppm compared to a reference scenario. However, the stabilisation of the atmospheric CO2 concentration requires a much larger additional sink or corresponding reduction of anthropogenic emissions.

  13. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    OpenAIRE

    Veysey, J.; Octaviano, C.; K. Calvin; Herreras Martinez, S.; Kitous, A; McFarland, J; Zwaan, van der, B.C.C.

    2015-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic mo...

  14. Climate change mitigation in Asia and financing Mechanisms.Proceedings of a Regional Conference

    International Nuclear Information System (INIS)

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  15. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  16. Defense Waste Processing Facility: Report of task force on options to mitigate the effect of nitrite on DWPF operations. Savannah River Site 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Randall, D. [ed.; Marek, J.C.

    1992-03-01

    The possibility of accumulating ammonium nitrate (an explosive) as well as organic compounds in the DWPF Chemical Processing Cell Vent System was recently discovered. A task force was therefore organized to examine ways to avoid this potential hazard. Of thirty-two processing/engineering options screened, the task force recommended five options, deemed to have the highest technical certainty, for detailed development and evaluation: Radiolysis of nitrite in the tetraphenylborate precipitate slurry feed in a new corrosion-resistant facility. Construction of a Late Washing Facility for precipitate washing before transfer to the DWPF; ``Just-in-Time`` precipitation; Startup Workaround by radiolysis of nitrite in the existing corrosion-resistant Pump Pit tanks; Ammonia venting and organics separation in the DWPF; and, Estimated costs and schedules are included in this report.

  17. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models

    NARCIS (Netherlands)

    Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Ittersum, van M.K.

    2015-01-01

    Exploring adaptation strategies for different climate change scenarios to support agricultural production and food security is a major concern to vulnerable regions, including Ethiopia. This study assesses the potential impacts of climate change on maize yield and explores specific adaptation option

  18. A risk-based framework for water resource management under changing water availability, policy options, and irrigation expansion

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2016-08-01

    Long-term water resource management requires the capacity to evaluate alternative management options in the face of various sources of uncertainty in the future conditions of water resource systems. This study proposes a generic framework for determining the relative change in probabilistic characteristics of system performance as a result of changing water availability, policy options and irrigation expansion. These probabilistic characteristics can be considered to represent the risk of failure in the system performance due to the uncertainty in future conditions. Quantifying the relative change in the performance risk can provide a basis for understanding the effects of multiple changing conditions on the system behavior. This framework was applied to the water resource system of the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. A "bottom-up" flow reconstruction algorithm was used to generate multiple realizations for water availability within a feasible range of change in streamflow characteristics. Consistent with observed data and projected change in streamflow characteristics, the historical streamflow was perturbed to stochastically generate feasible future flow sequences, based on various combinations of changing annual flow volume and timing of the annual peak. In addition, five alternative policy options, with and without potential irrigation expansion, were considered. All configurations of water availability, policy decisions and irrigation expansion options were fed into a hydro-economic water resource system model to obtain empirical probability distributions for system performance - here overall and sectorial net benefits - under the considered changes. Results show that no one specific policy can provide the optimal option for water resource management under all flow conditions. In addition, it was found that the joint impacts of changing water availability, policy, and irrigation expansion on system performance are complex and

  19. Regional aspects of climate change impacts and related adaptation options in European agriculture

    Science.gov (United States)

    Eitzinger, J.

    2009-09-01

    Through a change in climatic conditions and variability, for example, extreme weather events (heat waves, droughts, etc.) are likely to occur more frequently in different spatial and time scales in future. Since agriculture is one the man' activities more dependant on weather behaviour, the impact on risks of agricultural production is indeed one of the most important issues in climate change assessments. Therefore an early recognition of risks and implementation of adaptation strategies is crucial as anticipatory and precautionary adaptation is more effective and less costly than forced, last minute, emergency adaptation or retrofitting. Results of climate change impact and adaptation studies often show considerable different results, depending on the spatial scale of regionalisation. However, for a decision maker, only a high spatial resolution of related study results are useful as it can represent local conditions and its spatial variablitiy much better. Therefore the ADAGIO project (adagio-eu.org) was designed to focus on regional studies in order to uncover regional specific problems. In this context a bottom-up approach is used beside the top-down approach of using scientifc studies, involving regional experts and farmers in the evaluation of potential regional vulnerabilites and adaptation options. Preliminary results of the regional studies and gathered feedback from experts and farmers show in general that (increasing) drought and heat is the main factor having impact on agricultural vulnerability not only in the mediterranean region, but also in the Central and Eastern European regions. Another important aspect is that the increasing risk of pest and diseases may play a more important role for agricultural vulnerability than assumed before, however, till now this field is only rarely investigated in Europe. An important aspect is also that there are increasing regional differences in the crop production potential in Europe due to climate change and that

  20. GHG emission mitigation measures and technologies in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, M. [Energy Efficiency Center, Prague (Czech Republic)

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  1. Renewable Energies and Enhanced Energy Efficiencies: Mitigation/Adaptation Measures to Climate Change Impacts on Cyprus and in the Eastern Mediterranean

    Science.gov (United States)

