WorldWideScience

Sample records for change heat exchanger

  1. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change

  2. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  3. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Science.gov (United States)

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  4. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  5. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  6. Heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Craig, L.B.; Farma, A.J.

    1987-01-06

    This invention concerns a heat exchanger as used in a space heater, of the type in which hot exhaust gases transfer heat to water or the like flowing through a helical heat exchange coil. A significant improvement to the efficiency of the heat exchange occurring between the air and water is achieved by using a conduit for the water having external helical fluting such that the hot gases circulate along two paths, rather than only one. A preferred embodiment of such a heat exchanger includes a porous combustion element for producing radiant heat from a combustible gas, surrounded by a helical coil for effectively transferring the heat in the exhaust gas, flowing radially from the combustion element, to the water flowing through the coil. 4 figs.

  7. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  8. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  9. Phase Change Material (PCM) Heat Exchanger Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Project has identified two PCM HX concepts that will be designed, developed and demonstrated on-board the International Space Station (ISS):The first heat exchanger...

  10. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  11. Heat Transfer Modeling of Phase Change Materials in Multiple Plates Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Alipanah

    2013-12-01

    Full Text Available Nowadays, given the increasing importance of energy sources, the possibility of energy storage in the heat exchangers through the Phase Change Materials (PCM and releasing it when needed have been extremely essential. This study seeks to model the domestic water heat system in which the paraffin is as the phase change material and it stores the solar energy. The behavior of a PCM plate was studied by writing the governing equations and solving them as the one-dimensional, implicit method and through numerical calculation of the method equations. Given the confirmed accuracy of performed modeling by the results of similar studies for the complete melting and solidification of PCM, the application of this system seems appropriate for the solar domestic water heaters.

  12. Use of Algorithm of Changes for Optimal Design of Heat Exchanger

    Science.gov (United States)

    Tam, S. C.; Tam, H. K.; Chio, C. H.; Tam, L. M.

    2010-05-01

    For economic reasons, the optimal design of heat exchanger is required. Design of heat exchanger is usually based on the iterative process. The design conditions, equipment geometries, the heat transfer and friction factor correlations are totally involved in the process. Using the traditional iterative method, many trials are needed for satisfying the compromise between the heat exchange performance and the cost consideration. The process is cumbersome and the optimal design is often depending on the design engineer's experience. Therefore, in the recent studies, many researchers, reviewed in [1], applied the genetic algorithm (GA) [2] for designing the heat exchanger. The results outperformed the traditional method. In this study, the alternative approach, algorithm of changes, is proposed for optimal design of shell-tube heat exchanger [3]. This new method, algorithm of changes based on I Ching (???), is developed originality by the author. In the algorithms, the hexagram operations in I Ching has been generalized to binary string case and the iterative procedure which imitates the I Ching inference is also defined. On the basis of [3], the shell inside diameter, tube outside diameter, and baffles spacing were treated as the design (or optimized) variables. The cost of the heat exchanger was arranged as the objective function. Through the case study, the results show that the algorithm of changes is comparable to the GA method. Both of method can find the optimal solution in a short time. However, without interchanging information between binary strings, the algorithm of changes has advantage on parallel computation over GA.

  13. Experimental Investigation of Phase Change inside a Finned-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Rahimi

    2014-01-01

    Full Text Available An experimental study is conducted in order to investigate melting and solidification processes of paraffin RT35 as phase change materials in a finned-tube. Therefore the effect of using fins in this study as well as some operational parameters is considered. The motivation of this study is to design and construct a novel storage unit and to compare it with a finless heat exchanger. A series of experiments are conducted to investigate the effect of increasing the inlet temperature and flow rate on the charging and discharging processes of the phase change material. It is shown that, using fins in phase change process enhances melting and solidification procedures. The trend of this variation is different for the heat exchangers; increasing the inlet temperature for the bare tube heat exchanger more effectively lowers melting time. Similarly, flow rate variation varies the solidification time more intensely for the bare tube heat exchanger.

  14. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    Science.gov (United States)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  15. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  16. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  17. Compact, super heat exchanger

    Science.gov (United States)

    Fortini, A.; Kazaroff, J. M.

    1980-01-01

    Heat exchanger uses porous media to enhance heat transfer through walls of cooling channels, thereby lowering wall temperature. Porous media within cooling channel increases internal surface area from which heat can be transferred to coolant. Comparison data shows wall has lower temperature and coolant has higher temperature when porous medium is used within heat exchanger. Media can be sintered powedered metal, metal fibers, woven wire layers, or any porous metal having desired permeability and porosity.

  18. Nature's Heat Exchangers.

    Science.gov (United States)

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  19. Active microchannel heat exchanger

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  20. Thermoelectric heat exchange element

    Science.gov (United States)

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  1. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  2. Heat exchanger design handbook

    CERN Document Server

    Thulukkanam, Kuppan

    2013-01-01

    Completely revised and updated to reflect current advances in heat exchanger technology, Heat Exchanger Design Handbook, Second Edition includes enhanced figures and thermal effectiveness charts, tables, new chapter, and additional topics--all while keeping the qualities that made the first edition a centerpiece of information for practicing engineers, research, engineers, academicians, designers, and manufacturers involved in heat exchange between two or more fluids.See What's New in the Second Edition: Updated information on pressure vessel codes, manufacturer's association standards A new c

  3. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter;

    2003-01-01

    gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  4. Microplate Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple cooling...

  5. Counterflow Regolith Heat Exchanger

    Science.gov (United States)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  6. Heat exchanger restart evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-02-28

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein.

  7. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  8. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  9. Heat exchange apparatus

    Science.gov (United States)

    Degtiarenko, Pavel V.

    2003-08-12

    A heat exchange apparatus comprising a coolant conduit or heat sink having attached to its surface a first radial array of spaced-apart parallel plate fins or needles and a second radial array of spaced-apart parallel plate fins or needles thermally coupled to a body to be cooled and meshed with, but not contacting the first radial array of spaced-apart parallel plate fins or needles.

  10. Water Phase Change Heat Exchanger System Level Analysis for Low Lunar Orbit

    Science.gov (United States)

    Navarro, Moses; Ungar, Eugene; Sheth, Rubik; Hansen, Scott

    2016-01-01

    In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and as warm as room temperature near the subsolar point. Phase change material heat exchangers (PCHXs) are the best option for long term missions in these environments. The Orion spacecraft will use a n-pentadecane wax PCHX for its envisioned mission to LLO. Using water as a PCM material is attractive because its higher heat of fusion and greater density result in a lighter, more compact PCHX. To assess the use of a water PCHX for a human spacecraft in a circular LLO, a system level analysis was performed for the Orion spacecraft. Three cases were evaluated: 1) A one-to-one replacement of the wax PCHX on the internal thermal control loop with a water PCHX (including the appropriate control modifications), 2) reducing the radiator return setpoint temperature below Orion's value to enhance PCHX freezing, and 3) placing the water PCM on the external loop. The model showed that the water PCHX could not be used as a drop-in replacement for the wax PCHX. It did not freeze fully during the eclipse owing to its low freezing point. To obtain equivalent performance, 40% more radiator area than the Orion baseline was required. The study shows that, although water PCHXs are attractive at a component level, system level effects mean that they are not the best choice for LLO.

  11. Small particle heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.

    1978-06-01

    A dispersion of small absorbing particles forms an ideal system to collect radiant energy, transform it to heat, and efficiently transfer the heat to a surrounding fluid. If the heated fluid is a pressurized gas, it can be passed through an expansion turbine to create useful mechanical energy. The most obvious application of this technique is its use in a solar collection system. In this case, the incoming sunlight is used to heat a compressed gas in an engine utilizing a Brayton cycle. The solar collection system may utilize high concentration as provided by a central receiver or parabolic dish, medium concentration from a linear collector, or possibly no concentration using a flat plate collector, if precautions were taken to reduce the heat losses. The same concept may be applied generally to non-solar heat exchangers. These may be of the type used to heat a gas from a combustion source, or in general as a gas to gas heat exchanger. The latter application may be limited to rather high temperature. Each of the above applications is discussed. First, a description of the concept is applied to a solar central-tower system. The general principles are described, including the optical and physical characteristics of the particles, the confinement of the gas-particle mixture, and the system considerations; the latter include the amount and type of particles, the receiver efficiency and the generation of the particles. The same considerations are reviewed for applications to linear trough and flat plate receivers. Finally, the use of small particles in non-solar heat exchangers is considered.

  12. Microtube strip heat exchanger

    Science.gov (United States)

    Doty, F. D.

    1991-04-01

    During the last quarter, Doty Scientific, Inc. (DSI) continued to make progress on the microtube strip (MTS) heat exchangers. The team has begun a heat exchanger stress analysis; however, they have been concentrating the bulk of their analytical energies on a computational fluid dynmaics (CFD) model to determine the location and magnitude of shell-side flow maldistribution which decreases heat exchanger effectiveness. DSI received 120 fineblanked tubestrips from Southern Fineblanking (SFB) for manufacturing process development. Both SFB and NIST provided inspection reports of the tubestrips. DSI completed the tooling required to encapsulate a tube array and press tubestrips on the array. Pressing the tubestrips on tube arrays showed design deficiencies both in the tubestrip design and the tooling design. DSI has a number of revisions in process to correct these deficiencies. The research effort has identified a more economical fusible alloy for encapsulating the tube array, and determined the parameters required to successfully encapsulate the tube array with the new alloy. A more compact MTS heat exchanger bank was designed.

  13. Liquid/liquid heat exchanger

    Science.gov (United States)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  14. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  15. Counterflow Regolith Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  16. "Bottle-Brush" Heat Exchanger

    Science.gov (United States)

    Tward, E.; Gatewood, J. R.

    1982-01-01

    Heat exchanger consists of a metal tube with wires extending inward from wall. Conduction of heat along wires improves heat transfer to gas or other filling. Fluid is heated throughout the cross section of tube. Suggested applications are refrigerators, heat engines, thermal instrumentation, and heat switches.

  17. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  18. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  19. Models for general phase change phenomena in heat exchangers and in industrial processes affected by applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.Y. [Nottingham Trent University Burton Street, Dept. of Mechinal and Manufacturing Engineering (United Kingdom)

    1999-07-01

    This paper describes the theoretical models for general phase change phenomena in heat exchangers and in industrial processes affected by applying an electric field. The models are on the basis of nucleation and surface fluctuation theories to study the generality of phase change processes under the action of an electric field. Theoretical analysis is carried out and highlights the effect of an electric field on phase change processes from an existing phase to a new phase. The analysis has shown that a critical value of the filed strength could be found theoretically for a certain phase change process. This could be a mechanism of control the processes. (authors)

  20. Heat exchangers for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rabghi, O.M.; Akyurt, M.; Najjar, Y.S.H.; Alp, T. (King Abdulaziz Univ., Jeddah (Saudi Arabia). College of Engineering)

    1993-01-01

    A survey is made of the equipment used for heat recovery and utilization. Types and merits of commonly employed heat exchangers are presented, and criteria for selecting heat exchangers are summarized. Applications for waste heat recovery are emphasized. It is concluded that careful selection and operation of such equipment would be expected to result in energy savings as well as problem-free operation. (author)

  1. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  2. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper;

    2008-01-01

    into account the effects of condensation and frost formation. The model is developed as an Excel spreadsheet, and specific results are compared with laboratory measurements. As an example, the model is used to determine the most energy-efficient control strategy for a specific heat-exchanger under northern......Using mechanical ventilation with highly efficient heat-recovery in northern European or arctic climates is a very efficient way of reducing the energy use for heating in buildings. However, it also presents a series of problems concerning condensation and frost formation in the heat......-exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...

  3. Interfacing heat exchanger network synthesis and detailed heat exchanger design

    Energy Technology Data Exchange (ETDEWEB)

    Polley, G.T.; Panjeh Shahi, M.H. (Manchester Univ. (United Kingdom). Inst. of Science and Technology)

    1991-11-01

    Current heat exchanger network synthesis targeting and design procedures involve the use of assumed stream heat transfer coefficients. However, during detailed heat exchanger design, allowable pressure drops are often the most critical factors. The result can be big differences between the exchanger sizes and costs anticipated by the network designer and those realised by the exchanger designer. This in turn prejudices any optimisation attempted at the network design stage. In this paper it is shown how allowable pressure drop can be used as a basis of network design and consistency between expectation and realisation achieved. (author).

  4. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  5. Heat exchanger leakage problem location

    Science.gov (United States)

    Hejčík, Jiří; Jícha, Miroslav

    2012-04-01

    Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  6. Experimental and numerical analyses on a plate heat exchanger with phase change for waste heat recovery at off-design conditions

    Science.gov (United States)

    Cipollone, Roberto; Bianchi, Giuseppe; Di Battista, Davide; Fatigati, Fabio

    2015-11-01

    This paper analyzes the performances of an evaporator for small scale waste heat recovery applications based on bottoming Organic Rankine Cycles with net output power in the range 2-5 kW. The heat recovery steam generator is a plate heat exchanger with oil as hot stream and an organic fluid on the cold side. An experimental characterization of the heat exchanger was carried out at different operating points measuring temperatures, pressures and flow rates on both sides. The measurement data further allowed to validate a numerical model of the evaporator whereas heat transfer coefficients were evaluated comparing several literature correlations, especially for the phase-change of the organic fluid. With reference to a waste heat recovery application in industrial compressed air systems, multiple off-design conditions were simulated considering the effects of oil mass flow rate and temperature on the superheating of the organic fluid, a key parameter to ensure a proper operation of the expansion machine, thus of the energy recovery process.

  7. High Temperature Heat Exchanger Project

    Energy Technology Data Exchange (ETDEWEB)

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  8. Milk fouling in heat exchangers.

    NARCIS (Netherlands)

    Jeurnink, Th.J.M.

    1996-01-01

    The mechanisms of fouling of heat exchangers by milk were studied. Two major fouling mechanisms were indentified during the heat treatment of milk: (i) the formation and the subsequent deposition of activated serum protein molecules as a result of the heat denaturation; (ii) the precipitation of cal

  9. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  10. Heat Calculation of Borehole Heat Exchangers

    Directory of Open Access Journals (Sweden)

    S. Filatov

    2013-01-01

    Full Text Available The paper considers a heat calculation method of borehole heat exchangers (BHE which can be used for designing and optimization of their design values and included in a comprehensive mathematical model of heat supply system with a heat pump based on utilization of low-grade heat from the ground.The developed method of calculation is based on the reduction of the problem general solution pertaining to heat transfer in BHE with due account of heat transfer between top-down and bottom-up flows of heat carrier to the solution for a boundary condition of one kind on the borehole wall. Used the a method of electrothermal analogy has been used for a calculation of the thermal resistance and  the required shape factors for calculation of  a borehole filler thermal resistance have been obtained numerically. The paper presents results of heat calculation of various BHE designs in accordance with the proposed method.

  11. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    Science.gov (United States)

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  12. Indoor Solar Thermal Energy Saving Time with Phase Change Material in a Horizontal Shell and Finned-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Paria

    2015-01-01

    Full Text Available An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF. The focus of this study was on the behavior of PCM for storage (charging or melting and removal (discharging or solidification, as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  13. A Review of the Experimental and Modeling Development of a Water Phase Change Heat Exchanger for Future Exploration Support Vehicles

    Science.gov (United States)

    Cognata, Thomas; Leimkuehler, Thomas; Ramaswamy, Balasubramaniam; Nayagam, Vedha; Hasan, Mohammad; Stephan, Ryan

    2011-01-01

    Water affords manifold benefits for human space exploration. Its properties make it useful for the storage of thermal energy as a Phase Change Material (PCM) in thermal control systems, in radiation shielding against Solar Particle Events (SPE) for the protection of crew members, and it is indisputably necessary for human life support. This paper envisions a single application for water which addresses these benefits for future exploration support vehicles and it describes recent experimental and modeling work that has been performed in order to arrive at a description of the thermal behavior of such a system. Experimental units have been developed and tested which permit the evaluation of the many parameters of design for such a system with emphasis on the latent energy content, temperature rise, mass, and interstitial material geometry. The experimental results are used to develop a robust and well correlated model which is intended to guide future design efforts toward the multi-purposed water PCM heat exchanger envisioned.

  14. Numerical Study of Solidification in a Plate Heat Exchange Device with a Zigzag Configuration Containing Multiple Phase-Change-Materials

    Directory of Open Access Journals (Sweden)

    Peilun Wang

    2016-05-01

    Full Text Available Latent heat thermal energy storage (TES plays an important role in the advocation of TES in contrast to sensible energy storage because of the large storage energy densities per unit mass/volume possible at a nearly constant thermal energy. In the current study, a heat exchange device with a zigzag configuration containing multiple phase-change-materials (m-PCMs was considered, and an experimental system was built to validate the model for a single PCM. A two-dimensional numerical model was developed using the ANSYS Fluent 14.0 software program. The energy fractions method was put forward to calculate the average Ste number and the influence of Re and Ste numbers on the discharge process were studied. The influence of phase change temperature among m-PCMs on the solidification process has also been studied. A new boundary condition was defined to determine the combined effect of the Re and Ste numbers on the discharging process. The modelling results show that for a given input power, the Ste (or Re number has a significant impact on the discharging process; however, the period value of inlet velocity has almost no impact on it. Besides, the zigzag plate with m-PCMs has a good impact on the temperature shock as “filter action” in the discharging process.

  15. Bistability in radiative heat exchange

    Science.gov (United States)

    Rudakov, V. I.; Ovcharov, V. V.; Prigara, V. P.

    2008-08-01

    The possibility of a bistable regime in systems with radiative heat exchange is theoretically demonstrated for the first time. The transfer characteristics of a radiation-closed stationary system have been calculated, in which the radiator is a blackbody and the absorber is made of a material with the absorptivity sharply increasing in a certain temperature interval. The radiator and absorber are separated by a vacuum gap. The heat exchange between the system and the environment is controlled by varying the flow rate of a heat-transfer agent cooling the absorber. The output parameter of a bistable system is the absorber temperature, while the input parameter can be either the radiator temperature or the heat-transfer agent flow rate. Depending on the choice of the input parameter, the transfer characteristic of the system is either represented by a usual S-like curve or has an inverted shape.

  16. [Biofouling of heat exchange tubes].

    Science.gov (United States)

    Montero, F; Pintado, J L

    1994-01-01

    We compared the biofouling behavior of different materials (admiralty brass, stainless steel, and titanium) commonly used to construct heat exchangers in thermoelectric plants. The incidence of film formation on the loss of heat during transference was assessed, and analyzed in terms of plant efficiency and corrosion, both general and localized development. Our results showed that the resistance of titanium and stainless steel to corrosion was similar, and much better than that of admiralty brass. Biofouling, however, was higher in the first two materials.

  17. Numerical study of heat transfer characteristics in BOG heat exchanger

    Science.gov (United States)

    Yan, Yan; Pfotenhauer, John M.; Miller, Franklin; Ni, Zhonghua; Zhi, Xiaoqin

    2016-12-01

    In this study, a numerical study of turbulent flow and the heat transfer process in a boil-off liquefied natural gas (BOG) heat exchanger was performed. Finite volume computational fluid dynamics and the k - ω based shear stress transport model were applied to simulate thermal flow of BOG and ethylene glycol in a full-sized 3D tubular heat exchanger. The simulation model has been validated and compared with the engineering specification data from its supplier. In order to investigate thermal characteristics of the heat exchanger, velocity, temperature, heat flux and thermal response were studied under different mass flowrates in the shell-side. The shell-side flow pattern is mostly determined by viscous forces, which lead to a small velocity and low temperature buffer area in the bottom-right corner of the heat exchanger. Changing the shell-side mass flowrate could result in different distributions of the shell-side flow. However, the distribution in the BOG will remain in a relatively stable pattern. Heat flux increases along with the shell-side mass flowrate, but the increase is not linear. The ratio of increased heat flux to the mass flow interval is superior at lower mass flow conditions, and the threshold mass flow for stable working conditions is defined as greater than 0.41 kg/s.

  18. Calculations of Shipboard Heat Exchangers,

    Science.gov (United States)

    1980-04-18

    Constrained moticn is created by the external exciting forces - pumps, compresors , fars, agitators. During the heat exchange distinguish the phenomena...cast tcttozs. (5). fcr fla*/plane covers/caps. FOOTNOTE 1. Is taken stall value. !NDFOCINOIE. Additional requirements fox the dished bcttcss. -w j DOC

  19. Experimental study on heat exchange of several types of exchangers

    Institute of Scientific and Technical Information of China (English)

    周志华; 赵振华; 于洋

    2009-01-01

    Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.

  20. Multidimensional numerical modeling of heat exchangers

    Science.gov (United States)

    Sha, W. T.; Yang, C. I.; Kao, T. T.; Cho, S. M.

    A comprehensive, multidimensional, thermal-hydraulic model is developed for the analysis of shell-and-tube heat exchangers for liquid-metal services. For the shellside fluid, the conservation equations of mass, momentum, and energy for continuum fluids are modified using the concept of porosity, surface permeability and distributed resistance to account for the blockage effects due to the presence of heat-transfer tubes, flow baffles/shrouds, the support plates, etc. On the tubeside, the heat-transfer tubes are connected in parallel between the inlet and outlet plenums, and tubeside flow distribution is calculated based on the plenum-to-plenum pressure difference being equal for all tubes. It is assumed that the fluid remains single-phase on the shell side and may undergo phase-change on the tube side, thereby simulating the conditions of Liquid Metal Fast Breeder Reactor (LMFBR) intermediate heat exchangers (IHX) and steam generators (SG).

  1. Acoustic streaming with heat exchange

    Science.gov (United States)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2016-10-01

    Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.

  2. Optimal design of the separate type heat pipe heat exchanger

    Institute of Scientific and Technical Information of China (English)

    YU Zi-tao; HU Ya-cai; CEN Ke-fa

    2005-01-01

    Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effectiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.

  3. Cryogenic Heat Exchanger with Turbulent Flows

    Science.gov (United States)

    Amrit, Jay; Douay, Christelle; Dubois, Francis; Defresne, Gerard

    2012-01-01

    An evaporator-type cryogenic heat exchanger is designed and built for introducing fluid-solid heat exchange phenomena to undergraduates in a practical and efficient way. The heat exchanger functions at liquid nitrogen temperature and enables cooling of N[subscript 2] and He gases from room temperatures. We present first the experimental results of…

  4. BASIMO - Borehole Heat Exchanger Array Simulation and Optimization Tool

    Science.gov (United States)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Bär, Kristian; Sass, Ingo

    2016-04-01

    Borehole heat exchangers represent a well-established technology, which pushes for new fields of applications and novel modifications. Current simulation tools cannot - or only to some extent - describe features like inclined or partly insulated boreholes unless they run fully discretized models of the borehole heat exchangers. However, fully discretized models often come at a high computational cost, especially for large arrays of borehole heat exchangers. We present a tool, which uses one dimensional thermal resistance and capacity models for the borehole heat exchangers coupled with a numerical finite element model for the subsurface heat transport. An unstructured tetrahedral mesh bypasses the limitations of structured grids for borehole path geometries, while the thermal resistance and capacity model is improved to account for borehole heat exchanger properties changing with depth. The presented tool benefits from the fast analytical solution of the thermal interactions within the boreholes while still allowing for a detailed consideration of the borehole heat exchanger properties.

  5. SAFE gas turbine cycle primary heat exchangers

    Science.gov (United States)

    Reid, Robert S.; Kapernick, Richard J.

    2002-01-01

    Los Alamos National Laboratory and Marshall Space Flight Center are jointly developing two modular heat pipe heat exchangers, collectively named FIGMENT (Fission Inert Gas Metal Exchanger for Non-nuclear Testing). The FIGMENT heat exchangers are designed to transfer power from the SAFE nuclear reactor cores to gas turbine energy converters. A stainless steel prototype heat exchanger will be built during 2002 in preparation for the construction of a larger refractory metal version. Two promising FIGMENT stainless steel heat exchanger concepts are reviewed here. .

  6. Finned Small Diameter Tube Heat Exchanger

    Science.gov (United States)

    Dang, Chaobin; Daiguji, Hirofumi; Hihara, Eiji; Tokunaga, Masahide

    The performance of fined small tube heat exchangers was investigated both experimentally and theoretically. The Inner diameters of tubes were 1.0mm, 2.1mm and 4.0mm. Exchanged heat and pressure drop obtained from numerical simulation agreed well with the experimental ones. Calculation results show that the volume of a 2.0mm tube heat exchanger can be reduced to 33% of that of a 4mm tube heat exchanger with the same capacity. In addition the distribution of two-phase flow in a branching unit was investigated by measuring downstream temperature distribution. The flow distribution in a branching unit strongly affects the exchanged heat.

  7. Comparison of a Conventional Heat Exchangers with a New Designed Heat Exchanger Experimentally

    Directory of Open Access Journals (Sweden)

    Tansel Koyun

    2014-04-01

    Full Text Available In this study, the air-water heat exchanger designed have been experimentally compared to conventional heat exchangers with and without fin. The same parameters for the three heat exchangers (pump flow, heating power, etc... have been used. In the experiments, speed-flow adjustment has been made to supply heat transfer at an optimum. As a result, during the circulation of water in pipe of the air-water heat exchanger, the corrosion fouling factor has not been formed. In addition, the efficiency of the new designed heat exchanger has been found between fin and finless heat exchanger efficiencies. The results have been shown in the diagrams.

  8. A core alternative[Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, R.H. [Chart Heat Exchangers, Wisconsin (United States)

    2001-09-01

    The development of the efficient Core-in-kettle heat exchangers by Chart Heat Exchangers as an alternative to shell and tube exchangers is reported, and its use as condensers and reboilers in ethylene plants and refrigerant condensers and chillers in natural gas processing and liquid natural gas (LNG) plants are discussed. The novel technology is described with details given of the replacement of the tube bundle with a Chart brazed aluminium plate-fin heat exchanger core, the operation of the exchanger, the savings achieved by installing these heat exchangers in new or existing plants, and Core-in-Kettle retrofits of existing shell and tube heat exchangers. The limitations of the use of Core-in-Kettle heat exchangers to clean fluids typical of hydrocarbon processing, and temperature and pressure limitations are noted.

  9. Discontinuous Operation of Geothermal Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    方肇洪; 刁乃仁; 崔萍

    2002-01-01

    Ground-source heat pump (GSHP) systems for HVAC have aroused more and more interest in China in recent years because of their higher energy efficiency compared with conventional systems. The design and performance simulation of the geothermal heat exchangers is vital to the success of this technology. In GSHP systems, the load of the geothermal heat exchanger varies greatly and is usually discontinuous even during a heating or cooling season. This paper outlines a heat transfer model for geothermal heat exchangers. The model was used to study the influence of the discontinuous operation of the heat pumps on the performance of the geothermal heat exchangers. A simple and practical approach is presented for sizing the geothermal heat exchangers.

  10. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  11. Sensitivity Analysis for DHRS Heat Exchanger Performance Tests of PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jonggan; Eoh, Jaehyuk; Kim, Dehee; Lee, Taeho; Jeong, Jiyoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The STELLA-1 facility has been constructed and separate effect tests of heat exchangers for DHRS are going to be conducted. Two kinds of heat exchangers including DHX (shell-and-tube sodium-to-sodium heat exchanger) and AHX (helical-tube sodium-to-air heat exchanger) will be tested for design codes V and V. Main test points are a design point and a plant normal operation point of each heat exchanger. Additionally, some plant transient conditions are taken into account for establishing a test condition set. To choose the plant transient test conditions, a sensitivity analysis has been conducted using the design codes for each heat exchanger. The sensitivity of the PGSFR DHRS heat exchanger tests (the DHX and AHX in the STELLA-1 facility) has been analyzed through a parametric study using the design codes SHXSA and AHXSA at the design point and the plant normal operation point. The DHX heat transfer performance was sensitive to the change in the inlet temperature of the shell-side and the AHX heat transfer performance was sensitive to the change in the inlet temperature of the tube side. The results of this work will contribute to an improvement of the test matrix for the separate effect test of each heat exchanger.

  12. Mathematical simulation of heat exchanger working conditions

    Science.gov (United States)

    Gavlas, Stanislav; Ďurčanský, Peter; Lenhard, Richard; Jandačka, Jozef

    2015-05-01

    One of the When designing a new heat exchanger it is necessary to consider all the conditions imposed on the exchanger and its desired properties. Most often the investigation of heat transfer is to find heat surface. When applying exchanger for proposed hot air engine, it will be a counter-flow heat exchanger of gas - gas type. Gas, which transfers the heat will be exhaust gas from the combustion of biomass. An important step in the design and verification is to analyze exchanger designed using numerical methods, the verification of the correctness of design and verification of boundary conditions which include temperatures, flow rates and pressure drops. Due to the fact that the heat transfer in the heat exchanger is a three-dimensional plot and timeindependent, the system is described by partial differential equations that need to be solved by numerical methods.

  13. Direct contact heat exchangers for space

    Science.gov (United States)

    Taussig, R. T.; Thayer, W. J.; Lo, V. C. H.; Sakins, K. M.; Bruckner, A. P.

    1985-06-01

    Direct contact heat exchanger concepts have been investigated for use in space, including droplet vortex heat exchangers, coflowing droplet heat exchangers, electrostatically driven heat exchangers, and belt and disk heat exchangers. These concepts are characterized by a low heat exchanger mass per unit of heat transferred, low pressure losses, high reliability, and compactness in design. Operation in zero-G poses unique problems for those direct contact heat exchangers which require separation of two fluid media after heat transfer is completed. Other problems include maintenance of good heat transfer coefficients in the absence of buoyant forces, exposure of heat transfer media to vacuum conditions for certain applications, and materials compatibility. A preliminary systems analysis indicates the potential for substantial weight reductions in turbine Brayton cycle space power systems for output powers above several MW(e). Based on the status of current technology and the results of this analysis, recommendations are made for the most attractive applications and the R&D required to ready a direct contact heat exchanger for use in space.

  14. Design and Development of a Sub-Zero Fluid System for Demonstration of Orion's Phase Change Material Heat Exchangers on ISS

    Science.gov (United States)

    Sheth, Rubik B.; Ahlstrom, Thomas D.; Le, Hung V.

    2016-01-01

    NASA's Orion Multipurpose Crew Vehicle's Exploration Mission 2 is expected to loiter in Lunar orbit for a relatively long period of time. In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and relatively hot near the subsolar point. Phase change material heat exchangers (PCM HXs) are the best option for long term missions in these environments. A PCM HX allows a vehicle to store excess waste energy by thawing a phase change material such as n-pentadecane wax. During portions of the orbit that are extremely cold, the excess energy is rejected, resolidifying the wax. Due to the inherent risk of compromising the heat exchanger during multiple freeze and thaw cycles, a unique payload was designed for the International Space Station to test and demonstration the functions of a PCM HX. The payload incorporates the use of a pumped fluid system and a thermoelectric heat exchanger to promote the freezing and thawing of the PCM HX. This paper shall review the design and development undertaken to build such a system.

  15. Micro tube heat exchangers for Space Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mezzo fabricates micro tube heat exchangers for a variety of applications, including aerospace, automotive racing, Department of Defense ground vehicles, economizers...

  16. New models for conventional and heat exchangers enhanced with tube inserts for heat exchanger network retrofit

    OpenAIRE

    Jiang, N; Shelley, J D; Smith, Robin

    2014-01-01

    The retrofit of heat exchanger networks requires detailed models of the heat exchangers for the detailed assessment of network performance. Network retrofit options include heat transfer enhancement. There is thus a requirement for detailed models of heat exchanger performance, including heat transfer enhancement, suitable for inclusion in network retrofit optimization algorithms. Such models must be robust, computationally efficient and accurate enough to reflect the heat transfer and pressu...

  17. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  18. Probe Measures Fouling As In Heat Exchangers

    Science.gov (United States)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  19. Development of high effectiveness droplet heat exchangers

    Science.gov (United States)

    Thayer, W. J., III; Sekins, K. M.; Bruckner, A. P.

    1985-04-01

    An experimental and analytical investigation has been carried out to assess the feasibility of developing high effectiveness, high temperature droplet heat exchangers and to identify practical applications for this type of direct contact heat exchanger. The droplet heat exchanger (DHX) concept studies uses a counterflowing gas and droplet configuration, uniformly sized droplets or particles, and a uniform dispersion of droplets in gas to achieve high heat exchanger effectiveness. Direct contact between the heat transfer media eliminates the solid heat transfer surfaces that are used in conventional heat exchangers and is expected to make very high temperature heat transfer practical. Low temperature simulation tests and analysis have been used to demonstrate that uniformly sized droplets can be generated over a wide range of fluid properties and operating conditions appropriate for high temperature droplet heat exchanger applications. One- and two-dimensional, two-phase flow and heat transfer computer models have been developed and used to characterize both individual component configurations and overall DHX heat transfer rates and effectiveness. The computer model and test data began to diverge as the operating pressure was increased, indicating a need for more general transport rate correlations and a better understanding of the two-phase flows that govern DHX operation.

  20. Heat Exchanger Lab for Chemical Engineering Undergraduates

    Science.gov (United States)

    Rajala, Jonathan W.; Evans, Edward A.; Chase, George G.

    2015-01-01

    Third year chemical engineering undergraduate students at The University of Akron designed and fabricated a heat exchanger for a stirred tank as part of a Chemical Engineering Laboratory course. The heat exchanger portion of this course was three weeks of the fifteen week long semester. Students applied concepts of scale-up and dimensional…

  1. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Pavel Neuberger

    2014-02-01

    Full Text Available Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the heat-exchangers, has been characterised by meticulous measurements. These reveal that high concentrations of antifreeze mix in the heat-transfer fluid of the heat exchanger have an adverse impact on heat flows discharged into the soil.

  2. Characteristics of heat flow in recuperative heat exchangers

    Directory of Open Access Journals (Sweden)

    Lalović Milisav

    2005-01-01

    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio λ= 1.10, content of oxygen in combustion air ν(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  3. Testing and plugging power plant heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Sutor, F. [Expando Seal Tools, Inc., Montgomeryville, PA (United States)

    1994-12-31

    Heat Exchanger tubes fail for any number of reasons including but certainly not limited to the cumulative effects of corrosion, erosion, thermal stress and fatigue. This presentation will attempt to identify the most common techniques for determining which tubes are leaking and then introduce the products in use to plug the leaking tubes. For the sake of time I will limit the scope of this presentation to include feedwater heaters and secondary system heat exchangers such as Hydrogen Coolers, Lube Oil Coolers, and nuclear Component Cooling Water, Emergency Cooling Water, Regenerative Heat Recovery heat exchangers.

  4. Experimental Evaluation of a Paraffin as Phase Change Material for Thermal Energy Storage in Laboratory Equipment and in a Shell-and-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Jaume Gasia

    2016-04-01

    Full Text Available The thermal behavior of a commercial paraffin with a melting temperature of 58 °C is analyzed as a phase change material (PCM candidate for industrial waste heat recovery and domestic hot water applications. A full and complete characterization of this PCM is performed based on two different approaches: a laboratory characterization (mass range of milligrams and an analysis in a pilot plant (mass range of kilograms. In the laboratory characterization, its thermal and cycling stability, its health hazard as well as its phase change thermal range, enthalpy and specific heat are analyzed using a differential scanning calorimeter, thermogravimetric analysis, thermocycling and infrared spectroscopy. Laboratory analyses showed its suitability up to 80 °C and for 1200 cycles. In the pilot plant analysis, its thermal behavior was analyzed in a shell-and-tube heat exchanger under different heat transfer fluid mass flow rates in terms of temperature, power and energy rates. Results from the pilot plant analysis allowed understanding the different methods of heat transfer in real charging and discharging processes as well as the influence of the geometry of the tank on the energy transferred and required time for charging and discharging processes.

  5. 40 CFR 63.654 - Heat exchange systems.

    Science.gov (United States)

    2010-07-01

    ... any one of the criteria in paragraphs (b)(1) through (2) of this section. (1) All heat exchangers that... any heat exchangers that are in organic HAP service as defined in this subpart). (c) The owner or... each heat exchanger exit line for each heat exchanger or group of heat exchangers in organic...

  6. 40 CFR 63.1409 - Heat exchange system provisions.

    Science.gov (United States)

    2010-07-01

    ... locations where the cooling water enters and exits each heat exchanger or any combination of heat exchangers.... (iii) For samples taken at the entrance and exit of each heat exchanger or any combination of heat exchangers, the entrance is the point at which the cooling water enters the individual heat exchanger...

  7. Synthesis of Heat Exchanger Network Considering Multipass Exchangers

    Institute of Scientific and Technical Information of China (English)

    李绍军; 姚平经

    2001-01-01

    Many methods have been proposed for synthesis of heat exchanger networks in recent years, most of which consider single pass exchangers. In this study some evolutionary rules have been proposed for synthesis of multipass exchanger networks. The method is based on the heuristic that optimal networks should feature maximum energy recovery and have the minimum number of shells. The effectiveness of the developed evolutionary rules is demonstrated through some literature examples.

  8. Compact heat exchanger for power plants; Kompakti siirrin tyoentyy myoes kotimaan voimalaitoksiin

    Energy Technology Data Exchange (ETDEWEB)

    Kinnunen, L. [Energia-lehti, Helsinki (Finland)

    2001-07-01

    Vahterus Oy, located at Kalanti, has manufactured heat exchangers since the beginning of 1990s. About 90% of the equipment produced are exported. In the PSHE (Plate and Shell) solution of the Vahterus heat exchanger the heat is transferred by round plated welded to form a compact package, which is assembled into a cylindrical steel casing. The heat exchanger contains no gaskets or soldered joints, which eliminates the leak risks. Traditional heat exchanges are usually operated at higher temperatures and pressures, but the heat transfer capacities of them are lower. Plate heat exchangers, on the other hand, are efficient, but the application range of them is narrow. Additionally, the rubber gasket of the heat exchange plates, sealing the joints of the heat exchanging plates, does not stand high pressures or temperatures, or corroding fluids. The new welded plate heat exchanger combine the pressure and temperature resistance of tube heat exchangers and the high heat exchange capacity of plate heat exchangers. The new corrosion resisting heat exchanger can be applied for especially hard conditions. The operating temperature range of the PSHE heat exchanger is - 200 - 900 deg C. The pressure resistance is as high as 100 bar. The space requirement of PSHE is only one tenth of the space requirement of traditional tube heat exchangers. Adjusting the number of heat exchanging plates can change the capacity of the heat exchanger. Power range of the heat exchanger can be as high as 80 MW. Due to the corrosion preventive construction and the small dimension the PSHE heat exchanger can be applied for refrigerators using ammonia as refrigerant. These kinds of new Vahterus heat exchangers are in use in 60 countries in more than 2000 refrigerators.

  9. Analysis of a Flooded Heat Exchanger

    Science.gov (United States)

    Fink, Aaron H.; Luyben, William L.

    2015-01-01

    Flooded heat exchangers are often used in industry to reduce the required heat-transfer area and the size of utility control valves. These units involve a condensing vapor on the hot side that accumulates as a liquid phase in the lower part of the vessel. The heat transfer occurs mostly in the vapor space, but the condensate becomes somewhat…

  10. A Review on Heat Transfer Improvent of Plate Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Abhishek Nandan

    2015-03-01

    Full Text Available Plate heat exchanger has found a wide range of application in various industries like food industries, chemical industries, power plants etc. It reduces the wastage of energy and improves the overall efficiency of the system. Hence, it must be designed to obtain the maximum heat transfer possible. This paper is presented in order to study the various theories and results given over the improvement of heat transfer performance in a plate heat exchanger. However, there is still a lack in data and generalized equations for the calculation of different parameters in the heat exchanger. It requires more attention to find out various possible correlations and generalized solutions for the performance improvement of plate heat exchanger.

  11. Comparison of heat transfer efficiency between heat pipe and tube bundles heat exchanger

    Directory of Open Access Journals (Sweden)

    Wu Zhao-Chun

    2015-01-01

    Full Text Available A comparison of heat transfer efficiency between the heat pipe and tube bundles heat exchanger is made based on heat transfer principle and the analysis of thermal characteristics. This paper argues that although heat pipe has the feature of high axial thermal conductivity, to those cases where this special function of heat transfer is unnecessary, heat pipe exchanger is not a high efficient heat exchanger when it is just used as a conventional heat exchanger in the industrial fields. In turn, there are some deficiencies for heat pipe exchanger, such as complicated manufacturing process, critical requirements for manufacturing materials, etc. which leads to a higher cost in comparison to a tubular heat exchanger. Nonetheless, due to its diverse structural features and extraordinary properties, heat pipe exchanger still has wide applications on special occasions.

  12. Research of Spined Heat-Exchanging Pipes

    Directory of Open Access Journals (Sweden)

    Akulov Kirill

    2016-01-01

    Full Text Available Work is devoted to a research of spined heat-exchanging pipes that are assumed to use in air-cooler exchangers (ACE. The proposed new geometry of finning allows intensifying heat exchange and improving the efficiency of air coolers. It is caused by the increased area of finned surface with a value of finning ratio (the ratio of the area of the smooth pipe to a finned one to 42.7, while in the commercially available ACE, the figure is 22. Besides, the geometrical arrangement of the pin fins turbulizes the airflow. It should be mentioned that an easier method of manufacturing of heat exchanging pipes is proposed to use, which will reduce their costs. The proposed heat exchange pipes are made by winding cut aluminum strip to the supporting pipe or stretching stamped blanks on it. To increase the efficiency of the heat exchange surface pin fins should be as thin and long as possible; however, their strength should be sufficient for deformation-free operation. Fins should be staggered to maximize the distance between them. Spined heat-exchange pipes are designed to operate in a commercially produced ACE and their service is carried out similarly to commercially produced transversely finned pipes.

  13. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  14. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa;

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module...... are theoretically investigated by Computational Fluid Dynamics (CFD) calculations. The heat transfer rates between the PCM storage and the heating fluid/cooling fluid in the plate heat exchangers are determined. The CFD calculated temperatures are compared to measured temperatures. Based on the studies...

  15. Mathematical Modeling of Spiral Heat Exchanger

    OpenAIRE

    Probal Guha , Vaishnavi Unde

    2014-01-01

    Compact Heat Exchangers (CHEs) are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat ...

  16. Complex Heat Exchangers for Improved Performance

    Science.gov (United States)

    Bran, Gabriela Alejandra

    After a detailed literature review, it was determined that there was a need for a more comprehensive study on the transient behavior of heat exchangers. Computational power was not readily available when most of the work on transient heat exchangers was done (1956 - 1986), so most of these solutions have restrictions, or very specific assumptions. More recently, authors have obtained numerical solutions for more general problems (2003 - 2013), but they have investigated very specific conditions, and cases. For a more complex heat exchanger (i.e. with heat generation), the transient solutions from literature are no longer valid. There was a need to develop a numerical model that relaxes the restrictions of current solutions to explore conditions that have not been explored. A one dimensional transient heat exchanger model was developed. There are no restrictions on the fluids and wall conditions. The model is able to obtain a numerical solution for a wide range of fluid properties and mass flow rates. Another innovative characteristic of the numerical model is that the boundary and initial conditions are not limited to constant values. The boundary conditions can be a function of time (i.e. sinusoidal signal), and the initial conditions can be a function of position. Four different cases were explored in this work. In the first case, the start-up of a system was investigated where the whole system is assumed to be at the same temperature. In the second case, the new steady state in case one gets disrupted by a smaller inlet temperature step change. In the third case, the new steady state in case one gets disrupted by a step change in one of the mass flow rates. The response of these three cases show that there are different transient behaviors, and they depend on the conditions imposed on the system. The fourth case is a system that has a sinusoidal time varying inlet temperature for one of the flows. The results show that the sinusoidal behavior at the inlet

  17. Lightweight Thermal Storage Heat Exchangers Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR proposal aims to develop thermal energy storage heat exchangers that are significantly lighter and higher conductance than the present art which involves...

  18. Mathematical Modeling of Spiral Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Probal Guha , Vaishnavi Unde

    2014-04-01

    Full Text Available Compact Heat Exchangers (CHEs are increasingly being used on small and medium scale industries. Due to their compact size and efficient design, they facilitate more efficient heat transfer. Better heat transfer would imply lesser fuel consumption for the operations of the plant, giving improvement to overall efficiency. This reduction in consumption of fuel is a step towards sustainable development. This report exclusively deals with the study the spiral heat exchanger.The design considerations for spiral heat exchanger is that the flow within the spiral has been assumed as flow through a duct and by using Shah London empirical equation for Nusselt number design parameters are further optimized.This is accompanied by a detailed energy balance to generate a concise mathematical model

  19. Brayton-cycle heat exchanger technology program

    Science.gov (United States)

    Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.

    1976-01-01

    The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.

  20. Research of heat exchange rate of the pulsating heat pipe

    Directory of Open Access Journals (Sweden)

    Kravets V. Yu.

    2010-02-01

    Full Text Available Given article presents experimental research of heat transfer characteristics of the pulsating heat pipe (PHP which consists of seven coils with 1 mm inner diameter. Water was used as the heat carrier. PHP construction, measuring circuit and research technique are presented. It is shown that under PHP functioning there are two characteristic modes of operation, which can be distinguished by values of thermal resistance. PHP heat exchange features are disclosed.

  1. Observer-based monitoring of heat exchangers.

    Science.gov (United States)

    Astorga-Zaragoza, Carlos-Manuel; Alvarado-Martínez, Víctor-Manuel; Zavala-Río, Arturo; Méndez-Ocaña, Rafael-Maxim; Guerrero-Ramírez, Gerardo-Vicente

    2008-01-01

    The goal of this work is to provide a method for monitoring performance degradation in counter-flow double-pipe heat exchangers. The overall heat transfer coefficient is estimated by an adaptive observer and monitored in order to infer when the heat exchanger needs preventive or corrective maintenance. A simplified mathematical model is used to synthesize the adaptive observer and a more complex model is used for simulation. The reliability of the proposed method was demonstrated via numerical simulations and laboratory experiments with a bench-scale pilot plant.

  2. Near Field Investigation of Borehole Heat Exchangers

    OpenAIRE

    2015-01-01

    As an alternative and renewable energy source, the shallow geothermal energy evolving as one of the most popular energy source due to its easy accessibility and availability worldwide, and the ground source heat pump (GSHP) systems are the most frequent applications for extracting the energy from the shallow subsurface. As the heat extraction capacity of the GSHP system applications arises, the design of the borehole heat exchangers (BHE), which is the connected part of the system in the grou...

  3. Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger

    OpenAIRE

    Pavel Neuberger; Radomír Adamovský; Michaela Šeďová

    2014-01-01

    Temperature changes and heat flows in soils that host “slinky”-type horizontal heat exchangers are complex, but need to be understood if robust quantification of the thermal energy available to a ground-source heat pump is to be achieved. Of particular interest is the capacity of the thermal energy content of the soil to regenerate when the heat exchangers are not operating. Analysis of specific heat flows and the specific thermal energy regime within the soil, including that captured by the ...

  4. 21 CFR 870.4240 - Cardiopulmonary bypass heat exchanger.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass heat exchanger. 870.4240... bypass heat exchanger. (a) Identification. A cardiopulmonary bypass heat exchanger is a device, consisting of a heat exchange system used in extracorporeal circulation to warm or cool the blood...

  5. 40 CFR 63.104 - Heat exchange system requirements.

    Science.gov (United States)

    2010-07-01

    ... heat exchange system or at locations where the cooling water enters and exits each heat exchanger or any combination of heat exchangers. (i) For samples taken at the entrance and exit of recirculating... manufacturing process units. (iii) For samples taken at the entrance and exit of each heat exchanger or...

  6. RECITAL SCRUTINY ON TUBE-INTUBE COMPACT HEAT EXCHANGERS

    OpenAIRE

    V.NATARAJAN,; Dr. P. Senthil Kumar

    2011-01-01

    This paper focused on the investigational cram of the recital characteristics of tube-in-tube compact heat exchangers. Experiments are conducted in the compact heat exchangers with R-134a and liquefiedpetroleum gas. The effectiveness of the heat exchangers was calculated using the experiment data and it was found that the effectiveness of heat exchanger-1 is above 75 and heat exchanger-2 is above 84% for R-134a.The effectiveness of heat exchanger-1 is about 60% and heat exchanger-2 is about 8...

  7. Analysis of heat exchanger network for temperature fluctuation

    Directory of Open Access Journals (Sweden)

    Jin Zunlong

    2015-09-01

    Full Text Available Subject to temperature disturbance, exchangers in heat exchanger network will interact. It is necessary to evaluate the degree of temperature fluctuation in the network. There is inherently linear relationship between output and inlet temperatures of heat exchanger network. Based on this, the concept of temperature-change sensitivity coefficient was put forward. Quantitative influence of temperature fluctuation in the network was carried out in order to examine transmission character of temperature fluctuation in the system. And the information was obtained for improving the design quality of heat exchanger network. Favorable results were obtained by the introduced method compared with the experimental results. These results will assist engineers to distinguish primary and secondary influencing factors, which can be used in observing and controlling influencing factors accurately.

  8. Thermal Analysis of Fin and Tube Heat Exchanger

    OpenAIRE

    2014-01-01

    This paper studied experimentally the effect of heat transfer of fin and tube type heat exchanger for different mass flow rate of fluid. The thermal stresses induced on fin and tube is also studied by ansys software at steady state condition by changing the width of fin and diameter of tube. Readings were taken experimentally by changing mass flow rate of fluid at respective temperatures. Comparison was done on theoretically and experimentally obtained results. It is observed ...

  9. Inverse heat transfer problem in digital temperature control in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid; Sury, Adam

    2011-12-01

    The aim of the paper is a steady-state inverse heat transfer problem for plate-fin and tube heat exchangers. The objective of the process control is to adjust the number of fan revolutions per minute so that the water temperature at the heat exchanger outlet is equal to a preset value. Two control techniques were developed. The first is based on the presented mathematical model of the heat exchanger while the second is a digital proportional-integral-derivative (PID) control. The first procedure is very stable. The digital PID controller becomes unstable if the water volumetric flow rate changes significantly. The developed techniques were implemented in digital control system of the water exit temperature in a plate fin and tube heat exchanger. The measured exit temperature of the water was very close to the set value of the temperature if the first method was used. The experiments showed that the PID controller works also well but becomes frequently unstable.

  10. Heat transfer study of a two-phase refrigerant with liquid-solid phase change inside a smooth plates heat exchanger; Etude des transferts de chaleur d'un fluide frigoporteur diphasique a changement de phase liquide-solide dans un echangeur a plaques lisses

    Energy Technology Data Exchange (ETDEWEB)

    Demasles, H.

    2002-05-15

    The purpose of the work is to study two-phase mixture heat exchange composed of water particles suspended in silicone oil circulating in a closed loop. Water, contained in polymer porous matrix, is freezing by successive passages in plane plate heat exchanger. Thermo-hydraulic literature data analysis about these fluids in exchangers shows important blanks in exchange coefficient and pressure drop forecast methods and in experimental data. Experimental results, issued of global energy balance on a test section specifically conceived and made for this study, show doping effect on exchange coefficient. Before phase change, micro-convective effects of rotating particles improve exchange coefficient of 2,3 factor. Supplementary enhancement included between 2 and 16 appeared during phase change. Trial measured discrepancy are certainly induced by bed layer formation due to low flow speed. At the end of particle freezing, when latent heat is not involved anymore in exchange enhancement, important heat transfer reduction is observed. This is attributed to the cooling suspension rheological evolution and the change of flow particle distribution. Modelling results corroborate heat exchange improvement due to phase change: particles act as sources when discharging there latent heat. They stop fluid temperature dropping and enable to keep a high wall temperature gradient. A deepened suspension rheological study is necessary for a better understanding of observed phenomenon, nevertheless these first results show already an important energetic profit brings by particles in range temperature of 0 and -6 deg C. (author)

  11. Carbon nanotube heat-exchange systems

    Science.gov (United States)

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  12. VENTILATION SYSTEM WITH GROUND HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Vyacheslav Pisarev

    2016-11-01

    Full Text Available Ventilation systems consume more and more energy because of the often complex treatment of the air supplied to closed spaces. Looking for sources of energy allow for significant savings costs, which often translate into renewable energy sources. One of the more popular solutions is to use energy from the ground by various methods. Known and relatively common solutions are based on ground heat exchanger and ground collector cooperating with a heat pump. The paper presents the possibility of cooperation ventilation system with ground air heat exchanger and heat pump both in summer and winter period. A number solutions of this type of system, supported by calculation examples and moist air transformation in the Moliere chart have been presented. Support ventilation system with renewable energy sources allows significant savings in operating as shown in the article.

  13. Modelling Heat Exchangers for Domestic Boilers

    Directory of Open Access Journals (Sweden)

    S. F. C. F. Teixeira

    2000-01-01

    Full Text Available In the present paper the thermal behaviour of fin-tube heat exchangers is modeled. Particular attention has been given to the plate fins. The heat fluxes in the fins are described using a finite volume technique to discretize the energy equation. The thermal interactions with the water in the tubes and the surrounding air are treated as external boundaries, using appropriate relationships for forced convection in pipes and flat plates. The numerical results are presented in terms of dimensionless numbers (Fourier, Biot and geometric ratios which are found to be representative for this particular geometry. Furthermore, the effect of thermal gradients along the fin surface upon the fin efficiency is investigated. Based on a differential model for the heat balances, design charts have been developed for the thermal analysis of heat exchangers.

  14. 14 CFR 29.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 29.1125 Section 29... exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff may have...

  15. 14 CFR 25.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 25.1125 Section 25... exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... provisions wherever it is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or...

  16. Exergy-Economic Criteria for Evaluating Heat Exchanger Performance

    Institute of Scientific and Technical Information of China (English)

    Wu Shuangying; Li Yourong

    2001-01-01

    Based on the exergy-economic analysis of heat exchanger heat transfer and flow process, two new exergyeconomic criteria which are defined as the total costs per unit heat transfer rate ηt t for heat transfer exchanger and the net profit per unit heat recovery rate ηr for heat recovery exchanger respectively are put forward.Furthermore, the application of criteria is illustrated by the evaluation of down-flow, counter-flow and cross-flow heat exchangers performance. The methods employed and results presented in this paper can serve as a guide for the performance evaluation of heat exchangers.

  17. Weld manufacturing of big heat-exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Braeutigam, M.; Huppertz, P.H.

    1986-06-24

    The topic of this article are big heat exchangers, which are developed and constructed to minimize energy losses in plants of process engineering. Some welding specifications are discussed in detail. Some constructive details, as e.g. materials selection and vibration safety complete this contribution.

  18. Measurement of heat and moisture exchanger efficiency.

    Science.gov (United States)

    Chandler, M

    2013-09-01

    Deciding between a passive heat and moisture exchanger or active humidification depends upon the level of humidification that either will deliver. Published international standards dictate that active humidifiers should deliver a minimum humidity of 33 mg.l(-1); however, no such requirement exists, for heat and moisture exchangers. Anaesthetists instead have to rely on information provided by manufacturers, which may not allow comparison of different devices and their clinical effectiveness. I suggest that measurement of humidification efficiency, being the percentage moisture returned and determined by measuring the temperature of the respired gases, should be mandated, and report a modification of the standard method that will allow this to be easily measured. In this study, different types of heat and moisture exchangers for adults, children and patients with a tracheostomy were tested. Adult and paediatric models lost between 6.5 mg.l(-1) and 8.5 mg.l(-1) moisture (corresponding to an efficiency of around 80%); however, the models designed for patients with a tracheostomy lost between 16 mg.l(-1) and 18 mg.l(-1) (60% efficiency). I propose that all heat and moisture exchangers should be tested in this manner and percentage efficiency reported to allow an informed choice between different types and models.

  19. Exergo-ecological evaluation of heat exchanger

    Directory of Open Access Journals (Sweden)

    Stanek Wojciech

    2014-01-01

    Full Text Available Thermodynamic optimization of thermal devices requires information about the influence of operational and structural parameters on its behaviour. The interconnections among parameters can be estimated by tools such as CFD, experimental statistic of the deviceetc. Despite precise and comprehensive results obtained by CFD, the time of computations is relatively long. This disadvantage often cannot be accepted in case of optimization as well as online control of thermal devices. As opposed to CFD the neural network or regression is characterized by short computational time, but does not take into account any physical phenomena occurring in the considered process. The CFD model of heat exchanger was built using commercial package Fluent/Ansys. The empirical model of heat exchanger has been assessed by regression and neural networks based on the set of pseudo-measurements generated by the exact CFD model. In the paper, the usage of the developed empirical model of heat exchanger for the minimisation of TEC is presented. The optimisationconcerns operational parameters of heat exchanger. The TEC expresses the cumulative exergy consumption of non-renewable resources. The minimization of the TEC is based on the objective function formulated by Szargut. However, the authors extended the classical TEC by the introduction of the exergy bonus theory proposed by Valero. The TEC objective function fulfils the rules of life cycle analysis because it contains the investment expenditures (measured by the cumulative exergy consumption of non-renewable natural resources, the operation of devices and the final effects of decommissioning the installation.

  20. Feedback linearisation of a heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.H.R.F.; Devanathan, R. Sr. [Nanyang Technological Univ. (Singapore)

    1994-12-31

    The main contribution of the paper is to provide an explicit necessary and sufficient conditions for the system to be locally linearisable in terms of parameters of the heat exchanger model. Examples illustrate how the controllability issues which are standard in linear system theory can be naturally extended to the nonlinear system model via the linearising transformation.

  1. Energy storage and heat transfer characteristics of ground heat exchanger with phase change backfill materials%相变材料回填地埋管换热器蓄能传热特性

    Institute of Scientific and Technical Information of China (English)

    杨卫波; 孙露露; 吴晅

    2014-01-01

    points for the application of GSHP. In this paper, a new type of GHE with phase change backfill materials was presented to change its thermal response characteristics and heat transfer performance. Theoretically, the thermal interference radius of soil can be reduced by the phase change of phase change materials (PCM), and the energy storage performance of GHE can be improved due to the release of phase change latent heat. In order to further investigate the influences of solid-liquid phase change of phase change backfill materials on energy storage and heat transfer performance of GHE, a quasi-three dimensional heat transfer model with phase change was developed for the vertical U-bend GHE, which couples the one-dimensional fluid heat transfer in vertical direction with the two-dimensional soil transient heat transfer in level. The model was discreted by the control volume method and solved by the apparent heat capacity method. Based on the numerical solution of the model, the influences of solid-liquid phase change of PCM on energy storage performance of GHE and thermal response characteristics of soil temperature around GHE were analyzed for winter and summer mode respectively. The effects of phase change temperature and phase change latent heat of PCM on the thermal diffusivity and energy storage characteristics of GHE were discussed. The results indicate that under same conditions, the soil temperature variations trend is slow down and the thermal interference region is reduced due to the heat extraction and release during the phase change of PCM. The heat exchange performance of GHE can be evidently improved by backfilling materials with low and high phase change temperature for summer and winter respectively. At the same time, the energy storage performance can be enhanced by grouting the materials with large latent heat. The study is significant for releasing the thermal interference region of soil and improving the energy storage and heat transfer performance of

  2. Geothermal heat exchanger with coaxial flow of fluids

    Directory of Open Access Journals (Sweden)

    Pejić Dragan M.

    2005-01-01

    Full Text Available The paper deals with a heat exchanger with coaxial flow. Two coaxial pipes of the secondary part were placed directly into a geothermal boring in such a way that geothermal water flows around the outer pipe. Starting from the energy balance of the exchanger formed in this way and the assumption of a study-state operating regime, a mathematical model was formulated. On the basis of the model, the secondary circle output temperature was determined as a function of the exchanger geometry, the coefficient of heat passing through the heat exchange areas, the average mass isobaric specific heats of fluid and mass flows. The input temperature of the exchanger secondary circle and the temperature of the geothermal water at the exit of the boring were taken as known values. Also, an analysis of changes in certain factors influencing the secondary water temperature was carried out. The parameters (flow temperature of the deep boring B-4 in Sijarinska Spa, Serbia were used. The theoretical results obtained indicate the great potential of this boring and the possible application of such an exchanger.

  3. Optimization of Borehole Heat Exchanger Arrays

    Science.gov (United States)

    Schulte, Daniel; Rühaak, Wolfram; Welsch, Bastian; Oladyshkin, Sergey; Sass, Ingo

    2016-04-01

    Arrays of borehole heat exchangers are an increasingly popular source for renewable energy. Furthermore, they can serve as borehole thermal energy storages for seasonally fluctuating heat sources like solar thermal energy or district heating grids. However, the uncertainty of geological parameters and the nonlinear behavior of the complex system make it difficult to simulate and predict the required design of borehole heat exchanger arrays. As a result, the arrays easily turn out to be over or undersized, which compromises the economic feasibility of these systems. Here, we present a novel optimization strategy for the design of borehole thermal energy storages. The arbitrary polynomial chaos expansion method is used to build a proxy model from a set of numerical training simulations, which allows for the consideration of parameter uncertainties. Thus, the resulting proxy model bypasses the problem of excessive computation time for the numerous function calls required for a mathematical optimization. Additionally, we iteratively refine the proxy model during the optimization procedure using additional numerical simulation runs. With the presented solution, many aspects of borehole heat exchanger arrays can be optimized under geological uncertainty.

  4. Teaching Heat Exchanger Network Synthesis Using Interactive Microcomputer Graphics.

    Science.gov (United States)

    Dixon, Anthony G.

    1987-01-01

    Describes the Heat Exchanger Network Synthesis (HENS) program used at Worcester Polytechnic Institute (Massachusetts) as an aid to teaching the energy integration step in process design. Focuses on the benefits of the computer graphics used in the program to increase the speed of generating and changing networks. (TW)

  5. New counter flow heat exchanger designed for ventilation systems in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Nielsen, Toke Rammer;

    2007-01-01

    In cold climates, mechanical ventilation systems with highly efficient heat recovery will experience problems with condensing water from the extracted humid indoor air. If the condensed water changes to ice in the heat exchanger, the airflow rate will quickly fall due to the increasing pressure...... problem is therefore desirable. In this paper, the construction and test measurements of a new counter flow heat exchanger designed for cold climates are presented. The developed heat exchanger is capable of continuously defrosting itself without using supplementary heating. Other advantages...... of the developed beat exchanger are low pressure loss, cheap materials and a simple construction. The disadvantage is that the exchanger is big compared with other heat exchangers. In this paper, the new heat exchanger's efficiency is calculated theoretically and measured experimentally. The experiment shows...

  6. Selection and costing of heat exchangers

    Science.gov (United States)

    1992-12-01

    ESDU 92013 gives guidance on the selection of heat exchanger types for a given duty against various criteria; they include the general characteristics, together with such detailed aspects as the ranges of pressure and temperature appropriate, compatibility with the fluids involved, space and weight requirements, and cleaning accessibility and maintenance. That allows an initial choice to be made from 18 principal types of exchangers. The various types are all illustrated. A final choice can then be made between the feasible types on the basis of costs. Detailed costing data provided by manufacturers are tabulated as a function of heat load, operating pressure and the types of cold- and hot-side fluids for the following types of exchangers: shell-and-tube, double-pipe, printed-circuit, plate-fin, air-cooled and welded plate. Costing data are also tabulated as a function of heat load and the types of cold- and hot-side fluids for gasketed-plate exchangers. Seven worked examples of selection based on technical suitability and using the tabulated cost data illustrate fully the use of the information.

  7. Materials, Turbomachinery and Heat Exchangers for Supercritical CO2 Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Nellis, Greg; Corradini, Michael

    2012-10-19

    The objective of this project is to produce the necessary data to evaluate the performance of the supercritical carbon dioxide cycle. The activities include a study of materials compatibility of various alloys at high temperatures, the heat transfer and pressure drop in compact heat exchanger units, and turbomachinery issues, primarily leakage rates through dynamic seals. This experimental work will serve as a test bed for model development and design calculations, and will help define further tests necessary to develop high-efficiency power conversion cycles for use on a variety of reactor designs, including the sodium fast reactor (SFR) and very high-temperature gas reactor (VHTR). The research will be broken into three separate tasks. The first task deals with the analysis of materials related to the high-temperature S-CO{sub 2} Brayton cycle. The most taxing materials issues with regard to the cycle are associated with the high temperatures in the reactor side heat exchanger and in the high-temperature turbine. The system could experience pressures as high as 20MPa and temperatures as high as 650°C. The second task deals with optimization of the heat exchangers required by the S-CO{sub 2} cycle; the S-CO{sub 2} flow passages in these heat exchangers are required whether the cycle is coupled with a VHTR or an SFR. At least three heat exchangers will be required: the pre-cooler before compression, the recuperator, and the heat exchanger that interfaces with the reactor coolant. Each of these heat exchangers is unique and must be optimized separately. The most challenging heat exchanger is likely the pre-cooler, as there is only about a 40°C temperature change but it operates close to the CO{sub 2} critical point, therefore inducing substantial changes in properties. The proposed research will focus on this most challenging component. The third task examines seal leakage through various dynamic seal designs under the conditions expected in the S-CO{sub 2} cycle

  8. PENGARUH PENGGUNAAN BAFFLE PADA SHELL-AND-TUBE HEAT EXCHANGER

    OpenAIRE

    Ekadewi Anggraini Handoyo

    2001-01-01

    Shell-and-tube heat exchanger is a device commonly used to transfer heat. To enhance the heat transfer occurred and to support the tubes inside the shell, baffles are installed. Better heat transfer is obviously expected in a heat exchanger. A research is done to find out the effect of baffle used toward the effectiveness and pressure drop in heat exchanger. The result is that the effectiveness increases when the baffles are installed. Effectiveness increases as the spacing between the baffle...

  9. RECITAL SCRUTINY ON TUBE-INTUBE COMPACT HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    V.NATARAJAN,

    2011-04-01

    Full Text Available This paper focused on the investigational cram of the recital characteristics of tube-in-tube compact heat exchangers. Experiments are conducted in the compact heat exchangers with R-134a and liquefiedpetroleum gas. The effectiveness of the heat exchangers was calculated using the experiment data and it was found that the effectiveness of heat exchanger-1 is above 75 and heat exchanger-2 is above 84% for R-134a.The effectiveness of heat exchanger-1 is about 60% and heat exchanger-2 is about 81% for liquefied petroleum gas. In this paper, details about the new tube-in-tube type compact heat exchanger, experimental setup, results and conclusions are discussed.

  10. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  11. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  12. 14 CFR 23.1125 - Exhaust heat exchangers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 23.1125 Section 23... § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a) Each exhaust heat exchanger must be constructed and installed to withstand the vibration, inertia,...

  13. 40 CFR 63.1435 - Heat exchanger provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Heat exchanger provisions. 63.1435... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1435 Heat exchanger... for heat exchange systems, with the exceptions noted in paragraphs (b) through (e) of this section....

  14. A heat transfer model of a horizontal ground heat exchanger

    Science.gov (United States)

    Mironov, R. E.; Shtern, Yu. I.; Shtern, M. Yu.; Rogachev, M. S.

    2016-04-01

    Ground-source heat pumps are gaining popularity in Eastern Europe, especially those which are using the horizontal ground heat exchanger (GHX). Due to the difficulty of accessing GHX after the installation, materials and the quality of the installation must satisfy the very high requirements. An inaccurate calculation of GHX can be the reason of a scarcity of heat power in a crucial moment. So far, there isn't any appropriate mathematical description of the horizontal GHX which takes into account the mutual influence of GHX pipes on each other. To solve this problem we used the temperature wave approach. As a result, a mathematical model which describes the dependence of the heat transfer rate per unit length of the horizontal GHX pipe on the thermal properties of soil, operating time of GHX and the distance between pipes was obtained. Using this model, heat transfer rates per unit length of a horizontal GHX were plotted as functions of the distance between pipes and operating time. The modeling shows that heat transfer rates decreases rapidly with the distance between pipes lower then 2 meters. After the launch of heat pump, heat power of GHX is reduced during the first 20 - 30 days and get steady after that. The obtained results correlate with experimental data. Therefore the proposed mathematical model can be used to design a horizontal GHX with the optimal characteristics, and predict its capability during operation.

  15. The Conduction of Heat through Cryogenic Regenerative Heat Exchangers

    Science.gov (United States)

    Superczynski, W. F.; Green, G. F.

    2006-04-01

    The need for improved regenerative cryocooler efficiency may require the replacement of conventional matrices with ducts. The ducts can not be continuous in the direction of temperature gradient when using conventional materials to prevent unacceptable conduction losses. However, this discontinuity creates a complex geometry to model and determine conduction losses. Chesapeake Cryogenics, Inc. has designed, fabricated and tested an apparatus for measuring the heat conduction through regenerative heat exchangers implementing different matrices. Data is presented for stainless steel photo etched disk, phophorus-bronze embossed ribbon coils and screens made of both stainless steel and phosphorus-bronze. The heat conduction was measured with the regenerators evacuated and pressurized with helium gas. In this test apparatus, helium gas presence increased the heat leak significantly. A description of the test apparatus, instrumentation, experimental methods and data analysis are presented.

  16. A novel compact heat exchanger using gap flow mechanism

    Science.gov (United States)

    Liang, J. S.; Zhang, Y.; Wang, D. Z.; Luo, T. P.; Ren, T. Q.

    2015-02-01

    A novel, compact gap-flow heat exchanger (GFHE) using heat-transfer fluid (HTF) was developed in this paper. The detail design of the GFHE coaxial structure which forms the annular gap passage for HTF is presented. Computational fluid dynamics simulations were introduced into the design to determine the impacts of the gap width and the HTF flow rate on the GFHE performance. A comparative study on the GFHE heating rate, with the gap widths ranged from 0.1 to 1.0 mm and the HTF flow rates ranged from 100 to 500 ml/min, was carried out. Results show that a narrower gap passage and a higher HTF flow rate can yield a higher average heating rate in GFHE. However, considering the compromise between the GFHE heating rate and the HTF pressure drop along the gap, a 0.4 mm gap width is preferred. A testing loop was also set up to experimentally evaluate the GFHE capability. The testing results show that, by using 0.4 mm gap width and 500 ml/min HTF flow rate, the maximum heating rate in the working chamber of the as-made GFHE can reach 18 °C/min, and the average temperature change rates in the heating and cooling processes of the thermal cycle test were recorded as 6.5 and 5.4 °C/min, respectively. These temperature change rates can well satisfy the standard of IEC 60068-2-14:2009 and show that the GFHE developed in this work has sufficient heat exchange capacity and can be used as an ideal compact heat exchanger in small volume desktop thermal fatigue test apparatus.

  17. Heat exchanger life extension via in-situ reconditioning

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David E.; Muralidharan, Govindarajan

    2016-06-28

    A method of in-situ reconditioning a heat exchanger includes the steps of: providing an in-service heat exchanger comprising a precipitate-strengthened alloy wherein at least one mechanical property of the heat exchanger is degraded by coarsening of the precipitate, the in-service heat exchanger containing a molten salt working heat exchange fluid; deactivating the heat exchanger from service in-situ; in a solution-annealing step, in-situ heating the heat exchanger and molten salt working heat exchange fluid contained therein to a temperature and for a time period sufficient to dissolve the coarsened precipitate; in a quenching step, flowing the molten salt working heat-exchange fluid through the heat exchanger in-situ to cool the alloy and retain a supersaturated solid solution while preventing formation of large precipitates; and in an aging step, further varying the temperature of the flowing molten salt working heat-exchange fluid to re-precipitate the dissolved precipitate.

  18. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  19. Active heat exchange system development for latent heat thermal energy storage

    Science.gov (United States)

    Lefrois, R. T.; Mathur, A. K.

    1980-04-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  20. Microchannel Heat Exchangers with Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    The objective of the present study was to determine the performance of CO{sub 2} microchannel evaporators and gas coolers in operational conditions representing those of residential heat pumps. A set of breadboard prototype microchannel evaporators and gas coolers was developed and tested. The refrigerant in the heat exchangers followed a counter cross-flow path with respect to the airflow direction. The test conditions corresponded to the typical operating conditions of residential heat pumps. In addition, a second set of commercial microchannel evaporators and gas coolers was tested for a less comprehensive range of operating conditions. The test results were reduced and a comprehensive data analysis, including comparison with the previous studies in this field, was performed. Capacity and pressure drop of the evaporator and gas cooler for the range of parameters studied were analyzed and are documented in this report. A gas cooler performance prediction model based on non-dimensional parameters was also developed and results are discussed as well. In addition, in the present study, experiments were conducted to evaluate capacities and pressure drops for sub-critical CO{sub 2} flow boiling and transcritical CO{sub 2} gas cooling in microchannel heat exchangers. An extensive review of the literature failed to indicate any previous systematic study in this area, suggesting a lack of fundamental understanding of the phenomena and a lack of comprehensive data that would quantify the performance potential of CO{sub 2} microchannel heat exchangers for the application at hand. All experimental tests were successfully conducted with an energy balance within {+-}3%. The only exceptions to this were experiments at very low saturation temperatures (-23 C), where energy balances were as high as 10%. In the case of evaporators, it was found that a lower saturation temperature (especially when moisture condensation occurs) improves the overall heat transfer coefficient

  1. Technology Solutions Case Study: Foundation Heat Exchanger, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-03-01

    The foundation heat exchanger, developed by Oak Ridge National Laboratory, is a new concept for a cost-effective horizontal ground heat exchanger that can be connected to water-to-water or water-to-air heat pump systems for space conditioning as well as domestic water heating.

  2. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  3. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Bae, Sung-Won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant.

  4. Development of Submersible Corrugated Pipe Sewage Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    BAI Li; SHI Yan; TAN Yu-fei

    2009-01-01

    Based on the characteristics of heat transfer for corrugated pipe,a method of calculating and de-sign on the submersible corrugated pipe sewage heat exchanger was put forward theoretically and experimental-ly.The actual movement parameters of air-conditioning system used in this heat exchanger were measured.The experimental result shows that the quantity of heat transfer of the corrugated pipe sewage heat exchanger can satisfy the building's load with the average coefficient of performance 4.55.At the same time.the quantity ot heat transfer of the corrugated pipe sewage heat exchanger was compared with that of the other nonmetallic sewage heat exchangers(i.e.,the plastic-Al pipe sewage heat exchanger and PP-R pipe sewage heat exchanger)experimentally.It is found out that the effect of heat transfer for submersible corrugated pipe sewage heat ex-changer is superior to those of the plastic-Al pipe and the PP-R pipe.The quantity of heat transfer per mile of corrugated pipe sewage heat exchanger is 5.2 times as much as that of the plastic-Al pipe,and it is 8.1 times as much as that of PP-R pipe.

  5. Analytical and experimental analysis of tube coil heat exchanger

    Science.gov (United States)

    Smusz, R.

    2016-09-01

    The paper presents the analytical and experimental analysis of heat transfer for the finned tube coil heat exchanger immersed in thermal storage tank. The tank is equipped with three helical-shaped heating coils and cylindrical- shaped stratification device. Two coils, upper and lower, use the water as a heating medium. The third, double wall heat exchanger coil, located at the bottom head on the tank is filled by the refrigerant (freon). Calculations of thermal power of water coil were made. Correlations of heat transfer coefficients in curved tubes were applied. In order to verify the analytical calculations the experimental studies of heat transfer characteristic for coil heat exchanger were performed.

  6. Reliability analysis on a shell and tube heat exchanger

    Science.gov (United States)

    Lingeswara, S.; Omar, R.; Mohd Ghazi, T. I.

    2016-06-01

    A shell and tube heat exchanger reliability was done in this study using past history data from a carbon black manufacturing plant. The heat exchanger reliability study is vital in all related industries as inappropriate maintenance and operation of the heat exchanger will lead to major Process Safety Events (PSE) and loss of production. The overall heat exchanger coefficient/effectiveness (Uo) and Mean Time between Failures (MTBF) were analyzed and calculated. The Aspen and down time data was taken from a typical carbon black shell and tube heat exchanger manufacturing plant. As a result of the Uo calculated and analyzed, it was observed that the Uo declined over a period caused by severe fouling and heat exchanger limitation. This limitation also requires further burn out period which leads to loss of production. The MTBF calculated is 649.35 hours which is very low compared to the standard 6000 hours for the good operation of shell and tube heat exchanger. The guidelines on heat exchanger repair, preventive and predictive maintenance was identified and highlighted for better heat exchanger inspection and repair in the future. The fouling of heat exchanger and the production loss will be continuous if proper heat exchanger operation and repair using standard operating procedure is not followed.

  7. AUTOMATIC EVOLUTION OF HEAT EXCHANGER NETWORKS WITH SIMULTANEOUS HEAT EXCHANGER DESIGN

    Directory of Open Access Journals (Sweden)

    F.S. LIPORACE

    1999-03-01

    Full Text Available Recently, a new software (AtHENS that automatically synthesizes a heat exchanger network with minima consumption of utilities was developed. This work deals with the next step, which represents the evolution of the initial network. Hence, new procedures to identify and break loops are incorporated, for which a new algorithm is proposed. Also, a heat exchanger design procedure which uses the available pressure drop to determine the film coefficient on the tube side and shell side is added, providing the utilization of more realistic heat exchangers in the network during its optimization. Results obtained from a case study point to the possibility of equipment design having a strong influence on the network synthesis.

  8. Automatic evolution of heat exchanger networks with simultaneous heat exchanger design

    Energy Technology Data Exchange (ETDEWEB)

    Liporace, F.S.; Pessoa, F.L.P.; Queiroz, E.M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Escola de Quimica. Dept. de Engenharia Quimica]. E-mail: lipo@h2o.eq.ufrj.br; lipo@hexanet.com.br

    1999-03-01

    Recently, a new software (AtHENS) that automatically synthesizes a heat exchanger network with minima consumption of utilities was developed. This work deals with the next step, which represents the evolution of the initial network. Hence, new procedures to identify and break loops are incorporated, for which a new algorithm is proposed. Also, a heat exchanger design procedure which uses the available pressure drop to determine the film coefficient on the tube side and shell side is added, providing the utilization of more realistic heat exchangers in the network during its optimization. Results obtained from a case study point to the possibility of equipment design having a strong influence on the network synthesis. (author)

  9. Expanded microchannel heat exchanger: design, fabrication and preliminary experimental test

    CERN Document Server

    Denkenberger, David C; Pearce, Joshua M; Zhai, John; 10.1177/0957650912442781

    2012-01-01

    This paper first reviews non-traditional heat exchanger geometry, laser welding, practical issues with microchannel heat exchangers, and high effectiveness heat exchangers. Existing microchannel heat exchangers have low material costs, but high manufacturing costs. This paper presents a new expanded microchannel heat exchanger design and accompanying continuous manufacturing technique for potential low-cost production. Polymer heat exchangers have the potential for high effectiveness. The paper discusses one possible joining method - a new type of laser welding named "forward conduction welding," used to fabricate the prototype. The expanded heat exchanger has the potential to have counter-flow, cross-flow, or parallel-flow configurations, be used for all types of fluids, and be made of polymers, metals, or polymer-ceramic precursors. The cost and ineffectiveness reduction may be an order of magnitude or more, saving a large fraction of primary energy. The measured effectiveness of the prototype with 28 micro...

  10. Development of a Minichannel Compact Primary Heat Exchanger for a Molten Salt Reactor

    OpenAIRE

    Lippy, Matthew Stephen

    2011-01-01

    The first Molten Salt Reactor (MSR) was designed and tested at Oak Ridge National Laboratory (ORNL) in the 1960â s, but recent technological advancements now allow for new components, such as heat exchangers, to be created for the next generation of MSRâ s and molten salt-cooled reactors. The primary (fuel salt-to-secondary salt) heat exchanger (PHX) design is shown here to make dramatic improvements over traditional shell-and-tube heat exchangers when changed to a compact heat exchanger de...

  11. Oxidizer heat exchangers for rocket engine operation in idle modes

    Science.gov (United States)

    Kanic, P. G.; Kmiec, T. D.

    1987-01-01

    The heat exchanger concept is discussed together with its role in rocket engine operation in idle modes. Two heat exchanger designs (low and high heat transfer) utilizing different approaches to achieve stable oxygen vaporization are presented as well as their performance test results. It is concluded that compact and lightweight heat exchangers can be used in a stable manner under the 'idle' operating conditions expected with the RL10 rocket engine.

  12. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    M. Thirumarimurugan

    2008-01-01

    Full Text Available Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in smaller plot areas and, in many cases, less initial investment. One such type ofcompact heat exchanger is the Plate-fin heat exchanger. The complexity of compact heat exchangerdesign equations results from the exchangers unique ability to transfer heat between multiple processstreams and a wide array of possible flow configurations. This paper presents the performanceevaluation of cross flow plate fin heat exchanger with several different Gas-Liquid systems.Experimental results such as exchanger effectiveness, overall heat transfer coefficients were calculatedfor the flow systems of Cross flow Heat Exchangers. A steady state model for the outlet temperature ofboth the cold and hot fluid and overall heat transfer coefficient of a plate-fin cross flow heat exchangerwas developed and simulated using MATLAB, which was verified with the experiments conducted.

  13. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    OpenAIRE

    Arsana I Made; Susianto; Budhikarjono Kusno; Altway Ali

    2016-01-01

    Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Opti...

  14. Shell-and-double concentric-tube heat exchangers

    Science.gov (United States)

    Bougriou, Chérif; Baadache, Khireddine

    2010-03-01

    This study concerns a new type of heat exchangers, which is that of shell-and-double concentric-tube heat exchangers. These heat exchangers can be used in many specific applications such as air conditioning, waste heat recovery, chemical processing, pharmaceutical industries, power production, transport, distillation, food processing, cryogenics, etc. The case studies include both design calculations and performance calculations. It is demonstrated that the relative diameter sizes of the two tubes with respect to each other are the most important parameters that influence the heat exchanger size.

  15. Development and benefits of air/air-heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, H.W.; Cremer, P.

    1986-02-01

    After the first experiments using glass tube heat exchangers, many air/air heat exchangers have made within ten years the breakthrough as ''interior climate improvers'' in stables. Especially inexpensive synthetic panels, foils and self-construction, ribbed heat exchangers are very popular among farmers. Based on thorough installation planning and satisfactory operating results, thousands of heat exchangers were installed, through which heating oil and fuel gas are being replaced as energy sources, and through an improved interior climate, the productivity can be optimized in fattening and rearing houses. (orig.).

  16. Research on ground heat exchanger of Ground Source Heat Pump technique

    Institute of Scientific and Technical Information of China (English)

    LIU Dong-sheng; SUN You-hong; GAO Ke; WU Xiao-hang

    2004-01-01

    Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its pattems are discussed. Software is helpful to design ground heat exchanger. A project of Chinese Ground Source Heat Pump is introduced and its market is more and more extensive.

  17. A Project to Design and Build Compact Heat Exchangers

    Science.gov (United States)

    Davis, Richard A.

    2005-01-01

    Students designed and manufactured compact, shell-and-tube heat exchangers in a project-based learning exercise integrated with our heat transfer course. The heat exchangers were constructed from common building materials available at home improvement centers. The cost of materials for a device was less than $20. The project gave students…

  18. Experimental investigation of heat transfer and effectiveness in corrugated plate heat exchangers having different chevron angles

    Science.gov (United States)

    Kılıç, Bayram; İpek, Osman

    2017-02-01

    In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.

  19. Design and Numerical Parametric Study of Fractal Heat Exchanger

    OpenAIRE

    Huang, Zhiwei; Ling, Jiazhen; Hwang, Yunho; Aute, Vikrant; Radermacher, Reinhard

    2016-01-01

    Air-to-refrigerant heat exchangers are a main component in air-conditioning and heat pump systems and are therefore a topic of major research focus. Such heat exchangers, mainly made of fin-and-tube and microchannels, use fins to augment the heat transfer area of the air-side. Recently it has been shown that finless designs using ≤ 1 mm hydraulic diameter bare tubes can deliver better air-side heat transfer performance than conventional heat exchangers. In current study, a novel air-to-refr...

  20. Magnetic Heat Transfer Enhancements on Fin-Tube Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yan SU; C.T. HSU

    2007-01-01

    通过DNS方法解耦合的三维非稳态流动和固流体能量方程组,本文研究了两平行磁质平板和圆管所组成的肋片式圆管换热器单元与震荡流体间的传热过程.对不同的磁场频率和振幅的三维动态流热场的模拟结果表明增强磁场频率和振幅能很有效地增加周期平均传热强度达到强化传热的目的.%Two narrowly-gapped magnetic parallel plates embedding a circular disk was considered as a unit-cell to represent the fin-tube heat exchanger where heat from a circular tube was dissipated by a series of parallel equally-spaced thin plates in normal to the tube. The unsteady 3-D continuity,Navier-Stokes and energy equations for fluids and solids describing the convective heat transfer for the unit-cell geometry were solved numerically with DNS method. The present study aims on using oscillating flows and magnetic fields to enhance the heat transfer for various amplitudes and frequencies of the magnetic field. Results from cycle-averaged heat fluxes from the cylinder wall show that the increase in magnetic amplitude and frequency will greatly enhance the heat transfer. The effects of the oscillating magnetic field were discussed and the three dimensional flow and temperature fields were also presented.