    Lange, Manfred

    2010-05-01

    The Eastern Mediterranean in general and Cyprus in particular are considered "hot spots" of future climate change. This will become manifest through an increase in the number and duration of drought events and extended hot-spells. The need to cope with the impacts of climate change will lead to enhanced requirements for cooling of private and public housing and growing demands for potable water derived from seawater desalination. This in turn will cause increasing pressures on electricity production and will result in additional strain on the energy sector in the region. For Cyprus, the current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of petroleum products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to about 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. The current building stock on Cyprus lacks basic measures for energy efficiency. This is particularly noteworthy with regard to insufficient insulation of buildings, which causes significant amounts of energy to be expanded for cooling. In light of these facts, an increased use of renewable energies and measures to enhance energy efficiencies in the built environment constitute important elements of a stringent and effective mitigation/adaptation strategy to climate change. The Eastern Mediterranean is among the most suitable location for the utilization of solar energy in Europe. A global direct normal irradiance of more than 1 800 kWh/m2 on Cyprus offers a renewable electricity potential of app. 20 to 23 TWh/yr when concentrated solar power (CSP) technology is employed. With regard to enhanced energy efficiency

  2. 5 CFR 894.507 - After I'm enrolled, may I change from one dental or vision plan or plan option to another?

    Science.gov (United States)

    2010-01-01

    ... dental or vision plan or plan option to another? 894.507 Section 894.507 Administrative Personnel OFFICE... AND VISION INSURANCE PROGRAM Enrollment and Changing Enrollment § 894.507 After I'm enrolled, may I change from one dental or vision plan or plan option to another? (a) You may change from one dental...

  3. Application of Structured Decision Making to an Assessment of Climate Change Vulnerabilities and Adaptation Options for Sustainable Forest Management

    Directory of Open Access Journals (Sweden)

    John L. Innes

    2009-06-01

    Full Text Available A logical starting point for climate change adaptation in the forest sector is to proactively identify management practices and policies that have a higher likelihood of achieving management objectives across a wide range of potential climate futures. This should be followed by implementation of these options and monitoring their success in achieving management objectives within an adaptive management context. Here, we implement an approach to identify locally appropriate adaptation options by tapping into the experiential knowledge base of local forest practitioners while at the same time, building capacity within this community to implement the results. We engaged 30 forest practitioners who are involved with the implementation of a regional forest management plan in identifying climate change vulnerabilities and evaluating alternative adaptation options. A structured decision-making approach was used to frame the assessment. Practitioners identified 24 adaptation options that they considered important to implement in order to achieve the regional goals and objectives of sustainable forest management in light of climate change.

  4. U.S. onroad transportation CO2 emissions analysis comparing highly resolved CO2 emissions and a national average approach : mitigation options and uncertainty reductions

    Science.gov (United States)

    Mendoza, D. L.; Gurney, K. R.

    2011-12-01

    The transportation sector is the second largest CO2 emitting economic sector in the United States, accounting for 32.3% of the total U.S. emissions in 2002. Within the transportation sector, the largest component (80%) is made up of onroad emissions. In order to accurately quantify future emissions and evaluate emissions regulation strategies, analysis must account for spatially-explicit fleet distribution, driving patterns, and mitigation strategies. Studies to date, however, have either focused on one of these three components, have been only completed at the national scale, or have not explicitly represented CO2 emissions instead relying on the use of vehicle miles traveled (VMT) as an emissions proxy. We compare a high resolution onroad emissions data product (Vulcan) to a national averaging of the Vulcan result. This comparison is performed in four groupings: light duty (LD) and heavy duty (HD) vehicle classes, and rural and urban road classes. Two different bias metrics are studied: 1) the state-specific, group-specific bias and 2) the same bias when weighted by the state share of the national group-specific emissions. In the first metric, we find a spread of positive and negative biases for the LD and HD vehicle groupings and these biases are driven by states having a greater/lesser proportion of LD/HD vehicles within their total state fleet than found from a national average. The standard deviation of these biases is 2.01% and 0.75% for the LD and HD groupings, respectively. These biases correlate with the road type present in a state, so that biases found in the urban and LD groups are both positive or both negative, with a similar relationship found between biases of the rural and HD groups. Additionally, the road group bias is driven by the distribution of VMT on individual road classes within the road groupings. When normalized by national totals, the state-level group-specific biases reflect states with large amounts of onroad travel that deviate

  5. Emerging mitigation needs and sustainable options for solving the arsenic problems of rural and isolated urban areas in Latin America - a critical analysis.

    Science.gov (United States)

    Bundschuh, Jochen; Litter, Marta; Ciminelli, Virginia S T; Morgada, María Eugenia; Cornejo, Lorena; Hoyos, Sofia Garrido; Hoinkis, Jan; Alarcón-Herrera, Ma Teresa; Armienta, María Aurora; Bhattacharya, Prosun