  1. Performance of multiple mini-tube heat exchangers as an internal heat exchanger of a vapor-injection cycle heat pump

    Science.gov (United States)

    Jang, Jin Yong; Jeong, Ji Hwan

    2016-04-01

    A multiple mini-tube (MMT) heat exchanger was considered as an internal heat exchanger of vapor-injection cycle heat pump. Heat transfer and pressure drop in multiple mini-tube heat exchangers were numerically and experimentally investigated. Results show that the best performance of the MMT heat exchanger can be obtained when the intermediate-pressure two-phase refrigerant is supplied to the shell-side and this refrigerant reaches a saturated vapor state at the exit of the heat exchanger.

  2. 采用复合相变换热器技术回收CFB锅炉烟气余热%Recovery of waste heat of CFB boiler flue gas by compound phase changing heat exchanger

    Institute of Scientific and Technical Information of China (English)

    刘辉; 徐玉陵; 朱相利; 王永祥; 李世栋

    2011-01-01

    The flue gas waste heat of CFB boiler was recovered by compound phase changing heat exchanger (FXH) to heat the condensate instead of 2# low pressure heater of original steam turbine, and the thermodynamic calculation of flue gas waste heat system was simulated by Matlab software. The results showed that the flue gas temperature reduced from 150 - 155 ℃ to 120 ℃ , the saved extraction steam could increase electric generating power by 175.3 x 10 ( Kw · H)/a,the standard coal consumption rate of power supply reduced 1. 323 g/( Kw · H) , theboiler thermal efficiency increased by 1. 85 percent point,and the simple payback period was about 2.3 years. The flue gas temperature at FXH inlet was not suitable for exceeding 150 ℃ , and the flue gas dew point for the selected coal should range between 108 ℃ and 114 ℃.%采用复合相变换热器(FXH)回收CFB锅炉尾部烟气余热,代替原汽轮机2#低压加热器抽汽加热凝结水,并利用Matlab软件对烟气余热系统进行了热力仿真计算.改造后的运行结果表明,锅炉排烟温度从150~155℃降低至120℃,节省的抽汽可增加发电量175.284×104(kW·h)/a,供电标煤耗降低1.323 g/(kW·h),锅炉热效率提高1.85个百分点,改造静态投资回收期约为2.3a;FXH的进口烟气温度不宜超过150℃,所选燃煤的烟气露点温度在108~114℃较适宜.

  3. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  4. High temperature heat exchanger studies for applications to gas turbines

    Science.gov (United States)

    Min, June Kee; Jeong, Ji Hwan; Ha, Man Yeong; Kim, Kui Soon

    2009-12-01

    Growing demand for environmentally friendly aero gas-turbine engines with lower emissions and improved specific fuel consumption can be met by incorporating heat exchangers into gas turbines. Relevant researches in such areas as the design of a heat exchanger matrix, materials selection, manufacturing technology, and optimization by a variety of researchers have been reviewed in this paper. Based on results reported in previous studies, potential heat exchanger designs for an aero gas turbine recuperator, intercooler, and cooling-air cooler are suggested.

  5. Two-phase Flow Distribution in Heat Exchanger Manifolds

    OpenAIRE

    Vist, Sivert

    2004-01-01

    The current study has investigated two-phase refrigerant flow distribution in heat exchange manifolds. Experimental data have been acquired in a heat exchanger test rig specially made for measurement of mass flow rate and gas and liquid distribution in the manifolds of compact heat exchangers. Twelve different manifold designs were used in the experiments, and CO2 and HFC-134a were used as refrigerants.

  6. Direct contact droplet heat exchangers for thermal management in space

    Science.gov (United States)

    Bruckner, A. P.; Hertzberg, A.

    1982-01-01

    A liquid droplet heat exchanger for space applications is described which transfers heat between a gas and a liquid metal dispersed into droplets. The ability of the droplet heat exchanger to transfer heat between two media in direct contact over a wide temperature range circumvents many of the material limitations of conventional tube-type heat exchangers and does away with complicated plumbing systems and their tendency toward single point failure. Droplet heat exchangers offer large surface to volume ratios in a compact geometry, very low gas pressure drop, and high effectiveness. The application of the droplet heat exchanger in a high temperature Brayton cycle is discussed to illustrate its performance and operational characteristics.

  7. Liquid-Liquid Heat Exchanger With Zero Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future manned spacecraft will require thermal management systems that effectively and safely control the temperature in inhabited modules. Interface heat exchangers...

  8. Condensing Heat Exchanger with Hydrophilic Antimicrobial Coating

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor)

    2014-01-01

    A multi-layer antimicrobial hydrophilic coating is applied to a substrate of anodized aluminum, although other materials may form the substrate. A silver layer is sputtered onto a thoroughly clean anodized surface of the aluminum to about 400 nm thickness. A layer of crosslinked, silicon-based macromolecular structure about 10 nm thickness overlies the silver layer, and the outermost surface of the layer of crosslinked, silicon-based macromolecular structure is hydroxide terminated to produce a hydrophilic surface with a water drop contact angle of less than 10.degree.. The coated substrate may be one of multiple fins in a condensing heat exchanger for use in the microgravity of space, which has narrow channels defined between angled fins such that the surface tension of condensed water moves water by capillary flow to a central location where it is pumped to storage. The antimicrobial coating prevents obstruction of the capillary passages.

  9. Thermal Propulsion Capture System Heat Exchanger Design

    Science.gov (United States)

    Richard, Evan M.

    2016-01-01

    One of the biggest challenges of manned spaceflight beyond low earth orbit and the moon is harmful radiation that astronauts would be exposed to on their long journey to Mars and further destinations. Using nuclear energy has the potential to be a more effective means of propulsion compared to traditional chemical engines (higher specific impulse). An upper stage nuclear engine would allow astronauts to reach their destination faster and more fuel efficiently. Testing these engines poses engineering challenges due to the need to totally capture the engine exhaust. The Thermal Propulsion Capture System is a concept for cost effectively and safely testing Nuclear Thermal Engines. Nominally, hydrogen exhausted from the engine is not radioactive, but is treated as such in case of fuel element failure. The Thermal Propulsion Capture System involves injecting liquid oxygen to convert the hydrogen exhaust into steam. The steam is then cooled and condensed into liquid water to allow for storage. The Thermal Propulsion Capture System concept for ground testing of a nuclear powered engine involves capturing the engine exhaust to be cooled and condensed before being stored. The hydrogen exhaust is injected with liquid oxygen and burned to form steam. That steam must be cooled to saturation temperatures before being condensed into liquid water. A crossflow heat exchanger using water as a working fluid will be designed to accomplish this goal. Design a cross flow heat exchanger for the Thermal Propulsion Capture System testing which: Eliminates the need for water injection cooling, Cools steam from 5800 F to saturation temperature, and Is efficient and minimizes water requirement.

  10. Heat transfer in thin, compact heat exchangers with circular, rectangular, or pin-fin flow passages

    Science.gov (United States)

    Olson, D. A.

    1992-01-01

    Heat transfer and pressure drop have been measured of three thin, compact heat exchangers in helium gas at 3.5 MPa and higher, with Reynolds numbers of 450 to 36,000. The flow geometries for the three heat exchanger specimens were: circular tube, rectangular channel, and staggered pin fin with tapered pins. The specimens were heated radiatively at heat fluxes up to 77 W/sq cm. Correlations were developed for the isothermal friction factor as a function of Reynolds number, and for the Nusselt number as a function of Reynolds number and the ratio of wall temperature to fluid temperature. The specimen with the pin fin internal geometry had significantly better heat transfer than the other specimens, but it also had higher pressure drop. For certain conditions of helium flow and heating, the temperature more than doubled from the inlet to the outlet of the specimens, producing large changes in gas velocity, density, viscosity, and thermal conductivity. These changes in properties did not affect the correlations for friction factor and Nusselt number in turbulent flow.

  11. Optimization for entransy dissipation minimization in heat exchanger

    Institute of Scientific and Technical Information of China (English)

    XIA ShaoJun; CHEN LinGen; SUN FengRui

    2009-01-01

    A common of two-fluid flow heat exchanger, in which the heat transfer between high-and low-temperature sides obeys Newton's law [q∝△(T)], is studied in this paper. By taking entransy dissipation minimization as optimization objective, the optimum parameter distributions in the heat ex-changer are derived by using optimal control theory under the condition of fixed heat load. The condition corresponding to the minimum entransy dissipation is that corresponding to a constant heat flux density. Three kinds of heat exchangers, including parallel flow, condensing flow and counter-flow, are considered, and the results show that only the counter-flow heat exchanger can realize the entransy dissipation minimization in the heat transfer process. The obtained results for entransy dissipation minimization are also compared with those obtained for entropy generation minimization by numerical examples.

  12. HECDOR: a heat exchanger cost and design optimization routine

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S.E.; Madsen, W.W.

    1977-04-01

    An update is presented on a series of four computer codes developed by the Bureau of Mines. The programs were developed to evaluate design parameters and cost of heat exchangers. The major differences in three of the programs were concerned with pumping costs; the first (N = 1) used both fluids, the second (N = 2) used tube side fluid, and the third (N = 3) used shell side fluid as a base for prime parameters. All three assumed no change in phase. The fourth program (N = 4) assumed a change of phase on the shell side.

  13. Online performance assessment of heat exchanger using artificial neural networks

    Directory of Open Access Journals (Sweden)

    C. Ahilan, S. Kumanan, N. Sivakumaran

    2011-09-01

    Full Text Available Heat exchanger is a device in which heat is transferred from one medium to another across a solid surface. The performance of heat exchanger deteriorates with time due to fouling on the heat transfer surface. It is necessary to assess periodically the heat exchanger performance, in order to maintain at high efficiency level. Industries follow adopted practices to monitor but it is limited to some degree. Online monitoring has an advantage to understand and improve the heat exchanger performance. In this paper, online performance monitoring system for shell and tube heat exchanger is developed using artificial neural networks (ANNs. Experiments are conducted based on full factorial design of experiments to develop a model using the parameters such as temperatures and flow rates. ANN model for overall heat transfer coefficient of a design/ clean heat exchanger system is developed using a feed forward back propagation neural network and trained. The developed model is validated and tested by comparing the results with the experimental results. This model is used to assess the performance of heat exchanger with the real/fouled system. The performance degradation is expressed using fouling factor (FF, which is derived from the overall heat transfer coefficient of design system and real system. It supports the system to improve the performance by asset utilization, energy efficient and cost reduction interms of production loss.

  14. Simulation Studies on A Cross Flow Plate Fin Heat Exchanger

    OpenAIRE

    Thirumarimurugan, M.; Kannadasan, T.; E. Ramasamy

    2008-01-01

    Compact heat exchangers which were initially developed for the aerospace industries in the1940s have been considerably improved in the past few years. The main reasons for the goodperformance of compact heat exchangers are their special design which includes turbulent which inturn use high heat transfer coefficient and resists fouling, and maximum temperature driving forcebetween the hot and cold fluids. Numerous types use special enhancement techniques to achieve therequired heat transfer in...

  15. Fouling corrosion in aluminum heat exchangers

    Directory of Open Access Journals (Sweden)

    Su Jingxin

    2015-06-01

    Full Text Available Fouling deposits on aluminum heat exchanger reduce the heat transfer efficiency and cause corrosion to the apparatus. This study focuses on the corrosive behavior of aluminum coupons covered with a layer of artificial fouling in a humid atmosphere by their weight loss, Tafel plots, electrochemical impedance spectroscopy (EIS, and scanning electron microscope (SEM observations. The results reveal that chloride is one of the major elements found in the fouling which damages the passive film and initiates corrosion. The galvanic corrosion between the metal and the adjacent carbon particles accelerates the corrosive process. Furthermore, the black carbon favors the moisture uptake, and gives the dissolved oxygen greater chance to migrate through the fouling layer and form a continuous diffusive path. The corrosion rate decreasing over time is conformed to electrochemistry measurements and can be verified by Faraday’s law. The EIS results indicate that the mechanism of corrosion can be interpreted by the pitting corrosion evolution mechanism, and that pitting was observed on the coupons by SEM after corrosive exposure.

  16. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  17. Principle of uniformity of temperature difference field in heat exchanger

    Institute of Scientific and Technical Information of China (English)

    过增元; 李志信; 周森泉; 熊大曦

    1996-01-01

    A principle of uniformity of temperature difference field (TDF) in heat exchangers is advanced.It states that the more uniform the temperature difference field,the higher the effectiveness of heat exchanger for a given NTU and C,.Analytical and numerical results on the uniformity of TDF and effectiveness of thirteen types of heat exchangers show the validity of the uniformity principle.Its further verification is given by the asymptotical solution of TDF in terms of a recurrence formula of heat transfer area distribution.The analyses of entropy generation caused by heat transfer indicate that the uniformity principle is based on the second law of thermodynamics.Two ways,redistributing heat transfer areas and varying the connection between tubes,are presented for the improvement of the uniformity of TDF and the consequent increase of effectiveness for crossflow heat exchangers.

  18. Analyze single- and multiple-pass heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ratnam, R. (Univ. of Illinois, Urbana-Champagne, IL (United States)); Patwardhan, V.S. (National Chemical Lab., Poona (India))

    1993-06-01

    Heat exchanger calculations generally address the design problem (where for given process conditions and heat exchanger duty, a geometry is selected and the area is estimated) or they address the simulation problem (where for a given geometry, overall heat-transfer coefficient, and heat-transfer area, the heat duty and the outlet temperatures are determined). The latter is particularly useful when predicting the performance of heat exchanger networks. This article presents a novel graphical method that is suitable for design, simulation, and some operational studies, and is applicable to both single-pass and multipass heat exchangers. The main advantage of these graphs over earlier graphical representations is that they are uniformly applicable for a variety of problems. Although graphical techniques are useful for understanding underlying relationships, they are not suitable for computer implementation. However, these relationships can be computerized fairly easily.

  19. A Modified Entropy Generation Number for Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    This paper demonstrates the difference between the entropy generation number method proposed by Bejian and the method of entropy generation per unit amount of heat transferred in analyzing the ther-modynamic performance of heat exchangers,points out the reason for leading to the above difference.A modified entropy generation number for evaluating the irreversibility of heat exchangers is proposed which is in consistent with the entropy generation per unit amount of heat transferred in entropy generation analysis.The entropy generated by friction is also investigated.Results show that when the entropy generated by friction in heat exchangers in taken into account,there is a minimum total entropy generation number while the NTU and the ratio of heat capacity rates vary.The existence of this minimum is the prerequisite of heat exchanger optimization.

  20. Design Calculation of Heat Exchanger of Reflooding Test

    Institute of Scientific and Technical Information of China (English)

    DUAN; Ming-hui; LI; Xiang; LI; Wei-qing

    2013-01-01

    The heat exchanger is very important to the major loop of the reflooding test.It can cool the fluid in the loop,so that the fluid temperature can agree with the requirements of the major pump and the preheater.Herein,an evaporative exchanger with U-shape tubes is adopted.The heat transfer calculation

  1. Heat exchanger with helical bundles of finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Eyking, H.J.

    1975-01-23

    The invention applies to a heat exchanger with helical bundles of tubes consisting of finned tubes separated by spacers. The spacers are designed as closed holding cylinders with holding devices for the tube bundles, each ot which surrounds a bundle of tubes. This construction serves to simplify the production process and to enable the use of the heat exchanger at higher loads.

  2. Heat Exchanger Network Retrofit Design by Eliminating Cross Pinch Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Beabu K. Piagbo

    2013-01-01

    Full Text Available The rising cost of energy and environmental concerns are leading the petrochemical industry to search for methods of reducing energy consumption in refinery operations. To address this issue the research presented in this paper explores retrofit design for increasing the energy efficiency of Crude Distillation Units (CDUs. The case study presented uses monitored plant data from the preheat section of the CDU in a Refinery in the Niger Delta region of Nigeria, West Africa. Aspen Energy Analyser® software developed by Aspen Technologies is used in the analysis of this data. The research findings suggest that a retrofit design eliminating all cross pinch heat exchangers is the best retrofit design in terms of improving the energy performance of CDUs. There was an 84.62% and 92.31% reduction in the number of the heat exchangers used and the number of shells respectively. There were 16.57%, 2.74%, and 13.98% reductions in the operating cost, capital cost, and total cost respectively. 3.68% of the area became available for heat transfer. These gains were achieved despite a 12.27% increase in the heating demand. This design is therefore recommended to be applied after additional cost consideration.

  3. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  4. Thermal Analysis of Fin and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Ms N. B. Rairker

    2014-06-01

    Full Text Available This paper studied experimentally the effect of heat transfer of fin and tube type heat exchanger for different mass flow rate of fluid. The thermal stresses induced on fin and tube is also studied by ansys software at steady state condition by changing the width of fin and diameter of tube. Readings were taken experimentally by changing mass flow rate of fluid at respective temperatures. Comparison was done on theoretically and experimentally obtained results. It is observed that as the width of fin increases thermal stresses on fin also increases. Likewise for tube, by varying diameter of tube different values of stress are obtained. It is also observed at full valve position maximum thermal stresses are induced on fin as well as tube.

  5. Numerical analysis of heat exchange processes for the ground source heat pump system

    Science.gov (United States)

    Saito, H.; Muto, H.; Moritani, S.; Kohgo, Y.; Hamamoto, S.; Takemura, T.; Ohnishi, J.; Komatsu, T.

    2012-12-01

    Ground source heat pump systems (GSHP) use ground or groundwater as a heat source. They can achieve much higher coefficient of performance (COP) than conventional air source heat pump systems because the temperature of the ground is much more stable than that of the air. Heat energy in the ground is then viewed as one of the renewable energy sources. GSHP has been receiving great interests among countries in North America and Western Europe, as well as some developed countries in Asia because it can potentially reduce energy consumption and greenhouse gas emission. While GSHP can inject heat from the buildings to the ground for cooling during the summer, it can pump heat stored in the ground for heating during the winter. As some physical, chemical, and biological properties of the ground and groundwater are temperature dependent, running GSHP can eventually affect groundwater quality. The main objective of this project was to develop a model that allows predicting not only ground and groundwater temperatures but also changes in physical, chemical, and biological properties of ground and groundwater with GSHP under operations. This particular study aims at simulating heat exchange and transfer processes in the ground for a vertical-loop closed GSHP system. In the closed GSHP system, an anti-freezing solution is circulated inside the closed-loop tube, called U-tube, that is buried in the ground. Heat is then transferred to the anti-freezing solution in the U-tube by a heat exchanger. In this study we used HYDRUS to predict temperature of the anti-freezing solution, as well as that of the ground. HYDRUS allows one to simulate variably-saturated water flow and solute and heat transport in porous media numerically in two- and three-dimensional domains with great flexibility in defining boundary conditions. At first changes in anti-freezing solution temperatures measured were predicted in response to Thermal Response Test (TRT) conducted at our study site. Then, heat

  6. A concept of PWR using plate and shell heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Luciano Ondir; Andrade, Delvonei Alves de, E-mail: luciano.ondir@gmail.com, E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    In previous work it was verified the physical possibility of using plate and shell heat exchangers for steam generation in a PWR for merchant ships. This work studies the possibility of using GESMEX commercial of the shelf plate and shell heat exchanger of series XPS. It was found it is feasible for this type of heat exchanger to meet operational and accidental requirements for steam generation in PWR. Additionally, it is proposed an arrangement of such heat exchangers inside the reactor pressure vessel. Such arrangement may avoid ANSI/ANS51.1 nuclear class I requirements on those heat exchangers because they are contained in the reactor coolant pressure barrier and play no role in accidental scenarios. Additionally, those plates work under compression, preventing the risk of rupture. Being considered non-nuclear safety, having a modular architecture and working under compression may turn such architectural choice a must to meet safety objectives with improved economics. (author)

  7. The heat exchanger of small pellet boiler for phytomass

    Science.gov (United States)

    Mičieta, Jozef; Lenhard, Richard; Jandačka, Jozef

    2014-08-01

    Combustion of pellets from plant biomass (phytomass) causes various troubles. Main problem is slagging ash because of low melting temperature of ash from phytomass. This problem is possible to solve either improving energetic properties of phytomass by additives or modification of boiler construction. A small-scale boiler for phytomass is different in construction of heat exchanger and furnace mainly. We solve major problem - slagging ash, by decreasing combustion temperature via redesign of pellet burner and boiler body. Consequence of lower combustion temperature is also lower temperature gradient of combustion gas. It means that is necessary to design larger heat exchanging surface. We plane to use underfed burner, so we would utilize circle symmetry heat exchanger. Paper deals design of heat exchanger construction with help of CFD simulation. Our purpose is to keep uniform water flux and combustion gas flux in heat exchanger without zone of local overheating and excess cooling.

  8. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States); Childress, Amy [Univ. of Nevada, Reno, NV (United States); Hiibel, Sage [Univ. of Nevada, Reno, NV (United States); Kim, Kwang [Univ. of Nevada, Reno, NV (United States); Park, Chanwoo [Univ. of Nevada, Reno, NV (United States); Wirtz, Richard [Univ. of Nevada, Reno, NV (United States)

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) and single phase convective heat/mass transfer.

  9. Design of heat exchanger for Ericsson-Brayton piston engine.

    Science.gov (United States)

    Durcansky, Peter; Papucik, Stefan; Jandacka, Jozef; Holubcik, Michal; Nosek, Radovan

    2014-01-01

    Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy--energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.

  10. Design of Heat Exchanger for Ericsson-Brayton Piston Engine

    Directory of Open Access Journals (Sweden)

    Peter Durcansky

    2014-01-01

    Full Text Available Combined power generation or cogeneration is a highly effective technology that produces heat and electricity in one device more efficiently than separate production. Overall effectiveness is growing by use of combined technologies of energy extraction, taking heat from flue gases and coolants of machines. Another problem is the dependence of such devices on fossil fuels as fuel. For the combustion turbine is mostly used as fuel natural gas, kerosene and as fuel for heating power plants is mostly used coal. It is therefore necessary to seek for compensation today, which confirms the assumption in the future. At first glance, the obvious efforts are to restrict the use of largely oil and change the type of energy used in transport. Another significant change is the increase in renewable energy—energy that is produced from renewable sources. Among machines gaining energy by unconventional way belong mainly the steam engine, Stirling engine, and Ericsson engine. In these machines, the energy is obtained by external combustion and engine performs work in a medium that receives and transmits energy from combustion or flue gases indirectly. The paper deals with the principle of hot-air engines, and their use in combined heat and electricity production from biomass and with heat exchangers as primary energy transforming element.

  11. Modeling of Heat Exchange with Developed Nucleate Boiling on Tenons

    Directory of Open Access Journals (Sweden)

    A. V. Оvsiannik

    2007-01-01

    Full Text Available The paper proposes a thermal and physical model for heat exchange processes with developed nucleate boiling on the developed surfaces (tenons with various contours of heat transfer surface. Dependences for calculating convective heat exchange factor have been obtained on the basis of modeling representation. Investigations have shown that an intensity of convective heat exchange does not depend on tenon profile when boiling takes place on the tenons. The intensity is determined by operating conditions, thermal and physical properties of liquid, internal characteristics of boiling processes and geometrical characteristics of a tenon.

  12. 高温熔融盐壳管式相变换热器的传热特性%Heat Transfer Performances of High-Temperature Shell-Tube Heat Exchanger with Molten-Salt Phase Change Materials

    Institute of Scientific and Technical Information of China (English)

    左远志; 杨晓西; 丁静

    2011-01-01

    建立了高温熔融盐壳管式相变换热器的同心套管模型.采用Fluent软件,分析了在考虑相变区域自然对流条件下,熔融盐流体与相变材料的物性参数、内管进口温度与进口流向等因素对液相率与熔化时间的影响,并在熔融盐传热-蓄热实验平台上进行了试验研究.发现:考虑相变区域自然对流时,总的熔化时间减少16.2%;模拟得到的壳侧相变材料温度随时间的变化趋势与实验结果趋于一致.结果表明,可采用熔融盐相变区域特殊测点温度超过相变材料的熔点,并升至与内管流体进口温度相近时所耗费的时间作为壳管式相变换热器内相变材料完全熔化的判据.%In this paper, first, a concentric circular tube model for the shell-tube heat exchanger with molten-salt phase change materials (PCMs) is established. Then, the liquid fraction and the total melting time, which are affected by the thermal-physical parameters of the molten salt fluid and the PCMs as well as by the inlet velocity and the flow direction of the inner tube, are analyzed with Fluent, by taking into consideration the natural convection in the PCMs region. Finally, some experiments are carried out on a test platform of molten-salt heat transfer. The resuits show that the total melting time nearly decreases by 16. 2% considering the natural convection in the PCMs region, and that the simulated temperature of PCMs at the shell side varies with time,which has a tendency similar to that of the experimental results. Thus, it comes to the conclusion that, when the temperature of the specific measuring point in the PCMs region exceeds the melting point of PCMs and rises to the tube inlet temperature, the correspending time cost can be used as the criterion of melting ending of PCMs.

  13. Pressure drop considerations in the retrofit of heat exchanger networks

    Energy Technology Data Exchange (ETDEWEB)

    Polley, G.T.; Panjeh Shahi, M.H.; Jegede, F.O. (Manchester Univ. (UK). Inst. of Science and Technology)

    1990-05-01

    Process integration technology is now widely used in both energy saving retrofits and plant debottlenecks. However, in common with much of the developed technology, systematic consideration is only given to the thermal aspects of process design. This paper is a response to the above situation. The work started as an attempt to introduce flow considerations into retrofit targeting. It resulted in a general appreciation of how pressure drop should be used in networks. In some retrofit projects it is possible to reduce the amount of additional heat exchange area needed for debottlenecking (or, for energy saving) by making changes to the flow arrangement. (author).

  14. Principle of equipartition of entransy dissipation for heat exchanger design

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In the present work,a principle of equipartition of entransy dissipation(EoED) for heat exchanger design is established,which says that for a heat exchanger design with given heat duty and heat transfer area,the total entransy dissipation rate reaches the minimum when the local entransy dissipation rate is uniformly distributed along the heat exchanger.When the heat transfer coefficient is unfixed,the total entransy dissipation obtained by the EoED principle is less than that obtained by the principle of equipartition of temperature difference(EoTD).Furthermore,the exchanger effectiveness obtained by the EoED principle is larger than that obtained by the EoTD principle.When the heat transfer coefficient is fixed,the EoED principle is equivalent to the EoTD principle.We show that the equipartition of entropy production(EoEP) and EoED principles give rise to difference in entropy generation and entransy dissipation for a heat exchanger optimization design.The discrepancies are caused by distinct features of entropy production minimization and entransy dissipation minimization principles,the former is to optimize the design of heat exchanger by making the lost available work minimum,while the latter is not involved with heat-work conversion.It is found that the entropy generation number is not suitable for evaluating heat exchanger performance,since it directly depends on the inlet and outlet temperatures of working fluids.On the contrary,the entransy dissipation number is not directly related to the inlet and outlet temperatures of working fluids.Therefore,the entransy dissipation number is more suitable for serving as a criterion to evaluate heat exchanger performance.

  15. An experimental study of a pin-fin heat exchanger

    OpenAIRE

    Ramthun, David L.

    2003-01-01

    Approved for public release; distribution is unlimited A detailed experimental study has been carried out on the heat transfer and pressure drop characteristics of a compact heat exchanger with pin fins. A modular wind-tunnel with a rectangular cross-section duct-flow area was constructed that would accommodate the heat exchanger test section with varying pin designs. The flow in the tunnel was achieved through a suction-type blower, and a leading entrance length section was added to achie...

  16. Optimization of the Single Staggered Wire and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Arsana I Made

    2016-01-01

    Full Text Available Wire and tube heat exchanger consists of a coiled tube, and wire is welded on the two sides of it in normal direction of the tube. Generally,wire and tube heat exchanger uses inline wire arrangement between the two sides, whereas in this study, it used staggered wire arrangement that reduces the restriction of convection heat transfer. This study performed the optimization of single staggered wire and tube heat exchanger to increase the capacity and reduce the mass of the heat exchanger. Optimization was conducted with the Hooke-Jeeves method, which aims to optimize the geometry of the heat exchanger, especially on the diameter (dw and the distance between wires (pw. The model developed to present heat transfer correlations on single staggered wire and tube heat exchanger was valid. The maximum optimization factor obtained when the diameter wire was 0.9 mm and the distance between wires (pw was 11 mm with the fref value = 1.5837. It means that the optimized design only using mass of 59,10 % and could transfer heat about 98,5 % from the basis design.

  17. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  18. Exergy Transfer Characteristics on Low Temperature Heat Exchangers

    Science.gov (United States)

    Wu, S. Y.; Yuan, X. F.; Li, Y. R.; Peng, L.

    By analyzing exergy transfer process of the low temperature heat exchangers operating below the surrounding temperature, the concept of exergy transfer coefficient is put forward and the expressions which involving relevant variables for the exergy transfer coefficient, the heat transfer units number and the ratio of cold to hot fluids heat capacity rate, etc. are derived. Taking the parallel flow, counter flow and cross flow low temperature heat exchangers as examples, the numerical results of exergy transfer coefficient are given and the comparison of exergy transfer coefficient with heat transfer coefficient is analyzed.

  19. Investigation of Brazed Plate Heat Exchangers With Variable Chevron Angles

    Directory of Open Access Journals (Sweden)

    S. Muthuraman

    2013-08-01

    Full Text Available - Experiments to measure the condensation heat transfer coefficient and the pressure drop in brazed plate heat exchangers (BPHEs were performed with the refrigerants R410A and R22. Brazed plate heat exchangers with different chevron angles of 45°, 35°, and 20° were used. Varying the mass flux, the condensation temperature, and the vapor quality of the refrigerant, we measured the condensation heat transfer coefficient and the pressure drops. Both the heat transfer coefficient and the pressure drop increased proportionally with the mass flux and the vapor quality and inversely with the condensation temperature and the chevron angle.

  20. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  1. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  2. Effect of size sprinkled heat exchange surface on developing boiling

    Directory of Open Access Journals (Sweden)

    Petr Kracík

    2016-06-01

    Full Text Available This article presents research of sprinkled heat exchangers. This type of research has become rather topical in relation to sea water desalination. This process uses sprinkling of exchangers which rapidly separates vapour phase from a liquid phase. Applications help better utilize low-potential heat which is commonly wasted in utility systems. Low-potential heat may increase utilization of primary materials. Our ambition is to analyse and describe the whole sprinkled exchanger. Two heat exchangers were tested with a similar tube pitch: heat exchanger no. 1 had a four-tube bundle and heat exchanger no. 2 had eight-tube bundle. Efforts were made to maintain similar physical characteristics. They were tested at two flow rates (ca 0.07 and 0.11 kg s−1 m−1 and progress of boiling on the bundle was observed. Initial pressure was ca 10 kPa (abs at which no liquid was boiling at any part of the exchanger; the pressure was then lowered. Other input parameters were roughly similar for both flow rates. Temperature of heating water was ca 50°C at a constant flow rate of ca 7.2 L min−1. Results of our experiments provide optimum parameters for the given conditions for both tube bundles.

  3. Optimization of Transient Heat Exchanger Performance for Improved Energy Efficiency

    Science.gov (United States)

    Bran Anleu, Gabriela; Kavehpour, Pirouz; Lavine, Adrienne; Wirz, Richard

    2014-11-01

    Heat exchangers are used in a multitude of applications within systems for energy generation, energy conversion, or energy storage. Many of these systems (e.g. solar power plants) function under transient conditions, but the design of the heat exchangers is typically optimized assuming steady state conditions. There is a potential for significant energy savings if the transient behavior of the heat exchanger is taken into account in designing the heat exchanger by optimizing its operating conditions in relation to the transient behavior of the overall system. The physics of the transient behavior of a heat exchanger needs to be understood to provide design parameters for transient heat exchangers to deliver energy savings. A numerical model was used to determine the optimized mass flow rates thermal properties for a thermal energy storage system. The transient behavior is strongly linked to the dimensionless parameters relating fluid properties, the mass flow rates, and the temperature of the fluids at the inlet of each stream. Smart metals, or advanced heat exchanger surface geometries and methods of construction will be used to meet the three goals mentioned before: 1) energy and cost reduction, 2) size reduction, and 3) optimal performance for all modes of operation.

  4. Basic Principles for Calculating Heat Exchanger Characteristics under Conditions of Environmental Heat Losses

    Directory of Open Access Journals (Sweden)

    B. A. Bayrashevsky

    2007-01-01

    Full Text Available The paper considers two most characteristic models of heat exchange mechanisms in heaters with due account of environmental heat losses. As a result of executed investigations a list of corresponding engineering formulae has been developed which can be used for determination of heat engineering characteristics of heat exchangers and calculation of heating modes of their operation.Authors of the paper have elaborated a special «Heat Exchanger» programming file that corroborates reliability of the executed analysis and makes it possible to carry out a number of the required calculations.

  5. The predictive protective control of the heat exchanger

    Science.gov (United States)

    Nevriva, Pavel; Filipova, Blanka; Vilimec, Ladislav

    2016-06-01

    The paper deals with the predictive control applied to flexible cogeneration energy system FES. FES was designed and developed by the VITKOVICE POWER ENGINEERING joint-stock company and represents a new solution of decentralized cogeneration energy sources. In FES, the heating medium is flue gas generated by combustion of a solid fuel. The heated medium is power gas, which is a gas mixture of air and water steam. Power gas is superheated in the main heat exchanger and led to gas turbines. To protect the main heat exchanger against damage by overheating, the novel predictive protective control based on the mathematical model of exchanger was developed. The paper describes the principle, the design and the simulation of the predictive protective method applied to main heat exchanger of FES.

  6. Microchannel crossflow fluid heat exchanger and method for its fabrication

    Science.gov (United States)

    Swift, Gregory W.; Migliori, Albert; Wheatley, John C.

    1985-01-01

    A microchannel crossflow fluid heat exchanger and a method for its fabrication are disclosed. The heat exchanger is formed from a stack of thin metal sheets which are bonded together. The stack consists of alternating slotted and unslotted sheets. Each of the slotted sheets includes multiple parallel slots which form fluid flow channels when sandwiched between the unslotted sheets. Successive slotted sheets in the stack are rotated ninety degrees with respect to one another so as to form two sets of orthogonally extending fluid flow channels which are arranged in a crossflow configuration. The heat exchanger has a high surface to volume ratio, a small dead volume, a high heat transfer coefficient, and is suitable for use with fluids under high pressures. The heat exchanger has particular application in a Stirling engine that utilizes a liquid as the working substance.

  7. The influence of heat exchanger design on the synthesis of heat exchanger networks

    Directory of Open Access Journals (Sweden)

    Liporace F.S.

    2000-01-01

    Full Text Available Heat exchanger network (HEN synthesis has been traditionally performed without accounting for a more detailed unit design, which is important since the final HEN may require unfeasible units. Recently, publications on this matter have appeared, as well as softwares that simultaneously perform synthesis and units design. However, these publications do not clearly show the influence of the new added features on the final HEN. Hence, this work aims at showing that units' design can strongly affect the final HEN. Improvements on heat transfer area and total annual cost estimations, which influence the HEN structural evolution, are the main responsible for that. It is also shown the influence of some design bounds settings, which can indicate an unfeasible unit design and, therefore, the need for a new match search or the maintenance of a loop. An example reported in the literature is used to illustrate the discussion.

  8. Control strategies in a thermal oil - Molten salt heat exchanger

    Science.gov (United States)

    Roca, Lidia; Bonilla, Javier; Rodríguez-García, Margarita M.; Palenzuela, Patricia; de la Calle, Alberto; Valenzuela, Loreto

    2016-05-01

    This paper presents a preliminary control scheme for a molten salt - thermal oil heat exchanger. This controller regulates the molten salt mass flow rate to reach and maintain the desired thermal oil temperature at the outlet of the heat exchanger. The controller architecture has been tested using an object-oriented heat exchanger model that has been validated with data from a molten salt testing facility located at CIEMAT-PSA. Different simulations are presented with three different goals: i) to analyze the controller response in the presence of disturbances, ii) to demonstrate the benefits of designing a setpoint generator and iii) to show the controller potential against electricity price variations.

  9. Experimental investigation of thermal conductivity coefficient and heat exchange between fluidized bed and inclined exchange surface

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2009-06-01

    Full Text Available The paper presents experimental research of thermal conductivity coefficients of the siliceous sand bed fluidized by air and an experimental investigation of the particle size influence on the heat transfer coefficient between fluidized bed and inclined exchange surfaces. The measurements were performed for the specific fluidization velocity and sand particle diameters d p=0.3, 0.5, 0.9 mm. The industrial use of fluidized beds has been increasing rapidly in the past 20 years owing to their useful characteristics. One of the outstanding characteristics of a fluidized bed is that it tends to maintain a uniform temperature even with nonuniform heat release. On the basis of experimental research, the influence of the process's operational parameters on the obtained values of the bed's thermal conductivity has been analyzed. The results show direct dependence of thermal conductivity on the intensity of mixing, the degree of fluidization, and the size of particles. In the axial direction, the coefficients that have been treated have values a whole order higher than in the radial direction. Comparison of experimental research results with experimental results of other authors shows good agreement and the same tendency of thermal conductivity change. It is well known in the literature that the value of the heat transfer coefficient is the highest in the horizontal and the smallest in the vertical position of the heat exchange surface. Variation of heat transfer, depending on inclination angle is not examined in detail. The difference between the values of the relative heat transfer coefficient between vertical and horizontal heater position for all particle sizes reduces by approximately 15% with the increase of fluidization rate.

  10. NUMERICAL AND EXPERIMENTAL ANALYSIS OF UNSTEADY WORK OF U-SHAPE BOREHOLE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    S. A. Filatau

    2014-01-01

    Full Text Available Unsteady numerical model of borehole heat exchanger heat regime was developed. General numerical modeling results are borehole heat flux, heat carrier inlet temperature and average soil temperature distribution. Proposed model is based on solution of heat conduction equation in transient plane axially symmetric formulation with boundary conditions for borehole heat exchanger and undisturbed soil domain. Solution method is finite difference method. Numerical model is verified with comparisons numerical results and experimental data from developed laboratory installation for simulation unsteady heat regime of horizontal positioned U-shape ground heat exchanger in sand medium.Cooling of water is organized in ground exchanger in experiment. Experiment includes two steps. Thermal properties of sand is determined at the first stage. Thermal conductivity of sand is determined by stationary plate method, thermal diffusivity is determined by regular regime method using cylindrical calorimeter. Determined properties are used further in processing of experimental results at second step for analysis of transient work of ground heat exchanger. Results of four experiments are analyzed with different duration and time behavior of mass flow and heat carrier temperature. Divergences of experimental and simulated results for temperature of heat carrier changes in the range 0,5–1,8 %, for sand temperature in the range 1,0–2,3 %, for heat flux in the range 3,6–5,4 %. Experimental results can be used for validation of other simulation methods of ground heat exchangers. Presented numerical model can be used for analyzing of heat supply systems with heat pumps.

  11. Determination Global Heat Transfer Coefficient in Shell and Tube Type and Plates Heat Exchangers

    OpenAIRE

    Duarte, José Arnaldo

    2012-01-01

    The literature on heat exchangers is very wide because of numerous existing configurations, several types of fluids used, as well as the variety of applications. On the other hand, when we need to calculate a heat exchanger, a similar procedure is hardly found. Therefore, we propose this educational work in order to facilitate the calculation procedures, when the student or the professional in the area needs a script for its design. The heat exchanger is installed in the Laboratory of Thermal...

  12. CHANGES IN EXCHANGE RATE REGIMES

    Directory of Open Access Journals (Sweden)

    Carmen SANDU (TODERASCU

    2014-06-01

    Full Text Available The experience of recentyears showsthat it hasa fundamentalroleformation mechanismof the exchange rateinmacroeconomic stabilization. Global economiccrises, oil shockshave shownthe difficultyoffloatingsustainabilitybyparticipants in the system. EuropeanMonetary System, focused onconcertedfloatingcurrenciestoECU, was formedunder the conditionsin which somecountries have adoptedregional monetaryarrangements(EU countries, with suchbasescurrencyregimeshybridthat combinesspecific mechanismsto those offixedratefree floating. This paperaims to demonstratethe important role thatithasthe choice ofexchange rateregimeas abasic elementin thefoundationofmacroeconomic stabilizationinstruments. Consideredan expression of thestateof the domestic economyandinternationalcompetitiveness, the exchange rate is determined bya complex set ofexternal factorsorinternalstabilityisa prerequisite forthe crisis.

  13. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  14. Experimental determination of correlations for mean heat transfer coefficients in plate fin and tube heat exchangers

    Science.gov (United States)

    Taler, Dawid

    2012-09-01

    This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.

  15. EVALUASI KINERJA HEAT EXCHANGER DENGAN METODE FOULING F

    Directory of Open Access Journals (Sweden)

    Bambang Setyoko

    2012-02-01

    Full Text Available The performance of heat exchangers usually deteriorates with time as a result of accumulation of depositson heat transfer surfaces. The layer of deposits represents additional resistance to heat transfer and causesthe rate of heat transfer in a heat exchanger to decrease. The net effect of these accumulations on heattransfer is represented by a fouling factor Rf , which is a measure of the thermal resistance introduced byfouling.In this case, the type of fouling is the precipitation of solid deposits in a fluid on the heat transfer surface.The mineral deposits forming on the inner and the outer surfaces of fine tubes in the heat exchanger. Thefouling factor is increases with time as the solid deposits build up on the heat exchanger surface. Foulingincreases with increasing temperature and decreasing velocity.In this research, we obtain the coefisien clean overal 5,93 BTU/h.ft2.oF, Dirt factor 0,004 BTU/h.ft2 0F,Pressure drope in tube 2,84 . 10-3 Psi and pressure drope in shell 4,93 . 10-4 Psi.This result are less thanthe standard of parameter. Its means this Heat exchanger still clean relativity and can operate continousslywithout cleaning.

  16. Low Cost Polymer heat Exchangers for Condensing Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Thomas [Brookhaven National Lab. (BNL), Upton, NY (United States); Trojanowski, Rebecca [Brookhaven National Lab. (BNL), Upton, NY (United States); Wei, George [Brookhaven National Lab. (BNL), Upton, NY (United States); Worek, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-09-30

    Work in this project sought to develop a suitable design for a low cost, corrosion resistant heat exchanger as part of a high efficiency condensing boiler. Based upon the design parameters and cost analysis several geometries and material options were explored. The project also quantified and demonstrated the durability of the selected polymer/filler composite under expected operating conditions. The core material idea included a polymer matrix with fillers for thermal conductivity improvement. While the work focused on conventional heating oil, this concept could also be applicable to natural gas, low sulfur heating oil, and biodiesel- although these are considered to be less challenging environments. An extruded polymer composite heat exchanger was designed, built, and tested during this project, demonstrating technical feasibility of this corrosion-resistant material approach. In such flue gas-to-air heat exchangers, the controlling resistance to heat transfer is in the gas-side convective layer and not in the tube material. For this reason, the lower thermal conductivity polymer composite heat exchanger can achieve overall heat transfer performance comparable to a metal heat exchanger. However, with the polymer composite, the surface temperature on the gas side will be higher, leading to a lower water vapor condensation rate.

  17. Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    2015-01-01

    In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM......). For the purposes here, only gas flowing over the fin side is simulated assuming constant inner tube wall temperature. The study couples conjugate heat transfer mechanism with turbulent flow in order to describe the temperature and velocity profile. In addition, performance characteristics of the heat exchanger...... design in terms of heat transfer and pressure loss are determined by parameters such as overall heat transfer coefficient, Colburn j-factor, flow resistance factor, and efficiency index. The model provides useful insights necessary for optimization of heat exchanger design....

  18. Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

    Directory of Open Access Journals (Sweden)

    M. V. Ghori

    2012-08-01

    Full Text Available Three-dimensional CFD simulations are carried out to investigate heat transfer and fluid flow characteristics of two-row plain Tube and Fin heat exchanger using FLUENT software. Heat transfer and pressure drop characteristics of the heat exchanger are investigated for Reynolds numbers ranging from 330 to 7000. Model geometry is created and meshed by using GAMBIT software. Fluid flow and heat transfer are simulated and results compared using both laminar and turbulent flow models k-, and SST k-omega, with steady-state solvers to calculate pressure drop, flow, and temperature fields. Model validation is carried out by comparing the simulated value friction factor f and Colburn factor j to experimental results investigate by Wang. Reasonable agreement is found between the simulations and experimental data, and the fluent software has been sufficient for simulating the flow fields in tube-fin heat exchangers.

  19. Analysis of sensible heat exchanges from a thermal manikin.

    Science.gov (United States)

    Quintela, Divo; Gaspar, Adélio; Borges, Carlos

    2004-09-01

    The present work is dedicated to the analysis of dry heat exchanges as measured by a thermal manikin placed in still air. We believe that the understanding of some fundamental aspects governing fluid flow and heat transfer around three-dimensional bodies such as human beings deserves appropriate attention. This should be of great significance for improving physiological models concerned with thermal exposures. The potential interest of such work can be directed towards quite distinct targets such as working conditions, sports, the military, or healthcare personnel and patients. In the present study, we made use of a climate chamber and an articulated thermal manikin of the Pernille type, with 16 body parts. The most common occidental postures (standing, sitting and lying) were studied. In order to separate heat losses due to radiation and convection, the radiative heat losses of the manikin were significantly reduced by means of a shiny aluminium coating, which was carefully applied to the artificial skin. The air temperature within the test chamber was varied between 13 degrees C and 29 degrees C. The corresponding mean differences between the skin and the operative temperatures changed from 3.8 degrees C up to 15.8 degrees C. The whole-body heat transfer coefficients by radiation and convection for both standing and sitting postures are in good agreement with those in the published literature. The lying posture appears to be more efficient for losing heat by convection. This is confirmed when the heat losses of each individual part are considered. The proposed correlations for the whole body suggest that natural convection is mainly laminar.

  20. An Alternative Algorithm for Optimal Design of Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Seyyed Morteza Javid

    2015-02-01

    Full Text Available Due to the complex geometry of plate heat exchangers and thus a large number of variables affecting the performance of the exchangers, the design of these types of exchangers is quiet difficult. However, unlike the shell and tube heat exchangers which contain available data of design procedures, the design of plate heat exchanger is a monopoly of some certain manufacturing companies that make the problem even worse. In this paper, the objective is to minimize the number of plates in plate heat exchanger; in order to achieve that, a simple and yet efficient mathematical model is introduced for determination of the pressure drop and heat capacity of a plate heat exchanger in single- and multipass state and also a program was defined for determination of optimal solution based on this simple mathematical model for given operational constraints and plate type. In the end, the optimal solution will be compared to the answer of CAS200 commercial software and also it is shown that the effect of the start and end plates and transverse distribution in optimal solution is considerable.

  1. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  2. Process Heat Exchanger Options for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-06-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  3. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  4. Heat pipe heat exchanger and its potential to energy recovery in the tropics

    Directory of Open Access Journals (Sweden)

    Yau Yat H.

    2015-01-01

    Full Text Available The heat recovery by the heat pipe heat exchangers was studied in the tropics. Heat pipe heat exchangers with two, four, six, and eight numbers of rows were examined for this purpose. The coil face velocity was set at 2 m/s and the temperature of return air was kept at 24°C in this study. The performance of the heat pipe heat exchangers was recorded during the one week of operation (168 hours to examine the performance data. Then, the collected data from the one week of operation were used to estimate the amount of energy recovered by the heat pipe heat exchangers annually. The effect of the inside design temperature and the coil face velocity on the energy recovery for a typical heat pipe heat exchanger was also investigated. In addition, heat pipe heat exchangers were simulated based on the effectiveness-NTU method, and their theoretical values for the thermal performance were compared with the experimental results.

  5. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT), supported by Hamilton Sundstrand, proposes to develop a heat pipe heat exchanger that is low mass and provides two levels...

  6. Heat Pipe Heat Exchangers with Double Isolation Layers for Prevention of Interpath Leakage Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned spacecraft heat rejection systems use two heat exchangers and an intermediate fluid loop to provide isolation between the crew compartment air and the...

  7. On Effectiveness and Entropy Generatioin in Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    XiongDaxi; LiZhixin; 等

    1996-01-01

    Some conceptual problems were discussed in the present paper,Firstly,according to the physical meaning of effectiveness,a new expression of effectiveness was developed by using an ideal heat exchnager model and temperature histogram method,in which the non-uniform inlet temperature profile was considered.Secondly,the relation of entropy generation number to effectiveness was studied,it was pointed out that both of them could express the perfect degree of a heat exchanger to the second thermodynamic law.Finally,to describe both quantity and quality of heat transferred in a heat exchanger a criterion named as comperhensive thermal performance coefficient (CTPE) was presented.

  8. Nosehouse: heat-conserving ventilators based on nasal counterflow exchangers.

    Science.gov (United States)

    Vogel, Steven

    2009-12-01

    Small birds and mammals commonly minimize respiratory heat loss with reciprocating counterflow exchangers in their nasal passageways. These animals extract heat from the air in an exhalation to warm those passageways and then use that heat to warm the subsequent inhalation. Although the near-constant volume of buildings precludes direct application of the device, a pair of such exchangers located remotely from each other circumvents that problem. A very simple and crudely constructed small-scale physical model of the device worked well enough as a heat conserver to suggest utility as a ventilator for buildings.

  9. Various methods to improve heat transfer in exchangers

    Directory of Open Access Journals (Sweden)

    Pavel Zitek

    2015-01-01

    Full Text Available The University of West Bohemia in Pilsen (Department of Power System Engineering is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors. For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production. In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  10. Various methods to improve heat transfer in exchangers

    Science.gov (United States)

    Pavel, Zitek; Vaclav, Valenta

    2015-05-01

    The University of West Bohemia in Pilsen (Department of Power System Engineering) is working on the selection of effective heat exchangers. Conventional shell and tube heat exchangers use simple segmental baffles. It can be replaced by helical baffles, which increase the heat transfer efficiency and reduce pressure losses. Their usage is demonstrated in the primary circuit of IV. generation MSR (Molten Salt Reactors). For high-temperature reactors we consider the use of compact desk heat exchangers, which are small, which allows the integral configuration of reactor. We design them from graphite composites, which allow up to 1000°C and are usable as exchangers: salt-salt or salt-acid (e.g. for the hydrogen production). In the paper there are shown thermo-physical properties of salts, material properties and principles of calculations.

  11. High Effectiveness Heat Exchanger for Cryogenic Refrigerators Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an innovative high performance cryogenic heat exchanger manufactured of titanium by photo-etching and diffusion bonding. This is a parallel plate design...

  12. 1-MWE heat exchangers for OTEC. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Sprouse, A.M.

    1980-06-19

    The design of a 1 MWe OTEC heat exchanger is documented, including the designs of the evaporator and associated systems, condenser, instrumentation, and materials for corrosion/erosion control and fabrication processes. (LEW)

  13. Heat exchanger identification by using iterative fuzzy observers

    Science.gov (United States)

    Lalot, Sylvain; Guðmundsson, Oddgeir; Pálsson, Halldór; Pálsson, Ólafur Pétur

    2016-05-01

    The principle of fuzzy observers is first illustrated on a general example: the determination of the two parameters of second order systems using a step response. The set of equations describing the system are presented and it is shown that accurate results are obtained, even for a high level of noise. The heat exchanger model is then introduced. It is based on a spatial division of a counter flow heat exchanger into multiple sections. The governing equations are rewritten as a state space representation. The number of sections needed to get accurate results is determined by comparing estimated values to experimental data. Based on the mean value of the root mean squared errors, it is shown that 80 sections is an appropriate value for this heat exchanger. It is then shown that the iterative fuzzy observers can be used to determine the main parameters of the counter flow heat exchanger, i.e. the convection heat transfer coefficients, when in transient state. The final values of these parameters are heat transfer coefficient corresponds to a ±0.5 % variation of the estimated overall heat transfer coefficient. This study also shows that the fuzzy observers are equally efficient when the heat exchanger is in steady state.

  14. Analysis of induced temperature anomalies along borehole heat exchangers

    Science.gov (United States)

    Lindner, Michael; Schelenz, Sophie; Stollberg, Reiner; Gossel, Wolfgang; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    Over the last years, the thermal use of the shallow subsurface for heat generation, cooling, and thermal energy storage has increased. However, the injection or extraction of heat potentially drives changes in the subsurface temperature regime; especially in urban areas. The presented case study investigates the intensive use of borehole heat exchangers (BHE) and their potential thermal impacts on subsurface temperatures, as well as thermal interactions between individual BHE's for a residential neighborhood in Cologne, Germany. Based on on-site subsurface parameterization, a 3D subsurface model was designed, using the finite element software FEFLOW (DHI WASY). The model contains five BHE, extracting 8.2 kW, with a maximum BHE depth of 38 m, whereby the thickness of the unsaturated zone is 22 m. The simulated time span is 10 years. This study focusses on two questions: How will different BHE arrangements vary in terms of temperature plume formation and potential system interaction and what is the influence of seasonal subsurface heat storage on soil and ground water temperatures.

  15. Analysis of the Technological Parameters of the Heat Exchanger in the Heating Pipe

    Directory of Open Access Journals (Sweden)

    Knyazev Vladimir

    2017-01-01

    Full Text Available The main purpose of this article is to analyze the selecting of technological parameters for the heat exchanger to improve the heat transfer and reduce the noise during operation in the heating pipe, which is used in the different systems of the planes and helicopters. In result of this study, the best technical parameters are found, considering different variations of deformation cutting heat exchanger pipes.

  16. Oil Circulation Effects on Evaporation Heat Transfer in Brazed Plate Heat Exchanger using R134A

    OpenAIRE

    Jang, Jaekyoo; Chang, Youngsoo; Kang, Byungha

    2012-01-01

    Experimental study was performed for oil circulation effects on evaporation heat transfer in the brazed type plate heat exchangers using R134A. In this study, distribution device was installed to ensure uniform flow distribution in the refrigerant flow passage, which enhances heat transfer performance of plate type heat exchanger. Tests were conducted for three evaporation temperature; 33℃, 37℃, and 41℃ and several oil circulation conditions. The nominal conditions of refrigerant are as follo...

  17. Experimental and Numerical Comparison of Two Borehole Heat Exchangers

    DEFF Research Database (Denmark)

    Alberdi Pagola, Maria; Poulsen, Søren Erbs

    2014-01-01

    This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S.......This report outlines key results from a comparative study of two different pipe borehole heat exchanger (BHE) configurations. The work was carried out by VIA University College and in collaboration with GM Plast A/S....

  18. COMPARATIVEANALYSIS OF ADVANCED CONTROLLERS IN A HEAT EXCHANGER

    OpenAIRE

    P. Sivakumar

    2013-01-01

    Temperature control of the shell and tube heat exchanger is characteristics of nonlinear, time varying and time lag. Since the temperature control with conventional PID controller cannot meet a wide range of precision temperature control requirement, we design temperature control system of the shell and tube heat exchanger by combining fuzzy and PID control methods in this paper. The simulation and experiments are carried out; making a comparison with conventional PID control showing that fuz...

  19. Fin Distance Effect at Tube-Fin Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Frana K.

    2013-04-01

    Full Text Available Article deals with numerical simulation of the Tube-Fin heat exchanger. Several distances between fins are examined with intence of increasing the cooling output of the heat exchanger. Geometrical model consists of set of 2 fins with input and output area. Calculations covers the area of the gap from 2.25 mm to 4 mm with new fin geometry. For the numerical silumation was used software Ansys Fluent.

  20. Fin Distance Effect at Tube-Fin Heat Exchanger

    Science.gov (United States)

    Lemfeld, F.; Muller, M.; Frana, K.

    2013-04-01

    Article deals with numerical simulation of the Tube-Fin heat exchanger. Several distances between fins are examined with intence of increasing the cooling output of the heat exchanger. Geometrical model consists of set of 2 fins with input and output area. Calculations covers the area of the gap from 2.25 mm to 4 mm with new fin geometry. For the numerical silumation was used software Ansys Fluent.

  1. Thermal performance modeling of cross-flow heat exchangers

    CERN Document Server

    Cabezas-Gómez, Luben; Saíz-Jabardo, José Maria

    2014-01-01

    This monograph introduces a numerical computational methodology for thermal performance modeling of cross-flow heat exchangers, with applications in chemical, refrigeration and automobile industries. This methodology allows obtaining effectiveness-number of transfer units (e-NTU) data and has been used for simulating several standard and complex flow arrangements configurations of cross-flow heat exchangers. Simulated results have been validated through comparisons with results from available exact and approximate analytical solutions. Very accurate results have been obtained over wide ranges

  2. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    Science.gov (United States)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  3. A fundamentally new approach to air-cooled heat exchangers.

    Energy Technology Data Exchange (ETDEWEB)

    Koplow, Jeffrey P.

    2010-01-01

    We describe breakthrough results obtained in a feasibility study of a fundamentally new architecture for air-cooled heat exchangers. A longstanding but largely unrealized opportunity in energy efficiency concerns the performance of air-cooled heat exchangers used in air conditioners, heat pumps, and refrigeration equipment. In the case of residential air conditioners, for example, the typical performance of the air cooled heat exchangers used for condensers and evaporators is at best marginal from the standpoint the of achieving maximum the possible coefficient of performance (COP). If by some means it were possible to reduce the thermal resistance of these heat exchangers to a negligible level, a typical energy savings of order 30% could be immediately realized. It has long been known that a several-fold increase in heat exchanger size, in conjunction with the use of much higher volumetric flow rates, provides a straight-forward path to this goal but is not practical from the standpoint of real world applications. The tension in the market place between the need for energy efficiency and logistical considerations such as equipment size, cost and operating noise has resulted in a compromise that is far from ideal. This is the reason that a typical residential air conditioner exhibits significant sensitivity to reductions in fan speed and/or fouling of the heat exchanger surface. The prevailing wisdom is that little can be done to improve this situation; the 'fan-plus-finned-heat-sink' heat exchanger architecture used throughout the energy sector represents an extremely mature technology for which there is little opportunity for further optimization. But the fact remains that conventional fan-plus-finned-heat-sink technology simply doesn't work that well. Their primary physical limitation to performance (i.e. low thermal resistance) is the boundary layer of motionless air that adheres to and envelops all surfaces of the heat exchanger. Within this

  4. Brazed aluminum, Plate-fin heat exchangers for OTEC

    Energy Technology Data Exchange (ETDEWEB)

    Foust, H.D.

    1980-12-01

    Brazed aluminum plate-fin heat exchangers have been available for special applications for over thirty years. The performance, compactness, versatility, and low cost of these heat exchangers has been unequaled by other heat exchanger configuration. The application of brazed aluminum has been highly limited because of necessary restrictions for clean non-corrosive atmospheres. Air and gas separation have provided ideal conditions for accepting brazed aluminum and in turn have benefited by the salient features of these plate-fin heat exchangers. In fact, brazed aluminum and cryogenic gas and air separation have become nearly synonymous. Brazed aluminum in its historic form could not be considered for a seawater atmosphere. However, technology presents a new look of significant importance to OTEC in terms of compactness and cost. The significant technological variation made was to include one-piece hollow extensions for the seawater passages. Crevice corrosion sites are thereby entirely eliminated and pitting corrosion attack will be controlled by an integral and sacrificial layer of a zinc-aluminum alloy. This paper on brazed aluminum plate-fin heat exchangers for OTEC will aquaint the reader with the state-of-art and variations suggested to qualify this form of aluminum for seawater use. In order to verify the desirable cost potential for OTEC, Trane teamed with Westinghouse to perform an OTEC system analysis with this heat exchanger. These results are very promising and reported in detail elsewhere.

  5. Heat transfer, condensation and fog formation in crossflow plastic heat exchangers

    NARCIS (Netherlands)

    Brouwers, H.J.H.; Geld, van der C.W.M.

    1996-01-01

    In this paper heat transfer of air-water-vapour mixtures in plastic crossflow heat exchangers is studied theoretically and experimentally. First, a model for heat transfer without condensation is derived, resulting in a set of classical differential equations. Subsequently, heat transfer with wall c

  6. Assessment of ASME code examinations on regenerative, letdown and residual heat removal heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Gosselin, Stephen R.; Cumblidge, Stephen E.; Anderson, Michael T.; Simonen, Fredric A.; Tinsley, G. A.; Lydell, B.; Doctor, Steven R.

    2005-07-01

    Inservice inspection requirements for pressure retaining welds in the regenerative, letdown, and residual heat removal heat exchangers are prescribed in Section XI Articles IWB and IWC of the ASME Boiler and Pressure Vessel Code. Accordingly, volumetric and/or surface examinations are performed on heat exchanger shell, head, nozzle-to-head, and nozzle-to-shell welds. Inspection difficulties associated with the implementation of these Code-required examinations have forced operating nuclear power plants to seek relief from the U.S. Nuclear Regulatory Commission. The nature of these relief requests are generally concerned with metallurgical, geometry, accessibility, and radiation burden. Over 60% of licensee requests to the NRC identify significant radiation exposure burden as the principle reason for relief from the ASME Code examinations on regenerative heat exchangers. For the residual heat removal heat exchangers, 90% of the relief requests are associated with geometry and accessibility concerns. Pacific Northwest National Laboratory was funded by the NRC Office of Nuclear Regulatory Research to review current practice with regard to volumetric and/or surface examinations of shell welds of letdown heat exchangers regenerative heat exchangers and residual (decay) heat removal heat exchangers Design, operating, common preventative maintenance practices, and potential degradation mechanisms are reviewed. A detailed survey of domestic and international PWR-specific operating experience was performed to identify pressure boundary failures (or lack of failures) in each heat exchanger type and NSSS design. The service data survey was based on the PIPExp® database and covers PWR plants worldwide for the period 1970-2004. Finally a risk assessment of the current ASME Code inspection requirements for residual heat removal, letdown, and regenerative heat exchangers is performed. The results are then reviewed to discuss the examinations relative to plant safety and

  7. Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating

    Institute of Scientific and Technical Information of China (English)

    Cheng Xue-Tao; Liang Xin-Gang

    2013-01-01

    Heat exchangers are widely used in industry,and analyses and optimizations of the performance of heat exchangers are important topics.In this paper,we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process.With this concept,a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed.It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger,while the minimizations of entropy generation rate,entropy generation numbers,and revised entropy generation number do not always.

  8. Heat exchanger selection and design analyses for metal hydride heat pump systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Voskuilen, Tyler G.; Waters, Essene L.

    2016-01-01

    This study presents a design analysis for the development of highly efficient heat exchangers within stationary metal hydride heat pumps. The design constraints and selected performance criteria are applied to three representative heat exchangers. The proposed thermal model can be applied to select...... the most efficient heat exchanger design and provides outcomes generally valid in a pre-design stage. Heat transfer effectiveness is the principal performance parameter guiding the selection analysis, the results of which appear to be mildly (up to 13%) affected by the specific Nusselt correlation used....... The thermo-physical properties of the heat transfer medium and geometrical parameters are varied in the sensitivity analysis, suggesting that the length of independent tubes is the physical parameter that influences the performance of the heat exchangers the most. The practical operative regions for each...

  9. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; WANG YingShuang; HUANG SuYi

    2009-01-01

    ormer is superior to that of the latter.Compared with rod baffle heat exchanger,heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop,especially under the high Reynolds numbers.

  10. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Directory of Open Access Journals (Sweden)

    Mičieta Jozef

    2016-01-01

    Full Text Available Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  11. Optimization principle of operating parameters of heat exchanger by using CFD simulation

    Science.gov (United States)

    Mičieta, Jozef; Jiří, Vondál; Jandačka, Jozef; Lenhard, Richard

    2016-03-01

    Design of effective heat transfer devices and minimizing costs are desired sections in industry and they are important for both engineers and users due to the wide-scale use of heat exchangers. Traditional approach to design is based on iterative process in which is gradually changed design parameters, until a satisfactory solution is achieved. The design process of the heat exchanger is very dependent on the experience of the engineer, thereby the use of computational software is a major advantage in view of time. Determination of operating parameters of the heat exchanger and the subsequent estimation of operating costs have a major impact on the expected profitability of the device. There are on the one hand the material and production costs, which are immediately reflected in the cost of device. But on the other hand, there are somewhat hidden costs in view of economic operation of the heat exchanger. The economic balance of operation significantly affects the technical solution and accompanies the design of the heat exchanger since its inception. Therefore, there is important not underestimate the choice of operating parameters. The article describes an optimization procedure for choice of cost-effective operational parameters for a simple double pipe heat exchanger by using CFD software and the subsequent proposal to modify its design for more economical operation.

  12. Sprinkled Heat Exchangers in Evaporation Mode

    Directory of Open Access Journals (Sweden)

    Pospisil J.

    2013-04-01

    Full Text Available The paper presents research on the heat transfer at sprinkled tube bundles situated in a test chamber at atmospheric pressure and low-pressure. Dynamic effects of physical quantities influencing the heat transfer coefficient during boiling are examined experimentally. Experimental results were achieved by means of balance measuring using thermocouple probes and by analysis of thermal diagrams created during operation periods.

  13. CFD as a Design Tool for a Concentric Heat Exchanger

    NARCIS (Netherlands)

    Oosterhuis, J.P.; Bühler, S.; wilcox, D; Meer, van der T.H.

    2012-01-01

    A concentric gas-to-gas heat exchanger is designed for application as a recuperator in the domestic boiler industry. The recuperator recovers heat from the exhaust gases of a combustion process to preheat the ingoing gaseous fuel mixture resulting in increased fuel efficiency. This applied study sho

  14. A structured approach to heat exchanger network retrofit design

    NARCIS (Netherlands)

    Van Reisen, J.L.B.

    2008-01-01

    Process plants have high energy consumption. Much energy can be saved by a proper design of the heat exchanger network, which contains the main heat transferring equipment of the plant. Existing plants can often be made more energy-efficient by a retrofit: the (physical) modification of the equipmen

  15. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  16. Heat Transfer Analysis of Passive Residual Heat Removal Heat Exchanger under Natural Convection Condition in Tank

    Directory of Open Access Journals (Sweden)

    Qiming Men

    2014-01-01

    Full Text Available Aiming at the heat transfer calculation of the Passive Residual Heat Removal Heat Exchanger (PRHR HX, experiments on the heat transfer of C-shaped tube immerged in a water tank were performed. Comparisons of different correlation in literatures with the experimental data were carried out. It can be concluded that the Dittus-Boelter correlation provides a best-estimate fit with the experimental results. The average error is about 0.35%. For the tube outside, the McAdams correlations for both horizontal and vertical regions are best-estimated. The average errors are about 0.55% for horizontal region and about 3.28% for vertical region. The tank mixing characteristics were also investigated in present work. It can be concluded that the tank fluid rose gradually which leads to a thermal stratification phenomenon.

  17. Performance Prediction of Cross-finned Tube Heat Exchangers

    Science.gov (United States)

    Kondou, Chieko; Senshu, Takao; Matsumura, Kenji; Oguni, Kensaku

    An important issue in heat pumps is increasing their efficiency, in order to achieve a significant optimization for heat exchangers. Techniques to simulate the flow length averaged heat transfer coefficient and static pressure drop through the flow passage are presented in this paper. In addition, an analytical evaluation of the cost reduction for a cross-fined tube heat exchanger of outdoor heat pump units is instantiated. The dimensionless factors, Colburn's factor j and Fanning's friction factor f, express the heat transfer performance and frictional characteristics, as a function of Reynolds number. These depend on slit possession, an original parameter used in this study. Further, this paper describes an approximate expression of the fin efficiency, which can be used for to survey the fin parameters. The above three concepts were necessary to forecast the performance on the airside. In the results, the cost minimum point was obtained with a comparable performance.

  18. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  19. Temperature Approach Optimization in the Double Pipe Heat Exchanger with Groove

    Directory of Open Access Journals (Sweden)

    Sunu Putu Wijaya

    2016-01-01

    Full Text Available Heat transfer in double pipe heat exchanger with circumference-rectangular grooves has been investigated experimentally. The volume flowrate of cold and hot water were varied to determine its influence on the approach temperature of the outlet terminals. In this experimental design, the grooves were incised in annular room that is placed on the outside surface of the inner pipe. The shell diameter is 38.1 mm and tube diameter 19.4 mm with 1 m length, which is made of aluminum. The flow pattern of the two fluids in the heat exchanger is a parallel flow. The working fluid is water with volume flow rate of 27.1, 23.8 and 19.8 l/minute. The temperature of water on the inlet terminals are 50±1°C for hot stream and 30±1°C for cold stream. Temperature measurements conducted on each terminal of the inlet and outlet heat exchanger. The results showed that the grooves induced the approach temperature. The change of the approach temperature from the grooves compared to that of without grooves decreased by 37.9%. This phenomenon indicates an increase in heat transfer process and performance of the heat exchanger. Groove improves the heat surface area of the inner pipe, increasing the momentum transfer and in the other hand, reducing the weight of heat exchangers itself.

  20. Characteristics of Vertical Mantle Heat Exchangers for Solar Water Heaters

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, M.

    1999-01-01

    - The flow structure in vertical mantle heat exchangers was investigated using a full-scale tank designed to facilitate flow visualisation. The flow structure and velocities in the mantle were measured using a particle Image Velocimetry (PIV) system. A CFD simulation model of vertical mantle heat...... exchangers was also developed for detailed evaluation of the heat flux distribution over the mantle surface. Both the experimental and simulation results indicate that distribution of the flow around the mantle gap is governed by buoyancy driven recirculation in the mantle. The operation of the mantle...

  1. Finned tubes for heat exchangers: Characterization and performance simulation

    Energy Technology Data Exchange (ETDEWEB)

    Armand, J.-L.; Molle, N. (Centre Tecnique des Industries Aerauliques et Thermiques (CETIAT), 75 Paris (France))

    1992-06-01

    Relevant to air conditioning applications, the state-of-the-art of finned tube heat exchanger design is reviewed. The review covers the key design, performance and operation characteristics, as well as, principal heat transfer correlations for exchangers adopting 'dry' (without condensation) and 'wet' operation. External side heat transfer and pressure drop calculation methods are established for the characterization of external surfaces. For internal surfaces, correlations are given for two-phase flow and pressure drop. Reference is made to the NTU and CANUT simulation codes for the determination of optimum finned tube geometries for standard and particular operating conditions.

  2. Optimization of Heat Exchangers for Intercooled Recuperated Aero Engines

    Directory of Open Access Journals (Sweden)

    Dimitrios Misirlis

    2017-03-01

    Full Text Available In the framework of the European research project LEMCOTEC, a section was devoted to the further optimization of the recuperation system of the Intercooled Recuperated Aero engine (IRA engine concept, of MTU Aero Engines AG. This concept is based on an advanced thermodynamic cycle combining both intercooling and recuperation. The present work is focused only on the recuperation process. This is carried out through a system of heat exchangers mounted inside the hot-gas exhaust nozzle, providing fuel economy and reduced pollutant emissions. The optimization of the recuperation system was performed using computational fluid dynamics (CFD computations, experimental measurements and thermodynamic cycle analysis for a wide range of engine operating conditions. A customized numerical tool was developed based on an advanced porosity model approach. The heat exchangers were modeled as porous media of predefined heat transfer and pressure loss behaviour and could also incorporate major and critical heat exchanger design decisions in the CFD computations. The optimization resulted in two completely new innovative heat exchanger concepts, named as CORN (COnical Recuperative Nozzle and STARTREC (STraight AnnulaR Thermal RECuperator, which provided significant benefits in terms of fuel consumption, pollutants emission and weight reduction compared to more conventional heat exchanger designs, thus proving that further optimization potential for this technology exists.

  3. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  4. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  5. Performance of parallel flow HeII heat exchangers

    Science.gov (United States)

    Huang, Y.; Chang, Y.; Witt, R. J.; Van Sciver, S. W.

    Previous studies of HeII heat exchangers have focused on tube-in-shell designs. The present paper examines the properties of a parallel flow HeII heat exchanger formed from two 254 mm lengths of copper channel having nominal rectangular dimensions 2 mm × 4 mm. Heaters positioned at the inlets and outlets of both channels permit the simulation of a variety of physically plausible boundary conditions. An iterative numerical method, based on one-dimensional energy balances in each channel with coupling through a heat transfer term, is presented and agrees well with the experimental results. As with tube-in-shell designs, parallel flow HeII heat exchangers may exhibit unusual temperature profiles.

  6. On the pressure drop in Plate Heat Exchangers used as desorbers in absorption chillers

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Hernando, N.; de Vega, M. [Energy System Engineering (ISE), Departamento de Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad, 30, 28911 Leganes, Madrid (Spain); Almendros-Ibanez, J.A. [Escuela de Ingenieros Industriales de Albacete, Departamento de Mecanica Aplicada e Ingenieria de Proyectos, Universidad de Castilla La Mancha, Campus Universitario s/n, 02071 Albacete (Spain); Renewable Energy Research Institute, c/de la Investigacion s/n, 02071 Albacete (Spain); Ruiz, G. [Energy Efficiency and Renewables Department, Tecnicas Reunidas S.A., C/Arapiles No. 13, 10a, 28015 Madrid (Spain)

    2011-02-15

    The influence of the pressure drop in Plate Heat Exchangers (PHE) in the boiling temperature of LiBr-H{sub 2}O and NH{sub 3}-H{sub 2}O solutions is studied. For the NH{sub 3}-H{sub 2}O solution, the pressure drop-temperature saturation relationship estates that high pressure drops can be allowed in the solution with negligible changes in the saturation temperature, and in the PHE performance. Besides, in the case of the LiBr-H{sub 2}O solution, as the working pressure is usually very low, the analysis of the pressure drop must be taken as a main limiting parameter for the use of Plate Heat Exchangers as vapour generators. In this case, the pressure drop may considerably change the boiling temperature of the solution entering the heat exchanger and therefore a higher heating fluid temperature may be required. A guideline to design these systems is proposed. (author)

  7. Boiling heat transfer of refrigerant R-21 in upward flow in plate-fin heat exchanger

    Science.gov (United States)

    Kuznetsov, V. V.; Shamirzaev, A. S.

    2015-11-01

    The article presents the results of experimental investigation of boiling heat transfer of refrigerant R-21 in upward flow in a vertical plate-fin heat exchanger with transverse size of the channels that is smaller than the capillary constant. The heat transfer coefficients obtained in ranges of small mass velocities and low heat fluxes, which are typical of the industry, have been poorly studied yet. The characteristic patterns of the upward liquid-vapor flow in the heat exchanger channels and the regions of their existence are detected. The obtained data show a weak dependence of heat transfer coefficient on equilibrium vapor quality, mass flow rate, and heat flux density and do not correspond to calculations by the known heat transfer models. A possible reason for this behavior is a decisive influence of evaporation of thin liquid films on the heat transfer at low heat flux.

  8. Heat exchangers selection, rating, and thermal design

    CERN Document Server

    Kakaç, Sadik; Pramuanjaroenkij, Anchasa

    2012-01-01

    Praise for the Bestselling Second EditionThe first edition of this work gathered in one place the essence of important information formerly scattered throughout the literature. The second edition adds the following new information: introductory material on heat transfer enhancement; an application of the Bell-Delaware method; new correlation for calculating heat transfer and friction coefficients for chevron-type plates; revision of many of the solved examples and the addition of several new ones.-MEMagazine

  9. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  10. Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Medrano, M.; Nogues, M.; Martorell, I.; Roca, Joan; Cabeza, Luisa F. [Centre GREA, Pere de Cabrera s/n, Universitat de Lleida, 25001 Lleida (Spain); Yilmaz, M.O. [Chemical Department, Cukurova University, Adana (Turkey)

    2009-10-15

    Phase change materials (PCM) possess a great capacity of accumulation of energy in their temperature of fusion thanks to the latent heat. These materials are used in applications where it is necessary to store energy due to the temporary phase shift between the offer and demand of thermal energy. Thus, possible applications are the solar systems as well as the recovery of residual heat for its posterior use in other processes. In spite of this great potential, the practical feasibility of latent heat storage with PCM is still limited, mainly due to a rather low thermal conductivity. This low conductivity implies small heat transfer coefficients and, consequently, thermal cycles are slow and not suitable for most of the potential applications. This work investigates experimentally the heat transfer process during melting (charge) and solidification (discharge) of five small heat exchangers working as latent heat thermal storage systems. Commercial paraffin RT35 is used as PCM filling one side of the heat exchanger and water circulates through the other side as heat transfer fluid. Average thermal power values are evaluated for various operating conditions and compared among the heat exchangers studied. When the comparison is done for average power per unit area and per average temperature gradient, results show that the double pipe heat exchanger with the PCM embedded in a graphite matrix (DPHX-PCM matrix) is the one with higher values, in the range of 700-800 W/m{sup 2}-K, which are one order of magnitude higher than the ones presented by the second best. On the other hand, the compact heat exchanger (CompHX-PCM) is by large the one with the highest average thermal power (above 1 kW), as it has the highest ratio of heat transfer area to external volume. (author)

  11. Intensification of heat and mass transfer by ultrasound: application to heat exchangers and membrane separation processes.

    Science.gov (United States)

    Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E

    2015-07-01

    This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions.

  12. Heat recovery from Diesel exhausts by means of a fluidized bed heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, G.M.; Festa, R.; Massimilla, L.

    1983-01-01

    A fluidized bed heat exchanger, equipped with a specially designed manifold gas distributor, is conveniently used to recover heat from exhausts of a 60 kW Diesel engine. The sensitivity of the bed to tube heat transfer coefficient to soot fouling and the sensitivity of the exchanger efficiency to variations of such coefficients are analyzed. Procedures for in-operation tube defouling are described.

  13. Progress Report for Diffusion Welding of the NGNP Process Application Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Mizia; D.E. Clark; M.V. Glazoff; T.E. Lister; T.L. Trowbridge

    2011-04-01

    The NGNP Project is currently investigating the use of metallic, diffusion welded, compact heat exchangers to transfer heat from the primary (reactor side) heat transport system to the secondary heat transport system. The intermediate heat exchanger will transfer this heat to downstream applications such as hydrogen production, process heat, and electricity generation. The channeled plates that make up the heat transfer surfaces of the intermediate heat exchanger will have to be assembled into an array by diffusion welding.

  14. On the use of hydration heat for quality management of borehole heat exchanger grouting

    Science.gov (United States)

    Suibert Oskar Seibertz, Klodwig; Händel, Falk; Dietrich, Peter; Vienken, Thomas

    2016-04-01

    The ongoing energy transition from conventional, fossil fuel based energy generation, over to renewable energy sources led to an increase in geothermal energy use. Different systems for extracting heat from the subsurface are in use, whereas a commonly used system is the borehole heat exchanger (BHE). A BHE generally consist of a closed loop pipe system through which a heat exchanging fluid is circulated. The BHE is surrounded by grouting. The grouting, focus of this work, has two main objectives to fulfill: Firstly, to thermally couple the subsurface and the BHE pipes; and, secondly, to protect the pipes and to prevent the heat exchanging fluid from entering the subsurface in case of BHE mechanical failure. Therefore, to provide proper functionality, efficiency, and safety of a BHE, it has to be guaranteed that the grouting does not have defects. The hardening reaction (hydration) of the grouting is exothermic, whereas the grouting is mostly a variant of (thermally enhanced) cement. The hydration temperature depends on the type of grout as well as the possible dilutions (resulting in defects) of the grouting material by water, air or drilling debris, and the thermal transport potential of the subsurface. Therefore the quality of the grouting can be investigated by temperature measurements during the hardening process. To validate this further, tests on field and laboratory scale were conducted. For laboratory testing, different columns were built in which different defects of BHE grouting and pipes were simulated. For defect simulation isolation and mixing with drilling debris were chosen, representing inclusions of water and/or air during cement casting as well as partial collapse of the borehole. The temperature changes during installation and hardening of the grouting are measured by fiber-optic distributed temperature sensing (DTS). This allows for temporal and spatial high resolution, continuous temperature measurements at the interface of pipe to grout

  15. Study and development of a cryogenic heat exchanger for life support systems

    Science.gov (United States)

    Soliman, M. M.

    1973-01-01

    A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.

  16. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pignotti, A. (TECHNIT S.A., Buenos Aires (Argentina)); Tamborenea, P.I. (Fundacion Hermanos, Buenos Aires (Argentina))

    1988-02-01

    The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

  17. CFD analysis of the plate heat exchanger - Mathematical modelling of mass and heat transfer in serial connection with tubular heat exchanger

    Science.gov (United States)

    Bojko, Marian; Kocich, Radim

    2016-06-01

    Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.

  18. Numerical evaluation of plate heat exchanger performance in geothermal district heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, T. [Iceland Univ., Reykjavik (Iceland)

    1996-12-31

    This paper describes the performance of plate heat exchangers in residential water radiator heating systems receiving their heat from geothermal resources. Radiator theory is reviewed and determination of annual hot water requirements for space heating is discussed. Performance evaluation is made of plate heat exchangers and results obtained by means of two equations commonly used for this purpose, the Sieder-Tate and the Dittus-Boelter equations, compared to results obtained with a simplified equation where heat transfer in the heat exchanger is assumed to depend only on the fluid mass flow on both sides. It is found that for prevailing temperature ranges in Icelandic geothermal systems the mass pow approximation gives results very close to those determined by the more complicated conventional equations. (UK)

  19. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available A cross-flow, tube and fin heat exchanger of the water – air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  20. Analysis of radiative heat transfer impact in cross-flow tube and fin heat exchangers

    Science.gov (United States)

    Hanuszkiewicz-Drapała, Małgorzata; Bury, Tomasz; Widziewicz, Katarzyna

    2016-03-01

    A cross-flow, tube and fin heat exchanger of the water - air type is the subject of the analysis. The analysis had experimental and computational form and was aimed for evaluation of radiative heat transfer impact on the heat exchanger performance. The main element of the test facility was an enlarged recurrent segment of the heat exchanger under consideration. The main results of measurements are heat transfer rates, as well as temperature distributions on the surface of the first fin obtained by using the infrared camera. The experimental results have been next compared to computational ones coming from a numerical model of the test station. The model has been elaborated using computational fluid dynamics software. The computations have been accomplished for two cases: without radiative heat transfer and taking this phenomenon into account. Evaluation of the radiative heat transfer impact in considered system has been done by comparing all the received results.

  1. Experimental study of a novel manifold structure of micro-channel heat exchanger

    Science.gov (United States)

    Xu, Bo; Xu, Kunhao; Wei, Wei; Han, Qing; Chen, Jiangping

    2013-07-01

    Refrigerant flow distribution with phase change heat transfer was experimentally studied for a micro-channel heat exchanger having horizontal headers. In order to solve the problem of maldistribution, a novel manifold structure with orifice and bypass tube was proposed and experimentally studied compared to the conventional structure. Tests were conducted with downward flow for mass flux from 70 to 110 kg m-2s-1 (air side flow velocity from 1 to 2ms-1). The surface temperature distribution of the heat exchanger recorded by thermal imager and the square deviation of it were used to judge the uniformity of flow distribution. It is shown that as mass flux increased, better flow distribution is obtained (small square deviation of temperature distribution means better flow distribution: conventional structure from 32 to 27, novel structure from 19 to 14), and flow distribution of the novel structure was much better than that of the conventional one. The heat transfer performances of the two heat exchangers were also studied. The cooling capacity of the novel heat exchanger was 14.8% higher than that of the conventional because of the better flow distribution. And the refrigerant pressure drop was 120% higher because of bigger mass flow and the resistance of the orifice. It's worth noting that the air pressure drop of novel heat exchanger was also higher (about 28.3%)than that of the conventional one, even when they have same fin and flat tube structure. From the pictures of the heat exchanger surfaces, it was found that some surface area of the conventional heat exchanger was not wet because of the low mass flow and high superheat, which leaded to a poor performance and relatively small air pressure drop.

  2. Exporter Price Response to Exchange Rate Changes

    DEFF Research Database (Denmark)

    Fosse, Henrik Barslund

    Firms exporting to foreign markets face a particular challenge: to price their exports in a foreign market when the exchange rate changes. This paper takes on pricing- to-market using a unique data set that covers rm level monthly trade at great detail. As opposed to annual trade ows, monthly trade...... theoretical contributions to the litterature on pricing-to-market and exchange rate pass-through....