    2010-11-01

    In this work, current information about the contamination of ground- and surface-water resources by arsenic from geogenic sources in Latin America is presented together with possible emerging mitigation solutions. The problem is of the same order of magnitude as other world regions, such as SE Asia, but it is often not described in English. Despite the studies undertaken by numerous local researchers, and the identification of proven treatment methods for the specific water conditions encountered, no technologies have been commercialized due to a current lack of funding and technical assistance. Emerging, low-cost technologies to mitigate the problem of arsenic in drinking water resources that are suitable for rural and urban areas lacking centralized water supplies have been evaluated. The technologies generally use simple and low-cost equipment that can easily be handled and maintained by the local population. Experiences comprise (i) coagulation/filtration with iron and aluminum salts, scaled-down for small community- and household-scale-applications, (ii) adsorption techniques using low-cost arsenic sorbents, such as geological materials (clays, laterites, soils, limestones), natural organic-based sorbents (natural biomass), and synthetic materials. TiO(2)-heterogeneous photocatalysis and zerovalent iron, especially using nanoscale particles, appear to be promising emergent technologies. Another promising innovative method for rural communities is the use of constructed wetlands using native perennial plants for arsenic rhizofiltration. Small-scale simple reverse osmosis equipment (which can be powered by wind or solar energy) that is suitable for small communities can also be utilized. The individual benefits of the different methods have been evaluated in terms of (i) size of the treatment device, (ii) arsenic concentration and distribution of species, chemical composition and grade of mineralization in the raw water, (iii) guidelines for the remaining As

  6. GHG emissions and mitigation potential in Indian agriculture

    Science.gov (United States)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  7. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    Science.gov (United States)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. PMID:26476058

  8. Integrating climate change mitigation, adaptation, communication and education strategies in Matanzas Province, Cuba: A Citizen Science Approach

    Science.gov (United States)

    Rodriguez Bueno, R. A.; Byrne, J. M.

    2015-12-01

    The Environment Service Center of Matanzas (ESCM), Cuba and the University of Lethbridge are collaborating on the development of climate mitigation and adaptation programs in Matanzas province. Tourism is the largest industry in Matanzas. Protecting that industry means protecting coastal zones and conservation areas of value to tourism. These same areas are critical to protecting the landscape from global environmental change: enhanced tropical cyclones, flooding, drought and a range of other environmental change impacts. Byrne (2014) adapted a multidisciplinary methodology for climate adaptation capacity definition for the population of Nicaragua. A wide array of adaptive capacity skills and resources were integrated with agricultural crop modeling to define regions of the country where adaptive capacity development were weakest and should be improved. In Matanzas province, we are developing a series of multidisciplinary mitigation and adaptation programs that builds social science and science knowledge to expand capacity within the ESCM and the provincial population. We will be exploring increased risk due to combined watershed and tropical cyclone flooding, stresses on crops, and defining a range of possibilities in shifting from fossil fuels to renewable energy. The program will build ongoing interactions with thousands of Matanzas citizens through site visits carried out by numerous Cuban and visiting students participating in a four-month education semester with a number of Lethbridge and Matanzas faculty. These visits will also provide local citizens with better access to web-based interactions. We will evaluate mitigation and adaptive capacities in three municipalities and some rural areas across the province. Furthermore, we will explore better ways and means to communicate between the research and conservation staff and the larger population of the province.

  9. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    Science.gov (United States)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions.

  10. A ranking of net national contributions to climate change mitigation through tropical forest conservation.

    Science.gov (United States)

    Carrasco, L R; Papworth, S K

    2014-12-15

    Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters.

  11. Health co-benefits of climate change mitigation policies in the transport sector

    Science.gov (United States)

    Shaw, Caroline; Hales, Simon; Howden-Chapman, Philippa; Edwards, Richard

    2014-06-01

    Theory, common sense and modelling studies suggest that some interventions to mitigate carbon emissions in the transport sector can also have substantial short-term benefits for population health. Policies that encourage active modes of transportation such as cycling may, for example, increase population physical activity and decrease air pollution, thus reducing the burden of conditions such as some cancers, diabetes, heart disease and dementia. In this Perspective we systematically review the evidence from 'real life' transport policies and their impacts on health and CO2 emissions. We identified a few studies that mostly involved personalized travel planning and showed modest increases in active transport such as walking, and reductions in vehicle use and CO2 emissions. Given the poor quality of the studies identified, urgent action is needed to provide more robust evidence for policies.

  12. A ranking of net national contributions to climate change mitigation through tropical forest conservation.

    Science.gov (United States)

    Carrasco, L R; Papworth, S K

    2014-12-15

    Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters. PMID:25214074

  13. Local Climate Action Plans in climate change mitigation - examining the case of Denmark

    DEFF Research Database (Denmark)

    Damsø, Tue Noa Jacques; Kjær, Tyge; Christensen, Thomas Budde

    2016-01-01

    The article examines the climate action plans (CAPs) of local governments (LGs) in Denmark. Applying a quantitative content analysis approach, all available Danish LG action plans within the climate and energy field has been collected and coded, giving insight into the extent of LG CAPs. We assess...... the extent, targets and scope of LG CAPs and find that Danish LGs are highly involved in mitigation activities with a widespread CAP adoption and an overall high degree of sectoral coverage on base year accounts and action plans, albeit with some significant shortcomings. Different approaches for target...... and scope definition are identified and assessed, and the overall contribution of LGs to the Danish energy transition is discussed....

  14. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Science.gov (United States)

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.

  15. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Science.gov (United States)

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double. PMID:26011182

  16. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Directory of Open Access Journals (Sweden)

    Kemen G Austin

    Full Text Available Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.