  3. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  4. NGNP/HTE full-power operation at reduced high-temperature heat exchanger temperatures.

    Energy Technology Data Exchange (ETDEWEB)

    VIlim, R.; Nuclear Engineering Division

    2009-03-12

    Operation of the Next Generation Nuclear Plant (NGNP) with reduced reactor outlet temperature at full power was investigated for the High Temperature Electrolysis (HTE) hydrogen-production application. The foremost challenge for operation at design temperature is achieving an acceptably long service life for heat exchangers. In both the Intermediate Heat Exchanger (IHX) and the Process Heat Exchanger (PHX) (referred to collectively as high temperature heat exchangers) a pressure differential of several MPa exists with temperatures at or above 850 C. Thermal creep of the heat exchanger channel wall may severely limit heat exchanger life depending on the alloy selected. This report investigates plant performance with IHX temperatures reduced by lowering reactor outlet temperature. The objective is to lower the temperature in heat transfer channels to the point where existing materials can meet the 40 year lifetime needed for this component. A conservative estimate for this temperature is believed to be about 700 C. The reactor outlet temperature was reduced from 850 C to 700 C while maintaining reactor power at 600 MWt and high pressure compressor outlet at 7 MPa. We included a previously reported design option for reducing temperature at the PHX. Heat exchanger lengths were adjusted to reflect the change in performance resulting from coolant property changes and from resizing related to operating-point change. Turbomachine parameters were also optimized for the new operating condition. An integrated optimization of the complete system including heat transfer equipment was not performed. It is estimated, however, that by performing a pinch analysis the combined plant efficiency can be increased from 35.5 percent obtained in this report to a value between 38.5 and 40.1 percent. Then after normalizing for a more than three percent decrease in commodities inventory compared to the reference plant, the commodities-normalized efficiency lies between 40.0 and 41.3. This

  5. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    Science.gov (United States)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  6. Experimental investigation on heat transfer analysis of conical coil heat exchanger with 90° cone angle

    Science.gov (United States)

    Purandare, Pramod S.; Lele, Mandar M.; Gupta, Raj Kumar

    2015-03-01

    In the present study, an experimental investigation on thermal performance of the conical coil heat exchanger with 90° conical coil heat exchanger is reported. Three different conical coil heat exchangers of same mean coil diameter (Dm = 200 mm) with different tube diameters ( di = 8, 10, 12.5 mm) are analyzed under steady state condition. The analysis is carried out for the tube side hot fluid flow range of 10-100 lph ( Re = 500-5,000), while the shell side flow range of 30-90 lph. The data available from experimentation leads to evaluate heat transfer coefficients for inside and outside the tube of the conical coil heat exchanger by Wilsons plot method. The calculations are further extended to estimate Nusselt Number ( Nu) and effectiveness. The empirical correlations are proposed for predicting Nu and the outlet temperatures of hot and cold fluids. The predicted empirical correlations show reasonable agreement with the experimental results within the given range of parameters.

  7. Efficiency of Vertical Geothermal Heat Exchangers in the Ground Source Heat Pump System

    Institute of Scientific and Technical Information of China (English)

    Heyi Zeng; Nairen Diao; Zhaohong Fang

    2003-01-01

    Taking the fluid temperature distribution along the borehole depth into account, a new quasi-three-dimensional model for vertical ground heat exchangers has been established, which provides a better understanding of the heat transfer processes in the geothermal heat exchangers. On this basis the efficiency of the borehole has been defined and its analytical expression derived. Comparison with the previous two-dimensional model shows that the quasi-three-dimensional model is more rational and more accurate to depict the practical feature of the conduction of geothermal heat exchanger, and the efficiency notion can be easily used to determine the inlet and outlet temperature of the circulating fluid inside the heat exchanger.

  8. Development of User-Friendly Software to Design Dairy Heat Exchanger and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    DipankarMandal

    2015-02-01

    Full Text Available The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger.It includes the easy calculation of heat transfer coefficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the developed software—-―DAIRY –HE ―. A parametric study is conducted using the software interface to determine the length of tubes or dimensions of heat exchanger.

  9. Numerical Study of Condensation Heat Exchanger Design in a Saturated Pool: Correlation Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Lee, Tae Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    Generally the condensation heat exchanger has higher heat transfer coefficient compared to the single phase heat exchanger, so has been widely applied to the cooling systems of fissile power plant. Recently vertical or horizontal type condensation heat exchangers are being studied for the application to secondary passive cooling system of nuclear plants. To design vertical condensation heat exchanger in a saturated water pool, a thermal sizing program of condensation heat exchanger, TSCON(Thermal Sizing of CONdenser) was developed. In this study, condensing heat transfer correlation of TSCON is evaluated with the existing experimental data set to design condensation heat exchanger without noncondensable gas effect (pure steam condensation)

  10. Heat exchanger analysis on a Microvax II/GPX

    Science.gov (United States)

    Haught, Alan F.

    1988-12-01

    The finite element code FIDAP was used to examine the fluid flow path within a flat plate tube/fin heat exchanger and the resulting heat transfer from the fins and tube walls. The mathematical formulation, mesh development and analysis procedure are presented, and the results obtained are compared with experimental observations of the fluid flow and measurements of the fluid heating. This problem illustrates the capabilities of finite element techniques for analyzing complex three-dimensional convection-dominated heat transfer, and demonstrates the scope of problems which can be addressed on a Micro VAX II/GPX workstation.

  11. Diffusion Welding of Compact Heat Exchangers for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Denis Clark; Ron Mizia; Dr. Michael V. Glazoff; Mr. Michael W. Patterson

    2012-06-01

    The next-­-generation nuclear plant (NGNP) is designed to be a flexible source of energy, producing various mixes of electrical energy and process heat (for example, for hydrogen generation) on demand. Compact heat exchangers provide an attractive way to move energy from the helium primary reactor coolant to process heat uses. For process heat efficiency, reactor outlet temperatures of 750-­-900°C are desirable. There are minor but deleterious components in the primary coolant; the number of alloys that can handle this environment is small. The present work concentrates on Alloys 800H and 617.

  12. Dynamic tube/support interaction in heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.S.

    1991-01-01

    The supports for heat exchanger tubes are usually plates with drilled holes; other types of supports also have been used. To facilitate manufacture and to allow for thermal expansion of the tubes, small clearances are used between tubes and tube supports. The dynamics of tube/support interaction in heat exchangers is fairly complicated. Understanding tube dynamics and its effects is important for heat exchangers. This paper summarizes the current state of the art on this subject and to identify future research needs. Specifically, the following topics are discussed: dynamics of loosely supported tubes, tube/support gap dynamics, tube response in flow, tube damage and wear, design considerations, and future research needs. 55 refs., 1 fig.

  13. Study of heat transfer and pressure drop characteristics of air heat exchanger using PCM for free cooling applications

    Directory of Open Access Journals (Sweden)

    Kalaiselvam Sivakumar

    2016-01-01

    Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.

  14. Simulation on Thermal Integrity of the Fin/Tube Brazed Joint of Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Yiyu QIAN; Feng GAO; Fengjiang WANG; Hui ZHAO

    2003-01-01

    In the applications of heat exchangers, the fin efficiency of heat transfer is the key issue. Thermal distribution withinthe brazed joints in heat exchanger under loading conditions is investigated in this paper. Simulated results showedthat the therma

  15. Performance of a Thermoelectric Device with Integrated Heat Exchangers

    Science.gov (United States)

    Barry, Matthew M.; Agbim, Kenechi A.; Chyu, Minking K.

    2015-06-01

    Thermoelectric devices (TEDs) convert heat directly into electrical energy, making them well suited for waste heat recovery applications. An integrated thermoelectric device (iTED) is a restructured TED that allows more heat to enter the p-n junctions, thus producing a greater power output . An iTED has heat exchangers incorporated into the hot-side interconnectors with flow channels directing the working fluid through the heat exchangers. The iTED was constructed of p- and n-type bismuth-telluride semiconductors and copper interconnectors and rectangular heat exchangers. The performance of the iTED in terms of , produced voltage and current , heat input and conversion efficiency for various flow rates (), inlet temperatures (C) ) and load resistances () with a constant cold-side temperature ( = 0C) was conducted experimentally. An increase in had a greater effect on the performance than did an increase in . A 3-fold increase in resulted in a 3.2-, 3.1-, 9.7-, 3.5- and 2.8-fold increase in and respectively. For a constant of 50C, a 3-fold increase in from 3300 to 9920 resulted in 1.6-, 1.6-, 2.6-, 1.5- and 1.9-fold increases in , , , and respectively.

  16. The influence of a radiated heat exchanger surface on heat transfer

    Directory of Open Access Journals (Sweden)

    Morel Sławomir

    2015-09-01

    Full Text Available The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame – uncoated wall and then heating medium (flame – coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.

  17. The influence of a radiated heat exchanger surface on heat transfer

    Science.gov (United States)

    Morel, Sławomir

    2015-09-01

    The experiment leads to establish the influence of radiated surface development heat exchangers on the values of heat flux transferred with water flowing through the exchangers and placed in electric furnace chamber. The values of emissivity coefficients are given for the investigated metal and ceramic coatings. Analytical calculations have been made for the effect of the heating medium (flame) - uncoated wall and then heating medium (flame) - coated wall reciprocal emissivity coefficients. Analysis of the values of exchanged heat flux were also realized. Based on the measurement results for the base coating properties, these most suitable for spraying the walls of furnaces and heat exchangers were selected, and determined by the intensification of heat exchange effect. These coatings were used to spray the walls of a laboratory waste-heat boiler, and then measurements of fluxes of heat absorbed by the cooling water flowing through the boiler tubes covered with different type coatings were made. Laboratory tests and calculations were also confirmed by the results of full-scale operation on the metallurgical equipment.

  18. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  19. Characterization of a mini-channel heat exchanger for a heat pump system

    Science.gov (United States)

    Arteconi, A.; Giuliani, G.; Tartuferi, M.; Polonara, F.

    2014-04-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  20. THERMAL ANALYSIS OF SHELL AND TUBE HEAT EXCHANGER USING CFD

    OpenAIRE

    Karthikeyan. D

    2016-01-01

    In present day shell and tube heat exchanger is the most common type heat exchanger widely use in oil refinery and other large chemical process, because it suits high pressure application. The process in solving simulation consists of modeling and meshing the basic geometry of...

  1. Numerical Modeling of Fin and Tube Heat Exchanger for Waste Heat Recovery

    DEFF Research Database (Denmark)

    Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph

    In the present work, multiphysics numerical modeling is carried out to predict the performance of a liquid-gas fin and tube heat exchanger design. Three-dimensional (3D) steady-state numerical model using commercial software COMSOL based on finite element method (FEM) is developed. The study...... associates conjugate heat transfer phenomenon with the turbulent flow to describe the variable temperature and velocity profile. The performance of heat exchanger design is investigated in terms of overall heat transfer coefficient, Nusselt number, Colburn j-factor, flow resistance factor, and efficiency...... between fin and tube. The present numerical model predicts the performance of the heat exchanger design, therefore, can be applied to existing waste heat recovery systems to improve the overall performance with optimized design and process-dependent parameters....

  2. Effect of Corrugation Angle on Heat Transfer Studies of Viscous Fluids in Corrugated Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    B Sreedhara Rao

    2015-04-01

    Full Text Available In the present investigation heat transfer studies are conducted in corrugated plate heat exchangers (PHEs having three different corrugation angles of 300, 400 and 500. The plate heat exchangers have a length of 30 cm and a width of 10 cm with a spacing of 5 mm. Water and 20% glycerol solution are taken as test fluids and hot fluid is considered as heating medium. The wall temperatures are measured along the length of exchanger at seven different locations by means of thermocouples. The inlet and outlet temperatures of test fluid and hot fluid are measured by means of four more thermocouples. The experiments are conducted at a flowrate ranging from 0.5 lpm to 6 lpm with the test fluid. Film heat transfer coefficient and Nusselt number are determined from the experimental data. These values are compared with different corrugation angles. The effects of corrugation angles on heat transfer rates are discussed.

  3. Optimization of the Heat Exchangers of a Thermoelectric Generation System

    Science.gov (United States)

    Martínez, A.; Vián, J. G.; Astrain, D.; Rodríguez, A.; Berrio, I.

    2010-09-01

    The thermal resistances of the heat exchangers have a strong influence on the electric power produced by a thermoelectric generator. In this work, the heat exchangers of a thermoelectric generator have been optimized in order to maximize the electric power generated. This thermoelectric generator harnesses heat from the exhaust gas of a domestic gas boiler. Statistical design of experiments was used to assess the influence of five factors on both the electric power generated and the pressure drop in the chimney: height of the generator, number of modules per meter of generator height, length of the fins of the hot-side heat exchanger (HSHE), length of the gap between fins of the HSHE, and base thickness of the HSHE. The electric power has been calculated using a computational model, whereas Fluent computational fluid dynamics (CFD) has been used to obtain the thermal resistances of the heat exchangers and the pressure drop. Finally, the thermoelectric generator has been optimized, taking into account the restrictions on the pressure drop.

  4. HEAT EXCHANGE NETWORKS IN BIODIESEL PRODUCTION FROM WASTE COOKING OILS

    Directory of Open Access Journals (Sweden)

    María Fernanda Laborde

    2014-11-01

    Full Text Available With the objective to aboard one of the challenges in Engineering teaching: It´s the application in professional practice?, along with attending to the actual requirements of achieve energetic efficiency in industrial process and to reuse wastes of food industry, this work, presents the application of heat exchange networks for the resolution of a real case: pre-treatment of waste cooking oils (WCO withacid catalysis for biodiesel production. Different methods and software are applied to obtain the minimum amounts of heat and the heat exchange network for a processing capacity of 0,19 kg/s of WCO. A minimum temperature difference (Tmin of 10°C is considered and the minimum requirements of heating and cooling result 4629,87 W and 10066,30 W, respectively. If this exchange network is not considered, this values increase to 26838,33 W and 21958,33 W, respectively. Applying heat exchange network, decrease 78,92% the required steam service in the process and water cooling service decreases 62,48%, demonstrating that integration reduces energetic requirements respect the non-integrated process.

  5. Comparisons of Heat Transfer Performance of a Closed-looped Oscillating Heat Pipe and Closed-looped Oscillating Heat Pipe with Check Valves Heat Exchangers

    Directory of Open Access Journals (Sweden)

    P. Meena

    2008-01-01

    Full Text Available This research was to study the comparisons of heat transfer performance of closed-looped oscillating heat pipe and closed-looped oscillating heat pipe with check valves heat exchangers with R134a, Ethanol and water were used as the working fluids. A set of heat pipe heat exchanger (CLOHP and CLOHP/CV were made of copper tubes in combination of following dimension: 2.03 mm inside diameter: 40 turns, with 20, 10 and 20 cm for evaporator, adiabatic and condenser sections lengths. The working fluid was filled in the tube at the filling ratio of 50%. The evaporator section was given heat by heater while the condenser section was cooled by air. The adiabatic section was properly insulated. In the test operation, it could be concluded as follows. It indicated that the heat transfer performance of closed-looped oscillating heat pipe with check valves heat exchanger better than closed-looped oscillating heat exchanger.

  6. Spacecraft Radiator Freeze Protection Using a Regenerative Heat Exchanger

    Science.gov (United States)

    Ungar, Eugene K.; Schunk, Richard G.

    2011-01-01

    An active thermal control system architecture has been modified to include a regenerative heat exchanger (regenerator) inboard of the radiator. Rather than using a radiator bypass valve a regenerative heat exchanger is placed inboard of the radiators. A regenerator cold side bypass valve is used to set the return temperature. During operation, the regenerator bypass flow is varied, mixing cold radiator return fluid and warm regenerator outlet fluid to maintain the system setpoint. At the lowest heat load for stable operation, the bypass flow is closed off, sending all of the flow through the regenerator. This lowers the radiator inlet temperature well below the system set-point while maintaining full flow through the radiators. By using a regenerator bypass flow control to maintain system setpoint, the required minimum heat load to avoid radiator freezing can be reduced by more than half compared to a radiator bypass system.

  7. ASME code considerations for the compact heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Nestell, James [MPR Associates Inc., Alexandria, VA (United States); Sham, Sam [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-31

    The mission of the U.S. Department of Energy (DOE), Office of Nuclear Energy is to advance nuclear power in order to meet the nation's energy, environmental, and energy security needs. Advanced high temperature reactor systems such as sodium fast reactors and high and very high temperature gas-cooled reactors are being considered for the next generation of nuclear reactor plant designs. The coolants for these high temperature reactor systems include liquid sodium and helium gas. Supercritical carbon dioxide (sCO₂), a fluid at a temperature and pressure above the supercritical point of CO₂, is currently being investigated by DOE as a working fluid for a nuclear or fossil-heated recompression closed Brayton cycle energy conversion system that operates at 550°C (1022°F) at 200 bar (2900 psi). Higher operating temperatures are envisioned in future developments. All of these design concepts require a highly effective heat exchanger that transfers heat from the nuclear or chemical reactor to the chemical process fluid or the to the power cycle. In the nuclear designs described above, heat is transferred from the primary to the secondary loop via an intermediate heat exchanger (IHX) and then from the intermediate loop to either a working process or a power cycle via a secondary heat exchanger (SHX). The IHX is a component in the primary coolant loop which will be classified as "safety related." The intermediate loop will likely be classified as "not safety related but important to safety." These safety classifications have a direct bearing on heat exchanger design approaches for the IHX and SHX. The very high temperatures being considered for the VHTR will require the use of very high temperature alloys for the IHX and SHX. Material cost considerations alone will dictate that the IHX and SHX be highly effective; that is, provide high heat transfer area in a small volume. This feature must be accompanied by low pressure drop and mechanical reliability and

  8. Numerical Simulation of Different Models of Heat Pipe Heat Exchanger Using AcuSolve

    Directory of Open Access Journals (Sweden)

    Zainal Nurul Amira

    2017-01-01

    Full Text Available In this paper, a numerical simulation of heat pipe heat exchanger (HPHE is computed by using CFD solver program i.e. AcuSolve. Two idealized model of HPHE are created with different variant of entry’s dimension set to be case 1 and case 2. The geometry of HPHE is designed in SolidWorks and imported to AcuSolve to simulate the fluid flow numerically. The design of HPHE is the key to provide a heat exchanger system to work proficient as expected. Finally, the result is used to optimize and improving heat recovery systems of the increasing demand for energy efficiency in industry.

  9. Heat transfer characteristics of a new helically coiled crimped spiral finned tube heat exchanger

    Science.gov (United States)

    Srisawad, Kwanchanok; Wongwises, Somchai

    2009-02-01

    In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.

  10. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    Science.gov (United States)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  11. Compact/micro heat exchangers – Their role in heat pumping equipment

    OpenAIRE

    Kew, PA; Reay, DA; 2nd Micro and Nano Flows Conference (MNF2009)

    2009-01-01

    This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications. Compact and micro-heat exchangers have many advantages over their larger ...

  12. Assessment of Real Heat Transfer Coefficients through Shell and Tube and Plate Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Dan CONSTANTINESCU

    2011-07-01

    Full Text Available The purpose of this paper is to present a procedure used in the assessment of the real heat transfer characteristic of shell and tube and plate heat exchangers. The theoretical fundamentals of the procedure are introduced as well as the measured data collection and processing. The theoretical analysis is focused on the adoption of criterial equations which, subjected to certain verification criteria presented in the paper, provide the most credible value of the convection heat transfer coefficients inside the circular and flat tubes. In the end two case studies are presented, one concerning a shell and tube heat exchanger operational at INCERC Thermal Substation and the other concerning a plate heat exchanger tested on the Laboratory Stand of the Department of Building Services and Efficient Use of Energy in Buildings of INCERC Bucharest.

  13. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Energy Technology Data Exchange (ETDEWEB)

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  14. Fouling characteristics of compact heat exchangers and enhanced tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, C. B.; Rabas, T. J.

    1999-07-15

    Fouling is a complex phenomenon that (1) encompasses formation and transportation of precursors, and (2) attachment and possible removal of foulants. A basic understanding of fouling mechanisms should guide the development of effective mitigation techniques. The literature on fouling in complex flow passages of compact heat exchangers is limited; however, significant progress has been made with enhanced tubes.

  15. Catalytic heat exchangers - a long-term evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik A. [CATATOR AB, Lund (Sweden)

    2003-10-01

    A long-term evaluation concerning catalytic heat exchangers (CHEs) has been performed. The idea concerning CHEs was originally described in a number of reports issued by Catator almost a decade ago. The general idea with CHEs is to combust a fuel with a catalyst inside a heat exchanger to enable an effective heat transfer. The first design approaches demonstrated the function and the possibilities with CHEs but were defective concerning the heat exchanger design. Consequently, a heat exchanger company (SWEP International AB), which was specialised on brazed plate-type heat exchangers, joined the continued development project. Indeed, the new design approach containing Catator's wire-mesh catalysts and SWEP's plate-type heat exchangers enabled us to improve the concept considerably. The new design complied with a number of relevant technical demands, e.g.: Simplicity; Compactness and integration (few parts); High thermal efficiency; Low pressure drop; Excellent emissions; High turn-down ratio; Reasonable production cost. Spurred by the technical progresses, the importance of a long-term test under realistic conditions was clear. A long-term evaluation was initialised at Sydkraft Gas premises in Aastorp. The CHE was installed on a specially designed rig to enable accelerated testing with respect to the number of transients. The rig was operated continuously for 5000 hours and emission mapping was carried out at certain time intervals. Following some problems during the initial phase of the long-term evaluation, which unfortunately also delayed the project, the results indicated very stable conditions of operation. The emissions have been rather constant during the course of the test and we cannot see any tendencies to decreased performances. Indeed, the test verifies the function, operability and reliability of the CHE-concept. Apart from domestic boilers we foresee a number of interesting and relevant applications in heating and process technology. Since

  16. Novel Power Electronics Three-Dimensional Heat Exchanger: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, K.; Cousineau, J.; Lustbader, J.; Narumanchi, S.

    2014-08-01

    Electric drive systems for vehicle propulsion enable technologies critical to meeting challenges for energy, environmental, and economic security. Enabling cost-effective electric drive systems requires reductions in inverter power semiconductor area. As critical components of the electric drive system are made smaller, heat removal becomes an increasing challenge. In this paper, we demonstrate an integrated approach to the design of thermal management systems for power semiconductors that matches the passive thermal resistance of the packaging with the active convective cooling performance of the heat exchanger. The heat exchanger concept builds on existing semiconductor thermal management improvements described in literature and patents, which include improved bonded interface materials, direct cooling of the semiconductor packages, and double-sided cooling. The key difference in the described concept is the achievement of high heat transfer performance with less aggressive cooling techniques by optimizing the passive and active heat transfer paths. An extruded aluminum design was selected because of its lower tooling cost, higher performance, and scalability in comparison to cast aluminum. Results demonstrated a heat flux improvement of a factor of two, and a package heat density improvement over 30%, which achieved the thermal performance targets.

  17. Dual Expander Cycle Rocket Engine with an Intermediate, Closed-cycle Heat Exchanger

    Science.gov (United States)

    Greene, William D. (Inventor)

    2008-01-01

    A dual expander cycle (DEC) rocket engine with an intermediate closed-cycle heat exchanger is provided. A conventional DEC rocket engine has a closed-cycle heat exchanger thermally coupled thereto. The heat exchanger utilizes heat extracted from the engine's fuel circuit to drive the engine's oxidizer turbomachinery.

  18. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.

    2012-02-15

    For many industrial processes, the chimney is the final step before hot fumes, with high thermal energy content, are discharged into the atmosphere. Tapping into this energy and utilizing it for heating or cooling applications, could improve sustainability, efficiency and/or reduce operational costs. Alternatively, an unused chimney, like the monumental chimney at the Eindhoven University of Technology, could serve as an 'energy channeler' once more; it can enhance free cooling by exploiting the stack effect. This study aims to identify design parameters that influence annual heat exchange in such stack chimney applications and optimize these parameters for specific scenarios to maximize the performance. Performance is defined by annual heat exchange, system efficiency and costs. The energy required for the water pump as compared to the energy exchanged, defines the system efficiency, which is expressed in an efficiency coefficient (EC). This study is an example of applying building performance simulation (BPS) tools for decision support in the early phase of the design process. In this study, BPS tools are used to provide design guidance, performance evaluation and optimization. A general method for optimization of simulation models will be studied, and applied in two case studies with different applications (heating/cooling), namely; (1) CERES case: 'Eindhoven University of Technology monumental stack chimney equipped with a heat exchanger, rejects heat to load the cold source of the aquifer system on the campus of the university and/or provides free cooling to the CERES building'; and (2) Industrial case: 'Heat exchanger in an industrial stack chimney, which recoups heat for use in e.g. absorption cooling'. The main research question, addressing the concerns of both cases, is expressed as follows: 'what is the optimal set of design parameters so heat exchange in stack chimneys is optimized annually for the cases in which a

  19. Entropy generation extremum and entransy dissipation extremum for heat exchanger optimization

    Institute of Scientific and Technical Information of China (English)

    LIU XiongBin; MENG JiAn; GUO ZengYuan

    2009-01-01

    The applicability of the extremum principles of entropy generation and entransy dissipation is studied for heat exchanger optimization. The extremum principle of entransy dissipation gives better optimization results when heat exchanger is only for the purpose of heating and cooling, while the extremum principle of entropy generation is better for the heat exchanger optimization when it works in the Brayton cycle. The two optimization principles are approximately equivalent when the temperature drops of the streams in a heat exchanger are small.

  20. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Taqwim Ismail

    2014-03-01

    Full Text Available Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan sisi exhaust gas, yaitu 0.2, 0.3, dan 0.4 m/s untuk mengetahui unjuk kerja yang berbeda dari compact heat exchanger yang telah didesain.  Hasil yang didapatkan dari studi eksperimen ini adalah dimensi dari compact heat exchanger tipe louvered fin flat tube dan beberapa parameter yang menunjukkan unjuk kerja dari compact heat exchanger seperti nilai heat transfer baik dari sisi air maupun sisi exhaust gas, effectiveness, number of transfer unit (NTU, overall heat transfer coefficient, dan  ΔTLMTD dari compact heat exchanger.

  1. VHTR engineering design study: intermediate heat exchanger program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The work reported is the result of a follow-on program to earlier Very High Temperature Reactor (VHTR) studies. The primary use of the VHTR is to provide heat for various industrial processes, such as hydrocarbon reforming and coal gasification. For many processes the use of an intermediate heat transfer barrier between the reactor coolant and the process is desirable; for some processes it is mandatory. Various intermediate heat exchanger (IHX) concepts for the VHTR were investigated with respect to safety, cost, and engineering design considerations. The reference processes chosen were steam-hydrocarbon reforming, with emphasis on the chemical heat pipe, and steam gasification of coal. The study investigates the critically important area of heat transfer between the reactor coolant, helium, and the various chemical processes.

  2. Modeling heat efficiency, flow and scale-up in the corotating disc scraped surface heat exchanger

    DEFF Research Database (Denmark)

    Friis, Alan; Szabo, Peter; Karlson, Torben

    2002-01-01

    A comparison of two different scale corotating disc scraped surface heat exchangers (CDHE) was performed experimentally. The findings were compared to predictions from a finite element model. We find that the model predicts well the flow pattern of the two CDHE's investigated. The heat transfer...

  3. Heat exchanger modeling and identification for control of waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rojer, C.; Jager, B. de; Steinbuch, M.

    2013-01-01

    To meet future CO2 emission targets, Waste Heat Recovery systems have recently attracted much attention for automotive applications, especially for long haul trucks. This paper focuses on the development of a dynamic counter-flow heat exchanger model for control purposes. The model captures the dyna

  4. HEAT TRANSFER COEFFICIENT AND FRICTION FACTOR CHARACTERISTICS OF A GRAVITY ASSISTED BAFFLED SHELL AND HEAT-PIPE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    P. Raveendiran

    2015-06-01

    Full Text Available The heat transfer coefficients and friction factors of a baffled shell and heat pipe heat exchanger with various inclination angles were determined experimentally; using methanol as working fluid and water as heat transport fluid were reported. Heat pipe heat exchanger reported in this investigation have inclination angles varied between 15o and 60o for different mass flow rates and temperature at the shell side of the heat exchanger. All the required parameters like outlet temperature of both hot and cold side of heat exchanger and mass flow rate of fluids were measured using an appropriate instrument. Different tests were performed from which condenser side heat transfer coefficient and friction factor were calculated. In all operating conditions it has been found that the heat transfer coefficient increases by increasing the mass flow rate and angle of inclination. The reduction in friction factor occurs when the Reynolds number is increased. The overall optimum experimental effectiveness of GABSHPHE has found to be 42% in all operating conditioning at ψ = 45o.

  5. Effects of winglets to augment tube wall heat transfer in louvered fin heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Paul A.; Thole, Karen A. [Virginia Tech, Blacksburg, VA (United States). Mechanical Engineering Department

    2006-10-15

    The louvered fin heat exchanger, a type of compact heat exchanger, has been used heavily in the automotive and air conditioning industries for the last several decades. The majority of past research, aimed towards improving louvered fin exchanger efficiency, has focused on optimizing various parameters of the louvered fin. The experimental study presented in this paper concentrates instead on augmenting the heat transfer along the tube wall of the compact heat exchanger through the use of winglets placed on the louvers. The experiments were completed on a 20 times scaled model of an idealized louvered fin exchanger with a fin pitch to louver pitch ratio of 0.76 and a louver angle of 27{sup o}. The Reynolds numbers tested, based on louver pitch, were between 230 and 1016. A number of geometrical winglet parameters, including angle of attack, aspect ratio, direction, and shape, were all evaluated based on heat transfer augmentation, friction factor augmentation, and efficiency index (combination of both augmentations). In an attempt to optimize these winglet parameters, tube wall heat transfer augmentations as high as 39% were achieved with associated friction factor augmentations as high as 23%. (author)

  6. Thermoacoustics with idealized heat exchangers and no stack.

    Science.gov (United States)

    Wakeland, Ray Scott; Keolian, Robert M

    2002-06-01

    A model is developed for thermoacoustic devices that have neither stack nor regenerator. These "no-stack" devices have heat exchangers placed close together in an acoustic standing wave of sufficient amplitude to allow individual parcels of gas to enter both exchangers. The assumption of perfect heat transfer in the exchangers facilitates the construction of a simple model similar to the "moving parcel picture" that is used as a first approach to stack-based engines and refrigerators. The model no-stack cycle is shown to have potentially greater inviscid efficiency than a comparable stack model. However, losses from flow through the heat exchangers and on the walls of the enclosure are greater than those in a stack-based device due to the increased acoustic pressure amplitude. Estimates of these losses in refrigerators are used to compare the possible efficiencies of real refrigerators made with or without a stack. The model predicts that no-stack refrigerators can exceed stack-based refrigerators in efficiency, but only for particular enclosure geometries.

  7. A one-dimensional heat transfer model for parallel-plate thermoacoustic heat exchangers.

    Science.gov (United States)

    de Jong, J A; Wijnant, Y H; de Boer, A

    2014-03-01

    A one-dimensional (1D) laminar oscillating flow heat transfer model is derived and applied to parallel-plate thermoacoustic heat exchangers. The model can be used to estimate the heat transfer from the solid wall to the acoustic medium, which is required for the heat input/output of thermoacoustic systems. The model is implementable in existing (quasi-)1D thermoacoustic codes, such as DeltaEC. Examples of generated results show good agreement with literature results. The model allows for arbitrary wave phasing; however, it is shown that the wave phasing does not significantly influence the heat transfer.

  8. Numerical Simulation of Heat Transfer in a Gas Solid Crossflow Moving Packed Bed Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    Anyuan Liu; Shi Liu; Yufeng Duan; Zhonggang Pan

    2001-01-01

    The mechanism of heat transfer in a crossfiow moving packed bed heat transfer exchanger is analyzed and a two dimensional heat transfer mathematical model has been developed based on the two fluid model (TFM) approach, in which both phases are considered to be continuous and fully interpenetrating. This model is solved by means of numerical method and the results are approximately in agreement with the experimental ones.

  9. Airside performances of finned eight-tube heat exchangers

    Science.gov (United States)

    Li, Cheng; Li, Junming

    2016-11-01

    For applications in the relatively low temperature refrigeration systems with large constant temperature bath, the present work performed the experimental studies on the airside performances of the staggered finned eight-tube heat exchangers with large fin pitches. The airside heat transfer coefficients and pressure drops for three fin types and two fin pitches are obtained and analyzed. The heat transfer enhancement with louver fins is 11-16 % higher than the flat fins and that with sinusoidal corrugated fins is 1.1-3.4 % higher than the flat fins. Higher Re brings larger enhancement for various fins. Fin pitches show weak influence on heat transfer for eight tube rows. However, effects of fin pitch on heat transfer for both the sinusoidal corrugation and the louvered fin are larger than the flat fins and they are different from those for N ≤ 6. Airside Colburn j factor are compared with previous and it could be concluded that the airside j factor is almost constant for finned tube heat exchangers with eight tubes and large fin pitches, when Re is from 250 to 2500. The results are different from previous studies for fewer tube rows.

  10. RESEARCH OF SHORT DIFFUSERS IMPLEMENTATION EFFICIENCY IN COMPACT HEAT EXCHANGERS

    Directory of Open Access Journals (Sweden)

    Yusha V.L

    2014-12-01

    Full Text Available Increasing of efficiency of air condenser with the help of cooling air distribution is considered. The relevance of research connected with preservation of the compact sizes of the heat exchange device is presented. The analysis of shortcomings of the existing designs on the basis of the tubular heat exchanger with the short diffuser is carried out. Various devices and recommendations about improvement of operation of the short diffuser are considered. The research objective consisting in an assessment of influence of a configuration of flowing part of the short diffuser on overall performance of the heat exchange device is formulated. The methodology of carrying out the engineering analysis of cooling equipment on the base of ANSYS CFX is developed. The calculation of tubular cooler characteristics with several alternatives of the inlet section is made, the analysis of results from the point of view of losses of pressure in the diffuser and amounts of the taken-away heat is carried out. The improvement in cooler work using guide rails for its inlet section is discovered.

  11. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    Institute of Scientific and Technical Information of China (English)

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  12. Fabrication of Wire Mesh Heat Exchangers for Waste Heat Recovery Using Wire-Arc Spraying

    Science.gov (United States)

    Rezaey, R.; Salavati, S.; Pershin, L.; Coyle, T.; Chandra, S.; Mostaghimi, J.

    2014-04-01

    Waste heat can be recovered from hot combustion gases using water-cooled heat exchangers. Adding fins to the external surfaces of the water pipes inserted into the hot gases increases their surface area and enhances heat transfer, increasing the efficiency of heat recovery. A method of increasing the heat transfer surface area has been developed using a twin wire-arc thermal spray system to generate a dense, high-strength coating that bonds wire mesh to the outside surfaces of stainless steel pipes through which water passes. At the optimum spray distance of 150 mm, the oxide content, coating porosity, and the adhesion strength of the coating were measured to be 7%, 2%, and 24 MPa, respectively. Experiments were done in which heat exchangers were placed inside a high-temperature oven with temperature varying from 300 to 900 °C. Several different heat exchanger designs were tested to estimate the total heat transfer in each case. The efficiency of heat transfer was found to depend strongly on the quality of the bond between the wire meshes and pipes and the size of openings in the wire mesh.

  13. Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

    Science.gov (United States)

    Kwon, Y H; Kim, D; Li, C G; Lee, J K; Hong, D S; Lee, J G; Lee, S H; Cho, Y H; Kim, S H

    2011-07-01

    In this paper, the heat transfer characteristics and pressure drop of the ZnO and Al2O3 nanofluids in a plate heat exchanger were studied. The experimental conditions were 100-500 Reynolds number and the respective volumetric flow rates. The working temperature of the heat exchanger was within 20-40 degrees C. The measured thermophysical properties, such as thermal conductivity and kinematic viscosity, were applied to the calculation of the convective heat transfer coefficient of the plate heat exchanger employing the ZnO and Al2O3 nanofluids made through a two-step method. According to the Reynolds number, the overall heat transfer coefficient for 6 vol% Al2O3 increased to 30% because at the given viscosity and density of the nanofluids, they did not have the same flow rates. At a given volumetric flow rate, however, the performance did not improve. After the nanofluids were placed in the plate heat exchanger, the experimental results pertaining to nanofluid efficiency seemed inauspicious.

  14. Experimental investigation on heat transfer and pressure drop of conical coil heat exchanger

    Directory of Open Access Journals (Sweden)

    Purandare Pramod S.

    2016-01-01

    Full Text Available The heat transfer and pressure drop analysis of conical coil heat exchanger with various tube diameters, fluid flow rates, and cone angles is presented in this paper. Fifteen coils of cone angles 180° (horizontal spiral, 135°, 90°, 45°, and 0° (vertical helical are fabricated and analysed with, same average coil diameter, and tube length, with three different tube diameters. The experimentation is carried out with hot and cold water of flow rate 10 to 100 L per hour (Reynolds range 500 to 5000, and 30 to 90 L per hour, respectively. The temperatures and pressure drop across the heat exchanger are recorded at different mass flow rates of cold and hot fluid. The various parameters: heat transfer coefficient, Nusselt number, effectiveness, and friction factor, are estimated using the temperature, mass flow rate, and pressure drop across the heat exchanger. The analysis indicates that, Nusselt number and friction factor are function of flow rate, tube diameter, cone angle, and curvature ratio. Increase in tube side flow rate increases Nusselt number, whereas it reduces with increase in shell side flow rate. Increase in cone angle and tube diameter, reduces Nusselt number. The effects of cone angle, tube diameter, and fluid flow rates on heat transfer and pressure drop characteristics are detailed in this paper. The empirical correlations are proposed to bring out the physics of the thermal aspects of the conical coil heat exchangers.

  15. Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer

    Science.gov (United States)

    Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.

    2016-02-01

    Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in

  16. Non-newtonian heat transfer on a plate heat exchanger with generalized configurations

    Energy Technology Data Exchange (ETDEWEB)

    Carezzato, A.; Tadini, C.C.; Gut, J.A.W. [Department of Chemical Engineering, Escola Politecnica, University of Sao Paulo, Sao Paulo (Brazil); Alcantara, M.R. [Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo (Brazil); Telis-Romero, J. [Department of Food Engineering and Technology, Universidade Estadual Paulista, Sao Jose do Rio Preto (Brazil)

    2007-01-15

    For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Heat Transfer Enhancement of Shell and Tube Heat Exchanger Using Conical Tapes.

    Directory of Open Access Journals (Sweden)

    Dhanraj S.Pimple

    2014-12-01

    Full Text Available This paper provides heat transfer and friction factor data for single -phase flow in a shell and tube heat exchanger fitted with a helical tape insert. In the double concentric tube heat exchanger, hot air was passed through the inner tube while the cold water was flowed through the annulus. The influences of the helical insert on heat transfer rate and friction factor were studied for counter flow, and Nusselt numbers and friction factor obtained were compared with previous data (Dittus 1930, Petukhov 1970, Moody 1944 for axial flows in the plain tube. The flow considered is in a low Reynolds number range between 2300 and 8800. A maximum percentage gain of 165% in heat transfer rate is obtained for using the helical insert in comparison with the plain tube.

  18. Thermal energy storage systems using fluidized bed heat exchangers

    Science.gov (United States)

    Ramanathan, V.; Weast, T. E.; Ananth, K. P.

    1980-01-01

    The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.

  19. Four K refrigerators with a new compact heat exchanger

    Science.gov (United States)

    Longsworth, R. C.; Steyert, W. A.

    1985-01-01

    Two refrigerators have been developed which have nominal cpacities of 0.25M and 0.5W at 4.2K. These use standard two stage Displex sup R expanders and compressors combined with a new compact heat exchanger which is concentric with the expander cylinder. These refrigerators can be used to cool superconducting electronic devices by direct attachment to the 4K heat station, or they can be plugged into the neck of a liquid helium superconducting magnet cryostat where they can cool the radiation shields and reliquefy helium.

  20. Thermal design of spiral heat exchangers and heat pipes through global best algorithm

    Science.gov (United States)

    Turgut, Oğuz Emrah; Çoban, Mustafa Turhan

    2017-03-01

    This study deals with global best algorithm based thermal design of spiral heat exchangers and heat pipes. Spiral heat exchangers are devices which are highly efficient in extremely dirty and fouling process duties. Spirals inherent in design maintain high heat transfer coefficients while avoiding hazardous effects of fouling and uneven fluid distribution in the channels. Heat pipes have wide usage in industry. Thanks to the two phase cycle which takes part in operation, they can transfer high amount of heat with a negligible temperature gradient. In this work, a new stochastic based optimization method global best algorithm is applied for multi objective optimization of spiral heat exchangers as well as single objective optimization for heat pipes. Global best algorithm is easy-to-implement, free of derivatives and it can be reliably applied to any optimization problem. Case studies taken from the literature approaches are solved by the proposed algorithm and results obtained from the literature approaches are compared with thosed acquired by GBA. Comparisons reveal that GBA attains better results than literature studies in terms of solution accuracy and efficiency.

  1. Numerical computation of sapphire crystal growth using heat exchanger method

    Science.gov (United States)

    Lu, Chung-Wei; Chen, Jyh-Chen

    2001-05-01

    The finite element software FIDAP is employed to study the temperature and velocity distribution and the interface shape during a large sapphire crystal growth process using a heat exchanger method (HEM). In the present study, the energy input to the crucible by the radiation and convection inside the furnace and the energy output through the heat exchanger is modeled by the convection boundary conditions. The effects of the various growth parameters are studied. It is found that the contact angle is obtuse before the solid-melt interface touches the sidewall of the crucible. Therefore, hot spots always appear in this process. The maximum convexity decreases significantly when the cooling-zone radius (RC) increases. The maximum convexity also decreases significantly as the combined convection coefficient inside the furnace (hI) decreases.

  2. A Simple Tubesheet Layout Program for Heat Exchangers

    Directory of Open Access Journals (Sweden)

    S. Murali

    2008-01-01

    Full Text Available The development of tubesheet layout program for shell and tube heat exchangers is presented in this study. Program is written in AutoLISP language, which provides standard tubesheet layout drawing as per standard codes and non standard tubsheet in AutoCAD Environment. The program computes the optimal number of tube count and lays out drawing with respecting constraints, including the shell ID, number of passes, center to center distance of tubes and tube outer diameter. Tubesheet layout drawing can be used as template for actual tubesheet. Furthermore the program is validated with open literature and shown good agreement with it. Besides the tubesheet for Heat exchangers this method can be extended to the tube counts of sheave plates and perforated plates of distillation column and Cooling Towers.