  17. Policy options for including LULUCF in the EU reduction commitment and policy instruments for increasing GHG mitigation efforts in the LULUCF and agriculture sectors

    NARCIS (Netherlands)

    Kuikman, P.J.; Matthews, R.; Watterson, J.; Ward, J.; Lesschen, J.P.; Mackie, E.; Webb, J.; Oenema, O.

    2011-01-01

    Land use, land-use change and forestry (LULUCF) is an inventory sector defined by the Intergovern-mental Panel on Climate Change (IPCC) that covers anthropogenic emissions and removals of GHGs resulting from changes in terrestrial carbon stocks. The EU has committed unilaterally to reduce its overal

  18. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  19. Environmental and socio-economic impacts of global climate change: An overview on mitigation approaches

    OpenAIRE

    Prabhat Kumar Rai; Prashant Kumar Rai

    2013-01-01

    Climate change is expected to bring about major change in freshwater availability, the productive capacity of soils, and in patterns of human settlement. Likewise, climate change is intimately linked to human health either directly or indirectly. However, considerable uncertainties exist with regard to the extent and geographical distribution of these changes. Predicting scenarios for how climate-related environmental change may influence human societies and political systems necessarily invo...

  20. 76 FR 78059 - Self-Regulatory Organizations; Options Clearing Corporation; Order Approving Proposed Rule Change...

    Science.gov (United States)

    2011-12-15

    ... Relating to Management of Liquidity Risk December 9, 2011. I. Introduction On October 12, 2011, the Options...\\ Securities Exchange Act Release No. 65622 (October 28, 2011), 76 FR 67523. II. Description The purpose of the... in which OCC may use, a defaulting clearing member's margin deposits and contributions to...

  1. Policy options for including LULUCF in the EU reduction commitment and policy instruments for increasing GHG mitigation efforts in the LULUCF and agriculture sectors

    OpenAIRE

    Kuikman, P.J.; R. Matthews; J. Watterson; Ward, J.; Lesschen, J.P.; Mackie, E.; Webb, J.; Oenema, O.

    2011-01-01

    Land use, land-use change and forestry (LULUCF) is an inventory sector defined by the Intergovern-mental Panel on Climate Change (IPCC) that covers anthropogenic emissions and removals of GHGs resulting from changes in terrestrial carbon stocks. The EU has committed unilaterally to reduce its overall greenhouse gas (GHG) emissions to 20 % be-low 1990 levels by 2020, and to 30 % below 1990 levels if conditions are right.

  2. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  3. Managing and Mitigating the Health Risks of Climate Change: Calling for Evidence-Informed Policy and Action

    Science.gov (United States)

    Tong, Shilu; Confalonieri, Ulisses; Ebi, Kristie; Olsen, Jorn

    2016-01-01

    Summary: Climate change affects many natural and social systems and processes that are essential for life. It disrupts the Earth’s life-support systems that underpin the world’s capacity to supply adequate food and fresh water, and it disturbs the eco-physical buffering against natural disasters. Epidemiologists need to develop and improve research and monitoring programs to better understand the scale and immediacy of the threat of climate change to human health and to act within a much larger and more comprehensive framework. To address one of the greatest environmental issues of our lifetime, the scientific and policy-making communities should work together to formulate evidence-informed public policy to mitigate greenhouse gas emissions and adapt to its inevitable impacts in this generation and, more importantly, in future generations to come. PMID:27689449

  4. Ecotourism and Climates changes: the ecolodge contribution in global warming mitigation

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2014-01-01

    Full Text Available Global attention to the global warming reduction has invite numerous strategy implemented with the objectives is mitigating greenhouse gasses emission which threats to the future of living in biosphere. Essentially, absorbing CO2 from atmosphere and sequestering in terrestrial ecosystem is one of the significant strategy. While in developing countries it is become essential, support for forest conservation, afforestation and effort to increase terrestrial ability to capture and storage carbon is poor. Ecotourism offer potential key to solved such problems by promoting ecolodge as a sustainable tourism accomodations. This paper aims to explore the potential of ecotourism sector to alleviate global warming and establishing framework for ecolodge planning and development in tropical developing countries. This paper highlight the significant of ecolodge attraction and development management to meet proper carbon capture and sequestration mechanism. The attraction management and developing programs ultimately able to increase plants biomass while accommodation able to practicing energy efficient and optimizing reuse and recycle approach. It will become the potential solution for reducing greenhouse gas emissions and create clean development strategy.

  5. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  6. Assessing natural disaster preparedness and climate change mitigation strategies in the coastal areas of Bangladesh

    OpenAIRE

    Rahman, Md. Mokhlesur

    2013-01-01

    Global climate is changing continuously as a result of industrial revolution and rapid urbanisation in many countries of the world which has significant impacts on environment, socio-economic condition, physical and biological issues. Increase of global temperature, rainfall changes, sea level rise, occurrences of extreme weather events such as floods, cyclones, typhoons, droughts etc. are the major and direct consequences of climate change in the world (Pulhin et al., 2010, & Shaw et al., 20...

  7. Community based adaptation options for climate change impacts on water resources: The case of Jordan

    OpenAIRE

    Hammouri Nezar; Al-Qinna Mohammad; Salahat Mohammad; Adamowski Jan; Prasher Shiv O.