  3. High pressure ratio cryocooler with integral expander and heat exchanger

    Science.gov (United States)

    Crunkleton, J. A.; Smith, J. L., Jr.; Iwasa, Y.

    A new 1 W, 4.2 K cryocooler is under development that is intended to miniaturize helium temperature refrigeration systems using a high-pressure-ratio Collins-type cycle. The configuration resulted from optimization studies of a saturated vapor compression (SCV) cycle that employs miniature parallel-plate heat exchangers. The basic configuration is a long displacer in a close-fitting, thin-walled cylinder. The displacer-to-cylinder gap is the high-pressure passage of the heat exchanger, and the low-pressure passage is formed by a thin tube over the OD of the cylinder. A solenoid-operated inlet valve admits 40 atm helium to the displacer-to-cylinder gap at room temperature, while the solenoid-operated exhaust valve operates at 4 atm. The single-stage cryocooler produces 1 W of refrigeration at 40 K without precooling and at 20 K with liquid nitrogen precooling.

  4. Experimental investigation of shell-and-tube heat exchanger with a new type of baffles

    Science.gov (United States)

    Wang, Yingshuang; Liu, Zhichun; Huang, Suyi; Liu, Wei; Li, Weiwei

    2011-07-01

    A shell-and-tube heat exchanger with new type of baffles, is designed, fabricated and tested. The experimental investigation for the proposed model and the original segmental baffle heat exchanger are conducted. The operation performances of the two heat exchangers are also compared. The results suggest that, under the same conditions, the overall performance of the new model is 20-30% more efficient than that of the segmental baffle heat exchanger.

  5. Thermal-hydraulic issues of flow boiling and condensation in organic Rankine cycle heat exchangers

    Science.gov (United States)

    Mikielewicz, Jarosław; Mikielewicz, Dariusz

    2012-08-01

    In the paper presented are the issues related to the design and operation of micro heat exchangers, where phase changes can occur, applicable to the domestic micro combined heat and power (CHP) unit. Analysed is the stability of the two-phase flow in such unit. A simple hydraulic model presented in the paper enables for the stability analysis of the system and analysis of disturbance propagation caused by a jump change of the flow rate. Equations of the system dynamics as well as properties of the working fluid are strongly non-linear. A proposed model can be applicable in designing the system of flow control in micro heat exchangers operating in the considered CHP unit.

  6. An Investigation of Turbulent Heat Exchange in the Subtropics

    Science.gov (United States)

    2014-09-30

    subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE ...30 SEP 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE An Investigation of Turbulent Heat Exchange in the...7200 IRGA to the flux systems. Sea surface temperatures were measured by the group using the sea-snake floating thermistor and radiometric

  7. Negative Joule Heating in Ion-Exchange Membranes

    OpenAIRE

    Biesheuvel, P. M.; D. Brogioli; Hamelers, H. V. M.

    2014-01-01

    In ion-exchange membrane processes, ions and water flow under the influence of gradients in hydrostatic pressure, ion chemical potential, and electrical potential (voltage), leading to solvent flow, ionic fluxes and ionic current. At the outer surfaces of the membranes, electrical double layers (EDLs) are formed (Donnan layers). When a current flows through the membrane, we argue that besides the positive Joule heating in the bulk of the membrane and in the electrolyte outside the membrane, t...

  8. Investigation into fouling factor in compact heat exchanger

    OpenAIRE

    Masoud Asadi; Ramin Haghighi Khoshkhoo

    2013-01-01

    Fouling problems cannot be avoided in many heat exchanger operations, and it is necessary to introduce defensive measures to minimize fouling and the cost of cleaning. The fouling control measures used during either design or operation must be subjected to a thorough economic analysis, taking into consideration all the costs of the fouling control measures and their projected benefits in reducing costs due to fouling. Under some conditions, nearly asymptotic fouling resistances can be obtaine...

  9. 扭曲椭圆管换热的壳程强化传热特性%Shell side heat transfer enhancement in twisted elliptical tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    谭祥辉; 孙赫; 张立振; 朱冬生

    2012-01-01

    通过搭建扭曲椭圆管换热器壳程传热与压降性能测试平台,对扭曲椭圆管换热器壳程传热与压降性能进行了实验测试,以实验数据为基础对前人得到的壳程传热与压降性能计算准则关系式的应用范围进行了分析,同时拟合得到了测试用扭曲椭圆管换热器壳程传热与压降性能计算准则关系式,设计了与测试扭曲椭圆管换热器结构类似的折流板换热器以及折流杆换热器,采用相关计算方法对换热器的传热与压降性能进行了计算和比较,并分析了3台换热器的综合性能,结果显示扭曲椭圆管换热器传热效果好、压降低,具有很好的工业应用前景.%Heat transfer and pressure drop of twisted elliptical tube heat exchanger with FrM = 79 are tested in the present work. Based on the experimental result, the application range of previous correlations for twisted elliptical tube heat exchanger with FrM>232 and FrM = 64 is analyzed, and correlations of the tested heat exchanger with FrM = 79 are derived. The testing result indicates that there exists a change of fluid flowing state when Re, increases to 8000. Two heat exchangers with similar geometric parameters to the tested one but supported by segmental baffles and rod baffles are designed. Their shell side heat transfer coefficients and pressure drops are calculated with Bell-Delaware method and Gentry's method, respectively. Heat transfer coefficients and pressure drops of the two designed heat exchangers are compared with the tested twisted elliptical tube heat exchanger. Comprehensive performance of the three heat exchangers is studied. The twisted elliptical tube heat exchanger gives the highest heat transfer coefficient and lowest pressure drop. This type of heat exchanger has the advantages of segmental heat exchanger and rod baffle heat exchanger and will be widely used in the industry.

  10. The Role of Filtration in Maintaining Clean Heat Exchanger Coils

    Energy Technology Data Exchange (ETDEWEB)

    Li Yang; James E. Braun; Eckhard A. Groll

    2004-06-30

    The main purpose of the study was to investigate the role of filtration in maintaining clean heat exchanger coils and overall performance. Combinations of 6 different levels of filtration (MERV 14, 11, 8, 6, 4, and no filter) and 4 different coils (an eight-row lanced-fin coil, HX8L), (an eight-row wavy-fin coil, HX8W), (a four-row lanced-fin coil, HX4L) and (a two-row lanced-fin coil, HX2L) were tested at 4 different air velocities (1.52, 2.03, 2.54,3.05 m/s (300, 400, 500, 600 ft/min)). The fouled conditions were obtained after injection of 600 grams of ASHRAE standard dust upstream of the filter/coil combination. This magnitude of dust is representative of a year of normal operation for an air conditioning system. The air-side pressure drops of the coils and filters and air-side heat transfer coefficients of the coils were determined from the measurements under the clean and fouled conditions. Depending upon the filter and coil test, the coil pressure drops increased in the range of 6%-30% for an air velocity at 2.54 m/s (500 ft/min). The impact was significantly greater for tests performed without a filter. The largest relative effect of fouling on pressure drop occurs for coils with fewer rows and having lanced fins. Coils with a greater number of rows can hold more dust so that a fixed amount of dust has a relatively smaller impact. The impact of fouling on air-side heat transfer coefficients was found to be relatively small. In some cases, heat transfer was actually enhanced due to additional turbulence caused by the presence of dust. The experimental results for pressure drops and heat transfer coefficients were correlated and the correlations were implemented within computer models of prototypical rooftop air conditioners and used to evaluate the impact of fouling on cooling capacity and EER. The equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increase pressure drop rather than due to changes in h

  11. Bypass Selection for Control of Heat Exchanger Network

    Institute of Scientific and Technical Information of China (English)

    SUN Lin; LUO Xionglin; HOU Benquan; BAI Yujie

    2013-01-01

    Considering the flexibility and controllability of heat exchanger networks (HENs),bypasses are widely used for effective control of process stream target temperatures.However,the optimal location for the bypass is generally difficult to design with the trade-off between controllability and capital investments.In this paper,based on the steady-state model of heat exchanger networks the optimal bypass location was firstly selected by iteratively calculating the non-square Relative Gain Array (ns-RGA).To simplify the calculation process,rules of bypass selection were also proposed.In order to evaluate this method,then,the structural controllability of heat exchanger networks was analyzed.With both the consideration of the controllability and capital investments,the bypasses locations were finally selected.A case study on the HEN in Crude Distillation Unit was presented in which the ns-RGA and structural controllability were used to select bypasses and also to evaluate the results.

  12. All-metal, compact heat exchanger for space cryocoolers

    Science.gov (United States)

    Swift, Walter L.; Valenzuela, Javier; Sixsmith, Herbert

    1990-01-01

    This report describes the development of a high performance, all metal compact heat exchanger. The device is designed for use in a reverse Brayton cryogenic cooler which provides five watts of refrigeration at 70 K. The heat exchanger consists of a stainless steel tube concentrically assembled within a second stainless steel tube. Approximately 300 pairs of slotted copper disks and matching annular slotted copper plates are positioned along the centerline axis of the concentric tubes. Each of the disks and plates has approximately 1200 precise slots machined by means of a special electric discharge process. Positioning of the disk and plate pairs is accomplished by means of dimples in the surface of the tubes. Mechanical and thermal connections between the tubes and plate/disk pairs are made by solder joints. The heat exchanger assembly is 9 cm in diameter by 50 cm in length and has a mass of 10 kg. The predicted thermal effectiveness is greater than 0.985 at design conditions. Pressure loss at design conditions is less than 5 kPa in both fluid passages. Tests were performed on a subassembly of plates integrally soldered to two end headers. The measured thermal effectiveness of the test article exceeded predicted levels. Pressure losses were negligibly higher than predictions.

  13. Analytical and Numerical Study on the Uniformity of Temperature Difference Field in Heat Exchangers

    Institute of Scientific and Technical Information of China (English)

    Zhi-XinLi; Da-XiXiong; 等

    1995-01-01

    The relations of the uniformity factor of temperature difference field with the effctiveness of heat exchangers were studied analytically and numerically.The results for eleven kinds of heat exchangers show that the more uniform the temperature difference field,the higher the effctiveness of heat exchanger for a given Ntu and Cr.

  14. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    OpenAIRE

    2013-01-01

    During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer...

  15. Experimental investigation of heat transfer and pressure drop in fin-tube waste heat recovery heat exchangers

    OpenAIRE

    2014-01-01

    The aim of this master thesis was to investigate heat transfer and pressure drop of fin-tube heat exchangers. Experimental investigations of heat transfer and pressure drop in fin-tube bundles has been performed. The main focus was to investigate the influence of the fin height and the fin tip clearance. The effect of the uneven heat transfer distribution on the heat transfer coefficient has been analyzed.A literature survey has been dedicated to investigate the influence of the fin height an...

  16. Comparison of heat transfer performances of helix baffled heat exchangers with different baffle configurations

    Institute of Scientific and Technical Information of China (English)

    Cong Dong; Yaping Chen; Jiafeng Wu

    2015-01-01

    Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers, the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as wel as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20° (20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overal heat transfer coefficient K, shel-side heat transfer coefficient ho and shel-side average comprehensive index ho/Δpo.

  17. Experimental Investigation of Heat transfer rate of Nano fluids using a Shell and Tube Heat exchanger

    Science.gov (United States)

    SIVA ESWARA RAO, M.; SREERAMULU, DOWLURU; ASIRI NAIDU, D.

    2016-09-01

    Nano fluids are used for increasing thermal properties in heat transfer equipment like heat exchangers, radiators etc. This paper investigates the heat transfer rate of Nano fluids using a shell and tube heat exchanger in single and multi tubes under turbulent flow condition by a forced convection mode. Alumina Nanoparticles are prepared by using Sol-Gel method. Heat transfer rate increases with decreasing particle size. In this experiment Alumina Nano particles of about 22 nm diameter used. Alumina Nano fluids are prepared with different concentrations of Alumina particles (0.13%, 0.27%, 0.4%, and 0.53%) with water as a base fluid using ultra-sonicator. Experiment have been conducted on shell and tube heat exchanger for the above concentrations on parallel and counter flow conditions by keeping constant inlet temperatures and mass flow rate. The result shows that the heat transfer rate is good compared to conventional fluids. The properties of Nano fluids and non-dimensional numbers have been calculated.

  18. Studi Eksperimen Analisa Performa Compact Heat Exchanger Louvered Fin Flat Tube untuk pemanfaatan Waste Energy

    OpenAIRE

    Taqwim Ismail; Ary Bachtiar Khrisna Putra

    2014-01-01

    Waste Heat Recovery merupakan instalasi yang digunakan untuk memanfaatkan kembali waste energy seperti exhaust gas. Penelitian dilakukan pada compact heat exchanger tipe louvered fin flat tube sebagai salah satu komponen penyusun waste heat recovery system. Eksperimen dilakukan dengan mendesain compact heat exchanger tipe louvered fin flat tube kemudian dilakukan pengujian pada compact heat exchanger yang telah didesain. Pengujian dilakukan dengan memberikan tiga variasi kecepatan putaran fan...

  19. Negative Joule Heating in Ion-Exchange Membranes

    CERN Document Server

    Biesheuvel, P M; Hamelers, H V M

    2014-01-01

    In ion-exchange membrane processes, ions and water flow under the influence of gradients in hydrostatic pressure, ion chemical potential, and electrical potential (voltage), leading to solvent flow, ionic fluxes and ionic current. At the outer surfaces of the membranes, electrical double layers (EDLs) are formed (Donnan layers). When a current flows through the membrane, we argue that besides the positive Joule heating in the bulk of the membrane and in the electrolyte outside the membrane, there is also negative Joule heating in one of the EDLs. We define Joule heating as the inner product of the two vectors current and field strength. Also when fluid flows through a charged membrane, at one side of the membrane there is pressure-related cooling, due to the osmotic and hydrostatic pressure differences across the EDLs.

  20. Direct contact liquid-liquid heat exchanger for solar heated and cooled buildings

    Science.gov (United States)

    Karaki, S.; Brothers, P.

    1980-06-01

    The technical and economic feasibility of using a direct contract liquid-liquid heat exchanger (DCLLHE) storage unit in a solar heating and cooling system is established. Experimental performance data were obtained from the CSU Solar House I using a DCLLHE for both heating and cooling functions. A simulation model for the system was developed. The model was validated using the experimental data and applied in five different climatic regions of the country for a complete year. The life-cycle cost of the system was estimated for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger. It is concluded that while there is a performance advantage with a DCLLHE system over a conventional solar system, the advantage is not sufficiently large to overcome slightly higher capital and operating costs for the DCLLHE system.

  1. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    Science.gov (United States)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  2. Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger

    Science.gov (United States)

    Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon

    2014-03-01

    When a compact microchannel heat exchanger is operated at cryogenic environments, it has potential problems of axial conduction and flow maldistribution. To analyze these detrimental effects, the heat exchanger model that includes both axial conduction and flow maldistribution effect is developed in consideration of the microchannel heat exchanger geometry. A dimensionless axial conduction parameter (λ) is used to describe the axial conduction effect, and the coefficient of variation (CoV) is introduced to quantify the flow maldistribution condition. The effectiveness of heat exchanger is calculated according to the various values of the axial conduction parameter and the CoV. The analysis results show that the heat exchanger effectiveness is insensitive when λ is less than 0.005, and effectiveness is degraded with the large value of CoV. Three microchannel heat exchangers are fabricated with printed circuit heat exchanger (PCHE) technology for validation purpose of the heat exchanger model. The first heat exchanger is a conventional heat exchanger, the second heat exchanger has the modified cross section to eliminate axial conduction effect, and the third heat exchanger has the modified cross section and the cross link in parallel channel to mitigate flow maldistribution effect. These heat exchangers are tested in cryogenic single-phase, and two-phase environments. The third heat exchanger shows the ideal thermal characteristic, while the other two heat exchangers experience some performance degradation due to axial conduction or flow maldistribution. The impact of axial conduction and flow maldistribution effects are verified by the simulation results and compared with the experimental results.

  3. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins

    Energy Technology Data Exchange (ETDEWEB)

    Agyenim, Francis; Smyth, Mervyn [Centre for Sustainable Technologies, University of Ulster, Newtownabbey BT37 0QB (United Kingdom); Eames, Philip [Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2009-09-15

    An experimental energy storage system has been designed using a horizontal concentric tube heat exchanger incorporating a medium temperature phase change material (PCM) Erythritol, with a melting point of 117.7 C. Three experimental configurations, a control system with no heat transfer enhancement and systems augmented with circular and longitudinal fins have been studied. The results presented compare the system heat transfer characteristics using isotherm plots and temperature-time curves. The system with longitudinal fins gave the best performance with increased thermal response during charging and reduced subcooling in the melt during discharging. The experimentally measured data for the control, circular finned and longitudinal finned systems have been shown to vindicate the assumption of axissymmetry (direction parallel to the heat transfer fluid flow) using temperature gradients in the axial, radial and angular directions in the double pipe PCM system. (author)

  4. Numerical Analysis of Heat Transfer and Fluid Flow in Heat Exchangers with Emphasis on Pin Fin Technology

    OpenAIRE

    2012-01-01

    One of the most important industrial processes is heat transfer, carried out by heat exchangers in single and multiphase flow applications. Despite the existence of well-developed theoretical models for different heat transfer mechanisms, the expanding need for industrial applications requiring the design and optimization of heat exchangers, has created a solid demand for experimental work and effort. This thesis concerns the use of numerical approaches to analyze and optimize heat transfer a...

  5. Direct contact liquid-liquid heat exchanger for solar-heated and cooled buildings

    Science.gov (United States)

    Karaki, S.; Brothers, P.

    1980-06-01

    The procedure used was to obtain experimental performance data from a solar system using a DCLLHE for both heating and cooling functions, develop a simulation model for the system, validate the model using the data, apply the model in five different climatic regions of the country for a complete year, and estimate the life-cycle cost of the system for each application. The results are compared to a conventional solar system, using a standard shell-and-tube heat exchanger.

  6. Entransy dissipation number and its application to heat exchanger performance evaluation

    Institute of Scientific and Technical Information of China (English)

    GUO JiangFeng; CHENG Lin; XU MingTian

    2009-01-01

    Based on the concept of the entransy which characterizes heat transfer ability,a new heat exchanger performance evaluation criterion termed the entransy dissipation number is established.Our analysis shows that the decrease of the entransy dissipation number always increases the heat exchanger effectiveness for fixed heat capacity rate ratio.Therefore,the smaller the entransy dissipation number,the better the heat exchanger performance is.The entransy dissipation number in terms of the number of exchanger heat transfer units or heat capacity rate ratio correctly exhibits the global performance of the counter-,cross-and parallel-flow heat exchangers.In comparison with the heat exchanger performance evaluation criteria based on entropy generation,the entransy dissipation number demonstrates some distinct advantages.Furthermore,the entransy dissipation number reflects the degree of irreversibility caused by flow imbalance.

  7. Experimental stand for investigation of fluid flow in heat exchangers with cross-flow arrangement

    Directory of Open Access Journals (Sweden)

    Łopata Stanisław

    2017-01-01

    Full Text Available The operation analysis of high-performance heat exchanger with tubes elliptical indicated that the heat exchangers can be subject to damage. The reason for this is probably improper distribution of working fluid in tubular space of heat exchanger. Therefore, a part of the tubes may be improperly cooled and subject to compressible stresses. The paper presents an experimental stand allowing to confirm the given assumption. The experimental investigation enables to examine the mass flow rate in heat exchanger tubes. Also, it is possible to assess the impact of the construction of inlet, intermediate and outlet chambers on the flow distribution within the heat exchanger tubes.

  8. Heat transfer to immiscible liquid mixtures in a spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    S. Sathiyan

    2013-06-01

    Full Text Available This work presents new predictive correlations for heat transfer to immiscible liquid-liquid mixtures in a spiral plate heat exchanger. Liquid-liquid heat transfer studies were carried out in spiral plate heat exchangers for the water-octane, water-kerosene, and water-dodecane systems. For each composition of the mixture, the mass flow rate of the cold fluid was varied, keeping that of the hot fluid and the fluid inlet temperatures constant. Two-phase cold flow rates were in the laminar range, while the hot fluid flow was turbulent. Calculations of the LMTD (log mean temperature difference correction factor showed that the flow was countercurrent. Heat transfer coefficients of the two-phase liquids were found to be strongly dependent on the composition of the liquid mixture and exhibited abrupt transitions as a function of the compositions. Given the absence of predictive correlations in the literature that sufficiently capture this compositiondependence, new empirical correlations were developed using part of the experimental data, with the composition of the cold fluid as an explicit variable. Statistical analysis of the regression yielded satisfactory results. The correlations were tested against the rest of the experimental data and were found to predict heat transfer coefficients within ± 15%. These preliminary studies should be useful in designing compact exchangers for handling two-phase water-organics mixtures.

  9. High heat transfer oxidizer heat exchanger design and analysis. [RL10-2B engine

    Science.gov (United States)

    Kmiec, Thomas D.; Kanic, Paul G.; Peckham, Richard J.

    1987-01-01

    The RL10-2B engine, a derivative of the RL10, is capable of multimode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2% of full thrust, and pumped idle (PI), which is 10% of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for low-g deployment. Stable combustion of the RL10-2B engine during the low thrust operating modes can be accomplished by using a heat exchanger to supply gaseous oxygen to the propellant injector. The oxidizer heat exchanger (OHE) vaporizes the liquid oxygen using hydrogen as the energy source. The design, concept verification testing and analysis for such a heat exchanger is discussed. The design presented uses a high efficiency compact core to vaporize the oxygen, and in the self-contained unit, attenuates any pressure and flow oscillations which result from unstable boiling in the core. This approach is referred to as the high heat transfer design. An alternative approach which prevents unstable boiling of the oxygen by limiting the heat transfer is referred to as the low heat transfer design and is reported in Pratt & Whitney report FR-19135-2.

  10. Numerical Model on Frost Height of Round Plate Fin Used for Outdoor Heat Exchanger of Mobile Electric Heat Pumps

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-01-01

    Full Text Available The objective of this study is to provide the numerical model for prediction of the frost growth of the round plate fin for the purpose of using it as a round plate fin-tube heat exchanger (evaporator under frosting conditions. In this study, numerical model was considering the frost density change with time, and it showed better agreement with experimental data of Sahin (1994 than that of the Kim model (2004 and the Jonse and Parker model (1975. This is because the prediction on the frost height with time was improved by using the frost thermal conductivity reflecting the void fraction and density of ice crystal with frost growth. Therefore, the developed numerical model could be used for frosting performance prediction of the round plate fin-tube heat exchanger.

  11. Multiple pollutant removal using the condensing heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Jankura, B. J. [McDermott Technology Inc., Alliance, OH (United States); Kudlac, G. A. [McDermott Technology Inc., Alliance, OH (United States); Bailey, R. T. [McDermott Technology Inc., Alliance, OH (United States)

    1998-06-01

    The Integrated Flue Gas Treatment (IFGT) system is a new concept whereby a Teflon ® covered condensing heat exchanger is adapted to remove certain flue gas constituents, both particulate and gaseous, while recovering low level heat. The pollutant removal performance and durability of this device is the subject of a USDOE sponsored program to develop this technology. The program was conducted under contract to the United States Department of Energy's Fossil Energy Technology Center (DOE-FETC) and was supported by the Ohio Coal Development Office (OCDO) within the Ohio Department of Development, the Electric Power Research Institute's Environmental Control Technology Center (EPRI-ECTC) and Babcock and Wilcox - a McDermott Company (B&W). This report covers the results of the first phase of this program. This Phase I project has been a two year effort. Phase I includes two experimental tasks. One task dealt principally with the pollutant removal capabilities of the IFGT at a scale of about 1.2MWt. The other task studied the durability of the Teflon ® covering to withstand the rigors of abrasive wear by fly ash emitted as a result of coal combustion. The pollutant removal characteristics of the IFGT system were measured over a wide range of operating conditions. The coals tested included high, medium and low-sulfur coals. The flue gas pollutants studied included ammonia, hydrogen chloride, hydrogen fluoride, particulate, sulfur dioxide, gas phase and particle phase mercury and gas phase and particle phase trace elements. The particulate removal efficiency and size distribution was investigated. These test results demonstrated that the IFGT system is an effective device for both acid gas absorption and fine particulate collection. Although soda ash was shown to be the most effective reagent for acid gas absorption, comparative cost analyses suggested that magnesium enhanced lime was the most promising avenue for future study. The durability of the

  12. Cleaning and Heat Transfer in Heat Exchanger with Circulating Fluidized Beds

    Science.gov (United States)

    Kang, Ho Keun; Ahn, Soo Whan; Choi, Jong Woong; Lee, Byung Chang

    2010-06-01

    Fluidized bed type heat exchangers are known to increase the heat transfer and prevent the fouling. For proper design of circulating fluidized bed heat exchanger it is important to know the effect of design and operating parameters on the bed to the wall heat transfer coefficient. The present experimental and numerical study was conducted to investigate the effects of circulating solid particles on the characteristics of fluid flow, heat transfer and cleaning effect in the fluidized bed vertical shell and tube type heat exchanger with counterflow, at which a variety of solid particles such as glass (3 mmF), aluminum (2˜3 mmF), steel (2˜2.5 mmF), copper (2.5 mmF) and sand (2˜4 mmF) were used in the fluidized bed with a smooth tube. Seven different solid particles have the same volume, and the effects of various parameters such as water flow rates, particle diameter, materials and geometry were investigated. The present experimental and numerical results showed that the flow velocity range for collision of particles to the tube wall was higher with heavier density solid particles, and the increase in heat transfer was in the order of sand, copper, steel, aluminum, and glass. This behaviour might be attributed to the parameters such as surface roughness or particle heat capacity. Fouling examination using 25,500 ppm of ferric oxide (Fe2O3) revealed that the tube inside wall is cleaned by a mild and continuous scouring action of fluidized solid particles. The fluidized solid particles not only keep the surface clean, but they also break up the boundary layer improving the heat transfer coefficient even at low fluid velocities.

  13. Numerical heat transfer studies of the fatty acids for different heat exchanger materials on the performance of a latent heat storage system

    Energy Technology Data Exchange (ETDEWEB)

    Atul Sharma; Lee Dong Won; Jun Un Park [Korea Institute of Energy Research, Daejeon (Korea). Solar Thermal Research Centre; Buddhi, D. [Devi Ahilya University, Indore (India). Thermal Energy Storage Laboratory

    2005-11-01

    Theoretical investigations of fatty acids as a phase change material (PCM) for energy storage system have been conducted in this study. The selected fatty acids were capric acid, lauric acid, myristic acid, palmitic acid and stearic acid. For the two-dimensional simulation model based on the enthalpy approach, calculations have been made for the melt fraction with conduction only. Glass, stainless steel, tin, aluminium mixed, aluminium and copper were used as heat exchanger materials in the numerical calculations. Theoretical results show that capric acid was found good compatibility with latent heat storage system. The large value of thermal conductivity of heat exchanger materials did not make significant contribution on the melt fraction. (author)

  14. Heat sources in proton exchange membrane (PEM) fuel cells

    Science.gov (United States)

    Ramousse, Julien; Lottin, Olivier; Didierjean, Sophie; Maillet, Denis

    In order to model accurately heat transfer in PEM fuel cell, a particular attention had to be paid to the assessment of heat sources in the cell. Although the total amount of heat released is easily computed from its voltage, local heat sources quantification and localization are not simple. This paper is thus a discussion about heat sources/sinks distribution in a single cell, for which many bold assumptions are encountered in the literature. The heat sources or sinks under consideration are: (1) half-reactions entropy, (2) electrochemical activation, (3) water sorption/desorption at the GDL/membrane interfaces, (4) Joule effect in the membrane and (5) water phase change in the GDL. A detailed thermodynamic study leads to the conclusion that the anodic half-reaction is exothermic (Δ Sr ev a = - 226 J mo l-1 K-1) , instead of being athermic as supposed in most of the thermal studies. As a consequence, the cathodic half-reaction is endothermic (Δ Sr ev c = + 62.8 J mo l-1 K-1) , which results in a heat sink at the cathode side, proportional to the current. In the same way, depending on the water flux through the membrane, sorption can create a large heat sink at one electrode and an equivalent heat source at the other. Water phase change in the GDL - condensation/evaporation - results in heat sources/sinks that should also be taken into account. All these issues are addressed in order to properly set the basis of heat transfer modeling in the cell.

  15. Performance of Helical Coil Heat Recovery Exchanger using Nanofluid as Coolant

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2015-07-01

    Full Text Available Nanofluids are expected to be a promising coolant condidate in chemical processes for heat transfer system size reduction. This paper focuses on reducing the number of turns in a helical coil heat recovery exchanger with a given heat exchange capacity in a biomass heating plant using γ-Al2O3/n-decane nanofluid as coolant. The nanofluid flows through the tubes and the hot n-hexane flows through the shell. The numerical results show that using nanofluid as coolant in a helical coil heat exchanger can reduce the manufacturing cost of the heat exchanger and pumping power by reducing the number of turns of the coil.

  16. Qualification of stainless steel for OTEC heat exchanger tubes

    Energy Technology Data Exchange (ETDEWEB)

    LaQue, F.L.

    1979-01-01

    The history of the AL-6X alloy is reviewed and its credentials as a candidate for use as tubing in Ocean Thermal Energy Conversion Heat Exchangers are examined. Qualification is based on results of accelerated tests using ferric chloride for resistance to crevice corrosion and pitting, long-time crevice corrosion and pitting tests in natural sea water and anticipated resistance to attack by ammonia and mixtures of ammonia and sea water. Since the alloy has no natural resistance to fouling by marine organisms, it must be able to accomodate action to prevent fouling by chlorination or to remove it by mechanical cleaning techniques or appropriate chemical cleaning methods. The satisfactory behavior indicated by the various accelerated and long-time corrosion tests has been confirmed by excellent performance of several million feet of tubing in condensers in coastal power plants. Early evaluation tests demonstrated the need for proper heat treatment to avoid the presence of a sigma phase, which promoted severe pitting of some, but not all, specimens in tests in natural sea water. The available data qualify the AL-6X alloy as being a satisfactory alternate to titanium for tubes in OTEC heat exchangers.

  17. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  18. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    OpenAIRE

    Jang-Won Seo; Yoon-Ho Kim; Dongseon Kim; Young-Don Choi; Kyu-Jung Lee

    2015-01-01

    Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE), which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% an...

  19. Modeling the dynamic operation of a small fin plate heat exchanger - parametric analysis

    Science.gov (United States)

    Motyliński, Konrad; Kupecki, Jakub

    2015-09-01

    Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC) offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP) units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700-900 °C) is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the cold sides

  20. Modeling the dynamic operation of a small fin plate heat exchanger – parametric analysis

    Directory of Open Access Journals (Sweden)

    Motyliński Konrad

    2015-09-01

    Full Text Available Given its high efficiency, low emissions and multiple fuelling options, the solid oxide fuel cells (SOFC offer a promising alternative for stationary power generators, especially while engaged in micro-combined heat and power (μ-CHP units. Despite the fact that the fuel cells are a key component in such power systems, other auxiliaries of the system can play a critical role and therefore require a significant attention. Since SOFC uses a ceramic material as an electrolyte, the high operating temperature (typically of the order of 700–900 °C is required to achieve sufficient performance. For that reason both the fuel and the oxidant have to be preheated before entering the SOFC stack. Hot gases exiting the fuel cell stack transport substantial amount of energy which has to be partly recovered for preheating streams entering the stack and for heating purposes. Effective thermal integration of the μ-CHP can be achieved only when proper technical measures are used. The ability of efficiently preheating the streams of oxidant and fuel relies on heat exchangers which are present in all possible configurations of power system with solid oxide fuel cells. In this work a compact, fin plate heat exchanger operating in the high temperature regime was under consideration. Dynamic model was proposed for investigation of its performance under the transitional states of the fuel cell system. Heat exchanger was simulated using commercial modeling software. The model includes key geometrical and functional parameters. The working conditions of the power unit with SOFC vary due to the several factors, such as load changes, heating and cooling procedures of the stack and others. These issues affect parameters of the incoming streams to the heat exchanger. The mathematical model of the heat exchanger is based on a set of equations which are simultaneously solved in the iterative process. It enables to define conditions in the outlets of both the hot and the

  1. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  2. Heat transfer enhancement in cross-flow heat exchangers using oval tubes and multiple delta winglets

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, S.; Maurya, D.; Biswas, G.; Eswaran, V. [Indian Institute of Technology, Kanpur (India). Dept. of Mechanical Engineering

    2003-07-01

    A three-dimensional study of laminar flow and heat transfer in a channel with built-in oval tube and delta winglets is carried out through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross-flow heat exchanger. The size of such heat exchangers can be reduced through enhancement of transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta-winglet type vortex generators in various configuration's are mounted on the fin-surface. An evaluation of the strategy is attempted in this investigation. The investigation is carried out for different angles of attack of the winglets to the incoming flow for the case of two winglet pairs. The variation of axial location of the winglets is also considered for one pair of winglets mounted in common-flow-down configuration. The structures of the velocity field and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers. (author)

  3. Aging management guideline for commercial nuclear power plants - heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  4. Heat exchanger. [rocket combustion chambers and cooling systems

    Science.gov (United States)

    Sokolowski, D. E. (Inventor)

    1978-01-01

    A heat exchanger, as exemplified by a rocket combustion chamber, is constructed by stacking thin metal rings having microsized openings therein at selective locations to form cooling passages defined by an inner wall, an outer wall and fins. Suitable manifolds are provided at each end of the rocket chamber. In addition to the cooling channel openings, coolant feed openings may be formed in each of rings. The coolant feed openings may be nested or positioned within generally U-shaped cooling channel openings. Compression on the stacked rings may be maintained by welds or the like or by bolts extending through the stacked rings.

  5. Thermal self-oscillations in radiative heat exchange

    CERN Document Server

    Dyakov, Sergey; Yan, Min; Qiu, Min

    2014-01-01

    We report the effect of relaxation-type self-induced temperature oscillations in the system of two parallel plates of SiO$_2$ and VO$_2$ which exchange heat by thermal radiation in vacuum. The nonlinear feedback in the self-oscillating system is provided by metal-insulator transition in VO$_2$. Using the method of fluctuational electrodynamics we show that under the action of external laser of a constant power, the temperature of VO$_2$ plate oscillates around its phase transition value.

  6. Performance Prediction of Cross-Finned Tube Heat Exchangers

    Science.gov (United States)

    Kondou, Chieko; Senshu, Takao; Oguni, Kensaku

    The plane fin of a cross-finned tube heat exchangers is the basis for all kinds of fins used in air conditioners. In this paper, an improvement the dimensionless arrangements of pressure drop for plane fins was attempted. The detailed calculation results for all geometrical parameters, especially tube disposition, showed the reflecting to the effect of contracted flow in the existing equations of friction factor is insufficient. Therefore, an amendment for these equations was suggested. Further, the analogy between the revised friction factor and the Colburn's j factor was verified. In addition an approximate expression for the fin efficiency using wide parameters was devised.

  7. Numerical Simulation of Heat Transfer Characteristics of Horizontal Ground Heat Exchanger in Frozen Soil Layer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil's moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil's moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard "Technical Code for Ground Source Heat Pump (GB 50366-2005)" is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil's structure, backfilled materials,weather data, and economic analysis.

  8. A novel experimental setup with sand trunk for heat extraction of geothermal heat exchanger

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi-qiang; YAO Yang; CHEN Yi-ming; MA Zui-liang

    2008-01-01

    A novel experimental setup was developed to study the heat extraction of geothermal heat exchanger (GHE) in different operational modes under adiabatic and isothermal boundaries. The experimental setup con-sists of a sand trunk, a tailored water chiller, a natural cold source unit, two water boxes containing hot water and cool water, and a data acquisition system. The experimental results indicate that the volume flow rate of the entering water is a main factor affecting the heat extraction; furthermore, the heat extraction value per meter pipe decreases gradually along the heat extraction pipe and increases with the increase of the incoming water volume flow rate. Therefore, this novel experimental setup may be helpful to further study the operation per-formance of GHE in different types of soil.

  9. Heat transfer in plate heat exchanger channels: Experimental validation of selected correlation equations

    Directory of Open Access Journals (Sweden)

    Cieśliński Janusz T.

    2016-09-01

    Full Text Available This study is focused on experimental investigation of selected type of brazed plate heat exchanger (PHEx. The Wilson plot approach was applied in order to estimate heat transfer coefficients for the PHEx passages. The main aim of the paper was to experimentally check ability of several correlations published in the literature to predict heat transfer coefficients by comparison experimentally obtained data with appropriate predictions. The results obtained revealed that Hausen and Dittus-Boelter correlations underestimated heat transfer coefficient for the tested PHEx by an order of magnitude. The Aspen Plate code overestimated heat transfer coefficient by about 50%, while Muley-Manglik correlation overestimated it from 1% to 25%, dependent on the value of Reynolds number and hot or cold liquid side.

  10. Thermodynamic optimization of geometric structure in the counterflow heat exchanger for an environmental control system

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, T. [Osaka Prefecture Univ., Dept. of Energy Systems Engineering, Sakai, Osaka (Japan); Bejan, A. [Duke Univ., Dept. of Mechanical Engineering and Materials Science, Durham, NC (United States)

    2001-05-01

    This paper shows that the internal geometric configuration of a component can be deduced by optimising the global performance of the installation that uses the component. The example chosen is the counterflow heat exchanger that serves as condenser in a vapor-compression-cycle refrigeration system for environmental control of aircraft. The optimisation of global performance is achieved by minimising the total power requirement or the total entropy generation rate. There are three degrees of freedom in the heat exchanger configuration, which is subjected to two global constraints: total volume, and total volume (or weight) of wall-material. Numerical results show how the optimal configuration responds to changes in specified external parameters such as refrigeration load, fan efficiency, and volume and weight. In accordance with constructal theory and design, it is shown that the optimal configuration is robust: major features such as the ratio of diameters and the flow length are relatively insensitive to changes in the external parameters. (Author)

  11. MATHEMATICAL MODELING OF THERMOPHYSICAL PARAMETERS OF VORTEX HEAT EXCHANGER OF HEATING SYSTEMS OF GAS DISTRIBUTION POINTS PREMISES

    Directory of Open Access Journals (Sweden)

    V. A. Lapin

    2009-09-01

    Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.

  12. Properties of Alloy 617 for Heat Exchanger Design

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard Neil [Idaho National Laboratory; Carroll, Laura Jill [Idaho National Laboratory; Benz, Julian Karl [Idaho National Laboratory; Wright, Julie Knibloe [Idaho National Laboratory; Lillo, Thomas Martin [Idaho National Laboratory; Lybeck, Nancy Jean [Idaho National Laboratory

    2014-10-01

    Abstract – Alloy 617 is among the primary candidates for very high temperature reactor heat exchangers anticipated for use up to 950ºC. Elevated temperature properties of this alloy and the mechanisms responsible for the observed tensile, creep and creep-fatigue behavior have been characterized over a wide range of test temperatures up to 1000ºC. Properties from the current experimental program have been combined with archival information from previous VHTR research to provide large data sets for many heats of material, product forms, and weldments. The combined data have been analyzed to determine conservative values of yield and tensile strength, strain rate sensitivity, creep-rupture behavior, fatigue and creep- fatigue properties that can be used for engineering design of reactor components. Phenomenological models have been developed to bound the regions over which the engineering properties are well known or can be confidently extrapolated for use in design.

  13. A thermoelectric power generating heat exchanger: Part I - Experimental realization

    CERN Document Server

    Bjørk, R; Pryds, N; Lindeburg, N; Viereck, P

    2016-01-01

    An experimental realization of a heat exchanger with commercial thermoelectric generators (TEGs) is presented. The power producing capabilities as a function of flow rate and temperature span are characterized for two different commercial heat transfer fluids and for three different thermal interface materials. The device is shown to produce 2 W per TEG or 0.22 W cm$^{-2}$ at a fluid temperature difference of 175 $^\\circ$C and a flow rate per fluid channel of 5 L min$^{-1}$. One experimentally realized design produced 200 W in total from 100 TEGs. For the design considered here, the power production is shown to depend more critically on the fluid temperature span than on the fluid flow rate. Finally, the temperature span across the TEG is shown to be 55% to 75% of the temperature span between the hot and cold fluids.

  14. Study of thermal energy storage using fluidized bed heat exchangers

    Science.gov (United States)

    Weast, T. E.; Shannon, L. J.; Ananth, K. P.

    1980-01-01

    The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.

  15. Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application

    Science.gov (United States)

    Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.

    2016-06-01

    Air heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized air heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat air for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen Exchanger Design and Rating (EDR) to generate heat exchanger design and costs. The designs include shell and tubes and plate heat exchanger. The heat exchanger was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of air with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat exchanger were found to be plate heat exchanger with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM air flow rate.

  16. A novel method to improve the performance of heat exchanger--Temperature fields coordination of fluids

    Institute of Scientific and Technical Information of China (English)

    GUO Zengyuan; WEI Shu; CHENG Xinguang

    2004-01-01

    The methods to enhance the heat transfer in heat exchanger may be classified into two levels: one is to improve the heat transfer coefficient; the other is to upgrade the whole arrangement of the heat exchangers. For the second level, the performance of heat exchanger can be upgraded by increasing the coordination degree between the temperature fields of cold and hot fluids. When the temperature distributions are similar to each other, the temperature difference field (TDF) is more uniform, which means that the temperature fields are more coordinated with each other. For the cross-flow heat exchanger, rearrangement of the heat exchange surface area should improve the heat transfer effectiveness, which is even equal to that of the counter-flow heat exchanger when the surface area is reassigned optimally. For the multi-stream heat exchanger, the thermal performance is also dependent on the uniformity of the TDF, and the parallel-flow arrangement may achieve higher heat exchange effectiveness than the counter-flow arrangement, which indicates that the performance of heat exchanger depends on the coordination degree of temperature fields instead of the flow arrangement.