    2015-01-01

    A strategic vision to ensure an adequate, safe and secure drinking water supply presents a challenge, particularly for such a small country as Jordan, faced with a critical supply-demand imbalance and a high risk of water quality deterioration. In order to provide sustainable and equitable long-term water management plans for the future, current and future demands, along with available adaptation options should be assessed through community engagement. An analysis of available water resources...

  8. How can packaging change children's eating habits from un-healthy food towards healthier options?

    OpenAIRE

    Coelho, João Diogo Sequeira

    2015-01-01

    Field Lab: Children consumer behaviour This experiment has the purpose of testing and measure the influence of packaging on children consumer behavior. More specifically, we seek to evaluate the impact that packaging can have on shifting children´s snack preferences from unhealthy food towards healthier options. The study was conducted through individual questionnaires done by 106 children aged from 7 to 9 years-old. There were two distinct groups in the sample (a control group and an e...

  9. Climate Change And Mitigation Measures For The Hydrometerological Disaster In Himachal Pradesh India- In Light Of Dams.

    Directory of Open Access Journals (Sweden)

    Vinay K. Pandey

    2015-01-01

    Full Text Available Abstract Continuing climate change is predicted to lead to major changes in the climate of the Himalayan region. Casualties and damage due to hazards in mountain regions will increase irrespective of global warming especially where populations are growing and infrastructure is developed at exposed locations. But climate change will definitely increase risk due to the fact that expected increases of heavy rainfall heat waves and glacier melt will amplify hazards in Himalayan region. The rapid release of melt water and rainfall may combine to trigger debris flows and flash flood in higher ranges including the formation of potentially dangerous lakes. These lakes may breach suddenly resulting in discharge of huge volume of water and debris. Himachal Pradesh had experienced a large number of incidences of Hydro-meteorological disaster HMD since its inception in 1971. Flash flood of March 1975 Dec 1988 Satluj flash flood of August 2000 July 2001 June 2005 Flash flood of July 2005 and Cloud burst in June 2013 are the major natural calamities in Himachal Pradesh. Due to continuous HMD brought heavy toll to the state as the loss was estimated in several thousand millions of rupees and also killed several hundreds of people besides large number of cattle heads. Through this paper we carried out a comprehensive study of past HMD and mitigation measures solution and concluded that these disaster are by their nature difficult to predict and control but it is possible to reduce the risk to lives and property through develop mitigation strategy and plan to construct damsbarrages with awareness and knowledge among local communities about the impacts of global warming natural disaster and the threat to the ecosystem communities and infrastructure are generally inadequate.

  10. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  11. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  12. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  13. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    Science.gov (United States)

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  14. Do algae have moral standing? On exploitation, ethical extension, and climate change mitigation

    NARCIS (Netherlands)

    Geerts, R.J.

    2012-01-01

    Climate change is a major framing condition for sustainable development of agriculture and food. Global food production is a major contributor to global greenhouse gas emissions and at the same time it is among the sectors worst affected by climate change. This book brings together a multidisciplina

  15. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  16. Evaluating public policy mechanisms for climate change mitigation in Brazilian buildings sector

    International Nuclear Information System (INIS)

    This paper applies a multi-criteria analysis (MCA) and marginal abatement cost curves (MACC) to evaluate public policies mechanisms to promote the dissemination of energy efficiency (EE) and on-site renewable energy sources (RES) technologies in Brazilian buildings sector. The objective here is to bring together the advantages of both methods in order to provide more valuable insights to policy makers. The MCA results show that in the case of more integrative policies, which considers, for instance, potential of jobs creation, the mechanisms to foster distributed RES and solar water heaters are better ranked than in MACC analysis, where only cost-effectiveness of each option is evaluated. Other key finding is that: (1) there is a significant cost effective potential that could be reached through alternative mechanisms not implemented yet in the country, such as public procurement regulation and building codes and; (2) minimum energy performance standards (MEPS) could be broader in scope and more stringent and include the use of energy in standby mode and tubular fluorescent lamps. In particular, some important appliances such as large air conditioning devices should have more aggressive MEPS. - Highlights: • We apply a multi-criteria analysis to evaluate EE and RES policies mechanisms. • We apply marginal abatement cost curves to evaluate EE and RES policies mechanisms. • We provide rankings of mechanisms according to their prospective potential impacts. • There is a significant cost effective energy saving potential in Brazilian buildings. • Brazil should improve MEPS and implement other policy mechanisms

  17. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  18. Costing issues for mitigation and adaptation to climate change: what policy makers need

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Oyuele, R.A. [Ministry of Foreign Affairs of the Argentine Republic, Buenos Aires (Argentina)

    2000-07-01

    As a supreme body on climate change, IPCC (Intergovernmental Panel on Climate Change) discusses related issues in conventions and originates scientific information which are needed by policy makers. This article highlights the problems usually faced by IPCC in originating such information. The author critically assesses the problems faces by climate change policy markers. He suggests that the scientific community should be actively involved in climate change policy formulation rather than providing warning against the risk of climate change. Plain language and clarity in preparing IPCC reports will improve the general understanding of the assessment. The author also points out that proliferation of scenarios is another source of many problems for policy makers. He argues out that the scenarios should be organized and presented according to some order of probability, as there is a tendency to confuse scenarios with forecasting.

  19. The Impact of Climate Change on Maize Yield and Farmers’ Adaptation Options:Evidence from Three Provinces of China

    Institute of Scientific and Technical Information of China (English)

    Jiliang; MA; Weisheng; KONG

    2015-01-01

    This paper tries to answer the question that whether farmers can adjust better to climate change in the short-term than in long-term by using panel data models and long difference models respectively.We find that short term weather shocks are less detrimental to maize yield than the long-term climate changes,which can be seen as the evidences of adaptations.For adaptation options,we find farmers choose to decrease maize planting area or enlarge the irrigation inputs to cope with the increase of extreme heat days;when there are more precipitations,farmers will increase the input of fertilizer or labor.

  20. What if ... abrupt and extreme climate change? Programme of VAM (Vulnerability, Adaptation, Mitigation)

    International Nuclear Information System (INIS)

    A number of researchers from different social scientific disciplines present a view in response to the question 'what will happen in our society if the climate suddenly changes?'. They answer questions such as: How will people respond to real risks such as imminent flooding? What are the economic consequences? How will it affect sectors such as inland shipping and coastal tourism? What are the costs of adapting our country to rising sea levels or sudden cold? As a society what do we consider to be socially and publicly acceptable? Can we still insure ourselves? Who will assume responsibility and what are the tasks of the various parties involved? The book merely sets the scene. Social sciences research into climate change has only just started. Besides providing answers to the question about the social and public implications of abrupt climate change, the book calls for a greater involvement of social scientists in climate change issues

  1. What incentives to climate change mitigation through harvested wood products in the current french policy framework?

    OpenAIRE

    Deheza, Mariana; Bellassen, Valentin; N'Goran, Carmen

    2014-01-01

    Beyond the important role that forests play in the fight against climate change through the sequestration of carbon in their biomass, wood products also contribute to climate change through three channels: Material substitution : the manufacturing of wood products being less energy intensive allows to avoid carbon emissions from the processing of other alternative materials (eg. concrete, steel, etc); Energy substitution: achieved by the generation of energy from wood combustion replaci...

  2. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  3. Land Management for Climate Change Mitigation and Geoengineering - Are Earth System Models up to the Challenge?

    Science.gov (United States)

    Bonan, G. B.

    2015-12-01

    Many of the terrestrial models included in Earth system models simulate changes to the land surface from human activities. In the Community Land Model (CLM), for example, irrigation, nitrogen fertilization, soil tillage, wood harvesting, and numerous crop types are represented in addition to anthropogenic land-cover change (e.g., deforestation, reforestation, and afforestation). These land uses are included in the models because they have a strong influence on the hydrological cycle (irrigation), crop yield and greenhouse gas emissions (nitrogen fertilization, crop type), and carbon storage (wood harvesting, tillage). However, the representation of these processes in Earth system models is uncertain, as is the specification of transient changes from 1850 through the historical era and into the future. A more fundamental aspect of land surface models is the coupling of land and atmosphere through exchanges of energy, mass, and momentum. Here, too, anthropogenic activities can affect climate through land-cover change and land management. Eddy covariance flux tower analyses suggest that the land management effects are as significant as the land-cover change effects. These analyses pose a challenge to land surface models - How well do the models simulate the effects of land management (e.g., changes in leaf area index or community composition) on surface flux exchange with the atmosphere? Here I use the CLM and a new, advanced multilayer canopy flux model to illustrate challenges in model surface fluxes and the influence of land management on surface fluxes.

  4. Innovative Financial Instruments and mechanisms for financing forest restoration and mitigating climate change: select cases from India

    Directory of Open Access Journals (Sweden)

    Teki Surayya

    2012-06-01

    Full Text Available Climate Change (CC is universal concern. One of the causes for CC is degradation offorest. World over every minute 22 hectares forest is degraded. Reckonings suggests thatUS$ 11880, funds must be invested every minute to restore the forest.In India Atmospheric pollution has severed in 90’s because of increasedautomobiles and electronic goods. Green car congress reported level of NO2concentration in Delhi ranged 70 - 102 microgram per cm, in 2005. It is argued that theconsumers are capable of meeting part of cost of CC mitigation. Recent survey (Teki,2008 in National Capital Region revealed that 40% of sample preferred to compensatethrough tax on petroleum products, 22 % in investing in forestry bonds, 57% favouredcompulsory investment in bonds. Awareness rate about climate change was 92%, and 88%favoured both technology transitions and economic sanctions for mitigating CC. Evolvinginnovative financing instruments and mechanisms to finance forest restoration andmitigating CC is important.Timber was considered important contribution of forests, as 2% GDP comes toexchequer. NTFPs now considered equally important for forest restoration as 25 – 55% offorest living people survival comes from NTFPs. Forests have innovative financialinstruments like Eco-tourism, to finance forest restoration. Self reliance apart from thegovernment funding and the private funding. Mobilisation of savings, bank finance,creating/strengthening global carbon fund effectively and financing the substitute sectorsare important for restoration of ecological integration and productivity and economic valueof deforested or degraded land. Objectives of paper are: a to assess level and impact offorest degradation and forest restoration in India, b to translate carbon pollution level intomitigating CC, b awareness level of CC in NCR c measure willingness of consumers tocompensate for CC, and d evolve innovative financial instruments and mechanisms tofinance sustainable forest

  5. Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Andrasko, Kenneth; Makundi, Willy; La Rovere, Emilio Lebre; Ravinandranath, N.H.; Melli, Anandi; Rangachari, Anita; Amaz, Mireya; Gay, Carlos; Friedmann, Rafael; Goldberg, Beth; van Horen, Clive; Simmonds, Gillina; Parker, Gretchen

    1998-11-01

    The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level, and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly

  6. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    Science.gov (United States)

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.