  17. Theoretical investigation on thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger

    Science.gov (United States)

    Xiao, Lan; Wu, Shuang-Ying; Zhang, Qiao-Ling; Li, You-Rong

    2012-07-01

    Based on the heat transfer characteristics of absorber plate and the heat transfer effectiveness-number of heat transfer unit method of heat exchanger, a new theoretical method of analyzing the thermal performance of heat pipe flat plate solar collector with cross flow heat exchanger has been put forward and validated by comparisons with the experimental and numerical results in pre-existing literature. The proposed theoretical method can be used to analyze and discuss the influence of relevant parameters on the thermal performance of heat pipe flat plate solar collector.

  18. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  19. Effect of Twisted-Tape Turbulators and Nanofluid on Heat Transfer in a Double Pipe Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Heydar Maddah

    2014-01-01

    Full Text Available Heat transfer and overall heat transfer in a double pipe heat exchanger fitted with twisted-tape elements and titanium dioxide nanofluid were studied experimentally. The inner and outer diameters of the inner tube were 8 and 16 mm, respectively, and cold and hot water were used as working fluids in shell side and tube side. The twisted tapes were made from aluminum sheet with tape thickness (d of 1 mm, width (W of 5 mm, and length of 120 cm. Titanium dioxide nanoparticles with a diameter of 30 nm and a volume concentration of 0.01% (v/v were prepared. The effects of temperature, mass flow rate, and concentration of nanoparticles on the overall heat transfer coefficient, heat transfer changes in the turbulent flow regime Re≥2300, and counter current flow were investigated. When using twisted tape and nanofluid, heat transfer coefficient was about 10 to 25 percent higher than when they were not used. It was also observed that the heat transfer coefficient increases with operating temperature and mass flow rate. The experimental results also showed that 0.01% TiO2/water nanofluid with twisted tape has slightly higher friction factor and pressure drop when compared to 0.01% TiO2/water nanofluid without twisted tape. The empirical correlations proposed for friction factor are in good agreement with the experimental data.

  20. Thermal performance of direct contact heat exchangers for mixed hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, L. Jr.; Coswami, D.Y.; Demuth, O.J.; Mines, G.

    1985-01-01

    This paper describes a physical and a mathematical model for evaluating the tray efficiencies for a direct contact heat exchanger (DCHX). The model is then used to determine the efficiencies for tests conducted on a 60kW sieve tray DCHX as heat is transferred from a geofluid (brine) to a working fluid (mixed hydrocarbons). It is assumed that there are three distinct regions in the column based on the state of the working fluid, as follows: Region I - Preheating with no vaporization; Region II - Preheating with moderate vaporization; and Region III - Major vaporization. The boundaries of these regions can be determined from the experimental data. In the model, mass balance and energy balance is written for a tray ''N'' in each of these regions. Finally, the ''tray efficiency'' or ''heat transfer'' effectiveness of the tray is calculated based on the definition that it is the ratio of the actual heat transfer to the maximum possible, thermodynamically.

  1. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    Science.gov (United States)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications. PMID:28079171

  2. Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger

    Institute of Scientific and Technical Information of China (English)

    王伟晗; 程道来; 刘涛; 刘颖昊

    2016-01-01

    The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficientho and pressure dropΔpo both increase while the comprehensive indexho/Δpo decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive indexho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive indexho/Δpo of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt numberNuo and the comprehensive index Nuo·Euzo−1 increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.

  3. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers

    Science.gov (United States)

    Tu, Y. D.; Wang, R. Z.; Ge, T. S.; Zheng, X.

    2017-01-01

    Comfortable, efficient, and affordable heating, ventilation, and air conditioning systems in buildings are highly desirable due to the demands of energy efficiency and environmental friendliness. Traditional vapor-compression air conditioners exhibit a lower coefficient of performance (COP) (typically 2.8–3.8) owing to the cooling-based dehumidification methods that handle both sensible and latent loads together. Temperature- and humidity-independent control or desiccant systems have been proposed to overcome these challenges; however, the COP of current desiccant systems is quite small and additional heat sources are usually needed. Here, we report on a desiccant-enhanced, direct expansion heat pump based on a water-sorbing heat exchanger with a desiccant coating that exhibits an ultrahigh COP value of more than 7 without sacrificing any comfort or compactness. The pump’s efficiency is doubled compared to that of pumps currently used in conventional room air conditioners, which is a revolutionary HVAC breakthrough. Our proposed water-sorbing heat exchanger can independently handle sensible and latent loads at the same time. The desiccants adsorb moisture almost isothermally and can be regenerated by condensation heat. This new approach opens up the possibility of achieving ultrahigh efficiency for a broad range of temperature- and humidity-control applications.

  4. Plate Fin Heat Exchanger Model with Axial Conduction and Variable Properties

    CERN Document Server

    Hansen, B J; Klebaner, A; 10.1063/1.4706971

    2012-01-01

    Future superconducting radio frequency (SRF) cavities, as part of Project X at Fermilab, will be cooled to superfluid helium temperatures by a cryogenic distribution system supplying cold supercritical helium. To reduce vapor fraction during the final Joule-Thomson (J-T) expansion into the superfluid helium cooling bath, counter-flow, plate-fin heat exchangers will be utilized. Due to their compact size and ease of fabrication, plate-fin heat exchangers are an effective option. However, the design of compact and high-effectiveness cryogenic heat exchangers operating at liquid helium temperatures requires consideration of axial heat conduction along the direction of flow, in addition to variable fluid properties. Here we present a numerical model that includes the effects of axial conduction and variable properties for a plate fin heat exchanger. The model is used to guide design decisions on heat exchanger material choice and geometry. In addition, the J-T expansion process is modeled with the heat exchanger ...

  5. Ventilation Heat Recovery from Wood-Burning Domestic Flues. A Theoretical Analysis Based on a Triple Concentric Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Lionel Druette

    2013-01-01

    Full Text Available This paper presents a new air-heating system concept for energy-efficient dwellings. It is a system designed to heat a low-energy building by coupling a heat-recovery ventilation system with a three-fluid heat exchanger located on the chimney of a wood-pellet stove. The proposed work focuses on the heat transfer that occurs between flue gases, the ventilation air and the combustion air within a triple concentric tube heat exchanger with no insulation at its outer surface. The main objective is to predict outlet temperature for the specific geometry of the heat exchanger studied here. Thus, the governing differential equations are derived for a counter-co-current flow arrangement of the three fluids. Then analytical solutions for the steady-state temperature distribution are obtained as well as the amount of heat transferred to the outside. An expression for the effectiveness of the heat exchanger is also proposed. Based on these results, calculations are performed on a case study to predict the fluid temperature distribution along the heat exchanger. Finally, a parametric study is carried out on this case study to assess the influence of the relevant parameters on the effectiveness of the heat exchanger. In addition, computation of heat losses to the outside justifies whether insulation is needed.

  6. A simple and accurate numerical network flow model for bionic micro heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, M.; Klein, P. [Fraunhofer Institute (ITWM), Kaiserslautern (Germany)

    2011-05-15

    Heat exchangers are often associated with drawbacks like a large pressure drop or a non-uniform flow distribution. Recent research shows that bionic structures can provide possible improvements. We considered a set of such structures that were designed with M. Hermann's FracTherm {sup registered} algorithm. In order to optimize and compare them with conventional heat exchangers, we developed a numerical method to determine their performance. We simulated the flow in the heat exchanger applying a network model and coupled these results with a finite volume method to determine the heat distribution in the heat exchanger. (orig.)

  7. Multilinear Model of Heat Exchanger with Hammerstein Structure

    Directory of Open Access Journals (Sweden)

    Dragan Pršić

    2016-01-01

    Full Text Available The multilinear model control design approach is based on the approximation of the nonlinear model of the system by a set of linear models. The paper presents the method of creation of a bank of linear models of the two-pass shell and tube heat exchanger. The nonlinear model is assumed to have a Hammerstein structure. The set of linear models is formed by decomposition of the nonlinear steady-state characteristic by using the modified Included Angle Dividing method. Two modifications of this method are proposed. The first one refers to the addition to the algorithm for decomposition, which reduces the number of linear segments. The second one refers to determination of the threshold value. The dependence between decomposition of the nonlinear characteristic and the linear dynamics of the closed-loop system is established. The decoupling process is more formal and it can be easily implemented by using software tools. Due to its simplicity, the method is particularly suitable in complex systems, such as heat exchanger networks.

  8. Integrated heat exchanger design for a cryogenic storage tank

    Science.gov (United States)

    Fesmire, J. E.; Tomsik, T. M.; Bonner, T.; Oliveira, J. M.; Conyers, H. J.; Johnson, W. L.; Notardonato, W. U.

    2014-01-01

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  9. Numerical characterization of heat transfer in closed-loop vertical ground heat exchanger

    Institute of Scientific and Technical Information of China (English)

    Chulho; LEE; Hujeong; GIL; Hangseok; CHOI; Shin-Hyung; KANG

    2010-01-01

    A series of numerical analyses has been performed on the characteristics of heat transfer in a closed-loop vertical ground heat exchanger(U-loop).A 2-D finite element analysis was conducted to evaluate the temperature distribution over the cross section of the U-loop system involving high-density polyethylene(HDPE) pipe/grout/soil to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system,which is equipped with a thermally insulating lattice in order to reduce thermal interference between the inlet and outlet pipes.In addition,a 3-D finite volume analysis(FLUENT) was adopted to simulate the operation of the closed-loop vertical ground heat exchanger with the consideration of the effect of a distance between the inlet and outlet pipes,grout’s thermal properties,the effectiveness of the latticed HDPE pipe system,and the rate of circulation pump.It was observed that the thermal interference between the two strands of U-loop is of importance in enhancing efficiency of the ground heat exchanger.Consequently,it is recommended to modify the configuration of the conventional U-loop system by equipping the thermally insulating lattice between the two pipe strands.

  10. Continuation of Studies on Development of ODS Heat Exchanger Tubing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Brown; David Workman; Bimal Kad; Gaylord Smith; Archie Robertson; Ian Wright

    2008-04-15

    The Department of Energy (DOE), National Energy Technology Center (NETL), has initiated a strategic plan for the development of advanced technologies needed to design and build fossil fuel plants with very high efficiency and environmental performance. These plants, referred to as 'Vision 21' and FutureGen programs by DOE, will produce electricity, chemicals, fuels, or a combination of these products, and possibly secondary products such as steam/heat for industrial use. MA956 is a prime candidate material being considered for a high temperature heat exchanger in the 'Vision 21' and FutureGen programs. This material is an oxide dispersion strengthened (ODS) alloy; however, there are some gaps in the data required to commit to the use of these alloys in a full-size plant. To fill the technology gaps for commercial production and use of the material for 'Advanced Power Generation Systems' this project has performed development activity to significant increase in circumferential strength of MA956 as compared to currently available material, investigated bonding technologies for bonding tube-to-tube joints through joining development, and performed tensile, creep and fire-side corrosion tests to validate the use and fabrication processes of MA956 to heat exchanger tubing applications. Development activities within this projected has demonstrated increased circumferential strength of MA956 tubes through flow form processing. Of the six fabrication technologies for bonding tube-to-tube joints, inertia friction welding (IFW) and flash butt welding (FBW) were identified as processes for joining MA956 tubes. Tensile, creep, and fire-side corrosion test data were generated for both base metal and weld joints. The data can be used for design of future systems employing MA956. Based upon the positive development activities, two test probes were designed and fabricated for field exposure testing at 1204 C ({approx}2200 F) flue gas. The probes

  11. Experimental and theoretical analysis of the local condensation heat transfer in a plate heat exchanger

    Science.gov (United States)

    Grabenstein, V.; Kabelac, S.

    2012-11-01

    Plate heat exchanger (PHE) are today widely used in industrial heat transfer applications due to their good thermal performance, modest space requirement, easy accessibility to all areas and their lower capital and operating costs as compared to shell-and-tube heat exchangers. Although authoritative models for the design of PHE used as condensers are missing, the number of applications where a PHE is operating as a condenser increases. On the way to a reliable model based on physical approaches for the prediction of heat transfer and pressure drop during the condensation process inside a PHE, the flow and heat interactions as well as their dependence on the geometrical parameters of the corrugated plates and the operating conditions must be studied in detail. In this work the stepwise procedure for the fundamental construction of such a model is described. An experimental setup was built to analyze the characteristics of the two-phase-flow in PHE. A single gap, consisting of two transparent corrugated plates, was tested with a two-phase flow of air/water and also with boiling refrigerant R365mfc. Flow pattern maps were constructed for plates with corrugation angles of 27 and 63 degrees relative to the direction of flow. Investigations of the local heat transfer coefficients and the pressure drop were done with the same plates. The measurement of the local heat transfer coefficients was carried out by the use of the "Temperature Oscillation InfraRed Thermography" (TOIRT) method. Based on these results three main flow patterns are defined: film flow, bubbly flow and slug flow. For each of the three flow patterns an own model for the heat transfer and pressure drop mechanism are developed and the heat transfer coefficient and the friction factor is calculated with different equations depending on the actual steam quality, mass flow and geometrical parameters by means of a flow pattern map. The theory of the flow pattern based prediction models is proved with own

  12. Control and prevention of ice formation and accretion on heat exchangers for ventilation systems

    DEFF Research Database (Denmark)

    Rahimi, Maral; Afshari, Alireza

    2015-01-01

    In cold climates, the application of mechanical ventilation systems with heat recovery like are airto-air exchangers is used for reducing energy consumption for heating buildings by transferring heat exhausted air to supply air. However, increase efficiency of heat exchanger results in lower...... exhaust air temperatures and Ice formation on heat exchanger fins, which can cause problem and is not favourable. Therefore, prevention and control of ice formation on heat exchangers is necessary. The existing methods are divided into two different methods: active and passive ice control methods....... The active methods are e.g. bypass, recirculation, preheating. The passive methods relate to the surface characteristics of the heat exchanger fins as they have effect on ice formation in initial phase. All these methods have varying levels of success, cost, and effectiveness, which are depending on the heat...

  13. Elongating axial conduction path design to enhance performance of cryogeinc compact pche (printed circuit heat exchanger)

    Science.gov (United States)

    Baek, Seungwhan; Kim, Jinhyuck; Hwang, Gyuwan; Jeong, Sangkwon

    2012-06-01

    PCHE (Printed Circuit Heat Exchanger) is one of the promising cryogenic compact heat exchangers due to its compactness, high NTU and robustness. The essential procedure for fabricating PCHE is chemical etching and diffusion bonding. These technologies can create sufficiently large heat transfer area for a heat exchanger with numerous micro channels (Dhheat exchanger when it is operated with a large temperature difference. Elongating the heat conduction path is implemented to reduce axial conduction in PCHE in this study. Two PCHEs with identical channel configuration are fabricated, for comparison, one of which is modified to have longer heat conduction path. Both heat exchangers are tested in cryogenic environment (300~70 K), and the modified PCHE shows better performance with significantly reduced axial conduction. The experimental results indicate that the modification of the heat conduction path is effective to increase the performance of PCHE. This paper discusses and analyses the thermal characteristics of the modified PCHE obtained experimentally.

  14. THEORETICAL AND EXPERIMENTAL ANALYSIS OF A CROSS-FLOW HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    R. Tuğrul OĞULATA

    1996-03-01

    Full Text Available In this study, cross-flow plate type heat exchanger has been investigated because of its effective use in waste heat recovery systems. For this purpose, a heat regain system has been investigated and manufactured in laboratory conditions. Manufactured heat exchanger has been tested with an applicable experimental set up and temperatures, velocity of the air and the pressure losses occuring in the system have been measured and the efficiency of the system has been determined. The irreversibility of heat exchanger has been taken into consideration while the design of heat exchanger is being performed. So minimum entropy generation number has been analysied with respect to second law of thermodynamics in cross-flow heat exchanger. The minimum entropy generation number depends on parameters called optimum flow path length, dimensionless mass velocity and dimensionless heat transfer area. Variations of entropy generation number with these parameters have been analysied and introduced their graphics with their comments.

  15. Heat transfer and flow resistance performance of shutter baffle heat exchanger with triangle tube layout in shell side

    Directory of Open Access Journals (Sweden)

    Xin Gu

    2016-03-01

    Full Text Available Effect of main structural parameters of shutter baffle heat exchanger with a triangle tube layout in the shell side on heat transfer and flow resistance performance is studied in the article. A periodic whole cross-sectional computation model is built for the heat exchanger in the numerical study. The effects of structural parameters are analyzed, including assembly mode of shutter baffles, shutter baffle pitch, strip inclination angles, and strip widths. The correctness and accuracy of numerical simulation method are confirmed with a laser Doppler velocimeter experiment. Based on the research results, correlations for heat transfer coefficient and pressure drop in shell side are presented. Using the field synergy principle, the heat transfer enhancement mechanisms of segmental baffle heat exchanger and shutter baffle heat exchanger in shell side are analyzed.

  16. Experimental Investigation on Heat Transfer and Frictional Characteristics of Shell-and-tube Heat exchangers with Different Baffles and Tubes

    Science.gov (United States)

    Wang, C.; Zhu, J. G.; Sang, Z. F.

    2010-03-01

    In this study, the heat transfer and tube frictional characteristics of the helixchangers (shell-and-tube heat exchanger with helical baffles) with spirally corrugated and smooth tubes and the conventional shell-and-tube heat exchanger with smooth tubes were experimentally obtained. The results show that the helixchangers with the spirally corrugated tube and the smooth tubes enhance the total heat transfer coefficient about 26% and 7% on the average than the segmental baffled heat exchanger. In the tube side, the spirally corrugated tube leads to about 28% average increase on convective heat transfer performance and about 24% average increase on pressure drop than the smooth tube, but its conversion efficiency is still higher. The helical baffle could enhance the shell-side condensation coefficient by 13%, and the spirally corrugated tube could help the helixchanger with it enhance remarkably the condensation performance by 53% than the segmental baffled heat exchanger.

  17. 40 CFR 63.11499 - What are the standards and compliance requirements for heat exchange systems?

    Science.gov (United States)

    2010-07-01

    ... requirements for heat exchange systems? 63.11499 Section 63.11499 Protection of Environment ENVIRONMENTAL... and compliance requirements for heat exchange systems? (a) If the cooling water flow rate in your heat... part 211, you may use the physical integrity of the reactor as the surrogate indicator of...

  18. Optimization of counterflow heat exchanger geometry through minimization of entropy generation

    NARCIS (Netherlands)

    Lerou, P.P.P.M.; Veenstra, T.T.; Burger, J.F.; Brake, ter H.J.M.; Rogalla, H.

    2005-01-01

    A counterflow heat exchanger (CFHX) is an essential element for recuperative cooling cycles. The performance of the CFHX strongly influences the overall performance of the cryocooler. In the design of a heat exchanger, different loss mechanisms like pressure drop and parasitic heat flows are often t

  19. Down-Hole Heat Exchangers: Modelling of a Low-Enthalpy Geothermal System for District Heating

    Directory of Open Access Journals (Sweden)

    M. Carlini

    2012-01-01

    Full Text Available In order to face the growing energy demands, renewable energy sources can provide an alternative to fossil fuels. Thus, low-enthalpy geothermal plants may play a fundamental role in those areas—such as the Province of Viterbo—where shallow groundwater basins occur and conventional geothermal plants cannot be developed. This may lead to being fuelled by locally available sources. The aim of the present paper is to exploit the heat coming from a low-enthalpy geothermal system. The experimental plant consists in a down-hole heat exchanger for civil purposes and can supply thermal needs by district heating. An implementation in MATLAB environment is provided in order to develop a mathematical model. As a consequence, the amount of withdrawable heat can be successfully calculated.

  20. Studi Eksperimen Analisa Performa Compact Heat Exchanger Circular Tubes Continuous Plate Fin Untuk Pemanfaatan Waste Energy

    Directory of Open Access Journals (Sweden)

    Rachmadi Gewa Saputra

    2014-03-01

    Full Text Available Harga minyak dunia cenderung mengalami peningkatan dalam beberapa tahun terakhir sehingga manusia berfikir untuk memanfaatkan setiap penggunaan minyak bumi. Dengan berkembangnya teknologi saat ini waste energy yang berupa gas hasil pembakaran pada engine dapat dimanfaatkan menjadi bentuk energi lain menggunakan heat recovery system. Pada tugas akhir ini dilakukan desain sebuah heat exchanger tipe circular tubes continuous plate fin dengan susunan tube aligned yang digunakan untuk menyerap waste energy yang berupa exhaust gas. Untuk mendapatkan dimensi desain yang sesuai digunakan metode ΔTLMTD. Metode ini digunakan untuk menentukan nilai dari overall heat transfer  desain dari heat exchanger, kemudian dilakukan perhitungan untuk nilai overall heat transfer hitung. Setelah didapatkan nilai dari overall heat transfer secara desain dan hitung maka dilakukan iterasi untuk mendapatkan dimensi heat exchanger yang memiliki nilai error paling kecil antara nilai overall heat transfer desain dan hitung. Untuk pengujian performa dari heat exchanger yang telah didesain maka dilakukan variasi kacepatan exhaust gas yang melewati heat exchanger, yaitu 0.4 m/s, 0.3 m/s, dan 0.2 m/s. Exhaust gas yang digunakan memiliki temperatur 280oC. Pada tugas akhir ini didapatkan desain compact heat exchanger dengan dimensi panjang 0.38 m, lebar 0.45 m, dan tebal 0.04m. Setelah dilakukan pengujian dengan memvariasikan kecepatan dari exhaust gas yang melewati heat exchanger maka didapatkan bahwa nilai dari qaktual dari heat exchanger mengalami kenaikan dengan bertambahnya reynolds number akibat bertambahnya kecepatan exhaust gas, kemudian nilai dari effectiveness akan mengalami penurunan untuk setiap kenaikan dari reynold number exhaust gas. Selain itu nilai dari NTU heat exchanger juga mengalami penurunan dengan bertambahnya reynold number exhaust gas. Untuk nilai overall heat transfer dari heat exchanger yang didesain akan mengalami kenaikan akibat bertambahnya nilai

  1. Nordic exchange of students and climate change.

    Science.gov (United States)

    Thomsson, A.

    2012-04-01

    Since the end of 2010 and until the summer of 2011 two upper secondary schools in Höyanger, Norway and Ronneby, Sweden had the possibility to take part in a project called Nordplus junior. The main aims of the program are: • To promote Nordic languages and culture and mutual Nordic-Baltic linguistic and cultural understanding. • To contribute to the development of quality and innovation in the educational systems for life-long learning in the participating countries by means of educational cooperation, development projects, exchanges and networking. • To support, develop, draw benefit from and spread innovative products and processes in education through systematic exchange of experiences and best practice. • To strengthen and develop Nordic educational cooperation and contribute to the establishment of a Nordic-Baltic educational area. The students did research on climate change and the impact on local and regional areas. Many questions had to be answered, giving an explanation to what happens if the climate changes. Questions related to Höyanger, Norway What happens to life in Norwegian fiords? Which attitudes do youngsters and adults have about climate change and what actions do they take? What does a rise in sea level mean for Höyanger? How are different tourist attractions affected in western Norway? Questions related to Ronneby, Sweden How is the regional fauna and flora affected? What will happen to agriculture and forestry? What do adults and youngsters know about consequences of a possible climate change? What happens to the people of Ronneby if the sea level rises? Are there any positive outcomes if the climate changes? Conclusions In Norwegian fiords there could be benefits because fish are growing faster in the winter because of an increased temperature. At the same time there could be an imbalance in the ecosystem because of a change in the living ranges of different species. Most of the young boys and girls in Höyanger, Norway were

  2. Erosion of heat exchanger tubes in fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.K.; Flemmer, R.L.C.

    1991-01-01

    This final report describes the activities of the 3-year project entitled Erosion of Heat Exchanger Tubes In Fluidized Beds.'' which was completed at the end of 1990. Project accomplishments include the collection of a substantial body of wear data In a 24in. [times] 24in. fluidized bed, comparative wear results In a 6in. [times] 6in. fluidized bed, the development of a dragometer and the collection of a comprehensive set of drag force data in the 24in. [times] 24in. bed, Fast Fourier Transform (FFT) analysis of bubble probe data to establish dominant bubble frequencies in the 24in. [times] 24in. bed, the use of a heat flux gauge for measurement of heat transfer coefficients in the 24in. [times] 24in. bed and the modeling of the tube wear in the 24in. [times] 24in. bed. Analysis of the wear data from the 24in. square bed indicates that tube wear increases with increase in superficial velocity, and with increase in tube height. The latter effect is a result of the tubes higher up in the bed seeing greater movement of dense phase than tubes lower down In the bed. In addition, tube wear was found to decrease with increase in particle size, for constant superficial velocity. Three models of tube wear were formulated and provided acceptable prediction of wear when compared with the experimental data.

  3. Development of optimization method for plate heat exchanger with undulation

    Directory of Open Access Journals (Sweden)

    Dvořák Václav

    2016-01-01

    Full Text Available The article deals with optimization of undulated heat transfer surface of plate heat exchanger. The goal of optimization is not only to increase effectiveness of heat transfer but also to reduce the pressure drop. A combined pattern of undulation which combines herringbone pattern and wavy pattern was optimized and best values of four parameters were found; angle of herringbone pattern, number, phase and amplitude of longitudinal waves of wavy pattern. The optimization procedure looked for maximum of objective function which was a linear combination of effectiveness and pressure drop. We used simple Monte Carlo method and the optimum was searched for four values of reference pressure drop. Four different optimization were run and we investigated the effect of various definition of objective function and parameters of undulation. It was found that during optimization of combined pattern, the herringbone pattern is more favoured than wavy pattern. It is caused by the fact that herringbone pattern was described by the only one free parameter, which was the angle of undulation, and therefore it is more likely to be found by a stochastic method. This assumption was confirmed when simple wavy pattern was optimized and higher values of objective function and effectiveness were found.

  4. Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, Sepehr; Hajabdollahi, Hassan [Energy Systems Improvement Laboratory (ESIL), Department of Mechanical Engineering, Iran University of Science and Technology (IUST) (Iran)

    2010-06-15

    Thermal modeling and optimal design of compact heat exchangers are presented in this paper. {epsilon}NTU method was applied to estimate the heat exchanger pressure drop and effectiveness. Fin pitch, fin height, fin offset length, cold stream flow length, no-flow length and hot stream flow length were considered as six design parameters. Fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) was applied to obtain the maximum effectiveness and the minimum total annual cost (sum of investment and operation costs) as two objective functions. The results of optimal designs were a set of multiple optimum solutions, called 'Pareto optimal solutions'. The sensitivity analysis of change in optimum effectiveness and total annual cost with change in design parameters of the plate fin heat exchanger was also performed and the results are reported. As a short cut for choosing the system optimal design parameters the correlations between two objectives and six decision variables with acceptable precision were presented using artificial neural network analysis. (author)

  5. Influence of the Water-Cooled Heat Exchanger on the Performance of a Pulse Tube Refrigerator

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-02-01

    Full Text Available The water-cooled heat exchanger is one of the key components in a pulse tube refrigerator. Its heat exchange effectiveness directly influences the cooling performance of the refrigerator. However, effective heat exchange does not always result in a good performance, because excessively reinforced heat exchange can lead to additional flow loss. In this paper, seven different water-cooled heat exchangers were designed to explore the best configuration for a large-capacity pulse tube refrigerator. Results indicated that the heat exchanger invented by Hu always offered a better performance than that of finned and traditional shell-tube types. For a refrigerator with a working frequency of 50 Hz, the best hydraulic diameter is less than 1 mm.

  6. Impact factors on the long-term sustainability of Borehole Heat Exchanger coupled Ground Source Heat Pump System

    Science.gov (United States)

    Shao, Haibing; Hein, Philipp; Görke, Uwe-Jens; Bucher, Anke; Kolditz, Olaf

    2016-04-01

    In recent years, Ground Source Heat Pump System (GSHPS) has been recognized as an efficient technology to utilize shallow geothermal energy. Along with its wide application, some GSHPS are experiencing a gradual decrease in Borehole Heat Exchanger (BHE) outflow temperatures and thus have to be turned off after couple of years' operation. A comprehensive numerical investigation was then performed to model the flow and heat transport processes in and around the BHE, together with the dynamic change of heat pump efficiency. The model parameters were based on the soil temperature and surface weather condition in the Leipzig area. Different scenarios were modelled for a service life of 30 years, to reveal the evolution of BHE outflow and surrounding soil temperatures. It is found that lateral groundwater flow and using BHE for cooling will be beneficial to the energy recovery, along with the efficiency improvement of the heat pump. In comparison to other factors, the soil heat capacity and thermal conductivity are considered to have minor impact on the long-term sustainability of the system. Furthermore, the application of thermally enhanced grout material will improve the sustainability and efficiency. In contrast, it is very likely that undersized systems and improper grouting are the causes of strong system degradation.

  7. Study of heat exchange in cooling systems of heat-stressed structures

    Science.gov (United States)

    Vikulin, A. V.; Yaroslavtsev, N. L.; Zemlyanaya, V. A.

    2017-01-01

    Increasing working parameters of the cycle of gas-turbine engines, complicating design of gas-turbine plants, as well as growing aerodynamic, thermal, static, and dynamic loads, necessitate the development of promising cooling systems for heat-stressed structures. This work is devoted to an experimental study of heat exchange in ducts equipped with systems of inclined and cross walls (fins). It has been found that an increase in the Reynolds number Re from 3000 to 20000 leads to a decrease in the heat exchange, which is characterized by the relative Nusselt number overline{Nu}, by 19-30% at the angle of inclination of the walls φ = 0, 40°, 50°, and 90° if the length of the walls x w is comparable to the spacing b s and by 12-15% at φ = 30° and 90° if x w ≫ b s. If cross walls are used in cooling ducts, the length of the walls x w plays the governing role; an increase in this characteristic from 1.22 × 10-3 to 3.14 × 10-3 m leads to an increase in the intensity of heat exchange by 30-40% and to a decrease in the capacity of the entire system of the walls. It has been shown that, on surfaces with wavy fins, the intensity of heat exchange is closest to that determined in the models under study. For example, values of the Colborne criterion StPr2/3 for ducts equipped with wavy fins and for the models under study differ only slightly (by 2-20% depending on the value of the angle φ). However, the difference for surfaces with short plate fins and ducts equipped with inclined walls is high (30-40%). This is due to the design features of these surfaces and to the severe effect of the inlet portion on heat exchange, since the surfaces are characterized by a higher ratio of the duct length to the hydraulic diameter L/d h at small fin thicknesses ((0.1-0.15) × 10-3 m). The experimental results can be used in developing designs of nozzle and rotor blades of high-temperature gas turbines in gas-turbine engines and plants.

  8. Analytical Study on Thermal and Mechanical Design of Printed Circuit Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Su-Jong Yoon; Piyush Sabharwall; Eung-Soo Kim

    2013-09-01

    The analytical methodologies for the thermal design, mechanical design and cost estimation of printed circuit heat exchanger are presented in this study. In this study, three flow arrangements of parallel flow, countercurrent flow and crossflow are taken into account. For each flow arrangement, the analytical solution of temperature profile of heat exchanger is introduced. The size and cost of printed circuit heat exchangers for advanced small modular reactors, which employ various coolants such as sodium, molten salts, helium, and water, are also presented.

  9. Comparison of moving boundary and finite-volume heat exchanger models in the modelica language

    OpenAIRE

    Adriano Desideri; Bertrand Dechesne; Jorrit Wronski; Martijn van den Broek; Sergei Gusev; Vincent Lemort; Sylvain Quoilin

    2016-01-01

    When modeling low capacity energy systems, such as a small size (5–150 kWel) organic Rankine cycle unit, the governing dynamics are mainly concentrated in the heat exchangers. As a consequence, the accuracy and simulation speed of the higher level system model mainly depend on the heat exchanger model formulation. In particular, the modeling of thermo-flow systems characterized by evaporation or condensation requires heat exchanger models capable of handling phase transitions. To this aim, th...

  10. Heat Transfer and Pressure Drop Characteristics in Straight Microchannel of Printed Circuit Heat Exchangers

    Directory of Open Access Journals (Sweden)

    Jang-Won Seo

    2015-05-01

    Full Text Available Performance tests were carried out for a microchannel printed circuit heat exchanger (PCHE, which was fabricated with micro photo-etching and diffusion bonding technologies. The microchannel PCHE was tested for Reynolds numbers in the range of 100‒850 varying the hot-side inlet temperature between 40 °C–50 °C while keeping the cold-side temperature fixed at 20 °C. It was found that the average heat transfer rate and heat transfer performance of the countercurrrent configuration were 6.8% and 10%‒15% higher, respectively, than those of the parallel flow. The average heat transfer rate, heat transfer performance and pressure drop increased with increasing Reynolds number in all experiments. Increasing inlet temperature did not affect the heat transfer performance while it slightly decreased the pressure drop in the experimental range considered. Empirical correlations have been developed for the heat transfer coefficient and pressure drop factor as functions of the Reynolds number.

  11. Performance Evaluation of Plate-Fin-And Tube Heat Exchanger with Wavy Fins- A Review

    Directory of Open Access Journals (Sweden)

    Sandip S. Kale

    2014-09-01

    Full Text Available The plate fin-and-tube heat exchangers are widely used in variety of industrial applications, particularly in the heating, air-conditioning and refrigeration, HVAC industries. In most cases the working fluid is liquid on the tube side exchanging heat with a gas, usually air. It is seen that the performance of heat exchangers can be greatly increased with the use of unconventionally shaped flow passages such as plain, perforated offset strip, louvered, wavy, vortex generator and pin. The current study is focused on wavy-fin. The wavy surface can lengthen the path of airflow and cause better airflow mixing. In order to design better heat exchangers and come up with efficient designs, a thorough understanding of the flow of air in these channels is required. Hence this study focuses on the heat transfer and friction characteristics of the air side for wavy fin and tube heat exchanger.

  12. Experimental study and analysis of a novel multi-media plate heat exchanger

    Institute of Scientific and Technical Information of China (English)

    SONG JiWei; WANG Fei; CHENG Lin

    2012-01-01

    The experimental study and analysis of a novel multi-media plate heat exchanger were performed in this paper.This novel multi-media plate heat exchanger was self-developed during the process of the investigation and design of the alpha magnetic spectrometer (AMS) thermal system.The plate of this kind of novel plate heat exchanger is formed by discontinuous structure wave consisting of convex sphere and concave sphere,its heat transfer performance is better than that of the BRI chevron plate heat exchanger,and its resistance characteristics are superior to those of the nornally used 60-degree plate heat exchanger.Furthermore,the mechanism analysis of heat transfer enhancement shows that the spherical wave structure can reduce the local field synergy angle,so as to improve the field synergy degree of velocity vector and temperature gradient vector.

  13. Heat Transfer Enhancement for Finned-tube Heat Exchangers with Winglets

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-11-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with a circular tube and/or a delta-winglet pair. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.51 x 10-3 to 14.0 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 670 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of a circular tube, a delta-winglet pair, and a combination of a circular tube and a delta-winglet pair. Comparisons of local and average heat transfer distributions for the circular tube with and without winglets are provided. Overall mean finsurface Nusselt-number results indicate a significant level of heat transfer enhancement associated with the deployment of the winglets with the circular cylinder. At the lowest Reynolds numbers (which correspond to the laminar operating conditions of existing geothermal air-cooled condensers), the enhancement level is nearly a factor of two. At higher Reynolds numbers, the enhancement level is close to 50%.

  14. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  15. Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Uvan Catton; Vijay K. Dhir; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

    2004-04-06

    Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers.

  16. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  17. Heat transfer and flow resistance performance of shutter baffle heat exchanger with triangle tube layout in shell side

    OpenAIRE

    Xin Gu; Bing Liu; Yongqing Wang; Ke Wang

    2016-01-01

    Effect of main structural parameters of shutter baffle heat exchanger with a triangle tube layout in the shell side on heat transfer and flow resistance performance is studied in the article. A periodic whole cross-sectional computation model is built for the heat exchanger in the numerical study. The effects of structural parameters are analyzed, including assembly mode of shutter baffles, shutter baffle pitch, strip inclination angles, and strip widths. The correctness and accuracy of numer...

  18. Heat Transfer Characteristics and Performance of a Spirally Coiled Heat Exchanger under Sensible Cooling Conditions

    Science.gov (United States)

    Wongwises, Somchai; Naphon, Paisarn

    In the present study, new experimental data on the heat transfer characteristics and the performance of a spirally coiled heat exchanger under sensible cooling conditions is presented. The spiral-coil heat exchanger consists of a steel shell and a spirally coiled tube unit. The spiral-coil unit consists of six layers of concentric spirally coiled tubes. Each tube is fabricated by bending a 9.27mm diameter straight copper tube into a spiral-coil of five turns. The innermost and outermost diameters of each spiral-coil are 67.7 and 227.6mm, respectively. Air and water are used as working fluids in shell side and tube side, respectively. A mathematical model based on the conservation of energy is developed to determine the heat transfer characteristics. There is a reasonable agreement between the results obtained from the experiment and those obtained from the model and a good agreement for the high air mass flow rate region. The results obtained from the parametric study are also discussed.

  19. Solid-Solid Vacuum Regolith Heat-Exchanger for Oxygen Production Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase-1 project will demonstrate the feasibility of using a novel coaxial counterflow solid-solid heat exchanger to recover heat energy from spent regolith...

  20. Experimental Study on Heat Transfer and Pressure Drop of Micro-Sized Tube Heat Exchanger

    Institute of Scientific and Technical Information of China (English)

    王秋香; 戴传山

    2014-01-01

    A micro-sized tube heat exchanger (MTHE) was fabricated, and its performance in heat transfer and pres-sure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500-1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional.

  1. FLOW RESISTANCE AND HEAT TRANSFER CHARACTERISTICS OF A NEW-TYPE PLATE HEAT EXCHANGER

    Institute of Scientific and Technical Information of China (English)

    LUAN Zhi-jian; ZHANG Guan-min; TIAN Mao-cheng; FAN Ming-xiu

    2008-01-01

    A new-type corrugation Plate Heat Exchanger (PHE) was designed. Results from both numerical simulations and experiments showed that the flow resistance of the working fluid in this new corrugation PHE, compared with the traditional chevron-type one, was decreased by more than 50%, and corresponding heat transfer performance was decreased by about 25%. The flow field of the working fluid in the corrugation PHE was transformed and hence performance difference in both flow resistance and heat transfer was generated. Such a novel plate, consisting of longitudinal and transverse corrugations, can effectively avoid the problem of flow path blockage, which will help to extend the application of PHEs to the situation with unclean working fluids.

  2. Apparatus for measuring high-flux heat transfer in radiatively heated compact exchangers

    Science.gov (United States)

    Olson, Douglas A.

    1989-01-01

    An apparatus is described which can deliver uniform heat flux densities of up to 80 W/sq cm over an area 7.8 cm x 15.2 cm for use in measuring the heat transfer and pressure drop in thin (6 mm or less), compact heat exchangers. Helium gas at flow rates of 0 to 40 kg/h and pressures to 6.9 MPa (1000 psi) is the working fluid. The instrumentation used in the apparatus and the methods for analyzing the data is described. The apparatus will be used initially to test the performance of prototype cooling jackets for the engine struts of the National Aerospace Plane (NASP).

  3. Numerical study of finned type heat exchangers for ICEs exhaust waste heat recovery

    Directory of Open Access Journals (Sweden)

    M. Hatami

    2014-11-01

    Full Text Available In this paper, two cases of heat exchangers (HEXs which previously were used in exhaust of internal combustion engines (ICEs are modeled numerically to recover the exhaust waste heat. It is tried to find the best viscous model to obtain the results with more accordance by experimental results. One of the HEXs is used in a compression ignition (CI engine with water as cold fluid and other is used in a spark ignition (SI engine with a mixture of 50% water and 50% ethylene glycol as cold fluid. As a main outcome, SST k–ω and RNG k–ε are suitable viscous models for these kinds of problems. Also, effect sizes and numbers of fins on recovered heat amount are investigated in various engine loads and speeds.

  4. Experimental investigation of enhanced heat transfer for fined circular tube heat exchanger with rectangular fins

    Institute of Scientific and Technical Information of China (English)

    LI Yong-xing; YANG Dong; CHEN Ting-kuan

    2006-01-01

    Presents a set of data for flow and heat transfer of finned-tube bundle under the condition of high air flow velocity. Air flow and heat transfer over a 4 ×4 ( columns × rows) finned-tube heat exchanger with rectangular fins was investigated experimentally in a wind tunnel with constant wall temperatures condition. The air flow velocity based on the minimum flow cross-section area over flow channel ranged from 13.8 to 50. 2 m/s,the heat transfer rate ranged from 21.8 to 47. 1 kW, and the air temperatures increase ranged from 10. 9 to 19. 8°C. The present results were compared with results calculated from correlations proposed by CSPE. For air flow velocity less than 25 m/s, these two results of heat transfer agreed well with each other, whereas for larger velocity, our test data disagreed with the CSPE correlations. For the friction factor, present data are much higher than the predicted results in the whole range. Finally, correlations for friction factors and heat transfer coefficients are proposed based on the experimental results.

  5. Effective Heat Transfer Enhancement in Finned Tube Heat Exchanger with Different Fin Profiles

    Directory of Open Access Journals (Sweden)

    J.A.Livingston1 , P. Selvakumar2

    2013-04-01

    Full Text Available During cross flow in a heat exchanger, heat transfer in the front portion of the tube is more compared to back portion of the tube. This is due to less formation of vortices at the backside of the tube. For uniform heat transfer to take place throughout the tube, it is necessary to increase the vortex formation at the rear side of the tube. The aim of this study is to explore the possibilities of improving the flow structure and thereby increasing uniform heat transfer around the tubes by introducing special type of fin arrangement over the tubes. The effect of shape and orientation of the fin on vortex generation and respective heat transfers are studied numerically. It have been identified that by introducing special type of fin arrangement over the tube there is a possibility for increase the vortex formation at the rear portion of the tube, which significantly leads to creation of uniform heat transfer all around the tube.

  6. Thermal design of multi-fluid mixed-mixed cross-flow heat exchangers

    Science.gov (United States)

    Roetzel, W.; Luo, X.

    2010-11-01

    A fast analytical calculation method is developed for the thermal design and rating of multi-fluid mixed-mixed cross-flow heat exchangers. Temperature dependent heat capacities and heat transfer coefficients can iteratively be taken into account. They are determined at one or two special reference temperatures. Examples are given for the application of the method to the rating of special multi-fluid multi-pass shell-and-tube heat exchangers and multi-fluid cross-flow plate-fin heat exchangers. The accuracy of the method is tested against numerical calculations with good results.