  7. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    Science.gov (United States)

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change. PMID:26698311

  8. Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum

    NARCIS (Netherlands)

    Dornburg, V.; Marland, G.

    2008-01-01

    Kirschbaum (Mitig Adapt Strat Glob Change 11:1151–1164, 2006) explores the climatic impact over time of temporarily sequestering carbon from the atmosphere. He concludes that temporary storage of carbon in the terrestrial biosphere “achieves effectively no climate-change mitigation”. His strongly wo

  9. The Vulnerability of Earth Systems to Human-Induced Global Change and Strategies for Mitigation

    Science.gov (United States)

    Watson, R. T.

    2002-12-01

    Since the IGY, there has been growing evidence that climate is changing in response to human activities. The overwhelming majority of scientific experts, whilst recognizing that scientific uncertainties exist, nonetheless believe that human-induced climate change is inevitable. Indeed, during the last few years, many parts of the world have suffered major heat waves, floods, droughts, fires and extreme weather events leading to significant economic losses and loss of life. While individual events cannot be directly linked to human-induced climate change, the frequency and magnitude of these types of events are predicted to increase in a warmer world. The question is not whether climate will change, but rather how much (magnitude), how fast (the rate of change) and where (regional patterns). It is also clear that climate change and other human-induced modifications to the environment will, in many parts of the world, adversely affect socio-economic sectors, including water resources, agriculture, forestry, fisheries and human settlements, ecological systems (particularly forests and coral reefs), and human health (particularly diseases spread by insects), with developing countries being the most vulnerable. Environmental degradation of all types (i.e., climate change, loss of biodiversity, land degradation, air and water quality) all undermine the challenge of poverty alleviation and sustainable economic growth. One of the major challenges facing humankind is to provide an equitable standard of living for this and future generations: adequate food, water and energy, safe shelter and a healthy environment (e.g., clean air and water). Unfortunately, human-induced climate change, as well as other global environmental issues such as land degradation, loss of biological diversity and stratospheric ozone depletion, threatens our ability to meet these basic human needs. The good news is, however, that the majority of experts believe that significant reductions in net

  10. 减缓气候变化政策与技术研究%POLICIES AND TECHNOLOGIES FOR THE MITIGATION OF CLIMATE CHANGE

    Institute of Scientific and Technical Information of China (English)

    李璐

    2013-01-01

    This article introduced the approaches for the mitigation of global climate change by analyzing the policies and technologies which were cost effective, sustainable, and corresponding to the local situation. From the perspectives of major mitigation policies and measures, technology selection, the practice of mitigation of climate change in China, this article studied the mitigation of climate change from the aspects of theory and practice, internal and domestic view, short and long term, and proposed measures and suggestions for the mitigation of climate change.%文章通过对成本有效的、可持续的、符合地区实际情况的气候变化减缓政策措施和减缓技术的研究,提出减缓气候变化的途径和方法.文章分别从减缓气候变化的主要政策措施、减缓气候变化的技术选择以及中国减缓气候变化的实践等角度,从理论和实践、国际和国内、近期和长期等多个环节对减缓气候变化措施进行探讨,从而提出减缓气候变化的行动建议.

  11. Mitigating the effects of surface morphology changes during ultrasonic wall thickness monitoring

    Science.gov (United States)

    Cegla, Frederic; Gajdacsi, Attila

    2016-02-01

    Ultrasonic wall thickness monitoring using permanently installed sensors has become a tool to monitor pipe wall thicknesses online and during plant operation. The repeatability of measurements with permanently installed transducers is excellent and can be in the nanometer range. It has, however, also been shown that the measured wall thickness is dependent on surface morphology and that when there are changes in surface morphology the monitored thickness trends can be affected. With an adaptive cross correlation approach, this effect can be successfully muted. However, under some surface morphology change conditions, this can also lead to inaccuracies. Here, an approach to detect when surface morphology changes can influence trend accuracies is presented. This method requires the combination of measurements from several sensors that independently sample an area where the same wall loss mechanism is assumed to occur. Simulation results for the effectiveness of the technique are presented.

  12. Community based adaptation options for climate change impacts on water resources: The case of Jordan

    Directory of Open Access Journals (Sweden)

    Hammouri Nezar

    2015-09-01

    Full Text Available A strategic vision to ensure an adequate, safe and secure drinking water supply presents a challenge, particularly for such a small country as Jordan, faced with a critical supply-demand imbalance and a high risk of water quality deterioration. In order to provide sustainable and equitable long-term water management plans for the future, current and future demands, along with available adaptation options should be assessed through community engagement. An analysis of available water resources, existing demands and use per sector served to assess the nation’s historic water status. Taking into account the effect of both population growth and rainfall reduction, future per sector demands were predicted by linear temporal trend analysis. Water sector vulnerability and adaptation options were assessed by engaging thirty five stakeholders. A set of weighed-criterions were selected, adopted, modified, and then framed into comprehensive guidelines. A quantitative ratio-level approach was used to quantify the magnitude and likelihood of risks and opportunities associated with each proposed adaptation measure using the level of effectiveness and severity status. Prioritization indicated that public awareness and training programs were the most feasible and effective adaptation measures, while building new infrastructure was of low priority. Associated barriers were related to a lack of financial resources, institutional arrangements, and data collection, sharing, availability, consistency and transparency, as well as willingness to adapt. Independent community-based watershed-vulnerability analyses to address water integrity at watershed scale are recommended.

  13. Experiential Learnings Inclimate Change Mitigation and Adaptation Through Organic and Sustainable Farming in the Philippines

    OpenAIRE

    Villegas, Pablito; Catedral, Isagani; Custodio, Henry

    2014-01-01

    This paper presents the best practices done by the Sustainable Agriculture and Organic Farmers’ Cooperative to address climate change impacts in agriculture. The issues include food security and access to safe, affordable and health promoting foods; water sufficiency and resilience to drought; environmental and ecological stability of an agro-ecosystem; human health and healthy lifestyle; and climate impacts on agricultural productivity.

  14. Reducing GHG Emissions from Traditional Livestock Systems to Mitigate Changing Climate and Biodiversity

    NARCIS (Netherlands)

    Mushi, D.E.; Eik, L.O.; Bernués, A.; Ripoll Bosch, R.; Sundstol, F.; Mo, M.

    2015-01-01

    Climate change (CC) directly impacts the economy, ecosystems, water resources, weather events, health issues, desertification, sea level rise, and even political and social stability. The effects of CC affect different groups of societies differently. In Tanzania, the effects of CC have even acquire

  15. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    Science.gov (United States)

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  16. Mitigation of impedance changes due to electroporation therapy using bursts of high-frequency bipolar pulses

    OpenAIRE

    Bhonsle, Suyashree P; Arena, Christopher B.; Sweeney, Daniel C; Davalos, Rafael V.

    2015-01-01

    Abstract Background For electroporation-based therapies, accurate modeling of the electric field distribution within the target tissue is important for predicting the treatment volume. In response to conventional, unipolar pulses, the electrical impedance of a tissue varies as a function of the local electric field, leading to a redistribution of the field. These dynamic impedance changes, which depend on the tissue type and the applied ...

  17. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    OpenAIRE

    Xingguo Han; Xue Sun; Cheng Wang; Mengxiong Wu; Da Dong; Ting Zhong; Thies, Janice E.; Weixiang Wu

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated...

  18. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change

    OpenAIRE

    César A Cuartas Cardona; Juan F Naranjo Ramírez; Ariel M Tarazona Morales; Enrique Murgueitio Restrepo; Julián D Chará Orozco; Juan Ku Vera; Francisco J Solorio Sánchez; Martha X Flores Estrada; Baldomero Solorio Sánchez; Rolando Barahona Rosales

    2014-01-01

    According to FAO, world demand for animal products will double in the first half of this century as a result of increasing population and economic growth. During the same period, major changes are expected in world climate. Food security remains one of the highest priority issues in developing Latin American countries, a region where livestock production plays a fundamental role. Agricultural activities seriously threaten natural resources; therefore, it is necessary to ensure that livestock ...

  19. Toward Collective Impact for Climate Resilience: Maximizing Climate Change Education for Preparedness, Adaptation, and Mitigation

    Science.gov (United States)

    Ledley, T. S.; Niepold, F., III; McCaffrey, M.

    2014-12-01

    Increasing the capacity of society to make informed climate decisions based on scientific evidence is imperative. While a wide range of education programs and communication efforts to improve understanding and facilitate responsible effective decision-making have been developed in recent years, these efforts have been largely disconnected. The interdisciplinary and trans-disciplinary nature of the problems and potential responses to climate change requires a broad range of expertise and a strategy that overcomes the inherent limitations of isolated programs and efforts. To extend the reach and impact of climate change education and engagement efforts, it is necessary to have a coordination that results in greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network has facilitated a series of discussions at six professional meetings from late 2012 through spring 2014 to begin to develop and define the elements of collective impact on climate change education and engagement. These discussions have focused on getting input from the community on a common agenda and what a backbone support organization could do to help extend their reach and impact and enable a longer-term sustainability. These discussions will continue at future meetings, with the focus shifting to developing a common agenda and shared metrics. In this presentation we will summarize the outcomes of these discussions thus far, especially with respect to what activities a backbone support organization might provide to help increase the collective impact of climate change education effort and invite others to join the development of public-private partnership to improve the nations climate literacy. The cumulative input into this evolving discussion on collective

  20. Can declining energy intensity mitigate climate change? Decomposition and meta-regression results

    OpenAIRE

    Stephan B. Bruns; Gross, Christian

    2012-01-01

    Drawing on the Kaya identity, we assess the role of the main driver of the decline in carbon intensity, namely the (economic) energy intensity. Using meta-signi…ficance testing for a sample of 44 studies, dealing with the causality between energy and GDP, we …find that both variables are strongly coupled. Hence, after having exhausted energy savings from nonrecurring structural changes, the economic energy intensity may soon converge than being arbitrarily reducible. We suggest, therefore, no...