  7. The Consequences of Unpredictable Development of Economic Conditions on Heat Exchanger Network Configurations and Economic Results

    DEFF Research Database (Denmark)

    Mou, C.; Qvale, Einar Bjørn

    2002-01-01

    The work reported in the present paper was carried out in connection with a comprehensive process integration study of a fertiliser plant in Lithuania. However, the investigation reported presently only concerns a constructed example with seven process streams. four hot streams and three cold...... streams. The primary objective of the present work was to gain an understanding of the influence of dramatic economic changes on heat exchanger network (HEN) configurations, their profitability and how an existing HEN could restrict future possibilities of heat recovery. HENs were designed to maximise...... the net present value (NPV) of investment and savings during a desired depreciation period for the conditions before the economic changes (State 1), after the economic changes (State 2), and for a retrofit of the "State 1" HEN under "State 2" conditions. The study required six different strategies...

  8. CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations

    OpenAIRE

    2014-01-01

    ANSYS Fluent software is used for three dimensional CFD simulations to investigate heat transfer and fluid flow characteristics of six different fin angles with plain fin tube heat exchangers. The numerical simulation of the fin tube heat exchanger was performed by using a three dimensional numerical computation technique. Geometry of model is created and meshed by using ANSYS Workbench software. To solve the equation for the fluid flow and heat transfer analysis ANSYS FLUENT ...

  9. Performance study of a fin and tube heat exchanger with different fin geometry

    OpenAIRE

    2016-01-01

    This study analyses the effect of different fin geometries on the heat transfer and pressure loss characteristics of a fin and tube heat exchanger. A numerical investigation is carried out on liquid–gas type double-finned tube heat exchanger under cross-flow condition. Three different cross-sections namely: a) Rectangular, b) Trapezoidal, c) Triangular are adopted to define the fin geometry. The CFD simulations are performed to incorporate coupled steady state conjugate heat transfer with the...

  10. Humidification performance of heat and moisture exchangers for pediatric use.

    Science.gov (United States)

    Chikata, Yusuke; Sumida, Chihiro; Oto, Jun; Imanaka, Hideaki; Nishimura, Masaji

    2012-01-01

    Background. While heat and moisture exchangers (HMEs) have been increasingly used for humidification during mechanical ventilation, the efficacy of pediatric HMEs has not yet been fully evaluated. Methods. We tested ten pediatric HMEs when mechanically ventilating a model lung at respiratory rates of 20 and 30 breaths/min and pressure control of 10, 15, and 20 cmH(2)O. The expiratory gas passed through a heated humidifier. We created two rates of leakage: 3.2 L/min (small) and 5.1 L/min (large) when pressure was 10 cmH(2)O. We measured absolute humidity (AH) at the Y-piece. Results. Without leakage, eight of ten HMEs maintained AH at more than 30 mg/L. With the small leak, AH decreased below 30 mg/L (26.6 to 29.5 mg/L), decreasing further (19.7 to 27.3 mg/L) with the large leak. Respiratory rate and pressure control level did not affect AH values. Conclusions. Pediatric HMEs provide adequate humidification performance when leakage is absent.

  11. Condensate removal mechanisms in a constrained vapor bubble heat exchanger.

    Science.gov (United States)

    Zheng, Ling; Wang, Yingxin; Wayner, Peter C; Plawsky, Joel L

    2002-10-01

    Microgravity experiments on the constrained vapor bubble heat exchanger (CVB) are being developed for the space station. Herein, ground-based experimental studies on condensate removal in the condenser region of the vertical CVB were conducted and the mechanism of condensate removal in microgravity was found to be the capillary force. The effects of curvature and contact angle on the driving forces for condensate removal is studied. The Nusselt correlations are derived for the film condensation and the flow from the drop to the meniscus at the moment of merging. These new correlations scale as forced convection with h proportional to L(1/2) or h proportional to L(1/2)(cd). For the partially wetting ethanol system studied, the heat transfer coefficient for film condensation was found to be 4.25 x 10(4) W/m(2)K; for dropwise condensation at moment of merging it was found to be 9.64 x 10(4) W/m(2)K; and for single drops it was found to be 1.33 x 10(5) W/m(2)K.

  12. Deposition of biological aerosols on HVAC heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, Jeffrey; Walker, Ian

    2001-09-01

    Many biologically active materials are transported as bioaerosols 1-10 {micro}m in diameter. These particles can deposit on cooling and heating coils and lead to serious indoor air quality problems. This paper investigates several of the mechanisms that lead to aerosol deposition on fin and tube heat exchangers. A model has been developed that incorporates the effects of several deposition mechanisms, including impaction, Brownian and turbulent diffusion, turbophoresis, thermophoresis, diffusiophoresis, and gravitational settling. The model is applied to a typical range of air velocities that are found in commercial and residential HVAC systems 1 - 6 m/s (200 - 1200 ft/min), particle diameters from 1 - 8 {micro}m, and fin spacings from 3.2 - 7.9 fins/cm (8 - 16 fins/inch or FPI). The results from the model are compared to results from an experimental apparatus that directly measures deposition on a 4.7 fins/cm (12 FPI) coil. The model agrees reasonably well with this measured data and suggests that cooling coils are an important sink for biological aerosols and consequently a potential source of indoor air quality problems.

  13. Experimental Study on Heat Transfer Characteristics of Shell and Tube Heat Exchanger Using Hitran Wire Matrix Turbulators As Tube Inserts.

    Directory of Open Access Journals (Sweden)

    Manoj

    2014-06-01

    Full Text Available Shell and tube heat exchangers are extensively used in boilers, oil coolers, pre-heaters, condensers etc. They are also having special importance in process application as well as refrigeration and air conditioning industries. The present paper emphasizes on heat transfer characteristics of shell and tube heat exchangers with the aid of hiTRAN wire matrix inserts is been studied. Investigations were made on effect of mass flow rate of water on heat transfer characteristics in case of plain tube without inserts. When hiTRAN wire matrix tube inserts are used, which effectively increases the turbulence of tube side flow due to the hydrodynamic and thermal agitation of boundary layer in turns increases additional pressure drop is available in the system. This results in increase in the wall shear, reduced wall temperature which enhances substantial increase in tube side heat transfer characteristics. Heat and cooling processes streams is a standard operation in many industries this operation is often performed in heat exchangers where the heated or cold fluid flows under laminar conditions inside the tubes the mechanisms of under those flow conditions are complex poorly understood since they can involve both forced and natural convection making accurate prediction for heat exchanger. Heat transfer in laminar flow regimes is low by default but can be greatly increased by the use of passive heat transfer enhancement such as tube inserts. The present analysis the hiTRAN wire matrix turbulators were used and increased heat transfer characteristics as expected outcomes.

  14. Two-phase plate-fin heat exchanger modeling for waste heat recovery systems in diesel engines

    NARCIS (Netherlands)

    Feru, E.; de Jager, B.; Willems, F.; Steinbuch, M.

    2014-01-01

    This paper presents the modeling and model validation for a modular two-phase heat exchanger that recovers energy in heavy-duty diesel engines. The model is developed for temperature and vapor quality prediction and for control design of the waste heat recovery system. In the studied waste heat reco

  15. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Bhandari, Mahabir S [ORNL

    2016-01-01

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heat exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.

  16. Heat and moisture exchanger: importance of humidification in anaesthesia and ventilatory breathing system.

    Science.gov (United States)

    Parmar, Vandana

    2008-08-01

    Adequate humidification is vital to maintain homeostasis of the airway. Heat and moisture exchangers conserve some of the exhaled water, heat and return them to inspired gases. Many heat and moisture exchangers also perfom bacterial/viral filtration and prevent inhalation of small particles. Heat and moisture exchangers are also called condenser humidifier, artificial nose, etc. Most of them are disposable devices with exchanging medium enclosed in a plastic housing. For adult and paediatric age group different dead space types are available. Heat and moisture exchangers are helpful during anaesthesia and ventilatory breathing system. To reduce the damage of the upper respiratory tract through cooling and dehydration inspiratory air can be heated and humidified, thus preventing the serious complications.

  17. Steady and unsteady state thermal behaviour of triple concentric-tube heat exchanger

    Science.gov (United States)

    Boultif, Nora; Bougriou, Cherif

    2017-03-01

    This paper presents a numerical analysis by using the finite difference method to describe the steady and unsteady state thermal behavior of triple concentric-tube heat exchanger with parallel flow and counter flow arrangements. One gives the temperature variations of the three fluids and three walls with time along the triple concentric-tube heat exchanger. The fluids have a time lag and the response of triple concentric-tube heat exchanger in parallel flow configuration is faster than those of a counterflow arrangement, its performances are always lower than those of a counterflow triple concentric-tube heat exchanger. The heat transfer coefficients by convection of the three fluids vary with time in addition to the temperature and the heat exchanger performances are lower in unsteady state than the steady state case.

  18. Effect of segmental baffles on the shell-and-tube heat exchanger effectiveness

    Directory of Open Access Journals (Sweden)

    Vukić Mića V.

    2014-01-01

    Full Text Available In this paper, the results of the experimental investigations of fluid flow and heat transfer in laboratory experimental shell-and-tube heat exchanger are presented. Shell-and-tube heat exchanger is with one pass of warm water on the shell side and two passes of cool water in tube bundle. Shell-and-tube heat exchanger is with 24x2 tubes (U-tube in triangle layout. During each experimental run, the pressure drops and the fluid temperatures on shell side, along the shell-and-tube heat exchanger (at positions defined in advance have been measured. Special attention was made to the investigation of the segmental baffles number influence of the shell-and-tube heat exchanger effectiveness.

  19. Prototype Vent Gas Heat Exchanger for Exploration EVA - Performance and Manufacturing Characteristics

    Science.gov (United States)

    Quinn, Gregory J.; Strange, Jeremy; Jennings, Mallory

    2013-01-01

    NASA is developing new portable life support system (PLSS) technologies, which it is demonstrating in an unmanned ground based prototype unit called PLSS 2.0. One set of technologies within the PLSS provides suitable ventilation to an astronaut while on an EVA. A new component within the ventilation gas loop is a liquid-to-gas heat exchanger to transfer excess heat from the gas to the thermal control system s liquid coolant loop. A unique bench top prototype heat exchanger was built and tested for use in PLSS 2.0. The heat exchanger was designed as a counter-flow, compact plate fin type using stainless steel. Its design was based on previous compact heat exchangers manufactured by United Technologies Aerospace Systems (UTAS), but was half the size of any previous heat exchanger model and one third the size of previous liquid-to-gas heat exchangers. The prototype heat exchanger was less than 40 cubic inches and weighed 2.57 lb. Performance of the heat exchanger met the requirements and the model predictions. The water side and gas side pressure drops were less 0.8 psid and 0.5 inches of water, respectively, and an effectiveness of 94% was measured at the nominal air side pressure of 4.1 psia.

  20. Selection of the air heat exchanger operating in a gas turbine air bottoming cycle

    Science.gov (United States)

    Chmielniak, Tadeusz; Czaja, Daniel; Lepszy, Sebastian

    2013-12-01

    A gas turbine air bottoming cycle consists of a gas turbine unit and the air turbine part. The air part includes a compressor, air expander and air heat exchanger. The air heat exchanger couples the gas turbine to the air cycle. Due to the low specific heat of air and of the gas turbine exhaust gases, the air heat exchanger features a considerable size. The bigger the air heat exchanger, the higher its effectiveness, which results in the improvement of the efficiency of the gas turbine air bottoming cycle. On the other hand, a device with large dimensions weighs more, which may limit its use in specific locations, such as oil platforms. The thermodynamic calculations of the air heat exchanger and a preliminary selection of the device are presented. The installation used in the calculation process is a plate heat exchanger, which is characterized by a smaller size and lower values of the pressure drop compared to the shell and tube heat exchanger. Structurally, this type of the heat exchanger is quite similar to the gas turbine regenerator. The method on which the calculation procedure may be based for real installations is also presented, which have to satisfy the economic criteria of financial profitability and cost-effectiveness apart from the thermodynamic criteria.

  1. EXCHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Boltz, J.C. (ed.)

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  2. A systematic approach applied in design of a micro heat exchanger

    DEFF Research Database (Denmark)

    Omidvarnia, Farzaneh; Hansen, Hans Nørgaard; Sarhadi, Ali

    2016-01-01

    is achieved. Thermal performance of the heat exchangers is evaluated using finite element (FE) simulation of the conjugate heat transfer. The design proposals are optimized in terms of geo- metrical dimensions, and a sensitivity analysis is conducted on the mass flow rate and heat generation power in the heat...

  3. Local Heat Transfer for Finned-Tube Heat Exchangers using Oval Tubes

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh

    2000-08-01

    This paper presents the results of an experimental study of forced convection heat transfer in a narrow rectangular duct fitted with either a circular tube or an elliptical tube in crossflow. The duct was designed to simulate a single passage in a fin-tube heat exchanger. Heat transfer measurements were obtained using a transient technique in which a heated airflow is suddenly introduced to the test section. High-resolution local fin-surface temperature distributions were obtained at several times after initiation of the transient using an imaging infrared camera. Corresponding local fin-surface heat transfer coefficient distributions were then calculated from a locally applied one-dimensional semi-infinite inverse heat conduction model. Heat transfer results were obtained over an airflow rate ranging from 1.56 x 10-3 to 15.6 x 10-3 kg/s. These flow rates correspond to a duct-height Reynolds number range of 630 – 6300 with a duct height of 1.106 cm and a duct width-toheight ratio, W/H, of 11.25. The test cylinder was sized such that the diameter-to-duct height ratio, D/H is 5. The elliptical tube had an aspect ratio of 3:1 and a/H equal to 4.33. Results presented in this paper reveal visual and quantitative details of local fin-surface heat transfer distributions in the vicinity of circular and oval tubes and their relationship to the complex horseshoe vortex system that forms in the flow stagnation region. Fin surface stagnation-region Nusselt numbers are shown to be proportional to the square-root of Reynolds number.

  4. Comparative Study and Analysis between Helical Coil and Straight Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    N. D. Shirgire

    2014-08-01

    Full Text Available The purpose of this study is to determine the relative advantage of using a helically coiled heat exchanger against a straight tube heat exchanger. It is found that the heat transfer in helical circular tubes is higher as compared to Straight tube due to their shape. Helical coils offer advantageous over straight tubes due to their compactness and increased heat transfer coefficient. The increased heat transfer coefficients are a consequence of the curvature of the coil, which induces centrifugal forces to act on the moving fluid, resulting in the development of secondary flow. The curvature of the coil governs the centrifugal force while the pitch (or helix angle influences the torsion to which the fluid is subjected to the centrifugal force results in the development of secondary flow. Due to the curvature effect, the fluid streams in the outer side of the pipe moves faster than the fluid streams in the inner side of the pipe. In current work the fluid to fluid heat exchange is taken into consideration. Most of the investigations on heat transfer coefficients are for constant wall temperature or constant heat flux. The effectiveness, overall heat transfer coefficient, effect of cold water flow rate on effectiveness of heat exchanger when hot water mass flow rate is kept constant and effect of hot water flow rate on effectiveness when cold water flow rate kept constant studied and compared for parallel flow, counter flow arrangement of Helical coil and Straight tube heat exchangers. All readings were taken at steady state condition of heat exchanger. The result shows that the heat transfer coefficient is affected by the geometry of the heat exchanger. Helical coil heat exchanger are superior in all aspect studied here.

  5. Dry and wet air-side performance of a louver-finned heat exchanger having flat tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nae Hyun; Kim, Soo Hwan [University of Incheon, Incheon (Korea, Republic of)

    2010-07-15

    A louver-finned flat tube heat exchanger was tested, and the data are compared with those of the state-of-the-art round tube heat exchanger. Both heat exchangers have the same tube perimeter and fin pitch. Tests were conducted under dry and wet condition. Results show that, under dry condition, both j and f factors of the round tube heat exchanger are larger than those of the flat tube heat exchanger. As the Reynolds number decreases, however, the j and f factors of the flat tube heat exchanger increase at steeper slopes than those of the round tube heat exchanger. Under wet condition, contrary to the dry surface, both j and f factors of the flat tube heat exchanger are larger than those of the round tube heat exchanger. Explanation is provided considering the condensate drainage between louvers and fins. Performance evaluation was also performed

  6. A Mass Computation Model for Lightweight Brayton Cycle Regenerator Heat Exchangers

    Science.gov (United States)

    Juhasz, Albert J.

    2010-01-01

    Based on a theoretical analysis of convective heat transfer across large internal surface areas, this paper discusses the design implications for generating lightweight gas-gas heat exchanger designs by packaging such areas into compact three-dimensional shapes. Allowances are made for hot and cold inlet and outlet headers for assembly of completed regenerator (or recuperator) heat exchanger units into closed cycle gas turbine flow ducting. Surface area and resulting volume and mass requirements are computed for a range of heat exchanger effectiveness values and internal heat transfer coefficients. Benefit cost curves show the effect of increasing heat exchanger effectiveness on Brayton cycle thermodynamic efficiency on the plus side, while also illustrating the cost in heat exchanger required surface area, volume, and mass requirements as effectiveness is increased. The equations derived for counterflow and crossflow configurations show that as effectiveness values approach unity, or 100 percent, the required surface area, and hence heat exchanger volume and mass tend toward infinity, since the implication is that heat is transferred at a zero temperature difference. To verify the dimensional accuracy of the regenerator mass computational procedure, calculation of a regenerator specific mass, that is, heat exchanger weight per unit working fluid mass flow, is performed in both English and SI units. Identical numerical values for the specific mass parameter, whether expressed in lb/(lb/sec) or kg/ (kg/sec), show the dimensional consistency of overall results.

  7. Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger

    Science.gov (United States)

    Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng; Velazquez-Vargas, Luis G; Maryamchik, Mikhail

    2016-10-04

    A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vessel connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.

  8. Liquid cooled plate heat exchanger for battery cooling of an electric vehicle (EV)

    Science.gov (United States)

    Rahman, M. M.; Rahman, H. Y.; Mahlia, T. M. I.; Sheng, J. L. Y.

    2016-03-01

    A liquid cooled plate heat exchanger was designed to improve the battery life of an electric vehicle which suffers from premature aging or degradation due to the heat generation during discharging and charging period. Computational fluid dynamics (CFD) was used as a tool to analyse the temperature distribution when a constant surface heat flux was set at the bottom surface of the battery. Several initial and boundary conditions were set based on the past studies on the plate heat exchanger in the simulation software. The design of the plate heat exchanger was based on the Nissan Leaf battery pack to analyse the temperature patterns. Water at different mass flow rates was used as heat transfer fluid. The analysis revealed the designed plate heat exchanger could maintain the surface temperature within the range of 20 to 40°C which is within the safe operating temperature of the battery.

  9. Thermal Efficiency in a Direct Contact Heat Exchanger of Gas and Liquid

    Science.gov (United States)

    Fukuhara, Isamu; Tsuji, Katsuhiko

    Co-generation systems have many practical applications for energy-saving, utilization of various energy resources and energy recovery of waste gas. However, it is pointed out that heat exchangers of co-generation system involve some problems which are corrosion of heat surface, decrease of heat transfer rate due to accumulation of soot and NOx in waste gas. Then. the heat exchange which contacts waste gas with liquid are studied to solve the above problems. The contacting state of gas and liquid has not been researched on the direct contact heat exchanger of gas and liquid. For it is considered that the contacting state has direct effects on a thermal efficiency and gas absorption. Then, we try to investigate the contacting state of gas and liquid by experiments of heating and image processing on the direct contact heat exchanger. From the results, the contacting state of gas and liquid can be evaluate by a gas-liquid contacting area.

  10. Comparative study of Nusselt number for a single phase fluid flow using plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Shanmugam Rajasekaran

    2016-01-01

    Full Text Available In this study, the plate heat exchangers are used for various applications in the industries for heat exchange process such as heating, cooling and condensation. The performance of plate heat exchanger depends on many factors such as flow arrangements, plate design, chevron angle, enlargement factor, type of fluid used, etc. The various Nusselt number correlations are developed by considering that the water as a working fluid. The main objective of the present work is to design the experimental set-up for a single phase fluid flow using plate heat exchanger and studied the heat transfer performance. The experiments are carried out for various Reynolds number between 500 and 2200, the heat transfer coefficients are estimated. Based on the experimental results the new correlation is developed for Nusselt number and compared with an existing correlation.

  11. Parametric simulation and experimental analysis of earth air heat exchanger with solar air heating duct

    Directory of Open Access Journals (Sweden)

    Sanjeev Jakhar

    2016-06-01

    Full Text Available Earth air heat exchanger (EAHE systems are insufficient to meet the thermal comfort requirements in winter conditions. The low heating potential of such systems can be improved by integrating the system with solar air heating duct (SAHD. The aim of this paper is to present a model to estimate the heating potential for EAHE system with and without SAHD. The model is generated using TRNSYS 17 simulation tool and validated against experimental investigation on an experimental set-up in Ajmer, India. The experiment was done during the winter season, where the system was evaluated for different inlet flow velocities, length and depth of buried pipe. From the experimentation, it was observed that the depth of 3.7 m is sufficient for pipe burial and the 34 m length of pipe is sufficient to get optimum EAHE outlet temperature. It is also observed that increase in flow velocity results in drop in EAHE outlet temperature, while room temperature is found to increase for higher velocities (5 m/s. The COP of the system also increased up to 6.304 when assisted with solar air heating duct. The results obtained from the experiment data are in good agreement with simulated results within the variation of up to 7.9%.

  12. Numerical investigation of boiling heat transfer on the shell-side of spiral wound heat exchanger

    Science.gov (United States)

    Wu, Zhi-Yong; Wang, He; Cai, Wei-Hua; Jiang, Yi-Qiang

    2016-09-01

    The aim of this paper is to numerically study boiling heat transfer on the shell-side of spiral wound heat exchanger (SWHE). The physical model for the shell-side of SWHE is established and the volume of fluid (VOF) method is used in the calculation. For propane and ethane, there are thirty cases to be simulated . Through the comparison with experimental data, the cause which leads to the simulation distortion is found, and the satisfied results of calculation are finally achieved. The simulation results show that the VOF model can be adopted well to those calculations whose inlet quality are lower than 0.1 kg/kg, and the calculation deviations are generally within ±20 %. In falling film flow, the heat transfer performance for the shell-side of SWHE is primarily influenced by Reynolds number. The visualization of simulation results displays that the boiling bubbles have three flow directions, besides flowing down with liquid phase, one portion of bubbles flows reversely up, and another portion is blocked at axial gaps of coils where the heat transfer is reduced. The studies of boiling on the shell-side of SWHE not only reveal the characteristics of heat transfer, but also point out the improvement direction of SWHE.

  13. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Peter, E-mail: peter.savin@urfu.ru [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Guzmán, Jorge [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Lepalovskij, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Svalov, Andrey; Kurlyandskaya, Galina [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Vizcaya (Spain); Asenjo, Agustina [Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain); Vas’kovskiy, Vladimir [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Vazquez, Manuel [Department of Magnetism and Magnetic Nanomaterials, Laboratory of Magnetic Sensors, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Instituto de Ciencia de Materiales de Madrid-CSIC, 28049 Madrid (Spain)

    2016-03-15

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer. - Highlights: • FeNi/FeMn bilayers and FeNi/FeMn/FeNi trilayers were prepared by magnetron sputtering. • Post-deposition heat treatments at the temperatures below 200 °C during 5 min were made. • Annealing reduces the exchange field for the first FeNi layer in trilayers. • The exchange field value for the second FeNi layer was not substantially changed. • Exchange field changes are most likely caused by a modification of interface roughness.

  14. Strategy for Synthesis of Flexible Heat Exchanger Networks Embedded with System Reliability Analysis

    Institute of Scientific and Technical Information of China (English)

    YI Dake; HAN Zhizhong; WANG Kefeng; YAO Pingjing

    2013-01-01

    System reliability can produce a strong influence on the performance of the heat exchanger network (HEN).In this paper,an optimization method with system reliability analysis for flexible HEN by genetic/simulated annealing algorithms (GA/SA) is presented.Initial flexible arrangements of HEN is received by pseudo-temperature enthalpy diagram.For determining system reliability of HEN,the connections of heat exchangers(HEXs) and independent subsystems in the HEN are analyzed by the connection sequence matrix(CSM),and the system reliability is measured by the independent subsystem including maximum number of HEXs in the HEN.As for the HEN that did not meet system reliability,HEN decoupling is applied and the independent subsystems in the HEN are changed by removing decoupling HEX,and thus the system reliability is elevated.After that,heat duty redistribution based on the relevant elements of the heat load loops and HEX areas are optimized in GA/SA.Then,the favorable network configuration,which matches both the most economical cost and system reliability criterion,is located.Moreover,particular features belonging to suitable decoupling HEX are extracted from calculations.Corresponding numerical example is presented to verify that the proposed strategy is effective to formulate optimal flexible HEN with system reliability measurement.

  15. Using a Potassium Acetate Solution for Cooling High Pressure Hydrogen in a Prototype Heat Exchanger

    DEFF Research Database (Denmark)

    Rothuizen, Erasmus Damgaard; Abel, M.; Rokni, Masoud;

    2011-01-01

    is to be delivered at high pressure a heat exchanger was designed and constructed. The paper presents a detailed study of construction of the heat exchanger which has been tested and compared to theory to predict and verify its performance. The method presented by Nellis and Klein for laminar flow in annulus tubes...

  16. Feasibility Study of Secondary Heat Exchanger Concepts for the Advanced High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall

    2011-09-01

    The work reported herein represents a significant step in the preliminary design of heat exchanger options (material options, thermal design, selection and evaluation methodology with existing challenges). The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production using either a subcritical or supercritical Rankine cycle.

  17. Results of measurements at a laboratory condensation heat exchanger with a corrugated minichanel tube

    Directory of Open Access Journals (Sweden)

    Jan Hrubý

    2012-04-01

    Full Text Available This article present a short selection of results obtained from measurements done at a laboratory condensation heat-exchanger with a corrugated mini-channel tube. It also touches a little the metering method and design of the heat-exchanger.

  18. Pressure drop characteristics of cryogenic mixed refrigerant at macro and micro channel heat exchangers

    Science.gov (United States)

    Baek, Seungwhan; Jeong, Sangkwon; Hwang, Gyuwan

    2012-12-01

    Mixed Refrigerant-Joule Thomson (MR-JT) refrigerators are widely used in various kinds of cryogenic systems these days. The temperature glide effect is one of the major features of using mixed refrigerants since a recuperative heat exchanger in a MR-JT refrigerator is utilized for mostly two-phase flow. Although a pressure drop estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in MR-JT refrigerator heat exchanger designs, it has been rarely discussed so far. In this paper, macro heat exchangers and micro heat exchangers are compared in order to investigate the pressure drop characteristics in the experimental MR-JT refrigerator operation. The tube in tube heat exchanger (TTHE) is a well-known macro-channel heat exchanger in MR-JT refrigeration. Printed Circuit Heat Exchangers (PCHEs) have been developed as a compact heat exchanger with micro size channels. Several two-phase pressure drop correlations are examined to discuss the experimental pressure measurement results. The result of this paper shows that cryogenic mixed refrigerant pressure drop can be estimated with conventional two-phase pressure drop correlations if an appropriate flow pattern is identified.

  19. A computer program for condensing heat exchanger performance in the presence of noncondensable gases

    Science.gov (United States)

    Yendler, Boris

    1994-01-01

    A computer model has been developed which evaluates the performance of a heat exchanger. This model is general enough to be used to evaluate many heat exchanger geometries and a number of different operating conditions. The film approach is used to describe condensation in the presence of noncondensables. The model is also easily expanded to include other effects like fog formation or suction.

  20. Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building

    Science.gov (United States)

    Hanuszkiewicz-Drapała, Małgorzata; Bury, Tomasz

    2016-03-01

    This paper presents the results of thermodynamic analyses of a system using a horizontal ground heat exchanger to cool a residential building in summer and heat it in the autumn-winter period. The main heating device is a vapour compression heat pump with the ground as the lower heat source. The aim of the analyses is to examine the impact of heat supply to the ground in the summer period, when the building is cooled, on the operation of the heating system equipped with a heat pump in the next heating season, including electricity consumption. The processes occurring in cooling and heating systems have an unsteady nature. The main results of the calculations are among others the time-dependent values of heat fluxes extracted from or transferred to the ground heat exchanger, the fluxes of heat generated by the heat pump and supplied to the heated building by an additional heat source, the parameters in characteristic points of the systems, the temperature distributions in the ground and the driving electricity consumption in the period under analysis. The paper presents results of analysis of cumulative primary energy consumption of the analyzed systems and cumulative emissions of harmful substances.

  1. Utilization of the horizontal ground heat exchanger in the heating and cooling system of a residential building

    Directory of Open Access Journals (Sweden)

    Hanuszkiewicz-Drapała Małgorzata

    2016-03-01

    Full Text Available This paper presents the results of thermodynamic analyses of a system using a horizontal ground heat exchanger to cool a residential building in summer and heat it in the autumn-winter period. The main heating device is a vapour compression heat pump with the ground as the lower heat source. The aim of the analyses is to examine the impact of heat supply to the ground in the summer period, when the building is cooled, on the operation of the heating system equipped with a heat pump in the next heating season, including electricity consumption. The processes occurring in cooling and heating systems have an unsteady nature. The main results of the calculations are among others the time-dependent values of heat fluxes extracted from or transferred to the ground heat exchanger, the fluxes of heat generated by the heat pump and supplied to the heated building by an additional heat source, the parameters in characteristic points of the systems, the temperature distributions in the ground and the driving electricity consumption in the period under analysis. The paper presents results of analysis of cumulative primary energy consumption of the analyzed systems and cumulative emissions of harmful substances.

  2. Latent heat exchange in the boreal and arctic biomes.

    Science.gov (United States)

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  3. A Laboratory Exercise Using a Physical Model for Demonstrating Countercurrent Heat Exchange

    Science.gov (United States)

    Loudon, Catherine; Davis-Berg, Elizabeth C.; Botz, Jason T.

    2012-01-01

    A physical model was used in a laboratory exercise to teach students about countercurrent exchange mechanisms. Countercurrent exchange is the transport of heat or chemicals between fluids moving in opposite directions separated by a permeable barrier (such as blood within adjacent blood vessels flowing in opposite directions). Greater exchange of…

  4. Parametric analysis of the performance of internally finned tubes for heat exchanger application

    Energy Technology Data Exchange (ETDEWEB)

    Webb, R.L.; Scott, M.J.

    1980-02-01

    This paper presents a parametric analysis of the performance of internally finned tubes in turbulent forced convection for application to heat exchangers. The analysis compares the performance of an internally finned tube exchanger with that of an exchanger having internally smooth tubes. The calculations are performed for three important design cases.

  5. Performance Characteristics of Cross-Fin-Tube-Type Heat Exchanger for Air Conditioner

    Science.gov (United States)

    Sasaki, Naoe; Kakiyama, Shiro; Sanuki, Noriyoshi

    The effects of enhanced heat transfer tube with ability to control the heat transfer disturbance by mechanical tube expanding were experimentally investigated on the performance characteristics of air-cooled cross-fin-tube-type heat exchanger for air conditioner. Three kinds of the enhanced heat transfer tube were developed and used in the experiment. The enhanced heat transfer tube was a kind of spirally grooved tube and composed with the fins smaller than those of the conventional spirally grooved tube excepting four fins located in orthogonal position on the tube circumference. The optimum groove number to enhance the performance of heat exchanger was also shown.

  6. Continued evaluation of compact heat exchangers for OTEC evaluation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, J.G.

    1979-10-01

    The objectives of this work investigating the applicability of compact plate heat type heat exchangers to OTEC power systems were: (1) an analytical and experimental evaluation of the performance characteristics of compact heat exchangers using ammonia as the working fluid operating under the entire range of OTEC system conditions; and (2) an evaluation of the applicable manufacturing processes, maintenance requirements, and arrangement concepts for large-scale compact OTEC heat exchangers with specific emphasis on total economics. The work was carried out to establish the applicability of compact plate type heat exchangers to OTEC power systems and to provide: (1) experimental verification of predicted performance (heat transfer and fluid flow) under OTEC operating conditions (using NH/sub 3/); (2) provide initial performance data for several desirable plate type OTEC heat exchanger panels; (3) provide test apparatus for continued experimental testing of OTEC compact heat exchanger panels; and (4) provide design information on applicable manufacturing processes maintenance requirements and arrangement concepts for plate type heat exchangers.

  7. An investigation on the role of thermal fins in the design of micro heat exchangers

    DEFF Research Database (Denmark)

    Omidvarnia, Farzaneh; Hansen, Hans Nørgaard; Sarhadi, Ali

    2015-01-01

    The different dominant physical phenomena in design for micro and macro scale products result in different design considerati ons for both categories. In the cu rrent study, a few design concepts are proposed as micro heat exchangers. In addition, the influential parameters on design of a micro...... heat exchanger in comparison with the effective factors in designing its macro counterpart ar e investigated. Numerical si mulations in the finite element software COMSOL are used to evaluate the thermal performance of both micro and macro heat exchangers. The result of the analysis reveals the fact...... that the presence of some features such as “fins ” in micro heat exchanger is n ot as significant as it is in macro scale. The results of this study can be employed as guidelines in design of similar micro heat exchangers....

  8. Development, Fabrication, and Testing of a Liquid/Liquid Microchannel Heat Exchanger for Constellation Spacecrafts

    Science.gov (United States)

    Hawkins-Reynolds, Ebony; Le, Hung; Stephan, Ryan

    2010-01-01

    Microchannel technology can be incorporated into heat exchanger designs to decrease the mass and volume of space hardware. The National Aeronautics and Space Administration at the Johnson Space Center (NASA JSC) partnered with Pacific Northwest National Laboratories (PNNL) to develop a liquid/liquid microchannel heat exchanger that has significant mass and volume savings without sacrificing thermal and pressure drop performance. PNNL designed the microchannel heat exchanger to the same performance design requirements of a conventional plate and fin liquid/liquid heat exchanger; 3 kW duty with inlet temperatures of 26 C and 4 C. Both heat exchangers were tested using the same test parameters on a test apparatus and performance data compared.

  9. NUMERICAL STUDY ON FLOW DISTRIBUTION IN PLATE-FIN HEAT EXCHANGERS

    Institute of Scientific and Technical Information of China (English)

    张哲; 厉彦忠

    2003-01-01

    Objective To investigate the flow distribution in plate-fin heat exchangers and optimize the design of header configuration for plate-fin heat exchangers. Methods A mathematical model of header was proposed. The effects of the header configuration on the flow distribution in plate-fin heat exchangers were investigated by CFD. The second header configuration with a two-stage-distributing structure was brought forward to improve the performance of flow distribution. Results It is found that the flow maldistribution is very serious in the direction of header length for the conventional header used in industry. The numerical predictions indicate that the improved header configurations can effectively improve the performance of flow distribution in plate-fin heat exchangers. Conclusion The numerical simulation confirms that CFD should be a suitable tool for predicting the flow distribution. The method has a wide variety of applications in the design of plate-fin heat exchangers.

  10. Numerical analysis of the steam flow field in shell and tube heat exchanger

    Directory of Open Access Journals (Sweden)

    Bartoszewicz Jarosław

    2016-06-01

    Full Text Available In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ε, RNG k-ε, Wilcox k-ω, Chen-Kim k-ε, and Lam-Bremhorst k-ε. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  11. Numerical analysis of the steam flow field in shell and tube heat exchanger

    Science.gov (United States)

    Bartoszewicz, Jarosław; Bogusławski, Leon

    2016-06-01

    In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ɛ, RNG k-ɛ, Wilcox k-ω, Chen-Kim k-ɛ, and Lam-Bremhorst k-ɛ. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.

  12. Analysis of Geo-Temperature Restoration Performance under Intermittent Operation of Borehole Heat Exchanger Fields

    Directory of Open Access Journals (Sweden)

    Chaofeng Li

    2015-12-01

    Full Text Available Intermittent operation can improve the coefficient of performance (COP of a ground source heat pump (GSHP system. In this paper, an analytical solution to analyze the geo-temperature restoration performance under intermittent operation of borehole heat exchanger (BHE fields is established. For this purpose, the moving finite line source model is combined with the g-function and the superposition principle. The model takes into account the heat transfer along the borehole, thermal interference between BHEs, and the influence of groundwater flow. The accuracy of the model is validated through comparison with an experiment carried out under intermittent operation. The model makes it possible to analyze the geo-temperature restoration performance and its influencing factors, such as BHE spacing, heat flow rate, operation mode, and groundwater flow. The main conclusions of this work are as follows. The heat transfer along the borehole should be considered when analyzing the geo-temperature restoration performance. When the BHE spacing increases, the soil temperature change decreases and the heat recovery improves. Therefore, adequate borehole separation distance is essential in the case of a multiple BHE system with unbalanced load. The presence of groundwater flow is associated with interference between the BHEs, which should not be ignored. In the case of long-term operation, the groundwater flow is beneficial to the geo-temperature recovery process, even for downstream BHEs. Finally, a greater groundwater flux leads to a better geo-temperature recovery.

  13. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    Science.gov (United States)

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  14. Heat Transfer in a Fin-Tube Type Heat Exchanger with Multiple Inlet Ports

    Science.gov (United States)

    Umekawa, Hisashi; Ozawa, Mamoru; Kawamoto, Akira; Takifuji, Tomonori; Kataoka, Masaki

    Numerical simulation of gas flow in a fin-tube type heat exchanger model has been conducted. The simulation model is two-dimensional and has three inlet ports at the lower boundary and one exit port at the upper boundary. The flow field is partitioned into several sub-channels by spacers. In order to realize the uniform temperature distribution at the exit port and relatively uniform heat transfer rate among the spacers,It is necessary to arrange so that the higher temperature fluid is injected from center port at lower velocity and the lower temperature fluid is injected from both side ports at higher velocity. The thermal flow visualization experiment with thermosensitive liquid-crystal sheet has confirmed the simulation results.

  15. Effect of segmental baffles on the shell-and-tube heat exchanger effectiveness

    OpenAIRE

    Vukić Mića V.; Tomić Mladen A.; Živković Predrag M.; Ilić Gradimir S.

    2014-01-01

    In this paper, the results of the experimental investigations of fluid flow and heat transfer in laboratory experimental shell-and-tube heat exchanger are presented. Shell-and-tube heat exchanger is with one pass of warm water on the shell side and two passes of cool water in tube bundle. Shell-and-tube heat exchanger is with 24x2 tubes (U-tube) in triangle layout. During each experimental run, the pressure drops and the fluid temperatures on shell side, al...

  16. Deposition of dairy protein-containing fluids on heat exchange surfaces.

    Science.gov (United States)

    Rakes, P A; Swartzel, K R; Jones, V A

    1986-12-01

    The deposition behavior of milk and dairy protein model systems under turbulent flow conditions (Re > 66,700) was observed in the heating sections of a tubular ultra-high temperature processing unit. This phenomenon was monitored via thermal resistance of the deposit in four segments in each of two shell-and-tube heat exchangers. Model systems were comprised of mixtures of sodium caseinate, whey proteins, salts, lactose, and fat. Fouling rates varied with type of milk protein, heater wall temperature, and location in the heat exchangers. The relationship between deposition rate in the heat exchanger and protein denaturation kinetics was also examined.

  17. Analysis of a liquid/gas direct contact heat exchanger concept

    Science.gov (United States)

    Warrington, R. O.; Mussulman, R. L.

    1983-12-01

    The performance of spray heat exchangers employing uniform drop generators is analyzed using a computer simulation of the air/water counterflow direct contact heat exchanger for the cases of heat transfer from water to air, and from air to water. The effect of air temperature and humidity on water cooling is demonstrated. For the case of air cooling, the dry bulb temperature reduction achieved in the chiller is insensitive to humidity. The effects of heat exchanger size and droplet size are also considered.

  18. Prediction of Heat Transfer Rates for Shell-and-Tube Heat Exchangers by Artificial Neural Networks Approach

    Institute of Scientific and Technical Information of China (English)

    Qiuwang WANG; Gongnan XIE; Ming ZENG; Laiqin LUO

    2006-01-01

    This work used artificial neural network (ANN) to predict the heat transfer rates of shell-and-tube heat exchangers with segmental baffles or continuous helical baffles, based on limited experimental data. The Back Propagation (BP) algorithm was used in training the networks. Different network configurations were also studied. The deviation between the predicted results and experimental data was less than 2%. Comparison with correlation for prediction shows ANN superiority. It is recommended that ANN can be easily used to predict the performances of thermal systems in engineering applications, especially to model heat exchangers for heat transfer analysis.

  19. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  20. Modelling fireside corrosion of heat exchangers in co-fired pulverised fuel power systems

    Energy Technology Data Exchange (ETDEWEB)

    Simms, N.J. [Cranfield Univ. (United Kingdom). Energy Technology Centre; Fry, A.T. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    As a result of concerns about the effects of CO{sub 2} emissions on the global environment, there is increasing pressure to reduce such emissions from power generation systems. The use of biomass co-firing with coal in conventional pulverised fuel power stations has provided the most immediate route to introduce a class of fuel that is regarded as both sustainable and carbon neutral. In the future it is anticipated that increased levels of biomass will need to be used in such systems to achieve the desired CO{sub 2} emission targets. However there are concerns over the risk of fireside corrosion damage to the various heat exchangers and boiler walls used in such systems. Future pulverised fuel power systems will need to be designed to cope with the effects of using a wide range of coal-biomass mixes. However, such systems will also need to use much higher heat exchanger operating temperatures to increase their conversion efficiencies and counter the effects of the CO{sub 2} capture technologies that will need to be used in them. Higher operating temperatures will also increase the risk of fireside corrosion damage to the critical heat exchangers. This paper reports work that has been carried out to develop quantitative corrosion models for heat exchangers in pulverised fuel power systems. These developments have been particularly targeted at producing models that enable the evaluation of the effects of using different coal-biomass mixtures and of increasing heat exchanger operating conditions. Models have been produced that have been targeted at operating conditions and materials used in (a) superheaters/reheaters and (b) waterwalls. Data used in the development of these models has been produced from full scale and pilot scale plants in the UK using a wide range of coal and biomass mixtures, as well as from carefully targeted series of laboratory corrosion tests. Mechanistic and neural network based models have been investigated during this development process to